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ABSTRACT 

Obesity is a grave disease that is increasing in global prevalence. Aberrant neuronal DNA 

methylation patterns have been implicated in the promotion of obesity development, but the role 

of neuronal DNA methyltransferases (Dnmts; enzymes that catalyze DNA methylation) in 

energy balance remains poorly understood. We investigated the role of neuronal Dnmt1 in 

normal energy regulation and obesity development using a novel Dnmt1 knockout mouse model, 

Dnmt1fl/fl Synapsin1Cre (ND1KO), which specifically deletes Dnmt1 in neurons. ND1KO and 

fl/fl control littermates were fed either a standard chow diet or a high fat diet (HFD). We 

conducted a deep analysis to characterize both peripheral and central aspects of the ND1KO 

phenotype. We found that neuronal Dnmt1 deficiency reduced adiposity in chow-fed mice and 



attenuated obesity in HFD-fed male mice. ND1KO male mice had reduced food intake and 

increased energy expenditure on the HFD. Furthermore, these mice had improved insulin 

sensitivity as measured by an insulin tolerance test. HFD-fed ND1KO mice had smaller fat pads 

and an upregulation of thermogenic genes in brown adipose tissue. These data suggest that 

neuronal Dnmt1 deletion increased diet-induced thermogenesis, which may explain the lean 

phenotype in HFD-fed ND1KO mice. Interestingly, we found that ND1KO male mice had 

elevated estrogen receptor-α gene expression in the hypothalamus, which previously has been 

shown to control body weight. Immunohistochemistry experiments revealed that estrogen 

receptor-α (ERα) protein expression was upregulated in the dorsomedial region of the VMH 

(VMHdm), a region which may mediate the central effect of leptin. Finally, we tested whether 

ND1KO mice had reduced methylation of the ERα gene promoter, which might explain the ERα 

upregulation. Neuronal Dnmt1 deficiency decreased methylation at two CpG sites on Exon A in 

chow-fed mice. Collectively, these data suggest that neuronal Dnmt1 regulates energy 

homeostasis through pathways controlling food intake and energy expenditure, and that ERα in 

the VMHdm may mediate these effects. 
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1 INTRODUCTION  

 The Obesity Disease 

Obesity is a disease of energy imbalance characterized by the excessive storage of fat in 

the body. In 2014, 39% of the adult global population was estimated to be overweight, and 13% 

were estimated to be obese (defined as having a body mass index ≥ 30kg/m) WHO (2015). Over 

the past 15 years, obesity prevalence in the U.S. has continued to increase in both adults and 

children (Ogden et al., 2014). Although the U.S. has one of the highest obesity rates of any country 

(Kelly et al., 2008), prevalence of this disease is climbing in South America, Europe, and even 

some African countries, as well (Stevens et al., 2012). One study even has purported that more 

individuals suffer from overweight and obesity than from malnutrition (Moore et al., 2010). 

Obesity predisposes people to developing a multitude of serious health problems, including 

dysfunctional lipid metabolism, cardiovascular diseases, insulin resistance, Type II diabetes, 

depression and even some cancers (Guh et al., 2009, Badimon et al., 2013, Martin-Rodriguez et 

al., 2015). Thus, obesity significantly affects a person’s quality of life. Obesity and obesity-related 

diseases comprise an economic burden as well, with an estimated $147 billion (~2 times the annual 

costs of healthy adults) in health care costs related to obesity in 2008 (Finkelstein et al., 2009). 

 Energy Regulation 

Obesity results from an imbalance of energy intake and energy expenditure (Hill et al., 

2012). Most organisms need to ingest food throughout the day in order to maintain the consistent 

blood glucose levels that are needed for cellular function. As these glucose levels fluctuate in 

between meals, or during fasting, however, multiple mechanisms accommodate for these drops in 

energy. Thus, the system as a whole works to maintain the appropriate level of blood sugar even 

during an energy-deficient state. Overall body weight tends to be relatively stable despite daily 



9 

fluctuations in exercise and caloric intake (Edholm et al., 1955), unless major, consistent changes 

are made (e.g., calorie restriction, exercise regimen) that surpass the point of compensation 

(Melzer et al., 2005).  

A complex biochemistry regulates energy availability and storage.  Following the ingestion 

of a meal, blood glucose levels rise, which triggers the release of insulin from the pancreas. Insulin 

is a hormone required by most cells in order to use glucose for energy. Blood glucose not 

immediately used is converted to lipids and stored in fat cells (white adipocytes), or is converted 

to glycogen in the liver for more accessible energy when needed. During fasting, blood glucose 

levels are increased by the liver in two ways: glycogenolysis (the breakdown of glycogen into 

glucose) and gluconeogenesis (the synthesis of glucose from substrates such as pyruvate or lactate) 

(Wahren and Ekberg, 2007). In addition, lipolysis in adipose tissue breaks down the stored 

triglyceride molecules into smaller, non-esterified (free) fatty acids that can be further metabolized 

into molecules to be used for cellular energy (Duncan et al., 2007, Fruhbeck et al., 2014).  

In addition to circulating hormonal and metabolic cues, the nervous system also provides 

critical input to the periphery to maintain energy balance. During fed and fasted states, neural 

signals are generated to support either a catabolic or anabolic state (Kalsbeek et al., 2010, Seoane-

Collazo et al., 2015). In an energy-excess state, food intake is inhibited while energy expenditure 

is increased (catabolic). Likewise, in an energy-deficient state, food intake is stimulated while 

energy expenditure is reduced and energy storage is promoted (anabolic). The autonomic nervous 

system innervates the pancreas, liver and adipose tissue to regulate metabolic processes such as 

insulin secretion, gluconeogenesis, lipolysis, lipogenesis and thermogenesis (Seoane-Collazo et 

al., 2015). 



10 

 Epigenetics and DNA Methyltransferases.  

Epigenetics is the study of factors that can repress or activate gene expression through 

chemical modifications to DNA or histones. DNA methylation, the most studied epigenetic 

modification, is the addition of methyl groups to the cytosine base of the DNA, producing 5’-

methylcytosine (sometimes referred to as the “fifth DNA base”) (Hotchkiss, 1948, Wyatt, 1950). 

The discovery of 5’-methylcytosine dates back as far as 1925 (Johnson, 1925) and is associated 

with inactive chromatin and gene repression (Keshet et al., 1986). DNA is packaged in 

nucleosomes, comprised of a group of four histone dimers that act as spools around which the 

DNA is wrapped. Histones also can be methylated or acetylated on specific residues, which can 

repress or activate gene function (Dambacher et al., 2010). Epigenetic modifications occur as a 

result of environment or experience, and are stable and even heritable. In certain cases, however, 

DNA methylation can be reversed, although it tends to be more stable than dynamic (Haaf, 2006, 

Gavin et al., 2013, van der Wijst et al., 2015). Epigenetic modifications play an important role in 

orchestrating temporal and spatial regulation of gene expression, and this is especially crucial 

during development. DNA methylation is critical for organ development, because the repression 

of some genes allows for other genes to direct the course of cellular and tissue differentiation. 

DNA methylation is known to occur on cytosine residues that are followed by a guanine residue 

(CpG site), but it can also occur on cytosine residues not followed by a guanine (Sharma et al., 

2015). Although CpG residues can appear as clusters, or CpG islands, about half of all CpG islands 

are unmethylated, and the majority of CpG sites outside of islands are methylated (Razin and 

Riggs, 1980). Importantly, gene promoter regions can be enriched with CpG sites, and when these 

are methylated, it can prevent the binding of transcription factors and proteins involved in 

transcription regulation (Doerfler et al., 1989). 
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DNA methyltransferases (Dnmts) are enzymes that catalyze the addition of methyl groups 

to DNA. There are three main Dnmts, and all of them are expressed throughout the brain, although 

to varying degrees in different regions (Simmons et al., 2013). Dnmt1 is considered the 

“maintenance” enzyme because it maintains methylation patterns in dividing cells. Dnmt1 has 

strong preference for hemi-methylated DNA, which occurs when the double-stranded DNA 

separates during the cell replication cycle (Guh et al., 2009). In the brain, Dnmt1 is mainly 

expressed in neurons, although some Dnmt1 expression has been demonstrated in microglia in an 

in vitro study (Chestnut et al., 2011). Dnmt3a and Dnmt3b are de novo methyltransferases, and 

they add new methyl groups to DNA where none existed before. Dnmt1 and Dnmt3b show greater 

brain expression during earlier development (through postnatal day 21), while Dnmt3a is 

expressed more highly in the adult brain (Chestnut et al., 2011, Simmons et al., 2013) 

In the adult brain, Dnmt1 and Dnmt3a expression is higher than that of Dnmt3b, which is 

often difficult to detect. Although most of the brain consists of postmitotic cells, it is surprising 

that Dnmt1 is expressed moderately, even more so than Dnmt3b (Goto et al., 1994, Simmons et 

al., 2013). This might suggest additional roles for Dnmt1 other than maintaining methylation in 

dividing cells. In fact, several lines of evidence support this possibility. Neuronal deletion of both 

Dnmt1 and Dnmt3a (but not Dnmt3a alone) impairs synaptic plasticity and produces cognitive 

deficits in mice (Feng et al., 2010). Some have theorized that the combined actions of Dnmt3a and 

Dnmt1 synergistically produce complete de novo methylation on double-stranded DNA. This is 

likely, because Dnmt3a preferentially adds methylation to only one of the cytosine residues of the 

double-stranded DNA, which leaves a hemi-methylated DNA that is then rapidly methylated by 

Dnmt1 (Jeltsch and Jurkowska, 2014). Indeed, this is supported by a study demonstrating five-fold 

higher methylation activity levels on PCR fragments with Dnmt1 and Dnmt3a present, than with 
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either enzyme alone (Fatemi et al., 2002, Kim et al., 2002). In addition, in vivo evidence shows 

that double-knockout Dnmt3/Dnmt3b embryos still have some de novo methylation activity 

(Okano et al., 1999).  

 DNA Methylation and Obesity. 

Aberrant DNA methylation and obesity have been repeatedly and reciprocally associated 

through both rodent and human studies. Converging evidence implicates aberrant neuronal 

methylation as a contributing factor in obesity development. For example, increasing 

methylation of the proopiomelanocortin (POMC; a key hypothalamic peptide in energy 

regulation) gene via deletion of methyl-CpG-binding protein 2 (MeCP2) in POMC neurons 

causes obesity (Wang et al., 2014). Hypothalamic deficiency of Dnmt3a causes metabolic 

dysfunction, hyperphagia, decreased energy expenditure and obesity (Kohno et al., 2014). 

Conversely, obesity and excess energy intake have been implicated as contributing factors in 

aberrant neuronal methylation. Overfeeding or a high fat diet (HFD) can cause hypermethylation 

of the POMC gene (Plagemann et al., 2009, Marco et al., 2013). An HFD increases histone 

deacetylases, which are associated with increased DNA methylation, in the hypothalamus 

(Funato et al., 2011) and reduces Dnmt3a expression in another region of the hypothalamus 

(Kohno et al., 2014). In corroboration of the POMC methylation studies in rodents, correlative 

evidence in humans (from blood cell analysis) shows an association between POMC 

hypermethylation and childhood obesity (Kuehnen et al., 2012). Finally, in obese males who 

have lost weight, POMC methylation is inversely correlated with the successful maintenance of 

this weight loss (Crujeiras et al., 2013).  

Disconcertingly, the nutritional state of a pregnant female can lead to “metabolic 

programming” of the offspring. HFD-fed dams give birth to offspring that, even though they are 
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fed a normal chow diet, are overweight and have increased POMC methylation and reduced POMC 

expression (Marco et al., 2014). In addition, these offspring are more vulnerable to the deleterious 

effects of an HFD than offspring from normal chow-fed dams.  The Dutch Hunger Winter was a 

famine that affected millions of people in 1944 (Tobi et al., 2014). It was later found that women 

who were pregnant during the famine (specifically during the first two trimesters) gave birth to 

infants that ironically had higher birth weights, despite the mothers’ lack of food. In adulthood, 

these individuals had higher BMI, altered glucose response, and higher low density lipoprotein 

(LDL) and total cholesterols. Genome-wide methylation analysis conducted on blood from these 

people (compared with same-sex siblings not exposed prenatally to famine) pinpointed several 

differentially-methylated regions (on genes or gene promoters) involved in prenatal growth and 

fatty acid oxidation. Thus, one could hypothesize that the experience of famine, in utero, led to de 

novo methylation of genes that subsequently altered energy regulation. 

The burgeoning field of epigenetics has revealed new insight regarding mechanisms through 

which diseases develop. Increasing evidence suggests that altered DNA methylation can promote 

weight storage, as well as predispose future generations to dysfunctional energy homeostasis. 

Obesity prevalence is rapidly increasing across the globe, and it is becoming clear that this disease 

is not easily reversed with diet and exercise regimens for many individuals who bear the burden 

of excess weight. The goal of this research is to understand how a major DNA methyltransferase, 

Dnmt1, in neurons regulates energy homeostasis and obesity development. Thus, we developed 

the following Specific Aims.  

