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             STATISTICAL GENETIC INTERVAL-VALUED TYPE-2 FUZZY SYSTEM  

                                  AND ITS APPLICATION 

                                                                     by  

       YU QIU 

          Under the Direction of Yanqing Zhang 

         ABSTRACT 

In recent years, the type-2 fuzzy sets theory has been used to model and minimize the effects of 

uncertainties in rule-base fuzzy logic system. In order to make the type-2 fuzzy logic system 

reasonable and reliable, a new simple and novel statistical method to decide interval-valued 

fuzzy membership functions and a new probability type reduced reasoning method for the 

interval-valued fuzzy logic system are proposed in this thesis. In order to optimize this particle 

system’s performance, we adopt genetic algorithm (GA) to adjust parameters. The applications 

for the new system are performed and results have shown that the developed method is more 

accurate and robust to design a reliable fuzzy logic system than type-1 method and the 

computation of our proposed method is more efficient. 

                                                      

INDEX WORDS: Interval-valued fuzzy logic, type-2 fuzzy logic, statistical interval-valued 

fuzzy reasoning, fuzzy control, genetic algorithm 
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                                                             CHAPTER 1 

                                                        INTRODUCTION 

 

 

            The fuzzy logic systems based on fuzzy sets are frequently used as Computational 

Intelligence (CI) tools and techniques after Zadeh first introduced fuzzy sets in 1965 [1]. In the 

real-world field like financial, engineering, life science, psychology etc. many systems’ 

information comes from two sources: “one source is human experts who describe their 

knowledge about system in natural languages; the other is sensory measurement and 

mathematical models that are derived according to physical laws.” [18]. The first sources are 

vague, ambiguous, imprecise and confused. The classical two-valued modeling (Boolean logic 

system) needs to be defined precisely. It can’t well solve these problems. Fuzzy logic systems 

provide more freedom to handle uncertainty and impreciseness. It incorporates human 

knowledge and thinking with numerical information.  With the rapid development of information 

technology, a wide variety of products or system in the area including decision-making, 

prediction, control, and pattern recognition employed the fuzzy system to perform a task.  

            Boolean logic defines a value either one or zero to each individual in a universal set.  

This can distinguish individual between members and nonmembers of a set. A fuzzy logic 

system is different with Boolean logic system. In order to indicate the membership grade of each 

element, Fuzzy set assigns a value of specified range [0, 1] to it in the universal set. In other 

word, the fuzzy set maps elements of a given universal set U into real numbers in [0, 1] by each 

membership function (MF). For example, 25 degree C temperature belongs to “hot” or “not hot” 

in Boolean system and it can’t be described as “little bit hot”, but in fuzzy logic system, we may 
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use a degree to describe it. Fuzzy linguistic values of fuzzy linguistic variables can be used to 

represent uncertainty in human natural language. For instance, “very cold”, “cold”, “mild”, “hot” 

can describe temperature of a day. The type-1 fuzzy membership functions are used by the type-

1 fuzzy logic systems (FLS). 

            Fuzzy logic system involves many human thinking which is so vague. Type-1 FLSs are 

unable to completely handle the vagueness. Their membership functions are often overly precise. 

Zadeh extended the concept of type-1 fuzzy set to type-2 fuzzy sets. Type-2 fuzzy sets introduce 

an additional dimension that represents grades of membership that are themselves fuzzy [3, 4, 5, 

10, 11, 12].                 

            Type-2 fuzzy logic systems that use antecedent or consequent membership functions are 

Type-2 fuzzy sets which were introduced by [3, 4] to deal with rule uncertainties. Liang and 

Mendel [6] present the theory to design interval type-2 FLSs for different kinds of fuzzifiers and 

applications. The interval-valued type-2 FLSs are the simplest type-2 FLSs. However, 

constructing a reasonable membership functions still is a very difficult problem, and another 

challenging problem is how to find an efficient inference method. Many researchers change 

different type-1 fuzzy membership function’s parameters to obtain interval-valued type-2 fuzzy 

sets [3, 6, 9]. These methods just consider unique probability for each element in an interval. In a 

real world, each element in an interval usually has different probabilities. For example, there are 

6 out of 10 people who agree to assign same degree to 60 year-old people. And 4 of them agree 

to assign other degree. This thesis aims to develop a novel theory to consider various 

probabilities and design a system that is based on interval-valued type-2 FLS to involve human 

activity and thinking.  
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            The first thrust of this thesis will be to develop a reasonable method to construct interval-

valued type-2 FLS membership functions after surveying different experts. Two procedures that 

apply linear regression and non-linear regression have been proposed for such construction.  

           The second thrust of this thesis will be to develop new statistical interval-valued fuzzy 

inference method by combining probability theory and fuzzy logic to make more reliable fuzzy 

reasoning after generating statistical membership function. The inference engine is an important 

part of FLS. For an interval-valued linguistic variable, we consider as many as values to perform 

reasoning.  

            The third thrust of this thesis will be to incorporate genetic algorithm (GA) and least 

square error into our methodology. These methods will be used to optimize parameters and 

improve the system performance.         

            The thesis is organized as follows. In Chapter 2 we focus on basic concepts and 

background of FLS. Then, compare type-1 and type-2 FLS and introduce related work. In 

Chapter 3, we introduce a new statistical method to generate membership function. Chapter 4 

illustrates the new probability-based fuzzy inference method. Chapter 5 describes the parameter 

optimization using genetic algorithm. In Chapter 6 we apply the techniques that we developed to 

do some simulation study. In Chapter 7 we summarize conclusions.  
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                                                             CHAPTER 2  

                                                 FUZZY LOGIC SYSTEMS 

 

            Since Zadeh first introduced fuzzy sets theory in 1965, the research and application for 

FLSs has been increasing, especially after it was successfully used in Japanese consumer 

products. In this chapter we give the review of fuzzy logic system. In Section 2.1, we introduce 

the basic concept for Type-1 FLSs. The extension of type-1 FLSs – type-2 FLS and one specific 

type-2 FLS are described in section 2.2 and section 2.3, respectively. 

 

 

                                                    2.1 Type-1 Fuzzy Logic Systems                

            What are fuzzy systems? “Fuzzy systems are knowledge-based or rule-based systems” 

[18].  The membership functions of a Type-1 FLS (some time call Type-1 Fuzzy logic controller) 

are used by a type-1 fuzzy set. A type-1 fuzzy set defines different degrees of membership over 

the range of [0, 1] to represent uncertainty. So we can use type-1 fuzzy sets to describe complex 

systems with linguistic terms used in real life.  The type-1 fuzzy membership functions are two-

dimensional. They map an element of a given universal set into a crisp real number in [0, 1] – 

which represents from complete non-membership to complete membership. The following is the 

most commonly used notation to denote MF ( Aµ ) of a fuzzy set A: 

                                                  ]1,0[: →XAµ .      (1)                                                              

The mapping is followed by membership function of A.              

