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Exploring Wage Determination by Education Level:  

A U.S. MSA Analysis for 2005-2012 

 

 

Abstract:  

 

The purpose of this study is to explain urban wage differentials with a special focus on 

educational levels.  We explore whether the share of people with a bachelor’s degree or 

higher in the community matters to the wages of those within specific educational 

cohorts, accounting for cost of living, human capital externalities, consumer externalities, 

policy factors and local market conditions.  Using data for all U.S. Metropolitan 

Statistical Areas between 2005-2012, we find that the presence of more highly educated 

people will result in a higher median wage in the community overall, as do many studies, 

but that this factor does not significantly increase the wage for any individual education 

cohort.  These results are hidden if we only look at the entire workforce in the aggregate.    
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Exploring Median Wage Determination by Education Level:  

A U.S. MSA Analysis for 2005-2012 

 

 

Introduction 

 Local leaders across the U.S. strive to create conditions for better employment 

opportunities, higher incomes and less inequality for their constituents.  Research has 

found evidence that productivity is higher in urban areas which leads to higher wages, 

after accounting for higher costs of living (Glaeser & Mare, 2001).  This urban wage 

premium has numerous proposed explanations, with concentrations of higher education 

and skills being key variables. (See a comprehensive review by Heuermann, 

Halfdanarson and Suedekum, 2010).  Cities have been shown to be special in numerous 

ways.  For example, cities “speed the accumulation of human capital” (Glaeser & Mare, 

2001), cities have “something in the air” (Krupka & Noonan, 2013); and cities attract 

“creative” people (Florida, 2012).   

Some research has suggested that the benefits of having an educated labor force 

appear to go beyond the higher incomes earned by knowledge workers concentrated in 

cities.  Moretti (2013), for example, argues in his book, The New Geography of Jobs, that 

there is a positive effect between the share of an area’s population with at least a 

bachelor’s degree and the average wages earned by less educated workers in a particular 

geographic area.  As he puts it, “Brain hubs pay high average salaries to unskilled 

workers too (p.97).”   This type of spillover, if and where it exists, makes the education 

factor even more valuable to communities.   

In this study we examine these knowledge spillovers further by analyzing wage 

differences across cities using median wages by educational cohorts.  Specifically, our 
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study examines the effect of the presence of human capital levels on annual median 

wages for workers with different education levels across 374 U.S. metropolitan statistical 

areas (MSA).  We also incorporate a substantial time frame covering 2005 to 2012.  We 

explore the relationship between the overall educational attainment of a community and 

the median wage for different educational attainment groups.  The dependent variable is 

the natural log of the real median annual wage for the working age population 25 and 

older with earnings by level of educational attainment from the American Community 

Survey (ACS).   

One of the critiques of the numerous studies that have been done to explain wage 

differentials is that each tends to focus narrowly on one explanation with other factors left 

out (Hanson, 2000).  A strength of our approach in this study is that we explore human 

capital externalities and their potential spillovers while also considering other variables 

found to be important in the literature including cost of living, amenities, labor market 

conditions and policy.  We find evidence that the estimated impact of each of these 

explanations varies by educational cohort.  Unlike many studies, we include a measure of 

labor market conditions to control for business cycle effects across regions, which turns 

out to be very important in explaining wage variation.   

A second contribution of this study is that we use a partial cost of living 

adjustment, as suggested by Dumond, Hirsch and MacPherson (1999), utilizing newly 

developed regional price parities (Aten, Figueroa & Vengelen 2015) and data that allows 

us to separate housing costs from other cost of living factors.  This is the first time, to our 

knowledge, that this has been done for all U.S. MSAs.  This approach avoids misleading 
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estimates of real wages as demonstrated in Dumond et al., and suggests that housing 

should be treated partially as an amenity and not just a cost factor.   

A third contribution of this study is to analyze the explanatory power of variables 

from the literature by educational attainment; in other words, our approach allows us to 

gain insights by looking at sub-labor markets defined by education levels.   Our results 

suggest that in terms of the aggregate median wage, adjusted properly for cost of living 

differences, having a better educated population does not significantly increase other 

people’s wages. Contrary to other studies and to what policy makers might hope, our 

results suggest that the wages of individual education cohorts are not substantively 

affected simply by the presence of a better educated population.  

 

The Urban Wage Story 

 The strong linkage between education and wages receives a great deal of attention 

in the U.S. labor market.  By one calculation, the inflation-adjusted wage gap between a 

family with high school degrees and one with college degrees increased $30,000 between 

1979 and 2012 (Porter, 2014).  Based on the ACS data, there are large differences in the 

annual median salaries across groups with different education attainment (Figure 1).  The 

median annual salary for those with a graduate degree in the U.S. was $65,164 in 2012 

compared with only $19,404 for those without a high school diploma, and the salary 

difference between someone with a high school degree and a bachelor’s degree increased 

$825 (in real 2012 dollars) in the seven  years between 2005 and 2012. The other trend, 

however, is that for all education levels, the inflation adjusted U.S. median wage has been 

falling in recent years.   The declines have been larger for the less educated—between 1.6 
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and 1.9% per year for individuals with some college or an associate degree or less 

education—compared to an average decline of 0.7% per year for college graduates and 

0.5% per year for those with graduate degrees. 

 

(Figure 1 about here) 

 

Underlying these trends are important regional variations.  For example, in 2012 

the median wage for high school graduates in Milwaukee was $28,708 and only $25,693 

in Los Angeles, while the median salary for a person with a graduate degree was $66,024 

in Milwaukee and $73,642 in Los Angeles.  Most people might simply assume that 

people living in Los Angeles had higher income than people living in Milwaukee, and for 

people with graduate degrees that is true, but not for people with only a high school 

diploma.  So while more education is associated with higher incomes in both places, there 

are other factors that must explain why the median worker with just a high school degree 

is paid more in Milwaukee than the similarly educated worker in Los Angeles, while the 

person with a graduate degree earns more in Los Angeles.  One explanation could be 

differences in the cost of living, but cost of living differences cannot explain all of the 

variance in income between Los Angeles and Milwaukee.  Further, in the case of a 

person with only a high school degree, incorporating those differences would widen 

Milwaukee’s advantage.1  

 A study by the Federal Reserve Bank of Cleveland also found that metro areas 

with a higher share of workers with a bachelor’s degree or more had higher wages and 

lower unemployment rates, using data for 2011 for the 100 largest metropolitan areas 
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(Richter & Nelson, 2014).  They concluded that these correlations suggest that less 

educated workers may benefit from working in the same geographical area with a more 

educated population.   This is consistent with Moretti’s work based both on individual 

data (2004a) and average wages (2013).   

Using data from the ACS for 2005 to 2012, in comparison with the Cleveland Fed 

study (Richter & Nelson, 2014), we also find a consistent, positive correlation between 

the share of the population aged 25 to 64 with a bachelor’s degree and the median wage 

when all education cohorts are put together (Table 1).  Table 1 shows the Pearson 

Correlation coefficient between the share of the population aged 25 to 64 with at least a 

bachelor’s degree and the median wage in a metropolitan area by year.  The positive 

correlation is very strong and highly significant for all workers with a correlation value 

between .618 and .688.  The correlation is also fairly strong for different sub-groups 

defined by their educational attainment.  For the sub-groups the correlation is positive 

and significant at the 1% level in 37 out of 40 possible year by educational attainment 

cells, and it is significant at the 5% level in 2 other cells.  In 2012, the correlation 

between the community’s educational attainment and the median wage was not 

significant at the 5% level for individuals who did not complete high school, but even this 

positive correlation was significant at the 10% level. 

These results lend support to the hypothesis that all workers benefit from having a 

well-educated community; however, as we shall see, this analysis does not hold up under 

more rigorous tests. 
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(Table 1 about here) 

  

 While aggregate correlations between education and wages are evident, how 

robust this relationship actually is once local conditions and other factors are considered 

is a key question (Fontes, Simoes & Hermeto Camilo de Oliveira, 2010).  In addition, 

while evidence of an urban wage premium is fairly well accepted, the explanations for 

the premium continue to be explored (Heuermann et al., 2010).  Most explanations focus 

on ways that education may increase productivity, through social returns to education 

(Moretti, 2004b, Rauch, 1993), proximity to college educated workers (Rosenthal & 

Strange, 2008), or utilization of skills (Combes, Duranton & Gobillon, 2008, Rodriguez-

Pose & Vilata-Bufi, 2005), for example, while other studies argue that the nature of cities 

themselves increase productivity due to scale from density, agglomeration effects, and 

other local conditions that enhance local resources (Fingleton, 2003, Glaeser & Mare, 

2001, Wheaton & Lewis, 2002).  

Results from studies looking at more generalized spillovers from the presence of 

educated workers to wages of less educated workers have been mixed (Bratti & 

Leombruni, 2014, Schumacher, Dias and Tebaldi, 2014).  In his Journal of Econometrics 

article, Moretti (2004a) found that for cities in the U.S., an increase in the supply of 

college graduates raised the wages of college graduates and of those that did not graduate 

from high school, and in his book, Moretti (2013) found broader spillovers to non-college 

workers.   A recent study by Schumacher et al., following Acemoglu (1996), found that 

concentrations of highly educated employees have a positive spillover to all workers in 
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the business services sector in the U.S. and Brazil, with a spillover to other sectors in 

Brazil but not in the U.S.   In contrast, other studies have found small or no spillover 

effects.  For example, Bratti and Leombruni (2014) found a small spillover from the 

presence of college educated workers to white collar wages but not to blue collar workers 

in Italian manufacturing.  Using U.S. data both Acemoglu and Angrist (2000) and 

Ciccone and Peri (2006) found insignificant spillovers from education levels to wages.      