 Specific Aims of this Dissertation 

The overarching hypothesis for this proposal is that neuronal Dnmt1 regulates energy 

homeostasis and contributes to the development of obesity. Using a mouse model of neuronal 
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Dnmt1 deficiency, we studied in depth the metabolic phenotype of the neuronal Dnmt1 knockout 

mouse (ND1KO) under normal- and excess-energy conditions, as well as in an increased energy 

demand condition (cold exposure). We also studied the hypothalamic gene expression profile of 

the ND1KO mice. This dissertation is organized into two major Specific Aims that focus on 

answering the following questions: 

SA1: How does neuronal Dnmt1 deficiency alter normal energy homeostasis and 

obesity development? We first predicted that neuronal Dnmt1 deficiency alters metabolism and 

energy regulation in normal chow-fed mice. We fed male and female ND1KO and fl/fl control 

mice a normal chow diet and measured body weight, body composition, glucose and insulin 

tolerance, fat pad weights and fat gene expression profile, as well as expression of hypothalamic 

peptides and hormones. For our second experiment, we predicted that neuronal Dnmt1 

deficiency attenuates obesity and metabolic dysfunction produced by a high fat diet (HFD).  We 

fed male and female ND1KO and fl/fl control mice an HFD and measured body weight, body 

composition, glucose and insulin tolerance, food intake and energy expenditure, fat pad weights 

and fat gene expression profile. For our third experiment, we predicted that neuronal Dnmt1 

deficiency enhances brown fat thermogenic function during a state of increased energy demand, 

prolonged cold exposure. We subjected male ND1KO and fl/fl control mice to a cold 

environment (5ºC) for 7 days and then measured body weight change, fat pad weights and fat 

gene expression profile. 

SA2: How does neuronal Dnmt1 deficiency alter the central pathways that regulate 

energy homeostasis? The experiments in SA1 tested the role of neuronal Dnmt1 in energy 

regulation and obesity. The hypothalamus controls energy expenditure, food intake and glucose 

homeostasis in response to cues directly sensed through peripheral nerves and circulating 
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hormones and metabolites. The neuronal phenotype of the ND1KO mouse is unknown, given 

that it is a novel mouse model. Therefore, we characterized the hypothalamic phenotype of the 

ND1KO model. We first predicted that the ND1KO mouse displays alterations in the expression 

of peptide and hormone genes that have key roles in energy regulation. We quantified 

hypothalamic gene expression of the chow- and HFD-fed male ND1KO and fl/fl control mice 

from SA1.  Estrogen receptor-α (ERα) in the central nervous system is well-known to play a role 

in body weight in both male and female rodents, specifically through actions in the ventromedial 

hypothalamus (VMH) (Xu et al., 2011, Sano et al., 2013). Thus, we secondarily predicted that 

ND1KO mice have upregulated ERα expression in the VMH. We quantified ERα gene and 

protein expression in the hypothalamus of chow- and HFD-fed ND1KO and fl/fl control mice. 

Finally, neuronal ERα expression is negatively correlated with methylation of its gene promoter 

(Westberry et al., 2010). Therefore, we predicted that ERα upregulation in the hypothalamus is 

associated with reduced ERα gene promoter methylation in ND1KO mice. We quantified ESR1 

promoter methylation in the VMH/DMH of chow- and HFD-fed ND1KO and fl/fl control mice. 

2 SPECIFIC AIM 1 

 Background 

2.1.1 The Adipose Organ 

Adipocytes function, in part, to store excess energy as lipids (triglycerides). When more 

energy is ingested than is currently required, it is stored in white adipocyte cells (called “white” 

adipocytes due to less mitochondria and vascularization compared with brown adipocytes) that 

contain a large unilocular lipid droplet (Cinti, 1999). White adipocytes are innervated by the 

sympathetic nervous system, as well as by sensory nerves, allowing communication to take place 

between the brain and the peripheral fat stores in both directions (Bartness and Song, 2007, 



16 

Bartness et al., 2010). In addition to storing energy, adipocytes have important endocrine 

functions, as well, such as adiponectin and leptin secretion (Adamczak and Wiecek, 2013). 

In an energy deficient state, lipolysis is triggered through sympathetic neurons that activate 

adipocyte β-adrenergic receptors through the release of norepinephrine (NE) (White and Engel, 

1958). NE-binding of β-adrenergic receptors triggers an intracellular signaling cascade ultimately 

leading to increased protein kinase A (PKA) activity, which phosphorylates the enzyme hormone-

sensitive lipase (HSL) (Holm, 2003). Phosphorylated HSL has been relied upon as an indicator of 

stimulated lipolysis because HSL-deficient adipocytes show drastically reduced lipolysis in 

response to catecholamine stimulation in vitro (Wang et al., 2001). Phosphorylated HSL catalyzes 

the second step of adipocyte triglyceride breakdown, while two other lipases, adipose triglyceride 

lipase and monoacylglycerol lipase, are needed for complete triglyceride hydrolysis (Fredrikson 

et al., 1986, Duncan et al., 2007, Fruhbeck et al., 2014). Refeeding causes a reduction in lipolysis 

primarily through insulin signaling, which leads to the release of PKA activation (Duncan et al., 

2007). In obese humans and genetically-obese rodents, basal lipolysis is increased while NE-

stimulated lipolysis is decreased and HSL expression is reduced (Reynisdottir et al., 1995, Large 

et al., 1999). It is important to note that adipocytes are not simply storage vehicles for lipid 

droplets, but are constantly hydrolyzing and re-esterifying triglycerides at any given moment 

(hence, basal lipolysis). Thus, the adipose organ is more dynamic than one would assume. 

In an energy-excess state, adipocytes first expand as more lipids enter into the cell, causing 

cellular hypertrophy. If excessive energy intake continues, the adipose tissue can undergo 

hyperplasia with the proliferation of more fat cells that differentiate from adipocyte precursor cells, 

to store these lipids (Bjorntorp et al., 1971). Eventually, with the expansion of individual cells as 

well as the tissue as a whole, the adipose organ becomes dysfunctional and inflamed (Vazquez-
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Vela et al., 2008, Wensveen et al., 2015). Adipose tissue macrophages switch from an anti-

inflammatory to a pro-inflammatory phenotype and increase the production of inflammatory 

molecules (e.g., tumor necrosis factor-α, interleukin-6, monocyte chemoattractant protein 1) 

(Lumeng et al., 2007). Adipose tissue capillary density is reduced in obese people (Pasarica et al., 

2009), suggesting reduced oxygen supply to the adipocytes. Fibrosis can even develop in the 

dysfunctional adipose tissue (Khan et al., 2009). Thus, in an obese state, fat cells cannot function 

properly and excess fat storage becomes a disease. 

2.1.2 Brown Adipose Tissue and Thermogenesis.  

Brown adipose tissue functions to produce heat; thus, it expends rather than stores energy. 

Brown fat is called such due to the presence of numerous mitochondria and vasculature that lend 

it a darker appearance than white fat, and it is characterized by multilocular lipid droplets (Cinti, 

1999, Cannon and Nedergaard, 2004). In rodents, the major brown fat depot is found in the 

intrascapular region, while other smaller depots are around some visceral organs. In humans, 

brown fat can be found in paracervical, paraspinal, supraclavicular, mediastinal and perirenal 

regions (Cypess et al., 2009). In very early development (infants), humans have more brown fat, 

but as adults they display reduced and less active BAT, especially when obese (Oberkofler et al., 

1997, Vijgen et al., 2011). Brown fat expends energy through a process called non-shivering 

thermogenesis (Cannon and Nedergaard, 2004). Fatty acids that are oxidized through the 

mitochondria typically result in the production of ATP (cellular energy). In brown fat, however, 

uncoupling protein-1 (UCP1) creates a leak in the mitochondrial membrane, and this energy is 

released as heat instead of ATP. BAT is highly vascularized in order for the heat to be circulated 

throughout the body. Non-shivering thermogenesis is an important process to keeping the body 

warm during cold, and for increasing core temperature during a fever. 
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Brown fat is heavily innervated by the sympathetic nervous system (SNS). These neuronal 

projections release norepinephrine onto the brown fat, which stimulates β-3 adrenergic receptors.  

The resulting intracellular signaling cascade leads to fatty acid release through lipolysis, and to 

increased thermogenic capacity (e.g., mitochondriogenesis, UCP1 upregulation, increased BAT 

cells, upregulation of genes involved in BAT differentiation) (Cannon and Nedergaard, 2004). In 

addition to being the thermogenic substrate, fatty acids directly activate UCP1 (Nicholls and 

Locke, 1984). Acute SNS activation increases thermogenesis, while chronic SNS activation can 

lead to proliferation of preadipocytes and differentiation of BAT cells (Nechad et al., 1987, 

Bronnikov et al., 1992).  

Cold exposure robustly stimulates thermogenesis. Cold is sensed through thermo-receptors 

on the skin, and these neuronal signals are transmitted to the preoptic area, which releases 

inhibition of the dorsomedial hypothalamus (DMH) (Morrison et al., 2012). DMH neurons send 

efferent projections to the rostral ventrolateral medulla (RVM), which activate sympathetic 

premotor neurons leading to BAT (Morrison, 1999). In addition, the raphe pallidus activates 

sympathetic preganglion neurons in the spinal column, which stimulate thermogenesis in brown 

fat. A number of elegant trans-neuronal tract tracing experiments have shown the neuronal 

pathways leading to BAT innervation (Bamshad et al., 1999, Bartness et al., 2005), and these 

pathways will be discussed in Specific Aim 2 Background section. In addition to cold, 

thermogenesis is increased acutely following a meal, as well as in diet-induced obese rodents 

(Cannon and Nedergaard, 2004). 

Increased thermogenesis can be directly quantified by BAT temperature. However, 

changes in the BAT gene profile can indicate the possibility of increased thermogenic or 

mitochondrial capacity. Sympathetic nervous stimulation of BAT upregulates UCP1, but also 
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upregulates cytochrome c oxidase (COX1), acyl-coA-oxidase (ACOX), carnitine 

palmitoyltransferase 1B (CPT1B) (mitochondrial function genes), deiodinase iodothyronine Type 

II (DIO2), otopetrin 1 (OTOP1), and cell death-inducing DFFA-like effector A (CIDEA) (Nam 

and Cooper, 2015). Increased thermogenic activity also is accompanied by elevated lipolysis and 

lipogenesis (Yu et al., 2002, Mottillo et al., 2014), which is often reflected through the gene profile. 

Protein expression, however, is a more meaningful indicator of thermogenic capacity. The ratio of 

phosphorylated hormone-sensitive lipase (HSL) to total HSL protein is indicative of increased 

lipolysis in BAT, which can occur through elevated SNS drive to BAT (Laury et al., 1987).  

Interestingly, in certain circumstances (e.g., prolonged cold exposure, pharmacological 

stimulation) some white adipocytes can even demonstrate function and appearance similar to 

brown fat, termed “browning” (Harms and Seale, 2013). These cells are called beige or brite 

(“brown-like-in-white”) cells because they are darker in appearance than regular white adipocytes, 

and they have thermogenic capabilities like brown adipocytes (Okamatsu-Ogura et al., 2013). The 

genetic program can indicate browning, through upregulation of genes such as peroxisome 

proliferator-activated receptor alpha (PPARα), PPARγC1α (PGC1α), PPARγC1β (PGC1β), PR 

domain-containing 16 (PRDM16) and UCP1. Whether beige cells arise from a switch in the 

genetic program of white adipocytes, or whether they exist from the beginning as cells with a 

different functional potential is unclear (Sanchez-Gurmaches et al., 2016). The phenomenon of 

browning is a major target for obesity research because human BAT displays a high level of beige-

specific molecular markers (Sharp et al., 2012). Drugs or therapies that may cause browning within 

white fat, or increase the thermogenic potential in BAT, would be an incredibly efficient way to 

reverse obesity.   
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The nervous system is vastly connected to the peripheral organs and controls many 

aspects of metabolism via innervation of WAT, BAT, as well as non-adipose organs. The 

following experiments tested mice that were neuronally-deficient for Dnmt1 in conditions of 

normal energy, excess energy and increased energy demand to determine how neuronal Dnmt1 

deficiency can affect energy intake, storage, and expenditure. 

 Methods 

2.2.1 Knockout Mice. 

Neuronal Dnmt1-deficient mice were generated by mating Dnmt1fl/fl mice (Jackson-Grusby 

2001) with Synapsin1Cre+/- mice (Hoesche C 1993). SynCre+/- mice express Cre recombinase 

enzyme in the brain, spinal cord and dorsal root ganglion neurons beginning at E12.5 (Zhu 2001). 

Male and female pups were either Dnmt1fl/flSynCre+/- (neuronal knockout [ND1KO]) or 

Dnmt1fl/flSynCre-/- (no knockout, control [fl/fl]). We also studied a Dnmt+/+SynCre+/- (normal 

Dnmt1 expression) to confirm that the expression of Synapsin1Cre recombinase alone does not 

produce any phenotype. At 6 weeks of age (adulthood), male and female ND1KO and fl/fl 

littermates were fed ad libitum either a normal chow diet (Purina #5001; LabDiet; St. Louis, MO) 

or a high fat diet (HFD, 60% fat #12492. Research Diets; New Brunswick, NJ).  

2.2.2 Physiological Measurements. 

Body weight was measured weekly throughout the duration of the experiment. Glucose 

and insulin tolerance testing was performed after 16-18 weeks on the diets. For the glucose 

tolerance test (GTT), the mice were fasted for 16 hours overnight. Blood was obtained from tail 

nick to measure the glucose concentration using a OneTouch Ultra Blood Glucose Meter and test 

strips (LifeScan, Inc.; Milpitas, CA). After a baseline blood glucose measurement, mice were 
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intraperitoneally injected with a 20% dextrose solution (1g/kg) and subsequent measurements were 

taken at 15, 30, 60, 90 and 120 minutes following the glucose injection. For the insulin tolerance 

test (ITT), the mice were fasted for 4 hours then a baseline blood glucose measurement was taken. 