            A type-1 Fuzzy Logic System consists of four parts:  the fuzzifier, the rule base, the 

inference engine, and the defuzzifier. Figure 1 shows a basic structure of the type-1 FLS. 
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           The fuzzifier converts a crisp input to membership values for relevant fuzzy sets. A fuzzy 

rule base is a set of IF-THEN rules with a linguistic model of human control actions directly 

based on human thinking and decision.  In the inference engine, a fuzzy reasoning method is 

used to derive fuzzy conclusions (fuzzy sets).  Finally, the defuzzifier converts output fuzzy sets 

into a crisp value.  

 

          

 

 

 

 

 

 

   

 

            There are various methods to define antecedent or consequent membership functions. For 

example, there are linear membership functions: triangular functions, trapezoidal functions, etc. 

and nonlinear membership functions: bell shape functions, Gaussian functions, etc. Figure 2 

shows a typical example for triangular type-1 membership function.  

            The important component of a fuzzy system is inference method that is based on a set of 

IF-THEN rules and membership functions. There are two popular inference models: Mamdani-

Assilian model, and TSK model [17, 21]. They have different rule structures.  For 

 

Figure 1. A type-1 fuzzy logic system 
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                       Figure 2. An example of type-1 membership function  

   

example, the following is a rule defined by Mamdani-Assilan model [17]: 

                     IF Pressure is medium  

                              and Temperature is high 

                                      THEN speed is high                  

In the above rule, input variables are Pressure and Temperature, output variable is speed. 

{medium, high, high} are linguistic values for these variables. TSK model has different rule 

structure. The THEN part of TSK model uses a simple mathematical formula instead using 

words in nature languages. The previous example rule will become as following [21]: 

                     IF Pressure x is medium  

                              and Temperature y is high 

                                      THEN speed s is s = p0 + p1*x + p2*y                  

where, p0, p1, p2 are constant for the linear function.  
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            In order to fire the strength for one rule, the intersection operator of two fuzzy sets A and 

B (usually referred to as T-norm [17]) is very important operator. Usually FLS use t-norm to 

perform the reasoning [1, 2, 5]. Frequently used t-norm operators are minimum and algebraic 

products. The minimum t-norm performs the intersection of the two sets. If there is more than 

one antecedent, the weight is  

                                              ),...,min( 1 kmmm www = ,     (2) 

where k = 1, 2,…, n is antecedent, m is the m th rule.         

            The minimum t-norm just considers one of the antecedent weights and loses some 

important weights. To take care of all weights in different antecedent, the algebraic product t-

norm operator is used: 

                                      kmmmm wwww ∗∗∗= ...21 ,      (3)  

where k = 1, 2,…, n antecedent, m is the m th rule.  

             Many fuzzy systems are constructed using Mamdani-Assilan model which is also used in 

this thesis. Since the IF-THEN rule THEN part for this model is a fuzzy set, Defuzzifer strategy 

must be used to convert a fuzzy set to a crisp value. There are five frequently used defuzzifer 

methods: centroid of area, bisector of area, mean of maximum, smallest of maximum, largest of 

maximum. In the thesis we apply the most widely adopted strategy called centroid of area (COA): 

                                                            

∫
∫

=

z
A

A
z

COA
dzz

zdzz
Z

)(

)(

µ

µ
 ,     (4) 

where )(zAµ  is the aggregated output MF. 

 

 

2.2 Type-2 Fuzzy Logic Systems 
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             Type-1 FLSs are not effective to completely handle fuzziness for complex application 

systems (especially human related systems). Their membership functions are often overly precise. 

However, for some concept and context in which they are applied, we may only be able to 

identify approximate MFs, i.e. the knowledge that is used to construct MFs and rules which are 

uncertain [8].  For example: 

1) When you go shopping for a digital camera, the linguistic expression “good” will have 

different meaning for different people. Some people may consider high megapixel, some 

people may like high X optical lens, some people may think picture quality is more 

important, and others may agree that price is more important.  

2) The experts that design the fuzzy logic system may have different knowledge for this 

system. So if we survey a group of experts, they may give different MFs with possible 

interval values.  

3)  When we collect data, some factor may affect the measurements. So data themselves are 

noisy in real applications. 

            Once the MFs for type-1 FLS have been assigned, they become precise and no longer can 

handle more uncertainty. In order to consider different types of uncertainty, type-2 fuzzy sets and 

type-2 FLS are introduced. As mentioned before, type-2 fuzzy sets are extension of type-1 fuzzy 

sets by introducing an additional dimension that represents grades of membership. According to 

[6], “A type-2 membership grade can be any subset in [0, 1] - the primary membership; and 

corresponding to each primary membership, there is a secondary membership (which can also be 

in [0, 1]) that defines the possibilities for the primary membership”. The secondary membership 

in type-2 FLSs gives us more freedom to describe and handle uncertainties. In many applications, 
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if it is difficult to determine the exact MF for a fuzzy set, the type-2 FLSs are suitable for the 

applications.  

           As shown in Figure 3, a structure of a type-2 FLS is similar to a type-1 FLS. The type-2 

FLS includes a fuzzifier, a fuzzy rule base, an inference engine, and an output processor. It has 

antecedent or consequent type-2 fuzzy sets. Especially, the output process includes one more 

step—type-reduce to generate a crisp number. 

 

 

 

 

 

 

 

 

                                         Figure 3. A type-2 fuzzy logic system 

 

            In [10], the theoretical operations like union, intersection, complement and some 

properties of type-2 fuzzy sets have been studied. They [11] also examined the operations of 

algebraic product and algebraic sum of type-2 sets. Karnik and Mendel [3] developed a type-

reduction operation and study set operation on type-2 fuzzy sets, type-2 relations and their 

compositions, defuzzification. Duboid and Prade [15] discussed sup-star composition of type-2 

relations and a general formula for extended sup-star composition of type-2 relation which is 

given by [4]. 
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                                               2.3    Interval Type-2 Fuzzy Logic System 

            Although additional dimension gives the system more freedom to deal with vagueness, 

type-2 fuzzy sets are hard to understand and design since it is very difficult to draw three-

dimension function and the computation for type-2 fuzzy set is too complicated.   

            When we define the secondary membership either zero or one the primary membership 

function will be interval set and the problem is simplified.  Figure 4a shows an example of  

 

            

 

 

 

 

 

 

 

 

 

 

         

 

           Figure 4. Primary and secondary membership functions of a regular and  

                          interval type-2 fuzzy sets. (a) Primary membership function 

                          (b) Secondary membership function for regular type-2  

                          (c) Secondary membership function for interval type-2 
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primary membership function of type-2 fuzzy sets. µ  can be any value between hµ  and lµ  for a 

given value x. Figure 4b presents the secondary membership function for type-2 fuzzy set. The 

secondary membership value between hµ  and lµ  can be different grade. If the secondary 

degrees become same value between hµ  and lµ , in other words, they all equal to 1, the shape of 

secondary membership function will be rectangular. Then regular type-2 fuzzy sets become 

interval type-2 fuzzy sets. Figure 4c shows the secondary membership function of interval type-2 

sets with same primary membership function.  