In this study using the share of the population with a bachelor’s degree or more as 

our measure of human capital stock, we explore possible spillover effects to the wages of 

five levels of educated workers in U.S. MSAs.   

 

 

Literature and Variable Choices 

 Heuermann et al. (2010) outline two sets of literatures focusing on explaining 

either urban wage premiums and or human capital externalities.  The two are closely 

related.  In both approaches two sets of variables are typically used in explaining regional 

wage differences.  The first set is individual characteristics of workers and the second is 

characteristics of the local economy where the individuals work.   

In this study we identify the "median" person by educational attainment in each 

metro area and attempt to explain what that person is earning by regressing the wages for 

that median person against community and state variables.   Our equation can be 

represented as follows:  

 

Ln Wit = α + βXit + γ1Z1it + γ2Z2it + ϕit + εit  (1)      
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Where Ln W is the log of the real median annual wage for the group of workers with the 

same educational attainment level; 

X is the vector of local human capital characteristics, including the share of the 

population with a bachelor’s degree or more, and the share of young workers as a gauge 

of experience;  

Z1 is the vector of local community characteristics including metro labor market 

conditions, the local cost of housing, and the presence of amenities; 

Z2 is the vector of state level policy characteristics including the legally mandated 

minimum wage adjusted for local area non-housing cost of living differences, and the 

state-wide tax rate measured by total state and local taxes as a share of personal income; 

Φ is the vector of unobservable individual characteristics; and 

 ε is the error term. 

 

Our dependent variable is the median wage, W, and is partially adjusted for cost 

of living differences, measured in U.S. 2012 dollars.   We prefer using the median wage 

over the mean.    First, in order to calculate the mean wage by educational attainment one 

would need to use the micro data sample from the ACS.  Two problems with this data set 

are that the respondent’s location is only identified by Public Use Micro Area (PUMA), 

which does not always correspond to a metropolitan area, and second, the income data is 

top coded based upon the highest 0.5% in a state.  In most states this would imply a top 

coded value of between $300,000 and $500,000.  The wages of individuals whose actual 

wage exceeds the top code value are assigned a wage value equal to the top code value. 
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The tabulated data for metropolitan areas published by the U. S. Census Bureau do not 

have these limitations. 

Second, and more importantly, the mean is skewed upwards by the presence of 

very high wage individuals. Variation in mean and median wages can be seen from data 

available from the U.S. Census Bureau for all year-round, full-time workers aged 16 and 

older by gender.  For example, for male workers in 2012 the mean wage in the U.S. was 

$64,650 and the median wage was $47,473, which is a difference of 36%.  In 2012 the 

metropolitan area with the largest difference was Bridgeport-Stamford Connecticut where 

the mean wage for male workers was $124,784 whereas the median wage was only 

$70,970, a difference of 76%.  In Los Angeles the mean wage for male workers was 45% 

higher than the median wage, while in Milwaukee the mean was only 28% higher than 

the median.    

Moreover the degree of skewness in the ACS micro data sample varies by level of 

educational attainment.  In Los Angeles the mean wage for someone with only a high 

school degree in 2012 was 27% higher than the median wage, while in Milwaukee the 

mean wage for a high school graduate was only 8% higher than the median wage.  The 

disproportionate presence of some high-wage, high school graduates tends to pull up the 

mean wage much more in Los Angeles than it does in Milwaukee.  The mean wage for 

workers with a graduate degree is 31% higher than the median wage in Los Angeles, 

while in Milwaukee it is 33% higher.  The variance across MSAs in the difference 

between the mean and the median is much higher for the lower educational attainment 

categories. To eliminate this distortion we use the ACS data on the median wage 

published by the U.S. Census Bureau.2 
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We adjust the median wage variable to account for non-housing differences in the 

cost of living.  Our cost of living adjustment is based on regional price parities developed 

by the Bureau of Economic Analysis (BEA) (Aten, Figueroa, & Vengelen 2015).  The 

adjustment is based upon a weighted average of the goods and non-housing related 

services cost indices.  The housing cost index, which is based upon the median rent data 

from the ACS, is included as an explanatory variable.  Winters (2009) showed that rents 

were a better measure of housing costs than owner-occupied housing values.  Further, 

regional differences in wages and incomes should only partially adjust for differences in 

the local cost of living because the local price of housing incorporates some location 

amenity value (Dumond et al., 1999).  The BEA data are also based on direct price 

measures rather than indirectly using wages (Riefler, 2007). We then extend this measure 

back in time to derive price parity index values for the period 2005 to 2007, since the 

BEA estimates start in 2008.  (See Appendix A for further discussion of this procedure.) 

We study the effect of human capital externalities on the real wage for our whole 

sample, which is comparable to many previous studies.  We also study these relationships 

for five disaggregated groups distinguished by the standard categories of education 

attainment: 1) did not graduate from high school; 2) high school diploma or a graduate 

equivalent degree (GED); 3) associate college degree or some college; 4) bachelor’s 

degree only; and 5) graduate degree. Very few studies have used this type of 

disaggregated data, and none that we could find use them to analyze urban wage 

differentials.3   

In addition to disaggregating by education level as a way to understand the human 

capital factors, for each education equation we measure the local human capital 
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characteristics with two variables: human capital intensity and experience.  We measure 

human capital intensity by the share of the population aged 25 to 64 that has a bachelor’s 

degree or more.  If having more educated people nearby has a knowledge spillover effect 

on the wages of others, then we would expect to see a positive coefficient on this 

variable.   We measure experience by the share of the working age population that is 

young.   Specifically we define “young” as the share of the working age population that is 

between 25 and 34 out of the total population aged 25 to 64.  This variable is specific to 

each educational attainment cohort.  For example, the population aged 25 to 34 with a 

graduate degree is divided by the total population aged 25 to 64 with a graduate degree.  

Younger workers tend to get paid less than older workers, presumably because they are 

less productive, thus a community where a bigger share of workers are younger, within 

each educational attainment cohort, we would expect the workers in that cohort to be paid 

less.     

Local labor market conditions are captured with the share of employed 

individuals (aged 25 to 64) relative to the total prime working age (25 to 64) population.  

This labor market tightness variable is specific to each educational attainment cohort.  

For example, the number of employed people who have not completed high school is 

divided by the total population that has not completed high school.  For two of the 

regression equations, those for the median wage of individuals with a bachelor’s degree 

or a graduate degree, the independent variable used to measure labor market conditions is 

the number of employed people with a bachelor’s degree or more divided by the 

population with a bachelor's degree or more.  The employment data for the population 
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aged 25 to 64 were not available separately for people with only a bachelor’s degree or a 

graduate degree. 

If labor markets are tight, where a large proportion of the potential workforce are 

employed, then we would expect upward pressure on wages.  Since labor market 

conditions in the aggregate tend to be positively correlated with an area’s educational 

attainment (in the aggregate the more educated communities have more people working), 

it is desirable to include this measure by educational attainment category (instead of 

simply looking at the aggregate labor market).  This will ensure that it is the labor market 

conditions for a particular type of worker that is determining the wage for that particular 

type of worker.  There is some concern that this variable could be endogenous to this 

equation as there could be unobserved or unmeasured characteristics of a metro area’s 

industry and employment mix that could lead to both higher wages and a tighter labor 

market. We examine this issue empirically. 

We include two policy variables that vary by state:  the legislatively mandated 

minimum wage adjusted for local non-housing costs of living and expressed in constant 

2012 dollars, and a tax rate variable.   These are included to capture public policy efforts 

to directly influence the local wage, or to indirectly influence the local gross wage by 

reducing or increasing the after tax wage.  We would expect that the minimum wage 

would have a positive effect on the median wage, especially for the less educated cohorts, 

and that the tax rate would have a positive effect on the median wage if the equilibrium 

wage rate is determined by after tax income. Note that because the minimum wage 

variable is adjusted for differences in the local, non-housing cost of living it varies by 

metro area.  
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Finally, we include a set of variables to capture various amenities.   There are 

both positive and negative consumption externalities that can affect wages that 

employees will accept (Dimou, 2012, Gabriel & Rosenthal, 1999, Roback, 1982).  For 

example, Florida’s (2012) work on the “creative class” poses the hypothesis that people 

are attracted to places with an array of activities with opportunities for interaction.  In this 

study we include three desirable amenities: presence of leisure and culture (includes 

employees at parks, museums, amusement parks, golf course, ski resorts, non-hotel 

casinos etc.), higher educational institutions and public transportation.  The presence of 

these amenities is measured by the share of employment in each of these industries in the 

MSA as reported by the Bureau of Labor Statistics.4  We also include the share of 

employment in durable manufacturing, expecting that this is a negative amenity in that 

people may require a higher wage to work in the challenging working conditions in 

factories or to live near such factories.  We expect that the desirable amenities would be 

negatively related to the median wage for each educational attainment category, while the 

undesirable amenity would be positively related to wages.   