Mice were intraperitoneally injected with either 1.0U/kg (males) or 0.8U/kg (females) dose of 

0.25U/mL humulin (Eli Lilly; Indianapolis, IN). Energy expenditure, oxygen consumption, CO2 

production, respiratory exchange ratio, and physical activity level data were collected using a TSE 

PhenoMaster metabolic chamber system (TSE Systems; Chesterfield, MO) after 22-24 weeks of 

HFD feeding (males) or 26-28 weeks of HFD-feeding (females). Body composition of relative 

lean and fat mass was obtained in vivo using time-domain nuclear magnetic resonance technology 

(TD-NMR) by a MiniSpec machine (Bruker; Spring, TX) after 24.5 weeks on the normal diet and 

22 weeks on the HFD. Mice were euthanized using CO2 inhalation and were decapitated. Blood 

was collected for serum and stored at -80⁰ C. Fat pads (brown, epididymal, subcutaneous) and 

liver were dissected and weighed, then were frozen in liquid nitrogen. A sample of each fat pad 

and of the liver was placed in formalin for later histological analysis.  

2.2.3 Cold Exposure. 

For the cold exposure experiment, we bred two separate cohorts of mice in order to have 

enough statistical power; male ND1KO and fl/fl control littermates ~8-9 weeks of age were used. 

Fifteen ND1KO and 8 fl/fl control mice were single-housed with nothing in the cage except corn 

cob bedding, and were subjected to a 5˚C environment for 7 days. After 7 days, we removed the 

mice from the cold room individually and immediately sacrificed them. We harvested and weighed 

the brown, epididymal and subcutaneous fat tissues, and formalin-fixed a sample of each fat pad, 

while the remaining fat was frozen in liquid nitrogen. 
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2.2.4 Gene Expression.  

Fat tissues were removed from -80˚C storage and placed in liquid nitrogen. Each fat sample 

was removed from the liquid nitrogen and immediately homogenized in TRI Reagent (Molecular 

Research Center; Cincinnatti, OH) using a handheld homogenizer. RNA was isolated using 

isopropanol precipitation, purified, and the concentration was measured using a Nanodrop. Gene 

expression was quantified by real-time qPCR using a Stratagene Mx3005P qPCR System (Agilent 

Technologies; Santa Clara, CA), ABI Universal PCR Master Mix (Applied Biosystems; Foster 

City, CA) and gene expression probes purchased from Applied BioSystems. Each assay included 

the reference gene cyclophilin as an internal control. All data was analyzed using the ΔΔCT 

method (Livak and Schmittgen, 2001).  

2.2.5 Protein Quantification. 

Fat tissues were removed individually from liquid nitrogen and were immediately placed 

into RIPA buffer with protease inhibitor cocktails and homogenized using a handheld 

homogenizer. Protein concentration was quantified using a DC Protein Assay (BioRad; Hercules, 

CA) and protein samples were denatured at 90-100˚ for 10 minutes. Western blots were 

performed by loading 20-30µg of protein onto a 4-15% gradient polyacrylamide gel (Criterion 

TGX; Bio-Rad; Hercules, CA), which was then transferred to a PVDF membrane. We 

immunoblotted the membranes first by blocking with 5% nonfat milk, followed by antibodies 

against UCP1 (#23841; Abcam; Cambridge, MA), HSL (#4107S; Cell Signaling; Danvers, MA) 

or pHSL (serine 660) (#4126S; Cell Signaling) overnight at 4°C, followed by AlexaFluor goat 

anti-rabbit 680 secondary antibody (Thermofisher Scientific A21109) at 1:5,000 concentration 

for 3 hours. Bands were visualized and quantified using an Odyssey Fc Imaging System (Li-Cor; 
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Lincoln, NE) with background subtracted. All membranes also were immunoblotted with α-

tubulin antibody at 1:500 (#2144S; Cell Signaling) as a normalization control.  

2.2.6 Serum Assays. 

Serum free fatty acids were quantified using an HR Series NEFA kit (Wako Diagnostics; 

Richmond, VA), and triglycerides were quantified using an L-Type Triglycerides M kit (Wako 

Diagnostics; Richmond, VA) kit. Serum leptin and insulin were quantified using ELISA kits (Cat. 

# 90030 and 90080, CrystalChem; Downers Grove, IL).  

2.2.7 Histology.  

After formalin fixation, fat tissues were dehydrated through a series of increasing 

isopropanols, and were embedded in paraffin blocks. BAT, SQ and EPI tissues were cut manually 

on a rotating microtome at 6µm width and mounted to SuperPlus slides. Tissue morphology was 

visualized by hematoxylin and eosin staining (Sigma-Aldrich; St. Louis, MO). UCP1 

immunohistochemistry was performed using UCP1 antibody at 1:150 concentration (Abcam 

ab10983), and VectaStain and DAB Substrate kits (Vector Laboratories; Burlingame, CA). Fat 

histology images were captured using an Olympus DP73 photomicroscope and CellSens software 

(Olympus). Representative images were enhanced using ImageJ Software (NIH; Bethesda, MD). 

All images within an experiment were collected and processed using the same parameters.  

2.2.8 Statistics. 

Data were analyzed using Excel 2013 and were presented as means ± the standard error of 

the mean. Statistical significance between the genotypes was tested using Student’s t-tests or One-

Way ANOVAs with IBM SPSS Statistics 20. Repeated-measures ANOVA was performed on data 

from metabolic chamber experiments, glucose/insulin tolerance, and weekly body weight. Follow-
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up specific tests were performed on glucose/insulin tolerance test data using a Bonferroni 

correction if the main effect was significant. 

 Results. 

2.3.1 Neuronal Dnmt1 deficiency reduces adiposity.  

We generated neuronal-specific Dnmt1 knockout mice by breeding Dnmt1fl/fl mice with 

Synapsin-Cre+/- mice. We quantified Dnmt1 gene expression in several different hypothalamic 

nuclei of HFD-fed male ND1KO mice (V/DMH and PVH shown) to test the knockdown 

efficiency of our mouse model. Dnmt1 gene expression was significantly reduced in these 

regions (Fig. 1). To confirm that there were no compensatory increases in the other Dnmts as a 

result of Dnmt1 knockdown, we also quantified Dnmt3a and Dnmt3b gene expression. We found 

no significant changes in Dnmt3a or Dnmt3b expression (Fig. 1). There remained some Dnmt1 

expression in these regions in the ND1KO mice presumably due to the presence of Dnmt1 

expression in  

 

Figure 1. Dnmt mRNA expression in the hypothalamus.  

Dnmt1, Dnmt3a and Dnmt3b gene expression in the ventromedial/dorsomedial (A) and paraventricular (B) hypothalamic regions 

of male ND1KO and fl/fl mice fed an HFD. 
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non-neuronal cells, such as glia. We first tested the role of neuronal Dnmt1 in energy regulation 

under normal metabolic demands.  

 

  

Figure 2. Body weight, length and composition of chow-fed mice.  

Body weight at 3 weeks of age (A, B), weekly body weight (C, D), body length (E, F) and body composition (G, H) of male and 

female fl/fl and ND1KO mice fed a chow diet. 
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Dnmt1fl/flSynCre male (ND1KO= 8, fl/fl= 8) and female (fl/fl= 10, ND1KO= 7) mice and fl/fl 

littermates were fed a standard chow diet (LabDiet 5001; St Louis, MO) from weaning onward. 

ND1KO male mice weighed less at weaning (3 weeks old; Fig. 2A), but this difference 

disappeared by the time they were 5 weeks old (Fig. 2C). Female ND1KO mice showed no 

difference in body weight (Fig. 2B-D). Neuronal Dnmt1 deficiency did not affect body length in 

either male or female mice (Fig. 2E-F). We confirmed that the body weight difference in male 

ND1KO mice was due to the lack of Dnmt1 specifically, in that the presence of Synapsin-Cre 

recombinase by itself did not affect body weight in male or female mice (Suppl. Fig. 1). 

We measured in vivo body composition using time-domain nuclear magnetic resonance 

technology (TD-NMR). Male ND1KO mice had a tendency for reduced fat percentage (Fig 2G), 

whereas female ND1KO mice had significantly less fat percentage and a higher percentage of 

lean mass (Fig. 2H). The distribution and variability of body weight of males and females at 28 

weeks of age is illustrated in Fig. 3A-B. In male ND1KO mice, retroperitoneal and brown 

adipose tissue pads weighed significantly less (Fig. 4A), and epididymal and subcutaneous  

 

Figure 3. Body weight distribution of chow-fed fl/fl and ND1KO mice. 

Body weight distribution at 28 weeks of age of male (A) and female (B) chow-fed fl/fl and ND1KO mice. 
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(inguinal) adipose tissue tended to weigh less. When normalized to body weight, all fat pads 

weighed less in male ND1KO mice (Fig. 4C). In female ND1KO mice, perigonadal, 

subcutaneous, and brown adipose tissue pads weighed significantly less (Fig. 4B). When 

normalized to body weight, all fat pads weighed less in female ND1KO mice (Fig. 4D) Neuronal 

Dnmt1 deletion did not affect liver mass in male or female mice (Fig 4C, D). 

Next, we tested whether ND1KO mice had altered glucose or insulin dynamics. Glucose 

and insulin tolerance did not differ between the male genotypes (Fig. 5A, C, E, G), although 

female D1KO mice had slightly higher glucose blood concentration during the glucose tolerance 

test (Fig. 5B, 5D) but had no difference in insulin tolerance (Fig. 5F, 5H). 

 

 
Figure 4. Fat pad and liver weights of chow-fed fl/fl and ND1KO mice. 

Epididymal (or perigonadal), subcutaneous, retroperitoneal and brown adipose tissue weights in male (A) and female (B) ND1KO 

and fl/fl control mice. Fat tissues weights normalized to body weight (C, D). *p< .05, **p< .01, ***p< .001. 
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Figure 5. Glucose and insulin tolerance tests (GTT/ITT) of chow-fed fl/fl and ND1KO mice.  

Blood glucose concentrations over two hours following an i.p. glucose infusion, and mean area under the curve of blood glucose 

concentrations during the test, in male (A, C) and female (B, D) chow-fed fl/fl and ND1KO mice. Blood glucose concentrations 

over two hours following an i.p. insulin infusion, and mean area under the curve of the blood glucose concentrations during the 

test, in male (E, G) and female (F, H) chow-fed fl/fl and ND1KO mice. *p< .05, ** p< .01. 
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2.3.2 Neuronal Dnmt1 deficiency attenuates HFD-induced obesity. 

To test the role of neuronal Dnmt1 in obesity development, we fed male and female ND1KO and 

fl/fl mice a 60% high fat diet (HFD; Research Diets D12492; New Brunswick, NJ) starting at 6 

weeks of age. ND1KO male mice weighed significantly less after two weeks on the HFD (Fig. 

6A), and continued to weigh less throughout the duration of the experiment (the maximal weight 

difference occurred at 11 weeks on the HFD).  

Figure 6. Body weight, length and composition of HFD-fed fl/fl and ND1KO mice.  

Weekly body weight (A, B), body composition (C, D) and body length (E, F) of male and female HFD-fed fl/fl and ND1KO mice. 

* p< .05, **p< .01, ***p< .001.  
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Unlike the chow-fed ND1KO mice, HFD-fed ND1KO mice had reduced body length (Fig.  6E). 

Male mice also had significantly reduced percentage of body fat, with a tendency for an increase 

in lean mass (Fig. 6C). HFD-fed female ND1KO mice had significant differences in body weight  

Figure 7. Fat pad and liver weights of HFD-fed fl/fl and ND1KO mice.  

Epididymal/perigonadal, subcutaneous, retroperitoneal white adipose tissues, brown adipose tissue and liver weights (G, H); and fat 

and liver weights normalized to body weight of male and female HFD-fed fl/fl and ND1KO mice. *p< .05, **p< .01, ***p< .001. 
 

Figure 8. Body weight distribution of HFD-fed fl/fl and ND1KO mice. 

Body weight distribution at 31-34 weeks of age of male and female HFD-fed fl/fl and ND1KO mice.***p< .001. 
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throughout the duration of the HFD as indicated by Repeated-Measures ANOVA (Fig. 6B); 

however, final body weight at the end of the study did not significantly differ between the  

Figure 9. Glucose and insulin tolerance tests (GTT/ITT) for HFD-fed fl/fl and ND1KO mice. 

Blood glucose concentrations over two hours following an i.p. glucose infusion, and mean area under the curve blood glucose 

concentrations during the test, in male (A, C) and female (B, D) HFD-fed fl/fl and ND1KO mice. Blood glucose concentrations 

over two hours following an i.p. insulin infusion, and mean area under the curve of the blood glucose concentrations during the 

test, in male (E, G) and female (F, H) HFD-fed fl/fl and ND1KO mice. *p<.05, **p<.01, ***p< .001. 
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genotypes. Female ND1KO mice showed no significant differences in body composition or body 

length compared to fl/fl female mice (Figs. 6D, F). 

HFD-fed ND1KO male mice had significantly smaller epididymal, subcutaneous and 

retroperitoneal fat pads, even when normalized to body weight (Fig. 7A, C). Brown adipose 

tissue was significantly smaller, but not when normalized to body weight. Female ND1KO mice 

had significantly smaller perigonadal, subcutaneous and brown adipose tissue fat pads and these 

differences remained significant even after body weight normalization (Fig. 7B, D). Both male 

and female ND1KO mice had smaller liver weights (Fig. 7A-B), although after adjusting for 

body weight, male ND1KO mice only had a tendency for reduced liver weight (Fig. 7A). The 

distribution and variability of body weight of HFD-fed males and females at 31-34 weeks of age 

is illustrated in Fig. 8A-B. 

