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Abstract—Many online chat applications live in a grey area
between the legitimate web and the dark net. The Telegram
network in particular can aid criminal activities. Telegram hosts
“chats” which consist of varied conversations and advertisements.
These chats take place among automated “bots” and human
users. Classifying legitimate activity from illegitimate activity
can aid law enforcement in finding criminals. Social network
analysis of Telegram chats presents a difficult problem. Users can
change their username or create new accounts. Users involved
in criminal activity often do this to obscure their identity.
This makes establishing the unique identity behind a given
username challenging. Thus we explored classifying users from
their language usage in their chat messages.

The volume and velocity of Telegram chat data place it well
within the domain of big data. Machine learning and natural
language processing (NLP) tools are necessary to classify this
chat data. We developed NLP tools for classifying users and
the chat group to which their messages belong. We found that
legitimate and illegitimate chat groups could be classified with
high accuracy. We also were able to classify bots, humans, and
advertisements within conversations.

Index Terms—Telegram, Criminal Networks, Statistical Mod-
eling, Machine Learning, Doc2Vec, TF-IDF

I. INTRODUCTION

Telegram is a social networking service comparable to but
distinct from Twitter. Users of Telegram are semi-anonymous.
This anonymity can conceal criminal activities. Examples
include identity fraud, drug trade, bank fraud, and animal
cruelty. Users also engage in innocuous activity such as Python
programming discussions. Unique identification of a user en-
ables attribution of message content to that user. This enables
the discovery of relationships between different activities. User
identification and relationship discovery are important efforts
in criminology and sociology. This paper applies statistical
learning and natural language processing techniques. These
are used to create efficient tools for user attribution.

This paper aims to develop efficient approaches to identify
high-information words in a corpus of text. This allows the
separation of one set of text from another with the aim
of attributing authorship and general purpose to the texts.
The goal of this work is to attribute authorship and group
membership rather than to interpret the meaning of the text.
Therefore it is important to preserve the idiomatic nature of
the texts.

The classic methodology for designing such an NLP classi-
fier is to clean the data for English, create a word dictionary,
convert the sentences to one-hot vectors to use a word and
a sentence embedding strategy and vectorize text, and use a
classifier to classify the texts. Instead, we bypass the embed-
ding by choosing the relatively high information words and
creating a feature dictionary with these. We then use binary
classification directly on the count hot vectors created by this
dictionary. Moreover, the only data cleaning we use here is
to replace non-alphanumeric characters by blank spaces and
remove stranded/single characters (i.e. words of length 1). We
do not remove any words besides these.

We list our contributions as following: implementing a
novel word selection strategy that makes for better features,
and hence in turn simplifies the classification pipeline for
two text classes. Through this strategy, we can handle much
larger volume of test data to be classified by processing the
heterogeneous text data in near real time.

A. Criminology

Previous work by criminologists has shown that dark net
users choose encrypted platforms such as Telegram, Signal,
and Jabber for communicating with each other [1]. Telegram
is a Russian individual and group messaging service that was
founded in 2013. The servers hosting the Telegram service are
based in the Middle East. As such it is difficult or impossible
for U.S. and Western prosecutors to acquire server-side chat
records. While the majority of users are engaged in entirely
lawful activities a growing criminal element has taken root. We
use the term “opaque” to describe these activities, where users
deliberately obfuscate their identities to hide their activities.

Individual groups set up their own channels or chat rooms
to deal in their area of expertise. Other groups establish
exchanges where services and products may be bartered, for
example “sim farms” to fake credentials [2]. User reputation
is critical for establishing connections and sales [3]. Therefore
establishing computational tools that can track users and their
social networks is important [4]. There exists a great deal of
overlap between groups, with individual criminals active in
multiple groups at any given time as well as the more formal
dark web markets.



Within these illicit networks there exists criminal jargon
which is unique to the type of crime being committed. Our
work focuses on financial and white-collar crime. Thus we
frequently see terms like “fullz” (credit card information), or
“dumps” (personally identifiable information). These terms are
directly related to the types of financial crime being committed
in any given group chat.