            Liang and Mendel [6] studied how to construct membership function for interval type-2 

fuzzy sets, proposed a method to compute the operations and inference method for interval type-

2 FLSs. They also use Gaussian primary MFs to illustrate their theory. They change the 

parameters in the primary MF to form interval type-2 fuzzy sets MF. In their method, the 

probability of linguistic value in an interval is equal. If we can consider probability in the process 

to develop a type-2 FLS, the result will be more reliable and robust. For example, according to 

Ozen and Garibaldi [9], the six clinicians tend to agree each other in the middle of range and 

have less agreement in the other ranges. There is a distribution along with desired result. The 

thesis aims to design a reliable and robust interval-valued fuzzy logic system from survey result. 
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                                                               CHAPTER 3  

                          STATISTICAL GENERATION METHOD 

 

            Suppose we ask a group of expert to develop the same control FLS. Since they have 

different knowledge about that system, they may not agree to use the same shape of membership 

function, or same shape but different interval. It is very hard to ask them to completely agree 

with each other. In order to solve this problem, we develop a new method using statistical 

technology. The proposed method using linear regression tool to generate membership function 

of interval-valued type-2 fuzzy logic system are presented in Section 3.1. In order to improve the 

performance, we propose non-linear regression model at Section 3.2. 

            Instead of define membership functions, we ask experts only assign a grade of 

membership for each discrete input value for each linguistic term of linguistic variable, e.g. the 

60 years old has grade sets {1.0, 0.8, 0.9, 0.7} in the age “old” people by four experts. The result 

is a set of data.  

           In this thesis, we have the following notations: 

          1). Let nXXX ,...,, 21  denote linguistic variables in domain nUUU ,...,, 21 . 

          2).  There are n terms for 1X , i.e. nXXX 11211 ,...,, . 

          Definition 1: A statistical interval-valued fuzzy data set ijD  for linguistic term ijX  is 

defined by 

                            )},(),,(),,(),,(),,{( 111121111 nknnnkij dxdxdxdxdxD LLL= ,  (5) 
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where nx  are distinguish crisp value of ijX , nkd  is membership grade for nx  and k indicates k 

experts.  

           Definition 2: A statistical interval-valued fuzzy data set iD  for linguistic variable iX  is 

defined by 

                                                   ∑
=

=
n

j

iji DD
1

      (6)    

We can plot iD  as shown in Figure 5.  

           Definition 3: An interval-valued fuzzy set S  is defined by 

                                               ∫= R
SS

xxxS /)](),([ µµ ,     (7) 

where )(x
S

µ  is a lower bound membership function of linguistic term ijX  of x  and )(xSµ  is an 

upper bound membership function of linguistic term ijX  of x  for iUx∈  ( iU is an universe of 

discourse for linguistic variable iX ).       

         

                             3.1    Generate linear MFs for interval-valued FLS 

          After collecting all the survey data from experts, we obtain the data set iD . Then we can 

design fuzzy linguistic variable membership function of interval-valued FLSs using statistical 

method.  

3.1.1  Generate lower bound membership function 

             Step 1:  create data set of lower bound. 



                                                                                                                                                             

 

14

 

              

0 20 40 60 80

V1

0.0

0.2

0.4

0.6

0.8

1.0
V
2

  

                           Figure 5. Plot for three different linguistic terms and 20 experts 

 

             

Obtain minimal grade value for discrete input value ix  from data set ijD  by 

                                            id = ),,,(min 21 ikiix ddd
i

L .     (8)  

Then data set of lower bound for linguistic term ijX  is defined by       

                                     )},(),...,,(),,{( 2211 nnij dxdxdxD = ,     (9) 

nxxx ,...,, 21  are crisp values in domain iU  for linguistic term ijX , and then data set of lower 

bound for linguistic variable iX  is 

                                                             ∑
=

=
n

j

iji DD
1

.      (10) 

            Step 2: Obtain membership function of lower bound value for each linguistic term ijX . 



                                                                                                                                                             

 

15

 

                  There are a lot of statistical models which can be used to generate membership function 

from data set ijD . We can choose one model from linear regression, non-linear regression, spline-

smoothing model etc. which depends on different conditions. The simplest way is linear 

regression model. First, we hypothesize a linear probability model to relate grade, )(xµ  to the 

linguistic term ijX  by 

                                            εββµ ++= xx
ijX 10)(    )( iUx∈ .    (11)                                                        

            Next, we enter data in set ijD  into this model and get the least squares estimate of the 

slope 1β
)

, intercept 0β̂  and the least squares equation for )(ˆ x
ijXµ . 

            Then we use the probability distribution of random error component to estimate standard 

deviation for errorε . 

            Fourth, we do hypothesis test to check correctness of the hypothesized model. If there is 

no linear relationship between µ  and x , then the null hypothesis ( 1β is 0) test will be true. In 

order to test alternative hypothesis, we can obtain p-value. The confidence interval and 

coefficient of determination are used to test the strong linear relationship between µ  and x. 

            After finishing this step, lower bound MF ( )(xl

X ij
µ ) of the linear probability model for 

ijX  is obtained: 

                                         xx lll

X ij 10)( ααµ +=  )( iUx∈ ,     (12) 

 where l

0α  and l

1α  are regression constants. 

             Repeat these steps until we get all the lower bound MF for each ijX . 
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3.1.2   Generate upper bound MF 

           Step 1:  create upper bound data set. 

           Obtain maximal grade value for discrete input value ix  from data set ijD  by 

                                              id = ),,,(max 21 ikiix ddd
i

L ,     (13) 

 and upper bound data set for linguistic term ijX  is defined by       

                                               )},(),...,,(),,{( 2211 nnij dxdxdxD = ,    (14) 

where nxxx ,...,, 21 are crisp values in domain iU  for linguistic term ijX . Then, upper bound data 

set for linguistic variable iX  is 

                                                       ∑
=

=
n

j

iji DD
1

.      (15) 

            Step 2: Obtain membership function of upper bound value for each linguistic term ijX . 

            In order to generate upper bound MF ( u

X ij
µ ) from set ijD  for each linguistic term ijX , use 

the same method of 3.1.1 step2 and get a linear upper bound MF: 

                                                         xx uuu

X ij 10)( ααµ += )( iUx∈      (16) 

where u

0α  and u

1α are regression constants. 

 3.1.3    Generate expected value MFs 

            Step 1:  create data set of expected value. 