We tested whether neuronal Dnmt1 deletion altered glucose and insulin dynamics in the 

HFD-fed mice, since diet-induced obesity causes glucose and insulin intolerance. In the HFD-fed 

male mice, there was no change in the ability to clear a glucose infusion from the blood between 

the two genotypes (Fig. 9A, C). HFD-fed female ND1KO mice showed a very mild 

improvement in overall glucose tolerance as seen in the area under the curve (Fig. 9B, D). In 

response to an insulin injection, however, male ND1KO mice had a lower area-under-the-curve 

(AUC) of blood glucose (Fig. 9E, G), and female ND1KO mice had a similar effect (Fig. 9F, H). 

Female ND1KO mice, however, showed a significant main effect of genotype throughout the 

duration of the insulin tolerance test, and follow-up tests at various time points revealed 

significant reductions in blood glucose at the 30- and 60-minute time points (Fig. 9F). 

The following results pertain only to male ND1KO and fl/fl mice, since the largest 

phenotype was observed in only male ND1KO mice fed an HFD. We quantified serum 
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concentrations of insulin, leptin, non-esterified (free) fatty acids, and triglycerides of the fl/fl and 

ND1KO male mice (Table 1). Neuronal Dnmt1 deficiency did not alter serum leptin or insulin 

concentrations in chow-fed mice, although there was a trend for ND1KO mice to have lower 

concentrations of both hormones. HFD-fed ND1KO mice had significantly lower serum leptin 

concentrations compared to HFD-fed fl/fl controls, as might be expected from reduced adiposity. 

Leptin is secreted in direct proportion to the amount of fat stores in the body (Jequier, 2002). 

Serum insulin was no different in HFD-fed ND1KO or fl/fl control mice, however. Neuronal 

Dnmt1 deficiency did not affect serum triglycerides or non-esterified fatty acids in either chow-

fed or HFD-fed mice.  

Consistent with their reduced obesity, HFD-fed ND1KO male mice consumed less food 

over a 7-day period (Fig. 10A). We placed the male mice in metabolic cages and found that 

ND1KO mice had higher energy expenditure during both light and dark periods than the fl/fl 

mice (Fig. 10B). In addition, ND1KO mice had higher physical activity level (Fig. 10C), and a 

decreased respiratory exchange ratio (RER) (Fig. 10D) during one light-dark cycle of the 7-day 

Table 1. Serum hormone and lipid measurements. 

Serum insulin, leptin, triglycerides and non-esterified fatty acids in fed-state of chow- and HFD-fed male fl/fl and 

ND1KO mice. ** p< .01. 
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metabolic cage experiment, which  indicates a preferential usage of fat acids as an energy source 

in ND1KO mice. 

2.3.3 HFD-fed ND1KO male mice have upregulated BAT thermogenic genes.     

Because neuronal Dnmt1 deficiency produced the most robust body weight differences in 

male mice fed an HFD, we characterized the ND1KO phenotype in further detail in HFD-fed 

males. On an HFD, ND1KO mice showed upregulated UCP1, OTOP1, CIDEA, PPARγ and 

PRDM16 gene expression in BAT (Fig. 12). Collectively, these gene alterations suggest there 

could be increased mitochondrial oxidative capacity in BAT. Phosphorylation of HSL, a key 

Figure 10. Food intake and energy expenditure of HFD-fed fl/fl and ND1KO mice.  

Cumulative food intake over 8 days (A); energy expenditure (mean kilocalories/hour/kilogram) (B), physical activity (C) and 

respiratory exchange ratio (D) over a 24-hour period of male HFD-fed fl/fl and ND1KO mice.  

*p< .05, **p< .01, ***p< .001. 
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enzyme in lipolysis, was significantly increased in BAT of HFD-fed ND1KO mice compared to 

fl/fl mice (Fig. 11), which indicates elevated activity of HSL and suggests increased lipolysis. 

Consistent with changes in gene and protein expression, visual observation of hematoxylin and 

Figure 12. BAT gene expression in HFD-fed male fl/fl and ND1KO mice.  

Expression of genes involved in thermogenesis and mitochondrial function in brown fat of male HFD-fed fl/fl and ND1KO mice. 

*p< .05, **p< .01. 
 

Figure 11. BAT protein expression of HSL and pHSL. 

Western blot images of total HSL, phosphorylated (serine 660) HSL and α-tubulin (as a loading control) (A), and densitometry 

quantification of total HSL (B) and pHSL:HSL in male HFD-fed fl/fl and ND1KO mice. *p< .05. 
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eosin (H & E) staining of BAT from all mice in the experiment revealed a tendency for HFD-fed 

ND1KO mice to have smaller BAT cells as compared to fl/fl control mice, indicating less lipid  

accumulation in BAT (Fig. 13). There were no major differences in the gene profile of 

subcutaneous or epididymal WAT of HFD-fed male fl/fl and ND1KO mice (data not shown). 

2.3.4  Effects of Cold Exposure on ND1KO mice. 

Because ND1KO mice showed an upregulation of BAT genes when challenged with an 

HFD, suggesting BAT might have elevated mitochondrial capacity, we further tested the BAT 

phenotype in ND1KO mice by placing a separate cohort of ND1KO and fl/fl mice in a cold room 

for 7 days. Prior to the cold exposure, ND1KO mice had a tendency for reduced body weight 

(Fig. 14B). After the 7-day cold exposure, ND1KO mice had significantly reduced body weight 

compared to the fl/fl mice also subject to cold exposure (Fig 14B). There was no change in 

epididymal, subcutaneous or BAT fat pad weights between the genotypes when subjected to cold 

(Fig. 14C-F). Body weight and fat pad weight of age-matched fl/fl and ND1KO mice housed in a 

room temperature environment also are shown (Fig. 14A, C, E). In BAT, cold-exposed ND1KO 

mice had trended towards having more UCP1 and DIO2 expression, although these were not 

Figure 13. BAT morphology in HFD-fed male fl/fl and ND1KO mice. 

Representative images of hematoxylin and eosin staining at 40X magnification of brown adipose tissue from HFD-fed male fl/fl 

and ND1KO mice. 
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significantly different (Fig. 15A, C). Western blots showed no significant change in UCP1 

protein expression in BAT of cold-exposed or room-temperature ND1KO mice (data not shown). 

In the subcutaneous tissue, cold-exposed ND1KO mice showed a strong tendency for 

increased UCP1 gene expression, which was just under the threshold of statistical significance, 

as well as a subthreshold tendency for increase in DIO2 (Fig. 15B, D). There was a considerable 

amount of variability in cold-induced expression of DIO2 and UCP1 in epididymal fat, however, 

and these did not differ between the ND1KO and fl/fl control mice (data not shown). 

Hematoxylin and eosin staining of BAT, subcutaneous and epididymal tissues was conducted on 

Figure 14. RT and cold-exposed body and fat pad weights of fl/fl and ND1KO mice. 

Body weight of 8 week old room temperature-housed male fl/fl and ND1KO mice (A). Body weight of fl/fl and ND1KO mice 

before and after 7 day cold exposure (B); epididymal, subcutaneous and brown adipose tissue weights (C, D) and normalized fat 

pad weights of room temperature  (C, E) and cold exposed (D, F) fl/fl and ND1KO mice. *p< .05. 
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a random subset of four fl/fl and four ND1KO mice from both room-temperature and cold-

exposure experiments. We did not observe any obvious differences in cell morphology, however, 

between the genotypes in either room-temperature or cold-exposed mice from these subsets 

(images not shown). 

 Summary of Specific Aim 1 

Neuronal Dnmt1 deficiency reduced adiposity in both male and female mice when fed 

standard chow. When challenged with an HFD, male ND1KO mice showed attenuated obesity 

and reduced adiposity, with evidence of increased mitochondrial oxidative capacity in BAT. 

These changes were driven by reductions in food intake as well as elevated energy expenditure. 

When challenged with prolonged cold exposure, male ND1KO mice weighed less, but there was 

no difference in BAT, epididymal or subcutaneous fat pad weights. Thus, it appears that 

Figure 15. RT and cold-exposed BAT and SC gene expression of fl/fl and ND1KO mice. 

UCP1 and DIO2 mRNA levels in BAT (A, B) and subcutaneous (C, D) tissue of room-temperature and cold-exposed fl/fl and 

ND1KO male mice (relative to room temperature fl/fl mice).  
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neuronal Dnmt1 deficiency may affect BAT and reduce adiposity in an excess-energy condition 

(HFD), but not in a condition of increased energy demands (cold). Furthermore, the elevations in 

energy expenditure may be driven in part via enhanced mitochondrial oxidative capacity in BAT. 

Table 2 summarizes the overall peripheral phenotype produced by neuronal Dnmt1 deficiency in 

male mice in different energy states. 

 

 

3     SPECIFIC AIM 2 

 Background 

3.1.1 The Central Nervous System.  

 The nervous system includes the central (brain and spinal cord) and peripheral (nerves 

extending from the spine) systems. In the peripheral nervous system, the somatic division controls 

nerves involved in muscle control, while the autonomic division controls sympathetic and 

parasympathetic nerves (Young et al., 2008). As energy demands fluctuate, both peripheral and 

Table 2. Summary of ND1KO phenotype in various conditions. 

Summary of ND1KO body weight, fat pad weight, fat gene expression, and fat cell size in chow-fed (8 and 28 weeks of age), 

HFD-fed and cold-exposed conditions. ND= not determined. 
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central neurons sense this information (e.g., glucose and hormone levels) and relay it on to brain 

nuclei that either stimulate or inhibit food intake and energy expenditure. The hypothalamus 

(HYP), a cluster of nuclei in the forebrain, regulates homeostatic processes including blood 

pressure, respiration, reproductive functions, thirst and hunger (Fulton, 1940). The arcuate nucleus 

(ARC), paraventricular hypothalamus (PVH), ventromedial and dorsomedial hypothalamus (VMH 

and DMH) and the lateral hypothalamus (LH) each receive and integrate a multitude of information 

regarding the metabolic state of the body (Karnani and Burdakov, 2011, Williams and Elmquist, 

2012). Vagal and sensory input from the periphery is directly received by hindbrain neurons, and 

it is then relayed to the hypothalamic nuclei (Blevins and Baskin, 2010). Hypothalamic neurons 

also are in direct contact with circulating hormones and glucose in the blood and cerebrospinal 

fluid, which provide additional, often redundant metabolic information.  

The association between the HYP and obesity was noted over 100 years ago from the 

coincidence of obesity in humans and animals with hypothalamic tumors (Bray and York, 1979). 

Since then, various hypotheses have evolved regarding how the hypothalamus regulates body 

weight. The “dual center hypothesis” developed from collective data (in particular, lesion and 

electrical recording studies) that implicated the lateral HYP as a hunger center and the 

ventromedial HYP as a satiety center. (Kennedy, 1950, Anand and Brobeck, 1951, Stellar, 1954) 

These effects were thought to be driven by changes in food intake, until further studies showed 

that this hypothesis was too simple to explain the role of the HYP in body weight (Han et al., 

1965). The MONA LISA hypothesis (Most Obesities of unkNown Origin Are Low In Sympathetic 

Activity) then came into view, as autonomic dysfunction was implicated in hypothalamic obesity 

(Bray, 1991). For example, HYP lesions lead to reduced lipolysis (Inoue and Bray, 1977) (which 

occurs via sympathetic drive) and vagotomy reverses obesity caused by HYP lesions (Bray and 
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Nishizawa, 1978, Sims and Lorden, 1986). Our understanding of the role of the hypothalamus in 

energy regulation expanded with the discovery of the anatomy and projections of the 

paraventricular nucleus in the 1980s, followed by the characterization of the arcuate nucleus. 

Overall, each HYP nuclei have important, while not always distinctly separate, roles in regulating 

energy balance. The presence of redundant and overlapping pathways that lead to the same 

endpoint (such as stimulating food intake) ensures that even if the integrity of one pathway is 

compromised, an alternative pathway can compensate to send the same signal to the downstream 

neurons and organs. 

3.1.1.1 Arcuate Nucleus.  

The arcuate nucleus (ARC) contains agouti-related peptide/neuropeptide Y (AgRP/NPY) 

and proopiomelanocortin/cocaine-and-amphetamine-regulated-transcript (POMC/CART) 

neurons, which have opposite functions in terms of regulating food intake and energy storage. 

These neurons reside at the base of the third ventricle, in close proximity to circulating 

metabolites and hormones. Both AgRP and POMC neurons are highly glucose and leptin-

responsive, in addition to receiving a variety of input from other brain areas (Belgardt et al., 

2009). POMC neurons produce proopiomelanocortin peptide, which produces several cleavage 

products that known as melanocortins (including adrenocorticotropic hormone and α-

melanocyte-stimulating hormone [α-MSH]). Alpha-MSH is a key peptide that activates the 

melanocortin 3 and 4 receptors (MC4R) in the PVH. Activation of the melanocortin system leads 

to reduced food intake and increased energy expenditure (Rowland et al., 2010). Consistent with 

its anabolic role in energy balance, AgRP neurons antagonize MC4R in the PVH via a cleaved 

product of the AgRP protein (De Jonghe et al., 2011). The ARC neurons send key projections to 
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other hypothalamic nuclei (PVH, DMH and LH) to ultimately exert their effects on expending or 

saving energy. 