B. Telegram Scraping Approaches

Telegram is accessible both through a traditional web
browser interface and through their mobile app. An Appli-
cation Programming Interface (API) is available, however its
use is mostly restricted to Telegram-approved bots. The data
were scraped by logging into each group and downloading the
HTML formatted history of the group chat. The HTML was
then parsed as described in section IV-C.

C. Telegram Language

The Telegram data differ from most text data sets in
two important ways. First it is highly idiomatic, where the
idiomatic language varies from group to group. Second, the
messages tend to be short, which raises sampling issues where
keywords are missed in a small sample, when the messages
are analyzed.

Individual groups employ their own slang, lingo, or cryp-
tolect when they communicate amongst themselves. This is
both a measure of inclusion or group membership and a
reflection of individual linguistic idiosyncrasies. Groups also
can employ their own cryptolect, words, and phrases unique to
their criminal activities to intentionally cloak themselves from
inspection [5], [6]. “Thieves cant” and Cockney rhyming slang
are classic examples of this linguistic process. Traditional NLP
approaches, like Word2Vec and Doc2Vec [7], [8], indicate that
these terms would be the most feature rich. However many of
these methods are based on large, clean data sets of standard
English, such as newspaper articles or literary works which
limits their applicability with non-standard English.

Telegram messages are typically short with respect to the
total vocabulary used in a channel. The short message length
gives rise to the issue of sample selection. In terms of
short sentences most NLP research has focused on sentiment
analysis, often using Twitter data [9], [10], [11]. Each message
takes a sample of the total vocabulary. When a subset of
the words is used in machine learning as a set of features
to identify a message source, the messages may not have
instances of each member of the feature set. These zeros are
relatively non-informative and lead to errors in the machine
learning. In our ad detection we found that messages above
a certain length, about 200 words, were all but guaranteed to
be ad spam. Since the fraction of words chosen is an arbitrary
and adjustable parameter, we chose to use 1%, 5%, 10%, 50%
percentiles to select words. 50% corresponds to all the words
in the corpus. The accuracy, shown in Table I, improves as
a larger subset of the words is used because the expected
sampling follows Bernoulli statistics.

II. EXISTING TEXT TO VECTOR TRANSFORMATION
METHODS

A. Word2Vec

Word2Vec is a commonly used method for encoding text
for machine learning [7]. In most cases it works better than
the earlier bag of words (BOW) approach [12]. However, in
the case of small idiomatic vocabularies, the differential in
performance is not obvious. Word2Vec can be described as a
bag of sacks of words, where each sack contains words that
are related to each and describe some concept or idea. When
the size of the vocabulary is large, these sacks represent the
redundancy in the language. For example, a sack might contain
“dog, hound, dogz, dogs, hounds, ..., retriever” which are
clearly related. This advantage disappears when the vocabulary
is small. Word2Vec will converge to either a small number of
sacks, where each sack contains most of the vocabulary, or to
a large number of sacks where each sack only contains one or
two words. In either case the additional information stored in
the features is minimal, but the training of Word2Vec could
select the most informative set of words.

Instead we decided to use a version of the BOW approach
where information theory is used to identify the interesting
words. This is admittedly an approximation to the Word2Vec
solution with a small vocabulary, but nonetheless useful.
Similar, albeit far more complicated approaches, have been
used when implementing bag of features (BOF) approaches
to image classification and recall [13]. The difference in
complexity is due to the requirement of defining regions in
image problems, while in this work the regions are simply
the words in the text. The “informed bag of words” defines a
set of features which references the content of the document
and corresponds to the words that used the most differently
between the two sources. While we did not implement it for
this work, the approach is readily extended to phrases and
word patterns.

B. Informed Bag of Words

The derivation of Informed Bag of Words (IBOW) starts
from the word frequencies in the data. Let p and q be fre-
quencies or distributions and classes be the number of kinds
of objects. The Kullbeck-Leibler divergence

∑
classes plog(

p
q )

defines an information distance between p and q. A sum like
this is relatively useless for machine learning because it does
not identify individual words that can be used as features.
Instead we select individual objects, i, where pilog(pi

qi
) is large

relative to other members of the set of objects. These items will
be both relatively high probability and more likely in p than in
q. We refer to these as interesting objects. Similarly qilog( qipi

)
will be large when q is interesting. If we select objects that are
the extremes of the two-tailed divergence pilog(pi

qi
)−qilog( qipi

)
then we have a set of objects that maximizes the difference
between p and q. As both qi and pi must be non-zero in this
equation, IBOW works on the intersection of the two data sets.