            There is a probability theory called strong law of large numbers. The law states when the 

sample size is large enough, the average of values based on these samples is close to the 

expected value. In order to calculate the expect grade value in one crisp input, we apply the 
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strong law of the large numbers and get expect grade value for discrete input value ix  from data 

set ijD  by 

                                                                    Ex

id =
n

b
n

l

il∑
=1 ,     (17) 

 and the data set of expected value for linguistic term ijX  is defined by       

                                                    )},(),...,,(),,{( 2211

Ex

nn

ExExEx

ij dxdxdxD = ,   (18)        

where nxxx ,...,, 21 are crisp values in domain iU  for linguistic term ijX . Then data set of the 

expected value for linguistic variable iX  is 

                                                                  ∑
=

=
n

j

Ex

ij

Ex

i DD
1

.     (19) 

            Step 2: obtain membership function of expected value for each linguistic term ijX . 

            By using the same method as step 2 of Section 3.1.1 we generate a linear MF ( Ex

X ij
µ ) for 

expected value from set Ex

ijD  for each linguistic term ijX . 

                                                              xx ExExEx

X ij 10)( ααµ += )( iUx∈ ,   (20)  

where Ex

0α and Ex

1α  are regression constants. 

3.1.4   Generate probability function for expected value 

            In each discrete input value, we calculate sampling distribution from a sample of n 

measurements. Using this method, we derive the probability for expected grade value from the 

distribution for discrete input.  

            Step 1:  create probability data set generated from expected value. 

            Probability data set of expected grade value for linguistic term ijX  is defined by       
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                                                     ))}(,(,)),(,{( 11

Ex

nn

ExEx

ij dpxdpxP L= ,   (21) 

where nxxx ,...,, 21  are crisp values in domain iU  for linguistic term ijX . Then probability data set 

of the expected value for linguistic variable iX  is 

                                                                 ∑
=

=
n

j

Ex

ij

Ex

i PP
1

.     (22)                

            Step 2: get the function defined by the probability of expected value for each linguistic 

term ijX . 

            To generate probability function )(xf Ex

X ij
of expected value from set Ex

ijP for each 

linguistic term ijX , we use the same method as step of Section 3.1.1 and get a probability 

function of expected value: 

                                                2

210)( xxxf ExExExEx

X ij
γγγ ++= )( iUx∈ ,   (23)                              

where Ex

0γ , Ex

1γ  and Ex

2γ  are constants.  

3.1.5   Generate probability function for upper bound value 

            Step 1:  create probability data set of upper bound value. 

            Upper bound probability data set for linguistic term ijX  is defined by       

                                               ))}(,(,)),(,{( 11 nnij dpxdpxP L= ,                                 (24) 

where nxxx ,...,, 21  are crisp values in domain iU  for linguistic term ijX . Then upper bound 

probability data set for linguistic variable iX  is 

                                                                  ∑
=

=
n

j

iji PP
1

.     (25) 

            Step 2: obtain probability function of upper bound value for each linguistic term ijX . 
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            To generate probability function )(xf u

X ij
 of upper bound from set ijP for each linguistic 

term ijX , we use the method of step 2 of Section 3.1.1 and get a probability function for the 

upper bound value: 

                                                     2

210)( xxxf uuuu

X ij
γγγ ++= )( iUx∈ ,   (26) 

where u

0γ , u

1γ  and u

2γ  are constants. 

3.1.6   Generate probability function for   lower bound value 

            Step 1:  create probability data set for lower bound value.                 

            Probability data set of lower bound for linguistic term ijX  is defined by       

                                                    ))}(,(,)),(,{( 11 nnij dpxdpxP L= ,   (27) 

where nxxx ,...,, 21  are crisp values in domain iU  for linguistic term ijX . Then probability data set 

of lower bound for linguistic variable iX  is 

                                                                     ∑
=

=
n

j

iji PP
1

     (28) 

            Step 2: get probability function of lower bound for each linguistic term ijX . 

            To generate probability function for lower bound )(xf l

X ij
 from set ijP  for each linguistic 

term ijX , use the same method of step 2 in Section 3.1.1 and get a probability function for lower 

bound value: 

                                                     2

210)( xxxf llll

X ij
γγγ ++= )( iUx∈ ,   (29) 

where l

0γ , l

1γ  and l

2γ  are constants. 

            Figure 6 shows an example of interval-valued fuzzy logic membership function of upper 

bound, lower bound and expected value. 
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                  Figure 6. An example of interval-valued fuzzy logic membership function 

 

 

                             3.2    Generate polynomial MFs for interval-valued FLS 

            As we mentioned in Section 3.1, there are a lot of statistical models can be used to 

generate membership function from data set ijD . The linear regression model is the simplest way. 

Considering more reliable and weight of all data, we extend linear regression to non-linear 

regression model. Many researchers prefer to use Gaussian primary MF [6, 8, 9]. Because the 

Gaussian primary MF is more close to 0 in two sides but never equal to 0. In the thesis, we 

choose the polynomial MF. Following the same procedure introduced in Section 3.1, we first 

generate lower bound membership function by hypothesizing a polynomial probability model to 

relate grade, )(xµ  to the linguistic term ijX   

                                          εβββµ +++= 2

210)( xxx
ijX )( iUx∈ .    (30) 

When the regression step is finished, a polynomial probability model based lower bound MF 

( )(xl

X ij
µ ) for ijX  is obtained: 
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                                           2

210)( xxx llll

X ij
αααµ ++= )( iUx∈ ,    (31)   

where l

0α , l

1α and l

2α  are regression constants. Second, the membership function for upper bound 

and expected value for non-linear method can be obtained using same strategy: 

                                             2

210)( xxx uuuu

X ij
αααµ ++= )( iUx∈ ,    (32) 

                                            2

210)( xxx ExExExEx

X ij
αααµ ++= )( iUx∈ ,    (33) 

where u

0α , u

1α , u

2α , Ex

0α , Ex

1α and Ex

2α  are regression constants. Third, generate probability 

function for expected value, upper bound and lower bound as equation (23), (26), and (29), 

respectively. 
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                                                                  CHAPTER 4 

                    STATISTICAL INTERVAL-VALUED FUZZY LOGIC SYSTEMS 

 

            In this chapter we describe the structure of statistical interval-valued fuzzy logic systems. 

We use the approach developed at Chapter 3 to generate membership functions for each 

linguistic variable of a FLS. In Section 4.1, a novel inference and type-reduce method is 

developed for statistical fuzzy logic system in order to consider different probability in interval. 

We present defuzzification and get final output method in Section 4.2.  

               

4.1   Fuzzy reasoning and type reduce 

            Suppose we ask a group of experts to develop an n-input-1-output FLS. For each discrete 

input value, they will assign a grade of membership for each linguistic term of linguistic variable. 