 We used a fixed effect estimation technique to account for the metro area factors 

that do not change over time, and we added year dummies to control for effects that vary 

by year but not by geography.  We also estimate our equations using metro areas larger 

than 500,000 in 2012 (104 metro areas, thus a sample similar to Richter and Nelson, 

2014), less than 500,000, and all MSAs together. (See Appendix B for a list of the 374 

MSAs.)  This allows us to determine if there are differences in the factors that influence 

wages in larger and smaller metro areas (Echeverri-Carroll & Ayala, 2011).   
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Results 

The descriptive statistics for each of our variables are reported in Table 2. 

(Table 2 about here) 

We begin by estimating a base model that includes the human capital variables 

and the housing price cost of living variable as explanatory variables (Table 3), followed 

by estimations for our full model shown in Table 4.  The results for the year effects are 

shown in Appendix C.  Note that the dependent variable, the housing price variable and 

the minimum wage variable used in our estimations are in natural logs, and the other 

variables are measured as shares.  The results come from a fixed effects model estimated 

for all U.S. metropolitan areas over eight years from 2005 through 2012.5   The standard 

errors are calculated from a covariance matrix estimator that adjusts for 

heteroskedasticity and serial correlation at the metropolitan area.6     The estimated 

standard errors, clustered at the MSA level, are reported below each coefficient. 

(Table 3 about here) 

The first column in Table 3 reports results for the whole sample, combining all 

education levels. Our primary interest is in the impact of human capital intensity 

measured as the share of the population with a bachelor’s degree or more; this variable 

has a positive and statistically significant coefficient.  The more educated the community, 

the higher the median wage.   In our base model, a 10% increase in an area’s share of its 

working age population with at least a bachelor’s degree, say from 30 to 33%, would 
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result in almost a 2% increase in the overall real median wage from $35,000 a year to 

$35,657 a year.  

The coefficient on the housing price variable suggests that an area’s median wage 

partially responds to an increase in housing costs (coefficient value of 0.40), indicating 

that some of the variance in housing prices reflects the amenity value of various 

communities.  A coefficient estimate of 1.0 would imply that workers require a wage rate 

sufficient to completely offset higher housing costs. A point estimate of 0.0, on the other 

hand, would imply that the value of the place amenity would completely offset the higher 

cost of housing.   

Our measure of experience is the share of the working age population that is 

relatively young.  This variable is not significant when all education groups are 

combined, but is significant at the 1% level, as expected, once we control for education 

attainment, except for high school graduates where it is insignificant.   

 

The more interesting results come from the regressions that consider median 

wages stratified by educational attainment (Table 3, columns 2-5).  Here the base case 

results show that the impact of a more highly educated workforce is generally quite small 

and is not statistically significantly different from zero. The higher level of wages in a 

better educated community appears to reflect each individual’s own educational 

attainment, with no measurable spillovers to the median wages of other workers.  This 

result is inconsistent with the correlations presented in Table 1, and conflicts with the 
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argument that Moretti presents in his book (2013) as well as with the results from the 

Cleveland Federal Reserve study (Richter & Nelson 2014).   

The full model presented in Table 4 includes several other conditioning variables, 

as described in the data section above.  These variables are the log of the minimum wage, 

adjusted by metro-area cost of living but not by housing costs, the measure of labor 

market tightness, a measure of state tax rates, and the amenity variables. The estimated 

coefficients for the human capital and housing price variables are similar to those 

obtained in the base case models.  The coefficient on the housing price variable varies by 

educational attainment category but remains significant among all educational levels, 

except for individuals with a graduate degree.  This coefficient was also insignificant in 

the base regression for people with a graduate degree which suggests that people with a 

graduate degree are not compensated for higher housing costs with higher wages. Perhaps 

people with a graduate degree consider that higher housing costs reflect the amenity 

value of place.  People with less education do require higher pay to work in communities 

with higher housing costs indicating that for them the cost of housing exceeds the 

amenity value of place and wages partially adjust to compensate. 

(Table 4 about here) 

Similarly, adding the other explanatory variables does not change the results for 

the community educational attainment variable. Again, there appears to be no spillover 

wage benefits for workers because they are living in communities with a relatively large 

share of educated residents. 
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Results for the control variables are also interesting. We find, not surprisingly, 

that metro areas with younger workforces, stratified by the educational attainment of the 

cohort, have a significant and negative effect on the median wage. For example, an 

increase in the share of the work-age population with a bachelor’s degree that is relatively 

young (aged 25 to 34) from 25 to 30% would reduce the median wage of that segment of 

the workforce from about $45,000 to $44,406.  

 Our measure of labor market conditions is positive and significant except for 

individuals with a graduate degree.  Since the job market for people with a graduate 

degree tends to be geographically larger than the local metro area it is less surprising that 

their wages would not be influenced by conditions in the local labor market.  However, 

an increase in the employment to population ratio from 55 to 58% for those with a high 

school degree would increase the median wage of high school graduates from about 

$30,000 to $30,379. There is some concern that this variable could be jointly determined 

along with the median wage, as there are perhaps unobserved factors that increase the 

tightness of a local labor market and also push up the median wage in that market.  To 

mitigate this concern, we also estimated this model using a lagged measure. The results 

for all variables were virtually identical, so we present only one set of results.7 

 The minimum wage has a positive effect on median wages for all of the 

educational attainment groups (and the entire workforce) except for people with a 

graduate degree.  It is significant at the 5% level for all workers without controlling for 

educational cohort, and at the 5% level for high school dropouts and at the 10% level for 

high school graduates.  So the least educated workers are likely to see an increase in the 

median wage if there is an increase in the statutory minimum wage in their community.  
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For individuals who did not complete high school, an increase in the minimum wage 

from $7.25 an hour to $8.25 an hour would raise the median wage for this group from 

about $20,000 a year to $20,257 a year.   

 The state and local tax rate variable tended to be positive across the educational 

attainment categories but is only significant, at the 10% level, for the all workers category 

and individuals with a graduate degree.  The point estimates indicates that much of an 

increase in state and local taxes are offset by an increase in the gross wage.  For example, 

if state and local taxes were increased from 10 to 11%, then the typical worker with a 

graduate degree with a median income of $62,000 would pay an additional $620 per year 

in taxes.  However, our model estimates that their gross income would increase from 

$62,000 to $62,503, offsetting 81% of those higher taxes.8  

 Among our amenity variables the strongest results were reported for the share of 

total wage and salary employment in durables manufacturing.  This coefficient was 

positive for all groups and was significant at the 5% level of all educational attainment 

categories except for people with a bachelor’s degree and people with a graduate degree.  

This indicates that wages for lower educational attainment workers tend to be higher in 

areas with relatively large share of employment in durables manufacturing.  For workers 

with some college education or an associate degree, an increase in the share of 

employment in durables manufacturing from 5 to 8% would increase the median annual 

wage from about $35,000 to $35,638.  This result is consistent with an interpretation that 

the presence of durable manufacturing results in a higher median wage to compensate for 

the negative amenity.  The results could also reflect the fact that durables manufacturing 

tends to be relatively well paid and employs a disproportionate share of less educated 
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workers.  Durables manufacturing, however, represented a very small share of 

employment in most metropolitan areas and thus this explanation seemed unlikely.9  

  The estimated year effects are also quite interesting (see Appendix C).  For 

example, the dummy variables for the year 2007 were generally insignificant.  This year, 

of course, is the peak year before the great recession and the weak national labor market 

conditions that followed.  In almost every other year the negative effects were significant 

at the 1% level for every education group except those with a graduate degree.  In 

general, the year dummy variable was not significant or was less significant for those 

with a graduate degree, suggesting that the downturn had less impact on median wages 

for this group.  There were larger year effects for those with less education and in general 

they became more negative as we move through the estimation period. For example, the 

coefficient value for 2012 was -0.087 for individuals who have not completed high 

school and -0.028 for individuals holding a graduate degree (both results statistically 

significant at the 1% level).  In 2006, the coefficient value for individuals who had not 

completed high school was -.027 and for people with graduate degrees it was -.010.  The 

fall in real wages over time, even controlling for local labor market conditions and other 

factors, is a matter of socio-economic concern as it has primarily affected the less 

educated.   

 

Robustness Checks 

We examined the robustness of our results in several ways.  First, we estimated 

several models that varied in how the cost of living was incorporated into the estimation 

procedure, including using nominal wages and including all price variables as 
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independent variables.  The coefficient estimates on the other independent variables were 

remarkably similar in all of these alternative models.   

Second, we estimated a random effects model, which was soundly rejected in 

favor of fixed effects, for both the base model and the full model.  Interestingly the 

random effects model was the only estimation that resulted in a positive and significant 

effect of the community education attainment variable on the median wage for people 

with a bachelor’s degree and people with a graduate degree. 

Third, to examine the importance of city size, we divided our data set into MSAs 

greater than 500,000 people and those with fewer.  The parameter estimates between 

these and our estimates on the full data set were very similar.  The standard errors 

increased in the MSA subsets as one would expect and this reduced the statistical 

significance of the variables and in couple of instances made the coefficient estimates 

insignificantly different from zero at the 5% level.  One exception to these overall results 

was that the housing price variable for the population with a graduate degree in the larger 

MSAs became significantly positive. Further, the coefficient on the community education 

attainment variable was not statistically significant for any of the educational attainment 

cohorts even when we restrict our sample to the larger MSAs.  

