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Telomeres, which form the ends of chromosomes
in eukaryotic organisms, have a number of important
functions from protection of the chromosome ends
from degradation to processes in the expression of
some genes, as well as roles in protection of cells
from aging due to loss of DNA in replication and in
cancer development [1–4]. The human telomere
starts at the ends of chromosomal DNA with the
repeat duplex sequence 5 ′ - (TTAGGG)-3 ′
5′-(CCCTAA)-3′ and moves to a single-stranded,
terminal 3′ overhang of the G-rich strand. It has been
known for quite some time that G nucleotides and
G-rich sequences can associate into planar tetrads
that are stabilized by tetrad stacking, multiple
H-bonds and cation interactions (Fig. 1a) [5,6]. The
tetrad structure creates a central hole that is lined by
four oxygen atoms to form an excellent macrocyclic
receptor for K+ ions. Sodium ions and other cations
can also fill the hole, but K+ has the optimum
properties and generally provides the highest stabil-
ity [7–9]. There are a number of different conforma-
tional possibilities for telomere sequences, and two
important examples, found experimentally, are
shown in Fig. 1. Some of the more important features
of the folded states include strand directionality,
parallel or antiparallel, whether the bases are syn or
anti, and the connecting TTA loop arrangements [8–
12].
Wang and Patel determined a structure of a single

G-rich strand of the human telomere, 5 ′-d
[AGGG(TTAGGG)3], (Htelo) in Na+ solution by
using NMR and molecular dynamics methods
(Fig. 1b) [11]. The structure has three stacked
G-tetrads, as expected from the GGG repeats,
which are formed through folding of the single
strand. The strands in the Na+ structure are
connected into an antiparallel folding pattern by
folding with two lateral loops and one central TTA

loop. This structure creates four grooves, one wide,
two medium and one narrow. The G nucleotides
have both syn and anti orientations. Neidle and
coworkers.[12] solved an X-ray crystal structure of
the Htelo sequence by crystallization from K+ media
in polyethylene glycol and found a very different
structure (Fig. 1c) [12]. In the K+ crystal structure, all
four DNA strands are parallel with the three linking
TTA-connecting sequences oriented in chain-rever-
sal loops along the exterior of the tetrad stack. This
gives the structure a propeller-type appearance
when viewed from the top. As in the Na+ structure,
the G-tetrads are stacked and stabilized by π–π
interactions, H-bonds and cation complexes. All G
nucleotides in this structure are in the anti confor-
mation, and the stacking pattern results in four
almost equivalent grooves. These two very different
structures for Htelo suggested environment-depen-
dent polymorphism of the structures formed from
this sequence [11–15].
Detailed analysis of the solution structure of Htelo in

K+ solution revealed a mixture of structures and
confirmed the polymorphic possibilities of the Htelo
sequence [9,14–18]. Through modification of the
terminal nucleotides, it has been possible to isolate
different single species from the polymorphic ensem-
ble in solution and to determine their structural details
by NMR [16–18]. Interestingly, hybrid structures that
have both parallel and antiparallel strands are a
common observation [19,20]. Two related structures
of particular interest have been referred to asHybrid-1
and Hybrid-2, and their folding patterns are shown in
Fig. 2. As can be seen, both of these have three
parallel strands and one antiparallel strand that are
connected by two lateral loops and one chain-reversal
loop. The two structures are stabilized by different
terminal stacking nucleotides and have the strand
orientations and loops in different positions.
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In addition to the structures of Htelo, a functionally
very important and interesting question is how does
the G-rich Htelo sequence fold from the open
stranded into the quadruplex conformation [19]?
Protein folding has been a topic of intense interest
and research for over 50 years, and more recently,
the folding mechanisms of complex RNA 3′ struc-
tures have attracted interest. DNA duplex formation
has been less extensively studied, but with the
increasing evidence that complex DNA structures,
such as the quadruplex, exist in cells and have
important functions in both normal and diseased
cells [21], the question of how these structures fold,
as well as the kinetics of folding, has taken on
greater significance. The Sugiyama laboratory [20]
performed extensive molecular dynamic simulations
to model possible quadruplex folding pathways and
were the first to propose a triple-helix intermediate,
but those models were not experimentally tested
until now.
In the Journal of Molecular Biology [19], the authors

have used three different, powerful spectroscopic

probes, circular dichroism, FRET (fluorescence
resonance energy transfer) and 2AP (2-arninopur-
ine) fluorescence changes, to monitor Htelo folding
in the most detailed study to date [19]. The
advantage of using these three is that eachmonitors
a structurally different aspect of Htelo folding. CD
primarily monitors global quadruplex folding since it
is most sensitive to stacking of the G-tetrads.
Different quadruplexes, as well as DNA duplexes
and triplexes, usually have different CD spectra that
provide patterns for their recognition in solution [22].
The FRET signals arise from interaction of probes at
the 5′ and 3′ ends of the G-rich sequence and
monitor the distance between the two ends [23].
Fluorescence from 2AP arises from replacement of
an A base in the quadruplex TTA loops, and
fluorescence from this group can provide a monitor
of folding of each loop [24]. With these probes, the
authors were able to monitor the kinetics of folding at
both the global level and at specific sites. They used
three DNA sequences, the d[AGGG(TTAGGG)3]
natural sequence (Tel22), and the two hybrid

Fig. 1. Structures for (a) a G-quadruplex tetrad interaction, (b) a basket-type intramolecular G-quadruplex found in Na+

solution [11] and (c) a propeller-type parallel-stranded intramolecular G-quadruplex found in the presence of K+ in the
crystalline state [12].