Then we can apply one of the methods (either linear or non-linear method) presented in Chapter 

3 to obtain all the upper bound, lower bound and expected value membership functions for each 

value of linguistic variables and the probability function for them.       

            Liang and Mendel [6] discuss the operators for interval type-2 FLSs. They use extension 

of sup-star method. For example, there is an interval type-2 FLS with two-input variables A and 

B, one-output variable C. The fired weight of upper and lower bound for variables A and B are 

lbublaua wwww ,,, , respectively. After fuzzification with product t-norm operator we get output 

weight as follows: 

                                                      ubuau www ∗=      (34) 

 and 
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                                             lblal www ∗= .     (35) 

In this typical interval type-2 fuzzy logic system, there are only upper and lower bound 

membership functions for each linguistic value.  So the fuzzy reasoning method for the firing 

strength is not suitable for statistical interval-valued type-2 FLSs. The critical factor is to find a 

reasonable approach to do fuzzy reasoning for our proposed FLS.   

            If there are m   n -input-1-out interval-valued fuzzy IF-THEN rules for a particular fuzzy 

logic system: 

                     IF x1 is X1r and … and xn is Xnr THEN y is Zr.       

          After constructing MF and probability functions of the expect value, the upper lower 

bound value for statistical FLS, we can map any numerical input (a practical value x) to this rule 

and use equation (12), (16), (20) for linear model or equation (31), (32), (33) for non-linear 

model to find firing strength )(x
ijXµ  which is an interval value [ )](),( xx

ij
ij

XX
µµ , expected 

value )(xEx

X ij
µ . By using equation (23), (26), and (29) we get the probability for expect value 

( )(xf Ex

X ij
), upper bound value ( )(xf

ijX
) and lower bound value ( )(xf

ijX
).          

In order to find firing strength, we randomly choose two grade values y1, y2 between 

upper bound )(x
ijXµ  and expected value )(xEx

X ij
µ , another two grade values y3, y4 between 

expected value )(xEx

X ij
µ  and lower bound )(x

ijX
µ . The weight (grade value) for practical 

antecedent i and practical rule m is calculated as: 

                              

)).()()(1(*
4

)(*)()(*)()(*)(

4321 xfxfxf
yyyy

xfxxfxxfxw

ij
ijij

ijij
ijijijij

XX

Ex

X

XXXX

Ex

X

Ex

Xim

−−−
+++

+

++= µµµ
   (36) 
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In our model, we not only consider probability for upper, lower, expected value, but also include 

other probability of randomly chosen four values. Here, we briefly provide the fuzzy reasoning 

and type-reduce procedure for statistical interval-valued type-2 FLS. 

   1)   Obtain weights for each antecedent i and each rule m using (36). If there is only one 

antecedent (i.e. one linguistic variable), then we directly go to step 3). If there are more than one 

linguistic variable, we go to step 2). 

                2)  Determine the firing strength for each rule with algebra product t-norm (3) or 

minimal t-norm (2). 

        3)   Applying Mamdani model, we obtain the result of consequent for the m th rule 

                                              )()(' zwz cmc µµ ∧= ,      (37) 

where∧  denotes interaction between fuzzy sets. 

                             

                             4.2   Defuzzification for statistical interval-valued type-2 FLS 

           We get the result of consequent for each involved rule.  The fire strength is one number 

instead of an interval value. If the consequent membership function is type-1, we can directly use 

centroid of area to calculate final crisp output value via (4). 

           If the consequent membership function is type-2 fuzzy logic membership function, we 

have different centroids of area.   First, do the type-reduce by 

                                          1.0*8.0*1.0* COA

Ex

COACOACOA ZZZZ ++=  ,   (38) 

where COAZ  denotes the final result, COAZ  is a centroid of area from upper bound membership 

function, COAZ  is a centroid of area from lower bound membership function and Ex

COAZ  is a 

centroid of area from expected value membership function. 
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            The different membership functions are obtained by using the method that is described in 

Chapter 3.  The constant in (38) indicates that weight for each MF. From statistical result, the 

most value (around 80%) will be close to the expected value, and probability of upper bound and 

lower bound is very small, each is only equal to 0.1.  

 

                  4.3    An example of statistical  

interval-valued type-2 FLS via linear regression 

            In this section, we apply our proposed approach to a sample example: a learned function of 

pyramid. The two inputs will be x and y coordinate. To simplify this problem, we assume the 

same three linguistic values and function for input variables: low, middle, and high.  The output 

will be z coordinate. There are two linguistic values in output variable: low and high. Now we 

define output as a type-1 fuzzy set.  

   We use data generation to simulate 30 experts to define different linguistic variables and 

terms for x and y coordinates. The upper, lower, expected value membership functions for each 

linguistic value of x and y coordinates are obtained by applying the method as that in Chapter 3. 

Figure 7 shows the membership functions of x and y coordinates generated by our method and 

Figure 8 shows the output – z coordinate membership function used in this simulation.   

            In order to generate the probability function, we add some error to it and get an interval 

value: 

                                            %10*)(
'

µµµµ −±= ExEx ,     (39)                                

where Exµ , µ  and µ  are expected value degree, upper bound and lower bound degrees, 

respectively. Then derive the probability of   expected   grade value     
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N

m
xp =)( ,     (40) 

where m is the number of values in 
'Exµ and N is the number of experts. Then, following the 

regression model, we produce a probability function. We do not add error when calculating 

probability of upper bound and lower bound.  

 

 

                        Figure 7. The Type-2 membership function for x-coordinate and  

                        y-coordinate that is generated by statistical method. Solid lines  

                        indicate expected MFs. Two doted lines are upper bound MFs. 

                        Doted lines are lower bound MFs. 

    

 

        In this simulation, we use the fuzzy rules that are from [16]:  

                If y = low.                          Then f (x, y) low, 

                If x = low.                          Then f (x, y) low, 

                If x = med and y = med.    Then f (x, y) high, 

                If y = high.                         Then f (x, y) low, 

                If x = high.                         Then f (x, y) low. 
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                         Figure 8. Membership function for output F (x, y). 
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                           Figure 9. Type-1 member function for x and y coordinates. 

 

 

              The Equation (36) and the algebra product t-norm operator have been used to do the 

fuzzy reasoning. Since the output membership functions are defined as type-1 fuzzy sets, we use 

the same defuzzification method with type-1 FLS. We compare our approach with type-1 FLS. 