III. RELATED WORK

The dark web and the social networks used for coordination
of criminal activities spans many platforms. Research into
these networks combines many disciplines. To the best of our
knowledge, no research using the techniques we detail in this
paper exists. Thus, we provide a broad overview of the current
literature that is most relevant to our work.

In [14], Ghosh et al. present a system called Automated
Tool for Onion Labeling (ATOL). This system crawls the
Tor network to find hidden “onion” web sites to build a
corpus of keywords related to criminal activity. The system
can then automatically classify the hidden web sites using
Term Frequency Inverse Corpus Frequency (TFICF) and a
clustering technique similar to k-Means. The clusters are used
for “thematic labeling” of the content of web sites. The themes
can be thought of as the overall topic of the web site for which
search keywords can be used.

In [15], Tavabi et al. study a large corpus of messages posted
to 80 deep and dark web (d2web) forums over a period of more
than a year. The study shows how the patterns of discussion
evolve and how many forums show similarities in content.
Hidden Markov Models (HMM) are used to find latent states
between forums. The HMM model also allows for modeling
the volatility of the forum content. This is important since the
content of the forum may change over time. This could cause
the forum to appear to no longer be criminal in nature while
still aiding criminal activity.

In [16], Bhalerao et al. propose a graph-based model
to discover criminal supply chains. The supply chains are
discovered from the English-language “Hack” forums and
Russian-language “Antichat” forums. The focus of the paper
is commercial postings (similar to the advertisement postings
in this paper). An interaction graph of forum activity is built.
The graph is defined as G = (U,E), where each node u ∈ U
is a user who posts on the forum, and each edge (ua, ub) ∈ E
indicates that user ua sold a product to user ub. Forum words
are vectorized into their importance ranking using the term-
frequency inverse document-frequency (TF-IDF) algorithm.
Several classifiers are used for the detection of supply chains.

Finally, in [17], a machine learning model is proposed to
classify posts on the Instagram social network related to illegal
Internet drug dealing. The authors scrape three months of data
from the Instagram web site. A word frequency dictionary
is built and used to vectorize the data. Machine learning is
applied using a decision tree, random forest, support vector
machine, and a LSTM-based deep learning model. Good
performance is obtained with all four models.

IV. METHODS

A. The Telegram Environment

Although there is no official listing of the most popular
Telegram channels and bots, there are several online tools that
claim to find Telegram groups and channels [18], [19], [20],
[21], [22], [23]. Telegram chat rooms come in two flavors:
channels, primarily used for broadcasting admin approved ads

or listings, and groups, primarily used for social interactions
or chats. We focused on analyzing groups with no or minimal
user restrictions on posting, and open to the public, because
they provide the stability of tracking them, and have a fair
sample of the actors involved in the topic.

These groups organically emerge primarily in two ways:
either a virtually well connected person forms them, and
invites many of the contacts to join them, or a group of
like-minded people who got introduced to each other through
common groups form their own group where they have tar-
geted discussions. The participating actors in these groups
mostly do not have physical social ties, their purpose of
interactions is to either buy, sale or discuss about goods that
are considered illegal to trade in most of the countries. Hence,
we found that the types of the messages in these groups could
be segregated into two main categories: messages that are
intended to either look for or sale specific goods/skill sets
– “listings”, and the rest of the messages – “non listings”.
We found that the English used in both the types differs
significantly. Listings tended to be better phrased and richer in
non-alphabetic characters. The non-listings contained English
words phrased in non-traditional ways and were shorter in
length. However, these Telegram messages differ from popular
English used in English speaking countries significantly. This
may be because English is not the primary language of most
users.

B. Telegram group selection and network expansion

In order to test our methodology, we picked 100 groups
discussing financial fraud ranging from cryptocurrency scams,
gift card scams, online service scams, stolen credit card
information, and so on. These groups may also contain other
types of fraud, but the common intersections of these groups
is discussion and information pertaining to financial fraud.