As mentioned in the results section, we also examined the sensitivity of our 

results to our choice of the labor market tightness variable.  Our measure was the share of 

the adult population that was employed. We found no qualitative differences in the 

parameter estimates when either a lagged version, or a lead version, of our variable was 

used.   
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Finally, we estimated a Hierarchical Linear Model (HLM) type specification that 

used the two levels of the metro area and the state (Fontes et al., 2010).  Our state level 

variable was the tax rate variable.  This specification differs slightly from a fully 

specified HLM model in that our error structure allowed for non-parametric correlation 

within each metro area, rather than metro and state level random effects.  Again, this 

specification did not produce parameter estimates that were qualitatively different from 

the simpler specifications.  We found no evidence to support the existence of positive 

spillovers from an educated workforce to the wages of less educated workers. 

 

Discussion 

  These results suggest two overall scenarios, defined by educational group—those 

who are relatively educated and those who are not.  For those with a graduate degree, 

local factors do not seem to matter much, and instead wages in this cohort are probably 

determined more by national and international opportunities.  Only the share of young 

people with graduate degrees was significant, indicating that a more youthful and less 

experienced community will have lower wages once education is accounted for.  

Interestingly, even the cost of housing did not matter for this group, i.e., people with a 

graduate degree did not need to be compensated for higher urban housing costs, 

suggesting that living in an expensive community includes  an amenity value to them that 

almost completely offsets higher housing costs.  For those with a bachelor’s degree, in 

addition to the share of young workers, the median wage was affected by the local labor 

market—the tighter the market for those with bachelor’s degrees, the higher the wage.  

For this group, higher housing costs must be partially compensated with higher wages, 
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indicating that living in a higher cost area has benefits of its own for these workers as 

well.    

At the other end of educational attainment, the wages of workers who did not 

graduate from high school appear quite sensitive to local factors.  Their wages are lower 

the younger the population, influenced by labor market tightness, and need to be paid 

more than those with more education to compensate for housing costs.  In addition, the 

wages in this group benefit from a mandated minimum wage.  The minimum wage was 

not statistically significant for any other group, although it was almost significant for 

those individuals with just a high school diploma.  The wages for people who did not 

complete high school are also higher the larger the share of durable manufacturing. The 

wages of those that graduated with a high school degree and those with some college or 

an associate’s degree are affected similarly.   

Hence clear differences between those with a bachelor’s degree and graduate 

degree, and those with less education, are suggested by these results.   Further, as 

indicated throughout this paper, we do not find statistically significant evidence that the 

presence of a relatively educated group in the aggregate has any effect on the wages of 

others.     

Finally, anecdotal evidence indicates that real wages generally have been on the 

decline over time (Figure 1, Irwin, 2015).  Our results are consistent with this 

observation, with less educated workers losing more than educated workers.   The 

unexplained decline in the median wage is a topic for future research. 

One implication of these results is that they do not point to any policy short-cuts 

to raising workers’ wages.  On the other hand, importantly, metro areas where 
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employment opportunities are better have been able to sustain higher wages than metro 

areas where employment opportunities are more limited.  Hence, one possible way to 

increase wages would be to increase the demand for labor with the relevant educational 

skills (see also Groen, 2011 and Nolan, Morrison, Kumar, Galloway & Cordes, 2011) as 

well as to find ways to teach the skills needed by businesses (see for example Holzer, 

2012).  From an individual’s point of view, moving to an area with more demand for his 

or her particular skill level might be necessary.  Moretti (2013) suggests a national 

program of vouchers to help low income people around the country move to places that 

better match their skills.  From a city’s point of view, this means that a strategy targeting 

diversification might make more sense than one of specialization.  A diversified economy 

would more likely accommodate a range of education and skill levels.  In our results, 

adding durables manufacturing jobs, for example, increased wages for people with a high 

school degree and some college or an associate’s degree.   This approach is quite 

different than trying to replicate the Silicon Valley phenomenon.   

 

Conclusion 

In contrast to anecdotal evidence using simple correlations and some more formal 

studies that have been done to date, using a representative individual we were not able to 

find significant human capital spillovers to wages due to having an educated community.  

These results were consistent across several different estimations and robustness checks.   

Standard variables from the literature performed mostly as expected, especially when all 

workers were estimated together, and gave us added insight as a result of using the labor 

market segments defined by educational attainment.  Looking at the aggregate population 
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with all education groups together, we find, as do many others, that the presence of a 

larger share of educated workers has a positive effect on wages.  However, explaining 

wage levels across metro areas reveals new insights when we disaggregate the analysis 

by educational cohort and correct appropriately for cost of living differences.   First, local 

market conditions matter especially to less educated workers.  Second, and most 

importantly, the wages of each educational cohort are determined primarily by their own 

characteristics and are not significantly influenced by the educational level of the 

community at large.  
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Figure 1: U.S. Median Annual Salaries by Education Level,  

adjusted for inflation (Constant 2012 dollars): 2005-2012 

 

 
 

Source: Calculated from the American Community Survey. 
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Table 1: Pearson Correlation Coefficients between nominal median wage by education attainment  

with the share of the population aged 25 to 64 with a bachelor’s degree or more: 2005-2012. 

 

  2005 2006 2007 2008 2009 2010 2011 2012 

Nominal Median Wage N =  374 374 374 374 374 374 374 374 

All education levels .618*** .648*** .618*** .659*** .675*** .659*** .688*** .672*** 

Did not graduate HS .206*** .253*** .108** .145*** .159*** .159*** .250*** .101* 

HS Grad or GED .359*** .377*** .313*** .360*** .360*** .286*** .299*** .300*** 

Some College or Associate .326*** .320*** .295*** .362*** .347*** .359*** .388*** .338*** 

Bachelor's only .123** .192*** .165*** .301*** .280*** .231*** .204*** .272*** 

Graduate Degree .260*** .236*** .234*** .309*** .264*** .258*** .291*** .334*** 

 

Note: ***, **, * coefficients are significant at the 1% level, 5% level, and 10% level, respectively. 
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Table 2. Descriptive statistics 

 

  Minimum Maximum Mean 

Standard 

Deviation 

Median Wage all, 2012$, adjusted for non-housing cost of living 20,457 61,419 35,054 4,365 

Median Wage Did Not Graduate from High School, 2012$ adjusted for 

non-housing cost of living 5,865 58,169 20,732 3,888 

Median Wage High School Graduate or GED, 2012$ adjusted for non-

housing cost of living 17,924 52,682 28,986 3,350 

Median Wage Some College or Associate’s Degree, 2012$ adjusted for 

non-housing cost of living 19,486 60,061 34,561 3,873 

Median Wage Bachelor's Degree, 2012$ adjusted for non-housing cost of 

living 22,773 80,990 47,525 5,950 

Median Wage Graduate Degree, 2012$ adjusted for non-housing cost of 

living 6,053 114,106 62,020 8,361 

Price Parity Index Housing 48.0 195.5 88.8 24.9 

Share of Population 25 to 64 with Bachelor’s or more 10.0 62.0 26.7 8.3 

Share of Population 25 to 64 who are 25 to 34, All 13.1 43.8 25.4 3.4 

Share of Population 25 to 64 who are 25 to 34, Did not graduate from 

high school 2.7 66.6 26.3 6.5 

Share of Population 25 to 64 who are 25 to 34, High school graduate or 

GED 10.5 46.4 23.5 4.8 

Share of Population 25 to 64 who are 25 to 34, Some College or 

Associate’s 10.8 50.0 26.8 4.4 

Share of Population 25 to 64 who are 25 to 34, Bachelor’s 5.8 51.9 28.4 6.0 

Share of Population 25 to 64 who are 25 to 34, Graduate Degree 0.4 39.5 19.0 5.9 

Share of Population 25 to 64 who are employed, All 50.6 86.7 72.3 5.4 

Share of Population 25 to 64 who are employed, Did not graduate from 

high school  14.8 84.4 52.1 9.8 

Share of Population 25 to 64 who are employed, High school graduate or 

GED 43.5 90.0 68.6 6.0 
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Table 3: Results for Base Model 

 

Dependent variable: Natural log of Median Wage in 2012 U.S. dollars, partially adjusted for metro area cost of living 

differences 

 1 2 3 4 5 6 

Variable All 

Did not 

graduate 

from High 

School 

High 

School 

graduate or 

GED 

Some 

College or 

Associates 

Bachelor's 

only 

Graduate 

degree 

Constant 8.53075*** 7.98410*** 8.25544*** 8.73598*** 9.49874*** 10.57434*** 

  (.17516) (.50944) (.22652) (.24029) (.22266) (.29897) 

Ln (price parity index, housing) 0.40250*** 0.45736*** 0.46494*** 0.41212*** 0.30555*** 0.10956 

  (.03959) (.11550) (.05050) (.05420) (.05017) (.07113) 

Share of Population (25-64) with 

bachelor’s or more 0.00626*** 0.00152 0.00024 -0.00056 0.00009 0.00192 

  (.00061) (.00217) (.00107) (.00083) (.00104) (.00169) 

Population (25-34)/Population (25-

64), education specific -0.00004 -0.0026*** -0.00084 -0.0026*** -0.00250*** -0.00401*** 

  (.00069) (.00078) (.00057) (.00055) (.00045) (.00044) 

        

R-squared overall 0.3785 0.0803 0.1529 0.2517 0.1067 0.1164 

 

Note: ***, **, * coefficients are significant at the 1% level, 5% level, and 10% level, respectively. 
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Table 4: Results for Full Model 

 

Dependent variable: Natural Log of Median Wage in 2012 U.S. dollars, partially adjusted for metro area cost of living differences  