The type-1 input x and y coordinate MFs are defined as that in Figure 9. The results that are 

obtained by the type-1 and statistical interval-valued fuzzy logic system are presented in Figure 
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10. From the diagram, the interval-valued FLS captures more data; its shape is more symmetric 

and has a much better fit to the learned function of pyramid than Type-1 FLS.   
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                               Figure 10. Approximation of pyramid function using  

                               statistical interval-valued and type-1 FLS. 
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                                  4.4   An example FLS using non-linear regression 

            A traditional washing machine has a number of programs for user to select the type of 

wash (whites, colors, etc.), size of load, material of cloth (silks, nylons, polyesters, cotton, etc.), 

temperature and so on. The machine then follows the pre-set routine irrespective of what is 

actually happening to the clothes inside. At the end of the cycle it stops. But if the clothes were 

clean half way through the cycle, stopping early would save energy as well as reduce wear and 

tear on the clothes. On the other hand, the clothes may still be dirty and need more washing. 

            Applying fuzzy logic system, we can build an intelligence washing machine. In this 

‘fuzzy’ washing machine no program selection is required. Sensors are used to determine the 

size of washcloth and type of fabric and so control the required amount of water and the 

temperature of the wash. In order to simplify the problem, we use two input and one output 

Mamdani fuzzy model. Through the input and output variable we use interval-valued fuzzy set to 

simulate the process of fuzzy washing machine. The simulation system allows users to make 

selection of fabric type (F), washcloth size (S) (Just same as sensors determined) and the system 

will provide an interval output for washing temperature (T). 

4.4.1  Membership function 

      We use data generation to simulate the 20 experts to define different linguistic variables 

and terms. 

             1. Membership functions for washing cloth size (S) 

             There are three linguistic values for washing cloth size: low, middle, and high. We are 

following new method that is developed in Section 3.2 to generate the upper bound, lower bound 

and expected value membership functions for these three values. Figure 11 shows the result of 

non-linear MFs. 
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              2. Membership functions for fabric type (F) 

              In our system, a number between 0 and 10 is assigned to different cloth fabric. The rules 

are listed as Table 1. There are three linguistic values for fabric: thin, middle, thick. Using the 

same method for the size of cloth, we get membership function for fabric three linguistic values. 

Figure 11 shows these non-linear functions. 

             3. Membership functions for temperature (T) 

             There are three linguistic values for temperature: low, middle, and high. Figure 11 shows 

the result from the analysis of 20 different experts’ definition. 

             4. Probability functions 

             In each discrete input value, we use method presented in Section 3.1 to obtain the 

expected probability functions for two inputs and one output.  

4.4.2   Fuzzy Rules 

            The fuzzy rules that are based on our knowledge are listed in Table 2. The user can 

change it if he thinks it is not reasonable. 

4.4.3   Output process 

            Since we need generate an interval valued water temperature for cloth washing, we skip 

type reduce and directly go to defuzzification step.  

4.4.4    Implementation 

            We implement simulated machine in java script. After user inputs the washing cloth size 

and material and chooses “type-1” or “type-2” button, the system will generate the washing 

temperature. Type-1 result is a crisp value. Interval-valued result is interval between lower 

bound and upper bound temperature. The interface is shown in Figure 12. 
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                               Table 1. Rule for assigning number to different fabric 

                1 Acrylic Acetate               6 Cotton 

                2 Silk   Nylon               7 Heavy cotton 

                3 Polyester               8 Linen 

                4 Rayon               9 Jeans 

                5  Wool              10 Quilt 
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                     Figure 11. The membership functions for cloth size, fabric type and 

                     temperature. 
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                                   Table 2. Fuzzy Rules for intelligence washing machine 

 Input Output 

Rule 

number 

Fabric of cloth Size of cloth Washing 

temperature 

Rule 1 Thin Low Low 

Rule 2 Thin Middle Low 

Rule 3 Thin High Middle 

Rule 4 Middle Low Low 

Rule 5 Middle Middle Middle 

Rule 6 Middle High Middle 

Rule 7 Thick Low Middle 

Rule 8 Thick Middle High 

Rule 9 Thick High High 

 

            We run different data combinations: some are one-rule based firing; some are two-rule 

firing and others are four-rule based firing. We obtain 24 data sets. We compare the type-1 

output with interval-valued output. In this implementation, we calculate output by 

                          Temperature = (upper bound + lower bound)/2.    (41) 

            Figure 13 is the comparison of the temperature that is obtained by the type-1 and interval-

valued fuzzy logic system.  

            From the diagram, the interval-valued fuzzy logic system need lower temperature than 

type-1 fuzzy logic system when the washing clothes size is more than 10 and no matter what a 

material is.  This can save a lot of energy. 
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                           Figure 12. The interface of an intelligence washing machine 
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         Figure 13. The result of type-1 and statistical interval-valued intelligence 

         washing machine  
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                                                              CHAPTER 5 

                    PARAMETER OPTIMIZATION USING GENETIC ALGORITHM 

 

 

            How to design a fuzzy logic system in order to get result with best performance?  There 

are several important components. The first one is to define the reasonable membership function 

of the linguistic variables. Different procedures have been studied. Our new procedure is 

presented at Chapter 3. The second one is to construct the fuzzy rule base. There are some 

heuristic and iterative methods to optimizing rules. The third one is an efficient fuzzy reasoning 

method.  In this thesis we provide reasoning method in Section 4.1.  We can develop an FLS 

without experimental input-output data following the procedure as described in Chapters 3 and 4. 

Assume there are real input-output data for particle system that needs to be constructed. To 

obtain the better performance of an FLS, the parameter of the membership function and 

probability function need to be optimized. Genetic algorithm is powerful tool to perform the 

optimization. In this chapter, we introduce the parameter optimization of fuzzy system with 

genetic algorithm.  

 

                                          5.1     Overview of genetic algorithm 

           “Genetic algorithms (GAs) are derivative-free stochastic optimization methods based 

loosely on the concepts of natural selection and evolutionary processes.” [17]. As a general-

purpose optimization tool, GAs are receiving an increasing attention and application in many 

fields: GAs can be used in parallel processing machines to increase their operation speed; GAs 

can be used in both continuous and discrete optimization problems and they are applied to both 
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structure and parameter optimization. In particular, GAs are robust and simple search technique 

and very powerful optimization tool for complex function. 

           The important components of GAs include encoding schemes, fitness evaluations, and 

operators. 

           Encoding schemes: in this component, the parameter or solution will be transformed to a 

chromosome which is a binary bit string.  The chromosome is composed by genes. For instance, 

a point (4,5) in a two-dimensional parameter space can be encoded to a binary string  

                                                       01000101 

where 0100 and 0101 are two genes in this chromosome. 

            Fitness evaluation: the calculation of fitness value of each member in the population will 

be performed in this component. The GA will be a success with a right selected fitness function. 

            Operators: GA has three main operators including selection, crossover and mutation. 

After each evaluation, GA need determine which parents will be selected to produce the next 

generation. The selection operator means the strategy to do this selection. The crossover operator 

will select pairs of parents to generate new chromosome. The common mutation operator is to 

flip a bit.  

