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ABSTRACT

ESSAYS ON POLLUTION, HEALTH, AND EDUCATION

By

WES AUSTIN

August 2020

Committee Chair: Dr. Tim Sass

Major Department: Department of Economics

Coal ash accounts for one third of industrial water pollution in the United States. In Chapter 1,

I assess the relationship between coal ash surface water discharges and three relevant outcomes:

surface water quality, municipal system water quality, and fetal health indicators from a birth cer-

tificate database in North Carolina. Identification relies on geographic variation in downstream

status of monitoring sites and municipal water intake locations, plant closures or conversions, and

the relative quantity of coal ash released over time. I find that coal ash releases are associated

with higher conductivity and pH in both downstream surface waters and municipal water supplies

sourced from these waters. Water systems affected by coal ash tend to have more Safe Drinking

Water Act violations for disinfectant byproducts, inorganic chemicals, and health-based violations.

I quantify the costs of coal ash water pollution with respect to fetal health and home sales. Ex-

ploiting variation arising from mothers’ moves, I find that a newborn potentially exposed to coal

ash water pollution is 1.7 percentage points more likely to have low birthweight compared to an

unexposed sibling. I conclude by estimating how a legislative act mandating drinking well testing

affected home sale prices in regions around coal ash plants. After the act, sale prices of homes

within 1 mile of coal ash ponds declined by 12-14%, or over $37,000.

Chapter 2 investigates how school-age children are affected by diesel emissions from school

buses. Diesel emissions from school buses expose children to high levels of air pollution; retrofitting

bus engines can substantially reduce this exposure. Using variation from 2,656 retrofits across



Georgia, we estimate effects of emissions reductions on district-level health and academic achieve-

ment. We demonstrate positive effects on respiratory health, measured by a statewide test of aer-

obic capacity. Placebo tests on body mass index show no impact. We also find that retrofitting

districts experience significant test score gains in English and smaller gains in math. Our results

suggest that engine retrofits can have meaningful and cost-effective impacts on health and cognitive

functioning.

Chapter 3 explores farm-to-school policies. School meal provision represents one of the largest

food markets in the country. In 2015, 42,000 schools serving 23.6 million students engaged in

farm-to-school nutrition sourcing policies. Yet, little is known about how much school systems

actually source their food locally or about the average relationship between farm-to-school policy

adoption and local sourcing of school food. I link 17 years of school district nutrition expenditures

across the state of Georgia to a unique commodity-by-county survey of agricultural revenues to

assess how much school systems source food from within their county and neighboring counties. I

then incorporate four years of survey-based information on district farm-to-school policies to test

how farm-to-school programs differentially impact local sourcing patterns. Identification comes

from spatiotemporal variation in school district adoption of a farm-to-school policy and variation in

expenditures associated with the community eligibility provision of the Healthy Hunger Free Kids

Act. Results suggest that as much as $966M of school nutrition expenditures flow to producers

within the same county. Of this, perhaps as much as $680M, or 0.6% of all agricultural revenues

in the state from 2001-2017, are associated with adoption of farm-to-school policies by school

districts.
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Chapter 1

Throwing the Baby out With the Ashwater?

Coal Combustion Residuals, Water Quality,

and Fetal Health

1 Introduction

Coal combustion residuals (CCRs) are the waste material from burning coal. Also known as coal

ash, 110 million tons of CCRs are produced each year in the United States, of which 2.7 million

tons are released into surface waters.1 The remainder is primarily stored in wet landfills, while

roughly one quarter is recycled.2 Although surface-water discharges of coal ash effluent represent

a small fraction of all coal ash produced, they account for one third of all industrial water pollution

by toxicity and one half by mass.3 No previous study has estimated how coal ash surface water

discharges affect municipal water quality and human health.

Coal ash threatens water supplies because of the relative toxicity of constituent compounds, the

quantity produced, and the quality of many confinement landfills. Heavy metals including arsenic,

1MacBride (2013), Gollakota et al. (2019). Globally, 750 million tons were produced in 2015, up from 500 million
tons in 2005.

2See Yao et al. (2015), Gollakota et al. (2019) for reviews of alternative uses of coal combustion residuals.
3Bernhardt et al. (2016), Boyce and Ash (2016).
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selenium, cadmium, chromium, lead, and mercury compose at least one third of coal ash.4 Coal

ash contains over four times as many heavy metals by mass as parent coal due to combustion of

organic compounds.5 Of the 63 steam-generating coal power plants incorporated in this paper, the

average plant has seven containment landfills totaling 176 acres at an average depth of 50 feet.6

Over 130 of these ponds were built before 1980, and at least 141 have no impermeable lining to

protect groundwater.7 Confinement and disposal practices increase the risk of surface-water and

groundwater contamination. In a recent report, the EPA documented 149 damage litigation cases

of coal ash impoundments affecting groundwater and 152 of coal ash affecting surface water.8 Al-

though municipal water providers filter most of the harmful compounds in coal ash, disinfectants

used to treat the water interact with remaining CCRs to create harmful compounds known as disin-

fectant byproducts (DBPs). The formation of DBPs decreases the effectiveness of disinfectants.9

Moreover, changes to the properties of water such as pH, temperature, and conductivity can affect

corrosivity of pipes, leading to increased lead and copper levels in drinking water. While water

quality in the developing world is known to affect human health, few studies have investigated

how municipal water quality in a developed country may affect health.10

The purpose of this paper is to determine how CCR water pollution affects municipal water

quality, human health, and home values. First, I replicate and generalize previous findings that

CCRs affect surface water quality using a larger geographic region and longer time horizon. Next,

I estimate the impact of this surface water pollution on measures of municipal water quality and

the likelihood of a Safe Drinking Water Act Violation. Then, I assess whether this point-source

pollutant may affect human health. Finally, I quantify residential willingness-to-pay to avoid coal

ash water pollution. To answer these questions, I obtain six types of information: annual coal ash

4EPA (2015a), Shy (1979), Munawer (2018), Ibrahim (2015), Izquierdo and Querol (2012).
5Yao et al. (2015).
6Ash (2019) For comparison, Disney Land is 85 acres.
7Many inactive ponds lack information on construction date or lining status. See Table B.1 for summary statistics

on coal ash containment facilities.
8EPA (2015a).
9EPA (2001), Davison et al. (2005), Wang et al. (2012).

10Among many others, He and Perloff (2016), Currie et al. (2017), Troesken (2008), Cutler and Miller (2005), Jalan
and Ravallion (2003), Brainerd and Menon (2014) explore the relationship between water quality and human health in
developing countries. Currie et al. (2013) and Marcus (2019) use samples in New Jersey and North Carolina.
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surface water releases across 63 power plants, surface water monitoring tests over six states, mu-

nicipal water quality monitoring tests over five states, municipal water quality violations over six

states, birth certificates for 1.5 million children born in North Carolina, and home sale records for

twelve counties in North Carolina. At a minimum, the sample covers 2005 to 2017. Identification

of water quality changes associated with coal ash pollution relies on three forms of variation. The

first form of variation is “downstream” status of monitoring sites or municipal water intakes within

watershed regions. The second is temporal variation in the operating status of upstream coal ash

facilities, which arises from plant closures and changes to confinement practices. The third is the

relative quantity of coal ash released upstream from a water quality monitor or intake site, which

occurs naturally over time and also due to plant closures and conversions. To test for health effects

from water quality changes, I follow the literature in comparing fetal health indicators of siblings

exposed to differential water quality.11 I conclude by estimating household willingness-to-pay to

avoid coal water pollution using repeat sales of homes near ash facilities in North Carolina. In

this estimation procedure, I exploit a legislative change leading to the discovery of unsafe drinking

water in many home wells surrounding coal ash plants. This study is the first to directly assess the

impact of coal ash water pollution on drinking water supplies over a large geographic region and

time horizon. I also add to a limited literature on the effect of water quality on fetal health out-

comes in a developed-country context. Estimation of the willingness-to-pay to avoid contaminated

drinking wells has broad relevance to both the housing value effects of environmental crises and

risk perception among households near potential disaster sites.12

I find that contemporaneous coal ash releases increase the concentration of heavy metals in

downstream surface waters; these include arsenic, lead, and selenium. Surface water quality mon-

itors downstream from coal ash release sites also have altered properties. They tend to have higher

conductivity, lower dissolved oxygen, higher pH, and higher temperature. Municipal water sys-

tems sourcing from waters potentially affected are also more likely to have higher conductivity, an

indicator of elevated suspended and dissolved compounds. These water systems experience more

11Currie et al. (2013).
12Christensen et al. (2019b), Coulomb and Zylberberg (2016).
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water quality violations for disinfectant byproducts, inorganic compounds, arsenic, and maximum

contaminant level violations. I find evidence that maximum contaminant level, reporting, inor-

ganic compound, arsenic, and health-based violations are driven by contemporaneous releases of

coal ash pollution. Children born in residences served by municipal water systems downstream

from active coal ash sites, in comparison to unexposed siblings, are 1.7 percentage points more

likely to have birthweight. On average, these newborns weigh 1.2 ounces less than unexposed sib-

lings, and they’re 1.2 percentage points more likely to be preterm. Newborns of mothers with less

education are more affected by coal ash pollution than average exposed children. These effects are

driven both by adverse outcomes of mothers moving into coal ash municipal water service zones

and by improvements for mothers moving out of coal ash municipal water service zones. Finally,

residences within 1 mile of a coal ash pond, after discovery of well water considered unsafe to

drink by the EPA, sold for $37,000 - $45,000 less than previously. Results provide strong evidence

that coal ash water pollution negatively affects surface water quality and complicates the municipal

water treatment process. These changes to municipal water quality likely affect human health, and

the analysis of repeated home sales reveals that households care greatly about potential exposure

to this form of pollution.

2 Motivation, Prior Work, and Contribution

An extensive literature documents the negative health consequences of exposure to coal through

kitchen handling, home heating, mine drainage, mining dust, shipping and stockpile dust, and

smokestack emissions.13 These health consequences are large both in magnitude and relative to the

cost of the coal.14 Only one study investigates the health effects of coal ash water contamination.

The study found that coal-polluted well water is associated with skin cancers, toxicities to internal

13Liu et al. (2002), Barreca et al. (2014), Kravchenko and Lyerly (2018), Pershagen et al. (1986), Clay et al. (2015,
2016).

14Jha and Muller (2017) found that the external costs from coal stockpile dust were four times the per-ton cost of
the coal itself.
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organs, neuropathy, nephrotoxicity, cirrhosis, ascites, and liver cancer.15 However, the study relates

to household disposal of cooking coal ash near shallow drinking wells rather than industrial coal

ash containment practices, and it is also set in a developing country. In a recent literature review

on the health effects of coal combustion residuals from steam power plants, the author found no

study quantifying the extent of drinking water quality concerns and recommended future studies

on the range of individual exposures to coal ash contaminants from water.16

CCRs primarily affect surface and ground waters in three ways. First, ash ponds are occa-

sionally or continually drained into nearby bodies of water. CCRs also seep through the sides of

containment facilities. Because coal plants and ash ponds are constructed next to large bodies of

water, seepage is nontrivial.17 Third, pressure from the weight of additional CCRs and water cause

a leachate of dissolved compounds to flow into groundwater if a containment pond is unlined or

poorly lined, affecting public and private wells and eventually also surface waters.18 A broad lit-

erature demonstrates the chemical profile of coal ash water pollution, the conditions under which

coal ash is mobilized, and the characteristics of affected surface waters.19 In general, these stud-

ies cover relatively small geographic regions and provide a snapshot temporal view of local water

quality.20

CCR source-water contamination may affect drinking water quality through the formation of

disinfectant byproducts, corrosion of pipes, and residual contaminants after water treatment. Coal

ash effluent increases the quantity of total dissolved solids in drinking water supplies, which is

associated with increased formation of trihalomethanes, a group of disinfectant byproducts, during

water treatment.21 Bromide, a relatively harmless constituent of coal ash, interacts with chlorine

15Yu et al. (2007).
16Kravchenko and Lyerly (2018).
17Coutant et al. (1978) compare intentional water discharges with seepage water, finding that the latter contained

44 times the amount of dissolved iron and had a pH of 2.9; both sources of water killed all experimental fish sub-
jects within 72 hours, with the seepage water killing all fish within the first 24. Unexposed control fish populations
experienced no mortality.

18Of 14 North Carolina large coal ash confinement facilities, two thirds leach pollution into groundwater.
19Kopsick and Angino (1981), Baba and Kaya (2004), L. Carlson and C. Adriano (2009), EPA (2015a).
20An exception is EPA (2015a), which creates a model to estimate the effect of coal ash effluent discharges on

nearby surface waters, taking characteristics of the pond and nearby body of water into consideration. The study
examines five sites across the country, and uses the analysis to make effluent limitation policy suggestions.

21Handke (2009).
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to form another group of disinfectant byproducts, haloacetic acids.22 Corrosivity is the rate of

pipe oxidation; high corrosivity indicates the potential for leaching of pipe materials such as lead

and copper into drinking water. PH, conductivity, total dissolved solids, alkalinity, temperature,

dissolved oxygen, and total hardness influence the corrosivity of water. Corrosivity is a major

health concern for untreated groundwater sources.23 However, fluctuations in surface water quality

leading to corrosivity changes may also pose a public health concern.24 For example, chloride in

coal ash, increasingly present in US surface waters, affects corrosivity and hence lead levels in

drinking water.25 Properties of water related to coal ash, such as pH, also affect corrosivity and

may impact human health. Clay et al. (2010) take advantage of variation in pipe materials and water

pH across regions of the US from 1900-1920, finding that a slight normalizing of pH in locations

with lead pipes would decrease fetal mortality by 7-33%. Troesken (2008) finds a similarly strong

relationship between pH, lead pipes, and fetal health. Finally, variations in pollution releases,

weather events, and accidents may impact the efficacy of treatment systems designed for different

source-water quality.26

Animal-based studies demonstrate that coal ash water pollution harms the reproductive health

of many organisms.27 The potential influence of coal ash water pollution on pipe corrosion may

also signal a public health concern because lead impairs child and fetal development.28 Further,

disinfectant byproducts may affect fetal health even if the same compounds in similar doses are

low-risk to adults.29 Prior work causally associates differential water quality with an increased

risk of low-birthweight newborns, providing a basis for investigating whether residual coal ash

pollutants, materials from pipe corrosion, or disinfectant byproducts may impact fetal health.30 I

use fetal health indicators for this analysis because of the greater vulnerability of newborns to pol-

22Heller-Grossman et al. (1993), Cowman and Singer (1996), Liang and C Singer (2003).
23One third of drinking water wells in the United States have potentially corrosive water (Belitz et al., 2016).
24Singley et al. (1984), Neffand et al. (1987).
25Zhu et al. (2008), Stets et al. (2012).
26Davison et al. (2005).
27Gillespie and Baumann (1986), Heinz and Hoffman (1998), Hopkins et al. (2002).
28Gazze (2015), Clay et al. (2010, 2018, 2019), Miranda et al. (2007).
29Studies suggest that DBPs increase risk of bladder cancer when ingested at levels currently observed in industri-

alized countries (Cantor et al., 2010, Villanueva et al., 2004).
30Currie et al. (2013).
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lution. Low-birthweight newborns are also costly to society. They are more prone to chronic and

degenerative conditions like diabetes and heart disease; they also have lower test scores, educa-

tional attainment, and income.31 The short time window of gestation also increases the likelihood

of noticing health impacts that would take longer to manifest in adults and likely coexist with many

pollutant exposures.

This study contributes to several literatures. I generalize previous findings on the effects of coal

disposal practices on surface water quality to a region of six states, thirteen years of monitoring

tests, and a wide array of compounds. I also contribute to a limited literature on the role that point-

source pollution plays on municipal water quality, providing a relatively novel outcome in the form

of regular state monitoring tests. In so doing, I provide the first evidence on the contemporaneous

relationship between coal ash water pollution and municipal water quality. Adding to other studies

on the fetal health consequences of local pollution, I estimate the relationship between coal ash

sites and indicators of fetal health, incorporating both air and water quality information.32 This

study adds to our understanding of the life-cycle costs of coal, as many papers disregard water

quality costs except those related to mining.33 Similarly, the study provides an additional context

through which to view the benefits of surface-water pollution abatement, recently found to be less

than one fourth the costs of cleanup grants in Keiser and Shapiro (2017). Indeed, the EPA’s own

analyses rarely find that water quality regulations pass a cost-benefit test, with a median benefit-

cost ratio of 0.37 across all regulations over the past several decades according to a recent study.34

Because these previous cost-benefit analyses do not include health benefits via the municipal drink-

ing water mechanism, this study sheds light on how a potentially missing benefit may affect the

results of decades of federal cost-benefit analysis on surface water quality regulations.

31Osmond and Barker (1991), Almond and Currie (2011).
32Currie and Walker (2011), Currie et al. (2017), Persico et al. (2016), Jha and Muller (2017).
33Amigues et al. (2011), Muller et al. (2011).
34Keiser et al. (2019).
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3 Data

This study incorporates information on coal ash disposal practices, surface water quality, munic-

ipal water quality, natality outcomes, air pollution, and home sales. In the following sections, I

summarize average differences across potentially affected and likely unaffected surface waters,

municipal water systems, newborns, and homes. For detailed description of how I geographically

assign treatment indicators, see chapter appendix sections 8.1, 8.2, and 8.3.

3.1 The Quantity and Location of Coal Ash Disposal

The Toxic Releases Inventory (TRI) provides facility-by-year-by-pollutant information on the

quantity of over 650 regulated substances released into the environment. Many of the compounds

present in coal ash are regulated substances. All facilities releasing at least one of these com-

pounds and employing at minimum ten employees must report their pollution release information

annually, ensuring that industrial steam-generating coal power plants are included in the TRI.35

The pollutant compounds are split up by type of release, allowing separation of the quantity that

is released into surface waters from the quantity that is impounded. I combine TRI reports with

information on the age, depth, and lining status of each plant’s confinement ponds or landfills as-

sembled by the non-profit Southeast Coal Ash. I limit my sample of coal plant release sites to

those with positive water pollution from 2005 to 2017 across six southern states. These states are

Alabama, Georgia, North Carolina, South Carolina, Tennessee, and Virginia. Power plants not

combusting coal were excluded from the sample. The remaining sample includes 63 steam elec-

tricity generating coal power plants. These sites are mapped in Figure A.1. Table B.1 displays

annual facility-level information on coal ash loadings from 2005-2017, including toxicity weights

for many of the constituent compounds of coal ash.36 Additionally, Figure A.4 shows the annual

35Self-reporting allows the possibility of under-reporting and measurement error. To the extent that firms under-
report true pollution releases, regression estimates would be biased to zero. To limit the influence of mis-measured
or poorly-estimated release figures by pollutant, I employ models with a binary indicator for whether surface-water
pollution releases occurred and others with a variable for the total coal ash surface-water releases across all compounds.

36The EPA’s Risk-Screening Environmental Indicators (RSEI) toxicity weights allow comparison of the toxicity of
different compounds compiled in the TRI. See https://www.epa.gov/rsei/rsei-toxicity-weights for more information.
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average distribution of toxic releases of coal facilities. The same figure plots these average releases

over time. The average coal power plant releases approximately 10 tons of coal ash compounds

into surface waters each year, and this level has remained roughly constant over the sample exclud-

ing a disastrous 2008 spill at the Kingston Fossil Plant in Tennessee. However, this average masks

significant heterogeneity in the quantity of surface water pollution across plants. Meanwhile, the

quantity of coal ash impounded in confinement landfills has decreased over the past decade from

around 400 tons per plant per year to a little over 250 tons. Figure A.5 provides a breakdown of

coal ash surface water loadings by type of chemical. Of the tons that are released into surface

waters, the bulk of the pollution is composed of relatively harmless compounds such as barium,

copper, manganese, and nickel. However, it is not uncommon for plants to release multiple tons

of more harmful compounds such as arsenic, chromium, lead, and vanadium into nearby surface

waters in any given year.

3.2 Surface Water Quality Monitoring Information

I retrieve surface water quality information from the Water Quality Portal (WQP), the largest stan-

dardized water quality dataset currently in existence.37 Developed by researchers from the U.S.

Geological Survey, the Environmental Protection Agency, and the National Water Quality Moni-

toring Council, the WQP combines the USGS National Water Inventory System, USGS BioData,

USDA Stewards, and EPA Storets databases. The WQP features 2.4 monitoring sites and roughly

300 million analyte results over many decades and thousands of compounds. Decisions underlying

the location of monitors and timing of tests are not observable.38 I limit the sample to monitor-

ing sites located in lakes, rivers, and streams. I also limit the analysis to eight core water quality

analytes known to be associated with coal ash water pollution; these include arsenic, chromium,

37Read et al. (2017). I use the DataRetrieval package in R to download and import the data (De Cicco et al., 2018).
38USGS hydrologists designed intentionally representative samples of US waters for common analytes such as pH

and conductivity, but local governmental agencies and other researchers contributing to the WQP may have selected
locations based on un-observable factors (Keiser and Shapiro, 2018). To limit the influence of selection, only monitors
with at least three tests for a given compound are incorporated in regression models. See Figure A.2 for all monitor
locations used in this paper.
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conductivity, dissolved oxygen, lead, pH, selenium, and temperature.39 See Table B.11 for a full

list of compounds retrieved. All sample results that do not detect the tested compound are replaced

with zeros, and I initialize an undetected flag for these observations. Measurements are converted

to a standardized unit where possible (for example, milligrams/liter). Observations without con-

vertible units of measurement are dropped.40 After cleaning, the sample consists of 5.5 million

measurements across 124,000 monitoring sites. Summary statistics are presented in Table B.2. I

also compare how these water quality indicators change over time for monitors that are within 25

miles downstream of coal ash release sites in Figure A.6 and Figure A.7. For ease of visualization,

I drop extreme outliers above the 99th percentile and non-standard samples before generating mean

analyte levels over time.41 The figures nevertheless generally confirm the summary statistics pre-

sented in Table B.4; coal ash affected waters have higher conductivity, pH, and temperature across

the entire sample window. Dissolved oxygen levels are also often lower in affected regions than

in unaffected regions. Affected regions tend to have lower average levels of common pollutants

including lead, arsenic, selenium, and chromium, although the trends are noisy and include a spike

in all compounds from 2008-2011 that may relate to differential testing priorities over time.

3.3 Municipal Water Quality Violations, Infrastructure, and Monitoring

The Safe Drinking Water Inventory System (SDWIS) houses municipal water system violation his-

tories, water system summaries, water system details, and service zone geographic area. Violation

history reports show when a water quality violation occurred, the nature of the violation, and the

remediation action taken. Reports on water system summary, detail, and geographic area describe

the population served, the number of facilities and service connections, and the population served

by the water system.42 Summary statistics for SDWIS violations are presented in Table B.4. Water

systems affected by coal ash tend to be much larger and somewhat older than unaffected systems.

39EPA (2015a), Munawer (2018), Ibrahim (2015), Izquierdo and Querol (2012).
40I except pH from this decision rule and instead drop any pH observations outside the standard scale from 0-14.
41Standard refers to samples of surface water. Samples of sediments and hyporheic zones, which typically have dif-

ferent properties, are excluded from the figures but included in summary statistic tables and surface water regressions.
42Geographic service regions may be a town, a zipcode, or a county centroid if missing more precise information.
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They also have more health-based Safe Drinking Water Act violations. Much of this average dif-

ference is evidently driven by violations for exceeding the maximum contaminant level of a given

pollutant or breaking rules for arsenic, disinfectant byproducts, and inorganic chemicals. In Figure

A.8, I plot the violation rate over time for affected water systems across six types of infraction.

Affected water systems tend to have more maximum contaminant level and health-based viola-

tions over the entire sample window. In Figure A.9, I show that these infractions are primarily

for breaking rules for inorganic chemicals and disinfectant byproducts. Water systems affected

by coal ash tend to have lower violation rates for nitrates and coliform than unaffected systems.

In Figure A.10, I break down all SDWA violations by type of infraction and state. Clearly, most

of the maximum contaminant level violations relate to elevated levels of disinfectant byproducts.

Violations for inorganic chemicals and volatile organic chemicals are primarily monitoring-based,

which means that these systems are not testing for all required compounds. Finally, in Figure A.11,

I show how these violations have trended over time by type of infraction and state. Monitoring vi-

olations appear to be the most common infraction type, and North Carolina tends to have the most

SDWA violations since 2000.

I supplement SDWIS with state-provided water quality monitoring tests in Alabama, Georgia,

North Carolina, South Carolina, and Virginia from 2005-2017.43 These monitoring tests are used

to determine violations of the Safe Drinking Water Act. Monitoring tests are samples of a water

quality analyte taken at one facility.44 According to the Safe Drinking Water Act, these monitoring

tests must be performed by a third party at a frequency determined by the chemical and the pop-

ulation served by the water system.45 166 analytes are regularly tested across the sample states.

These analytes may be grouped into 14 pollution classes. For all samples that do not detect the

given compound, I replace the observed value with zero and initialize a non-detected flag. I also

43State agencies include the Alabama Department of Environmental Management, the Georgia Environmental Pro-
tection Division, the North Carolina Department of Environmental Quality, the South Carolina Department of Health
and Environmental Control, the Tennessee Department of Environment and Conservation, and the Virginia Depart-
ment of Environmental Quality. With the exception of Tennessee, each agency provided all available testing records
over the sample window.

44For example, one observation may show that the level of lead in the water at a given facility on a given date was
0.005 mg/L.

45Currie et al. (2013).
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generate indicators for the type of facility where a test occurred, allowing me to control for likely

differences that may exist across tests at wells or intakes from those at treatment and distribution

centers. Summary statistics for state-level monitoring tests are presented in Table B.4. Conductiv-

ity and arsenic, which are much higher in groundwater than in likely-affected surface waters, tend

to be lower in affected municipal water systems. However, they generally have higher levels of dis-

infectant byproducts and pH. I show how these water quality indicators trend over time in Figure

A.12. Across the entire sample window, affected water systems have higher levels of disinfectant

byproducts.

I combine SDWIS data with state monitoring tests for two reasons. First, violation history

provides a snapshot of municipal water quality. Samples conducted over time allow detection of

more subtle differences in water quality that do not result in a violation. Second, the violation rate

is an endogenous manipulable outcome.46 It is likely that water systems sourcing from coal ash

affected waters take precautionary treatment measures or perform compliance activities after any

violation.

3.4 Birth Certificates and Fetal Health

The North Carolina State Center for Health Statistics provides birth certificate information for

the period 2005-2017. These data report indicators of fetal health such as gestation length, birth-

weight, estimated gestation length, and presence of a congenital anomaly. They also include ma-

ternity characteristics such as age, education level, race, marital status, and smoking behavior.47

The birth certificates track information on mother risk factors during pregnancy and delivery, such

as hypertension, previous pregnancy termination, and number of prenatal visits. I obtained con-

fidential records reporting mother’s name and address at time of birth. Mother’s full name, race,

and birthday are used to link siblings. Mother’s address of residence allows linking birth records

46Bennear et al. (2009).
47Paternal characteristics are limited to demographic information, and these records are often incomplete.
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to specific water service regions.48 Birth records with missing addresses or mother’s names are

excluded from the sample. Similarly, addresses not corresponding to a service zone are dropped

from all regressions. A key difficulty in working with the natality statistics relates to the differ-

ent birth certificate forms used over the sample period. Three types of reporting forms are used

over the sample period; one covers 2005-2009, another covers the transition year 2010, and then

a third is used for 2011-2017. Although all forms record certain information in the same format,

such as birthweight and gestation length, other variables change across birth reporting forms. For

example, race and education status report different categories across the two main reporting forms.

Where possible, these measurements are adjusted to create temporally-consistent variables. No-

tably, congenital anomaly indicators cannot be properly conformed across the different forms due

to certain conditions not being listed in the post-2010 form. This discrepancy results in apparently

dramatically different rates of congenital anomalies in the pre-2010 and post-2010 forms.49

In Table B.3, I document systematic differences in fetal health across affected and unaffected

mothers. Mothers ever served by municipal water systems affected by coal ash tend to have lower

birthweight newborns and higher likelihood of preterm gestation. Affected mothers are more likely

to be minority, unmarried, and have hypertension, although both affected and unaffected mothers

tend to engage in similar rates of tobacco use and prenatal visits.50 Interestingly, affected mothers

are 5 percentage points more likely to move between pregnancies, perhaps reflecting perceived risk

of coal ash pollution. Newborns of affected mothers are 0.8 ounces lighter, on average, and 0.5

percentage points more likely to have low birthweight (i.e., weigh less than 2500 grams). They also

appear more likely to have congenital anomalies, although this discrepancy may relate to changes

48Property parcels, obtained from the NCSU GIS Library, were merged by spatial location using geographic coordi-
nates and service zone polygons obtained from NC OneMap Geospatial Portal. Mother residence addresses were then
merged to property parcels, and hence water service zones, using address, zipcode, and county names by a fuzzy-string
matching algorithm, the stata package matchit (Raffo, 2015). Poor-quality matches were manually cleaned. Remain-
ing unmatched addresses were assigned to water systems based on city of residence if the city is known to use coal
ash affected water according to the Southern Environmental Law Center. See Appendix Section 8.3 for a lengthier
description of the address matching procedure.

49For the purposes of this study, I exclude chromosomal anomalies and trisomy 21 from my indicator for a con-
genital anomaly because these conditions occur naturally in the human population and are not necessarily linked to
pollution exposure.

50Lead exposure is associated with increased risk of hypertension (Gambelunghe et al., 2016).
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in recording practices for this outcome. Figure A.13 displays four fetal health indicators over time

between mothers ever potentially affected by coal ash and mothers likely not affected by coal ash.