The primary way to search for public groups on Telegram
is through its native search feature where a key word search
renders up-to 3 groups/users/channels if the keyword is a part
of the entity’s username string. Since our goal is to understand
the groups related to the broad topic of online money scams,
we started with getting 5 groups by searching the keywords
such as “fullz” , “dumps” and “CVV”. The criteria of picking
and expanding on these seed groups was to make sure that
the groups had at-least 50 members, had at least a page of
recent English messages, had a public Telegram URL and any
member was able to post in the group, and the chat histories
of which were accessible form the start of the group.

The only way to advertise about Telegram groups is to post
the group links in relevant groups where people can join these
groups. Hence, after picking the seeds, we searched for unique
recent links of other groups that were posted in these groups
and successively kept joining these groups until we hit a link
that was not valid. We repeated this process with breadth first
search strategy.

Despite of automated tools such as Telegram APIs for a
network crawl, we stuck to manual crawling of new groups
because we wanted a fair sample of the network, where we



refrained joining groups that were posted by a single person
in the same group, and did a quick sanity check for users
that were recently online and were part of this group, and that
the group had indeed relevant messages pertaining to financial
frauds. Since our goal was to obtain representative groups
across the number of members, balance of posts being all
listings to all non-listings, and most of the messages being
posted by admins to most of the messages being posted in
coherent threads by various people, though we crawled 500+
groups in this process, we only included the ones that would
pass these goodness criteria. Upon joining the group, we
manually downloaded the chat history of these groups.

C. Data Preparation

In Telegram messenger’s chat history, each user’s message
is saved as an HTML tag with a unique id. However, if a
user posts consecutive messages within a few minutes and
without any other user posting a message in between, their
second and later messages are appended to their first message.
We observed that in most cases, when the the text of the
first message is merged chronologically with the texts of its
appended messages and considered as a single message block,
it conveys a complete sentiment or message in contrast to
considering the texts of each of these messages as independent
message blocks. Hence, we define a unit message block to
be the chronologically ordered texts of a message and its
appended messages.

In Telegram chatroom history exports, the users are iden-
tified by their non-unique username, and hence we cannot
tell the difference between two users with the same user-
name. Hence, for the purpose of this study, we only consider
the message block texts as reliable features and ignore all
other information from the HTML files. We parsed each
group for message block texts. Besides ASCII characters,
these messages contain a large variety of UTF-8 and UTF-
16 characters, including emojis. However, we focus only on
English characters. We cleaned the message text by converting
to lower case, replacing non-alphabetic characters by spaces
and removing single letter words. For each group, we reserved
1/3rd of messages for testing and hence splitting each groups
into 2:1 train:test split by picking message indices randomly,
so that the chronological order of the messages becomes
insignificant. We then build word counters of each group’s
training data where we define a word to be space separated set
of alphabetic characters. We conclude our data preparation by
constructing word Python dictionaries (or hash-tables) which
we use to build our models.

By comparing the sizes of train data sets we noticed a
huge size imbalance in many cases, and we observed skewed
learning in training a binary classifier on training data sets
outside of 5 fold range of each-other, hence we only compare
the groups whose train data sets are within 5 folds of one
another as a preventing measure for skewed learning.

We created/labeled five additional data sets to model ques-
tions where NLP techniques are likely to be useful. These
questions include distinguishing between bots and normal

users, isolating listings, telling legitimate from illicit groups,
and distinguishing between different social network agents.

1) bot data set: Bots or chatbots are Telegram accounts that
are capable of performing specific administrative tasks, such as
printing a welcome message upon joining, printing the user’s
name change history, getting the Telegram userid, or noting the
missing username, periodically posting a message on behalf
of admin, removing users if they post specific keywords etc.
Many groups in our data set use bots for a variety of tasks.
In order to identify if the message was posted by a bot, we
extracted 2664 messages posted by users 19 users among 13
groups that humans identified as bots.

2) listings data set: In order to test if our classifiers
distinguish listings [needs to be defined previously] from
messages, we created a listings data set comprised of adverts
for exchanging illegal goods and services. We did so by adding
58179 message blocks – a month’s data from a group classified
by humans as ”listings only” group.

3) legitimate data set: In order to test if our classifiers
could identify the illicit groups form legitimate groups, we
identified a group that discussed constructs of Python pro-
gramming language and used its 2,2582 most recent message
blocks as our legitimate data set.

