
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Learning Sciences Faculty Publications Department of Learning Sciences

2020

Reducing Withdrawal and Failure Rates in Introductory Reducing Withdrawal and Failure Rates in Introductory

Programming with Subgoal Labeled Worked Examples Programming with Subgoal Labeled Worked Examples

Lauren Margulieux
Georgia State University

Briana B. Morrison
University of Nebraska at Omaha

Adrienne Decker
SUNY University at Buffalo

Follow this and additional works at: https://scholarworks.gsu.edu/ltd_facpub

 Part of the Education Commons

Recommended Citation Recommended Citation
Margulieux, L.E., Morrison, B.B. & Decker, A. Reducing withdrawal and failure rates in introductory
programming with subgoal labeled worked examples. IJ STEM Ed 7, 19 (2020). https://doi.org/10.1186/
s40594-020-00222-7

This Article is brought to you for free and open access by the Department of Learning Sciences at ScholarWorks @
Georgia State University. It has been accepted for inclusion in Learning Sciences Faculty Publications by an
authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/ltd_facpub
https://scholarworks.gsu.edu/ltd
https://scholarworks.gsu.edu/ltd_facpub?utm_source=scholarworks.gsu.edu%2Fltd_facpub%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/784?utm_source=scholarworks.gsu.edu%2Fltd_facpub%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

RESEARCH Open Access

Reducing withdrawal and failure rates in
introductory programming with subgoal
labeled worked examples
Lauren E. Margulieux1* , Briana B. Morrison2 and Adrienne Decker3

Abstract

Background: Programming a computer is an increasingly valuable skill, but dropout and failure rates in introductory
programming courses are regularly as high as 50%. Like many fields, programming requires students to learn complex
problem-solving procedures from instructors who tend to have tacit knowledge about low-level procedures that they
have automatized. The subgoal learning framework has been used in programming and other fields to breakdown
procedural problem solving into smaller pieces that novices can grasp more easily, but it has only been used in short-
term interventions. In this study, the subgoal learning framework was implemented throughout a semester-long
introductory programming course to explore its longitudinal effects. Of 265 students in multiple sections of the course,
half received subgoal-oriented instruction while the other half received typical instruction.

Results: Learning subgoals consistently improved performance on quizzes, which were formative and given within a
week of learning a new procedure, but not on exams, which were summative. While exam performance was not
statistically better, the subgoal group had lower variance in exam scores and fewer students dropped or failed the
course than in the control group. To better understand the learning process, we examined students’ responses to
open-ended questions that asked them to explain the problem-solving process. Furthermore, we explored
characteristics of learners to determine how subgoal learning affected students at risk of dropout or failure.

Conclusions: Students in an introductory programming course performed better on initial assessments when they
received instructions that used our intervention, subgoal labels. Though the students did not perform better than the
control group on exams on average, they were less likely to get failing grades or to drop the course. Overall, subgoal
labels seemed especially effective for students who might otherwise struggle to pass or complete the course.

Keywords: Worked examples, Subgoal learning, Programming education, Failure rates

Understanding how to program a computer is becoming
a basic literacy skill (Scaffidi et al., 2005). The idea of
computer literacy is shifting from being only a consumer
of technology (e.g., using Microsoft Office and browsing
the Internet) to also including being a producer of tech-
nology (e.g., writing or adapting computer programs and
making websites). Programming enables people to de-
velop solutions that increase efficiency in their personal

and professional lives, and software development is an
in-demand career path in many sectors (US Bureau of
Labor Statistics, 2017).
To meet the demand for programming skill, many

learners engage in formal programming instruction, in-
cluding tens of thousands of students enrolling in coding
boot camps or introduction to programming courses at
universities. Though opportunities to learn to program
are growing, these opportunities have high withdrawal
and failure rates. Students continue to withdraw or fail
introductory programming courses at rates of 30–50%
(Bennedsen & Caspersen, 2007; Bennedsen & Caspersen,

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: lmargulieux@gsu.edu
1Department of Learning Sciences, Georgia State University, Atlanta, GA
30302-3978, USA
Full list of author information is available at the end of the article

International Journal of
STEM Education

Margulieux et al. International Journal of STEM Education (2020) 7:19
https://doi.org/10.1186/s40594-020-00222-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s40594-020-00222-7&domain=pdf
http://orcid.org/0000-0002-8800-2398
http://creativecommons.org/licenses/by/4.0/
mailto:lmargulieux@gsu.edu