 1 2 3 4 5 6 

Variable All 

Did not 

graduate 

from High 

School 

High School 

graduate or 

GED 

Some 

College or 

Associate’s 

Bachelor's 

only 

Graduate 

degree 

Constant 8.39161*** 8.16493*** 8.14249*** 8.65223*** 9.3965*** 10.49469*** 

  (.17225) (.50593) (.22372) (.23316) (.23353) (.33875) 

Ln (price parity index, housing) 0.34186*** 0.32311*** 0.40306*** 0.34866*** 0.27899*** 0.09612 

  (.03853) (.11384) (.04758) (.05300) (.05090) (.07140) 

Share of Population (25-64) with  

bachelor’s or more 0.00546*** 0.00173 -0.00013 -0.00052 0.00005 0.00184 

  (.00056) (.00215) (.00103) (.00084) (.00105) (.00170) 

Population (25-34)/Population (25-

64), education specific -0.00104 -0.0030*** -0.00117** -0.00279*** -0.00265*** -0.00401*** 

  (.00066) (.00079) (.00056) (.00054) (.00045) (.00044) 

Employment (25-64)/Population  

(25-64), education specific 0.00454*** 0.00340*** 0.00418*** 0.00392*** 0.00223*** 0.00081 

  (.00056) (.00075) (.00049) (.00052) (.00085) (.00088) 

Ln (minimum wage) 0.03569** 0.09864** 0.04251* 0.01126 0.00898 -0.00967 

  (.01653) (.04633) (.02280) (.02099) (.02284) (.02977) 

State & local taxes/personal income 0.00429* 0.00456 0.00324 0.00413 0.00076 0.00808* 

  (.00260) (.00898) (.00360) (.00386) (.00434) (.00490) 

Employment share, durables 

manufacturing 0.00461*** 0.01411*** 0.00412** 0.00598*** 0.00395 0.00104 

  (.00142) (.00451) (.00190) (.00209) (.00246) (.00238) 

Employment share, arts & 

recreational services -0.01120** -0.0485*** -0.00929 -0.01645** -0.00765 0.00027 

  (.00527) (.01723) (.00645) (.00725) (.00761) (.00956) 

Employment share, 4-year colleges -0.00110 -0.00633 -0.00920* -0.00114 0.00044 0.00504 

  (.00385) (.01148) (.00530) (.00438) (.00472) (.00464) 
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Employment share, public transit -0.00409 -0.12374 0.06329 -0.05902 0.01246 -0.06766 

  (.04328) (.11831) (.05623) (.06645) (.09181) (.08069) 

        

R-squared overall 0.4829 0.1304 0.2304 0.3477 0.1466 0.0826 

 

Note: ***, **, * coefficients are significant at the 1% level, 5% level, and 10% level, respectively. 
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Appendix A: Extending the Regional Price Parities back in time 

 

In order to extend the Bureau of Economic Analysis (BEA) regional price parities back to 2005, we 

applied the difference in the regional change in prices as measured by the CPI to the national CPI.  The Price 

Parity Index for Housing Costs was extended using the Shelter Component of the regional CPI and the Price 

Parity Index for Non-Housing Costs was extended using the CPI less Shelter regional index.  For example, 

shelter price inflation between 2005 and 2008 as measured by the Atlanta CPI was 0.7% less than the U.S. 

CPI (9.2% compared to 9.9%), which we then applied to the 2008 BEA Price Parity Index for Atlanta.  Table 

A1 presents the housing cost price parity values used in our analysis.  These extensions tended to have a 

relatively small effect on the price parity indices, i.e., the 2005 values tended to be very close to the 2008 

values. 

What these data show is that the cost of housing in Atlanta was slightly higher than it was in the U.S. 

in 2005 (index value of 101.6), but that by 2012 the cost of housing in Atlanta was 7.2% less than in the U.S. 

(index value of 92.8).  The non-housing cost of living in Atlanta was 3.8% less than in the U.S. overall 

(index value of 96.2) in 2012, and 0.6% less than in the U.S. overall (index value of 99.4) in 2005. Adjusting 

for the non-housing cost of living raised the median wage in the Atlanta MSA by 3.8% in 2012, and by 0.6% 

in 2005. The real median wage in Atlanta declined sharply between 2005 and 2012, but this adjustment for 

non-housing cost of living costs moderated that decline.  

 

Table A1: Price Parity Housing Cost Indices for Atlanta 

Year                    

 

Price Parity Index 

 

2005 101.6 

2006 100.8 

2007 101.8 

2008 100.9 

2009 100.5 

2010 97.0 

2011 94.70 

2012 92.8 
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Appendix B: Metropolitan Statistical Areas Included in the Analysis 

 

FIPS 

code Name 

10180 Abilene, TX (Metropolitan Statistical Area) 

10420 Akron, OH (Metropolitan Statistical Area) 

10500 Albany, GA (Metropolitan Statistical Area) 

10540 Albany, OR (Metropolitan Statistical Area) 

10580 Albany-Schenectady-Troy, NY (Metropolitan Statistical Area) 

10740 Albuquerque, NM (Metropolitan Statistical Area) 

10780 Alexandria, LA (Metropolitan Statistical Area) 

10900 Allentown-Bethlehem-Easton, PA-NJ (Metropolitan Statistical Area) 

11020 Altoona, PA (Metropolitan Statistical Area) 

11100 Amarillo, TX (Metropolitan Statistical Area) 

11180 Ames, IA (Metropolitan Statistical Area) 

11260 Anchorage, AK (Metropolitan Statistical Area) 

11460 Ann Arbor, MI (Metropolitan Statistical Area) 

11500 Anniston-Oxford-Jacksonville, AL (Metropolitan Statistical Area) 

11540 Appleton, WI (Metropolitan Statistical Area) 

11700 Asheville, NC (Metropolitan Statistical Area) 

12020 Athens-Clarke County, GA (Metropolitan Statistical Area) 

12060 Atlanta-Sandy Springs-Roswell, GA (Metropolitan Statistical Area) 

12100 Atlantic City-Hammonton, NJ (Metropolitan Statistical Area) 

12220 Auburn-Opelika, AL (Metropolitan Statistical Area) 

12260 Augusta-Richmond County, GA-SC (Metropolitan Statistical Area) 

12420 Austin-Round Rock, TX (Metropolitan Statistical Area) 

12540 Bakersfield, CA (Metropolitan Statistical Area) 

12580 Baltimore-Columbia-Towson, MD (Metropolitan Statistical Area) 

12620 Bangor, ME (Metropolitan Statistical Area) 

12700 Barnstable Town, MA (Metropolitan Statistical Area) 

12940 Baton Rouge, LA (Metropolitan Statistical Area) 

12980 Battle Creek, MI (Metropolitan Statistical Area) 

13020 Bay City, MI (Metropolitan Statistical Area) 

13140 Beaumont-Port Arthur, TX (Metropolitan Statistical Area) 

13380 Bellingham, WA (Metropolitan Statistical Area) 

13460 Bend-Redmond, OR (Metropolitan Statistical Area) 

13740 Billings, MT (Metropolitan Statistical Area) 

13780 Binghamton, NY (Metropolitan Statistical Area) 

13820 Birmingham-Hoover, AL (Metropolitan Statistical Area) 

13900 Bismarck, ND (Metropolitan Statistical Area) 

13980 Blacksburg-Christiansburg-Radford, VA (Metropolitan Statistical Area) 

14010 Bloomington, IL (Metropolitan Statistical Area) 
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14020 Bloomington, IN (Metropolitan Statistical Area) 

14100 Bloomsburg-Berwick, PA (Metropolitan Statistical Area) 

14260 Boise City, ID (Metropolitan Statistical Area) 

14460 Boston-Cambridge-Newton, MA-NH (Metropolitan Statistical Area) 

14500 Boulder, CO (Metropolitan Statistical Area) 

14540 Bowling Green, KY (Metropolitan Statistical Area) 

14740 Bremerton-Silverdale, WA (Metropolitan Statistical Area) 

14860 Bridgeport-Stamford-Norwalk, CT (Metropolitan Statistical Area) 

15180 Brownsville-Harlingen, TX (Metropolitan Statistical Area) 

15260 Brunswick, GA (Metropolitan Statistical Area) 

15380 Buffalo-Cheektowaga-Niagara Falls, NY (Metropolitan Statistical Area) 

15500 Burlington, NC (Metropolitan Statistical Area) 

15540 Burlington-South Burlington, VT (Metropolitan Statistical Area) 

15680 California-Lexington Park, MD (Metropolitan Statistical Area) 

15940 Canton-Massillon, OH (Metropolitan Statistical Area) 

15980 Cape Coral-Fort Myers, FL (Metropolitan Statistical Area) 

16020 Cape Girardeau, MO-IL (Metropolitan Statistical Area) 

16220 Casper, WY (Metropolitan Statistical Area) 

16300 Cedar Rapids, IA (Metropolitan Statistical Area) 

16540 Chambersburg-Waynesboro, PA (Metropolitan Statistical Area) 

16580 Champaign-Urbana, IL (Metropolitan Statistical Area) 

16620 Charleston, WV (Metropolitan Statistical Area) 

16700 Charleston-North Charleston, SC (Metropolitan Statistical Area) 

16740 Charlotte-Concord-Gastonia, NC-SC (Metropolitan Statistical Area) 

16820 Charlottesville, VA (Metropolitan Statistical Area) 

16860 Chattanooga, TN-GA (Metropolitan Statistical Area) 

16940 Cheyenne, WY (Metropolitan Statistical Area) 

16980 Chicago-Naperville-Elgin, IL-IN-WI (Metropolitan Statistical Area) 

17020 Chico, CA (Metropolitan Statistical Area) 

17140 Cincinnati, OH-KY-IN (Metropolitan Statistical Area) 

17300 Clarksville, TN-KY (Metropolitan Statistical Area) 

17420 Cleveland, TN (Metropolitan Statistical Area) 

17460 Cleveland-Elyria, OH (Metropolitan Statistical Area) 

17660 Coeur d'Alene, ID (Metropolitan Statistical Area) 

17780 College Station-Bryan, TX (Metropolitan Statistical Area) 

17820 Colorado Springs, CO (Metropolitan Statistical Area) 

17860 Columbia, MO (Metropolitan Statistical Area) 

17900 Columbia, SC (Metropolitan Statistical Area) 

17980 Columbus, GA-AL (Metropolitan Statistical Area) 

18020 Columbus, IN (Metropolitan Statistical Area) 

18140 Columbus, OH (Metropolitan Statistical Area) 
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18580 Corpus Christi, TX (Metropolitan Statistical Area) 