3.1.1.2 The Paraventricular Nucleus.  

The paraventricular nucleus resides at the top of the third ventricle, more rostral than the ARC or 

the VMH. The PVH is divided into two major groups of neurons: the magnocellular neurons 

(which project to the pituitary) and the parvocellular neurons (that receive input from the 

hindbrain) (Swanson and Sawchenko, 1980). The PVH is known for being the center of the 

melanocortin system, which regulates energy balance. A key discovery was the Agouti mutant 

mouse (Ayv/a), which ectopically overexpresses the agouti gene (a melanocortin receptor 

antagonist) and develops hyperphagia and obesity (Sutton & Myers; Wolff 1986).  Other studies 

reported that specific deletion of MC4R via adeno-associated virus in the PVH causes 

hyperphagia, body weight gain and adiposity, which may be mediated through singleminded-1 

(Sim1)/glutamatergic cells (Shah et al., 2014). The role of the PVH in BAT thermogenesis has 

been controversial. Neural projections that innervate BAT have been retrogradely-traced to 

MC4R-expressing neurons in the PVH of hamsters (Song et al., 2008). Although activating MC4R 

neurons with melanotan II increases sympathetic outflow to BAT, as well as increases BAT 

temperature (Brito et al., 2007, Song et al., 2008), specific gain/loss-of-function studies involving 

MC4R in the PVH do not have any effect on energy expenditure (Balthasar et al., 2005, Garfield 

et al., 2015). PVH injections of glutamate increase BAT temperature in a dose-dependent manner 

(Amir, 1990), while in contrast PVH injections of N-methyl-D-aspartate (NMDA) inhibit cold-

induced BAT sympathetic nerve activity (Madden and Morrison, 2009). PVH lesions reduce body 

temperature during a febrile response (Horn et al., 1994, Lu et al., 2001), yet have no effect on 

cold-induced thermogenesis (Horn et al., 1994). Collectively, these studies implicate varying roles 
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for the PVH in BAT thermogenesis, depending on the context, and depending on which sub-

populations of PVH neurons are activated. 

3.1.1.3 Ventromedial Hypothalamus.  

The ventromedial hypothalamus (VMH), originally named the “satiety center” of the brain 

(until the functions of the PVH were discovered) is a complex region of the hypothalamus that 

regulates energy homeostasis as well as sexual and aggressive behavior (Kennedy, 1950, King, 

2006, Lin et al., 2011, Lee et al., 2014). Collectively, studies conducted over the past few decades 

have provided evidence that this region is important in maintaining lean-ness (preventing obesity). 

Early experiments involving lesions and knife cuts of the VMH and its projections demonstrate 

that VMH dysfunction can cause obesity in both male and female rodents (Brobeck, 1946, Mufson 

et al., 1980). Further, the inclusion of rigorous controls (such as paired tube-feeding and 

hypophysectomy) (Han and Frohman, 1970, Cox and Powley, 1981) show that loss of VMH 

function causes metabolic disruption and fat gain (even when there is no weight change) that is 

not due to changes in food intake (Bernardis and Frohman, 1971).   

The VMH is anatomically and functionally heterogeneous. Neuronal expression of 

steroidogenic factor-1 (SF1; important to the neuronal migration and development of the VMH) 

(Cheung et al., 2013) expression clearly distinguishes the VMH from surrounding regions. Within 

the VMH however, distinct neuronal sub-populations are mapped in different areas: leptin 

receptors are found in the dorsomedial VMH; insulin receptors in the central VMH, near the ARC; 

brain derived neurotrophic factor (BDNF) in the central and ventrolateral VMH; and estrogen 

receptor-α primarily in the ventrolateral VMH (Choi et al., 2013). 

The role of the VMH in regulating energy homeostasis has been moderately researched, 

but much remains to be elucidated in terms of function and circuitry, given the complex nature of 
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the region. The VMH projects strongly to the DMH, and may mediate the effects of the preoptic 

area on the DMH with regard to stimulation of BAT thermogenesis (see SA1 Background on BAT 

and cold). Electrical stimulation of the VMH increases sympathetic nervous system drive to BAT, 

as well as BAT temperature (Perkins et al., 1981, Saito et al., 1987), while inactivation of the VMH 

via colchicine inhibits cold-induced BAT thermogenesis (Preston et al., 1989). Yet results from 

such experiments should be interpreted cautiously, as the significance of these findings is limited 

to the precision of the electrical and pharmacological VMH manipulations (i.e., these 

manipulations may inadvertently affect neighboring brain regions). The exact neuronal pathways 

of the VMH are not fully known, but it warrants mentioning that injection of a trans-neuronal 

tracer, pseudo-rabies virus into BAT shows very little infection in the VMH, even after 6 days 

(Bamshad et al., 1999). Thus, from these studies it would appear that the role of VMH in the 

stimulation of BAT thermogenesis is likely more of an indirect, mediatory one characterized by 

multi-synaptic pathways.   

More precise manipulations have provided a clearer picture of the role of the VMH in 

energy regulation. SF1 neurons in particular, have been highlighted as having a key role in energy 

regulation. SF1 is expressed early in embryonic neurogenesis, and is essential to the formation of 

the ventromedial hypothalamus (Cheung et al., 2013). SF1-positive neurons are spread throughout 

the VMH, although a distinct sub-set of neurons in the ventrolateral part of the VMH do not express 

SF1 (Cheung et al., 2013). NestinCre-mediated deletion of SF1 (during gestation) causes late-onset 

obesity in both sexes, and increases diet-induced obesity via effects on energy expenditure but not 

food intake (Kim et al., 2011).  Postnatal SF1 deletion also produces diet-induced obesity with a 

lack of compensatory increases in energy expenditure and no alteration in food intake (Kim et al., 

2011). Further studies have established a role for leptin receptors in regulating body weight 



45 

through SF1 neurons. As evidenced by electrophysiological experiments, leptin depolarizes, and 

increases the firing rate, of SF1 neurons (Dhillon et al., 2006). Moreover, mice lacking leptin 

receptors in SF1 neurons display moderately increased body weight on a chow diet (Dhillon et al., 

2006). 

3.1.1.4 Dorsomedial Hypothalamus 

Above the VMH resides the dorsomedial hypothalamus (DMH), directly posterior to the 

caudal PVH. The DMH receives projections from both the VMH and LH, and sends major 

projections to the PVH (Luiten and Room, 1980, ter Horst and Luiten, 1986). DMH neurons 

project to the rostral ventrolateral medulla (RVM) in the hindbrain, which activate sympathetic 

premotor neurons leading to BAT (Morrison, 1999). Early DMH lesion studies in rodents 

demonstrated reductions in food and water intake and reduced body weight, but normal body 

composition (Bernardis and Bellinger, 1998). Like other HYP nuclei, the DMH also has a role in 

mediating SNS drive to BAT, and both leptin signaling and neuropeptide Y (NPY) have been 

highlighted as mediatory pathways. Activating DMH leptin-receptor expressing neurons using 

pharmacogenetics techniques increases BAT and body temperature, energy expenditure and even 

physical activity (Rezai-Zadeh et al., 2014). Genetic knockdown of neuropeptide Y neurons in 

the DMH increases BAT temperature and stimulates WAT browning, which is associated with 

elevated NE secretion onto WAT (Bi, 2007). As outlined previously in the Specific Aim 1 

Background, the DMH receives inhibitory projections from the preoptic area and during cold 

exposure, this inhibition is removed (Morrison et al., 2012). Outside of energy regulation, the 

DMH also plays a large role in regulating autonomic stimulation of the heart, particularly during 

stress (Fontes et al., 2014). 
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3.1.1.5 Lateral Hypothalamus  

 The lateral hypothalamus dominates all other HYP nuclei in size, extending in a rostral-

caudal fashion from the preoptic area to the ventral tegmental area in the midbrain (Paxinos et al., 

2001). Early lesion experiments of the LH resulted in a profound reduction in food and water 

intake, to the point of death, in rodents (Anand and Brobeck, 1951, Morrison et al., 1958) and 

gained the LH the label of “hunger center.” Since then, a broad connectivity with other parts of 

the brain has been defined, implicating roles for the LH in sleep/wake states, motivation, 

eating/drinking, via projections to and from forebrain, midbrain, and hindbrain structures (Brown 

et al., 2015). Major sub-populations of neurons in the LH include orexin neurons (feeding, arousal) 

(Kotz, 2006), melanin-concentrating hormone (MCH) neurons (stimulation of feeding), and 

MC4R neurons (glucose homeostasis and sympathetic activity) (Cui et al., 2012, Morgan et al., 

2015). The LH has reciprocal connections with the ARC, and maintains direct and indirect 

connections to and from the DMH, VMH and PVH (Stuber and Wise, 2016). In summary, with 

regards to energy balance, the LH is involved in initiating food and drink consummatory behaviors 

and coordinates with the rest of the HYP to precipitate food intake and energy expenditure signals 

(van Dijk et al., 2011, Stuber and Wise, 2016).  

It remains difficult to define a clear, unique function for any of the HYP regions discussed 

above, due to significant overlap in function. Although the disruption of energy balance is often 

incredibly pronounced when one of these nuclei is ablated, it is clear that the ARC, VMH, DMH 

PVH and LH wear multiple hats in terms of their effects on energy homeostasis, which is important 

to a system that needs to be resilient in order for survival. The distinct nuclei, peptides/hormones, 

and connections of the hypothalamus orchestrate an incredibly complex set of functions that 

maintain stability despite the fluctuating energy demands of the organism.  
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3.1.2 Estrogen Receptor-α 

3.1.2.1 ERα and Energy Regulation   

Estrogen receptor α (ERα), encoded by the ESR1 gene, is a steroid nuclear receptor and 

transcription factor (Green et al., 1986). ERα is expressed throughout the periphery and brain in 

both males and females (Dechering et al., 2000, Mitra et al., 2003, Gillies and McArthur, 2010). 

Upon estrogen binding in the cytoplasm, ERα translocates to the cell nucleus where it functions as 

a transcription factor by binding to estrogen response elements (EREs) within the DNA (Kumar 

and Chambon, 1988) and by interacting with other transcription co-activators, such as steroid 

receptor coactivator-1 (Zhu et al., 2013, Roforth et al., 2014, Yi et al., 2015).  

ERα has an important role in energy regulation. In mice of both sexes, global deletion of 

ERα produces obesity (Heine et al., 2000, Ohlsson et al., 2000), as does neuronal deletion of ERα 

(Xu et al., 2011). Importantly, specific VMH deletion of ERα increases body weight in both male 

and female mice (Musatov et al., 2007, Xu et al., 2011, Sano et al., 2013). VMH ERα expression 

in SF1 neurons affects energy expenditure in females (Xu et al., 2011). Additionally, VMH ERα 

expression inhibits AMPK activity, leading to increased SNS drive to BAT and thermogenesis 

(Martinez de Morentin et al., 2014). Although females have more ERα immunoreactivity than 

males in the ARC, there does not seem to be any sex difference in ERα expression in the adult 

VMH (Brock et al., 2015, Yu et al., 2015). ERα expression is highest in the ventrolateral portion 

of the VMH (VMHvl) (Mitra et al., 2003), where it positively regulates sexual behavior in females, 

(Musatov et al., 2006), and aggression and sexual behavior in males (Sano et al., 2013, Lee et al., 

2014). Although males do not have nearly as much estrogen as females, estrogen can be 

synthesized from the conversion of testosterone via the enzyme aromatase, and this conversion 

can occur within the brain (Longcope et al., 1969). 
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3.1.2.2 ESR1 Promoter Methylation. 

The mouse ESR1 gene shares a high degree of homology to the human ESR1 gene (White 

et al., 1987), including the promoter region (Kos et al., 2000). Five different splice variants of the 

ESR1 transcript, wherein the 5’untranslated region varies, have been defined in mice (Kos et al., 

2000). The transcript variant spliced at exon C is expressed most abundantly in the brain (Kos et 

al., 2000, Prewitt and Wilson, 2007) (see Fig. 25). In the brain, decreases in ESR1 expression has 

been associated with increases in methylation on promoter exons A and C in both male and female 

mice throughout early development (Westberry and Wilson, 2012). Dysregulated ESR1 expression 

via methylation has been linked to several diseases, breast cancer and age-related atherosclerotic 

plaques (Post et al., 1999, Martinez-Galan et al., 2014). Interestingly, Dnmt1 has been shown to 

regulate ESR1 methylation and subsequent ERα expression in cultured human aortic cells (Wang 

et al., 2012).  

Estrogen receptor-α expression in the VMH has a role in regulating weight gain in both 

male and female mice, and further, its expression has been negatively correlated with methylation 

of the ESR1 gene promoter in the cortex of the brain (Westberry et al., 2010). The following 

experiments were designed to test whether neuronal Dnmt1 deficiency affects ERα in the VMH, 

thus providing a possible lead for future mechanistic studies. 

 Methods 

3.2.1 Gene Expression. 

The brains harvested in Specific Aim 1 from normal- and HFD-fed mice were analyzed for 

gene expression using real-time PCR according to the methods used in SA1. Four hypothalamic 

regions were dissected (arcuate, medial, paraventricular and lateral) with the aid of a dissecting 

microscope according to the methods of Minokoshi et al., 2004. First, the brain was placed in a 
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block with 1mm grooves and a straight blade was placed in the exact midline of the brain creating 

a sagittal cut. Two additional blades were placed on each side at 1mm intervals from the midline 

blade. The arcuate, medial and paraventricular regions were dissected out from the right and left 

blades closest to the midline, and the lateral hypothalamus was dissected out from the farthest 

lateral right and left blades. The hypothalamic samples were frozen in liquid nitrogen and stored 

at -80⁰ C for later gene analysis. 

3.2.2 Immunohistochemistry. 

Fourteen ND1KO and fl/fl control littermates were fed a chow diet, while a separate 

cohort of sixteen ND1KO and fl/fl mice were fed an HFD. Body weight was recorded weekly. 

After 11-12 weeks on the respective diets, the mice were sacrificed and the brains were 

processed for immunofluorescence. Mice were transcardially perfused with a heparinized 

saline/DEPC H2O solution followed by 4% paraformaldehyde. Brains were soaked in 4% 

paraformaldehyde in 4⁰ C for 2-3 hours, then were placed in 18% sucrose/DEPC water until they 

sunk. The brains were frozen and sectioned on a cryostat at 20µm and mounted onto slides. 