3.5 Satellite-Based Monthly Air Quality

Air quality is an important determinant of fetal health.51 I therefore incorporate satellite-based

monthly fine particulate matter (i.e., particulate matter of size less than 2.5 micrometers in di-

ameter) estimates as controls in the analysis. The Atmospheric Composition Analysis Group at

Dalhousie University created these data by applying a machine-learning algorithm to repeated

daily satellite images of aerosol optical depth, a measure of cloudiness, across small pixels on the

earth’s surface.52 Using the extract raster to polygon feature in GIS software, I converted these

pixel datapoints to county-level variables for the average, minimum, and maximum fine particulate

matter for each month from 2000 to 2017. Infants are assigned air quality measurements based on

the average and maximum county-level PM 2.5 reading over all months in utero. The advantage of

satellite-based data is a wider coverage region than would be possible using air quality monitors,

although prediction errors render these estimates less accurate for tiny regions or high pollution

levels.53 A recent study nevertheless demonstrates very similar fetal health outcomes using both

satellite-based and monitor-based air quality measurements at the county level.54

3.6 Home Sale Prices

I obtain home sale tax records for twelve counties with coal ash ponds in North Carolina.55 These

records were obtained from multiple sources. County tax assessors provided property sales in-

formation for six counties. For another six counties, I purchased home sale information from

CoreLogic’s Configurable Real Estate Data Report. I merge each home address to a North Car-

51Chay and Greenstone (2003), Currie et al. (2008), Currie and Walker (2011), Jha and Muller (2017)
52van Donkelaar et al. (2019).
53Fowlie et al. (2019).
54Alexander and Schwandt (2019).
55Buncombe, Cleveland, Catawba, Chatham, Gaston, New Hanover, Person, Robeson, Rowan, Rockingham,

Rutherford, and Stokes counties are included in the analysis.
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olina property parcel database to extract geographic coordinates for all homes. I then use ArcGIS

to merge these homes to a series of buffer polygons created around coal ash ponds at distances

of 1, 2.5, and 5 miles. Because of the fragmented home sale source data, variables commonly

used in hedonic housing analyses are mostly missing and often incongruous across counties. The

exception is lot size. Summary statistics for home sales are presented in Table B.3. Figure A.14

plots average sale prices over time along with the distribution of sale prices in homes within 5

miles of a coal ash plant. Surprisingly, homes within five miles of a coal ash release site tend to

be more expensive than more-distant homes over the entire sample period. On average, they sell

for nearly $30,000 more than homes at greater distance from coal plants. They also have slightly

more bedrooms and bathrooms than other homes in the same county, although their lot size is

much smaller. These features of the data suggest that communities around coal ash ponds in North

Carolina are more neighborhood-based and less rural than average properties in affected counties.

Their proximity to large lakes and other recreation zones may also contribute to their higher sales

prices.

4 Empirical Strategy

In the following sections, I describe the methods used to test the relationship between coal ash

water pollution and surface water quality, municipal water quality, and fetal health. I also estimate

how the revelation of unsafe well water affected home sale prices after a legislative act.

4.1 Surface Water Quality

I detect variations in surface water quality associated with coal ash water pollution with a surface

water monitor fixed effects estimation procedure. Consider the following regression equation:

Yimwt = βAshit +Xitγ
′+ηi +ηwm +ηwt + εimwt (1.1)
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In Equation 1.1, Yimwt is the level of arsenic, chromium, conductivity, dissolved oxygen, lead, pH,

selenium, or temperature detected at a given monitor i in month m, watershed w, and year t.56

Equation 1.1 includes fixed effects for monitor ηi, watershed-month ηwm, and watershed-year ηwt .

Xit includes dummy indicators for sample medium type, a dummy indicator for abnormal weather

event, dummy indicators for hydrologic condition type, and a dummy indicator if the analyte was

not detected.57 I two-way cluster all standard errors at the monitor and watershed level. I em-

ploy three versions of Ashit to test related but distinct research questions. In the first, Ashit is a

time-invariant binary indicator equal to one if a monitor is downstream and within 25 miles of a

release site.58 In the second, Ashit is a time-varying binary indicating whether upstream coal sites

within 25 miles are actively releasing water pollution in year t according to the TRI.59 In the third

formulation, Ashit is the annual quantity of coal ash released at all coal facilities within 25 miles

upstream of monitor i.60 For the monitor-constant formulation of Ashit , β measures how moni-

tors that are ever downstream may differ from nearby monitors in the same year, controlling for

watershed monthly variation arising from seasonal factors like temperature. Variation in the the

time-varying binary version of Ashit may arise from plants shutting down, converting from coal to

natural gas, or changing disposal practices. The time-varying binary version of Ashit asks whether

downstream monitors show differences in levels of water quality analytes compared to themselves

in years when pollution sites are inactive. In this formulation, β is the average within-monitor

difference in analyte level in years when upstream pollution sites are actively releasing compared

to years when the upstream plants are not releasing water pollution. The final formulation of Ashit ,

the tons released upstream in a year, varies due to plant closures and conversions and also from

56Watershed region refers to hydrologic unit (HU-6) geographies, which are watersheds roughly the size of an
aggregation of several counties. See the USGS Watershed Boundary Dataset webpage for more information.

57Sample media include surface water, sediment, and hyporheic zone. Abnormal weather events include backwater,
dambreak, drought, flood, hurricane, regulated flow, snowmelt, spill, spring breakup, and storm. Hydrologic conditions
indicate whether the water level is low, high, or stable.

58In this procedure, monitor fixed effects are dropped, leaving only watershed-year and watershed-month fixed
effects.

59Note that the TRI provides annual totals and not monthly pollutant loadings, so annual release quantities are
merged to all months in any year.

60With multiple plants, the measure is calculated as: Ashmt = Σp1[Downstreamm]∗TonsReleasedpt , where p repre-
sents a steam electricity generating coal power plant.
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natural fluctuations in plant coal usage in a year. With this version of Ashit , β estimates the rela-

tionship between each ton of coal ash released and the measured water property or concentration

downstream.

Intuitively, Equation 1.1 captures how coal ash sites affect the properties of water downstream.

It does so by comparing a specific location to itself in years when more or less is released upstream,

controlling for local characteristics that may vary by month and year. The first formulation of Ashit

is not causal, although large and statistically significant differences across monitors in otherwise

comparable regions may relate to the legacy of many decades of coal ash water pollution. Causal

identification with the second and third formulations of Ashit requires that no factors are correlated

with the quantity of coal released and the property of water observed downstream, conditional on

monitor, watershed-by-year, and watershed-by-month fixed effects.61 Various concerns may arise

with this estimation procedure. Previous studies demonstrate that standard statistical analyses are

not ecologically relevant for physical and chemical properties of streams.62 The same quantity of

coal ash is likely to affect watersheds differently. Factors like total flow (and hence dilution), flow

speed, temperature, agricultural activities, and tree coverage are all important determinants of how

coal ash impacts a water system.63 Moreover, these determining factors are likely endogenous to

the quantity of coal ash released because regions with greater potential to absorb pollution may

receive more of it. The monitor, watershed-by-year, and watershed-by-month fixed effects should

allay some of these concerns. The prevalence of coal ash water pollution relative to other point-

source pollutant categories also diminishes the likelihood that some other pollutant source might

affect water quality to a similar extent.

61In Table B.12, I show that counties with coal ash pollution sites do not have statistically different quantities of
water pollution or pollution impounded in landfills compared to other counties in the same state.

62Peterson et al. (2007).
63EPA (2015a).
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4.2 Municipal Water Quality

Local geography, source water, system design, and homeowner characteristics influence municipal

water quality.64 65 State regulatory monitoring tests report quantities across multiple facilities with

different functions and monitoring requirements. State-level water quality regulations also play a

role in observed water quality.66 To determine the relationship between coal ash water pollution

and municipal water quality, I address these factors with a municipal water system panel fixed

effects specification. Consider the following regression:

yimst = βAshit +Xitγ
′+ηi +ηst +ηm + εimst (1.2)

yimst is the level of arsenic, conductivity, haloacetic acids, lead, pH, or trihalomethanes observed

in municipal water system i, state-year st, and month m. Ashit is the coal ash released into surface

waters within 25 miles upstream of at least one of a municipal water system’s intake locations in

year t, where this value is replaced with zero if the Southern Environmental Law Center has not

determined the water system to be sourcing from coal ash affected waters. ηi is a water system

fixed effect, ηst is a state-year fixed effect, and ηm is a month fixed effect. I cluster all standard

errors at the state and municipal water system level. Xit includes dummies for the facility type

where the test occurred, system size dummies, system age, and a dummy variable equal to one if

the analyte was not detected.67 The facility type indicator controls for unobservable factors that

differ across facilities within the same water system. ηst controls for any changes to state policies

64Gray and Shimshack (2011), Pieper et al. (2016).
65Water systems may use more than one source of water with differing underlying characteristics. For example,

a system might have a groundwater well, a surface water intake, and also purchase water from a nearby system.
Municipal water systems use different treatment techniques.

66Gray and Shimshack (2011).
67Facility types include distribution centers, transmission lines, treatment plants, source waters, wells, and home-

owner tap-level tests. Time-varying system size dummies correspond to the five size categories used by the EPA to
assign level of regulatory oversight to different systems. These categories are include very small systems (25-500
service population), small systems (501-3,300 service population), medium water systems (3,301-10,000 service pop-
ulation), large water systems (10,001-100,000 service population), and very large water systems (over 100,000 service
population).
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or secular pollution trends that may affect the levels of different compounds in a water system.

Aside from a continuous measure of Ashit representing the total tons released upstream, I test

two alternative formulations of Ashit . In the first, Ashit is a simple binary indicating whether tons

released upstream is positive, testing how water quality changes when a plant shuts down, converts,

or changes pollution release practices. I also test a time-invariant version of Ashit that is equal to

one if the Southern Environmental Law Center determined the municipal water system is likely

using water affected by coal ash pollution.68 This formulation asks whether likely affected water

systems are notably different from other water systems within the same watershed, conditional on

state-year and monthly controls.

Intuitively, Equation 1.2 compares a municipal water system to itself in years with low or

high upstream pollution releases. The coefficient β therefore estimates how an additional ton of

coal ash water pollution released upstream in a year correlates with the level of a water quality

indicator in a downstream affected water system. The identifying assumption of Equation 1.2 is

that, conditional on water system characteristics, facility indicators, monthly fixed effects, and

state-by-year regulatory changes, no factor is correlated both with the quantity of coal ash released

upstream and the level of a specific pollutant in the municipal water system. This assumption

may be violated if polluting firms near power plants systematically pollute similar compounds into

surface waters in a way that is correlated with the quantity of coal ash effluent and the levels of an

analyte in a municipal water system.

Next, I test the relationship between coal ash water pollution and the likelihood of a Safe

Drinking Water Act (SDWA) violation. The Safe Drinking Water Inventory System tracks all

municipal water system violations of the SDWA. I construct a panel of each water system in the

inventory system for each year in which the system operated over 2000 to 2017, assigning violation

counts by infraction type to each water system-year. For completeness, I employ both probit and

linear probability models. Consider the following estimation procedures:

68In this formulation, I drop water-system fixed effects and add watershed fixed effects.
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Pr(Vioit = 1) = Φ(βAshit +Xitγ
′+ηi +ηt) (1.3)

Vioist = βAshit +Xitγ
′+ηi +ηt + εit (1.4)

In Equation 1.3 and Equation 1.4, Vioit equals one if water system i has a violation of the specific

type in year t, and zero otherwise. I consider two types of violation outcome. In the first, I break

up violations by type of infraction. In the second, I break up violations by the specific rule of the

SDWA that was violated.69 ηi is a water-system random effect in Equation 1.3 and a water-system

fixed effect in Equation 1.4. ηt is a year dummy.70 I cluster all standard errors at the municipal

water system. Xit includes dummy indicators for five types of water system size, system type,

owner type, school water system, surface-water sourcing water system, protected source-water,

and water system age.71 I test a time-varying binary and time-varying continuous formulation of

Ashit , as before. Equation 1.3 asks how being downstream from an active coal ash pollution site

in a given year affects the probability of a water quality violation, or how each additional ton of

upstream coal ash water pollution affects the probability of a water quality violation.

69Violations of the SDWA are laid out in the Safe Drinking Water Act by “rule” and “infraction.” Rules include
Arsenic, Consumer Confidence Rule, Filter Backwash, Disinfectant Byproduct, Groundwater, Lead and Copper, Mis-
cellaneous, Nitrates, Public Notice, Radiation, Synthetic Organic Compounds, Total Coliform, Treatment Technique,
and Volatile Organic Compound. Infractions against each rule include maximum contaminant level violation, moni-
toring violation, reporting violation, and treatment technique violation. Infraction types tend to vary by type of rule.
For example, a consumer confidence rule is often related to reporting failures. A volatile organic compound violation
may be related to monitoring lapses or, less commonly, maximum contaminant level violations. For each violation, an
associated compound is listed. For example, a monitoring violation and a maximum contaminant level violation for
the disinfectant byproduct rule may both list total trihalomethanes as the contaminant.

70I use the commands xtprobit , re and xtreg , fe in Stata.
71Federal types are community water system, non-community non-transient water system, and transient water sys-

tem. Owner types are public and private, where public is the omitted category. School water systems are water systems
that serve schools. Protected source-water indicates that a water systems source water is protected. I calculate age as
the current year minus the date of first water system record in SDWIS. Note that many of these variables are dropped
in Equation 1.4 because they are time-invariant.
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4.3 Fetal Health

Unobservable factors are likely endogenous to household sorting across municipal water systems

and hence water quality. Water quality violations, moreover, may present with simultaneous aver-

sive behavior on the part of households.72 I therefore model the relationship between coal ash water

pollution and fetal health with a mother and zipcode panel fixed effects specification designed to

control for time-invariant mother and neighborhood characteristics. Consider the following regres-

sion:

Healthimtz = βAshit +X ′imtγ +ηm +ηt +ηz + εimtz (1.5)

Healthimtz is a fetal health indicator for newborn i to mother m in year t and zipcode z. Health

indicators include ounces at birth, low birthweight, preterm gestation, and presence of a congenital

anomaly. ηm, ηt , and ηz are mother, year, and zipcode fixed effects. Ximt is a vector of time-

varying birth and mother characteristics and county-level air quality measures.73 Ximt also includes

a dummy for whether the mother moved since the last observed pregnancy outcome.74 I cluster

all standard errors at the mother. Ashit takes one of three forms. In the first, it is a time-invariant

indicator applied to all water systems considered affected by coal ash according to the Southern

Environmental Law Center. In the second, Ashit is a binary variable indicating whether coal ash

was released within 25 miles upstream of a water system’s intake in year t. In the third, it is a

continuous variable representing the tons of coal ash released within 25 miles upstream. Intuitively,

Equation 1.5 estimates the difference in health outcomes across siblings where one sibling receives

more potential exposure to coal ash water pollution. Such variation may arise from mother moves,

72Banzhaf and Walsh (2008), Bennear and Olmstead (2008), Zivin et al. (2011), Marcus (2019).
73Air pollution controls are mean, maximum, and maximum PM 2.5 squared in the county of residence across all

months of gestation. Birth-specific controls include gender of the newborn and dummies for birth order. Mother-
specific controls include age at time of birth, age squared, six dummy bins for number of clinic visits during gestation,
and an indicator for tobacco use during gestation.

74For example, this variable equals one if the observed residence in period t − 1 is different from the observed
residence in t.
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plant closures or plant conversions, and random variation in the quantity of water pollution in any

year. In the time-invariant version of Ashit , the identifying assumption is that mother’s moves from

or to coal ash affected regions are not associated with unobservable improvements in mother’s

well-being that may also affect fetal health conditional on controls for zipcode and the dummy

indicator for having moved since the last pregnancy. In the second and third formulations of Ashit ,

identification requires that factors correlated with plant closure or the quantity of coal ash released

do not independently affect fetal health outcomes, conditional on controls for mother, zipcode,

and year. A potential violation of this assumption would be if plant closures are associated with

economic changes to the community that may affect mother health. Alternatively, a violation of

the identifying assumption might occur if mothers systematically avert exposure to pollution in

years when plants are active or when more pollution is released.

The primary source of variation in Equation 1.5 is mother moves. I therefore dis-aggregate the

equation by mothers moving into and mothers moving out of coal ash-affected municipal water

system service zones. Consider the following regression:

Healthimtz = β11[InMoveit ]+β21[OutMoveit ]+X ′imtγ +ηm +ηz +ηt + εimtz (1.6)

Healthimt , Ximt , ηm, ηt , and ηz are as before. Rather than Ashit , I now include two indicator

variables capturing whether a newborn has been differentially exposed to an affected water service

zone in comparison to its siblings. 1[InMoveit ] equals one if the listed residence of newborn i to

mother m is within a coal ash affected water service zone while the listed residence for previous

newborn j to mother m is not within an affected service zone. Conversely, 1[OutMoveit ] equals one

if a newborn’s listed residence is not within an affected municipal water service zone, while the

listed residence of a previous newborn to the same mother was within an affected system’s service

zone. In cases where all children of the same mother are either exposed or not exposed, these indi-

cators equal 0 for all newborns. In any case where multiple children are born after a transition to
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or away from an affected service zone, all subsequent children receive the same indicator.75 Equa-

tion 1.6 includes an indicator for whether a mother moved since the last pregnancy to control for

unobservable factors associated with moving that may also affect fetal health. Intuitively, Equation

1.6 asks whether observable fetal health differences may arise from moving into or moving out of

coal ash water service zones.

4.4 Willingness-to-Pay for Avoiding Coal Ash Contamination

During a weather event in February of 2014, an ash pond along the Dan River in North Carolina

burst its banks, releasing 25 million tons of coal ash into the nearby river. By September, the

state legislature had responded with the Coal Ash Management Act, Senate Bill 729, in an effort

to better manage coal combustion wastes. As part of the legislation, homes within 500 feet of

a coal ash pond received mandatory home well water quality tests, where applicable. Many of

these homes were found to have water considered unsafe to drink by the EPA.76 Duke Energy

subsequently provided these homes with bottled water for drinking and cooking. I test how this

event, which led to information disclosure about well water quality and provision of bottled water

by Duke Energy, affected home prices near the ash ponds. Consider the following equation:

yit = δ treati ∗ postt +λ postt +ηi +ηt + εit (1.7)

yit is the sale price for home i in year t, where all prices are converted to 2014 dollars. Let treati

represent homes that are within a 1, 2.5, or 5 mile buffer region surrounding a coal ash pond. postt

is a dummy equal to 1 if the sale occurred after 2014. treati∗ postt is the interaction of a dummy for

the post period and an indicator for being within the circular buffer surrounding a coal ash pond.

ηi is a fixed effect for either the home or the incorporated city of the home, and ηt is a set of year

75For example, a mother has one child in an affected region, and subsequently the mother has three children in an
unaffected service zone. All three subsequent children receive an indicator of one for 1[OutMoveit ]

76For more information, see this NC Department of Environmental Quality series of reports summarizing testing.
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dummies.77 I cluster standard errors at the county level in all analyses. The coefficient of interest

in Equation 1.7 is δ , the average change in sale price of affected homes after 2014. The Dan

River spill and the Coal Ash Management Act of 2014 made water quality concerns more salient

by informing households of their well water quality, although households may have also adjusted

risk perceptions due to the recent spill. Duke Energy began providing bottled water to affected

residents at the same time as these other events. δ should therefore be interpreted as a change

resulting from a variety of factors rather than one causal mechanism. Comparing sale prices to

previous sale prices of the same home controls for time-invariant factors that may be unique to

homes and neighborhoods near large power plants. Models using fixed effects at the city level

require the identification assumption that homes nearer to coal plants would have similar sale price

trends as other homes in the same city in the absence of the well water information disclosure,

which is a stronger assumption.

5 Results

5.1 Surface Water Quality

Table B.4 shows the results of the surface water analysis for arsenic, chromium, conductivity,

dissolved oxygen, lead, pH, selenium, and temperature. For each outcome, results are split into

three columns depending on the Ashit variable used in the estimation. The first column is a time-

constant version of Ashit , testing baseline differences in analyte between exposed and unexposed

regions within the same watershed. Columns (2) and (3) display the monitor-specific fixed effects

specification in Equation 1.1. These results regress a time-varying variable for coal ash releases

on the relevant analyte, where column (2) is a simple binary if the monitor is exposed to positive

releases in year t and column (3) is the annual tons released upstream within 25 miles. The coeffi-

cient on arsenic in column (1) means that monitors ever exposed to coal ash pollution have 0.0863

77I rule out using county fixed effects due to the substantial heterogeneity between homes near coal plants and other
residences in the same county, both in average sale price and sale price trend. See Figure A.14 for a trend comparison.
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mg/L greater concentration of arsenic than similar monitors in the same watershed-by-month and

watershed-by-year cluster. For comparison, the standard maximum level of arsenic in munici-

pal drinking water is 0.01 mg/L. In column (2), the coefficient of 0.0576 on arsenic suggests that

downstream monitors have nearly six more mg/L of arsenic in years when upstream coal ash plants

are releasing water pollution than in years when upstream plants are not releasing pollution. Fi-

nally, the coefficient on arsenic in column (3) suggests that each ton of coal ash released increases

levels of arsenic in downstream monitors by roughly 0.002 mg/L. Scaling this by the average

quantity of coal ash effluent released into surface waters in any given year (i.e., 10 tons), this point

estimate suggests that an average coal ash release site emits enough surface water pollution in a

year to make nearby waters exceed drinking water standards two times over. Similarly, baseline

levels of the pollutants chromium, lead, and selenium are all elevated in downstream water quality

monitors within 25 miles, although these results are only statistically significant for selenium and

arsenic. For selenium, the drinking water standard is 0.05 mg/L, suggesting that a typical coal ash

release site increases nearby concentrations of selenium by less than half the safe drinking water

standard, although selenium is known to bioaccumulate in fish populations. Point estimates in

columns (2) and (3) are noisier and, for chromium and lead, actually negative. Since it is unlikely

that increased pollution lowers levels of pollutants in nearby surface waters, these perverse results

may stem from measurement error or unobservable factors such as shifts in testing priorities after

coal plants stop polluting.

In the second panel of Table B.4, column (1) demonstrates that surface waters downstream

from coal ash sites have significantly deteriorated water quality indicators compared to nearby

non-downstream bodies of water. Conductivity is nearly 1600 µs/cm higher in these waters, which

alone is nearly one third the average level observed in all non-downstream waters and slightly less

than half of the average baseline difference observed between affected and unaffected water quality

monitors.78 Likewise, affected regions have lower baseline dissolved oxygen levels than compa-

rable unaffected regions by roughly one tenth the mean level across all water quality monitors.

78A µs/cm is a micro siemen per centimeter, a standard measurement of specific conductance.
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Lower dissolved oxygen affects fish habitats and recreation value of water systems, although it

also decreases the rate of pipe corrosion in municipal water systems that source from these waters.

pH and temperature, meanwhile, are both significantly elevated in water systems affected by coal

ash. pH tends to increase because of the many calcium and silica compounds present in coal ash;

this effect is evidently only partially mediated by acid rain. Temperature, meanwhile, increases

because power plants circulate nearby water in the electricity generation process. Strangely, the

column (2) point estimate on conductivity suggests that closure of a coal plant is associated with

an increase in conductivity of nearly 300 µs/cm. Indeed, the time-varying variables in column

(2) and (3) often differ from the hypothesized relationships between pollution and water quality

indices. These strange results, in combination with those for chromium and lead above, suggest

that the time-varying pollution release variables may noisily capture true changes in surface water

pollution.

Collectively, results in Table B.4 suggest that surface waters downstream from coal ash sites

differ substantially from other nearby unaffected surface waters, although I find mixed evidence

on the extent to which these differences are driven by contemporaneous pollution releases. One

potential explanation is that waters in these regions are naturally different from waters in other

regions within the same watershed. One alternative explanation is that, over many decades of

coal ash pollution, these waters have developed significantly higher conductivity and pH levels

that are not greatly affected by the contemporaneous amount of pollution released. Yet another

possibility is a measurement error issue; measurement error of coal ash pollution may relate to

poor self-reported estimates on the part of coal ash effluent managers, but it may also relate to

substantial undocumented leakage and seepage from coal ash pollution sites. Management of ash

wastes might also become less stringent after closure of a coal plant. Selection bias from changes

to monitoring priorities over time may also account for some of these findings. I also display the

results of a variety of inorganic compounds typically associated with coal ash in Table B.11. In

general, these results support the main findings in Table B.4. In particular, I find evidence that coal

ash water pollution increases levels of antimony, mercury, and thalliun.
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5.2 Municipal Water Quality

Table B.5 displays the results of estimation procedure Equation 1.2. In this specification, I estimate

the relationship between coal ash water pollution releases and the results of regulatory monitoring

tests in nearby municipal water systems. I split the analytes into three categories and show results

associated with three types of treatment indicators. The analyte categories are disinfectant byprod-

ucts, inorganic compounds, and properties. I now include two new analytes not present in the

surface water analysis presented in Table B.4.79 These water quality analytes are trihalomethanes

and haloacetic acid.80 The three treatment indicators correspond to those employed in Table B.4.

The first column, labeled downstream, shows baseline differences between water systems that are

believed to be sourcing from coal ash affected waters by the Southern Environmental Law Center

and those that are not. Columns (2) and (3) test how monitoring test results within the same water

system change over time in response to variations in the quantity of coal ash released upstream. All

models include state-by-year and month fixed effects to control for time-varying state regulations

and monthly fluctuations in water quality. Column (1), instead of a municipal water system fixed

effect, includes a fixed effect for the watershed HUC-6 region of a municipal water system’s intake

location, which is assigned using the procedure described in Appendix Section 8.

Municipal systems that are affected by coal ash release sites, in comparison to other water

systems within the same watershed and state-by-year combination that are not affected, tend to

have lower conductivity, pH, and haloacetic acids.81 Lead levels appear slightly elevated in affected

water systems but not statistically significantly so. No other coefficient in column (1) is statistically

79I also drop chromium, selenium, dissolved oxygen, and temperature because these outcomes are either not tested
frequently in municipal water systems (i.e., chromium, dissolved oxygen, and selenium) or not relevant to human
health (i.e., temperature).

80I analyze the relationship between coal ash releases and the two most common and most-frequently tested dis-
infectant byproducts, haloacetic acids and total trihalomethanes. Although at least 500 disinfectant byproducts have
been identified, these two compose at least 94% of all disinfectant byproduct formation (58% TTHM and 36% HAA5).
Since disinfectant byproducts form during the water treatment process, I do not show any analysis of these analytes in
surface waters. See DHHS for more information.

81Lower pH tends to create more haloacetic acids, while higher pH tends to form more trihalomethanes. Consis-
tent with the lower average pH in affected water systems, it then follows that trihalomethanes may be elevated and
haloacetic acids lowered in affected systems. The statistically lower haloacetic acid levels are therefore likely an
artefact of baseline pH differences. See DHHS for more information.

27



significant. The results in column (1) are likely primarily driven by the unique characteristics of

water systems sourcing from waters affected by coal ash. As is shown in Table B.2, these water

systems are substantially larger and therefore subject to increased regulatory oversight. In addition,

a water plant affected by coal ash pollution is necessarily using some quantity of surface waters.

Surface waters contain fewer metals such as arsenic than groundwater; these differences also lead

to altered conductivity and pH profiles.

The time-varying regressions of upstream coal ash pollution on water quality indicators pro-

vide mixed evidence of a contemporaneous link between coal ash water pollution and municipal

water quality. All coefficients for disinfectant byproducts in columns (2) and (3) are negative and

statistically indistinguishable from zero. The point estimate in column (2) for arsenic suggests that

a plant closing upstream is associated with a 0.0084 mg/L improvement in arsenic levels. Com-

pared to the water quality standard for arsenic of 0.01 mg/L, this improvement is quite dramatic.

However, it is not statistically significant at the 10% level of confidence. For lead, I find that each

ton of upstream coal ash water pollution increases downstream municipal lead levels by 0.0035

mg/L. This is roughly one fifth the maximum contaminant level for lead, 0.015 mg/L. Since the

average quantity of coal ash released upstream in any given year for municipal water systems is 4

tons, this is a sizeable increase in municipal lead levels.82 Next, I find that conductivity tends to be

higher in these water systems in years when upstream coal plants are active. In years when no pol-

lution was released, conductivity in downstream water systems was 45 µs/cm lower. Each ton of

coal ash released, meanwhile, is associated with a 3 µs/cm increase in conductivity in downstream

municipal water systems. Interestingly, neither of these effects would close the gap in conductivity

between coal ash affected and unaffected water systems.83 This suggests that, although affected

water systems have less-corrosive water on average, coal ash pollution may nevertheless lead to

infra-marginal changes in water quality that affect pipe corrosion and tap lead levels without nec-

82Note that the average upstream releases for affected water systems differs from the average effluent release quan-
tity across all TRI sites because municipal water systems are not always placed near pollution sites. Moreover, water
system intakes are unlikely to be placed near the heaviest-polluting sites.

83Unaffected systems average 299 µs/cm and affected systems 183 µs/cm. Recall that this difference is driven
largely by use of groundwater sources by unaffected systems, and groundwater has higher conductivity.
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essarily causing increased regulatory notice. In the last row of Table B.5, estimates for the effect

of coal ash pollution on pH are of opposite sign. This discrepancy may relate to the influence of

acid rain on water pH profiles.

In the next municipal water quality analysis, I test how changes in coal ash water pollution

affect the likelihood of water quality violations of the Safe Drinking Water Act. These results are

displayed in Table B.6 by type of infraction and type of rule.84 I display all infraction types and rule

types that are potentially related to coal ash water pollution.85 In column (2), I find evidence that

water systems experience fewer health-based violations, maximum contaminant level violations,

reporting violations, arsenic violations, and inorganic compound violations in years when upstream

plants are not polluting surface waters. As shown in row (1), these differences exist despite affected

water systems having statistically similar violation rates in years when relatively more pollution is

released into upstream surface waters. I find evidence that each ton of coal ash released upstream

increases the likelihood of violations for disinfectant byproducts and inorganic compounds. In the

case of inorganic compounds, I find that a one ton increase in upstream pollution releases increases

the likelihood of a violation by 0.15 percentage points, which is a massive increase compared to

the baseline annual violation rate for this rule of 0.24%. Conversely, an additional ton increases the

likelihood of a disinfectant byproduct violation by only 0.1 percentage points, which is a smaller

fraction of the annual violation rate for that rule, 1.34%. In all specifications, volatile organic

chemicals appear positively associated with coal pollution releases, although in no specification are

these relationships statistically significant. Puzzlingly, I find a negative and statistically significant

relationship between plant cessation of water pollution and lead and copper violations. Results are

generally consistent across OLS and probit models.

84Note that infraction types and rules are not mutually exclusive; infraction types are specific ways in which a water
system might break a rule.

85The category “inorganic compounds” includes many potentially coal-associated compounds.
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5.3 Fetal Health

In Table B.7, I present the results of Equation 1.5 across four measures of fetal health: birthweight

in ounces, an indicator for low birthweight, an indicator for preterm gestation, and an indicator for

the presence of any congenital anomaly. I show these results in three panels, each corresponding

to a different formulation of Ashit as laid out in Equation 1.5.