4) conversation data set: In order to test if our classifiers
could differentiate between conversations and a mix of conver-
sations and listings, we identified a group with 2664 message
blocks whose purpose was to discuss how-tos for network
attacks, and used it as conversation data set.

5) twitter data set: We wanted to measure how the lan-
guage of Telegram differs from that of the contemporary
popular English. In particular, can our models distinguish
between current twitter English and Telegram English? In
order to test this, we picked English tweets for a random day
in past 1 year and randomized the tweets to create this data
set.

D. Language Model

In order to evaluate the language model, we defined a series
of test systems. The first and primary test was to see if the
model could discriminate between one Telegram channel and
another. Since we had identified and scraped 102 different
channels, this gives 5253 unique combinations of channels
which is enough to derive meaningful statistics for the quality
of the model. We evaluated pairs of channels to maintain
balanced or nearly balanced data sets. It typically took about
three hours of time to run five fold cross validation on all
unique pairs without GPU enhancement with a 1% percentile
cutoff for the words and twelve hours with 50% (which used
all the words).

The second test was to distinguish between regular human
users and bots or automatic users. We manually extracted bot
messages and compared them to random selections of human
messages.

The third test was to compare advertisements or listings
with conversational messages. We assayed this both by com-
paring channels that were almost entirely listings with normal



Fig. 1: A histogram of the relative entropy vs. count for the
Python group and an illicit group. The words shown are those
that are significant at the 1% percentile cutoff. The information
metric has clearly identified the difference between the two
groups. The red vertical line shows the median.

channels and extracting an “ad” data set and comparing that
with comparably sized random selections of conversations.

Fourth, we compared a Python programming channel, which
is a sample of non-criminal activity, with our “illicit” channels
to show that we could discriminate between licit and illicit
activity, and finally, we compared Telegram messages to
Twitter messages.

After creating word counters from the training data for each
of the data sets, we compared all groups among the same data-
length component of all the groups falling into 5 fold range of
the size of their training data. for the cases of legitimate, bots,
listings and twitter data set, we compared as many lines of the
smallest data set. Given two groups, the goal here is to identify
relatively high entropy words that make better features. In
order to achieve this goal, we paired all groups with other
unique groups and compared all the common words of the
pair by calculating relative entropies. We then picked 1, 5,
10, 50% of words on each end of the distribution generating
three lists of high entropy words. We used these words as the
dictionary words for encoding each message block, thereby
creating four different types of train-test vectors. For each pair
of groups, we then trained the same classifier with the same
hyper-parameters for each of these train vectors to compare
how much fluctuation in accuracy, precision, recall, sensitivity
or specificity, F1 score, and Matthew’s correlation coefficient
was observed.

E. Encoding Features

Embedding techniques like Word2Vec [7], Doc2Vec [8], and
Paragraph2Vec [24] project the words in a document onto a set
of vectors of similar words. Unfortunately, the small size and
idiomatic nature of the vocabulary in the Telegram messages
tends to obviate the advantage of this approach. The word
vectors would be much shorter than the 100 or so typically
used in Word2Vec to represent a single concept. Bots, for
example, often have a total vocabulary that is much smaller
than 100 words, so reducing them to typical Word2Vec sizes
is impractical at best. Similarly, consistent misspellings and

Fig. 2: A histogram of the accuracy vs. count for classifiers of
all distinct group pairs built with 10% percentile of the words.
As expected, it neatly follows a β distribution.

Fig. 3: A histogram of the Matthew’s correlation vs. count
for classifiers of all distinct group pairs built with 10% of the
words.

non-standard usage is characteristic of some of the Telegram
users. Consistent use of “ur” instead of “your” is a useful
feature for identifying a user or channel, which the vector of
words, alternate spellings, and synonyms in Word2Vec would
hide.

In order to vectorize the message blocks, we first take the
p=1, 5, or 10% words from the word-entropy distribution. We
use these words as dictionary, and construct ordered word-
count for this dictionary for each of the message blocks.
Hence, each message block is transformed to a 1×|D| vector
where |D| is the length of the dictionary. And if ith positions
of this vector is nonzero, say j, then this message block has
ith word in the word dictionary appear in it j many times.
The sparse number of words in the word dictionary assures
that most of the message blocks would correspond to zero
vectors, and hence the training matrix would be sparse. Also,
the smaller the p, the shorter the word-dictionary and the
sparser the training matrix.