Immunofluorescence was conducted using primary antibodies to target estrogen receptor-α (#06-

935; EMD Millipore; Merck KgaA, Darmstadt, Germany) at a 1:20,000 concentration, or 

neuron-specific nuclear protein (NeuN) at a 1:1,000 concentration (#MAB377; EMD Millipore) 

overnight at 4°C. AlexaFluor secondary antibodies (#A21207, #A21202; ThermoFisher 

Scientific; Waltham, MA) were used at a 1:5,000 concentration for 3 hours at room temperature. 

Slides were mounted with Prolong Diamond Antifade Mountant with DAPI. Images were 

acquired the following day using an Olympus DP73 fluorescent photomicroscope and CellSens 

software (Olympus). ERα-positive cells in the VMHvl and VMHdm were counted using 

Photoshop CS3, and using the NeuN image of the same section overlayed as a guide for the 
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boundary of the VMH. The thalamus was used as an anatomical negative control. Cell counts per 

section were averaged for each brain, and the mean of these averages was calculated for each 

group. Student’s t-test were used to compare differences between fl/fl and ND1KO groups. We 

set the significance level at p < .025 for the VMHdm cell counts, because this was an unplanned, 

additional comparison.  

3.2.3 ESR1 Methylation. 

ND1KO and fl/fl control littermates were fed either a chow diet (n= 16) or an HFD 

(n=20) for 12 weeks starting from weaning. Mice were sacrificed and the hypothalamus was 

dissected according to the methods described above. DNA was isolated from the V/DMH region 

using phenol/chloroform followed by isopropanol precipitation. Bisulfite conversion was 

performed using an Epitect Bisulfite Kit (Cat. #59104, Qiagen. Valencia, CA) and 2µg of DNA 

from each sample. The ESR1 promoter Exon A was amplified using primers from EpigenDX 

(ADS911). Pyrosequencing and analysis for ESR1 mouse promoter Exon A was performed by 

EpiGenDX (Hopkinton, MA). One-Way ANOVAs were used to test for significance between the 

genotypes at each CpG site. For the ESR1 methylation positive control study, C57BL/6 mice 

were bred in house and brains were harvested at P5 and P18 (P0 as the day of birth) according to 

the methods of Westberry et al. (Westberry et al., 2010). Briefly, cortex was dissected with the 

aid of a dissecting microscope from approximately Bregma 1.20 to -0.38. Cortex samples were 

frozen in liquid nitrogen and stored at -80° C until processed. The same methods for DNA 

isolation, PCR and pyrosequencing were used for the control study as for the experimental study. 

Two-Way ANOVAs were used to test the effect of age and sex at each CpG site of Exon A 

(according to Westberry et al., 2010).  
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 Results. 

3.3.1 ND1KO male mice have altered hypothalamic gene expression. 

We screened the expression of a variety of hypothalamic genes involved in energy 

regulation. In chow-fed ND1KO mice, there were no significant changes in gene expression in 

the arcuate (ARC), paraventricular (PVH), ventromedial/dorsomedial (V/DMH) or lateral (LH) 

hypothalamic nuclei (Fig. 16A-D). Similarly, in HFD-fed mice, there was no change in ARC 

gene expression (Fig. 17A). In the PVH of HFD-fed mice however, neuronal Dnmt1 deficiency 

caused an upregulation of the vesicular GABA transporter gene (vGAT) (Fig. 17B). In the 

V/DMH, corticotropin-releasing hormone and the vesicular glutamate transporter 2 

 

Figure 16. Hypothalamic gene expression in chow-fed fl/fl and ND1KO male mice. 

Relative mRNA expression of genes involved in energy regulation in the arcuate (A), paraventricular (B), 

ventromedial/dorsomedial (C), and lateral (D) hypothalamic regions in chow-fed fl/fl and ND1KO mice. 
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vGlut2) genes were upregulated (Fig 17C). Finally, in the LH, HFD-fed ND1KO mice had 

increased CRH gene expression, and there was a tendency towards upregulation of orexin, 

vGlut2 and vGAT (Fig 17D).  

Estrogen receptor-α (ESR1 gene) expression in the VMH is involved in body weight 

control in both male and female mice (Xu et al., 2011, Sano et al., 2013). Therefore, we 

quantified ESR1 expression in the hypothalamic nuclei to test whether this gene might be 

mediating the lean phenotype in ND1KO male mice. Chow-fed ND1KO mice had significantly 

increased ESR1 in the V/DMH and PVH (Fig. 18A). Similarly, HFD-fed ND1KO mice had 

increased ESR1 expression in the V/DMH, but had an upregulation of ESR1 in the LH instead of 

the PVH (Fig. 18B). Simultaneous assay results indicated that the HFD did not affect ESR1 gene 

Figure 17. Hypothalamic gene expression in HFD-fed fl/fl and ND1KO male mice.  

Relative mRNA expression of genes involved in energy regulation in the arcuate (A), paraventricular (B), 

ventromedial/dorsomedial (C), and lateral (D) hypothalamic regions in chow-fed fl/fl and ND1KO mice. *p< .05, **p< .01. 
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expression in the V/DMH in fl/fl mice, as indirectly compared to the chow-fed fl/fl mice 

(although these cohorts were not fed the diets at the same time; data not shown).  

3.3.2 ND1KO ERα Immunofluorescence. 

We next sought to precisely locate where ERα was upregulated in the V/DMH of 

ND1KO mice. Previous studies have demonstrated that VMH ERα expression is greater in the 

ventrolateral portion of the VMH (VMHvl) than in the central or dorsal portions (Mitra et al., 

2003).  In addition, VMH ERα has been implicated in regulation of body weight  (Sano et al., 

2013), whereas we cannot find any published evidence of ERα expression in the DMH regulating 

body weight. Thus, we hypothesized that ERα expression would be upregulated specifically in 

the VMHvl. Two separate cohorts of male ND1KO mice and fl/fl control littermates were fed 

either a normal chow diet or an HFD beginning at 6 weeks of age for 12 weeks (the time point 

that coincides with the largest body weight reduction observed in SA1). After sacrifice, perfused 

brains were sectioned and processed for immunohistochemistry using an antibody targeting ERα. 

Figure 18. Hypothalamic ESR1 gene expression. 

Relative ESR1 mRNA levels in the different hypothalamic regions of chow-fed (A) and HFD-fed (B) fl/fl and ND1KO male mice 
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ERα-positive cells were manually counted in the VMHvl, VMHdm as well as in the ARC (to 

serve as a negative control, because ND1KO mice show no change in ARC ESR1 gene 

expression). We chose sections within Bregma -1.58 to -1.82 (Paxinos et al., 2001) because this 

area has the highest number of immunohistochemically-labeled ERα-positive cells (Sano et al., 

2013). The pattern of staining was consistent with prior reports of ERα immunoreactivity in the 

VMH (Fig. 19A,B) (Brock et al., 2015, Yu et al., 2015). Contrary to our hypothesis, the number 

of ERα-positive cells in the VMHvl did not significantly differ between the genotypes in chow-

fed mice (Fig. 20A). In fact, when fed an HFD, ND1KO mice had significantly less ERα 

expression in the VMHvl (Fig. 20B). We then tested whether ERα protein was increased in the 

dorsomedial VMH (VMHdm). Although ND1KO mice fed a normal diet showed no significant  

Figure 19. Estrogen receptor-α and NeuN immunohistochemistry (10X) in the VMH.  

Estrogen receptor-α (red, top) and NeuN (neuronal nuclei marker; green, bottom) immunohistochemistry in the VMH at 10X 

magnification in HFD-fed fl/fl (A, C) and ND1KO (B, D) male mice. White-dashed lines show the boundary of the VMH, with 

ventrolateral and dorsomedial borders. Images were enhanced for clarity of presentation using PhotoShop CS3. 
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Figure 21. Estrogen receptor-α and NeuN colocalization (40X) in the VMHdm.  

Estrogen receptor-α (red, top) and NeuN (neuronal nuclei marker; green, bottom) colocalized immunohistochemistry in the 

VMHdm at 40X magnification in HFD-fed fl/fl (A, C) and ND1KO (B, D) male mice. White arrows mark examples of double-

labeled ERα/NeuN cells. Images were enhanced for clarity of presentation using PhotoShop CS3. 

 
 

 

Figure 20. Estrogen receptor-α cell counts in the VMH.  

Estrogen receptor-α cell counts in the ventrolateral and dorsomedial VMH of chow-fed (A, C) and HFD-fed (B, D) fl/fl and 

ND1KO male mice. *p< .05. 
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change in ERα expression in the VMHdm, HFD-fed ND1KO mice had significantly greater ERα 

expression as compared to HFD-fed fl/fl control mice (Fig. 20D). Finally, we found no 

difference in ERα expression in the ARC of HFD-fed ND1KO and fl/fl control mice (data not 

shown), which is consistent with our ESR1 gene expression data in the ARC. Figure 21 

illustrates ERα colocalized with neurons in the VMHdm of HFD-fed mice. 

3.3.3 Chow and HFD-fed ND1KO ESR1 promoter methylation 

Estrogen receptor-α expression in the cerebral cortex is regulated via methylation of the 

ESR1 gene promoter region (Westberry et al., 2010), specifically on Exons A and C (Fig. 22). 

Because ND1KO mice are neuronally-deficient in Dnmt1, an enzyme that methylates DNA, we 

tested whether ND1KO mice had reduced methylation of the ESR1 promoter region, which 

might explain the increase in ESR1 transcript (mRNA) seen in ND1KO mice. We microdissected 

V/DMH region, as we had done previously for our gene expression analysis, and processed this 

tissue for bisulfite conversion and subsequent pyrosequencing. The results indicated that chow- 

fed ND1KO mice had slightly, but significantly reduced methylation at CpG sites 6 and 7 of 

Exon A (Fig. 23). There was no difference in the overall methylation status of the promoter 

between the genotypes (data not shown). In addition, there were no significant differences in 

Figure 22. Map of ESR1 gene promoter CpG sites. 

Illustration of CpG sites (grey circles) on exons A and C of the ESR1 gene 5’untranslated region, upstream of the protein translation 

start site. 
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methylation between ND1KO and fl/fl mice fed an HFD. On Exon C, ND1KO mice showed a 

significant increase at CpG site 4, but this was not evident in HFD-fed ND1KO mice (Fig. 27).  

Overall, on Exon C, we saw no consistent effect of either genotype or diet on the 

methylation pattern. As a positive control, we quantified the methylation of ESR1 Exon A in 

cerebral cortex of postnatal day 5 (P5) and postnatal day 18 (P18) C57BL/6 male and female 

Figure 24. ESR1 Exon C promoter methylation. 

ESR1 Exon C promoter methylation at CpG sites 1-5 in fl/fl and ND1KO male mice fed a chow or high-fat diet. *p<.05. 

 

 

Figure 23. ESR1 Exon A promoter methylation. 

ESR1 Exon A promoter methylation at CpG sites 1-11 in fl/fl and ND1KO male mice fed a chow or high-fat diet. *p<.05, **p<.01. 
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mice. It has been reported that the ESR1 promoter shows increases in methylation throughout 

early development (Westberry et al., 2010). Two-way ANOVAs testing the effect of sex and age 

across individual CpG sites revealed a main effect of age at CpG sites 1, 2, 6 and 8 of Exon A, 

with mice at age P18 having more methylation than those at P5 (Suppl. Fig. 3). Follow-up One-

Way ANOVAs conducted separately for each sex showed that P18 females had more 

methylation at each of the sites that were significant in Two-Way ANOVA, while males showed 

a statistically significant increase at CpG site 2. 

 Summary of Specific Aim 2 

Neuronal Dnmt1 deficiency produced remarkably little effect on the gene expression of 

major hypothalamic peptides involved in energy balance. Estrogen receptor-α gene (ESR1) 

expression, however, was upregulated in the V/DMH of both chow-fed and HFD-fed ND1KO 

male mice. Immunohistochemical analysis of ERα protein expression in the VMH revealed an 

upregulation of ERα in the VMHdm, but also a downregulation of ERα in the VMHvl of HFD-

fed ND1KO mice. The ESR1 promoter showed small but significant methylation decreases at 

two CpG sites of Exon A in chow-fed ND1KO mice, but not in HFD-fed KO mice. 

4 DISCUSSION 

Aberrant neuronal gene methylation patterns are associated with obesity. For example, 

hypermethylation of POMC, an anorexigenic gene in the hypothalamus, correlates with obesity in 

both rodent and human studies (Plagemann et al., 2009, Crujeiras et al., 2013). Furthermore, 

increased expression of neuronal Dnmt enzymes have been linked to brain pathologies (Veldic et 

al., 2004), indicating a role for these enzymes in brain dysregulation. In the present study, we 

hypothesized that Dnmt1, a DNA methyltransferase ubiquitously expressed throughout the brain, 
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regulates energy homeostasis and obesity development. To our knowledge, the present study is the 

first to report that widespread neuronal deficiency of a DNA methyltransferase enzyme affects 

energy regulation, and in particular, attenuates diet-induced obesity development. In the present 

study, we found that neuronal Dnmt1 deficiency reduced adiposity in male and female mice fed a 

chow diet, and attenuated obesity in male mice fed an HFD. When fed a chow diet, ND1KO mice 

had smaller fat pad mass, and a tendency for reduced body fat percentage, but no difference in 

body weight. When fed an HFD, ND1KO mice had reduced body weight, smaller fat pad mass 

and improved insulin tolerance. These metabolic changes in HFD-fed mice were driven by reduced 

food consumption as well as increased energy expenditure. 

 Peripheral phenotype of ND1KO mice. 