In Panel A, all point estimates are identified off mothers moving into or out of geographies

served by municipal water systems using coal ash affected source waters. The coefficient in col-

umn (1) suggests that a newborn potentially exposed to coal ash pollution, in comparison to an

unexposed sibling, is 1.2 ounces lighter. Such newborns, in comparison to their unaffected sib-

lings, are 1.7 percentage points more likely to have low birthweight. They are also 1.3 percentage

points more likely to be preterm. These newborns also appear slightly more likely to have a con-

genital anomaly, although this difference is not statistically significant. These differences in fetal

health are large in magnitude relative to the baseline fetal health means across the state. They’re

also large relative to the effect of differential fine particulate matter exposure in utero. For exam-

ple, the average difference in particulate matter exposure for mothers ever exposed to a coal ash

affected municipal water service zone is 0.5 µg/m3. In combination with the point estimate in on

air pollution exposure in row (2), this discrepancy suggests that, from air pollution exposure alone,

these mothers would be expected to have newborns roughly 0.55 percentage points more likely to

be preterm. The same estimate associated with potential water pollution exposure is over twice

as large. Meanwhile, mothers with less education, who are expected to be less able to avert water

pollution exposure using water filters and other pollution aversion strategies, are more affected

across all fetal health indicators except congenital anomalies. All estimates are also conditional on

zipcode fixed effects and an indicator for moving since the previous pregnancy, which control for

potential changes in life circumstance that may be associated with mother moves.

In Panels B, column (1), I show that cessation of upstream water pollution practices is associ-

ated with a decrease in infant weight of 0.41 ounces. This result is highly significant. Moreover,

after cessation of upstream coal ash water pollution, newborns appear slightly less likely to have
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low birthweight or be preterm. Panel C provides qualitatively similar estimates of different mag-

nitude; an additional ton of coal ash released upstream is associated with an improvement in fetal

birthweight of 0.014 ounces. These results are puzzling; it is certainly unlikely that more pollution

would improve fetal health. Therefore, it seems likely that unobservable factors associated with

coal plant operation and pollution also affect fetal health. For example, closure of a coal plant

might change local economic conditions in a way that affects fetal health. Perhaps more likely,

aversive behavior on the part of mothers might attenuate and even reverse the potentially nega-

tive impacts of coal ash water pollution. Mothers might be more likely to drink bottled water or

purchase home filtration devices in years with more pollution or active nearby pollution site, even

though the legacy of coal pollution may linger after cessation of active coal ash effluent releases.

Because the results in Panel A are driven exclusively by mother moves, I also disaggregate these

effects by moves into or out of coal ash affected municipal water system service zones in Table

B.8. Mothers moving into affected service zones have newborns that are, in comparison to previous

newborns, 1.8 ounces lighter. These affected newborns are also 2.8 percentage points more likely

to have low birthweight, and they are 2.1 percentage points more likely to be preterm. Mothers

moving out of coal ash affected regions, meanwhile, see their newborns increase in birthweight

by 0.58 ounces, although this difference is not statistically significant.86 Similarly, out-movers see

improvements in the likelihood of having low birthweight of one percentage point. Out-movers

also appear to dramatically lower the likelihood of a congenital anomaly; this improvement should

be prefaced with concerns about the congenital anomaly indicator discussed in section 3.4. For

nearly all outcomes, point estimates suggest that moving into an affected service zone worsens

fetal health, while moving out of one improves it. Since the association between tobacco use

during pregnancy and low birthweight is roughly 4 percentage points, the increase in incidence of

low birthweight in Table B.8 of 2.8 percentage points is a dramatic change.87

86Among other potential explanations for the divergence in effects across in-movers and out-movers, it is possi-
ble that mothers moving out of coal ash affected areas carry with them the cumulative effects of previous pollution
exposure.

87Zheng et al. (2016)
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5.4 Home Sale Prices

Table B.9 shows how sale prices of homes near coal plants changed in North Carolina after 2014,

the year of a large coal ash spill and the state’s Coal Ash Management Act. The first three columns

show the results of estimation procedures with city fixed effects; columns (4) to (6) show the re-

sults with home fixed effects. Homes within 1 to 5 miles of coal ash ponds experienced sale price

decreases of 5% to 14% after 2014, depending on the distance cutoff and comparison group. Mod-

els with home fixed effects have smaller point estimates across all distance bandwidths, suggesting

that within-city comparisons may confound differential trends of the comparison homes with the

policy. All models, however, suggest large, negative, and significant sale price changes. Sale price

declines of homes within one mile of a coal ash pond are between 12% and 14% depending on the

type of fixed effect employed, which is a substantial decline in homeowner wealth. Homes closest

to ash ponds experienced the largest changes in sale price, with the effect size decreasing monoton-

ically with distance from the coal ash ponds. The price changes may relate to increased salience of

coal pollution, the dis-amenity value of recently-discovered unsafe well water, or changing secular

preferences for pollution after the Dan River spill.

5.5 Cost Analysis

I perform back-of-the-envelope calculations of the external cost of coal ash water pollution with

respect to two outcomes: low-birthweight newborns and changes in home sale prices. In Table

B.7, the coefficient of 0.017 implies that mothers served by municipal water systems affected by

coal ash are 1.7 percentage points more likely to have a child of low birthweight. This implies

roughly 700 additional newborns of low birthweight.88 700 low-birthweight newborns is approx-

imately 0.5% of the total of low-birthweight newborns in North Carolina from 2005-2017. These

low-birthweight newborns likely led to $10.7m in additional hospitalization fees and $2.8m in K-

88900,000 of 1.5m newborns in the sample are served by municipal water systems, and 1 in 22 are served by
municipal water systems affected by coal ash. 0.017*900,000* 1

22 is 695.45.
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12 educational expenses for local communities.89 These costs do not account for many additional

expenses associated with low-birthweight newborns, such as later-life health complications or in-

creased social services excluding special education. As for real estate, Table B.9 presents likely

total changes in home sale value associated with the revelation of non-potable drinking wells in

homes surrounding ash ponds. These estimations multiply the per-home change in sale price by the

number of homes affected in each distance cutoff. Results suggest likely changes in home values

between $20 million and $450 million, depending on the model and distance cutoff.

6 Policy Relevance

The Environmental Protection Agency recently promulgated two rules with respect to the man-

agement of coal ash waste. The first, known as the Effluent Limitation Guidelines, stipulates that

certain types of coal ash waste are not to be released into surface waters and that ash pond effluent

streams must not exceed limitations on the concentration of specific compounds.90 The second

rule modifies subtitle D of the Resource Conservation and Recovery Act, which allows the EPA

to regulate pollutants from cradle to grave. Known as the Disposal of Coal Combustion Resid-

uals from Electric Utilities Rule, it establishes requirements for surface impoundments receiving

coal ash wastes; among other stipulations, the rule mandates structural integrity tests, groundwater

monitoring, run-off controls, and record keeping requirements. The rule also creates new guide-

lines with respect to the closure of inactive coal ash impoundments. These rules reflect current

understanding of best practices for the management of coal ash waste. The Effluent Limitation

Guidelines, in particular, are estimated to decrease the quantity of coal ash that may affect surface

89These numbers generated assuming each low-birthweight newborn costs an extra $15,000 and that each low-
birthweight newborn is twice as likely to qualify for special education, with costs of roughly $44,000 per student.
I assume baseline likelihood of special education service provision is 10%. Cost estimates from Petrou (2003) and
Russell et al. (2007). Note these estimates are based on associational evidence.

90Managed waste types include many relatively new forms of coal ash waste generated in larger quantities due to
technical changes in the way that coal ash and coal-related air pollution are managed. For example, installation of
scrubber technology creates flue gas desulfurization waste. See the Technical Development Document (EPA, 2015c)
for more information.
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waters by at least 95%.91 However, the estimated benefit-cost ratios for the Effluent Limitation

Guidelines are not always greater than one.92 This study provides novel evidence that additional

public health benefits from improved municipal drinking water quality are probable and likely

economically meaningful.

Other policy levers may also ameliorate the potential influence of coal ash pollution on nearby

surface waters, municipal water quality, and exposed populations. Remediating an older ash pond

by treating the water, excavating the ash, and moving the ash to a new location is one such option;

cleaning an ash pond has immediate effects on groundwater, improving arsenic levels by as much

as 90 percent.93 Such ash pond remediation, however, can be very expensive.94 Increased recycling

of coal ash into fertilizers and concrete, already commonplace, could also be expanded to reduce

the environmental footprint of this waste.95 For concerns related to the burden of payment for

cleanup, local legislative acts have also been passed that prevent recuperation of costs from illegal

coal ash discharges.96

7 Conclusion

I find evidence that coal ash surface water pollution affects nearby surface water quality. Dis-

charges of coal ash are associated with increased conductivity and pH in downstream surface wa-

ters and municipal waters sourced from the same locations. These changes are driven in part by

contemporaneous pollution releases, as heavy metal compounds found in coal ash are also found

in higher concentrations in affected waters in years when more pollution is released. Differences in

fetal health across siblings provide evidence that this pollution matters for human health, especially

for mothers with less education who may be less able to avert pollution. Revelation of groundwater

91EPA (2015a).
92EPA (2015b).
93Fretwell (2016).
94In North Carolina alone, the cleanup is expected to cost in excess of $10 billion.

https://www.utilitydive.com/news/duke-north-carolina-coal-ash-pond-excavation-order-to-cost-4-5b/551788/
95Yao et al. (2015).
96https://www.ncleg.net/Sessions/2013/Bills/Senate/PDF/S729v6.pdf
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contamination decreased home sale prices in regions near coal plants in North Carolina across all

models and specifications. Back-of-the-envelope calculations suggest substantial external costs of

this form of pollution, which are likely understated.
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8 Appendix

8.1 Assigning Downstream Status to Monitors and Water Systems

The National Hydrography Dataset Plus (NHD) is a GIS database of every water network in the

United States. It features “edges,” or river system segments and polygons identified by their CO-

MID identifier, and “nodes,” or midpoints of river system segments or polygons. I use the STARS

package, an ArcGIS add-on, to assign coal ash release sites to river system edges in the NHD using

the snap tool.97 I then trace out downstream segments using the downstream tool, which creates

polygons for the downstream regions from each coal ash release site. I then calculate distance

downstream from each coal ash plant for each river edge, allowing sites with multiple upstream

coal ash plants to have at least two unique observations. All monitoring locations in the Water

Quality Portal are then joined by nearest spatial location to edges in the NHD. This allows merg-

ing river edge information on coal ash releases to water monitoring sites located on those edges. I

can then calculate the total quantity of upstream coal ash released across different distance cutoffs,

or weight the quantity released by the distance to each plant.

8.2 Assigning Municipal Water System Location

Performing an analysis of the relationship between water pollution and municipal water quality

requires relatively accurate placement of wells and intakes. Due to security reasons, the location

of these wells or intakes is typically not published online or accessible.98 Moreover, municipal wa-

ter systems often have wells or surface water intakes that are many miles away from their service

zone, and larger systems typically have many intake locations. To assign municipal water systems

to water source locations, I rely on three datasets and multiple linking procedures. First, I secure

North Carolina’s public water ground- and surface-water supply shapefile.99 To this, I then add

97Peterson and Hoef (2014)
98A notable exception is North Carolina, which makes available all municipal water system intake locations as

a geographic shapefile through its NC Onemap service. However, conversations with state water system planners
suggest that these locations are published with some imprecision for security reasons.

99See here to download or see more information.
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the Southern Environmental Law Center’s public water system intake geodatabase, which shows

surface-water intake locations for Alabama, Georgia, Tennessee, and Virginia. In some cases,

these locations are approximated. Both well and surface water intake locations are included in the

SELC database for North and South Carolina. Intake locations accessible online and the SELC

geodatabase do not include many intake locations over the remaining states and even some within

North and South Carolina. I supplement these data by approximating the remaining intake loca-

tions using the Safe Drinking Water Inventory System (SDWIS). SDWIS provides water system

addresses, but these addresses are inaccurate. They represent the location of the water system man-

aging office or long-distance owner.100 I therefore approximate intake location based on service

zone city or zipcode, county, and state. I then spatially join these locations to the nearest “down-

stream” polygons of river segments, excluding any link with a distance greater than 75 kilometers.

The assumption is that any link greater that 75 kilometers away is very likely not using, purchasing,

or otherwise influenced by the downstream water segment. I only use these approximated loca-

tions in instances where the intake or well location is not already known. These linking procedures

allow me to approximate upstream pollution releases for any water system, although I only assign

these upstream variables in cases where the SELC determined a water system to be using coal-ash

affected waters. Water systems that may appear downstream on a map but that are known to source

their water from a protected source are therefore not considered treated by coal ash water pollution

in this analysis.

8.3 Assigning Air and Water Quality to Birth Residences

The North Carolina State Center for Health Statistics provided residential address information for

all births in the state. These addresses included county information, which is used to assign air

quality information at the county-month level to each birth. Since a birth is potentially affected

by air quality across its entire gestational period, I assign mean and maximum PM 2.5 to each

100For example, some water system addresses were in California and New York State, while others were located in
larger cities within the same state but hundreds of miles away.
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birthday-county-gestation length combination. The mean fine particulate matter control is the

mean level observed in the county over the entire gestational period, while the maximum value

is the maximum county-month value over the entire gestational period. Averaging over the entire

gestational period allows children with the same birthday and county of residence to potentially

have different air quality controls if their gestational length differs. For example, a birth with

gestation length of nine months receives a particulate matter control of the average of each of the

nine months prior to birth, while a birth in the same county in the same month with gestational

length of eight months will have a mean particulate matter control constructed over a different

time period. Likewise, the maximum particulate matter control, the highest monthly average PM

2.5 observed during the entire gestational period, could differ across births within the same county

and month if gestational length differs.

Assigning gestational periods to water quality information first requires linking residences to

municipal water service zones. I therefore geo-code a statewide property parcel database to geo-

graphic shapefiles of all municipal water service zones. After linking these addresses to service

zones, I string match the addresses listed in the birth certificates database to the addresses in the

state parcel database using the Stata program matchit.101 Next, I list out all North Carolina cities

associated with coal ash sourcing water systems according to the Southern Environmental Law

Center, and I merge any unmatched births to these city-water system combinations where appli-

cable. After these steps, roughly 700,000 of 1.6 million birth residences are matched. Finally, I

create a variable for the mode municipal water system by zipcode, and I replace any missing water

system links with the mode water system for that zipcode. Because this imputation procedure is

likely imperfect, I flag these imputed water system links and control for the imputation in all birth

regressions. After all merges are complete, 1.1 million birth residences are linked to municipal

water systems. Since roughly two thirds of individuals in North Carolina use municipal water and

the remainder use home wells, the linkage procedure assigns roughly the correct proportion of

addresses to municipal water systems.

101Raffo (2015).
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Chapter 2

School Bus Emissions, Student Health and

Academic Performance

1 Introduction

Nearly 25 million children ride over 500,000 buses to school in the United States each day. The

predominantly diesel bus fleet contributes to air pollution exposure that may adversely affect chil-

dren’s health and academic performance. Because of this, school bus retrofit programs have been

enacted across the country, making use of up to $200 million in federal grants per year to local

districts to replace or retrofit engines. We use information on 2,656 of these school bus retrofits

in Georgia, affecting approximately 150,000 students, to estimate effects on student health and

academic achievement.

Diesel retrofits are an immediate and relatively inexpensive way to dramatically reduce diesel

emissions.1 A large literature has estimated the effect of diesel engine emissions on ambient air

quality, in particular on nitrogen oxide and particulate matter.2 A separate literature examines the

effect of exposure to air pollution on children’s academic achievement and health.3 Yet, little is

1Barone et al. (2010), Tate et al. (2017).
2EPA (2009).
3Lavy et al. (2014), Currie and Neidell (2005), Marcotte (2017).
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known about the direct effect of diesel emission reductions on children’s academic achievement

or health. The only studies to investigate school bus retrofits on health outcomes are Beatty and

Shimshack (2011), which finds that bus retrofits in Washington state lead to significant reductions

in asthma and pneumonia doctor visits, and Adar et al. (2015), which finds that retrofits in Wash-

ington state reduce pollution and pulmonary inflammation and increase lung growth. No study

we know of examines the effect of reduced exposure to school bus emissions on academic perfor-

mance.

To address the causal link between diesel retrofits, student health and academic achievement,

we exploit variation in the timing and location of over 2,600 school bus retrofits across Georgia

between 2007 and 2015. During our sample period, 15 percent of Georgia’s 180 school districts

retrofitted a share of their fleet. Our measure of exposure at the district level is based on the

proportion of the bus fleet retrofitted in a given district. We further refine this with the propor-

tion of students who are bus riders and the average amount of time students spend on the bus.

We match retrofitting data to two types of district-level outcome measures: student health and

scholastic outcomes. For the former, we observe a state-mandated fitness evaluation known as

FitnessGram.4 These health data include an established measure of cardiovascular health (aero-

bic capacity), which allows us to estimate effects on respiratory health, and BMI, which we take

as a potential placebo against general health trends, though we discuss why BMI might also be

affected by improved respiratory health. For scholastic outcomes we observe English and math

end-of-grade test scores in addition to attendance.

We find positive and non-trivial effects of bus retrofits on student health. Retrofitting an entire

fleet leads to a 4 percent increase in the average aerobic capacity of students, or roughly 1.8 units

of VO2 max, in our most conservative estimate. This effect is slightly larger when we weight

treatment by the share of students in a district who ride the bus. In this case, retrofitting 100

percent of buses in a district where everyone rides the bus would yield a 5 percent improvement

4The FitnessGram c© tests have been used for decades to assess student health, and a large literature demonstrates
the scientific validity of the tests employed. The FitnessGram manual ( https://www.cooperinstitute.org/vault/2440/
web/files/662.pdf) provides details.
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in aerobic capacity. We find no relationship between retrofits and our placebo, BMI. We show that

effects on aerobic capacity are strongest for elementary school students.

We also find evidence that these retrofits affected student achievement. Retrofitting 10 percent

of a district’s fleet increases English test scores by 0.009 standard deviations, so retrofitting an en-

tire district’s fleet would increase test scores by nearly one-tenth of a standard deviation. Weighting

by the share of students who ride the bus, we find that districts experience a 0.14 standard deviation

increase from retrofitting an entire fleet when all students ride the bus. Estimated effects on math

scores are also positive, but are smaller and noisier than those for English and often cannot be

distinguished from zero. We find little evidence that attendance was significantly affected, though

initial attendance rates were very high.

Our results suggest that retrofits are a cost-effective lever to improve both student health and

achievement. A back-of-the-envelope analysis suggests that for each effect, benefits were far in

excess of costs. The average retrofit required only $8,110 in our sample, suggesting diesel engine

retrofits can be at least three times more cost-effective than class-size reductions for achieving a

given test score improvement.

2 Background

School bus diesel emissions are a public health concern because school buses are ubiquitous, con-

centrated in residential areas, and dirtier than most vehicles. Monahan (2006) finds that California

school buses were nearly twice as polluting as the average tractor-trailer. This is primarily due to

the age of the bus fleet; a 30-year-old school bus can produce two or three times as much on-board

pollution as a 3-year-old bus.5 School buses are also exceptionally dirty because diesel emissions

are more polluting than gasoline emissions, contributing to a third of nitrogen oxide emissions

and a quarter of particulate matter emissions despite being a smaller fraction of the automobile

5Harder (2005).
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fleet.6 7 School buses contribute to pollution exposure both for individuals spending more time

near bus stops and along bus routes, but they are highest for passengers of the vehicle.8 In fact,

Zuurbier et al. (2010) find that riders of diesel buses had twice as much exposure to air pollution

as carpoolers.

2.1 Emissions and Health

Exposure to air pollution worsens infant and childhood health. Diesel emissions contain smoke-

related particulate matter, nitrogen dioxide, gaseous aldehydes, carbon monoxide, and toxic poly-

cyclic hydrocarbons. The latter are potent carcinogenic compounds that are more stable when they

diffuse into airborne water vapor, allowing them to reach deep into the lungs when inhaled.9 For

this reason, diesel exhaust may cause immediate short-term adverse pulmonary effects by decreas-

ing the membrane potential of epithelial cells in the lungs.10 There are also longer-term effects

of diesel exhaust exposure; one cohort study of urban bus drivers in Denmark finds that just three

months of bus driving is associated with an increased risk of six types of organ-based cancers

and all malignant tumors.11 Young individuals are especially vulnerable to this form of pollution.

Worse air quality is linked to child lung function growth disparities of 3 to 5 percent, or four times

the effect of second-hand cigarette smoke, in more-polluted areas, while exposure to in-traffic air

pollution is associated with lower lung capacity, lower forced expiratory flow, and asthma develop-

ment.12 Two recent studies exploit variation in bus pollution at the census block level in New York

City. The first (Ngo, 2015) finds that increasing emission standards over time reduced emergency

department visits for respiratory diseases among residents living within a few hundred feet of a

bus route. A second (Ngo, 2017) exploits variation in bus age, and thereby pollution levels, finding

6EPA (2009).
7In our sample, 99% of school buses are diesel-powered.
8Xu et al. (2016), Marshall and Behrentz (2005).
9Commins et al. (1957), Waller et al. (1985), Muzyka et al. (1998).

10Stevens et al. (2010).
11Soll-Johanning et al. (1998).
12Beatty and Shimshack (2014), Gauderman et al. (2005), Gendron-Carrier et al. (2018), Clougherty and Kubzansky

(2008).
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that children born to mothers who lived close to bus routes with older (dirtier) buses see modest

reductions in infant birth weight and gestational age compared with those living near routes with

newer, cleaner, buses.

2.2 Emissions and Academic Performance

Past work has identified three mechanisms through which air pollution may impact test scores:

attendance changes due to pollution-related illness, short-term disruptions in attention and cogni-

tive performance, and long-term negative influence of pollution exposure on brain development.

Currie et al. (2009) demonstrate that higher pollution levels over six-week periods are associ-

ated with more student absences, which may indirectly impact student learning. Marcotte (2017)

finds that daily pollen and particulate matter pollution levels affect students’ math and reading

test scores. Ultrafine particles in air pollution, particularly in diesel emissions, deposit in the pre-

frontal cortical and subcortical regions of the brain via the olfactory bulb, leading to heightened

inflammatory response, white matter lesions, and behavioral and cognitive impairment.13 Such

cognitive impairment is observable in standardized test scores, and the negative effects stem from

both contemporaneous and long-term exposure.14

2.3 Emission Reduction Programs

The well-known dangers of pollution from school bus diesel emissions led the United States

Congress to spend $200 million per year from 2007-2012 to retrofit buses under the Diesel Emis-

sions Reductions Act. Separately, the Clean School Bus Grant Program spent $110 million in 2005

and 2006. These grants pay for any one of four types of engine retrofits in our sample: diesel par-

ticulate filter, diesel oxidation catalyst (DOC), flow-through filter, or a closed crankcase filter (also

called a closed crankcase ventilation system or CCV). Since the average diesel particulate filter

costs between $5,000 and $10,000, engine retrofits have the potential to be a cost-effective means

13Freire et al. (2010), Guxens and Sunyer (2012), Calderón-Garcidueñas et al. (2012), Sunyer et al. (2015).
14Ebenstein et al. (2016), Chen et al. (2017), Ham et al. (2014), Marcotte (2017).
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of reducing ambient air pollution and the health concerns associated with them.

The most common type of retrofit, a diesel particulate filter, can decrease overall emissions

of particulate matter (PM) between 60 and 90%.15 The effect of these filters on PM levels inside

the bus cabin is more modest at between 15-26%.16 Emissions reductions of heavy metals from a

diesel particulate filter are more substantial, in the range of 85-95%.17 Emissions of other harm-

ful compounds, such as total hydrocarbons and carbon monoxide, can be reduced to background

pollution levels.18 Finally, reductions of nitrogen oxide emissions can be significant; Tate et al.

(2017) find that retrofitting the bus fleet in York, UK, would reduce city-wide levels of nitrogen

oxides by 6-7%. These benefits appear to be fairly persistent with good engine maintenance and

the use of low-sulfur fuels. Another study finds that the reductions in PM of 95% by mass remained

after four years of road exposure.19 Taken together, the existing scientific evidence suggests that

retrofits dramatically reduce the exposure of students to potentially harmful compounds.

Our work builds most directly on Beatty and Shimshack (2011), who examine roughly 4,000

school bus retrofits in Washington state between 1996 and 2006. They match retrofit data and

hospital admissions at the district-month level. The authors find that districts with retrofits see

significant and sizable reductions in asthma and pneumonia-related visits for both children and

adults, with estimated benefits of nearly 7 to 16 times the cost of retrofit investments. In a related

article that focuses on direct measures of exposure to pollution, Adar et al. (2015) measure pollu-

tion and health of 275 elementary school bus riders in Seattle and Tacoma, Washington, during a

retrofit program from 2005-2009. The authors separately estimate the effect of four different emis-

sions reduction programs (DOCs, CCVs, and fuel switching to ultra-low-sulfur diesel or biofuels)

on pollution exposure, health measures, and school absenteeism. They find significant effects of

DOCs, CCVs, and ultra-low-sulfur diesel use on on-board particulate levels. They find health ben-

15Biswas et al. (2009), EPA (2009).
16Hammond et al. (2007).
17Hu et al. (2009).
18Jiang et al. (2018). Note that Zhang and Zhu (2011) find that retrofits significantly decrease tailpipe emissions

but have no significant effect on on-bus ambient air quality, while Li et al. (2015) show that tailpipe emissions do in
fact enter the cabin. Borak and Sirianni (2007) conduct a meta-analysis and conclude that control technologies like
retrofits can in fact eliminate “self-pollution” from diesel exhaust into bus cabins.

19Barone et al. (2010).
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efits (increased lung functioning measures) from DOCs and CCVs only for students with persistent

asthma.

We build on this prior literature in several ways. First, we have different measures of student

health: aerobic capacity and BMI from FitnessGram tests. Beatty and Shimshack (2011) use

hospital visits, and Adar et al. (2015) use measures of lung functioning.20 Our health outcome

measures are likely to better capture the effect of diesel emissions on student health because VO2

max conveys general cardiovascular health rather than lung function, therefore representing the

observable consequence of lower lung functioning. Our outcome also captures the health of all

students instead of merely those visiting a clinic for acute lung conditions, thereby capturing the

effect on the average student instead of only those likely to visit a clinic. Second, we provide

potential placebo measures using a non-respiratory health outcome, BMI. Third, ours is the first

study we know of to examine the effect of retrofits on academic performance, allowing us to tie

together two largely separate literatures on health and academic performance.21

2.4 Retrofits in Georgia

The Georgia retrofit program started as the Adopt-a-School Bus program in 2003, a collaboration

between the state Environmental Protection Division, school districts, and businesses to improve

the well-being of students. The goals of the project were to implement any of four emission reduc-

tion retrofit devices, reduce bus idling, and increase use of ultra-low sulfur diesel.22 The project

has since been funded by a wide variety of sources and grants. The EPA Clean School Bus grant

program provided three separate grants in 2004, 2005, and 2006. The Diesel Emissions Reduction

Act (DERA) was passed by Congress in 2005 as part of the Energy Policy Act and is administered

20Adar et al. (2015) use forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) as measures
of lung functioning. These measures are useful figures for diagnosing lung diseases such as COPD or emphysema, but
they do not measure cardiorespiratory fitness per se. The FitnessGram aerobic capacity test we employ is designed to
capture VO2 max, the maximal oxygen uptake at peak performance. Other studies, including Ross et al. (2016), use
VO2 max as a broader indicator of health.

21By contrast, other studies, including Marcotte (2017), estimate the effect of pollution exposure on academic
outcomes but do not conduct a program evaluation.

22Idling reductions were a statewide effort.
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by the EPA. Under DERA, the EPA sponsored two retrofit grant cycles in 2009 and 2014 that col-

lectively paid for 182 school bus retrofits. The US Department of Transportation sponsored the

program under its Congestion Mitigation and Air Quality Improvement (CMAQ) Program, which

contributed $11.2M to retrofit 1,890 buses. The staggered funding and implementation lags allow

us not only to compare retrofitting and non-retrofitting districts, but also to exploit the timing of

retrofits among retrofitting districts to secure causal identification.

Over the relevant sample period from 2007-2017, 2,656 buses were retrofitted with at least one

type of modification. 1,160 of these bus retrofits involved a diesel particulate filter, 1,394 added a

diesel oxidation catalyst, 58 installed a flow-through filter, 244 added a closed crankcase filter, and

188 buses were replaced early. We do not observe any information on the use of ultra-low-sulfur

diesel (ULSD) fuel, but we know from communication with the Environmental Protection Division

that retrofit grants stipulated the use of ULSD fuel to preserve the new engine parts. Moreover,

EPA diesel fuel standards required the use of ULSD on all vehicles starting in 2010.

3 Data

Our data come from four sources, providing information on health, achievement, retrofits, and

the Georgia bus fleet in general. Since we observe school bus retrofits at the district level, we

aggregate data to that unit of analysis. We describe each data source, advantages, and limitations

in turn below.

3.1 Health

Our first data source contains health information from the Cooper Institute’s FitnessGram exam-

ination. The FitnessGram examination is a series of mandatory tests administered annually to all

Georgia public school students who are in a physical education class. Many other states use Fit-

nessGram as well, and the results of the FitnessGram tests are used widely in studies on student
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health.23 According to the Georgia Department of Education’s 2016 Fitness Assessment Program

Report, 1.1 million students in Georgia (74%) participate in the examination. Since physical ed-

ucation requirements differ by age, the participation rate for elementary school students is 94%,

while for middle school and high school students the rate is 71% and 49% respectively. Since our

study covers several years, most students should be included at some time in the sample window.

Several tests are involved in a FitnessGram examination, including tests of aerobic capacity,

body mass index, curl-ups, push-ups, and sit and reach (a measure of flexibility).24 We limit our

analysis to just the test of aerobic capacity and BMI. Aerobic capacity is a measure of cardiovas-

cular fitness likely to be affected by exposure to diesel pollution, and BMI is a potential placebo.25

Aerobic capacity is the maximum rate at which oxygen can be taken up and utilized by the

body during exercise. It is measured by FitnessGram through an exercise called the PACER (Pro-

gressive Aerobic Cardiovascular Endurance Run) test, also called a multi-stage fitness test, a “beep

test”, or a shuttle run.26 Physical education instructors administer the test and record results ac-

cording to instructions provided by the Cooper Institute. The school-level average VO2 max, as

computed from either the student-level number of laps completed on the PACER test or the timed

performance on a one-mile run, is our observed outcome measure.27 The FitnessGram assessment

23Castelli et al. (2007), Welk et al. (2010), Edwards et al. (2011), Fahlman et al. (2006), Murray et al. (2012),
Anderson et al. (2018).