F. Control Calculations

In order to measure the effectiveness of IBOW as a sentence
embedding, we compare IBOW with Doc2vec [24] sentence
embedding and TF-IDF [25], [26], [27]. For Doc2Vec we
treated each message block as a document and provided a
document id as the message block number. We ran Doc2Vec
with the gensim [28] library implementation with distributed
memory for 200 iterations, with linear decrease of learning
rate from 0.03 to 0.01 and vector size 52. We used sci-kit
learn’s [29] TfidfVectorizer with l2 normalization and without
a threshold to build the TF-IDF model in this study. Thus in
our study the TF-IDF model used far more features than the
IBOW model (see Figure 4).

G. Experimental Details

With word dictionaries for p = 1, 5, 10 and 50, we
vectorized training message blocks as ordered word counters
for each pair of the groups. To study the goodness of this
feature selection method, we train three different binary
classifiers for the same training vectors: logistic regression
and 1 layered artificial neural network (ann) capped by 200
iterations and adaboost with 100 solvers. For ann, we use
100 neurons with stochastic gradient decent and constant
learning rate 0.01. None of the hyper-parameters are tuned
for any specific group-pair, pr threshold values, rather, the
hyper-parameters are chosen to be smallest but generally
optimal for many groups. We conducted the experiments with
Python 3.7 on an 8core double-threaded i7 3.6GHz machine.
We used numpy 1.18 [30], [31] with random seed 0 to
process the data and scikit learn 0.23 [29] with random seed
0 to build the models. The Matthew’s correlation coefficient
is a good alternative to F1 scores and ROC curves [32] for
representing training quality. The accuracy and Matthew’s
Correlation coefficient are defined:

Accuracy =
TP + TN

TP + FN + TN + FP

MC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where TP is True Positive, TN is True Negative, FP is False
Positive, and FN is False Negative.

V. RESULTS

Our results are comparable with state of the art algorithms
on these data. Table I shows the mean and standard deviations
as a function of algorithm and percentile. Figure 1 shows an
example of the distribution of words for Python vs an illicit
group with respect to the relative entropy measure. Most of
the words near the median are not informative, and even the
1% percentile shows meaningful differences in the features.
It is clear from the words shown in Figure 1 that the Python
group is mostly concerned with helping solve programming
errors and the other group about credit cards. Figure 2 shows
the distribution of the accuracy and Figure 3 the Matthew’s

correlation coefficient when all groups are trained against
all other groups in the data with a 10% percentile with an
ANN. The TP rate vs FP rate is shown for a typical criminal
group in figure 7. This figure shows the effect of percentile
of data used on the reliability of the machine learning model.
In order to summarize the results, the histograms show the
counts over all 5253 unique pairs. The distributions follow
a β distribution, which expected for random errors when the
minimum and maximum values are constrained to a range.
Generally speaking there is not a large difference between
using the 10% percentile and the 50% percentile. Using more
data in the model, not unsurprisingly, improves the results, but
most of the improvement is seen early on.

The Figures 6, 9, and 11 show our the accuracy of our
results on different kinds of data. The corresponding Figures
8, 10, and 12 show the corresponding Matthew’s correlation
coefficient. Five-fold cross validation was run on many indi-
vidual runs and the figures show a histogram of the relevant
statistic. Since the choice of percentile cutoff is arbitrary each
row in the figures shows a different value of the percentile. As
expected, the distributions have less spread and move towards
the right as the fraction of data used is increased.

A. Comparison with TF-IDF and Doc2Vec

TF-IDF is based on a probabilistic model of word occur-
rence in text [27], [26]. There have been efforts to place it
on an information theoretical basis [25] and the information
theoretical basis resembles the IBOW approach. The major
difference between IBOW and TF-IDF is that TF-IDF uses
the Kullback-Leibler divergence for the probability of the
document given the word, while IBOW uses a two-tailed
Kullback-Leibler divergence for the relative probability of the
word in two sets of documents. In its classic formulation TF-
IDF identifies weights based on word frequencies corrected for
the frequency of the word in a set of documents. These weights
are then used as a linear discriminator for classification. As
such TF-IDF uses the union of the words in the total corpus
as a feature set unless a threshold is set. The threshold
corresponds to IBOW’s choice of percentile.