Under normal energy conditions, neuronal Dnmt1 deficiency reduced adiposity, which was 

evident in both BAT and WAT. The gene expression profile of BAT and WAT in ND1KO mice 

did not show changes that might explain the reduced adiposity, however. We conducted a 

preliminary visual analysis of H & E staining of BAT, epididymal and subcutaneous tissues from 

a subset of mice from each genotype, but we did not see any trends in reduced cell size or 

morphology. It is possible that ND1KO mice simply consumed less food on the chow diet, and for 

this reason, stored less fat. We did not quantify food intake in these mice because there was no 

difference in body weight throughout the course of the experiment. In our future studies, we will 

quantify food intake of fl/fl and ND1KO chow-fed mice. 

We found the largest effect of neuronal Dnmt1 deficiency when the mice were in a state of 

positive energy balance—consuming an HFD. In these mice, BAT showed an upregulation of 

multiple genes involved in thermogenesis, indicating the stimulation of the thermogenic program. 

WAT showed no major changes in the gene program that would be indicative of browning, 
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however. In addition to reduced BAT mass, BAT cells tended to appear smaller in HFD-fed 

ND1KO mice. One might expect that the reduced BAT mass and cell size could be due to increased 

utilization of fatty acids as substrate for thermogenesis. Indeed, we found increased 

phosphorylation of hormone-sensitive lipase (HSL) in BAT of ND1KO mice fed an HFD. These 

findings are consistent with elevated sympathetic nervous system (SNS) drive to BAT, which may 

be a possible mechanism through which neuronal Dnmt1 deficiency alters BAT metabolism. A 

future experiment is in progress to test the hypothesis that ND1KO mice have elevated SNS drive 

to BAT by quantifying norepinephrine turnover in BAT tissue (Vaughan et al., 2014). 

Alternatively, we may sympathetically denervate brown and/or white fat (Vaughan et al., 2014) in 

fl/fl and ND1KO mice, to test whether removing the sympathetic drive to fat prevents the 

phenotype of ND1KO mice. 

In prolonged cold exposure, there was surprisingly little indication of increased 

thermogenic programming in BAT or WAT. ND1KO mice weighed less after the cold treatment 

compared to cold-exposed fl/fl mice, but the fat pad mass did not differ between the genotypes. 

Although the effect was not robust, ND1KO mice had a tendency for increased UCP1 and DIO2 

gene expression in subcutaneous WAT, suggesting that neuronal Dnmt1 deficiency could increase 

the potential for WAT browning, at least mildly. In the context of increased energy needs (cold 

environment), the purpose of SNS drive to WAT or BAT is to induce changes in the tissue that 

allow it to use energy to produce heat, and maintain the temperature stability of the animal. This 

is in contrast with a positive energy balance, in which increased heat is not necessary, but energy 

expenditure increases for other reasons (diet-induced thermogenesis, discussed below). Even 

though other parameters could have been analyzed for the cold exposure experiment (e.g., BAT 
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and core temperature), if neuronal Dnmt1 deficiency robustly altered metabolism in response to 

cold, it is likely that this would have been observed in the fat pads that we analyzed.   

It is important to note that thermogenesis, while stimulated via sympathetic nerve 

projections from the spinal cord, may be stimulated upstream via different mechanisms depending 

on whether it is triggered through cold or other factors (Peterson et al., 2016). For example, cold 

is sensed through peripheral sensory nerves that project to the preoptic area, which then releases 

the DMH from inhibition, leading to increased sympathetic drive to BAT (Contreras et al., 2015). 

Other factors, such as ingesting a meal (postprandial thermogenesis) or consuming an HFD (diet-

induced thermogenesis) also can increase sympathetic activation of BAT (Cannon and 

Nedergaard, 2004). Thus, ND1KO mice may have alterations in the neural pathways that regulate 

energy expenditure and BAT activity in the context of excess energy consumption, but not in the 

context of a cold environment. Cold exposure and HFD-feeding also can lead to differential gene 

expression in both BAT and WAT. For example, the gene chimerin (CMKLR1), which is 

positively correlated with obesity and metabolic dysfunction (Bozaoglu et al., 2007), is 

downregulated in cold exposure but upregulated from HFD-feeding in both BAT and WAT 

(Hansen et al., 2014) A final thought is that cold induces certain changes in BAT depending on 

how long the animal has been acclimated to the cold (Yu et al., 2002). It is possible that we may 

have seen differences between the genotypes if we analyzed the mice at a different time point of 

cold exposure.  

ND1KO mice had reduced subcutaneous and perigonadal fat pad mass regardless of which 

diet they consumed. The reduced fat pad size observed in ND1KO mice could be from either a 

reduced number of fat cells, or reduced fat cell size. Although the fat pads weighed less in chow-

fed ND1KO mice, in our preliminary studies we did not observe any obvious differences in the 
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cellular morphology of these fat tissues. If the adipocyte size did not differ between the genotypes, 

but the overall fat pads were smaller, than it is logical to assume that there was a reduced number 

of fat cells in the ND1KO mice. The most likely explanation is that neuronal Dnmt1 deficiency 

increases autonomic nervous system drive to fat tissues, which stimulates proliferation of energy-

consuming BAT cells while inhibiting proliferation of energy storing WAT cells (Geloen et al., 

1988, Jones et al., 1992, Foster and Bartness, 2006). Further experiments measuring the 

distribution of adipocyte size in the fl/fl and ND1KO mice are needed to elucidate whether and 

how neuronal Dnmt1 deletion affects adipocyte development. 

In addition to increased metabolic activity in BAT or WAT, another contributing factor to 

the elevated energy expenditure of HFD-fed ND1KO mice is that they had a higher physical 

activity level. In fact, previous studies have highlighted certain genes in hypothalamic neurons as 

being important to controlling spontaneous physical activity, as well as energy intake/expenditure. 

TrkB (the BDNF receptor) (Ozek et al., 2015) or FoxO1 (Ren et al., 2013) expression in the 

hypothalamus, ROCK1 expression in AgRP neurons (Huang et al., 2013), and ERα expression in 

the VMHvl (Musatov et al., 2007, Correa et al., 2015) all have been reported to drive physical 

activity levels, in addition to energy homeostatic processes. Reduced physical activity is a well-

documented effect of HFD-feeding (Tung et al., 2006). Neuronal Dnmt1 deficiency likely had a 

protective effect on the HFD-inhibition of physical activity, although we did not directly compare 

physical activity in the HFD-fed mice to that of chow-fed mice. Thus, increased glucose uptake 

and utilization in muscle from elevated physical activity also could contribute to the elevated 

energy expenditure in ND1KO mice, although this was not directly measured.  

Changes in the adipose organs, whether brown or white, strongly affect glucose and insulin 

dynamics. On a chow diet, ND1KO mice showed no major change in serum insulin levels, in the 
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ability to clear a glucose injection from the blood, or to correct blood glucose levels after an insulin 

injection. ND1KO male mice had a tendency towards reduced insulin levels, although this was not 

significant. As expected with attenuated obesity, HFD-fed ND1KO mice had improved glucose 

and insulin dynamics. Male ND1KO mice showed a more efficient response to insulin in clearing 

glucose from the blood and maintaining glucose homeostasis. Although insulin resistance was not 

directly quantified, an HFD is a reliable model of insulin resistance and metabolic disorder 

(Fellmann et al., 2013, Williams et al., 2014); hence, we interpret this to mean the neuronal Dnmt1 

deficiency attenuated the severity of, or protected the mice from, HFD-induced insulin resistance.  

Increased energy expenditure was not entirely responsible for the attenuated obesity in 

HFD-fed ND1KO mice, as these mice also ingested less energy. An important follow-up study 

would be to pair-feed fl/fl and ND1KO mice during the first 3 months of the HFD, when the 

reduced obesity is starting to become evident in ND1KO mice. Pair-feeding would allow us to 

distinguish between the relative contributions of reduced energy intake vs. elevated energy 

expenditure in the attenuation of obesity. It is likely that alterations in food intake and energy 

expenditure contribute in similar degrees to the leaner phenotype, because neither had particularly 

huge effects. Further, we do not know whether changes in food intake and energy expenditure 

occurred consistently throughout the entire HFD experiment, or whether these effects were 

dynamic throughout the 25-week HFD.  

 Hypothalamic phenotype of ND1KO mice. 

Food intake behavior is regulated by the central nervous system, and in particular, the 

melanocortin system. Given the previous studies linking POMC hypermethylation with obesity, 

we were surprised to see no changes in POMC, or any other major ARC genes. It would be 

interesting to quantify α-MSH protein in the ARC, since this post-transcriptional cleavage product 
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of the POMC gene is the signaling molecule that effects reductions in food intake via signaling the 

PVH.  However, even if this were the case, one might expect to see compensatory changes in the 

PVH to accommodate for this increased signaling protein. In the V/DMH and LH regions, 

corticotropin-releasing hormone (CRH) was upregulated, which is an anorexigenic hormone. CRH 

certainly plays a large role in the inhibition of food intake, but this hormone is known to exert this 

effect by way of PVH projections, not the VMH. While the VMH certainly contains CRH receptors 

that mediate the inhibition of food intake (Nishiyama et al., 1999), the effect of upregulated CRH 

hormone in the V/DMH region is not clear. Thus, we did not observe any major changes in the 

hypothalamic gene profile screening that could at once explain the phenotype. An important 

consideration is that our analysis of the hypothalamic gene profile was conducted after a long 

duration of HFD-feeding. Thus, our “snapshot” of the hypothalamic gene profile reported here is 

one that includes any compensatory changes occurring over time on an HFD or with older age. It 

would be important to analyze the hypothalamic gene expression profile in both young adult 

ND1KO mice (8 weeks old) as well as ND1KO mice that have had a shorter exposure to the HFD. 

An important mechanism to test in our future studies is whether neuronal Dnmt1 deficiency 

attenuates obesity by enhancing neuronal leptin sensitivity. Leptin has the well-known effect of 

reducing food intake and body weight (Campfield et al., 1995), and these effects have been 

strongly corroborated by studies involving the leptin-deficient ob/ob mouse (Hwa et al., 1997). An 

HFD causes both hyperleptinemia and central leptin resistance (Maffei et al., 1995, Munzberg et 

al., 2004). In the present study, HFD-fed ND1KO mice showed reduced serum leptin 

concentrations compared to those of HFD-fed fl/fl mice. This may be explained by the simple fact 

leptin is secreted in proportion to the amount of fat stored (Jequier, 2002) and ND1KO mice had 

less adiposity. Hyperleptinemia can lead to leptin resistance (although it is not required for it) 
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(White et al., 2009), and so it is important to determine whether the reduction in serum leptin also 

was associated with enhanced leptin signaling within the brain. The present finding that HFD-fed 

ND1KO mice had reductions in food intake and body weight is consistent with an enhanced leptin 

response (Campfield et al., 1995).  Our future studies will test if leptin sensitivity is enhanced in 

ND1KO mice by quantifying food intake and body weight in response to leptin injections. If it is, 

then additional studies can build on this by investigating molecular components of the neuronal 

leptin signaling cascade (e.g., phosphorylated STAT3) in the hypothalamus (Bjorbaek and Kahn, 

2004). Collective results from such studies can implicate neuronal leptin signaling as a possible 

mechanism in the ND1KO phenotype.  

 The ND1KO phenotype in females.  

Under normal energy conditions, neuronal Dnmt1 deficiency reduced adiposity in females. 

Chow-fed ND1KO females had significantly reduced body fat composition and a slightly higher 

blood glucose during the glucose and insulin tolerance tests. In an excess energy condition (HFD), 

ND1KO females did not have significantly attenuated body weight at the end of the HFD, although 

they did not show differences in overall body fat composition and reduced fat pad weights. HFD-

fed female ND1KO had significantly improved insulin tolerance throughout the insulin tolerance 

test, whereas there wass no overall main effect of insulin tolerance in males (despite a lower 

A.U.C.). 

In the interpretation of these findings, it is important to consider that there are a number of 

differences in lipid metabolism between the sexes. Women have more body fat than men 

(Gallagher et al., 2000), a difference that is easily attributable to the increased energy requirements 

that come with pregnancy and gestation. Fat storage also is distributed differently between the 

sexes, with women storing more fat in subcutaneous regions while men store more fat in the 
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visceral/abdominal region (Palmer and Clegg, 2015). Although the rate of lipid oxidation is similar 

between the sexes, females have greater lipolysis rates (Schmidt et al., 2014), are more sensitive 

than males to norepinephrine-induced lipolysis (Schmidt et al., 2014), have greater triglyceride 

secretion and clearance, and higher fasting free fatty acid levels than males (Ter Horst et al., 2015).  

The metabolic differences in general that exist between males and females could be due to 

the sexual differentiation of the brain circuits (or peripheral organs) controlling energy 

homeostasis, but are likely due to the greater presence of estrogen, as well. Estrogen is a major 

player in the sex differences seen in metabolism and energy regulation. For example, estrogen may 

enhance neuronal leptin sensitivity in females, which affects glucose homeostasis, food intake and 

energy expenditure (Clegg et al., 2006). In addition, aromatase-knockout or ERα-knockout mice 

of both sexes are more vulnerable to streptozotocin-induced diabetes, and estrogen reverses this 

effect in aromatase-knockout mice (Le May et al., 2006). Studies of women before and after 

menopause (when there is a drop in estrogen production) also have provided insight into the role 

of estrogen in fat regulation; specifically, fat distribution in post-menopausal females resembles 

that in males, with a shift from subcutaneous to visceral storage (Palmer and Clegg, 2015). Thus, 

estrogen makes a strong case for itself in terms of being a likely hormone that may regulate a 

majority of metabolic sex differences. 