24Records of these assessments are kept by the Georgia Department of Education Physical Fitness Division, which
annually reports school-level results separately for male and female students. For each school-gender-test combination,
measures include the total number of attempts, the average performance, and the percentage of students attaining
“healthy fitness zone” (HFZ) status. Depending on whether the aerobic capacity or BMI is higher than a benchmark
figure determined for each student’s age, weight, and gender combination, a student may be assigned to healthy fitness
zone status.

25We exclude curl-ups, push-ups, and sit and reach from our analysis because they are not completed by a large
proportion of the student body.

26In the test each time students hear a timed electronic beep they have a set amount of time to run 20 meters (from
one line to the other). The exercise ends for a student the second time she cannot finish the 20 meters within the set
amount of time. At the end of each minute students hear 3 beeps letting them know that the amount of time they
will have to finish the 20 meters has been reduced. A student’s score is the number of laps she completed before her
second failure to complete the 20 meters within the allotted time. Some schools actually use a one-mile run test to
assess aerobic capacity. We do not observe the test employed, however both tests are converted to a comparable scale
of VO2 max. See Boiarskaia et al. 2011 for additional information on how these two tests are converted to the same
measurement of VO2 max, and Blasingame (2012), which finds that both assessment types accurately capture VO2
max and are consistent with each other.

27Given age and weight, the number of laps completed by a student can be used to determine the student’s maximal
aerobic capacity, or VO2 max. The Cooper Institute approximates this value based on a functional transformation
of the number of laps completed and the student’s age. For more information, see the Cooper Institute FitnessGram
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also directly measures each student’s BMI, which is defined as a student’s mass in kilograms di-

vided by her height in meters squared. The CDC defines healthy and unhealthy levels of BMI for

children based on their percentile rank among all children of a given age and sex.

The first and second years of FitnessGram aerobic capacity information collected by the state,

2011-12 and 2012-13, are not consistent with the remaining years.28 These early years feature

many average VO2 max values that are simply not observed in later years. More troublingly, some

of these very low average VO2 values correspond to unrealistically high levels of healthy fitness

zone attainment. The indiscrepancies may result from a few possible factors, although we cannot

diagnose the precise origin of the issue.29 We believe the unreliable observations are primarily

an issue of accidental half-counting by coaches administering the test for the first or second time.

This view is consistent with the findings of Blasingame (2012) that differences between one-mile

run and the PACER test and between FitnessGram versions 8 and 9 are minimal. To account for

this issue while preserving as much data as possible, we take a rule-based approach to identifying

schools that most likely have contaminated scores, dropping any school-level observations below

the minimum score by gender that we observe across all years in which we are confident of the

data (those after the 2012-13 school year). In section Table B.22 we explore the robustness of our

results to a wide variety of alternative methods for dealing with this issue, including dropping the

2011-12 school year entirely, confirming that our main results are indeed quite conservative.

The first panel of Table B.13 presents summary statistics of the FitnessGram tests for aerobic

capacity (AC) and body mass index (BMI) aggregated to the district level. We take the district

Reference Guide.
28Figure A.17 shows the extent of inexplicable values in 2011-12 and 2012-13, showing how the otherwise tight

linear relationship between percent of students in the healthy fitness zone and the average VO2 max, which we see in
the 2014-2017 data, is dramatically less reliable in the first two years.

29One potential cause is that schools calculated VO2 max using the FitnessGram version 8 equation in 2011-12 and
2012-13, whereas in later years they use the conversion equation from FitnessGram version 9. Second, roughly one
third of schools implement a one-mile run test while the remaining schools use the PACER test. Although both have
been converted to units of VO2 Max in our data, the correlation between VO2 max and performance on the one-mile
walk is slightly lower. Blasingame (2012) finds that the one-mile run is less correlated to actual VO2 max than the
PACER test (correlation coefficients of .84 and .93), but both assessment types and estimation equations are consistent
and generally accurate. Third, coaches may have half counted PACER laps, effectively counting a “down and back”
as one lap rather than two. We suspect this issue because more-recent official coaching instructions specifically advise
against this counting practice.
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average as our outcome measure because treatment in our data is at the district level. Average

values were converted from school- to district-level by calculating the sum of weighted school

averages for each district, where the weight is the proportion of a district’s attempts taken at that

school.30 The attempts divided by enrollment is an approximation of the proportion of students

completing a FitnessGram examination in each district. AC and BMI were the two most common

FitnessGram examinations, though less than half of students in a district completed the AC exam,

while about two-thirds of students completed a BMI examination in any given year.31

3.2 Academic Achievement

Our second source of data includes information on student test scores, enrollment levels, and de-

mographics from the Georgia Department of Education (GADOE), which provides school-level

data from 2006-07 to 2016-17. Only English language arts (ELA) and math end-of-grade 3rd-

grade through 8th-grade test scores are reported throughout the sample window, so we focus on

these exams. The recorded information includes the average raw scale score of students in each

grade and the number of student test takers for each test. We normalize scale scores using the state

mean and student-level standard deviation, and then average over grades and schools using weights

for the number of test-takers. This yields a district-level average performance, in terms of student-

level z-scores, for ELA and math in each year of the sample. From 2013-14 to 2014-15, the state

changed its assessment regime from the Criterion-Referenced Competency Test (CRCT) to the

Georgia Milestones Assessment System, with an accompanying change in scale and difficulty on

30For example, district i’s average aerobic capacity in a given year is yit = ∑
N
s=1 xst

ast
ait

where xst is the school
average in year t and a is the total attempts on the relevant FitnessGram examination for each school s in district i
and year t. Alternatively, the weights could be school-level and district-level enrollment instead of total attempts, but
this aggregation procedure overemphasizes schools that have lower levels of FitnessGram participation, such as high
schools.

31Some students are not tested because children below 3rd grade do not take the test, and any students who are
not in a physical education class also do not take the test. Additionally, tests administered to fewer than 25 students
in a school are censored to protect privacy, hence some school observations are missing. In Table B.23, we find no
relationship between FitnessGram attempts on aerobic capacity and bus retrofits. It is also impossible to know whether
the total attempts reported by the state reflect multiple attempts by the same student. This could introduce noise if, for
example, districts compensate for lower performance by allowing their students more attempts, which would tend to
mute physical fitness differences across districts. We also test for this possibility in Table B.23.
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the math end-of-grade exam. This is accounted for by normalizing within grade-year and includ-

ing year fixed effects in our regression models.32 The second and third panels of Table B.13 report

district-level schooling outcomes and demographic characteristics. Test scores are slightly higher

for retrofitting districts,33 though this may be confounded by the effects of the retrofits themselves.

Attendance rates are virtually identical across retrofitting and non-retrofitting districts. On average,

non-retrofitting districts are smaller, but have otherwise similar student compositions.

3.3 Bus retrofits

The third data source contains information on all bus retrofits from 2003-2018 and was provided

through an open records request by the Georgia Environmental Protection Division (EPD). These

data describe the type of retrofit performed in each district, the number of buses affected, the month

and year of implementation, and the specific grant used to finance the retrofit. We use district-

specific invoices for reimbursement for installation of retrofits to calculate the amount each district

paid for their retrofits.34 Figure A.15 maps retrofitting districts. The fourth panel of Table B.13

shows that a typical retrofitting district improved 66 buses, or close to 19% of the bus fleet, in each

retrofit cycle.

3.4 Bus manifest

We augment this with the Georgia Transportation Authority’s manifest of all state school buses

from 2010-2016. Since the bus manifest covers fewer years than for which there exist retrofits,

information for 2007-2010 and 2017 is replaced with the value of the nearest available year in the

32Later, in Table B.24, we drop the Milestones years from the sample. Aside from being a slightly different exam-
ination, there were widespread issues with the new computer-based assessment. The state notably decided not to use
the Milestones examination for accountability purposes in 2015 and 2016.

33Standardized test score averages are different from zero because there are many low-performing districts with
small student populations and a few high-performing districts with many students.

34Although we do not observe actual emissions pre- or post-retrofit, the EPD does provide predictions of the yearly
and lifetime reductions of four pollutants using the EPA Diesel Emissions Quantifier. These pollutants were fine
particulate matter (PM2.5), volatile hydrocarbons, carbon monoxide, and nitrogen oxides. Because these are predicted
emissions changes based on engineering models rather than measured or observed values, we do not use these data.
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sample.35 The manifest includes specific bus identifiers, type of bus, capacity, and bus manufac-

turing details like make, model and year, fuel source, passengers, daily miles, and the number of

students living within 1.5 miles of the school who are eligible to be riders. Some of these statis-

tics are summarized in the last panel of Table B.13. The variety of information provided by the

bus manifest allows the creation of variables for the district-wide average student minutes spent

in the bus, the district-wide bus ridership rate, and the proportion of district buses retrofitted for

each grant. These three variables comprise our treatment measures. In our sample, the average bus

rider spends a little less than 45 minutes on the bus each day. The average district has a 62% bus

ridership.

4 Empirical Strategy

Our identification strategy exploits variation in the timing and location of retrofits across Geor-

gia. We adopt a first-differences estimation strategy, which differences out any unobserved, time-

invariant district attributes that might be correlated with retrofits and health or achievement. The

estimating equation is as follows:

∆yit = βRit +∆Xitγ + τt +∆εit . (2.1)

All variables are aggregated to the district (i) year (t) level as described above. ∆ indicates a one-

period change in a variable (e.g., ∆yit = yit − yit−1). The dependent variable, yit , can be either one

of the two health outcomes (aerobic capacity and body mass index) or one of the three schooling

outcomes (math and English scores and attendance). Since many retrofitting districts experience

more than one retrofitting episode, the model captures these year-on-year changes in health and

schooling as a result of proportional changes in the share of buses retrofitted.

Our treatment variable, measuring district retrofits that occurred between time t−1 and t, is Rit

35Inclusion or exclusion of these years does not affect the sign or diminish the magnitude of the results, as we show
in Table B.25.
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(one can think of Rit as the change in cumulative retrofits between t−1 and t).36 We consider three

different ways of measuring treatment intensity, Rit . The first measure is the proportion of the bus

fleet retrofitted that year, termed Percent Retrofitted. For example, if a district retrofits 10% of its

buses between t−1 and t, then Rit = 0.1. In this case, the magnitude of the coefficient on Rit shows

the effect of retrofitting an entire fleet – going from all dirty buses to all clean buses.37 The second

measure is the proportion of the bus fleet retrofitted multiplied by the time-constant proportion of

students in the district who are bus riders, termed Percent Retrofitted * Ridership. For example, if

10% of buses were retrofitted between time t− 1 and t, and time-constant average bus ridership

in district i is 50% of students, then Rit = 0.05. Here, the coefficient on Rit shows the effect of

retrofitting an entire fleet in a district where all students ride the bus. This accounts for the fact that

the impact of retrofitting should have a larger effect in districts where a higher fraction of students

ride the bus. We use time-constant district averages for the proportion of students who are bus

riders to avoid identifying changes off potentially endogenous ridership changes, though we later

show that changes are in fact small and unrelated to retrofits. Our third measure is the proportion

of the bus fleet retrofitted times the fraction of students who are bus riders times the time-constant

average duration of each bus ride in minutes per day. This is termed Percent Retrofitted * Ridership

* Trip Duration. Here again we use the time-constant district average for bus ride minutes to avoid

identifying effects off potentially endogenous changes in trip duration. Given two district-years

with an equal proportion of buses retrofitted and an equal share of students who ride the bus, if one

district buses students twice as far as the other, we should expect larger effects in that district.

Equation 2.1 includes the vector ∆Xit , measuring annual changes in the following district-level

student characteristics: percent of the student body that is Asian, Hispanic, African-American,

male, English-language learner, eligible for free- and reduced-price lunch, or possessing of a dis-

ability. The vector ∆Xit also includes the following district-level changes in bus fleet characteris-

tics: average bus age, to account for new buses replacing older models, the share of buses that are

36In other words, we could also have modeled this as ∆Rcumul
it , the change in cumulative retrofits. This causes

difficulties when we interact R with the share of students who are bus riders because we do not want to identify
variation resulting from potentially endogenous changes in ridership.

37The average proportion of the fleet retrofitted for the observed retrofits is 0.189.
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older models made before recent emissions regulations, student ridership, trip duration, and the

share of buses that run on liquid natural gas, regular gasoline, and butane. We find little impact

from their inclusion. τt is an academic year fixed effect.

Our identifying source of variation is the timing and magnitude of the retrofits. Differences

in the share of students riding the bus and the average length of ride among riders add additional

variation. An identifying assumption is that this timing is uncorrelated with any potential con-

founders that would affect health or academic performance. This assumption would be violated if,

for example, retrofit timing was a function of expected changes in health or academic performance.

Such endogeneity is unlikely in practice because funding allocation decisions were made by a state

agency, the Environmental Protection Division, independently of any school district prerogatives.

Moreover, the timing of bus retrofit completion varied greatly within grant cycles and across dis-

tricts. Still, if this were true, we would also see changes in BMI as a proximate health outcome,

which we test for. We might also be concerned with endogenous responses on the part of students

and families through, for example, increased ridership in response to cleaner retrofitted buses. We

employ several robustness tests to allay each of these concerns and discuss each in turn directly

following our main results.

One could also estimate the model using district fixed effects. This requires stronger assump-

tions than the first differences model, some that we likely do not satisfy. For example, the first

differences model best captures immediate year-on-year changes, given that a large number of

districts have multiple retrofit cycles. More importantly, we worry about serial correlation. First

differences requires only that Rit is uncorrelated with ∆εit = εit−εit−1 where fixed effects requires

Rit to be uncorrelated with εit − εi (i.e., that all errors are uncorrelated as opposed to uncorrelated

changes in errors, which is a weaker assumption). In the absence of serial correlation, the fixed

effects estimator has consistency advantages over first-differences, but as we show in robustness

checks, Durbin-Watson statistics suggest that we do not satisfy this requirement, in particular for

academic outcomes which are highly serially correlated. Moreover, we have a relatively large

number of time periods (10) compared to the number of individual observations (180), which

53



again leads to advantages in the first differences model as fixed effects assumes N→ ∞ with fixed

T. Regardless, as part of our many robustness tests we also report estimates from fixed effects re-

gressions. We show that while point estimates are similar in nearly all cases, standard errors are

larger under the fixed effects model, which is consistent with our concerns.

5 Results

5.1 Health

We present our main regression results for aerobic capacity and our placebo health outcome, BMI,

across all three measures of treatment Rit in Table B.14. These regressions are based on Equation

2.1 and use data from 2012-2017. The first three columns present effects on aerobic capacity (AC),

where the units represent VO2 max, which is measured in milliliters of oxygen intake per kilogram

minute. The second three columns present the effects on BMI. The coefficient in column 1 implies

that if a district retrofitted 100% of its fleet, average VO2 max would increase by 1.8 units, or about

a 4% increase relative to the baseline mean of 41.16. Since the average retrofit affected 19% of the

bus fleet, the average retrofit improved district-wide aerobic capacity by 0.33 milliliters of oxygen

per kilogram minute.

Columns 2 and 3 use the alternate measures of the treatment effect Rit . In column 2 it is the

percent of buses retrofitted multiplied by the percent of students who ride the bus. This coefficient

implies that if a district had 100 percent ridership and retrofitted its entire bus fleet, average student

aerobic capacity would increase by 2.4 units, or about 6 percent of the mean. The average bus

ridership rate is 62%, so this implies that the average retrofit (19% of the fleet) in the average

district increases aerobic capacity by 0.28 milliliters of oxygen per kilogram minute. Column

3 sets Rit to the percent of the bus fleet retrofitted times the ridership rate times the average trip

duration. The coefficient implies that, if all buses in a district are retrofitted and all students ride the

bus, then each additional minute of bus riding for students in this district is associated with roughly

0.041 units increase in VO2 max. Since the average trip duration is 46 minutes, this implies that the
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average retrofit in the average district increased aerobic capacity by 0.21 units VO2 max.38 Thus

our point estimates, when scaled, are roughly consistent across specifications in the range of 0.2

to 0.4 units VO2 max. Given that there is little variation across retrofitting districts in the ridership

share and trip length, we do not find this result surprising.

We next turn to our placebo health outcome, BMI. In the final three columns of Table B.14

we find that estimates are effectively zero in all cases. Although directions suggest lower BMI,

the coefficient on our main estimate (-0.24) is equal to approximately 1% of BMI. We take this

as suggestive evidence that retrofits were uncorrelated with general health trends across treatment

and control districts.

We next break out results by gender and school level. Table B.15 displays male and female

aerobic capacity results in the full sample across elementary, middle, and high schools. These

results reveal two pieces of information. First, estimates are comparable for male and female

students. While point estimates are different across gender for elementary school students, the

coefficients for male and female students at a given level are not statistically different from one

another. Second, effects are highest among elementary school students. We find noisy and in fact

negative effects for boys in middle school. Although we are unable to explain this, we believe it

relates to influence of outliers in the middle-school assessments and the likely re-assessment of

physical education classes to selectively lower-quality students after one mandatory year of the

course. The consistency across elementary male and female estimates contradicts the hypothesis

that differential incidence of childhood asthma in young boys would exert some influence on these

relative effect sizes (Bjornson and Mitchell, 2000). As has been shown in other work (Beatty

and Shimshack, 2011), children with asthma are more susceptible to the negative effects of air

pollution.

38= 0.189∗0.62∗46∗0.041
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5.2 Academic Achievement

We present our main regression results on three academic outcomes in Table B.16. These re-

gressions include years 2007-2017, since we observe test scores for more years than we observe

FitnessGram outcome measures. In columns 1-3, the dependent variable is a z-score of average

English (ELA) test scores, normalized to the student-level standard deviation, for grades 3-8. The

coefficient in column 1 implies that retrofitting an entire fleet would raise ELA scores by 0.09

standard deviations. This represents an achievement differential slightly larger than that observed

between students of a rookie teacher and those of a teacher with five years of experience.39 The av-

erage retrofitting district retrofitted 19% of the fleet, suggesting an average increase in ELA scores

of 0.017 standard deviations per retrofit cycle. In column 2, the treatment effect Rit is the share

of buses retrofitted times the share of students who ride the bus. The point estimate suggests that

retrofitting an entire bus fleet with 100% ridership would increase student test scores by 0.145 stan-

dard deviations. The average retrofit (19% of the bus fleet) for the average district (61% ridership)

increases scores by 0.017 standard deviations according to this point estimate, which is identical

to the result in column 1. Column 3 shows that each minute of bus riding in a 100%-retrofitting

district with 100% ridership is associated with a 0.003 standard deviation increase in ELA scores.

Based on this, the average district’s retrofit increases ELA scores by 0.016 standard deviations,

which is consistent with specifications (1) and (2).

The results on math test scores (columns 4-6) are also positive but only about one-half as large

as the ELA results and not statistically distinguishable from zero. This is consistent with Ham

et al. (2014) who find that particulate matter, and especially PM2.5, tends to affect ELA scores

more than math scores. Specifically, they find that PM2.5 lowers math scores by 60% less than

ELA scores, which is similar to our findings. The last three columns of Table B.16 show that there

is no effect of retrofits on average attendance rates. Since the mean attendance rate is 0.95, there

is little margin for gain. This contrasts with the negative attendance effects found in Adar et al.

(2015). In Table B.17, we show how the percentage of a bus fleet retrofitted affects ELA and math

39Rice (2010).
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z-scores among elementary and middle school students.40 Consistent with the health estimates,

effects are larger in elementary schools than in middle schools. For both elementary and middle

schools, the effects on math are positive but indistinguishable from zero.41

5.3 Results by Retrofit Type

In Table B.18, we present results by type of retrofit for each of our academic and health outcomes.

There were few episodes of closed-crankcase filter retrofits (244), and fewer of flow-through filter

retrofits (58). In fact, there were none of these retrofits over the sample period during which we

observe aerobic capacity and BMI records from the FitnessGram examination. Nevertheless, diesel

particulate filters (1,160 retrofits) and diesel oxidation catalysts (1,394 retrofits) had a positive

and roughly consistent effect on both ELA and math test scores. Adar et al. (2015) find that

implementing DOCs and CCFs both had an effect on attendance, with larger and more significant

effects for DOCs. This is consistent with our findings for DOCs only, the discrepancy likely

caused by the low number of CCF retrofits. We add to their findings by testing for effects on diesel

particulate filters, which appear to have a larger effect on ELA, math, and aerobic capacity. Since

DPFs are expected to eliminate 60-90% of fine particulate matter, while DOCs eliminate 10-50%

of fine particulate matter in Adar et al. (2015), this finding appears reasonable.

5.4 Robustness and Alternate Specifications

Alternate Specifications

We re-estimate our main results (both health outcomes and academic outcomes) using a fixed

effects specification. In the top panel we show our main results from the baseline first-differences

40We do not have test scores by gender, nor do we have them for high school students.
41In Table B.20 we display results dis-aggregated by grade. The grade-level performances are consistently in the

same direction as the main academic estimates, and achieve significance in at least one grade for each ELA and math
test scores. Interestingly, grade-level effects suggest larger impacts for students more likely to sit at the back of the
bus– those in 4th, 5th, and 8th grade– which is consistent with bus self-pollution from diesel exhaust.
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model for reference. In Panel II we show estimates from a fixed effects model. This is:

yit = α +βRit +X ′itγ + τt +φi + εit (2.2)

Where φi is a district fixed effect. Point estimates for all outcomes are similar across Panels I and

II, though standard errors are larger under fixed effects. The exception is the coefficient on math

scores, which becomes zero under fixed effects. Panel II also show Durbin-Watson test statistics,

which indicate a high degree of serial correlation. Given that the math estimates were zero in our

main specifications, a smaller coefficient here does not change conclusions. For ELA, we find a

marginally larger point estimate and substantially larger standard errors, marginally failing to reject

the null. Effects on aerobic capacity are similar though noisier as well. Taken together, these two

panels of Table B.19 suggest efficiency gains from first differences as expected in the presence of

serial correlation, and that our conclusions are not substantively altered by our modeling choice.

We also use the fixed-effects model to conduct additional robustness checks. We re-estimate

Equation 2.2 above and include a lead of Rit (Ri,t+1) as a test for pre-trends. Panel III of Table

B.21 shows the results. Academic results are similar to our main estimates (the ELA coefficient

is slightly larger), and we cannot reject that the lead coefficients are zero for each outcome except

aerobic capacity. We find that the lead for aerobic capacity is large and significant. We believe this

is strongly influenced by the noisy first year of AC data. When we add district time trends to the

fixed effects model with leads, in panel IV, the lead coefficient in the AC regressions (column 4) is

not statistically significant and the contemporaneous coefficient returns to the same magnitude as

in the base case.

In this model, the coefficient on ELA test scores shrinks from 0.089 in the first-differences

specification to 0.032.42 These results suggest that the fixed effects estimates are sensitive to

modelling decisions. We note that 9 of 10 lead tests fail to reject the null hypothesis of no leads,

42Our preferred first-differences specification is robust to the inclusion of leads and district-specific trends. In Table
B.21, we include two leads and district trends in all regressions. For the FitnessGram test regressions (columns 4 and
5), we cannot include more than one lead since there is not enough variation in the retrofits during the years we have
the FitnessGram test data. But, inclusion of the second lead does not substantially change our results.
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supporting the notion that we are not picking up spurious correlations. In Table B.26 below, we

conduct a stricter test of timing by assigning treatment to one year in advance, and find that all

estimates are zero, as one would expect if pre-trends are not a concern. Similarly, in the next

section we show pre-trend plots. We expect that the trend and lead relationship we observe with

respect to aerobic capacity is related to outlier data in the first year of our sample, which we address

in section 5.4 to follow.

Academic Achievement Pre-Trends in Retrofitting Districts

One might be concerned that retrofitting districts have different pre-treatment trends that drive the

results. This possibility is difficult to test directly because there is no uniform year of treatment

across retrofitting districts. For this reason, there are no uniform pre-treatment or post-treatment

years. Many retrofitting districts also had multiple retrofit cycles. To assess the possibility of

differential pre-trends, we therefore plot academic achievement outcomes from 2006-07 to 2011-

12 across retrofitting and non-retrofitting districts in Figure A.16. We plot results in the years

leading up to 2013 because this was the modal retrofit year with nine retrofits. We note that 25

retrofits occur before this year, so we may expect the slope trends to increasingly differ by the

extent to which the retrofits impact academic outcomes. Nevertheless, the trends appear close

to parallel over this period. We do not plot pre-trends for our health outcomes because of the

shorter window over which we observe these outcomes and the notable issues with aerobic capacity

information in the roll-out year of the program (as discussed in section Table B.22).

Aerobic Capacity Data

As discussed earlier, the early FitnessGram results contain inconsistencies, so we apply a rule-

based approach in which we eliminate implausible values. In Table B.22 we re-estimate our main

specification, using the share of buses retrofitted, across different cutoff values to demonstrate how

our results vary across different rules of thumb. The first five columns of the table show results

for cutoffs set at 15,20,25,30,35. These represent dropping school-level aerobic capacity results
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below the given value in 2011-12 and 2012-13 (although, in practice, almost all removed values

are in 2011-12). In column 6 we show our preferred cutoff of 26 for females and 30 for males

for reference, the lowest observed values after 2012-13. In column 7 we apply an alternate rule

where we eliminate schools for which we observe a jump of more than 6 in Aerobic Capacity –

equivalent to 15 percent of the mean – between 2011-12 and 2012-13 as an indicator of reporting

issues in the first year. In column 8 we show the full data, not dropping any schools, and in

column 9 we show effects if we drop school year 2011-12 entirely. With the exception of the

specification in columns 7 and 9, results are similar in magnitude across specifications. Eliminating

problematically low observations affects the standard errors, as we would expect. In column 7,

when we drop implausibly large jumps, estimates double, and when we drop the first year of

data entirely in column 9, effect sizes increase over four-fold, from 1.8 to 7.1. While we are

more confident in these estimates, we take the conservative case of only dropping problematic

observations as our preferred estimate.

Correlation of Proportion of a Bus Fleet Retrofitted with District Characteristics 2007-2017

We address the potential for retrofits to affect participation in the FitnessGram test, possibly due

to increased health status, in the first panel of Table B.23. In columns 1 and 2, we regress the

participation rates for aerobic capacity and BMI FitnessGram tests, measured as the total number

of test attempts divided by the district enrollment, on the percent of a bus fleet retrofitted. We

find no discernible relationship between district retrofits and the share of student who are tested in

aerobic capacity. If anything the point estimate suggests a small negative relationship. We find a

similar pattern for BMI tests, suggesting that districts with more retrofits see a marginally higher

rate of BMI testing, though again the estimate is noisy. In column 3 we test for changes in ridership,

potentially resulting from an increase in the share or number of students riding the bus as a result

of reduced emissions. We find no effect, suggesting that cleaner buses do not increase ridership. In

the same table, we demonstrate the relationship between the proportion of a bus fleet retrofitted and

changes in bus fleet characteristics, student demographics, and student characteristics. We observe
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a statistically significant relationship in only one case; the proportion of students with disabilities

in a district is positively related to the proportion of a bus fleet retrofitted. We believe it is unlikely

that retrofits would change disability status among students. Regardless, we control for changes in

the share of students with disabilities in all regressions.

Milestones Test Sensitivity

The roll-out of a new Milestones exam (Georgia’s end-of-year test) in 2015 resulted in a large

decreases in math scores in several of Georgia’s largest districts, many of which received retrofits.

The decrease was caused by complications in the new internet-based math examination where sev-

eral districts had computers “freeze,” causing severe disruption to test-takers.43 As a result, those

exams were not used to calculate district performance for state requirements, student retention, or

graduation.44 That retrofitting districts are primarily Georgia’s larger districts, which were those

who adapted to computer based tests, raises concerns that this could be a confounding factor in our

test score analysis. When we drop Milestones years 2015-2017 from the sample, in Table B.24,

the results are qualitatively similar to our main specification, although math scores are larger in

magnitude and more precise. Since no districts retrofitted after 2015, this change is not correlated

with contemporaneous treatment, but rather shows a decline in test score post-treatment for these

districts.

Exclusion of Interpolated Bus Manifest Data

The district bus manifest covers 2009-10 to 2015-16. We fill in the remaining years by substituting

the value of the nearest chronological neighbor for each year. For example, a district’s 2016-17

value for total buses is set equal to the number of buses it had in 2015-16. Linear interpolation

was ruled out because it created unrealistic values for some districts with large changes in their

bus fleet. As shown in Table B.25, our results are unchanged by the exclusion of years for which

we lack information on district bus fleets. In fact, excluding these years improves the precision of

43Cobb, Dekalb, Cherokee, and Gwinnett counties all suffered from these computer glitches.
44See this article and this article for more information.
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both our math and ELA point estimates.

Timing of Retrofit Treatment

There are two sources of imprecision with respect to the timing of treatment. First, the FitnessGram

test may be in fall, spring, or both, while the end-of-grade tests are uniformly in April-May.45

Second, the date of the bus retrofit reimbursement invoice, which we use as a proxy for the date of

retrofit completion, imperfectly corresponds to the date when the buses are first used. If the timing

of a retrofit comes before April of the year in question, the retrofit is counted as occurring in that

school year even if some of the FitnessGram tests may have occurred before the retrofitted buses

were active. This may affect the results of some FitnessGram tests while leaving the test score

results unaffected. On the other hand, buses completed in a retrofit before April may not actually

be used until the following school year due to implementation lags, which would mean our baseline

treatment year assignment is too early to pick up changes in test scores. In Table B.26 we show

our baseline treatment assignment and explore a placebo timing treatment that assigns the year of

the retrofit to one year in advance of the year of the retrofit completion invoice. These results,

presented in the second panel of Table B.26, demonstrate that the assigned treatment timing is not

inconsequential, as no estimate is significant when adopting a placebo treatment year. In Panel III

we assess the possibility that our treatment assignment for retrofits occurring after January is too

early by assigning the same fiscal year to any retrofits completed before January and the subsequent

fiscal year to any retrofits completed after January. Under this treatment year assignment rule, the

results are the same for each outcome except for math test scores, which are now positive and

significant. We take this as suggestive evidence that our baseline treatment assignment is not too

late to capture changes in aerobic capacity, although it may be too early to pick up changes in

academic achievement for some districts.
45Across the state we know that two-thirds of FitnessGram exams are given in Spring and one-third in Fall, although

we do not know the breakdown by district.
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Linear Trends

In Table B.27 and Table B.28, we present results with the first-difference model including linear

trends. Adding district-specific linear trends amounts to adding a district fixed effect in the re-

gressions (first-differencing eliminates a district-fixed effect and converts a linear trend to a fixed

effect). Table B.27 replicates the health regressions (Table B.14), and Table B.28 replicates the

academic regressions (Table B.16). Both sets of results are robust to inclusion of trends. For health

outcomes, adding linear trends slightly increases the magnitude of the effect of each definition

of treatment on aerobic capacity. For academic outcomes, adding linear trends slightly reduces

estimates for ELA scores, although conclusions are similar.