Comparison of the accuracy of IBOW with TF-IDF and
Doc2Vec is shown in Figure 5. Both TF-IDF and IBOW
are significantly better than Doc2Vec, and TF-IDF, as run,
is slightly better than our approach. That TF-IDF is better is
not surprising as TF-IDF uses far more features than IBOW
as shown in Figure 4. IBOW generates nearly the same
accuracy as TF-IDF with at least ten times less features which
shows that its linguistic model effectively captures the essential
feature of the conversation. Using so many more features to
receive a few percent better accuracy violates the economy
of features which is important for performance with big data.
Doc2Vec, in addition to being less accurate than either TF-
IDF or IBOW, is significantly slower and averages 20 or more
CPU minutes per trial where the other approaches use less
than a minute. These data are summarized over a large (1689
samples) and representative subset of the one group vs another
test set. The CPU requirements for Doc2Vec limited the size



Fig. 4: A histogram of the number of TF-IDF words divided
by the number of words in our approach. The data for the 10%
percentile in IBOW is shown.

Fig. 5: A histogram of relative accuracy of our method (10%
percentile). The upper panel shows IBOW-Doc2Vec and the
lower panel shows IBOW-TF-IDF. Positive numbers are where
IBOW is better.

of the test. The machine learning was done with Logistic
Regression to eliminate the effects due to differences tuning
meta-parameters in Adaboost and ANN.

B. Bot Detection

Bot messages vary between highly repetitive messages, such
as “Welcome to the group” and more complex messages where
the group administrator uses the bot to post an announcement.
However, even in the more complex messages, the language
is highly formatted and relatively rigid with respect to human-
based chats. The distributions shown in Figures 6 and 8
demonstrate that reasonable accuracies can be found even with
fairly small numbers of words (1% percentile). The Matthew’s
coefficient shows that using more words improves the balance
between FN and FP predictions.

C. Listing Detection

Listings or ads are less repetitive than bot messages. Since
they are written by members of the community they more diffi-

neural network.png

Fig. 6: A histogram of the cross-validated accuracy of the
deciding whether a message came from a bot or a human.
Each row shows the dependence on the percentile of the data
used.

Fig. 7: A scatter plot of a typical criminal group with respect
to other criminal groups. The data of 1, 5, 10 and 50 percentile
with false positive messages as x axis and true positive
messages as y axis, obtained by artificial neural network. The
figure shows that the reliability of the model increases as the
percentile of data is increased.

cult to distinguish from chats because the linguistic features of
a listing and a chat written by the same person will be highly
similar. Figure 9 shows the distribution of accuracy and it is
not as good as the bot example (Figure 6). The Matthew’s
correlation, Figure 10, shows a wider spread than that seen
with bots as well.

D. Group Comparisons

The overall comparison of groups, all 5253 pairs, is shown
in Figures 2 and 3. More interesting, from a sociological



neural network.png

Fig. 8: A histogram of the Matthew’s correlation coefficient of
the deciding whether a message came from a bot or a human.
Each row shows the dependence on the percentile of the data
used.

neural network.png

Fig. 9: A histogram of the cross-validated accuracy of the
deciding whether a message was a listing or a conversation.
Each row shows the dependence on the percentile of the data
used.

perspective is the accuracy at determining whether a group
was one centered on bank fraud or other illicit activity or one
centered on a normal activity. Since many of the Telegram
groups have misleading names, for example one on “puppies”
being images of dog-fighting, we chose a Python programming
group as a control set. We could quickly verify that the Python
group was on programming and not snakes. Another similar
control was to establish if a message came from Telegram or
the similar social networking site, Twitter.

1) Python vs. Illicit: Figure 1 shows the distribution of
words for Python vs a similar sized bank fraud chat group.

neural network.png

Fig. 10: A histogram of the Matthew’s correlation coefficient
of the deciding whether a message was a listing or a conver-
sation. Each row shows the dependence on the percentile of
the data used.