We can speculate that perhaps neuronal Dnmt1 deficiency enhanced an already-existing 

tendency for greater lipolysis in females, and this may have resulted in reduced adiposity in chow-

fed females. Further, the lack of neuronal Dnmt1 may have altered autonomic nervous system 

regulation of pancreatic insulin secretion, thereby resulting in a slightly impaired ability to clear 

glucose from the blood in females. In the HFD-fed females, we might hypothesize that neuronal 

Dnmt1 deficiency could enhance the protective effects of estrogen (e.g., anti-inflammatory, 
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anorectic) in females fed an HFD; yet, female ND1KO mice showed no significant difference in 

body weight at the end of the HFD. A possibility is that perhaps estrogen already had the maximum 

protective effect in the HFD-fed females (anti-inflammatory, anorectic effects), and that this could 

not be further enhanced by neuronal Dnmt1 deficiency. The contribution of estrogen to the 

neuronal Dnmt1 phenotype seen in HFD-fed female mice could be tested by comparing the 

phenotype of ovarietomized versus intact ND1KO female mice. This is a critical study to conduct 

in both the chow and HFD conditions, as it could elucidate whether estrogen is necessary for the 

effects of neuronal Dnmt1 deficiency on adiposity in chow-fed females, as well as the lack of 

effect on overall body weight in HFD-fed females.  

 Remodeling of estrogen receptor-α in VMH of ND1KO mice. 

In the present study, we found that neuronal Dnmt1 deficiency upregulated the estrogen 

receptor-α gene, ESR1 in the V/DMH region of both normal-fed and HFD-fed mice. Converging 

evidence implicates VMH ERα expression in body weight regulation of both male and female 

rodents (Xu et al., 2011, Sano et al., 2013). We hypothesized that neuronal deficiency upregulates 

ERα in the ventrolateral VMH (VMHvl) because the majority of VMH ERα is expressed in the 

ventrolateral portion (Mitra et al., 2003). Contrary to our hypothesis, however, we discovered that 

ERα protein was not upregulated in the VMHvl of HFD-fed ND1KO mice, but rather in the 

dorsomedial VMH (VMHdm). The VMHdm has a known role in the response to leptin. Although 

leptin receptors are expressed throughout the VMH (Caron et al., 2010), leptin stimulated pSTAT3, 

a downstream leptin signaling protein, is more robustly induced in the VMHdm (Elmquist et al., 

1998). Additionally, cFos (a marker of neuronal activation) is upregulated in VMHdm neurons 

within 2 hours following an i.v. leptin injection (Elmquist et al., 1997). Specific deletion of ERα 

in SF1 neurons of the VMH produces obesity in female mice, but not in male mice (Xu et al., 
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2011). Nonetheless, ERα knockdown using adeno-associated virus (AAV) delivery of a short 

hairpin RNA into the VMH does produce obesity in male mice (Sano et al., 2013). This knockdown 

model is not precise enough to determine a more specific location within the VMH through which 

ERα has this effect in males. Additional studies can build on this by immunohistochemically 

double-labelling ERα along with other proteins of interest (e.g., leptin receptor, BDNF) to 

characterize the VMH neurons in which ERα exerts its effect in males. To specifically test whether 

neuronal Dnmt1 deficiency attenuates body, at least in part, though ERα in the VMHdm, we could 

knock-down ERα in the VMHdm of males using AAV methods, for example. In addition, while 

not specific to just the VMHdm, knock-down of ERα in leptin receptor-expressing neurons would 

be a critical experiment to conduct.  

Along with ERα upregulation in the VMHdm, ERα was downregulated in the VMHvl (and 

this effect was greater than the effect in the VMHdm) in HFD-fed ND1KO males. ERα expression 

in the VMHvl positively regulates sexual behavior and aggression in males (Sano et al., 2013, Lee 

et al., 2014). Thus, these results indicate that neuronal Dnmt1 deficiency may have altered these 

behaviors, although they were not measured in the present study. In chow-fed mice, we did not 

observe any significant effects of neuronal Dnmt1 deficiency on ERα expression in the VMHvl 

nor the VMHdm. Although there appeared to be a trend for the ND1KO mice to have more ERα 

in the VMHdm, there was too much variability. Notably, there was a robust (2-fold) increase in 

ERα protein expression in the VMHvl in HFD-fed fl/fl control mice as compared to chow-fed fl/fl 

control mice. A review of the literature yielded only one report in which a 4-month 42% HFD 

reduced ERα protein and mRNA in the overall hypothalamus of male mice (Morselli et al., 2014). 

The possibility exists that an HFD decreases ERα in the hypothalamus as a whole, but it still 

upregulates ERα expression in the smaller region of the VMHdm. Although we did not conduct a 
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count of ERα-positive cells, nor quantify ESR1 expression in the gross hypothalamus, our qPCR 

analyses of separate hypothalamic nuclei did not demonstrate decreases in gene expression in any 

of the nuclei. Similarly, a time-course study of mice fed a purified control diet or an HFD also 

showed only some increases, but no decreases, in ERα expression at the gene level (Supplemental 

Figure 2; unpublished data from Xue lab).  

We noted that although ND1KO mice had increased ESR1 gene expression in the V/DMH, 

the separate cohort used for the immunohistochemical study showed both a reduction and an 

elevation in ERα protein in the VMHvl and VMHdm, respectively. There are several explanations 

for the observation that ERα expression was not correlated at the gene and protein levels in 

ND1KO mice. First, the ESR1 expression was quantified in a large region that included the DMH 

in addition to the VMH. Thus far, we have quantified the ERα protein in several regions of the 

VMH, but not the DMH. Second, the cohort of mice analyzed for ESR1 expression were fed an 

HFD for six months, while the cohort of mice analyzed for ERα protein were fed an HFD for only 

3 months. As mentioned before, compensatory mechanisms might kick in after a prolonged 

duration of HFD-feeding, due to dynamic and static phases of the response to an HFD (Williams 

et al., 2014). And third, mRNA transcription is regulated by different mechanisms than protein 

translation; therefore, upregulation seen at the gene level may not always be reflected at the protein 

level. Regardless of these differences, it is more important to focus on the increase in ERα protein 

in discrete regions of the VMH, since the VMH contains heterogeneous sub-populations of 

neurons that have roles in discrete functions (sexual behavior, energy expenditure, etc.). Further, 

the measurement of gene expression primarily serves as an indicator that remodeling within a 

tissue or organ might be taking place, while ultimately the expression of proteins that may be 

inducing this remodeling is more important. 
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Neuronal expression of ESR1 is regulated via methylation of its promoter region in the 

cerebral cortex of developing mice (Westberry et al., 2010). We tested whether ESR1 upregulation 

in the V/DMH was associated with hypomethylation of this same promoter region. In chow-fed 

ND1KO mice, we found significantly decreased methylation at several CpG sites on Exon A. Even 

a single CpG site, if it is in a region critical to the binding of a transcription factor or other co-

activator, may control expression of that gene. For example, in piglets, the tissue-specific 

expression of ESR1 is controlled by a single CpG site that is located at a transcription factor 

binding site  (Furst et al., 2012). After an extensive review of the literature, we were unable to find 

any published reports on transcription factor binding sites within Exon A of ESR1; thus it is 

unknown if the decreased methylation at these two CpG sites regulates increased ESR1 expression 

in the normal-fed ND1KO mice. In Exon C, we saw no decreases in methylation due to either diet 

or genotype. It is not necessarily the case, to our knowledge, that methylation of the exon closest 

to the trancript splice site would have the greatest effect on gene regulation. Some have theorized 

that perhaps even intragenic (non-promoter) methylation might regulate gene expression  in certain 

contexts (Ehrlich and Lacey, 2013). Additionally, although the primary ESR1 transcript in the 

brain is spliced at Exon C, Exon A is still included in this transcript, and methylation of either 

region might lead to differential ESR1 gene expression. 

The HFD-fed ND1KO mice showed no decreases in methylation at any of the sites in Exon 

A or C as compared to HFD-fed fl/fl mice, which was surprising, given that they also showed 

upregulated ESR1 mRNA. A general assumption is that reduced methylation of a gene promoter 

correlates with an increased likelihood of that gene being expressed. Increased gene expression, 

however, may not necessarily correlate with reduced methylation. Although methylation can block 

key transcription sites that are needed for transcription, the lack of methylation is not the only 
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condition necessary for transcription to occur. An HFD may affect other aspects of the 

transcriptional machinery at the ESR1 promoter, and thus upregulate ESR1 expression without 

reducing methylation. Further, we note that the HFD did not increase ESR1 promoter methylation 

as compared to chow-fed mice. Thus, ESR1 transcription may not be regulated by these promoter 

regions specifically in the V/DMH region of the brain, as it is in the cerebral cortex (Westberry et 

al., 2010). As a final point, since we have observed differential regulation of ERα expression in 

different regions within the VMH, it is possible that robust differences in ESR1 promoter 

methylation exist between the genotypes, but only within the discrete VMHvl or the VMHdm 

regions. Consequently, if the VMHdm had increased methylation, and the VMHvl (or DMH) had 

reduced methylation, these differences would be cancelled out in the methylation analysis of the 

entire V/DMH hypothalamic region. Therefore, it will be important to conduct more spatially-

precise analyses of ESR1 methylation in order to determine if ERα upregulation in the VMHdm 

is associated with reduced methylation of the ESR1 promoter in the VMHdm. 

 Comparison of ND1KO with other phenotypes. 

The phenotype in ND1KO mice fed an HFD is relatively moderate compared to other 

models of metabolic disorders or obesity attenuation. For example, the leptin-deficient ob/ob 

mouse displays massive, early-onset obesity that is accompanied by the progressive development 

of insulin resistance and adipocyte hypertrophy and hyperplasia, which occurs even on a chow diet 

(Bray and York, 1979). The effects of leptin-deficiency in the ob/ob mouse on energy expenditure 

are hugely robust compared to the effects of neuronal Dnmt1 deficiency (Hwa et al., 1997). This 

is not surprising, given that ND1KO mice have pan-neuronal deletion of a ubiquitously-expressed 

enzyme that likely regulates multiple aspects of energy homeostasis in different brain regions. 

Thus, it is reasonable that widespread deletion of neuronal Dnmt1 would produce less robust 
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effects due to compensation of different regions. Site-specific PVH deletion of Dnmt3a produces 

obesity on a chow diet (Kohno et al., 2014), and this effect is much more robust than that of the 

ND1KO mouse. Thus, site-specific deletion of Dnmt1 may yield different, and more robust 

phenotypes than that of the ND1KO mouse. The ND1KO mouse is more similar to the MC4R 

knockout mouse, when comparing the effect size on energy expenditure (Ste Marie et al., 2000). 

Both of these models produce phenotypic changes in fat pads, body weight and body length via 

altering both food intake and energy expenditure, albeit opposite directional effects (Ste Marie et 

al., 2000, Butler and Cone, 2003).  

 Summary 

In summary, the present study characterized both peripheral and central alterations in 

energy and metabolism that occur in a state of neuronal Dnmt1 deficiency, and investigated ERα 

as a possible central mechanism.  To our knowledge, this is the first study to demonstrate that 

widespread neuronal deficiency of a DNA methyltransferase enzyme alters energy homeostasis. 

Neuronal Dnmt1 deficiency in mice resulted in a reduction of adiposity in both normal- and excess-

energy conditions, thus suggesting that neuronal Dnmt1 may be involved in the development of 

obesity. BAT from ND1KO mice showed evidence of increased lipolysis and mitochondrial 

oxidative capacity, suggesting that neuronal Dnmt1 deficiency increased sympathetic drive to 

BAT. Thus, we have laid an excellent groundwork upon which we can conduct specific 

mechanistic studies to elucidate how neuronal Dnmt1 deficiency reduces diet-induced obesity. 

Similar to the HFD-fed ND1KO mice, chow-fed ND1KO mice have reduced adiposity and 

elevated ESR1 in the V/DMH. These consistent findings point to a possible common mechanism 

of reduced adiposity that may involve ERα. In HFD-fed mice, neuronal Dnmt1 deficiency induced 

a remodeling of the VMH in terms of ERα protein. The finding that ND1KO mice had elevated 
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ERα protein in the VMHdm, a leptin-sensitive region that may regulate diet-induced obesity, 

provides a strong rationale for focusing on this region in future mechanistic studies. We now are 

poised to test specific mechanisms by which neuronal Dnmt1 regulates adiposity. Future studies 

that branch off from the present work will provide key insight into how epigenetic alterations in 

the nervous system can lead to energy dysregulation and obesity.  

Epigenetic modifications can cause dysregulation of systems within an organism. 

Importantly, however, epigenetic modifications also are dynamic, changing with environment and 

experience and thereby changing gene regulation. Thus, understanding the role of methylation 

dynamics in energy regulation and obesity has incredible consequence to developing ways to 

prevent and reverse obesity. The present study has uncovered a role for neuronal DNA 

methyltransferase 1 in regulating adiposity, and has elucidated many new research questions 

through which we can further our understanding of how epigenetics operate to influence the 

development of obesity. 
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APPENDICES  

Appendix A Supplementary Figures 

 

 

 

 

 

Supplemental Figure 1. SynCre+/- metabolic phenotype. 

Weekly body weight (A, B) fat pads (C, D) and normalized fat pads (E, F) of male and female SynCre+/-  (Dnmt1+/+) mice.  
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Supplemental Figure 2. ESR1 mRNA expression at different time points during control or HFD feeding. 

ESR1 mRNA expression in the ventromedial/dorsomedial hypothalamus of male mice fed either a purified control diet (10% 

fat) or an HFD (60% fat) for 1, 4, 12 or 24 weeks. 

 

Supplemental Figure 3. ESR1 methylation in wildtype cortex. 

Methylation of ESR1 Exon A from cerebral cortex of P5 and P18 males (A) and female (B) C57BL/6 (wildtype) mice. 
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