6 Cost-Benefit and Cost Effectiveness Analyses

We conduct back-of-the-envelope calculations of the costs and the benefits of bus retrofits. We

examine health benefits in terms of both reduced mortality and reduced cardiovascular disease, as

well as benefits from increased test scores. We note that this does not account for spillover effects

on non-treated members of the community who are exposed to lower pollution levels overall.

Additionally, we compare the cost of achieving the education benefits from the retrofits to the

costs of achieving similar gains from class-size reduction to provide a cost effectiveness analysis.

6.1 Costs

The total amount awarded for district bus fleet retrofits in Georgia is $26 million. However, certain

retrofits occurred before our sample window. Moreover, a large portion of funds went to purchasing

new buses to replace older ones. We separate the amount awarded for bus replacement from the

amount spent on retrofits using invoices detailing each district’s reimbursement for completing

their retrofit. These reimbursements include the cost of parts, labor, and daily usage of a repair

bay. The total amount spent on engine retrofits is $12.6 million, with the average district spending

$8,110 per retrofitted bus. The average district has 111 buses, so the cost of the average district
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retrofitting 10% of its fleet is $90,000. For comparison, the cost of one regular new bus is roughly

$130,000, while a new hybrid or electric bus is $360,000. Replacing 10% of a fleet with new diesel

or hybrid buses would therefore cost $1.4M - $4M, an order of magnitude greater than the cost of

engine retrofits.

6.2 Benefits - Health

We focus on the health benefits in terms of increased aerobic capacity, which is the most persistent

result. Our preferred specification is column 1 of Table B.14, which indicates that a ten-percentage-

point increase in the percentage of buses retrofitted is correlated with a 0.18-unit increase in the

measure of aerobic capacity. The units we observe for the aerobic capacity measure are milliliters

oxygen per kilogram minute (mL/min/kg); these units have already been converted into a mea-

sure of VO2 max from the number of PACER laps completed using a standard conversion factor

provided by the FitnessGram test manufacturer.

From this conversion we conclude that a ten-percentage-point increase in the percentage of

buses retrofitted is correlated with a 0.18-unit increase in VO2 max. We convert the VO2 max

effect measure from units of mL/min/kg to units of metabolic equivalent (MET) by dividing the

VO2 max in mL/min/kg by 3.5, yielding a change in MET of 0.05 for a retrofit of approximately

10 percent of a district’s bus fleet.46

Several studies document and measure the benefits from increased aerobic capacity (or car-

diorespiratory fitness).47 Kodama et al. (2009) conducts a meta-analysis and finds that a 1-MET

higher level of VO2 max is associated with a 13% decrease in the risk of all-cause mortality and

a 15% decrease in the risk of cardiovascular disease (CVD).48 However, this meta-analysis was

conducted on studies of adults, not children. Other studies examine the effect of cardiorespiratory

fitness on children’s CVD outcomes49, but do not provide an estimated magnitude of a causal effect

46Castillo-Garzón et al. (2006).
47Several such studies are summarized in Institute of Medicine (2012), Chapter 5.
48Lakoski et al. (2015) finds also an association between aerobic capacity and adult cancer rates.
49Castro-Piñero et al. (2017), Ortega et al. (2008)
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from VO2 max.

We thus use two different measures of the valuation of health benefits from aerobic capacity

increases. First, we use the meta-analysis of mortality effects reported in Kodama et al. (2009)

for adults and extend them to childhood mortality: a 1-MET increase in VO2 max is associated

with a 13% decrease in mortality risk. The baseline childhood mortality rate in Georgia among

5-12 year olds was 13.3 deaths per 100,000 population in 2016.50 We use a standard value of a

statistical life (VSL) of $7.4 million.51 The average district in Georgia has about 9,000 students.

Thus, if an average district’s average MET unit of VO2 max increased by 0.05 units (the effect size

1.8 scaled to represent a district retrofitting 10 percent of a its buses and divided by 3.5 to convert

to MET units), the health valuation from reduced mortality for that district is $71.1.52 Assuming

a retrofit life of 10 years53 and an annual discount rate of 3%, the present discounted value of the

mortality reduction benefits is $624.69, a small fraction of the cost of retrofitting 10% of the bus

fleet calculated earlier, $90,000. It is perhaps not surprising that the retrofits fail a cost-benefit

analysis when the benefits are calculated only from reductions in mortality, since the baseline

mortality rate for elementary-school-aged children is extremely low.

The second measure of the valuation of health benefits combines the result from Kodama et al.

(2009) on the effect of aerobic capacity on cardiovascular disease (among adults) with results from

Adamowicz et al. (2014) on the valuation of avoided CVD among children. Adamowicz et al.

(2014) conduct a stated-preference survey of parents asking for their willingness-to-pay (WTP)

for a reduction in the probability of their children being diagnosed with heart disease by age 75.

They report a mean annual WTP to reduce that probability by one chance in one hundred of $5.62

50https://oasis.state.ga.us/oasis/webquery/qryMortality.aspx#
51https://www.epa.gov/environmental-economics/mortality-risk-valuation#whatvalue
52The 0.05 MET increase = 0.00000665 PP decrease in the mortality rate = 0.00000960555 averted deaths per

average district retrofit
= $71.1 per district.
53Diesel particulate filters are often given a lifespan of 100,000 miles by the manufacturer, which represents 8 years

with our sample’s average yearly mileage of 12,960. However, DPF lifespan varies greatly depending on regular
servicing and cleaning. Barone et al. (2010) show that DPFs are 95% as effective after four years, while Sappok et al.
(2009) show that DPFs are half as effective at 188,000 miles, or roughly 14 years for the buses in our sample. We
select 10 years to be consistent with Beatty and Shimshack (2011), although the entire range (4-14 years) of possible
lifespans lead to benefits far less than the costs of $90,000.
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for mothers and $4.08 for fathers; we use the mean of these two values ($4.85). Since this is

an annual WTP, we interpret the total WTP for the one-in-one-hundred chance reduction in CVD

to be the net present value of this annual WTP from age 11 until age 75, which equals $139.34.54

Kodama et al. (2009) report a 1-MET increase in VO2 max is associated with a 15% decrease in the

risk of CVD. About one third of Americans have some form of CVD,55 so a 15% decrease in the

risk is equivalent to a decrease in the chance of 1 out of 20. Therefore, the benefit from a district

retrofitting 10% of its buses is valued at $940,590 per district.56 This is more than nine times

greater than the cost of the retrofits. Because CVD is so prevalent (unlike childhood mortality),

the valuation of even a modest reduction in its risk is quite high. These benefits do not take into

account the value of lower pollution levels for non-students.

6.3 Benefits - Test Scores

Next, we calculate the benefit of the retrofits from a monetization of test score improvements.

Chetty et al. (2011) estimate the effect of an increase in kindergarten test scores on adult earnings;

they report that a one-percentile increase in test scores is associated with an increase of $94 in

wage earnings at age 27 after controlling for parental characteristics. Assume that the wage benefit

of $94 lasts throughout one’s working years of age 25-54, and discount using an annual rate of 3%.

Then, the one percentile increase in test scores is valued at $1,041.57 The results presented in Table

B.16 indicate that retrofitting 10% of a district’s fleet will increase the z-score of the ELA tests by

0.009 and of the math tests by 0.005. These improvements in z-scores are equivalent to percentile

increases of 0.36 and 0.19, respectively. Using the average of these two values (0.275), and mul-

tiplying by the valuation implied by the Chetty et al. (2011) estimates, the benefit of retrofitting

10% of a district’s fleet is valued at $2.57 million.58 This is over 25 times greater than the costs of

54The survey sample in Adamowicz et al. (2014) includes just parents with at least one child aged 6-16 in the home,
so we use 11 as the starting age.

55https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408160/
56The 0.05 MET increase = 0.0075% decrease in the probability of CVD = $104.51 benefit per child = $940,590

benefit for an average district with 9,000 children.
57= ∑

50
i=20 94∗ (1−0.03)i

58= 0.275 percentile points ∗$1,041 per percentile point per student ∗9,000 students per district.

66

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408160/


the retrofit.

Lastly, we compare the costs of achieving test score gains through bus retrofits to the costs of

achieving those same gains through interventions studied in Chetty et al. (2011). The Tennessee

STAR program reduced class sizes by seven students, which is expected to cost around $870 per

student,59 and it yielded a 4.81 average percentile improvement in test scores. Our estimates of

the effects of the retrofits are that they yielded a 1.9 - 3.6 average percentile increase in test scores.

The average school bus in our sample transports 66 students per day. Since the average cost per

bus retrofit in our sample is $8,110, this translates to a cost of roughly $122 per student, or $34.1 -

$64.7 per percentile point gain. The cost for an equivalent test score improvement is roughly three

to six times higher for the STAR class size reduction than it is for the bus engine retrofits.60

7 Conclusion

We estimate the effect of retrofitting diesel school bus engines on student health and academic

achievement in the state of Georgia. Retrofits have positive and significant effects on students’

aerobic capacity, a measure of respiratory health, but no effect on body mass index, which we take

as a placebo. Retrofits also have positive and significant effects on student English test scores,

and a smaller and precise effect on math scores. Robustness checks reinforce our findings. Back-

of-the-envelope calculations suggest that the benefits of the retrofits were much higher than their

costs, and that the academic gains were achieved at a lower cost than they would have been through

class size reductions.

This study could be extended several ways. First, use of individual-level data rather than

district-level data may improve the precision of the results. Within-district variation in the expo-

sure of students to the retrofits could be utilized if, for instance, individual student health records

could be matched with bus routes. This could also allow for determining if treatment effects differ

by demographic group. Second, data from other states could be analyzed to test whether the re-

59Reichardt (2000).
60The class size reduction cost $870 per student for 4.81 percentile gain = $181 per percentile point gain.
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sults from Georgia generalize elsewhere. Third, alternative health or academic outcomes could be

examined. Linking students to other health outcomes, for example via Medicare data, may provide

a valuable measure of health not picked up by FitnessGram scores. With a longer panel, long-term

outcomes, including college attendance and labor market outcomes, could be examined. Fourth,

we could test the effect of retrofits on outcomes other than health and academic performance such

as non-cognitive skills.

Our results have plausible policy relevance. While bus retrofit programs are widespread, very

little work has examined their effects. Policymakers interested in physical health and academic

performance of children can use bus retrofits as another cost-effective policy tool.
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Chapter 3

School Nutrition Expenditures, Local

Agricultural Revenues, and Farm-to-School

Policies

1 Introduction

In recognition of the economic importance of school-provided meals to local businesses, every

state has implemented some form of farm-to-school incentive program, with 42,000 schools par-

ticipating in some form of farm-to-school policy in 2014-15.1 These policies are diverse in scope

and characteristics. They exist at the state, school district, and school level; they also emphasize

different elements of the farm-to-school movement. In general, however, these programs consist

of three key policies: serving food sourced from local providers, edible school garden activities,

and food educational initiatives such as field trips to local farms and food tastings.

In Georgia, meal provision for the 1.8 million public K-12 students represents at least 3% of the

state’s meal consumption; local, state, and federal nutrition expenditures for these meals amounted

1Christensen et al. (2018), USDA (2017). Incentive programs at the state level often consist of recognition and
awards for commitment to the movement. For example, Georgia gives the “Golden Radish” award to school districts
meeting certain criteria for excellence in commitment to farm-to-school programs. See more here.
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to $13.8 billion from 2001 to 2017.2 Of all students in the state, 1.1 million received free or reduced

price lunch and breakfast, while 1.3 million students were served by schools with some form of

farm-to-school policy. Despite the fact that more students receive exposure to a farm-to-school

policy than free-and-reduced price lunch or breakfast, relatively fewer studies have investigated

how farm-to-school policies affect students or local economies. In particular, no study has assessed

the average long-term role that these diverse policies play on local agricultural revenues.

This study asks whether these district policies are associated with changes in local agricultural

revenues.3 I also show evidence on the baseline role that school district nutrition expenditures play

on local agricultural revenues. Finally, I provide suggestive evidence as to the types of agricultural

products that are most associated both with farm-to-school policies and school district nutrition ex-

penditures in general. To answer these questions, I rely on variation in the timing of farm-to-school

policy adoption and the share of students induced into free meal status by the Community Eligibil-

ity Provision, which increased school nutrition expenditures. I secure plausibly-causal identifica-

tion with two statistical models: a triple-difference model relying on school-level adoption of the

Community Eligibility Provision (CEP) of the Healthy Hunger Free Kids Act and a two-stage least

squares model that uses expenditure changes associated with the CEP to predict local agricultural

revenue changes. I find that as much as 7% of school district expenditures flow to producers within

the same county. Of this local share, perhaps as much as 70% of the expenditures are associated

with adoption of farm-to-school policies. Specifically, $680M out of $966M local expenditures

may be attributed to farm-to-school policy adoption. These figures represent 0.4% and 0.6%, re-

spectively, of all agricultural revenues in the state from 2001-2017. These local expenditures are

more strongly associated with revenue increases of fruits and vegetables than with animal prod-

ucts. This study contributes to a sparse literature on the role that school nutrition expenditures and

2One third of meals for 1.8M/10.5M people in the state for 180 out of 365 days in the year (assuming only one
meal per student per day, which notably excludes breakfast).

3For traction I adopt a definition of local corresponding to the same county and contiguous counties. The defini-
tion of “local” varies by program. According to the 2015 farm-to-school census, 27.2% of Georgia farm-to-school
programs use a definition of local corresponding to a region within a 100 mile radius, 36% use a definition of local
corresponding to the entire state, 18% use a definition of local corresponding to a region of nearby states, and 9% use
some other definition of local.
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sourcing policies play on local agricultural revenues.

2 Prior Work

A large literature has investigated farm-to-school policies. Joshi et al. (2008) provide an early syn-

opsis of this literature, categorizing farm-to-school studies by those relating to changes in students

and parents, those relating to changes in teacher, administration, and cafeteria practices, and those

relating to farmer behaviors. For concision, I will focus on the latter category. Many survey-based

studies have sought to conceptualize the economic context of farm-to-school policies, examining

scalability of farm-to-school policies, institutional factors surrounding the policies, and the barri-

ers to success of the programs; several studies rely on the 2015 USDA Farm to School Census or

the USDA Census of Agriculture’s 2015 Local Food Marketing Practices Survey.4 These surveys,

however, are cross sections of one year. Moreoever, relatively few studies focus on observable

economic impacts of farm-to-school policies rather than school survey-based expenditure infor-

mation. In part, the paucity of studies directly linking expenditures to local revenues relates to

identification hurdles. Selection bias, spatial autocorrelation, policy spillovers, and even reverse

causation each contribute to the confounding of correlational estimations.5

Christensen et al. (2018) provides an overview of eight studies assessing the economic impacts

of farm-to-school programs. Six of the studies were not peer-reviewed, employ varying methods

that complicate cross-state comparisons, rely on short (typically one-year) time windows, and

often do not use primary data. The authors highlight two case studies of special merit, one in

Georgia and the other in Minnesota. In these studies, information on school district expenditures

on local food was combined with surveys of farmers supplying to school districts. These measures

were inputted into a software known as IMPLAN (IMpact Analysis for PLANing) that allows for

4Botkins and Roe (2018), Deller et al. (2017), Holland et al. (2015), Hoffman et al. (2017), Lee et al.
(1980),Thompson et al. (2014)

5O’Hara and Benson (2019) show that local production conditions are associated with patterns of local-food pur-
chasing by districts, suggesting the presence of reverse causation whereby supply and local production determines the
extent to which school districts purchase locally (and not a farm-to-school policies).
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disentangling direct, indirect, and induced economic impacts both with and without opportunity

costs. The key finding of these studies is that each dollar spent on farm-to-school programs has an

implied multiplier effect of 1.5 on output with opportunity costs and 2 without opportunity costs.6

In a related work, Christensen et al. (2019a) show that farm-to-school purchases from direct local

vendors instead of intermediate suppliers is cheaper for school districts.

This study adds to the previous work in several ways. First, I provide estimates of agricultural

revenues related to nutrition spending across all farmers and all school districts in the state. The

case studies mentioned in Christensen et al. (2018) average information from only seven Georgia

farms and five farms near Minnesota. Moreover, whereas food expenditure data in the Georgia

case study was based on the stated farm-to-school nutrition expenditures of 61 school districts

in one survey year (2014-15), I incorporate all nutrition expenditures across all districts over 17

academic years.7 This broader reach allows estimation of baseline local food purchases by school

districts that do not engage in farm-to-school policies. Next, I observe detailed commodity revenue

information, allowing me to separately estimate effects over commodity groups and by specific

commodity. Only one study surveyed by this paper investigated how farm-to-school purchases may

be broken up by type of commodity, and that study relied on purchase information in a relatively

small geographic region during only the first year of a grant-funded policy roll-out.8 Finally, I

incorporate variation in nutrition expenditures associated with a policy unrelated to farm-to-school

adoption to secure identification plausibly purged of selection bias and reverse causation.

3 Data

I rely on six sources of information on school districts and one statewide survey of county-level

agricultural revenues. Although I observe farm-to-school policies at the district level, I aggregate

6The average multipliers in the Minnesota and Georgia studies. These measures closely resemble the spending
multipliers found in the six unpublished studies briefly discussed in the paper, which find spending multipliers of
1.1-2.4.

7The expenditure data is from the federally-mandating accounting ledgers of school districts, ensuring accurate
reporting.

8Watson et al. (2018)
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to the county level of analysis for estimations on local agricultural revenues.9 I describe each data

source below.

3.1 Farm-to-School Policies

Information on the adoption of farm-to-school policies comes from school district applications for

a statewide incentive program known as the Golden Radish Award.10 A wide range of information

on heterogeneous school district farm-to-school policies is included on these applications for the

award, which is administered by a non-profit organization known as Georgia Organics in coop-

eration with the Georgia Departments of Education, Health, and Agriculture. Of special interest

on the application is the first year a district implemented farm-to-school policies, which often pre-

dates the first application for a Golden Radish Award.11 The program has expanded dramatically;

30 school districts received some form of Golden Radish recognition in fiscal year (FY) 2014

while over 75 school districts did so in FY 2017. The Golden Radish incentive program appears

to affect school district culture, with 40 school districts institutionalizing farm-to-school language

in their school district policies.12 A map depicting all school districts ever adopting some form of

farm-to-school policy is presented in Figure A.18. Table B.29 shows certain key summary statis-

tics broken up by farm-to-school policy adoption status. I supplement this information with the

2015 USDA Farm-to-School Census, which reports a wide range of information on county-level

nutrition expenditures on farm-to-school foods.13

9In general, school districts and counties are geographically the same. Some counties, however, have school
districts specific to a city within the county. Figure A.15 depicts the overlap of school districts and counties.

10The program recognizes districts with five different levels of engagement to farm-to-school policies. These levels
are platinum, gold, silver, bronze, and honorary. An additional “outstanding” award is given to one district. The
application portal is here.

11The survey also includes information on the district-wide number of farm visits, days serving local food, local
meals, farm promotions, farm-based classroom lessons, schools with gardens, professional development staff, and
local food taste tests among others. Information from these other questions is often missing, available for a rela-
tively short sample window, and self-reported, with possibly heterogeneous definitions and reporting standards across
districts. Information on these variables is presented in Table B.36.

12Golden Radish Infographic.
13USDA (2017).
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3.2 Community Eligibility Provision Adoption

Part of the Healthy Hunger-Free Kids Act, the Community Eligibility Provision is a universal

free-meal option available to schools or entire school districts with at least 40% of their students

qualifying for free lunch through categorical eligibility. The fraction that is categorically eligible,

or the Identified Student Percentage (ISP), is the share of students receiving any other form of

federal financial assistance. Depending on the ISP, a school district receives federal reimbursement

of between 64% and 100% of their nutrition expenditures.14 The Georgia Department of Education

maintains lists of schools and school districts that are eligible for participation in the Community

Eligibility Provision, including information on schools or districts that actually participate in these

programs from FY 2016-2019.15 Measures of the number of eligible students, the number of

students in participating schools, and the number of marginal students induced into free lunch by

the program are depicted in Table B.29. These figures are broken up across districts that ever have

or do not ever have a farm-to-school policy.

3.3 Nutrition Expenditures

The Fiscal Research Center of the Andrew Young School of Policy Studies at Georgia State Uni-

versity maintains records of governmental expenditures in every school district across the state. I

obtained records on nutritional expenditures broken up by local, state, and federal funding source

from FY 2000 to FY 2017. Due to stipulations of tracking federal funding, these data are some of

the most accurate expenditure accounts kept by the state of Georgia.16 The data can be broken up

by school and by nutrition expenditure code, which tracks the different types of nutritional outlay.

However, over 95% of nutrition expenditures are on food, so I disregard the funding categories. I

also disregard school-level records because these are mostly missing. Table B.29 displays nutrition

expenditures from state, local, and federal sources broken up by farm-to-school policy adoption

14Gordanier et al. (2019). A school barely qualifying, with 40% ISP, receives reimbursement equal to 64% of
expenditures. All schools with ISP above 62.5% receive full reimbursement for their breakfasts and lunches.

15On this public web-page.
16According to conversations with Nicholas Warner at the Fiscal Research Center.
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status. Clearly, districts that adopt farm-to-school policies are statistically different from those that

do not, being larger on average.

3.4 Student Enrollment and Demographics

Supplemental information on the total number of students across each school and school district

was obtained through public records posted to the website of the Georgia Department of Educa-

tion.17 This information was linked to supplemental information sourced from the Common Core

of Data using the Stata add-on Education Data Portal package developed by the Urban Studies

Institute.18 This information is summarized in Table B.29.

3.5 Agricultural Revenues

The Farm Gate Values Survey, maintained by the Center for Agribusiness Economic Develop-

ment at the University of Georgia, maintains records of agricultural revenues across 160 Georgia

counties from 2000-2018. The information is collected by agents within each county and accu-

rately reflects total revenues in each county region.19 The information includes revenues across

89 different commodity categories, with many commodity categories further broken down by type

of grow technique. For this analysis I eliminate products likely unrelated to school nutrition.20

The third panel of Table B.29 displays information on agricultural revenues broken up by type of

product. Although school districts adopting farm-to-school policies differ from those that do not,

agricultural revenues across both types of county are similar and not statistically distinguishable

17The data reporting tab on this webpage sub-links for reports on enrollment and free-and-reduced price lunch
status.

18Education Data Portal (Version 0.3.0), Urban Institute, Center on Education Data and Policy, accessed May, 1st,
2019, https://educationdata.urban.org/documentation/US Department of Education Common Core of Data/

19In 2017, the FarmGate Values Survey reports slightly over $10 billion in revenues for agricultural products, while
for the same year the US Census of Agriculture reports that the market value of all agricultural products sold in the
state was $9.5 billion. This suggests that the Farm Gate Values survey accurately captures all agricultural products
sold, and that the survey may in fact be a more accurate accounting of farm revenues than the national agricultural
census.

20Products considered not relevant to school nutrition expenditures are excluded from the analysis in all regressions.
These products include timber, camping, Christmas trees, corn mazes, crop insurance, fishing, horses, goats, flight
quail, meat quail, tobacco, wildlife observation, government payments, and hunting leases for deer, duck, and turkey.
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from each other in any commodity category used by this study. The products included in each class

of commodity, such as fruit, vegetable, dairy, or meat, are listed in Table B.35.

4 Empirical Strategy

This paper exploits variation in the timing of farm-to-school policy adoption and student popula-

tion affected to assess the role school nutrition expenditures and sourcing policies play on local

agricultural revenues. I present the results of four statistical models: a naive panel fixed-effects

OLS regression resembling a difference-in-differences model, a spatial lagged panel fixed effects

model, and a triple difference model relying on plausibly exogenous adoption of the Community

Eligibility Provision across schools. Strengths, weaknesses, and identifying assumptions of each

model are discussed below.

4.1 Naive OLS Regression Model

I first present a straightforward empirical model relying on variation in the timing of farm-to-

school policy adoption across school districts. Let yipt represent agricultural revenues in county i

for agricultural product p in year t, where product p is often defined as all agricultural products.

yipt = βFT Sit +Zitγ
′+ηi + τt + εipt . (3.1)

In Equation 3.1, FT Sit is a variable representing adoption of farm-to-school policies by school

districts within a county. Because school districts do not perfectly correspond to counties, this

term is a continuous variable representing the proportion of a county’s public K-12 population

served by farm-to-school-adopting districts in a school year. Zit controls for time-varying total

student population within the county and free and reduced lunch shares. ηi is a county fixed effect

and τt is a year fixed effect. These fixed effects control for baseline differences in agricultural

revenues across counties and secular changes in agricultural revenues across the entire state over

time.
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Identifying Assumptions: To predict the causal effect of farm-to-school policies on local agri-

cultural revenues, Equation 3.1 requires that counties with more farm-to-school adopting districts

would have had similar counter-factual post-adoption trends in agricultural revenues as counties

with no (or fewer) adopting districts. An important potential violation of this assumption would

be if county populations have changing preferences over time that are correlated both with agri-

cultural revenues and the timing of farm-to-school policy adoption. For example, counties with

more adopters of the policy may experience simultaneous increases in purchases from farmers

markets, or retailers may change their sourcing patterns at the same time as the policy adoption.

Equation 3.1 also requires that the expectation of the error term, εipt , is zero conditional on the

model covariates. This is unlikely due to spatial correlation and policy spillovers. To start with

spatial correlation, agricultural revenues are inherently place-based; agglomeration effects, land

suitability and availability, and distance to markets all affect the location and magnitude of agri-

cultural revenues. The county unit of observation does not perfectly overlap with these locational

factors, so we may expect regionally-correlated agricultural revenues to violate the assumptions of

the model. Moreover, time-varying factors in productivity may cause regional perturbations in the

error term, also violating the model’s assumptions. Next, policy spillovers occur when school dis-

tricts sourcing from “local” vendors source from nearby counties. This tendency would attenuate

the estimated policy change related to farm-to-school adoption because counties without the policy

change may experience simultaneous increases in agricultural revenues. Finally, there is evidence

that local production increases may in fact cause these policy shifts, as school districts re-allocate

expenditures where local supply permits.21 This reverse causation is another important potential

violation of the identification assumption.

4.2 Spatial Lag Model

To address potential issues with spatial correlation and policy spillovers raised above, I present

a spatial lag model that allows for regionally-correlated agricultural revenues and regionally-

21O’Hara and Benson (2019).
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correlated error terms. Let yipt represent agricultural revenues in county i for agricultural product

p in year t, where product p is often defined as all agricultural products.

yipt = λ

n

∑
j=1

wi j · y jpt +βFT Sit +Zitγ
′+ηi + τt + εipt . (3.2)

In Equation 3.2, ∑
n
j=1 wi j ∗ y jpt is a weighting term that controls for variation in agricultural rev-

enues in all counties in the state, y jpt , where the weighting term wi j is the inverse distance between

county i and county j. The term λ measures the correlation in agricultural revenues across county

i and counties j. As before, FT Sit is a variable representing adoption of farm-to-school policies by

school districts within a county, Zit controls for time-varying student population and free and re-

duced price lunch shares, ηi is a county fixed effect, and τt is a year fixed effect. In this model, εipt

is a spatially autoregressive error term that allows agricultural revenue perturbations to be affected

by error term disturbances in nearby counties, where I define “nearby” counties j ∈ {1, ...,n} as all

contiguous counties.22

Next, I present a spatial lag model that allows direct testing of effects of nutrition expenditures

and farm-to-school policy adoption on the agricultural revenues of contiguous counties. Let Y

represent yipt and W represent the lagging weights ∑
n
j=1 wi j. Consider the following (equivalent)

spatial regression specifications:

yipt = λ

n

∑
j=1

wi j · y jpt +β1FT Sit +β2

n

∑
j=1

wi j ·FT S jt

+Zitγ
′
1 +

n

∑
j=1

wi j ·Z jtγ
′
2 +ηi + τt + εipt (3.3)

22Note that the error term disturbances are allowed to be correlated only with contiguous counties, while the de-
pendent variable is lagged across all counties in inverse proportion to distance. I adopt different contiguity matrices
because the year controls handle error term disturbances that are constant across all counties but do not control for
sub-regional fluctuations (for example, in the case of a drought). The contiguous-county error matrix allows for such
correlations. Spatially correlated agricultural revenues, meanwhile, are influenced by markets in proportion to their
distance to those markets and not simply by the average revenues in contiguous counties, so it seems more reasonable
to adopt an inverse-distance contiguity matrix.
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Y = λWY+βWFTS+ γWZ+ ε (3.4)

In Equation 3.3, the weighting term ∑
n
j=1 wi j ∗ y jpt is the same as before. Likewise, FT Sit is a

variable representing adoption of farm-to-school policies by school districts within a county, Zit

controls for time-varying county characteristics including total student population and free and

reduced price lunch shares, ηi is a county fixed effect, τt is a year fixed effect, and εipt is a spatially

autoregressive error term that allows agricultural revenue perturbations to be affected by error term

disturbances in nearby counties. The two new terms, ∑
n
j=1 ·FT S jt and ∑

n
j=1 ·Z jt , allow testing for

policy spillover effects in nearby counties. β2 measures the extent to which farm-to-school policy

adoption affects agricultural revenues in nearby counties, while γ2 is the relationship between each

time-varying covariate in the vector Z jt and agricultural revenues. Of special interest, γ allows

testing the extent to which local nutrition expenditures impact agricultural revenues of contiguous

counties.

Identifying Assumptions: To predict the causal effect of farm-to-schools policies on local

agricultural revenues, Equation 3.3 requires that counties with more nearby farm-to-school adopt-

ing districts would have had similar counter-factual post-adoption trends in agricultural revenues as

counties with no (or fewer) nearby adopting districts. As before, one violation of this assumption

is the selection bias associated with adopting districts having unrelated increases in agricultural

revenues correlated with the timing of farm-to-school policy adoption. Moreover, the possibility

of reverse causation remains. To assess the importance of selection bias and reverse causation, I

next turn to an empirical model relying on exogenous changes in another school nutrition policy,

the community eligibility provision of the Healthy Hunger Free Kids Act.