             

                                              5.2  Parameter optimization 

            To build a statistical interval-valued type-2 FLS with experimental data with better 

performance, parameters for different membership functions and probability functions need to be 

optimized with genetic algorithm after we apply the approach in previous chapter.          

           Since the genetic algorithm is a popular optimization tool, many literal and code can be 

obtained in [25]. The critical task is to define a robust and suitable fitness function for particular 
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problem. The optimized parameter can be obtained through minimizing the error between the 

observed outputs (target values or real values) and fuzzy system outputs. In this thesis, the 

following equation is used as fitness function: 

                                                      ∑
=

−=
N

i

ii zzError
1

2)( ,    (42) 

where iz  is the output from the building fuzzy system for each pair of input, the iz  is the 

observed value from the experiments.  The error is calculated by using least-squares. For a given 

input-output data set, we can optimize the parameter using the following general training 

algorithm: 

Begin 

1) Read training data 

2) Select membership functions’ constants as tuning parameters   

3) Initialize tuning parameters and population 

4) Find the rules for input training data 

5) Calculate the fuzzy training output using method which is presented in Chapters 3 and 4 

6) Calculate the error using Equation (42) 

7) Perform selection, crossover and mutation operators to adjust the tuning parameter and 

got next generation 

8) Repeat step 4 to 7 until the minimum error is found or population size is reached 

9) Output: final tuning results 

End 
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                          5.3     A simple example of statistical  

                           genetic interval-valued type-2 FLS 

             In this section, we use the genetic statistical interval-valued type-2 FLS to simulate the 

function  

                                                            22 yxZ += .     (43) 

We limit the input x and y in [-5, 5]. We define three linguistic values for each input variable: 

low, middle, and high. There are two output linguistic values: low and high. 

            Since there are targeted data, we use a table look-up scheme to obtain the fuzzy rule base 

[18]. First, for each input-output pair (x, y; z), we determine the membership values of x, y and z 

in their fuzzy sets. For this practical function, that means if x = -2, what is the low, middle and 

high value’s degrees.  Second, select largest value of each variable as its degree and obtain the 

rule as 

            IF x is {low, middle, high} and y is {low, middle, high} Then z is {low, high}.  

Third, to solve the conflict, assign a degree to each rule generated by following step 1 and 2 and 

keep the maximum degree. The degree is calculated by 

                                                     ziyixiiruleD µµµ **)( = .     (44) 

For example, if we generate two rules from input-output pairs: 

                     R1: If x is low, y is low, then z is low; 

                     R2: If x is low, y is low, then z is high. 

We can get degree for rule 1 and rule 2 by using (44). If rule 1’s degree is greater than rule 2, 

then we just keep rule 1. Otherwise we keep rule 2.  Finally, we got linguistic rules from human 

experts to finish the rule table.   
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              Figure 14. Member ship function for input variable x, y and output variable z 

 

           The general steps of building genetic statistical interval-valued type-2 FLS are provided 

as following: 

1) Collect 50 sets of experimental data using equation  (43). The x and y can take values-- 

5+ 0.5i, i =0,…, 20. 

2) Obtain the upper, lower, expected value membership functions with procedure presented 

as section 3.1. The input x and y have the same universal and same membership functions. 

Figure 14 gives the functions for input variables. 

3) Obtain the probability function for three linguistic values with the procedure in Section 

3.1.  

4) Using table look-up scheme that is introduced as before obtain the fuzzy rules. Table 3 

shows the result rules for this system. One example rule is: If the x coordinate is Low and 

y coordinate is Low, then z coordinate is High.  
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5) Using training algorithm as described in Section 5.2 obtain the optimized parameters.  

Our proposed fuzzy reasoning and defuzzification method is used to get the output value 

for Equation (42). 

6) Perform the test data using optimized parameters. 

 

                          Table 3.  Fuzzy rules for function (43) 

   X\Y                 Low Middle High 

Low High Low High 

Middle Low Low Low 

High High Low High 
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             Figure 15. The output for real, genetic statistical interval-valued type 2  

             fuzzy system and type-1 fuzzy system for function (43)   
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          We select data from 121 pair data as training data, and randomly choose other 28 pair as 

test data. We also use the same rule, same data to build the type-1 fuzzy system for the function 

(43). The least-squares error is: 

              281347.61 =−typeE , 

              67884.52 =−gdtypeE . 

The real value and fuzzy system output are shown in Figure 15. Our system is better than type-1 

fuzzy logic system  
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                                                              CHAPTER 6       

                                    A PREDICTION FOR CLINICAL TRIAL 

 

           In previous chapters, we introduced a novel method to construct a fuzzy logic system and 

simple example to use our proposed method. In this chapter, we will give a real application for 

the new method— prediction of the patient survival time in clinical trials.  

 

                                                 6.1        Implementation 

             Krall, Uthoff, and Harley [25] analyzed data from a study on multiple myeloma in which 

researchers treated 65 patients with alkylating agents. The data set can be found in SAS/STAT 

User's guide (1999, pp. 2608--2617, 2536--2641). Of those patients, 48 died during the study and 

17 survived.  In the data set MYELOMA, the variable TIME represents the survival time in 

months from diagnosis. The variable VSTATUS consists of two values, 0 and 1, indicating 

whether the patient was alive or dead, respectively, at the of end the study. If the value of 

VSTATUS is 0, the corresponding value of TIME is censored.  The variables thought to be 

related to survival are LOGBUN (log BUN at diagnosis), HGB (hemoglobin at diagnosis), 

PLATELET (platelets at diagnosis: 0=abnormal, 1=normal), AGE (age at diagnosis in years), 

LOGWBC (log WBC at diagnosis), FRAC (fractures at diagnosis: 0=none, 1=present), 

LOGPBM (log percentage of plasma cells in bone marrow), PROTEIN (proteinuria at diag-

nosis), and SCALC (serum calcium at diagnosis). Interest lies in identifying important prognostic 

factors from these nine explanatory variables. In the original data sets, [25] there are total nine 

attributes. From most research work related this data set, the attributes LOGBUN, HGB are 
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highly related to patient survival time. To simplify the problem, we use the fuzzy logic system 

which has two inputs: LOGBUN and HGB. These two inputs have the statistical interval-valued 

type-2 fuzzy membership function to handle the higher-level uncertainties. We choose log 

(survival time) as response. It has the type-1 fuzzy membership function.  

           The key of designing fuzzy system is the generation of fuzzy inference model – rule bases 

as well as membership functions. In most system, the membership function and rule bases are 

obtained from the experts. To design the genetic statistical interval-valued type-2 fuzzy 

prediction system, first we need to define linguistic variables and their linguistic values, second 

we consider membership function for each linguistic value. The third step is obtaining the fuzzy 

rules. After deciding the reasoning and defuzzification method, the last step is to optimize the 

parameters. It is well known that LOGBUN and HGB are most significant variables among 

others. In this example, we only choose these two factors and ignore the other issue to reduce 

rule complexity. The output is log patient survival time.  