18700 Corvallis, OR (Metropolitan Statistical Area) 

18880 Crestview-Fort Walton Beach-Destin, FL (Metropolitan Statistical Area) 

19060 Cumberland, MD-WV (Metropolitan Statistical Area) 

19100 Dallas-Fort Worth-Arlington, TX (Metropolitan Statistical Area) 

19140 Dalton, GA (Metropolitan Statistical Area) 

19180 Danville, IL (Metropolitan Statistical Area) 

19300 Daphne-Fairhope-Foley, AL (Metropolitan Statistical Area) 

19340 Davenport-Moline-Rock Island, IA-IL (Metropolitan Statistical Area) 

19380 Dayton, OH (Metropolitan Statistical Area) 

19460 Decatur, AL (Metropolitan Statistical Area) 

19500 Decatur, IL (Metropolitan Statistical Area) 

19660 Deltona-Daytona Beach-Ormond Beach, FL (Metropolitan Statistical Area) 

19740 Denver-Aurora-Lakewood, CO (Metropolitan Statistical Area) 

19780 Des Moines-West Des Moines, IA (Metropolitan Statistical Area) 

19820 Detroit-Warren-Dearborn, MI (Metropolitan Statistical Area) 

20020 Dothan, AL (Metropolitan Statistical Area) 

20100 Dover, DE (Metropolitan Statistical Area) 

20220 Dubuque, IA (Metropolitan Statistical Area) 

20260 Duluth, MN-WI (Metropolitan Statistical Area) 

20500 Durham-Chapel Hill, NC (Metropolitan Statistical Area) 

20700 East Stroudsburg, PA (Metropolitan Statistical Area) 

20740 Eau Claire, WI (Metropolitan Statistical Area) 

20940 El Centro, CA (Metropolitan Statistical Area) 

21060 Elizabethtown-Fort Knox, KY (Metropolitan Statistical Area) 

21140 Elkhart-Goshen, IN (Metropolitan Statistical Area) 

21300 Elmira, NY (Metropolitan Statistical Area) 

21340 El Paso, TX (Metropolitan Statistical Area) 

21500 Erie, PA (Metropolitan Statistical Area) 

21660 Eugene, OR (Metropolitan Statistical Area) 

21780 Evansville, IN-KY (Metropolitan Statistical Area) 

21820 Fairbanks, AK (Metropolitan Statistical Area) 

22020 Fargo, ND-MN (Metropolitan Statistical Area) 

22140 Farmington, NM (Metropolitan Statistical Area) 

22180 Fayetteville, NC (Metropolitan Statistical Area) 

22220 Fayetteville-Springdale-Rogers, AR-MO (Metropolitan Statistical Area) 

22380 Flagstaff, AZ (Metropolitan Statistical Area) 

22420 Flint, MI (Metropolitan Statistical Area) 

22500 Florence, SC (Metropolitan Statistical Area) 

22520 Florence-Muscle Shoals, AL (Metropolitan Statistical Area) 

22540 Fond du Lac, WI (Metropolitan Statistical Area) 
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22660 Fort Collins, CO (Metropolitan Statistical Area) 

22900 Fort Smith, AR-OK (Metropolitan Statistical Area) 

23060 Fort Wayne, IN (Metropolitan Statistical Area) 

23420 Fresno, CA (Metropolitan Statistical Area) 

23460 Gadsden, AL (Metropolitan Statistical Area) 

23540 Gainesville, FL (Metropolitan Statistical Area) 

23580 Gainesville, GA (Metropolitan Statistical Area) 

23900 Gettysburg, PA (Metropolitan Statistical Area) 

24020 Glens Falls, NY (Metropolitan Statistical Area) 

24140 Goldsboro, NC (Metropolitan Statistical Area) 

24220 Grand Forks, ND-MN (Metropolitan Statistical Area) 

24260 Grand Island, NE (Metropolitan Statistical Area) 

24300 Grand Junction, CO (Metropolitan Statistical Area) 

24340 Grand Rapids-Wyoming, MI (Metropolitan Statistical Area) 

24420 Grants Pass, OR (Metropolitan Statistical Area) 

24500 Great Falls, MT (Metropolitan Statistical Area) 

24540 Greeley, CO (Metropolitan Statistical Area) 

24580 Green Bay, WI (Metropolitan Statistical Area) 

24660 Greensboro-High Point, NC (Metropolitan Statistical Area) 

24780 Greenville, NC (Metropolitan Statistical Area) 

24860 Greenville-Anderson-Mauldin, SC (Metropolitan Statistical Area) 

25060 Gulfport-Biloxi-Pascagoula, MS (Metropolitan Statistical Area) 

25180 Hagerstown-Martinsburg, MD-WV (Metropolitan Statistical Area) 

25220 Hammond, LA (Metropolitan Statistical Area) 

25260 Hanford-Corcoran, CA (Metropolitan Statistical Area) 

25420 Harrisburg-Carlisle, PA (Metropolitan Statistical Area) 

25500 Harrisonburg, VA (Metropolitan Statistical Area) 

25540 Hartford-West Hartford-East Hartford, CT (Metropolitan Statistical Area) 

25620 Hattiesburg, MS (Metropolitan Statistical Area) 

25860 Hickory-Lenoir-Morganton, NC (Metropolitan Statistical Area) 

25940 Hilton Head Island-Bluffton-Beaufort, SC (Metropolitan Statistical Area) 

26140 Homosassa Springs, FL (Metropolitan Statistical Area) 

26300 Hot Springs, AR (Metropolitan Statistical Area) 

26380 Houma-Thibodaux, LA (Metropolitan Statistical Area) 

26420 Houston-The Woodlands-Sugar Land, TX (Metropolitan Statistical Area) 

26580 Huntington-Ashland, WV-KY-OH (Metropolitan Statistical Area) 

26620 Huntsville, AL (Metropolitan Statistical Area) 

26820 Idaho Falls, ID (Metropolitan Statistical Area) 

26900 Indianapolis-Carmel-Anderson, IN (Metropolitan Statistical Area) 

26980 Iowa City, IA (Metropolitan Statistical Area) 

27060 Ithaca, NY (Metropolitan Statistical Area) 
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27100 Jackson, MI (Metropolitan Statistical Area) 

27140 Jackson, MS (Metropolitan Statistical Area) 

27180 Jackson, TN (Metropolitan Statistical Area) 

27260 Jacksonville, FL (Metropolitan Statistical Area) 

27340 Jacksonville, NC (Metropolitan Statistical Area) 

27500 Janesville-Beloit, WI (Metropolitan Statistical Area) 

27620 Jefferson City, MO (Metropolitan Statistical Area) 

27740 Johnson City, TN (Metropolitan Statistical Area) 

27780 Johnstown, PA (Metropolitan Statistical Area) 

27860 Jonesboro, AR (Metropolitan Statistical Area) 

27900 Joplin, MO (Metropolitan Statistical Area) 

27980 Kahului-Wailuku-Lahaina, HI (Metropolitan Statistical Area) 

28020 Kalamazoo-Portage, MI (Metropolitan Statistical Area) 

28100 Kankakee, IL (Metropolitan Statistical Area) 

28140 Kansas City, MO-KS (Metropolitan Statistical Area) 

28420 Kennewick-Richland, WA (Metropolitan Statistical Area) 

28660 Killeen-Temple, TX (Metropolitan Statistical Area) 

28700 Kingsport-Bristol-Bristol, TN-VA (Metropolitan Statistical Area) 

28740 Kingston, NY (Metropolitan Statistical Area) 

28940 Knoxville, TN (Metropolitan Statistical Area) 

29020 Kokomo, IN (Metropolitan Statistical Area) 

29100 La Crosse-Onalaska, WI-MN (Metropolitan Statistical Area) 

29180 Lafayette, LA (Metropolitan Statistical Area) 

29200 Lafayette-West Lafayette, IN (Metropolitan Statistical Area) 

29340 Lake Charles, LA (Metropolitan Statistical Area) 

29420 Lake Havasu City-Kingman, AZ (Metropolitan Statistical Area) 

29460 Lakeland-Winter Haven, FL (Metropolitan Statistical Area) 

29540 Lancaster, PA (Metropolitan Statistical Area) 

29620 Lansing-East Lansing, MI (Metropolitan Statistical Area) 

29700 Laredo, TX (Metropolitan Statistical Area) 

29740 Las Cruces, NM (Metropolitan Statistical Area) 

29820 Las Vegas-Henderson-Paradise, NV (Metropolitan Statistical Area) 

29940 Lawrence, KS (Metropolitan Statistical Area) 

30020 Lawton, OK (Metropolitan Statistical Area) 

30140 Lebanon, PA (Metropolitan Statistical Area) 

30340 Lewiston-Auburn, ME (Metropolitan Statistical Area) 

30460 Lexington-Fayette, KY (Metropolitan Statistical Area) 

30620 Lima, OH (Metropolitan Statistical Area) 

30700 Lincoln, NE (Metropolitan Statistical Area) 

30780 Little Rock-North Little Rock-Conway, AR (Metropolitan Statistical Area) 

30860 Logan, UT-ID (Metropolitan Statistical Area) 
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30980 Longview, TX (Metropolitan Statistical Area) 