4.3 Community Eligibility Provision

To secure plausibly causal identification, I employ a related empirical model that exploits simulta-

neous variation in two policies. The first is school-district adoption of farm-to-school policies. The

second is the Community Eligibility Provision (CEP) of the Healthy Hungry Free Kids Act (HH-
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FKA), which allows schools with over 40% of their student population qualifying for some form of

federal aid to serve free lunch to all their students, saving administrative burden. Although many

schools are eligible CEP schools, only some actually participate. Participating schools experience

an increase in the number of meals that they serve to students as marginal students are induced

into eating cafeteria food. These increased nutritional outlays are primarily financed by the federal

government, making it unlikely that coincidental local tax changes may indirectly affect agricul-

tural revenues. Plausibly causal identification comes from the fact that, when faced with the need

and ability to purchase more school food, farm-to-school districts may be more likely to source

it locally. Figure A.19 shows the increase in expenditures among districts with CEP-participating

schools. Table B.37 empirically demonstrates that CEP adoption reliably increases nutrition ex-

penditures across every definition of CEP participation.

Let yipt represent agricultural revenues in county i for agricultural product p in year t, where

product p is often defined as all agricultural products.

yipt = βFT Sit ·CEPit +Zitγ
′+ηi + τt + εipt (3.5)

Terms FT Sit , Zit , ηi, τt , and εipt are defined as before. The term CEPit represents the share of

students marginally induced into free meals according to school-level adoption of the Community

Eligibility Provision.23 Rather than identifying CEPit off potentially endogenous participation in

the program, the term represents the county share of students induced into “free meal” status by

adoption of the program. For example, a county in which every student qualifies for free-and-

reduced price lunch before the HHFKA, and in which all schools adopt the CEP, would receive

a value of 0 because no student is marginally induced into free-meal status. Likewise, a school

district in which no student elects to receive free-and-reduced price meals before the HHFKA,

where all schools within the county adopt the CEP, would have a CEPit value of one. In practice,

neither situation occurs.
23For each county, CEPit ≡∑

n
s=1(1− FRLst) · Participationst · SchoolEnrollmentst

CountyEnrollmentit
over all schools in a district s ∈

{1, ...,S} where Participationst is a binary variable representing school s participation in the CEP program in year
t.
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One might also consider a spatially-lagged version of the same empirical strategy. Let yipt

represent agricultural revenues in county i for agricultural product p in year t, where product p is

often defined as all agricultural products.

yit = β1FT Sit +β2CEPit +β3FT Sit ·CEPit +λ1xit +λ2

n

∑
j=1

wi j · y jt

+ψ1

n

∑
j=1

wi j ·FT S jt +ψ2

n

∑
j=1

wi j ·CEPjt +ψ3

n

∑
j=1

wi j ·FT S jt ·CEPjt

+Zitγ
′
1 +ηi + τt + εit

Terms FT Sit , CEPit , Zit , ηi, τt , and εipt are defined as before. This regression model synthesizes

the identification strategies presented in Equation 3.3 and Equation 3.5, allowing potentially unbi-

ased estimation of the effect of nutrition expenditures on local agricultural revenues and the effect

of farm-to-school policy adoption on local agricultural revenues, where local includes both the

same county and contiguous counties. A pitfall of this well-identified model is that CEP variation

is only present for a short three-year period out of the 17 year sample.

Identifying Assumptions: To estimate the causal relationship between nutrition expenditures

and farm-to-school policy adoption and local agricultural revenues, Equation 5 and Equation 6

require that there are no county-specific factors correlated both with the share of students induced

into “free” meal status and farm-to-school policy adoption across districts. Such correlated factors

must also impact local agricultural revenues. In Equation 6, the correlated factors must be county-

specific, as local revenues are allowed to fluctuate with regional agricultural revenues and regional

disturbances in agricultural revenues. It seems unlikely that some factor may be correlated with

both of these variables simultaneously and not be controlled by county fixed effects, time-varying

county characteristics, and regional lags and correlated errors. The primary shortcoming of this

identification model, rather, is that a relatively small share of students are induced into free meal

status over a relatively short time frame. This weakness reduces the likelihood of observing statis-

tically significant relationships.
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4.4 Two Stage Least Squares – Share of CEP Students

The empirical strategies laid out above may still be susceptible to bias from reverse causation.

To eliminate this bias, I employ a two stage least squares regression relying on variation in the

share of students induced into free and reduced price lunch status. Farm-to-school adoption may

be endogeneous because districts select into the policies, so I do not include any interaction with

farm-to-school policy adoption. Let yipt represent agricultural revenues in county i for agricultural

product p in year t, where product p is often defined as all agricultural products. Let xit represent

total school district nutritional expenditures in county i and year t.

xit = βCEPit +Trend′iδ +ηi + τt +uit

yit = γxit +Trend′iδ +ηi + τt + εit

In the above two stage least squares model, terms CEPit and ηi are defined as before. τt is a year

dummy. Trendi is a district-specific trend control. Rather than identifying CEPit off potentially en-

dogenous student population or district decisions to participate in the program, the term represents

the county share of students induced into “free meal” status by adoption of the program.24 Intu-

itively, this empirical model uses variation in the share of students induced into free meal status to

predict the change in nutrition expenditures, and this change in nutrition expenditures is then used

to predict changes in within-county agricultural revenues. The two-stage least squares provides an

estimate of the baseline relationship between agricultural revenues and nutrition expenditures with

which to compare previous estimates.

Identifying Assumptions: A causal interpretation requires that the share of students induced

into free lunch status strongly predicts nutrition expenditures. As before, Figure A.19 shows the

increase in expenditures among districts with CEP-participating schools. Table B.37 demonstrates

that CEP adoption reliably increases nutrition expenditures across every definition of CEP partici-

pation. Moreover, the share of students induced into free lunch status must affect local agricultural

24The formula for this variable is: CEPit =
∑s CEPst (1−FRLst )

Enrollmentit
.
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revenues only through the changes in nutrition expenditures, otherwise known as the exclusion

restriction. Although the exclusion restriction cannot be directly tested, it seems unlikely that

small variations in the free-and-reduced lunch population across CEP-participating schools would

directly affect local agricultural revenues except through school nutrition expenditures.

5 Results

Table B.30 presents results across all empirical specifications from section 4, including five regres-

sion models testing for local agricultural revenue increases from baseline school district nutrition

expenditures and five regression models testing for local agricultural revenue increases related to

adoption of farm-to-school policies. Across all specifications, I find weak statistical evidence that

school nutrition expenditures are associated with local agricultural revenues. For each dollar spent

on school nutrition, agricultural revenues in the same county are $0.13 to $0.19 higher. This re-

lationship is not necessarily causal; since the Farm to School Census found that 17% of district

expenditures in farm to school districts goes to local farmers, these point estimates are not un-

reasonable but are likely biased by selection and possible reverse causation. Additionally, these

findings should be relatively higher because the spending multiplier on local food is 1.5 according

to Christensen et al. (2018).

Columns (1) and (2) of Table B.30 present the results of a naive panel fixed effects model,

where in column (2) the variable representing farm-to-school policies is an interaction between

farm-to-school adoption and post-adoption year weighted to the county by student population. The

coefficient on farm-to-school policy adoption, “FtS Policy,” is relatively large but not statistically

significant. The point estimate 1913, which is expressed in thousands, suggests that each post-

policy adoption year is associated with increases in local agricultural revenues of $1.9M. Scaling

this average across all policy years implies agricultural revenue increases of $550M related to farm-

to-school policies.25 Although this is small in comparison to the $167B in agricultural revenues

25The average effect over 68 counties with an average of 4.2 post-policy years, or 288 total post-policy district years,
can be converted to the total implied effect by multiplying the point estimate times 288 district years and then 1000
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from 2001-2017, it represents about 3.9% of all nutrition expenditures over the sample, $13.8B.

Columns (3) through (6) of Table B.30 display results of empirical specifications discussed in

section 4.2. In these models, variations in county agricultural revenues are lagged by revenues in

all other counties in the state in proportion to the inverse distance between county i and j. More-

over, error term disturbances in contiguous counties are allowed to be correlated. Columns (3)

and (5) show the baseline relationship between nutrition expenditures in county i and agricultural

revenues in both county i and in counties j that are contiguous to county i. The point estimates

suggest that roughly $0.15-$0.18 of every dollar spent on school nutrition is recouped by farmers

in the same county, while a surprisingly negative $0.94 is lost by farmers in bordering counties.

It is unclear why local expenditures are associated with negative revenues in bordering counties,

although this may relate to unobservable agricultural differences in urban and suburban regions

with greater nutrition expenditures. Columns (4) and (6) jointly estimate the effect of nutrition

expenditures and farm-to-school policies on agricultural revenues in local and nearby counties.

Although these models do not control for selection into the farm-to-school policies, they accu-

rately control for regionally correlated revenue levels and error-term disturbances. Controlling for

these error disturbances dramatically improves the precision of the estimated relationship between

farm-to-school policy adoption and local agricultural revenues; these point estimates are similar to

those of column (2), although they’re not quite statistically significant. The farm-to-school policy

variable is consistent across both models, suggesting large local economic effects of slightly over

$550M. The coefficient on “FtS Policy” in the sixth row suggests that perhaps $6.5M in nutrition

spending was lost by neighboring counties, although this term is not significant.

The final four columns of Table B.30 display results of the empirical specifications discussed in

section 4.3. These estimates rely on variation in nutrition spending resulting from a federal policy

change that is unrelated to farm-to-school adoption, plausibly purging the selection bias associated

with school districts adopting farm-to-school programs or reverse causation. The variable CEP is

the share of a county’s students that are induced into free lunch status by the new policy.26 Clearly,

because the point estimates are expressed in thousands.
26As shown in Table B.37, school-level adoption of the CEP policy in general is strongly statistically associated
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increasing shares of students induced into free meal status is strongly and statistically significantly

associated with increases in local agricultural revenues. The coefficient of 43,000 in column (8),

for example, means that going from no students induced into free lunch to all students induced into

free lunch would increase local revenues by $43M. Of course, it is impossible for the CEP variable

to increase by more than 0.4, and on average this variable is in fact 0.005. Therefore, on average,

the share of marginally induced free lunch students was associated with a $215,000 increase in

local agricultural revenues. Scaling by all marginally induced free lunch CEP students, this is

a total change of 3.3M. In contrast, the smaller point estimate of 3,365 in column (8) suggests

that each year of farm-to-school adoption is associated with $3.36M increase in local agricultural

revenues. Over all farm to school years, this represents $967M in increased local revenues. This

value should be corrected by the point estimate of CEP∗FtS, -76,000. Since the average value of

CEP∗FtS is 0.001 and the total of all such interactions is 3.8, the figure of $967M should be scaled

back to $678M.27 That is, the linear combination of the terms in row (2) and row (4) in columns (8)

and (10) suggests that farm to school programs are associated with agricultural revenue increases

of roughly $680M.

Surprisingly, results in the second panel of Table B.30 provide little clarity on the effect of

agricultural spending on contiguous counties. The only statistically significant coefficients are the

effects of increasing CEP shares, which are positive. These would suggest that increased nutri-

tion expenditures from CEP adoption are associated with large increases to agricultural revenues

in contiguous counties. The coefficient of 85,222 in column (9), for example, suggests that going

from zero students induced into free lunch to all students induced into free lunch would increase

revenues in contiguous counties by $85M. Since the typical district’s marginal share of CEP stu-

dents is 0.005, this implies that a typical district’s increase in nutrition expenditures associated with

CEP adoption may have led to an average increase in agricultural revenues in contiguous counties

of $425,000. The total increase in revenues in contiguous counties would therefore be $323M. The

negative coefficient on the farm-to-schools variable in the second panel, meanwhile, may suggest

with increases in nutrition expenditures.
27678.2 = 967−3.8∗76M
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that districts are substituting to more-local suppliers from more-distant providers, although this

coefficient is not statistically distinguishable from zero.

I present a subset of regression models across animal products, fruits and vegetables, and agro-

tourism in Table B.31, Table B.32, and Table B.33. Animal products, which includes revenues for

beef, catfish, chicken, dairy, eggs, fishing, and pork, appear related to baseline nutrition expen-

ditures, although the exact magnitude of the coefficient fluctuates between an insignificant point

estimate of $0.08 per dollar spent to the $0.229 observed in column (5). Farm-to-school policies

appear strongly associated with increases in local revenues for animal products, although it is un-

clear how much of the significant effects in columns (3) through (6) may be attributed to selection

and reverse causation. It seems plausible that a school district with nearby milk or egg produc-

tion would be more inclined to enact farm-to-school policies. The fact that coefficients on the

CEP share, in columns (5) and (6), are not significant may provide support for the notion that the

farm-to-school variable is more endogenous and prone to reverse causation for animal products.

The results of Table B.32 provide weaker evidence that nutrition expenditures increase local

agricultural revenues on fruits and vegetables, with perhaps $0.01 to $0.14 cents of each dollar

spent by school districts recouped by local farmers. The coefficients on the farm-to-school policy

variables, however, are universally negative, often statistically significantly so. Unlike the results

for animal products, however, increasing CEP shares are associated with increases to local agri-

cultural revenues. It is unclear how to interpret these results. Table B.33 shows how revenues for

agrotourism are associated with farm-to-school policy adoption. Since school field trips to farms

are a major element of farm-to-school policies, with a typical district engaging in 13 separate such

field trips in any given year, it seems likely that agrotourism revenues might be associated with

policy adoption. However, each point estimate on the farm-to-schools variable in the table is neg-

ative and statistically insignificant. Although the interaction CEP∗FtS is significant and positive,

it is unclear why this interaction should be positive because CEP shares are not related to field trip

visits a priori.

Finally, to provide an estimate of the baseline relationship between nutrition expenditures and
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agricultural revenues, Table B.34 depicts the results of a two stage least squares estimation pro-

cedure. Clearly, increasing shares of students receiving free lunch through the CEP is associated

with dramatic increases to school nutrition expenditures. The first-stage coefficient of 2.6M sug-

gest that a typical district’s CEP share increased local nutrition expenditures by $13,000 in each

year. Moreover, I find evidence that these increasing expenditures were in part recouped by local

farmers. The coefficient of 26.37 in column (1) suggests that a typical county’s change to nutri-

tion expenditures associated with the CEP increased local agricultural revenues by $350,000. This

value is roughly 7% of the average district expenditures in each county. If we extrapolate this value

over the entire sample window, it suggests that $966M of school district expenditures flowed to

local within-county producers. This is 11.3% of all school district expenditures; interestingly, this

figure is less than the local share found in the 2015 Farm to School Census, which was 17%.28

Since my estimates relate to a local variable of only within the same county, this makes sense. The

estimated relationship is strongest for fruits and vegetables, not animal products; this may suggest

that within-county expenditure shifts are more likely drivers of fruit and vegetable revenues than

animal product revenues, as economical large-scale feeding operations are less likely to be present

locally.

5.1 Discussion of Implied Revenue Changes

The Farm to School Census reports that $40M was spent on local food by Georgia school districts

in 2015.29 Extrapolating this value over the 17 year sample would be $680M, although it is unlikely

that this level of local investment was constant over the entire sample period. The point estimate on

“FtS Policy” in the naive regression model, reported in column (2) of Table B.30, would suggest

that this figure is the reduced $550M. Since this estimated relationship does not account for spatial

correlation, spatial lags, selection bias, or reverse causation, it seems reasonable that the estimate

is noisy, although it is surprising that is so close to the surveyed quantity. In columns (4) and (6) of

28USDA (2017).
29USDA (2017).
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Table B.30, the point estimate on “FtS Policy” implies an increase of $555M and $627M in local

revenues associated with farm-to-school policies. This figure is, again, smaller than what might be

expected from the Farm to School Census, perhaps reflecting selection bias, reverse causation, or

merely the local share of spending being lower in earlier years of the sample. When incorporating

variation from the Community Eligibility Provision, I find implied local revenue shifts, that are

very similar to the extrapolated figure from the Farm to School Census. These figures range from

$627M to $683M, which are almost identical to $680M. It should be the case, however, that these

figures are higher than the extrapolated value in the farm-to-school census, as the census only

received replies from 84% of Georgia school districts.30 Despite this fact, it would make sense if

these values are roughly similar if the share of local expenditures has increased over time and the

2015 surveyed value is not representative of all years from 2001-2017.

The annual revenues for all agricultural products has hovered around $10B throughout the

2010s, up $1.8B from the (inflation-adjusted) annual revenues in 2001. The total agricultural rev-

enues generated from 2001-2017 is $167B. Meanwhile, the annual school nutrition expenditures

over the same period have increased from $650M to roughly $900M, totaling $13.8B over the

entire sample. If the implied revenue shifts associated with farm-to-school policy adoption are

credible, then perhaps as much as 4.9% of nutritional expenditures in the state may be attributed

to farm-to-school policy adoption. This figure is roughly 0.4% of all agricultural revenues in the

state over the same period. Meanwhile, the estimates of Table B.34 suggest that perhaps 7% of

nutritional expenditures remain in the same county, or as much as 0.6% all agricultural revenues

in the state. Although these estimations may be a small share of all agricultural revenues, they are

a relatively large share of what is likely spent locally by school districts (5-7%). If we assume that

the two stage least squares results in Table B.34 are accurate, then farm-to-school policy adoption

is actually responsible for 70% of all nutrition expenditures that remain in the same county. Inter-

estingly, both the estimates reported in Table B.30 and Table B.34 are lower than the share of local

expenditures reported in the Farm to School Census of 2015, which found that 17% of nutrition

30https://farmtoschoolcensus.fns.usda.gov/find-your-school-district/georgia
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expenditures were spent locally in Georgia in 2015.31 This divergence, however, makes perfect

sense. The Farm to School Census sample includes only 84% of school districts, likely excluding

many that would do not engage in these policies. It also incorporates local expenditures that flow

to nearby counties, while my estimation procedure focuses on within-county changes.

6 Conclusion

This paper provides evidence that school nutrition expenditures play an important role in local

agricultural markets, whether these nutrition expenditures are associated with farm-to-school poli-

cies or not. I estimate that 5 to 7% of school district nutrition expenditures flow to within-county

producers. These expenditures account for roughly 0.6% of all agricultural revenues in the state

from 2001-2017, or $966M out of $167B. Of this total, perhaps as much as $680M, or 70% of the

total amount of local expenditures, may be specifically attributable to farm-to-school policy adop-

tion. My estimates for the share of local expenditures correspond almost precisely to the shares

reported in the Farm to School Census after extrapolating over a longer sample. According to my

estimates, roughly three quarters of the local share of school nutrition expenditures is spent on

fruits and vegetables, while a smaller share of the remainder is spent on animal products. The find-

ings suggest that school nutrition expenditures are economically meaningful drivers of agricultural

markets, and local sourcing policies may be a valuable tool for assisting local farmers.

31USDA (2017).

89



Appendix A

Figures

Figure A.1: Coal Ash Release Sites and Downstream River and Stream Segments

Notes: Red dots represent steam-generating coal power plants releasing a non-negative quantity of coal ash to
surface waters from 2005-2017. Blue lines represent river and stream segments that are downstream from a coal
ash release site.
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Figure A.2: Surface Water Quality Monitoring Sites and Watershed (HUC-8) Regions

(a) Monitor Locations

(b) Watershed Regions

Notes: In Panel (a), green dots represent surface water quality monitor locations in the Water Quality Portal,
while in Panel (b) each polygon represents a watershed of size Hydrologic Unit Code – 8.
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Figure A.3: Municipal Water System Intake Locations Affected by Coal Ash

Notes: Darker blue dots represent municipal water system intake locations that are not affected by coal ash,
whereas red dots are intake locations of likely affected municipal water systems according to the Southern
Environmental Law Center. Blue lines represent river and stream segments that are downstream from a coal ash
release site. Surface water intake locations provided courtesy of the Southern Environmental Law Center and
also compiled by author.
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Figure A.4: Toxic Releases by Coal Ash Plants (2000-2017)

Notes: Bar charts on the left display variation in the quantity of coal ash released or impounded across all coal
plants in the sample. Line charts plot the change in the quantity of coal ash effluent released into surface waters
or impounded over time. Release values of zero are included.
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Figure A.5: Toxic Releases by Coal Ash Plants into Surface Waters by Compound (2000-2017)

Notes: Light blue bars represent confidence intervals of the level released of each chemical across all plants,
while each dot represents an individual plant observation. Release values of zero are included. Nitrates and
polycyclic aromatic hydrocarbons excluded because relatively few plants release these compounds. Outliers of
greater than 20 tons on average per year or greater than cumulative 300 tons are excluded for ease of visualiza-
tion.
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Figure A.6: Water Quality Criteria in Coal Ash Affected Surface Waters (2005-2018)

Notes: Average levels plotted across all surface water monitor tests, excluding tests of sediment and hyporheic
zone. Outlier observations above the 99th percentile are excluded. The “Downstream” category includes surface
water quality monitors within 25 miles downstream of a coal ash site. “Not Downstream” includes all other
surface water monitors in the sample states from 2005-2017.
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Figure A.7: The Concentration of Water Pollutants in Coal Ash Affected Surface Waters (2005-
2018)

Notes: Average levels plotted across all surface water monitor tests, excluding tests of sediment and hyporheic
zone. Outlier observations above the 99th percentile are excluded. The “Downstream” category includes surface
water quality monitors within 25 miles downstream of a coal ash site. “Not Downstream” includes all other
surface water monitors in the sample states from 2005-2017.
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Figure A.8: Safe Drinking Water Act Violations by Type of Infraction (2000-2018)

Notes: Average annual violation rate plotted across all water systems excluding transient non-community water
systems. The “Downstream” category includes water systems sourcing from coal ash affected waters according
to the Southern Environmental Law Center. “Not Downstream” water systems are all other active water systems.
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Figure A.9: Safe Drinking Water Act Violations by Rule (2000-2018)

Notes: Average annual violation rate plotted across all water systems excluding transient non-community water
systems. The “Downstream” category includes water systems sourcing from coal ash affected waters according
to the Southern Environmental Law Center. “Not Downstream” water systems are all other active water systems.
Filter backwash, radiation, groundwater, and synthetic organic chemical rules not included. Note that Y axes are
not constant across rule names.
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Figure A.10: Safe Drinking Water Act Violations in Municipal Water Systems Downstream from
Coal Ash Sites (1980-2018)

Notes: Each row represents the count of Safe Drinking Water Act violations for any given rule, where the rules
are listed down the y-axis. Only municipal water systems designated to be influenced by coal ash according to
the Southern Environmental Law Center are included. The top panel provides a breakdown by type of infraction,
while the bottom panel shows the state-level burden of these violations.
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Figure A.11: Safe Drinking Water Act Violations in Municipal Water Systems Downstream from
Coal Ash Sites Over Time (1980-2018)

Notes: Each dot represents the count of violations in the given category in a year. Only water systems sourcing
from coal ash affected waters according to the Southern Environmental Law Center are included. The top
panel provides a breakdown by type of infraction, while the bottom panel shows the state-level burden of these
violations.
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Figure A.12: Municipal Water Quality Criteria (2005-2018)

Notes: Average value calculated across all water system sample tests in Alabama, Georgia, North Carolina,
South Carolina, and Virginia (i.e., exlcluding Tennessee). The “Downstream” category includes water systems
sourcing from coal ash affected waters according to the Southern Environmental Law Center. “Not Down-
stream” water systems are all other active water systems. Municipal water systems sourcing from surface and
groundwater are included..
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Figure A.13: Fetal Health Indicators in North Carolina (2005-2017)

Notes: The “Downstream” category includes mothers ever known to live in service zones of municipal water
systems using coal ash affected source waters according to the Southern Environmental Law Center. “Not
Downstream” represents fetal health outcomes of all other mothers. Low birthweight is the rate of all newborns
born weighing less than 2500 grams. Preterm gestation represents newborns born with estimated gestation length
of less than 37 weeks. Congenital anomalies include all fetal abnormalities except chromosomal disorders. The
sharp discontinuity in congenital anomalies in 2010 is due to a change in recording practices in that year. In the
pre-2010 forms, practitioners recorded a wider variety of conditions on the regular birth form. After the change
to the new form, a smaller subset of conditions are reported.
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Figure A.14: Home Sale Prices in Counties with Coal Ash Ponds (1996-2019)

Notes: Homes with sale prices over $1m are excluded from both panels. Certain counties do not have sale
information before 2009, leading to the sharp change in that year. Counties with no homes within five miles of
a coal ash pond are not included.
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Figure A.15: Retrofitting School Districts

Notes: Darker blue school districts have at least one retrofit cycle during the relevant sample window (2007-
2017). Blank districts are missing data.
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Figure A.16: Differential Pre-Trends by Retrofitting Districts 2007-2013

Notes: Figure plots the trend in ELA and Math test scores across retrofitting and non-retrofitting districts before
2013, the mode year of retrofit implementation, such that -1 represents school year 2011-12. Because the timing
of retrofits varied across districts, we are unable to conduct a simple event study with non-retrofitting districts
as a comparison. We therefore normalize treatment to 2013 and plot trends across districts that ever retrofit and
those that do not. Some of the pre-2013 years feature retrofits, and therefore may be expected to have differential
trends over this period. Nevertheless, the trend lines are roughly parallel over this sample window.
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Figure A.17: Data Issues in Aerobic Capacity

Notes: Each pane scatters the school-level average VO2 max against the percent of students
attaining healthy fitness zone (HFZ) status. The left pane presents the scatterplot for school
years 2011-12 and 2012-13, while the right pane displays a scatterplot for the remaining years
in the sample. A school’s average VO2 max should be highly correlated with the percent of
students attaining HFZ status because each child’s VO2 max is used to determine whether they
meet HFZ standards. In the right panel, we observe such a tight relationship between these
related measures. In the left panel, however, the relationship is less clear. After the 2012-13
school year, there are no female school-level VO2 max observations below 26 or male school-
level VO2 max observations below 30. These values are nevertheless very common in the
first two years of the sample, and many of these low values correspond to relatively high HFZ
attainment. Such values suggest a data-reporting issue in the roll-out years of the sample.
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Figure A.18: Farm-to-School Policy Adoption

(a) Farm-to-school Districts (b) Farm-to-school Counties

Note: Beige represents school districts that never adopt a farm-to-school policy or counties with no school
district adopting a farm-to-school policy. Green regions represent school districts or counties with farm-to-
school policies.
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Figure A.19: Nutrition Expenditures in Georgia 2012-2017

Note: District nutrition expenditures are scaled such that 2012 expenditures are equal to 100. Lines represent
averages over all school districts with CEP-participating schools or without CEP-participating schools. All
values expressed in 2017 dollars. The vertical red line represents the last year in which no school participated in
the CEP program.
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Figure A.20: Total Agricultural Revenues by Product (in millions) 2001-2017
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Note: Figure plots all-time revenues by product in the Farm Gate Values Survey in millions of dollars.
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Appendix B

Tables

Table B.1: The Quantity of Coal Ash Released by Facility and Type of Compound (2005-2017)
Mean SD

Facility Containment Information % Missing
Total Ponds 6.73 (3.52) 0%
Average Acres per Pond 85.52 (112.29) 69%
Height (ft) 50.58 (42.67) 71%
Lining 0.31 (0.46) 37%
Leachate 0.22 (0.41) 36%

Average Total Coal Ash Production by Plant (tons)
Heavy Metals 2,717.59 (3066.78)
Carcinogenic Compounds 248.04 (297.9)
Quantity Impounded 6,002.58 (7,646.9)
Surface Water Releases 173.5 (393.6)

All–Time Surface–Water Releases by Compound (tons) RSEI Toxixity
Ammonia 11.9 (25.8) NA
Antimony 1.8 (8.4) 1300
Arsenic 166.4 (249.9) 3000
Barium 3524.9 (5486.1) 2.5
Beryllium 14.8 (30.6) 250
Chromium 290.2 (317.9) 170
Cobalt 99.6 (143.9) NA
Copper 359.3 (388.0) 750
Lead 155.8 (161.1) 8800
Manganese 509.6 (534.7) 3.6
Mercury 0.002 (0.003) 5000
Nickel 253.0 (280.1) 10
Nitrate 45.7 (264.9) 0.31
Selenium 16.5 (35.5) 100
Thallium 19.3 (66.8) 7100
Vanadium 632.7 (652.6) 71
Zinc 404.2 (449.8) 1.7

Plant-Year Observations with Positive Releases 526
Steam–Generating Coal Electricity Plants 63

Mean coefficients reported; standard deviations in parentheses. Observations in the second panel are at the plant level, reflecting totals across
all plants in all years from 2005-2017. The third panel displays average sum of all surface water releases by compound across pollution
release sites.
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Table B.2: Analyte Testing, Violation Rates, and Water System Characteristics 2005-2017
Within 25 Miles Not Within 25 Miles

Downstream Downstream

Surface Water Monitors (2005-2017)
Arsenic (mg/l) 0.3958 (1.8176) 0.7785 (6.877)
Chromium (mg/l) 1.9103 (8.9721) 2.7691 (15.1431)
Conductivity (us/cm) 8994.3 (14089.9) 5030.7 (11422.4)
Dissolved Oxygen (mg/l) 5.073 (2.688) 7.393 (24.506)
Lead (mg/l) 1.0357 (4.8987) 3.6671 (50.27)
PH 7.32 (0.605) 7.27 (0.753)
Selenium (mg/l) 0.1218 (0.7242) 0.1115 (0.5329)
Temperature (c) 24.310 (7.598) 19.639 (12.640)

Monitor Observations 748,988 4,848,838
Monitors 2,064 122,163

Municipal Water Systems
Service Population (thousands) 50.732 (97.585) 2.308 (19.691)
Service Connections (thousands) 20.412 (40.155) 0.517 (5.46)
Age in 2018 35.62 (6.34) 27.334 (11.72)

State Regulatory Monitoring Tests (2005-2017)
Arsenic (mg/l) 0.00002 (0.0005) 0.0020 (0.4723)
Conductivity (us/cm) 183.44 (264.4) 299.10 (1012.6)
Lead (mg/l) 0.0017 (0.0309) 0.0058 (2.423)
Haloacetic Acids (mg/l) 0.0246 (0.0150) 0.0228 (0.4034)
PH 7.796 (.6041) 7.725 (0.6806)
Trihalomethanes (mg/l) 0.0417 (0.0219) 0.0359 (0.4431)

Safe Drinking Water Inventory System
Violations (2000-2018)
Total Violations 10.396 (14.781) 7.996 (28.322)
Health-Based Violations 2.734 (4.145) 0.7357 (2.9364)
Annual Violation Rate 0.1670 (0.3730) 0.1285 (0.3347)
Health-based Violation Rate 0.0698 (0.2549) 0.0225 (0.1482)
Maximum Contaminant Level 0.0511 (0.2201) 0.0197 (0.1390)
Monitoring Violation 0.0901 (0.2864) 0.0935 (0.2912)
Reporting Violation Rate 0.0344 (0.1822) 0.0371 (0.1890)
Treatement Technique 0.0219 (0.1463) 0.0029 (0.0542)
Arsenic 0.0047 (0.0683) 0.0014 (0.0374)
Consumer Confidence Rule 0.0279 (0.2092) 0.0218 (0.2185)
Disinfectant Byproducts 0.1771 (0.7811) 0.0308 (0.3496)
Inorganic Compounds 0.0477 (0.7468) 0.0165 (0.4333)
Lead and Copper 0.0109 (0.1287) 0.0163 (0.1911)
Public Notice 0.0224 (0.2824) 0.0603 (0.6036)
Volatile Organic Chemicals 0.0711 (1.3958) 0.0688 (1.6584)