Interestingly, even at 1% percentile, the words show a human-
comprehensible difference. This demonstrates that IBOW can
be used to develop human comprehensible machine learning
models. The Python group, in addition to the word “Python”,
includes Python language terms (e.g. “self”, “list”) and words
that describe the kinds of conversations (“help”, “code”,
“error”). The words in the Python group are clearly literate
and avoid slang. The bank fraud group has distinctive slang
(“bro”, “lol”, “ur”), and content (“card”, “address”, “mac”).
The two groups also differ in their use of “low information”
words like “and”, “you”, “in”, and “ok”. Figure 11 shows
the distribution of the accuracy and Figure 12 distribution of
the Matthew’s coefficient for Python vs illicit chats. Again,
increasing the number of words has a larger effect on the
Matthew’s coefficient than the accuracy.

2) Twitter vs Telegram: Figure 13 shows the distribution
of accuracy when Twitter data were compared to Telegram
data. The quality of classification was much higher than with
Telegram vs Telegram, so we only present the 10% percentile
here. All tweets from a random day, September 23 2019, were
downloaded from twitter dumps. Tweets were selected that
were in English, more than two million, and processed in the
same manner as the Telegram data. Random balanced subsets
of the processed Twitter data were used to ensure that the
machine learning reflected the accuracy of the model rather
were due to imbalanced data.

VI. CONCLUSIONS

A. Summary

Our work shows that a relatively simple and economical
algorithm, based on a two-tailed Kullback-Leibler divergence,
determines a set of features that accurately classify short
idiomatic messages. The algorithm is economical both in
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Fig. 11: A histogram of the cross-validated accuracy of the
deciding whether a message came from a Python channel or an
illicit one. Each row shows the dependence on the percentile
of the data used.
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Fig. 12: A histogram of the Matthew’s correlation coefficient
of the deciding whether a message came from a Python
channel or an illicit one. Each row shows the dependence on
the percentile of the data used.

Fig. 13: A histogram of the cross-validated accuracy of the
deciding whether a message came from a Telegram channel
or Twitter. The 10% percentile was used for this figure.

memory use and computer processing time, which makes it
eminently suitable for big data problems.

We successfully classified the originating group of 5,253
pairs of Telegram chats, distinguished bot messages from hu-
man ones, identified listings or advertisements, and identified
human comprehensible differences between illicit conversa-
tions and Python programming conversations. Our approach
also could identify the difference between social networking
entities, distinguishing Twitter from Telegram. The approach
is considerably more accurate than embedding algorithms like
Doc2Vec on this kind of data. It is also much faster than
Doc2Vec. It is a little less accurate than TF-IDF, but uses
far fewer features.

B. Future Work

Future work includes extending the algorithm to handle
phrases and sets of words. This should improve the accuracy
while keeping the efficiency. However, it may require an
extra unsupervised machine learning step to extract the most
meaningful phrases much as is used in embedding algorithms.
Combinations of this approach with embedding, at least at the
word level, could be useful for larger and longer documents.
We could also explore the use of an “inverse document
frequency”, the IDF in TF-IDF, to improve accuracy. Finally,
the work should be extended to include non-literary features,
such as emojis and non-ASCII UTF-8 and UTF-16 characters.

Accuracy Matthew’s coefficient
logreg AdaBoost ANN logreg AdaBoost ANN

mean stdev mean stdev mean stdev mean stdev mean stdev mean stdev
p = 1 79.84 8.11 80.07 7.67 82.36 8.01 0.49 0.19 0.5 0.18 0.56 0.19
p = 5 84.46 7.09 83.94 7.02 86.84 6.75 0.62 0.16 0.61 0.16 0.68 0.15

p = 10 86.1 6.71 84.93 6.82 87.95 6.23 0.66 0.15 0.63 0.15 0.71 0.14
p = 50 87.94 6.22 87.94 6.22 89.15 5.84 0.7 0.14 0.65 0.15 0.74 0.13

TABLE I: The accuracy (in percentage) and Matthew’s correlation coefficient for Logistic Regression, Adaboost and ANN,
and percentiles of the data. The ANN is the best algorithm, but the difference is not large and within the observed variance.
The difference between 10% and 50% is small compared to the increase in the work required.
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