31020 Longview, WA (Metropolitan Statistical Area) 

31080 Los Angeles-Long Beach-Anaheim, CA (Metropolitan Statistical Area) 

31140 Louisville/Jefferson County, KY-IN (Metropolitan Statistical Area) 

31180 Lubbock, TX (Metropolitan Statistical Area) 

31340 Lynchburg, VA (Metropolitan Statistical Area) 

31420 Macon, GA (Metropolitan Statistical Area) 

31460 Madera, CA (Metropolitan Statistical Area) 

31540 Madison, WI (Metropolitan Statistical Area) 

31700 Manchester-Nashua, NH (Metropolitan Statistical Area) 

31740 Manhattan, KS (Metropolitan Statistical Area) 

31860 Mankato-North Mankato, MN (Metropolitan Statistical Area) 

31900 Mansfield, OH (Metropolitan Statistical Area) 

32580 McAllen-Edinburg-Mission, TX (Metropolitan Statistical Area) 

32780 Medford, OR (Metropolitan Statistical Area) 

32820 Memphis, TN-MS-AR (Metropolitan Statistical Area) 

32900 Merced, CA (Metropolitan Statistical Area) 

33100 Miami-Fort Lauderdale-West Palm Beach, FL (Metropolitan Statistical Area) 

33140 Michigan City-La Porte, IN (Metropolitan Statistical Area) 

33220 Midland, MI (Metropolitan Statistical Area) 

33260 Midland, TX (Metropolitan Statistical Area) 

33340 Milwaukee-Waukesha-West Allis, WI (Metropolitan Statistical Area) 

33460 Minneapolis-St. Paul-Bloomington, MN-WI (Metropolitan Statistical Area) 

33540 Missoula, MT (Metropolitan Statistical Area) 

33660 Mobile, AL (Metropolitan Statistical Area) 

33700 Modesto, CA (Metropolitan Statistical Area) 

33740 Monroe, LA (Metropolitan Statistical Area) 

33780 Monroe, MI (Metropolitan Statistical Area) 

33860 Montgomery, AL (Metropolitan Statistical Area) 

34060 Morgantown, WV (Metropolitan Statistical Area) 

34100 Morristown, TN (Metropolitan Statistical Area) 

34580 Mount Vernon-Anacortes, WA (Metropolitan Statistical Area) 

34620 Muncie, IN (Metropolitan Statistical Area) 

34740 Muskegon, MI (Metropolitan Statistical Area) 

34820 Myrtle Beach-Conway-North Myrtle Beach, SC-NC (Metropolitan Statistical Area) 

34900 Napa, CA (Metropolitan Statistical Area) 

34940 Naples-Immokalee-Marco Island, FL (Metropolitan Statistical Area) 

34980 Nashville-Davidson--Murfreesboro--Franklin, TN (Metropolitan Statistical Area) 

35100 New Bern, NC (Metropolitan Statistical Area) 

35300 New Haven-Milford, CT (Metropolitan Statistical Area) 

35380 New Orleans-Metairie, LA (Metropolitan Statistical Area) 
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35620 New York-Newark-Jersey City, NY-NJ-PA (Metropolitan Statistical Area) 

35660 Niles-Benton Harbor, MI (Metropolitan Statistical Area) 

35840 North Port-Sarasota-Bradenton, FL (Metropolitan Statistical Area) 

35980 Norwich-New London, CT (Metropolitan Statistical Area) 

36100 Ocala, FL (Metropolitan Statistical Area) 

36140 Ocean City, NJ (Metropolitan Statistical Area) 

36220 Odessa, TX (Metropolitan Statistical Area) 

36260 Ogden-Clearfield, UT (Metropolitan Statistical Area) 

36420 Oklahoma City, OK (Metropolitan Statistical Area) 

36500 Olympia-Tumwater, WA (Metropolitan Statistical Area) 

36540 Omaha-Council Bluffs, NE-IA (Metropolitan Statistical Area) 

36740 Orlando-Kissimmee-Sanford, FL (Metropolitan Statistical Area) 

36780 Oshkosh-Neenah, WI (Metropolitan Statistical Area) 

36980 Owensboro, KY (Metropolitan Statistical Area) 

37100 Oxnard-Thousand Oaks-Ventura, CA (Metropolitan Statistical Area) 

37340 Palm Bay-Melbourne-Titusville, FL (Metropolitan Statistical Area) 

37460 Panama City, FL (Metropolitan Statistical Area) 

37620 Parkersburg-Vienna, WV (Metropolitan Statistical Area) 

37860 Pensacola-Ferry Pass-Brent, FL (Metropolitan Statistical Area) 

37900 Peoria, IL (Metropolitan Statistical Area) 

37980 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD (Metropolitan Statistical Area) 

38060 Phoenix-Mesa-Scottsdale, AZ (Metropolitan Statistical Area) 

38220 Pine Bluff, AR (Metropolitan Statistical Area) 

38300 Pittsburgh, PA (Metropolitan Statistical Area) 

38340 Pittsfield, MA (Metropolitan Statistical Area) 

38540 Pocatello, ID (Metropolitan Statistical Area) 

38860 Portland-South Portland, ME (Metropolitan Statistical Area) 

38900 Portland-Vancouver-Hillsboro, OR-WA (Metropolitan Statistical Area) 

38940 Port St. Lucie, FL (Metropolitan Statistical Area) 

39140 Prescott, AZ (Metropolitan Statistical Area) 

39300 Providence-Warwick, RI-MA (Metropolitan Statistical Area) 

39340 Provo-Orem, UT (Metropolitan Statistical Area) 

39380 Pueblo, CO (Metropolitan Statistical Area) 

39460 Punta Gorda, FL (Metropolitan Statistical Area) 

39540 Racine, WI (Metropolitan Statistical Area) 

39580 Raleigh, NC (Metropolitan Statistical Area) 

39660 Rapid City, SD (Metropolitan Statistical Area) 

39740 Reading, PA (Metropolitan Statistical Area) 

39820 Redding, CA (Metropolitan Statistical Area) 

39900 Reno, NV (Metropolitan Statistical Area) 

40060 Richmond, VA (Metropolitan Statistical Area) 
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40140 Riverside-San Bernardino-Ontario, CA (Metropolitan Statistical Area) 

40220 Roanoke, VA (Metropolitan Statistical Area) 

40340 Rochester, MN (Metropolitan Statistical Area) 

40380 Rochester, NY (Metropolitan Statistical Area) 

40420 Rockford, IL (Metropolitan Statistical Area) 

40580 Rocky Mount, NC (Metropolitan Statistical Area) 

40660 Rome, GA (Metropolitan Statistical Area) 

40900 Sacramento--Roseville--Arden-Arcade, CA (Metropolitan Statistical Area) 

40980 Saginaw, MI (Metropolitan Statistical Area) 

41060 St. Cloud, MN (Metropolitan Statistical Area) 

41100 St. George, UT (Metropolitan Statistical Area) 

41140 St. Joseph, MO-KS (Metropolitan Statistical Area) 

41180 St. Louis, MO-IL (Metropolitan Statistical Area) 

41420 Salem, OR (Metropolitan Statistical Area) 

41500 Salinas, CA (Metropolitan Statistical Area) 

41540 Salisbury, MD-DE (Metropolitan Statistical Area) 

41620 Salt Lake City, UT (Metropolitan Statistical Area) 

41660 San Angelo, TX (Metropolitan Statistical Area) 

41700 San Antonio-New Braunfels, TX (Metropolitan Statistical Area) 

41740 San Diego-Carlsbad, CA (Metropolitan Statistical Area) 

41860 San Francisco-Oakland-Hayward, CA (Metropolitan Statistical Area) 

41940 San Jose-Sunnyvale-Santa Clara, CA (Metropolitan Statistical Area) 

42020 San Luis Obispo-Paso Robles-Arroyo Grande, CA (Metropolitan Statistical Area) 

42100 Santa Cruz-Watsonville, CA (Metropolitan Statistical Area) 

42140 Santa Fe, NM (Metropolitan Statistical Area) 

42200 Santa Maria-Santa Barbara, CA (Metropolitan Statistical Area) 

42220 Santa Rosa, CA (Metropolitan Statistical Area) 

42340 Savannah, GA (Metropolitan Statistical Area) 

42540 Scranton--Wilkes-Barre--Hazleton, PA (Metropolitan Statistical Area) 

42660 Seattle-Tacoma-Bellevue, WA (Metropolitan Statistical Area) 

42680 Sebastian-Vero Beach, FL (Metropolitan Statistical Area) 

42700 Sebring, FL (Metropolitan Statistical Area) 

43100 Sheboygan, WI (Metropolitan Statistical Area) 

43300 Sherman-Denison, TX (Metropolitan Statistical Area) 

43340 Shreveport-Bossier City, LA (Metropolitan Statistical Area) 

43420 Sierra Vista-Douglas, AZ (Metropolitan Statistical Area) 

43580 Sioux City, IA-NE-SD (Metropolitan Statistical Area) 

43620 Sioux Falls, SD (Metropolitan Statistical Area) 

43780 South Bend-Mishawaka, IN-MI (Metropolitan Statistical Area) 

43900 Spartanburg, SC (Metropolitan Statistical Area) 

44060 Spokane-Spokane Valley, WA (Metropolitan Statistical Area) 
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44100 Springfield, IL (Metropolitan Statistical Area) 