Water System Samples 162,790 1,185,225
Water System Years 42,722 491,892
Water Systems 193 3,839

Mean coefficients reported; standard deviations in parentheses. Observations are at the water system and water-system-year level. Surface
monitor sample restricted to samples in streams, lakes, or rivers. Observations include only monitors reporting results for arsenic, chromium,
conductivity, dissolved oxygen, lead, pH, selenium, and temperature. Municipal water system sample excludes transient non-community
water systems. Sample time window is 2005-2017 for surface water and municipal monitoring information and 2000-2018 for Safe-Drinking
Water Inventory System (SDWIS) violation reports.
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Table B.3: Mother, Birth, and Home Sale Information in Potentially Affected and Unaffected
Regions

Ever Served by Never Served by
Affected Affected

Municipal Water System Municipal Water System

Mother Characteristics (2005-2017)
Age 27.58 (5.99) 27.54 (6.01)
Asian 0.042 (0.201) 0.031 (0.173)
Black 0.303 (0.459) 0.212 (0.409)
Hispanic 0.161 (0.367) 0.155 (0.362)
White 0.552 (0.497) 0.656 (0.478)
Married 0.567 (0.495) 0.604 (0.489)
HS diploma or Less 0.424 (0.494) 0.443 (0.496)
Prenatal Visits 11.86 (4.27) 12.20 (4.23)
Tobacco 0.089 (0.286) 0.104 (0.305)
Hypertension* 0.049 (0.217) 0.044 (0.204)
Diabetes* 0.039 (0.194) 0.036 (0.187)

Birth Characteristics (2005-2017)
Ounces 114.32 (21.82) 115.08 (21.84)
Low Birthweight (2500 grams) 0.094 (0.291) 0.089 (0.285)
Preterm Gestation (37 weeks) 0.106 (0.307) 0.103 (0.304)
Congenital Anomalies 0.005 (0.069) 0.003 (0.053)
Female 0.489 (0.499) 0.488 (0.499)
Movers 0.150 (0.357) 0.098 (0.298)
PM 2.5 Mean 10.49 (2.29) 9.97 (2.28)
PM 2.5 Max 16.32 (4.84) 15.97 (5.03)

Birth Observations 356,868 1,101,204
Unique Mothers 241,188 779,974

Homes Within Homes Not
5 Miles Within 5 Miles

of Ash Pond of Ash Pond
Properties and Sales (1996-2018)
Average Sale Value (thousands) 228.1 (201.2) 192.7 ( 163.1)
Avg. No. Sales 1.537 (0.938) 1.590 (0.985)
Lotsize (thousands sq ft.) 50.6 (351.5) 110.6 (1,080.0)
Bedrooms 2.797 (1.289) 2.678 (1.615)
Baths 1.811 (0.999) 1.753 (1.231)

Home Sales 37,224 248,743
Unique Homes 24,699 157,000

Mean coefficients reported; standard deviations in parentheses. Sample of mothers includes all residents in the
state, including those not assigned to municipal water service zones. Sample of home sales limited to 12 counties
with a coal ash containment facility. *Refers to the gestational diabetes or pre-existing diabetes and gestational
hypertension or pre-existing hypertension.
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Table B.4: Water Quality Indicators of Surface Waters Downstream from Coal Ash Sites (2005-
2017)

Downstream Releases Releases
(binary) (continuous)

(1) (2) (3)

Inorganic Compounds

Arsenic 0.0863** 0.0576 0.0021
Dep. Var. Mean = 0.4596 (0.0373) (0.0366) (0.0022)
Observations [36,715] [36,715] [36,715]

Chromium 0.1538 -0.0313 -0.0018*
Dep. Var. Mean = 1.627 (0.3353) (0.0757) (0.0007)
Observations [57,089] [57,089] [57,089]

Lead 0.1730 0.4992 -0.0124***
Dep. Var. Mean = 1.516 (0.1662) (0.3538) (0.0020)
Observations [61,731] [61,731] [61,731]

Selenium 0.0190*** 0.0179*** 0.0008*
Dep. Var. Mean = 0.0536 (0.0066) (0.0020) (0.0005)
Observations [28,928] [28,928] [28,928]

Properties

Conductivity 1567.42 -333.19** 1.050
Dep. Var. Mean = 5279.45 (1932.85) (147.58) (3.077)
Observations [1,119,939] [1,119,939] [1,119,939]

Dissolved Oxygen -0.6367** 0.0237 -0.0006
Dep. Var. Mean = 6.982 (0.2491) (0.0362) (0.0011)
Observations [1,097,515] [1,097,515] [1,097,515]

pH 0.1948*** 0.0464** 0.0007
Dep. Var. Mean = 7.28 (0.1384) (0.0174) (0.0011)
Observations [1,227,668] [1,227,668] [1,227,668]

Temperature 1.0293*** -0.0435 -0.0009*
Dep. Var. Mean = 20.275 (0.0407) (0.0407) (0.0006)
Observations [1,240,357] [1,240,357] [1,240,357]

Monitor
Watershed-by-Year
Watershed-by-Year
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors two-way clustered at the monitor and watershed in
parentheses. The first column regresses an indicator for whether a monitor is within 25 miles downstream of
a coal ash release site on the level of an analyte depicted in the row title. Column (2) regresses an indicator
for whether coal ash is released upstream of a monitor in year t on the compound’s concentration. Column
(3) regresses a continuous measure of the sum of coal ash released upstream in any given year on the water
quality indicator. Controls include a dummy for abnormal weather events, dummy indicators for the hydrologic
conditions of the river system, and dummy indicators for the sample medium (e.g., sediment or surface water).
Analytic sample weights included. All regressions performed assuming coal ash influence cutoff distance of 25
miles (40 kilometers). Note mean analyte levels may differ from figures because analytes of different media are
included in the regressions with corresponding controls.
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Table B.5: Water Quality Indicators of Municipal Waters Downstream from Coal Ash Sites (2005-
2017)

Downstream Releases Annual Tons
Binary Released

(1) (2) (3)

Disinfectant Byproducts

Haloacetic Acids (HAA5) -0.0026* -0.0032 -0.0001
Dep. Var. Mean= 0.0220 (0.0010) (0.0047) (0.0001)
Observations [249,467] [249,467] [249,467]

Trihalomethanes (TTHM) 0.0007 -0.0099 -0.0003
Dep. Var. Mean= 0.0362 (0.0030) (0.0088) (0.0002)
Observations [249,132] [249,132] [249,132]

Inorganic Compounds

Arsenic -0.0058 0.0084 0.0007
Dep. Var. Mean= 0.0027 (0.0075) (0.0123) (0.0009)
Observations [46,729] [46,729] [46,729]

Lead 0.0081 -0.0033 0.0035***
Dep. Var. Mean= 0.0070 (0.0089) (0.0014) (0.0003)
Observations [364,643] [364,643] [364,643]

Properties

Conductivity -120.43 45.99** 3.37***
Dep. Var. Mean = 291.00 (75.03) (19.10) (1.08)
Observations [29,697] [29,697] ([29,697]

pH -0.3765** -0.0172*** 0.0070**
Dep. Var. Mean= 7.76 (0.0427) (0.0001) (0.0008)
Observations [71,059] [71,059] [71,059]

Water System
State-by-Year
Month
Watershed
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors two-way clustered at the municipal water system and state
in parentheses. The first column regresses an indicator for whether a municipal water system sources from coal
ash affected waters according to the Southern Environmental Law Center. Column (2) regresses an indicator
for whether coal ash is released upstream of a municipal water system’s intake in year t on the compound’s
concentration. Column (3) regresses a continuous measure of the sum of coal ash released upstream in any given
year on the water quality indicator. Transient non-community water systems are excluded, as are any water
systems with fewer than three tests of the given water quality analyte over the sample period. Controls include
dummies for the facility type where the test occurred, system size dummies, system age, and a dummy variable
equal to one if the analyte was not detected. Analytic sampling weights included.
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Table B.6: Upstream Coal Pollution and the Probability of a Water Quality Violation (2000-2018)

Time-Varying Binary Time-Varying Continuous
Coal Ash Releases Coal Ash Releases
(1) (2) (3) (4)
β dy/dx β dy/dx

Violations by Infraction Type
Any Violation -0.0370 -0.0045 -0.0002 -0.0005
Dep. Var. Mean = 0.1278 (0.0279) (0.0183) (0.0002) (0.0004)

Health-based Violation -0.0035 0.0121** -0.0001 -0.0000
Dep. Var. Mean = 0.0228 (0.0148) (0.0062) (0.0001) (0.0001)

Maximum Contaminant Level -0.0004 0.0103* -0.0000 -0.0000
Dep. Var. Mean = 0.0199 (0.0138) (0.006) (0.0000) (0.0001)

Monitoring Violation -0.0581* -0.0165 -0.0001 -0.0001
Dep. Var. Mean = 0.0935 (0.0252) (0.0164) (0.0002) (0.0002)

Reporting Violation 0.0320* 0.0250** -0.0000 -0.0001
Dep. Var. Mean = 0.0370 (0.0173) (0.0106) (.0001) (.0001)

Violations by Rule Type
Arsenic 0.0078** 0.0034*** 2.77e-06 8.80e-06
Dep. Var. Mean = 0.0014 (0.0040) (0.000) (0.0002) (6.91e-06)

Disinfectant Byproducts -0.0071 0.0033 0.0010** -0.0001
Dep. Var. Mean = 0.0134 (0.012) (0.0038) (0.0001) (0.0000)

Inorganic Compounds 0.0088** 0.0039*** 0.0015** -4.66e-06
Dep. Var. Mean = 0.0024 (0.0045) (0.000) (0.0000) (9.52e-06)

Lead and Copper -0.0077 -0.0109** -9.85e-06 -0.0003
Dep. Var. Mean = .0112 (0.0103) (0.0000) (0.0004) (0.0003)

Volatile Organic Compounds 0.0015 0.0012 2.33e-06 8.71e-06
Dep. Var. Mean = 0.0024 (0.0048) (0.0021) (0.0000) (0.0000)

Observations 247,794 247,794 247,794 247,794
Water Systems 15,493 15,493 15,493 15,493
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors clustered at the water system in parentheses. Standard
error of the marginal effect dy/dx calculated using the delta method. Dependent variable means are the average
of all active water system-year combinations, where a water system-year is equal to one if the water system
experienced a violation of the specified type and zero otherwise. Time-varying binary coal ash releases is equal
to one if a municipal water system was potentially affected by any coal ash releases in a given year and zero
otherwise. Time-varying continuous coal ash releases is equal to the tons of coal ash released within 25 miles
upstream and zero otherwise. In the probit model, controls include system size dummies, federal water system
type (e.g., community water system), owner type, school water system, surface water-sourced system, protected
source water system, and age of the municipal water system.
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Table B.8: CCRs and Fetal Health by In- and Out-Movers 2005-2017

(1) (2) (3) (4)
Birthweight Low Preterm Congenital

(ozs) Birthweight Gestation Anomalies

In Movers (=1) -1.8378*** 0.0280*** 0.0211** -0.0001
(0.4419) (0.0069) (0.0073) (0.0022)

Out Movers (=1) 0.5801 -0.0100 -0.0023 -0.0055**
(0.4342) (0.0068) (0.0072) (0.0021)

PM2.5 -0.9502*** 0.0111*** 0.0196*** 0.0001
(0.051) (0.0007) (0.0008) (0.0002)

Mother Fixed Effects
Zipcode Fixed Effects
Dep. Var. Mean 114.89 0.0903 0.1040 0.0044
Observations 747,468 747,468 747,468 747,468
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors at the mother in parentheses. Mother fixed
effects included. Low birthweight refers to births of less than 2500 grams. Preterm gestation represents a birth
with gestation of less than 37 weeks. Mean PM 2.5 represents the average PM2.5 concentration in the mother’s
county of residence over the entire gestational period. Additional controls include maximum and maximum
PM 2.5 squared in the county of residence across all months of gestation, gender of the newborn, dummies for
birth order, mother’s age at time of birth, mother’s age squared, six dummy bins for number of clinic visits
during gestation, an indicator for tobacco use during gestation, and an indicator for having moved since the last
preganancy.
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Table B.9: How Mandatory House Well Testing Affected House Sale Values After the Coal Ash
Management Act of 2014

(1) (2) (3) (4) (5) (6)
Distance Cutoff 1 Mile 2.5 Miles 5 Miles 1 Miles 2.5 Miles 5 Miles

Near*Post -45,295.4*** -36,406.9*** -24,691.8*** -37,333.5*** -16,090.1*** -12,673.9***
(17,403.2) (5,151.2) (2,371.5) (12,591.3) (2,784.1) (2,229.5)

Mean Sale Price 320,307.6 259,978.8 248,597.3 320,307.6 259,978.8 248,597.3
% Change -14.1 -13.9 -9.7 -11.6 -6.1 -4.8
∆ Total House Value -24.4M -180.2M -448.2M -19.9M -79.6M -228.7M
City and Year FEs
House and Year FEs
Home Sales in Sample 226,973 226,973 226,973 163,077 163,077 163,077
Unique Homes 181,669 181,669 181,669 63,963 63,963 63,963
Affected Home Sales 294 2,990 13,540 308 2,238 8,377

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors clustered at the county in parentheses. The dependent variable is house sale price.
The independent variable is the interaction of being within the specified distance of a coal ash pond and an indicator for sales occurring
after 2014. Total change in home value is the product of the change in home values and the number of sales after 2014, where the number
of sales is 538, 4950, and 18,154, ordered by distance cutoff. Regressions (1) to (3) may have more or fewer observations than (4) to (6)
because many homes are not incorporated into cities. The counts of affected homes, unique homes, and sales reflect the number of sales in
the regression sample rather than the total number of sales. Sample excludes home sales with valuation in excess of $1.5 million. The Coal
Ash Management Act mandated testing drinking wells of homes within 2,500 feet of ash ponds, leading to information disclosure that over
97% of homes had been using well-water considered unsafe to drink by the EPA.
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Table B.10: Surface Water Monitoring Tests in the Water Quality Portal (2005-2017)
Constituent (units) N %BDL Min Median Max Monitors Watersheds

Aluminum (mg/kg) 110,768 20.21 0 0.102 120,000 5402 230
Antimony (mg/kg) 40,714 58.09 0 0.001 55 3998 199
Arsenic (mg/kg) 107,107 53.61 0 0.001 430 5959 232
Beryllium (mg/kg) 50,839 69.54 0 0.0003 55 2785 160
Bromide (mg/kg) 10,064 20.21 0 0.038 60.3 448 70
Cadmium (mg/kg) 151,379 71.72 0 0.0005 1100 7821 236
Calcium (mg/kg) 104,525 4.35 0 7.8 52000 6026 234
Chemical oxygen demand (mg/kg) 15,366 15.78 0 7.8 1700 740 102
Chromium (mg/kg) 147,469 65.43 0 0.001 970 7615 236
Conductivity (uS/cm) 2,237,496 0.22 -2.47 167 511170 20629 239
Copper (mg/kg) 175,735 61.93 0 0.002 3100 8065 236
Fixed suspended solids (mg/kg) 104,996 4.40 0 8 26067 2435 62
Iron (mg/kg) 192,100 13.50 0 0.339 314000 8185 236
Lead (mg/kg) 156,963 61.56 0 0.001 11000 8015 236
Magnesium (mg/kg) 106,114 4.86 0 2.42 21300 6101 236
Manganese (mg/kg) 191,461 17.03 0 0.048 26000 7904 236
Mercury (mg/kg) 123,183 61.66 0 0.0002 274 7044 234
Nickel (mg/kg) 139,411 61.14 0 0.0258 490 7336 236
Nitrogen (mg/kg) 220,222 11.21 0 0.56 4587 6698 111
pH 2,762,327 0.09 0 7.24 16 21559 240
Phosphorus (mg/kg) 706,766 10.79 0 0.05 8700 17276 238
Selenium (mg/kg) 93,791 64.52 0 0.0007 25 5423 231
Silicon (mg/kg) 93,791 5.38 0 2.490 53.71 223 36
Thallium (mg/kg) 39,476 69.14 0 0.0001 100 3483 177
Titanium (mg/kg) 39,476 74.10 0 0.007 14000 1018 83
Total Coliform (MPN/100 ml) 30,102 7.05 0 2200 2.00e+07 302 46
Total dissolved solids (mg/kg) 173,964 2.24 0 81 1010000 3791 173
Total solids (mg/kg) 78,048 1.16 0 104 151000 2953 133
Total suspended solids (mg/kg) 504,347 15.51 0 9.21 38400 14002 239
Total volatile solids (mg/kg) 56,643 1.77 0 8 18500 2106 67
Trihalomethanes (mg/kg) 5,514 79.09 0.0001 0.0003 4.5 202 32
Turbidity (ntu) 674,007 2.62 -1.6 6.7 7417434 13140 239
Vanadium (mg/kg) 20,468 32.83 0 0.0014 570 1348 129
Volatile suspended solids (mg/kg) 39,862 10.89 0 3.6 1150 408 43
Zinc (mg/kg) 182,069 46.63 0 0.01 4500 8063 236

%BDL is the percent of samples that are below the detection limit.
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Table B.11: Additional Chemical Compounds in Surface Waters Downstream from Coal Ash Sites
(2005-2017)

Ever Affected Releases (binary) Releases (continuous)
(1) (2) (3) (4) (5)

Antimony 0.0096 0.00149 0.00003 0.00014*** 0.00071***
(0.00169) (0.0026) (0.00002) (0.00004) (0.00010)

Cadmium -0.01937 -0.02575 -0.05171* 0.00009 -0.00055
(0.04562) (0.05915) (0.02911) (0.00039) (0.00067)

Copper -0.00021 -0.00012 -0.00055* 0.00052*** 0.00165*
(0.00397) (0.00481) (0.00029) (0.00011) (0.00091)

Mercury -0.01709 -0.02371 0.00257* -0.00071 -0.00092
(0.01952) (0.02629) (0.00139) (0.00058) (0.00121)

Thallium -0.00008 -0.00012 6.80e-06** 5.74e-06 0.000039***
(0.00019) (0.00028) (2.47e-06) ( 5.30e-06) (8.38e-06)

Turbidity 3.3230 .59735 -17.409 0.04202 -0.1099
(2.6664) (1.7026) (18.477) (0.03597) (0.2396)

Zinc 0.01830 0.02136 -0.00253 0.00065*** -0.00103
(0.02008) (0.02286) (0.00268) (0.00014) (0.00596)

Monitor
Watershed-Year
Watershed-
Month
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors two-way clustered at the monitor and watershed in
parentheses. The first column regresses an indicator for whether a monitor is within 25 miles downstream of a
coal ash release site on the level of an analyte depicted in the row title. Columns (2) and (3) regress an indicator
for whether coal ash is released upstream of a monitor in year t on the compound’s concentration. Columns (4)
and (5) regress a continuous measure of the sum of coal ash released upstream in any given year on the water
quality indicator. Controls include a dummy for abnormal weather events, dummy indicators for the hydrologic
conditions of the river system, and dummy indicators for the sample medium (e.g., sediment or surface water).
Analytic sample weights included. All regressions performed assuming coal ash influence cutoff distance of 25
miles (40 kilometers).
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Table B.12: Do Counties with Coal Ash Releases Have More Surface Water Pollution from Other
Sources? (2005-2017)

(1) (2)
Tons of Surface Tons of Impounded
Water Pollution Pollution

Coal Plant County (=1) 18.45 177.19
(33.57) (140.82)

State Fixed Effects
Year Fixed Effects
Dep. Var. Mean 74.18 101.23
Observations 6,406 6,406
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors clustered at the state in parentheses. The first column
regresses an indicator for whether a county has a coal ash pollution site on the quantity of non-coal ash surface
water pollution. The second column regresses an indicator for whether a county has a coal ash site on the
quantity of non-coal ash pollution impounded in any landfill.
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Table B.13: District-Level Student Characteristics

(1) (2) (3)
Non-Retrofitting Retrofitting Difference

Districts Districts T-Test of Means

Health Outcomes (2012-2017)
Aerobic Capacity (V 02 Max) 41.160 (1.688) 41.201 (1.422) -0.0412 (-0.12)
Body-Mass Index 21.069 (0.880) 20.633 (0.340) 0.436∗ (2.54)
AC Attempts / Enrollment 0.407 (0.114) 0.425 (0.079) -0.0174 (-0.76)
BMI Attempts / Enrollment 0.654 (0.153) 0.689 (0.108) -0.0346 (-1.12)

Schooling Outcomes (2007-2017)
Math Z-Scores -0.107 (0.263) -0.060 (0.216) -0.0473 (-0.88)
ELA Z-Scores -0.107 (0.229) -0.061 (0.194) -0.0459 (-0.98)
Attendance rate 95.573 (0.630) 95.584 (0.488) -0.0112 (-0.09)

Demographics (2007-2017)
African American 0.367 (0.272) 0.363 (0.266) 0.004 (0.07)
Hispanic 0.082 (0.105) 0.109 (0.077) -0.028 (-1.32)
White 0.554 (0.252) 0.504 (0.276) 0.051 (0.95)
Other 0.030 (0.025) 0.055 (0.029) -0.025∗∗∗ (-4.71)
Male 0.513 (0.010) 0.513 (0.005) 0.000 (0.11)
Female 0.487 (0.010) 0.487 (0.005) -0.000 (-0.11)
Students (thousands) 5.655 (9.765) 28.081 (37.502) -22.426∗∗∗ (-6.34)
Free and Reduced Lunch 0.668 (0.171) 0.616 (0.146) 0.052 (1.49)
Students with Disabilities 0.123 (0.024) 0.121 (0.018) 0.002 (0.38)
English Language Learner 0.025 (0.037) 0.045 (0.043) -0.021∗ (-2.58)

Retrofits (2007-2017)
Buses Retrofitted per Retrofit 66.39 (145.3)
Proportion of Fleet Retrofitted 0.189 (0.141)
Average Retrofit Cost per Bus ($) 8111.0 (5013.8)

Bus Fleet Characteristics (2007-2017)
Average Time in Bus (minutes) 44.883 (11.629) 49.631 (7.940) -4.748∗ (-2.04)
District Bus Ridership 0.621 (0.174) 0.610 (0.087) 0.0113 (0.33)
Total Buses 75.594 (104.432) 313.286 (411.857) -237.7∗∗∗ (-6.17)
Total Bus Riders (thousands) 3.475 (7.412) 17.563 (25.814) -14.088∗∗∗ (-5.62)
Average Bus Age 14.126 (1.574) 14.268 (1.537) -0.142 (-0.43)

Observations 153 27 180

Mean coefficients reported; standard deviations in parentheses. Observations are at the district level. Other
demographic category includes Asian, American Indian, Pacific Islander, and Multiracial. Students represents
the average student enrollment in thousands. Standardized math and ELA test scores are negative because
the majority of Georgia school districts are rural, small, and under-achieving relative to larger urban districts.
Aerobic capacity attempts / enrollment represents the number of attempts divided by K-12 enrollment.
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Table B.14: FitnessGram Health 2012-2017

(1) (2) (3) (4) (5) (6)
AC AC AC BMI BMI BMI

Percent Retrofitted 1.815** -0.241
(0.81) (0.33)

Percent Retrofitted 2.439* -0.479
* Ridership (1.36) (0.53)

Percent Retrofitted 0.041 -0.010
* Ridership * Trip Duration (0.03) (0.01)

Dep. Var. mean 41.66 41.66 41.66 21.03 21.03 21.03
R2 0.197 0.199 0.198 0.050 0.051 0.051
N 856 846 846 863 853 853
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors at the district level in parentheses. Year fixed
effects included. Demographic variables include the proportion of students that are Asian, African-American,
Hispanic, and male, where White and female are the omitted categories, as well as the percentage of students
with free or reduced price lunch, disabilities, and English-language learner status. Bus characteristics include
average bus age, the proportion of buses built before 2007, and the proportion of liquid natural gas-, butane-, and
gasoline-powered buses in the district. Student ridership and trip duration variables also included as controls.
The independent variable percent retrofitted is the proportion of a district’s bus fleet that is retrofitted in a given
year, and zero otherwise. Percent retrofitted * ridership is the percent of the bus fleet retrofitted times the time-
constant proportion of students in a district riding the bus, while percent retrofitted * ridership * trip duration is
the proportion of the bus fleet retrofitted times time-constant ridership and the time-constant average duration of
a daily bus commute for students in a given district.
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Table B.15: FitnessGram Health by Gender and School Type 2012-2017

Elementary Middle High School
Male Female Male Female Male Female
(1) (2) (3) (4) (5) (6)

Percent Retrofitted 3.963** 4.152* -1.651 0.304 1.899** 1.802
(1.99) (2.19) (1.26) (2.02) (0.78) (1.41)

Dep. Var. mean 42.45 39.82 43.22 38.85 43.45 37.75
R2 0.143 0.273 0.093 0.305 0.031 0.086
N 777 777 770 770 710 710
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors at the district level in parentheses. Year fixed effects included. Demographic

variables include the proportion of students that are Asian, African-American, Hispanic, and male, where White and female are the omitted

categories, as well as the percentage of students with free or reduced price lunch, disabilities, and English-language learner status. Bus

characteristics include average bus age, the proportion of buses built before 2007, and the proportion of liquid natural gas-, butane-, and

gasoline-powered buses in the district. Student ridership and trip duration variables also included as controls. The independent variable

percent retrofitted is the proportion of a district’s bus fleet that is retrofitted in a given year, and zero else.
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Table B.17: Academic Achievement by School Type 2007-2017

Elementary Middle
ELA Math ELA Math
(1) (2) (3) (4)

Percent Retrofitted 0.119*** 0.061 0.059** 0.047
(0.03) (0.07) (0.03) (0.03)

Dep. Var. mean -0.091 -0.089 -0.107 -0.107
R2 0.043 0.02 0.042 0.037
N 1,800 1,800 1,800 1,800
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors at the district level in parentheses. Year fixed
effects included. Demographic variables include the proportion of students that are Asian, African-American,
Hispanic, and male, where White and female are the omitted categories, as well as the percentage of students
with free or reduced price lunch, disabilities, and English-language learner status. Bus characteristics include
average bus age, the proportion of buses built before 2007, and the proportion of liquid natural gas-, butane-, and
gasoline-powered buses in the district. Student ridership and trip duration variables also included as controls.
The independent variable percent retrofitted is the proportion of a district’s bus fleet that is retrofitted in a given
year, and zero else. Elementary includes end-of-grade test scores for grades 3-5, while middle includes the same
for grades 6-8.
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Table B.18: All Outcomes by Retrofit Type

(1) (2) (3) (4) (5)
ELA Math Attend AC BMI

Diesel Particulate Filter 0.134** 0.063 0.459 1.411 -0.612
(0.05) (0.07) (0.52) (1.89) (0.54)

Closed-Crankcase Filter -0.022 -0.012 -0.635 - -
(0.04) (0.05) (0.45) (.) (.)

Diesel Oxidation Catalyst 0.051** 0.047 0.144 1.367 -0.139
(0.02) (0.03) (0.19) (0.85) (0.46)

Flow-through Filter -0.026 -0.177*** -0.149 - -
(0.06) (0.05) (1.43) (.) (.)

Dep. Var. mean -0.100 -0.099 95.57 41.66 21.03
R2 0.058 0.023 0.096 0.186 0.049
N 1,800 1,800 1,800 856 863
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors at the district level in parentheses. Year fixed
effects included. Demographic control variables include the proportion of students that are Asian, African-
American, Hispanic, and male, where White and female are the omitted categories, as well as the percentage
of students with free or reduced price lunch, disabilities, and English-language learner status. Student ridership
and trip duration variables also included as controls. The number of buses replaced early also included as a
control. Bus characteristics not included due to high correlation with covariates. The independent variables each
represent the proportion of a bus fleet that is retrofitted with the given engine modification. The sample includes
32 DPF retrofits, nine CCF retrofits, eight DOC retrofits, and three flow-through filter retrofits. Accordingly,
results for flow-through filter retrofits may be unreliable.
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Table B.19: All Outcomes Fixed Effects Estimates
(1) (2) (3) (4) (5)

ELA Math Attend AC BMI

I: First Differences
Percent Retrofitted 0.089*** 0.049 0.154 1.815** -0.241

(0.03) (0.03) (0.25) (0.81) (0.33)
R2 0.058 0.023 0.097 0.197 0.050
N 1,800 1,800 1,800 856 863

II: Fixed Effects
Percent Retrofitted 0.092 -0.006 0.130 1.108 -0.166

(0.06) (0.08) (0.22) (1.61) (0.34)
R2 0.900 0.900 0.391 0.705 0.613
N 1,958 1,958 1,958 1,034 1,040

D-W F-Stat 197.77 194.42 17.01 31.68 11.39
Prob > F 0.0000 0.0000 0.0001 0.0000 0.0009

III: FE Adding Leads
Percent Retrofitted 0.100** 0.030 -0.021 0.207 -0.155

(0.05) (0.06) (0.27) (1.59) (0.35)

Percent Retrofit Lead -0.012 -0.047 0.197 5.648* -0.088
(0.05) (0.07) (0.29) (3.32) (0.67)

R2 0.900 0.900 0.391 0.706 0.613
N 1,958 1,958 1,958 1,034 1,040

IV: FE Adding Leads and Trends
Percent Retrofitted 0.032 0.037 0.204 1.610* -0.299

(0.03) (0.05) (0.42) (0.95) (0.72)

Percent Retrofit Lead -0.053 -0.029 0.201 3.091 -0.063
(0.05) (0.06) (0.44) (4.16) (1.33)

R2 0.955 0.943 0.565 0.860 0.756
N 1,958 1,958 1,958 1,034 1,040

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors at the district level in parentheses. Year and
district fixed effects included. Outcomes are district average ELA test scores, Math test scores, attendance,
aerobic capacity, and BMI. Demographic variables include the proportion of students that are Asian, African-
American, Hispanic, and male, where White and female are the omitted categories, as well as the percentage of
students with free or reduced price lunch, disabilities, and English-language learner status. Bus characteristics
include average bus age, the proportion of buses built before 2007, and the proportion of liquid natural gas-,
butane-, and gasoline-powered buses in the district. Student ridership and trip duration variables also included
as controls. The independent variable percent retrofitted is the proportion of a district’s bus fleet that has ever
been retrofitted, and zero else. The table compares all outcomes using the fixed-effects model to the estimates in
our preferred first-differences specification. It also shows how the estimates differ when adding lead treatment
variables and district-specific linear trends.
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Table B.20: Academic Achievement by Grade 2007-2017

Grade 3/6 Grade 4/7 Grade 5/8
ELA Math ELA Math ELA Math
(1) (2) (3) (4) (5) (6)

I. Elementary Schools
Percent Retrofitted 0.087 0.034 0.208** 0.203* 0.169*** 0.060

(0.07) (0.11) (0.10) (0.11) (0.05) (0.08)
R2 0.033 0.022 0.072 0.064 0.056 0.069

II. Middle Schools
Percent Retrofitted 0.048 -0.003 0.049 0.031 0.073* 0.108

(0.05) (0.06) (0.05) (0.04) (0.04) (0.08)
R2 0.048 0.015 0.037 0.024 0.016 0.038

N 1,800 1,800 1,800 1,800 1,800 1,800
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors at the district level in parentheses. Outcomes are grade-level ELA and math

scores. Year fixed effects included. Demographic variables include the proportion of students that are Asian, African-American, Hispanic,

and male, where White and female are the omitted categories, as well as the percentage of students with free or reduced price lunch,

disabilities, and English-language learner status. Bus characteristics include average bus age, the proportion of buses built before 2007, and

the proportion of liquid natural gas-, butane-, and gasoline-powered buses in the district. Student ridership and trip duration variables also

included as controls. The independent variables percent retrofitted is the proportion of a district’s bus fleet that is retrofitted in a given year,

and zero else.
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Table B.21: Fixed Effects with Multiple Leads 2007-2017

(1) (2) (3) (4) (5)
ELA Math Attend AC BMI

Percent Retrofitted 0.031 0.045 0.313 1.610* -0.299
(0.04) (0.05) (0.43) (0.95) (0.72)

Lead 1 -0.050 -0.050 -0.116 3.091 -0.063
(0.03) (0.05) (0.32) (4.16) (1.33)

Lead 2 -0.004 0.044 0.660 - -
(0.06) (0.05) (0.41) (.) (.)