           From the data set, the value LOGBUN is located in [0.5, 2.5], HGB value is limited in  [0, 

20]. The response log survival time is limited in [0, 2]. We design three linguistic values to 

represent the LOGBUN linguistic variable: low, middle, and high. The HGB has two linguistic 

values: low and high. These two linguistic variables are statistic interval-valued type-2 fuzzy sets. 

The output survival time also has three linguistic values: short, normal, and long. It is designed 

as type-1 fuzzy sets. 

           We simulate 30 experts to design the system, and then use statistical membership 

generator method which is described in Chapter 3 with the linear regression to create all 

membership functions and probability function. Figure 16 shows all generated membership 

function for LOGBUN variable and Figure 17 shows membership function of variable HGB.                 
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             Figure 16. Membership functions for LOGBUN variable. The dashed  

             lines show the expected value MF for low, middle, and high value. Upper 

             bound and lower bounds MF are indicated as solid line 
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               Figure 17. Membership functions for HGB variable. The dashed  

               lines show the expected value MF for low, and high value. Upper 

               bound and lower bound’s MF are indicated as solid line  
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          Since there are two inputs, one has three linguistic values, and anther one has two 

linguistic values, the rules of the fuzzy system are: 

           If LOGBUN is {low, middle, high} and HGB is {low, high}, then survival time is 

            {short, normal, long}. 

So the number of total rules is calculated by 3*2 that equal to 6. We use the table looking up 

scheme which is presented in Section 5.3 to find the rule base for this predication. Step by step, 

we obtain the final rules that are presented in Table 4.  

          The optimization for parameters is performed by genetic algorithm with least squares error 

model (see Chapter 5). In this data set, it has total 65 pair data. We randomly select 45 pairs of 

data set as a training data set and the reminding 20 pairs of data as testing data. The weight for 

fired rule is calculated as (36) and product t-norm operator (3) has been used. In this example, 

we just optimize the probability function parameters for each value and we tune the parameter 

between –1 and 1. The error before tuning that is obtained from the equation (42) is 3.026508, 

after tuning, the error reduces to 2.715.       

 

6.2 Comparison and Discussion 

         In Section 6.1, we develop a survival time prediction system based on fuzzy set theory. The 

proposed genetic statistical interval-valued type-2 fuzzy logic system is employed to handle 

uncertainties.  

         In order to compare type-1 and interval type-2 with our system, we design the type-1 and 

interval value type-2 fuzzy systems by using the same input and output variable. Also the rule 

base does not change. The sup-star method is used to do interval type-2 fuzzy reasoning. Table 5 
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shows the test data, expected output and the results with type-1, interval type-2, genetic 

statistical interval-valued type-2 fuzzy system.      

         Comparing with type-1 and regular interval type-2 fuzzy systems, the least-squares error is 

minimum for our system. Table 6 shows the log survival times that are obtained with type-1, 

interval type-2 and proposed fuzzy logic system for the test data and error for different system. 

Figure 18 shows prediction for these data using the three methods. Genetic statistical interval-

valued fuzzy system provides best performance. In this 20 pairs of test, more than half of the 

outputs for our system are close to expected value, especially number 10, 11, 12, 15, and 19.   

 

                       Table 4. Fuzzy rules of the prediction system 

LOGBUN\HGB L H 

L Normal Normal 

M Normal Long 

H Short Short 
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Figure 18. The survival time for different system. 



                                                                                                                                                             

 

46

 

                              Table 5. Error for different fuzzy system 

 LOGBUN HGB Expected 

Logtime 

Type-1 Type-2 Proposed 

1 1.3010 5.1 0.301030 1.315667 1.243258 1.027297 

2 1.5441 6.7 0.477121 1.273346 1.175004 1.021153 

3 2.2355 10.1 0.698970 0.331970 0.340499 0.337110 

4 1.1139 9.7 0.778151 1.406552 1.497576 0.896477 

5 1.4150 10.4 0.778151 1.521937 1.409155 1.419568 

6 1.9777 9.5 0.845098  0.000000 0.645378 0.439668 

7 1.0414 5.1 0.845098 1.120476 1.370090 0.966816 

8 1.1139 14 1.041393 1.454544 1.536541 1.398267 

9 1.2304 12 1.041393 1.548984 1.534298 1.467223 

10 1.5682 7.5 1.041393 1.263958 1.205480 0.983281 

11 1.0792 9.6 1.041393 1.338709 1.479142 0.994134 

12 1.2553 7.5 1.278754 1.429658 1.400939 1.220086 

13 1.3010 14.6 1.380211 1.622450 1.567620 1.496851 

14 1.0000 12.4 1.397940 1.000000 1.444564 1.000000 

15 1.3222 10.6 1.505150 1.536283 1.453930 1.437839 

16 1.1139 7 1.544068 1.334212 1.454408 1.366922 

17 1.3222 14 1.949390 1.619696 1.552790 1.097737 

18 1.4314 11 1.963788 1.541808 1.429473 1.425242 

19 1.9542 10.2 0.602060 0.000000 0.700283 0.533147 

20 1.1461 11.6 1.079181 1.479624 1.532312 1.319015 

Error for test data 2.279686 2.040072 1.778261 
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                                                       CHAPTER 7       

                                                     CONCLUSION  

            The type-2 or interval-valued fuzzy system can be very efficient to handle the uncertainty 

in human decision. How to design an optimized interval-valued fuzzy membership function in 

real world is a very challenging problem. In this thesis, a simple statistical method has been 

proposed to define a reliable and reasonable membership function using linear regression. This 

approach considers expected value, upper and lower bound probability to calculate the weight of 

a fired strength after generating their MFs. In Chapter 4, a simple example to perform learned 

function of pyramid shows that our approach provides a more useful technique to design a real 

interval-valued FLS and it is more accurate than type-1 FLS.  

            To obtain more accurate result, we extend the method with non-linear regression. In this 

thesis, we generate data and apply new non-linear regression method that is proposed in Section 

3.2 to implement a smart washing machine. From simulation, the new method is more reliable 

and robust than type-1 FLSs.  

           In order to achieve best performance, the parameters in the membership function 

generated by our method are optimized by genetic algorithm with least-squares error as fitness 

function. From the two simulations’ result, the performance of genetic statistical interval-valued 

type-2 fuzzy logic system is better than type-1 and regular interval type-2 FLS. The interval-

valued FLS using statistical method can be applied to many areas, such as control systems, 

shopping systems, decision making system prediction system and so on.  

            Due to the time limit, there are still a lot of works that need to do in the future. For 

instance, we plan to try other simulations, try to use a large data set instead of small data set to 
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compare the different fuzzy logic system. We will do a real survey to collect data and perform 

the comparison and so on.
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