44140 Springfield, MA (Metropolitan Statistical Area) 

44180 Springfield, MO (Metropolitan Statistical Area) 

44220 Springfield, OH (Metropolitan Statistical Area) 

44300 State College, PA (Metropolitan Statistical Area) 

44420 Staunton-Waynesboro, VA (Metropolitan Statistical Area) 

44700 Stockton-Lodi, CA (Metropolitan Statistical Area) 

44940 Sumter, SC (Metropolitan Statistical Area) 

45060 Syracuse, NY (Metropolitan Statistical Area) 

45220 Tallahassee, FL (Metropolitan Statistical Area) 

45300 Tampa-St. Petersburg-Clearwater, FL (Metropolitan Statistical Area) 

45460 Terre Haute, IN (Metropolitan Statistical Area) 

45500 Texarkana, TX-AR (Metropolitan Statistical Area) 

45780 Toledo, OH (Metropolitan Statistical Area) 

45820 Topeka, KS (Metropolitan Statistical Area) 

45940 Trenton, NJ (Metropolitan Statistical Area) 

46060 Tucson, AZ (Metropolitan Statistical Area) 

46140 Tulsa, OK (Metropolitan Statistical Area) 

46220 Tuscaloosa, AL (Metropolitan Statistical Area) 

46340 Tyler, TX (Metropolitan Statistical Area) 

46520 Urban Honolulu, HI (Metropolitan Statistical Area) 

46540 Utica-Rome, NY (Metropolitan Statistical Area) 

46660 Valdosta, GA (Metropolitan Statistical Area) 

46700 Vallejo-Fairfield, CA (Metropolitan Statistical Area) 

47020 Victoria, TX (Metropolitan Statistical Area) 

47220 Vineland-Bridgeton, NJ (Metropolitan Statistical Area) 

47260 Virginia Beach-Norfolk-Newport News, VA-NC (Metropolitan Statistical Area) 

47300 Visalia-Porterville, CA (Metropolitan Statistical Area) 

47380 Waco, TX (Metropolitan Statistical Area) 

47580 Warner Robins, GA (Metropolitan Statistical Area) 

47900 Washington-Arlington-Alexandria, DC-VA-MD-WV (Metropolitan Statistical Area) 

47940 Waterloo-Cedar Falls, IA (Metropolitan Statistical Area) 

48060 Watertown-Fort Drum, NY (Metropolitan Statistical Area) 

48140 Wausau, WI (Metropolitan Statistical Area) 

48260 Weirton-Steubenville, WV-OH (Metropolitan Statistical Area) 

48300 Wenatchee, WA (Metropolitan Statistical Area) 

48540 Wheeling, WV-OH (Metropolitan Statistical Area) 

48620 Wichita, KS (Metropolitan Statistical Area) 

48660 Wichita Falls, TX (Metropolitan Statistical Area) 

48700 Williamsport, PA (Metropolitan Statistical Area) 

48900 Wilmington, NC (Metropolitan Statistical Area) 
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49020 Winchester, VA-WV (Metropolitan Statistical Area) 

49180 Winston-Salem, NC (Metropolitan Statistical Area) 

49340 Worcester, MA-CT (Metropolitan Statistical Area) 

49420 Yakima, WA (Metropolitan Statistical Area) 

49620 York-Hanover, PA (Metropolitan Statistical Area) 

49660 Youngstown-Warren-Boardman, OH-PA (Metropolitan Statistical Area) 

49700 Yuba City, CA (Metropolitan Statistical Area) 

49740 Yuma, AZ (Metropolitan Statistical Area) 
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Appendix C: Results for Dummy Variables: Base and Full Model 

 

  

All 

Education 

Levels 

Did not 

Graduate 

from High 

School 

High 

School 

Graduate or 

GED 

Some 

College or 

Associate’s 

Degree 

Bachelor's 

only 

Graduate 

degree 

Base Model             

Dummy 

2006 -0.0102*** -0.0327*** -0.0122*** -0.00650* -0.0164*** -0.00746 

  (.00232) (.00984) (.00422) (.00355) (.00471) (.00556) 

Dummy 

2007 -0.00375 -0.0334*** -0.00723* -0.00472 -0.00522 -0.00698 

  (.00275) (.01036) (.00427) (.00406) (.00491) (.00820) 

Dummy 

2008 -0.0169*** -0.0270** -0.0240*** -0.0285*** -0.0343*** -0.0150*** 

  (.00301) (.01116) (.00480) (.00406) (.00500) (.00563) 

Dummy 

2009 -0.0532*** -0.1112*** -0.0732*** -0.0697*** -0.0348*** -0.00476 

  (.00317) (.01092) (.00467) (.00432) (.00535) (.00553) 

Dummy 

2010 -0.0436*** -0.1156*** -0.0654*** -0.0614*** -0.0355*** -0.00143 

  (.00334) (.01188) (.00518) (.00478) (.00601) (.00547) 

Dummy 

2011 -0.0625*** -0.1291*** -0.0870*** -0.0812*** -0.0526*** -0.0191*** 

  (.00363) (.01171) (.00552) (.00482) (.00554) (.00669) 

Dummy 

2012 -0.0669*** -0.1139*** -0.0859*** -0.0987*** -0.0574*** -0.0338*** 

  (.00384) (.01171) (.00527) (.00502) (.00537) (.00598) 

 

Full Model       

Dummy 

2006 -0.0106*** -0.0266** -0.0117*** -0.0082*** -0.0179*** -0.01048* 

  (.00248) (.01030) (.00426) (.00372) (.00474) (.00592) 

Dummy 

2007 -0.0041 -0.02773** -0.00595 -0.00480 -0.00668 -0.00900 

  (.00298) (.01107) (.00454) (.00449) (.00535) (.00730) 

Dummy 

2008 -0.0238*** -0.0268*** -0.0282*** -0.0317*** -0.0378*** -0.01635** 

  (.00353) (.01228) (.00531) (.00460) (.00555) (.00656) 

Dummy 

2009 -0.0437*** -0.0868*** -0.0597*** -0.0544*** -0.0316*** -0.00133 

  (.00462) (.01388) (.00635) (.00590) (.00710) (.00791) 

Dummy 

2010 -0.0294*** -0.0887*** -0.0457*** -0.0404*** -0.0311*** 0.00303 

  (.00515) (.01535) (.00750) (.00673) (.00805) (.00858) 
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Dummy 

2011 -0.0473*** -0.1020*** -0.0676*** -0.0586*** -0.0478*** -0.01486* 

  (.00519) (.01417) (.00735) (.00644) (.00709) (.00860) 

Dummy 

2012 -0.0522*** -0.0870*** -0.0654*** -0.0771*** -0.0538*** -0.0284*** 

  (.00516) (.01390) (.00690) (.00646) (.00683) (.00736) 

 

Note: ***, **, * denotes coefficients significant at the 1%, 5%, and 10% level respectively. 
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Endnotes 

1 In 2012 the price parity index values were 118.4 for Los Angeles and 95.3 for Milwaukee, meaning that Los Angeles was 18.4% 

more expensive than the national average and the cost of living was 4.7% less expensive than the national average in 

Milwaukee.  A big part of the difference in the cost of living between Milwaukee and Los Angeles is the cost of housing, but even 

when housing costs are ignored, other costs are 5.9% higher than the national average in Los Angeles and 5.2% lower in 

Milwaukee.  When adjusted for non-housing cost of living differences the median person with a high school education earns 

$30,293 in Milwaukee and $24,265 in Los Angeles, while the person with a graduate degree earns $69,669 in Milwaukee and 

$69,557 in Los Angeles. 

2 The mean income values were obtained from the IPUMS (Ruggles et al., 2010). 

3 Diaz (2013) also disaggregates her sample for Colombia into different education groups, although her dependent variable is 

employment rather than wage.  In some studies different educational levels are included as independent variables (e.g., Dimou, 

2012). 

4 Bureau of Labor Statistics Quarterly Census of Employment and Wages, www.bls.gov/cew/   

5 We also estimated a random effects model, which was rejected in favor of fixed effects.  See the section on robustness checks.  

6 This estimator is discussed in Angrist and Pischke (chapter 8, 2009). 

 
7 We would like to thank an anonymous referee for pointing this out. 

 
8The worker would presumably have to pay federal income taxes on their higher gross income, thereby reducing some of the net 

benefit from the boost in pay indicated by the model. 

9 On average durable manufacturing only accounts for 6.6% of total employment.  It is difficult to see how mathematically it could 

directly account for the higher median wage in all three of the relatively low educational attainment categories.  Another 

explanation could be that the relatively high unionization rate in durable manufacturing raises wages in other industries, thereby 

indirectly increasing the median wage (Yankow 2006).   
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