Fig. 2. Schematic outline of folding topologies of the Hybrid-1 (a) and Hybrid-2 (b) intramolecular human telomere
G-quadruplexes in K+ solution.
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sequences found by NMR analysis to give primarily
single structures (Fig. 2), to follow Htelo folding.
Interestingly, in spite of their simpler, ensemble of

structures, Hybrid-1 and Hybrid-2 follow a similar
complex folding pathway to the natural sequence.
Folding of all these sequences, which can be
induced by adding K+ to U, appears to follow a
multistep mechanism that requires at least three
intermediates (Scheme 1): where U represents
unfolded oligonucleotide conformers; I1, I2 and I3
are folding intermediates and F is the final folded
state or ensemble of states. By using the spectro-
scopic methods described above along with SVD
(single value decomposition) analysis, the authors
have been able not only to define the number of
species but also to propose structures for each
intermediate that fit well into what we know about
DNA duplex and quadruplex folding in general.
The first intermediate, I1, forms very rapidly and is

proposed to be dominated by hairpin conformations
formed by folding of the G-rich strand to allow G–G
interactions that are relatively weak and dynamic
(Fig. 3). The I2 folded state forms next, in under 10 s,
but the authors were able to obtain a CD spectrum
for I2 by conducting short-time (2 s) CD kinetics
studies as a function of wavelength. This intermedi-
ate spectrum is very informative and is characteristic
of an antiparallel structure, such as the Na+ structure
in Fig. 1, but the precise conformation cannot be
defined by CD. It seems likely that the state is an
ensemble of antiparallel structures.
The steps in conversion of I2 → I3 → F are

significantly slower and, as a result, can be
evaluated by manual mixing of U with K+. CD
spectra were collected after the initial 10-s folding up
to 104 s. SVD and fitting analyses in this time region

gave a time constant of ~3700 s for I2 → I3 and a
faster final folding of I3 → F with a time constant of
~160 s. From SVD analysis, the significant spectral
species could be associated with the most likely
structure for each intermediate. As noted above, I2 is
likely an antiparallel G4 structure while the SVD
results suggest that I3 is most likely a triple-helix
conformation that folds into the final hybrid confor-
mation in K+ (Figs. 3 and 12 in Ref. [19]).
Kinetic results monitored by FRET and by replac-

ing the 5′ A and the A in each of the three loops with
2AP support the complex kinetic Scheme 1 pro-
posed from CD experiments as well as the proposed
structures. All of these methods share relaxation
times of ~0.2, 21 and 1300 s. The unfolded state
gives an ensemble of dynamic hairpin duplexes that
can fold in a direct manner into antiparallel quad-
ruplex structures (such as the “chair” conformation in
Fig. 3). Although the antiparallel conformation
cannot be exactly specified, the chair conformation
seems most likely since such structures can be
formed by simple folding of initial hairpins. Opening
of the chair from either the 5′ or the 3′ end can give
the proposed triple-helical structures. The triple
helices allow refolding into the alternative orienta-
tions of either Hybrid-1 or Hybrid-2 [19]. Opening of
the relatively stable antiparallel structure (I2) to give
the triple helix has high activation energy and
represents a significant kinetic barrier to formation
of the final folded hybrid quadruplex. The anti–syn
conversions of some nucleotides required for the
final structures are also analogous to the cis–trans
proline conversions required in folding of some
proteins. The unfolding of the hybrid quadruplex
structures was followed by trapping the unfolded
state with the complementary C-rich strand since
formation of the trapped duplex is faster than
unfolding of the quadruplex F state. Complex,
multiphasic kinetics was also observed in unfolding
and generally supports the proposed mechanism in
Scheme 1 and Fig. 3.
To test their proposed conformational scheme, the

authors conducted constrained simulation studies of
the folding process and they present movies of the
folding process in Supplementary Materials [19].

Scheme 1. Folding pathway to the final structure (F) of
the human telomere quadruplex in solution.

Fig. 3. Proposed folding mechanisms for the formation of the human telomere G-quadruplex.
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These simulations provide strong support for the
proposed conformational conversions and give very
useful visual assistance in understanding the possi-
ble folding steps in the kinetic pathway to the final
quadruplex. It will be of great interest to conduct
similar detailed kinetics studies on DNA quadru-
plexes of different structure from Htelo.
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