R2 0.955 0.943 0.565 0.860 0.756
N 1,958 1,958 1,958 1,034 1,040
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors at the district level in parentheses. Year and
district fixed effects included. Outcomes are district average ELA test scores, Math test scores, attendance,
aerobic capacity, and BMI. Demographic variables include the proportion of students that are Asian, African-
American, Hispanic, and male, where White and female are the omitted categories, as well as the percentage of
students with free or reduced price lunch, disabilities, and English-language learner status. Bus characteristics
include average bus age, the proportion of buses built before 2007, and the proportion of liquid natural gas-,
butane-, and gasoline-powered buses in the district. Student ridership and trip duration variables also included
as controls. The independent variable percent retrofitted is the cumulative proportion of a district’s bus fleet
that has ever been retrofitted, and zero else. The table demonstrates the fixed effects estimates when adding two
leads to the model. The relevant sample for models (1) and (2) is 2012 - 2017, while model (3) covers the entire
sample window, 2007-2017.
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Table B.22: Sensitivity of Aerobic Capacity Results to Different Cutoffs 2012-2017

(1) (2) (3) (4) (5) (6) (7) (8) (9)
15 20 25 30 35 30 & 26 Jumps None 2012

Percent Retrofitted 2.298 1.313 1.483 1.763** 1.675** 1.815** 3.528*** 1.324 7.089***
(2.07) (1.34) (0.97) (0.73) (0.70) (0.81) (0.85) (2.29) (1.09)

R2 0.248 0.238 0.223 0.218 0.147 0.197 0.098 0.246 0.300
N 860 860 860 857 849 856 675 860 681
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors at the district level in parentheses. Year fixed effects included. Demographic
and bus characteristics included as controls. Student ridership and trip duration variables also included as controls. For models (1) through
(6), column headers represent different V 02 max cutoff values. Average aerobic capacity in 2011-12 and 2012-13 is left-skewed, with
many implausibly low values for V 02Max. In later years, no school-average V 02Max is below 30 for male assessments and 26 for female
assessments. We therefore demonstrate aerobic capacity results under a range of cutoffs, where each cutoff represents dropping school-level
aerobic capacity results below the given value. In column (7), labeled Jumps, we replace as missing any school with average values that
increase or decrease by more than 6 V 02 max units from 2011-12 to 2012-13. These jumps are very large in relation to those observed
after 2012-13, and so dropping these observations is often equivalent to dropping all values below a given low-valued cutoff. In the column
(2012), we drop the entire year of 2011-12, which restricts the number of retrofitting districts such that the coefficient is estimated from only
three retrofitting districts. We prefer model (6), the cutoff at 30 for males and 26 for females, because it creates a 2012 distribution that best
conforms to the other years of the sample while simultaneously not dropping too many low yet accurate results. In almost all cases, the
cutoffs drop less than a tenth of school observations in any given district. Controlling for the proportion of schools dropped does not affect
the results because the proportion dropped is not correlated with treatment.
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Table B.23: Correlation of Proportion of a Bus Fleet Retrofitted with District Characteristics 2007-
2017

(1) (2) (3)
∆AC Part. ∆BMI Part. ∆Ridership

I. Endogenous Responses
Percent Retrofitted -0.449 -0.576* -0.023

(0.32) (0.30) (0.04)
R2 0.153 0.030 0.012
N 870 870 1,780

∆ Bus Age ∆ Total Buses ∆ Trip Duration

II. Bus Characteristics
Percent Retrofitted 0.470 56.662 4.227

(0.63) (36.02) (5.80)
R2 0.129 0.057 0.011
N 1,800 1,800 1,780

∆ Afr. American ∆ Hispanic ∆ Male

III. Student Demographics
Percent Retrofitted 0.015 0.466 -0.109

(0.36) (0.38) (0.30)
R2 0.021 0.028 0.007
N 1,800 1,800 1,800

∆ ELL ∆ SWD ∆ FRPL

IV. Student Characteristics
Percent Retrofitted -0.009 0.572** 0.924

(0.08) (0.29) (1.58)
R2 0.012 0.219 0.035
N 1,800 1,800 1,800
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors at the district level in parentheses. Year fixed
effects included. In the first panel, models (1) and (2) demonstrate the extent to which the proportion of a bus
fleet retrofitted is correlated with changes in the participation rate, i.e., the number of attempts divided by district
enrollment. Model (3) shows whether the proportion of a bus fleet retrofitted is correlated with year-on-year
changes the ridership rate. The relevant sample for models (1) and (2) is 2012 - 2017, while model (3) covers the
entire sample window, 2007-2017. In the second panel, we show that the proportion of a bus fleet retrofitted is
not significantly correlated with changes in the average bus age within a district, the total number of buses, or the
average trip duration. The third panel demonstrates that the proportion of a bus fleet retrofitted is not significantly
related to changes in the percent of a district that is African American, Hispanic, or Male. The fourth panel shows
the relationship between the proportion of a bus fleet retrofitted and changes in the percent of a district’s students
that are English language learner, students with disabilities, or receiving free- and reduced-price lunch.
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Table B.24: Academic Achievement 2007-2017, Dropping Milestones Years 2015-2017

(1) (2) (3) (4) (5) (6)
ELA ELA ELA Math Math Math

Percent Retrofitted 0.089*** 0.049
(0.03) (0.03)

Percent Retrofitted 0.143*** 0.083*
* Ridership (0.04) (0.05)

Percent Retrofitted 0.002*** 0.001
* Ridership * Trip Duration (0.00) (0.00)

R2 0.064 0.064 0.064 0.020 0.020 0.020
N 1,440 1,440 1,440 1,440 1,440 1,440
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors at the district level in parentheses. Outcomes are
district average ELA test scores, Math test scores, attendance, aerobic capacity, and BMI. District and year fixed
effects included. Demographic variables include the proportion of students that are Asian, African-American,
Hispanic, and male, where White and female are the omitted categories, as well as the percentage of students
with free or reduced price lunch, disabilities, and English-language learner status. Bus characteristics include
average bus age, the proportion of buses built before 2007, and the proportion of liquid natural gas-, butane-, and
gasoline-powered buses in the district. Controls for ridership share and trip duration are also included. The table
shows how our first-differences estimates change when dropping all years after 2014-15 when the new Mile-
stones standardized examination is offered instead of the CRCT exam. Milestones computerized examinations
suffered from widespread glitches that may have affected our estimates.

133



Table B.25: Drop Interpolated Bus Years

(1) (2) (3) (4) (5)
ELA Math Attend AC BMI

Percent Retrofitted 0.083*** 0.057 0.242 1.766** -0.242
(0.03) (0.04) (0.29) (0.83) (0.35)

R2 0.079 0.029 0.174 0.188 0.061
N 1,260 1,260 1,260 692 698
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors at the district level in parentheses. Outcomes are
district average ELA test scores, Math test scores, attendance, aerobic capacity, and BMI. District and year fixed
effects included. Demographic variables include the proportion of students that are Asian, African-American,
Hispanic, and male, where White and female are the omitted categories, as well as the percentage of students
with free or reduced price lunch, disabilities, and English-language learner status. Bus characteristics include
average bus age, the proportion of buses built before 2007, and the proportion of liquid natural gas-, butane-,
and gasoline-powered buses in the district. Controls for ridership share and trip duration are also included. The
independent variable percent retrofitted is the proportion of a district’s bus fleet that is retrofitted in a given year,
and zero else. The table shows how our first-differences estimates change when dropping all years for which
information on district bus fleets is lacking. For these years, we inserted the value of the nearest year for which
data is available, which is 2010 for all years prior and 2016 for 2017.
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Table B.26: Timing of Retrofit Implementation

(1) (2) (3) (4) (5)
ELA Math Attend AC BMI

I. Regular Timing
Percent Retrofitted 0.089*** 0.049 0.154 1.815** -0.241

(0.03) (0.03) (0.25) (0.81) (0.33)
R2 0.058 0.023 0.097 0.197 0.050
N 1,800 1,800 1,800 856 863

II. Treatment 1-year in Advance
Percent Retrofitted -0.029 -0.040 -0.110 2.258 0.197

(0.03) (0.04) (0.23) (2.75) (0.62)
R2 0.056 0.023 0.097 0.196 0.050
N 1,800 1,800 1,800 856 863

III. January Implementation
Percent Retrofitted 0.100*** 0.079** 0.273 1.664* -0.089

(0.02) (0.03) (0.26) (0.87) (0.28)
R2 0.059 0.024 0.097 0.197 0.050
N 1,800 1,800 1,800 856 863

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors in parentheses. Year fixed effects included.
Demographic control variables include the proportion of students that are Asian, African-American, Hispanic,
and male, where White and female are the omitted categories. The percentage of students with free or reduced
price lunch, disabilities, and English-language learner status. Bus characteristics include average bus age, the
proportion of buses built before 2007, and the proportion of liquid natural gas-, butane-, and gasoline-powered
buses in the district. Student ridership and trip duration variables also included as controls. The independent
variable percent retrofitted varies according to the timing of the retrofit completion date in a given school district.
In the base case presented in Panel I, regular timing, all retrofits between May and the following April are
assigned to the fiscal year of the latter April. In Panel II, we show the results when assigning a placebo treatment
year as one year before the actual retrofit completion year. In Panel III, retrofits completed before January are
assigned to the same fiscal year, but those occurring after January are assigned to the following fiscal year.
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Table B.27: FitnessGram Health with Linear Trends 2012-2017

(1) (2) (3) (4) (5) (6)
AC AC AC BMI BMI BMI

Percent Retrofitted 2.197*** -0.345
(0.60) (0.56)

Percent Retrofitted 3.196*** -0.660
* Ridership (1.05) (0.88)

Percent Retrofitted 0.055** -0.016
* Ridership * Trip Duration (0.02) (0.01)

Dep. Var. mean 41.66 41.66 41.66 21.03 21.03 21.03
R2 0.353 0.353 0.353 0.200 0.200 0.200
N 846 846 846 853 853 853
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors at the district level in parentheses. Year fixed
effects and district-fixed effects, to account for linear trends, included. Demographic variables include the pro-
portion of students that are Asian, African-American, Hispanic, and male, where White and female are the
omitted categories, as well as the percentage of students with free or reduced price lunch, disabilities, and
English-language learner status. Bus characteristics include average bus age, the proportion of buses built before
2007, and the proportion of liquid natural gas-, butane-, and gasoline-powered buses in the district. Student
ridership and trip duration variables also included as controls. The independent variable percent retrofitted is
the proportion of a district’s bus fleet that is retrofitted in a given year, and zero otherwise. Percent retrofitted
* ridership is the percent of the bus fleet retrofitted times the time-constant proportion of students in a district
riding the bus, while percent retrofitted * ridership * trip duration is the proportion of the bus fleet retrofitted
times time-constant ridership and the time-constant average duration of a daily bus commute for students in a
given district.
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Table B.29: School District and County Characteristics by Farm-to-School Policy Status

(1) (2) (3)
Farm-to-Schools Not Farm-to-Schools T-test of Means

District Characteristics (2001-2017)
Total Enrollment 325.9 (486.9) 66.10 (69.53) -259.8∗∗∗

FRL Share 0.614 (0.139) 0.699 (0.133) 0.0842∗∗∗

Nutrition Expenditures 9423.6 (13207.0) 2140.5 (2078.6) -7283.1∗∗∗

% CEP Schools 0.434 (0.452) 0.572 (0.444) 0.138
Marginal CEP Students 521.6 (865.3) 271.5 (480.6) -250.1∗

% Marginal CEP Students 0.0331 (0.0496) 0.0448 (0.0666) 0.0117

Nutritional Expenditures (2001-2017)
Nutrition Expenditures 9423.6 (13207.0) 2140.5 (2078.6) -7283.1∗∗∗

Federal Nutrition Revenue 7813.5 (10945.6) 1743.7 (1679.9) -6069.8∗∗∗

Local Nutrition Revenue 2109.8 (4248.2) 349.6 (587.4) -1760.3∗∗∗

State Nutrition Revenue 261.4 (381.6) 57.28 (59.10) -204.1∗∗∗

County Agricultural Revenues (2000-2018)
All Revenues 62078.5 (78315.1) 61559.4 (71870.8) -519.1
Animal Products 43250.6 (77299.2) 36796.5 (60137.3) -6454.1
Fruits and Vegetables 15022.4 (20775.5) 20596.7 (28615.2) 5574.2
Agrotourism 15.41 (39.91) 8.340 (34.19) -7.067
Meats 37124.2 (66703.6) 31504.8 (53829.2) -5619.4
Dairy 1412.4 (4093.8) 2317.3 (6096.7) 904.9
School Visits 15.41 (39.91) 8.340 (34.19) -7.067
Other Revenues 4338.6 (5287.1) 6664.8 (7485.0) 2326.2∗

Placebo Revenues 6477.6 (8333.4) 13574.6 (12885.0) 7097.0∗∗∗

Farm-to-School Policy Variables (2001-2017)
Farm-to-School Enrollment 107.1 (212.0)
Marginal CEP Students in FtS District 443.1 (720.8)
% Marginal CEP Students in FtS District 0.0264 (0.0392)

District Observations 75 105 180
County Observations 63 96 159
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Mean coefficients reported in columns (1) and (2); standard deviations
in parentheses. All dollar amounts expressed in thousands of 2017 dollars. Table 5.35 lists the commodities
included in each category.
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Table B.31: Agricultural Revenues - Animal Products 2001-2017
OLS Spatial Lag 1 Spatial Lag 2 CEP 1 CEP 2

(1) (2) (3) (4) (5) (6)

Within-County Effects
Nutrition 0.229 0.165 0.193 0.160 0.199 0.0868
Expenditures (0.285) (0.287) (0.333) (0.332) (0.333) (0.333)
FtS Policy 4531.3 4630.8*** 4587.7*** 5175.6*** 4312.6**

(4844.7) (1553.7) (1552.3) (1678.4) (1693.7)

CEP 12130.3 11682.8
(18319.4) (17957.1)

CEP × FtS -29202.4 -26095.5
Policy (35897.5) (35860.8)

Contiguous County Effects
Nutrition 0.314 -0.0336
Expenditures (0.781) (0.780)

FtS Policy 362.7 695.6
(4226.3) (4497.0)

CEP 155718.3***
(45202.6)

CEP × FtS -168525.1*
Policy (96327.1)
N 2,669 2,669 2,669 2,669 2,669 2,669

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses. Year and county fixed effects included in
all models. Time-varying control variables include the total number of students in each district and FRL shares.
Clustered standard errors at the county level in models (1) and (2). Standard errors clustered across contiguous
counties in models (3) - (6). Models (3) - (6) include dependent variable lags across inverse distance bandwidths,
controlling for agricultural revenues in county i by agricultural revenues in all counties j in proportion to the
inverse distance between county i and county j. FtSPolicy is the proportion of students in a county served by a
farm-to-school policy in their school district. CEP is the proportion of students in a county that are induced into
free lunch by their schools participation in the Community Eligibility Provision of the HHFKA. CEP∗FtS is the
proportion of students in a county that are induced into free lunch by their schools participation in the Community
Eligibility Provision of the HHFKA while also being served by farm-to-school districts. Coefficients on nutrition
expenditures are scaled to the dollar, while coefficients on FtS Policy, CEP, and CEP*FtS are scaled to the each
thousand dollars.
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Table B.32: Agricultural Revenues - Fruits and Vegetables 2001-2017
OLS Spatial Lag 1 Spatial Lag 2 CEP 1 CEP 2

(1) (2) (3) (4) (5) (6)

Within-County Effects
Nutrition 0.0119 0.0486 0.113 -0.0399 0.137 -0.0120
Expenditures (0.314) (0.301) (0.178) (0.197) (0.178) (0.197)

FtS Policy -2575.9 -1858.9** -2416.0*** -891.6 -1645.2*
(1689.1) (839.1) (879.7) (910.8) (957.3)

CEP 24775.8*** 24919.9**
(9563.0) (10286.5)

CEP × FtS -44989.4** -32876.3
Policy (19067.2) (21109.3)

Contiguous County Effects
Nutrition -0.920* -0.966*
Expenditures (0.000536) (0.000537)

FtS Policy -5820.6** -8154.6***
(2592.6) (2863.0)

CEP -16419.4
(30769.7)

CEP × FtS 94053.6
Policy (65743.7)
N 2,669 2,669 2,669 2,669 2,669 2,669

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses. Year and county fixed effects included in
all models. Time-varying control variables include the total number of students in each district and FRL shares.
Clustered standard errors at the county level in models (1) and (2). Standard errors clustered across contiguous
counties in models (3) - (6). Models (3) - (6) include dependent variable lags across inverse distance bandwidths,
controlling for agricultural revenues in county i by agricultural revenues in all counties j in proportion to the
inverse distance between county i and county j. FtSPolicy is the proportion of students in a county served by a
farm-to-school policy in their school district. CEP is the proportion of students in a county that are induced into
free lunch by their schools participation in the Community Eligibility Provision of the HHFKA. CEP∗FtS is the
proportion of students in a county that are induced into free lunch by their schools participation in the Community
Eligibility Provision of the HHFKA while also being served by farm-to-school districts. Coefficients on nutrition
expenditures are scaled to the dollar, while coefficients on FtS Policy, CEP, and CEP*FtS are scaled to the each
thousand dollars.
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Table B.33: Agricultural Revenues - Agrotourism 2001-2017
OLS Spatial Lag 1 Spatial Lag 2 CEP 1 CEP 2

(1) (2) (3) (4) (5) (6)

Within-County Effects
Nutrition -0.0435 -0.0441 -0.0431 -0.0420 -0.0469* -0.0447*
Expenditures (0.0337) (0.0339) (0.0264) (0.0264) (0.0263) (0.0264)

FtS Policy 46.83 51.98 54.41 -83.06 -73.72
(117.1) (123.7) (123.4) (132.8) (134.2)

CEP -6259.7*** -6101.8***
(1411.5) (1421.9)

CEP × FtS 5960.9** 6061.6**
Policy (2837.8) (2856.7)

Contiguous County Effects
Nutrition -0.0209 -0.00485
Expenditures (0.0617) (0.0615)

FtS Policy -199.4 -259.0
(326.2) (345.9)

CEP -1118.1
(3805.4)

CEP × FtS 11489.3
Policy (7836.7)
N 2,669 2,669 2,669 2,669 2,669 2,669

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses. Year and county fixed effects included in
all models. Time-varying control variables include the total number of students in each district and FRL shares.
Clustered standard errors at the county level in models (1) and (2). Standard errors clustered across contiguous
counties in models (3) - (6). Models (3) - (6) include dependent variable lags across inverse distance bandwidths,
controlling for agricultural revenues in county i by agricultural revenues in all counties j in proportion to the
inverse distance between county i and county j. FtSPolicy is the proportion of students in a county served by a
farm-to-school policy in their school district. CEP is the proportion of students in a county that are induced into
free lunch by their schools participation in the Community Eligibility Provision of the HHFKA. CEP∗FtS is the
proportion of students in a county that are induced into free lunch by their schools participation in the Community
Eligibility Provision of the HHFKA while also being served by farm-to-school districts. Coefficients on nutrition
expenditures are scaled to the dollar, while coefficients on FtS Policy, CEP, and CEP*FtS are scaled to the each
thousand dollars.
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Table B.34: Two Stage Least Squares: Agricultural Revenues 2001-2017
(1) (2) (3)

Total Animal Fruits and
Revenues Products Vegetables

First Stage
CEP Share 2,696,274*** 2,696,274*** 2,696,274***

(290860.1) (290860.1) (290860.1)
F-Stat of Excluded Instruments 17.01 17.01 17.01

Second Stage
Nutrition Expenditures 26.37* 3.86 19.26*

(15.79) (5.59) (10.88)

County Mean Agricultural Revenue $61.8M $39.4M $18.44M
County Mean Nutrition Expenditure $5.13M $5.13M $5.13M
Implied Average County Revenue Change $354,560 $52,038 $259,651
Implied Local Expenditure Share 6.9% 1.0% 5.0%
Implied Total Revenue Change $966M $138M $690M

Trend Controls
Year & District FEs
Observations 2,701 2,701 2,701
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses. Clustered standard errors at the county
level. Controls include county-specific trends and year and district fixed effects. County mean agricultural
revenue is the revenue across all relevant agricultural products in a county, while mean nutrition expenditures
is the total nutrition expenditures by schools in a county. Implied Average County Revenue Change is the first-
stage CEP coefficient times the average CEP share and the second stage coefficient, representing the increase
in local agricultural revenues associated with increasing numbers of free lunch students through with the CEP
across each county-year combination on average. Implied local expenditure share is the average proportion of
nutrition expenditures that appear to be recouped by farmers in the same county. Implied Total Revenue Change
is the total nutritional outlays over the entire sample ($13.8B) times the implied local expenditure share.
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Table B.35: Commodities Included in Each Agricultural Category

Main Categories Commodities
Animal Products Beef, Catfish, Chicken, Dairy, Eggs, Fishing, Pork
Fruits & Vegetables Apples, Banana Peppers, Barley, Bell Peppers, Blackber-

ries, Blueberries, Broccoli, Cabbage, Cantaloupe, Carrots,
Collards, Container Nursery, Corn, Cucumbers, Eggplant,
English Peas, Field Nursery, Green House, Grapes, Green
Onions, Hay, Honey Bees, Hot Peppers, Irish Potatoes,
Kale, Lettuce, Lima Beans, Mustard, Organics, Oats, Okra,
Onions, Peaches, Peanuts, Pecans, Pole Beans, Pumpkin,
Rye, Snap Beans, Sorghum, Southern Peas, Soybeans,
Spinach, Strawberries, Sweet Corn, Tomato, Turnip Greens,
Turnip Roots, Watermelon, Winter Squash, Yellow Squash,
Zucchini

Agrotourism Corn Maze, Guide Services, Hayrides, School tours, Spe-
cial Attractions, Special Events

Other Other , Silage, Pine Straw, Straw, Turfgrass
Placebo Commodities Timber, Camping, Christmas Trees, Cotton, Hunting

Leases, Tobacco
Unused Commodities Horses, Wildlife Observation, Goats, Quail, Sheep
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Table B.36: Golden Radish Application Information 2014-2018

Mean SD % Missing
Days Local 118.2 (67.97) 70.55
Local Meals 1110443.7 (1890232.2) 70.74
Taste Tests 134.1 (590.8) 72.09
Farmer Field Trips 13.75 (21.75) 72.75
Local Food Promotions 112.0 (321.1) 71.32
Local Food Lessons 97.21 (408.3) 73.41
Schools with Gardens 12.73 (19.51) 71.65
Food Activities 50.99 (138.3) 73.74
Activities with Committee Members 24.27 (51.85) 73.19
Professional Development Trainings 16.94 (110.7) 73.41
Golden Radish Awards 197 -
Year-District Observations 910

Mean coefficients reported; standard deviations in parentheses.
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Table B.37: Community Eligibility Provision Predicts Nutrition Expenditures 2001-2017
(1) (2) (3) (4) (5)

CEP Students 80.88**
(2.18)

Marginal CEP Students 1385.4**
(2.17)

Marginal FtS CEP Students 1989.7*
(1.84)

% Marginal CEP Students 3068731.1***
(4.37)

% Marginal FtS CEP Students 7427600.5***
(2.91)

Implied ∆ Expenditures 8.3M 77.5M 49.7M 36M 20.7M
R2 0.704 0.699 0.700 0.693 0.693
N 2,669 2,669 2,669 2,669 2,669

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. T-statistics in parentheses. Year and county fixed effects included in
all models. Clustered standard errors at the county level. Time-varying control variables include the total
number of students in each district. CEPStudents is the total number of students at CEP-participating schools
in county i in year t. MarginalCEPStudents is the number of students induced into free lunch status by CEP
participation in county i in year t. MarginalFtSCEPStudents is the number of students induced into free lunch
status by CEP participation in county i in year t, where county i has school districts that participate in the farm-
to-school program. %MarginalCEPStudents is the share of students induced into free lunch status in county i
in year t. %MarginalFtSCEPStudents is the share of students induced into free lunch status in farm-to-school-
participating schools in county i in year t. Implied ∆ Expenditures is the estimated change in county nutrition
expenditures associated with the coefficients of interest in each model, where the implied change in expenditures
is calculated by multiplying the point estimate times the all-sample total of the dependent variables. For example,
8.3M in column (1) was calculated by multiplying 80 times the total number of students in CEP participating
schools in the sample, which is 102,734.
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H. Soll-Johanning, E. Bach, J. H. Olsen, and F. Tüchsen. Cancer incidence in urban bus drivers and

tramway employees: A retrospective cohort study. Occupational and Environmental Medicine,

55(9):594–598, 1998. ISSN 13510711, 14707926. URL http://www.jstor.org/stable/27730988.

E. Stets, C. Lee, D. Lytle, and M. Schock. Increasing chloride in rivers of the conterminous u.s. and

166

https://www.urban.org/sites/default/files/publication/33321/1001455-The-Impact-of-Teacher-Experience.PDF
https://www.urban.org/sites/default/files/publication/33321/1001455-The-Impact-of-Teacher-Experience.PDF
https://www.ahajournals.org/doi/abs/10.1161/CIR.0000000000000461
https://www.ahajournals.org/doi/abs/10.1161/CIR.0000000000000461
http://www.jstor.org/stable/3429030
https://www.osti.gov/biblio/6808456-corrosion-manual-internal-corrosion-water-distribution-systems
https://www.osti.gov/biblio/6808456-corrosion-manual-internal-corrosion-water-distribution-systems
http://www.jstor.org/stable/27730988


linkages to potential corrosivity and lead action level exceedances in drinking water. 613-614:

1498–1509, 2012. URL https://pubs.er.usgs.gov/publication/70200036.

T. Stevens, W. Cheng, I. Jaspers, and M. Madden. Effect of short-term exposure to diesel exhaust

particles and carboxylic acids on mitochondrial membrane disruption in airway epithelial cells.

181:A1031–A1031, 05 2010.

J. Sunyer, M. Esnaola, M. Alvarez-Pedrerol, J. Forns, I. Rivas, M. López-Vicente, E. Suades-
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Appendix D

Vita

Wes Austin was born in Atlanta, Georgia, in 1990. In high school, he captained his academic

team to victory in a televised trivia tournament known as High Q. After graduating in the midst of

the Great Recession, Austin decided to study Economics and History at the University of Georgia

to better understand the forces that drive economic inequality and recessions. He was fortunate

to spend a summer abroad in Montpellier, France, acquiring a minor in French. He also elected

to take many advanced mathematics and statistics courses in preparation for graduate studies in

economics, all while working part-time as a dishwasher and prep cook. After graduating cum laude

from the University of Georgia, he continued to work in kitchens in Athens, Georgia, for another

year. During long kitchen shifts, he sought inspiration from audiobooks. Eventually, he returned

to his hometown to pursue a PhD in Economics from Georgia State University’s Andrew Young

School of Policy Studies. In his application statement of purpose, Austin described his research

interests in environmental justice, wealth inequality, and urban studies. During his time at the

Andrew Young School, Austin interned as a research assistant in the nearby State Charter Schools

Commission of Georgia. For his efforts, he was rewarded with a prestigious university fellowship

and graduate assistantship with Professor Tim Sass. In this role, he provided assistance on three

major education policy research projects. One project assessed the effects of a social emotional

learning experiment. Another investigated the role of principals in student achievement. The
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last project estimated the relationship between school district value added and community upward

mobility. Meanwhile, Austin was highly active in research labs in the Andrew Young School. He

worked as a research assistant for the Urban Studies Institute surveying local urban farms to help

create a geographic database of urban food suppliers. He also performed essential research tasks

for Georgia Policy Labs, where he worked from its inception. In his own research, Austin remained

committed to expanding our understanding of environmental justice. He published one study with

Garth Heutel and Dan Kreisman examining how school bus diesel emissions affect student health

and cognitive performance. The primary chapter of his dissertation explores how coal combustion

residuals, the most common industrial water pollutant, impact local water supplies and fetal health.

Lastly, understanding the intersection of research and teaching, Austin dedicated substantial energy

to instructing introductory macroeconomics and masters level data science courses to the highly

diverse student body of Georgia State University. In his own time, Austin enjoys reading, playing

guitar, outdoor foraging, cooking enchiladas, talking about nutrition, and pretending that growing

out his beard is a new look. Austin plans to continue his research in the National Center for

Environmental Economics at EPA Headquarters in Washington, DC.
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