2019), often because they find the material too difficult
(Margolis & Fisher, 2003). Online tutorials boast mil-
lions of users but have attrition rates as high as 90%
(Jordan, 2014). Even when learners complete these
courses, they still score poorly on tests of basic coding
knowledge (Lee & Ko, 2015).
It may be that students struggle in introductory pro-

gramming instruction because the instructional material
used to teach programming overloads students’ cognitive
resources (Garner, 2002; Mason & Cooper, 2012). Better
designed materials could enhance learning by reducing
unnecessary load (Sweller, 2010). The authors addressed
this instructional challenge with subgoal labeled worked
examples. Worked examples are a common tool in pro-
gramming education because they demonstrate how to
solve programming problems before students can solve
problems for themselves (Renkl & Atkinson, 2003).
These worked examples, however, include many pieces
of information, primarily the problem-solving procedure,
coding concepts, and syntax of the programming lan-
guage. Every word and punctuation mark in a worked
example can be a source of cognitive load that may not
be important in learning to solve problems. To help stu-
dents focus on the problem-solving procedure, we added
subgoal labels, or short instructional explanations of the
purpose of pieces of code. Subgoal labels have been
shown to reduce the cognitive load during problem-
solving in both mathematics and science (Catrambone,
1998; Chi et al., 1989; Margulieux et al., 2018) and in-
crease performance in programming (Margulieux et al.,
2012; Morrison et al., 2015; Morrison et al., 2016). Prior
work in programming, however, was conducted primarily
in laboratory settings and for only an hour of instruction
at a time. In contrast, the guiding research questions for
the study were as follows:

1. How do subgoal labeled worked examples affect
problem-solving throughout an introductory
programming course?

2. Which learner characteristics predict whether
subgoal labeled worked examples will be more or
less effective?

Literature review
Learning computer programming means learning both
the procedures to accomplish various goals and learning
the information that is relevant to these procedures (van
Merriënboer & Paas, 1990). Expert programmers can
easily solve problems because they can automatically
detect abstract features of problems for which they have
problem-solving schemata, or scripts for problem-
solving procedures (Hansen et al., 2013). For example,
they can tell when a problem will require a loop and
which type somewhat reflexively, leaving their cognitive

resources available to deal with problem-specific details.
Programming novices, however, struggle to match prob-
lems to problem-solving schemata (Weiser & Shertz,
1983; Wiedenbeck et al., 1993). The difference is reminis-
cent of Chi et al.’s (1994) study that found physics novices
focused on surface features of problems, like whether they
have a ramp, while physics experts focused on structural
features, like whether they used Newton’s third law. Simi-
larly, programming novices have not developed founda-
tional problem-solving schemata and tend to focus on the
surface features of problems, like whether the loop is find-
ing the sum or the average, not structural features, like
whether a for or while loop would be more appropriate.

Cognitive load and worked examples in programming
instruction
Instructional design aims to simplify complex skills dur-
ing the initial learning process to help students develop
schemata while not overwhelming them. One effective
method for instruction is to reduce cognitive load (Renkl
& Atkinson, 2003). Cognitive load refers to the use of
cognitive resources in working memory (Sweller, 1988).
Cognitive load theory considers the balance between
total resources available in working memory and re-
sources demanded by the task (Sweller, 2010). Sources
of cognitive load are distinguished by whether they are
necessary for the concept or procedure. Intrinsic cogni-
tive load is inherent in the procedure, such as applying
Newton’s third law to a physics problem or applying a
while loop to a program. In contrast, extraneous cognitive
load is incidental to the problem or learning environment
but not inherent in the procedure, such as a physics prob-
lem involving a ramp or a program finding the average of
a list of numbers. Intrinsic cognitive load can be changed
only by changing the knowledge of the learner or chan-
ging the task, such as providing part of a solution for a
learner, but extraneous load can be changed through in-
structional design techniques (Sweller, 2010).
A common tool for reducing cognitive load in pro-

gramming instruction is using worked examples to
model problem solving instead of asking students to
write code from scratch (Leppink et al., 2014). Worked
examples constrain the learner’s search space. When
studying the worked example, the learner has only to de-
termine how the example goes from one step to the
next—a very reduced search space which is a means-end
search (i.e., they know the result and must only find a
path to get to that one end). This instructional strategy
reduces the amount of cognitive processing required
from the learner (Sweller, 2011).
Worked examples, however, can lead to shallow pro-

cessing by learners who focus on the details of the ex-
ample instead of the structure of the problem solution.
Focusing on superficial details of the example causes

Margulieux et al. International Journal of STEM Education (2020) 7:19 Page 2 of 16

learners to ineffectually store procedural knowledge
around superficial details instead of procedural schemata
(Eiriksdottir & Catrambone, 2011). To promote structural
processing of worked examples and, thus, improve reten-
tion and transfer, designers can manipulate worked exam-
ples to promote subgoal learning. Subgoal learning refers
to a strategy used predominantly in STEM fields that
helps students deconstruct problem-solving procedures
into subgoals, structural parts of the overall procedure, to
better recognize the fundamental components of the
problem-solving process and build schemata (Atkinson
et al., 2003; Catrambone, 1998).

Subgoal labeled worked examples
Subgoal labeling is a technique used to promote subgoal
learning that has been used to help learners recognize the
fundamental structure of the procedure being exemplified in
worked examples (Catrambone, 1994, 1996, 1998). Subgoal
labels are structure-based instructional explanations that de-
scribe the subgoal of a set of steps in a worked example to
the learner. Studies (Atkinson, 2002; Atkinson & Derry,
2000; Catrambone 1994, 1996, 1998; Margulieux & Catram-
bone, 2016; Margulieux et al., 2018; Morrison et al., 2015)
have consistently found that subgoal-oriented instructions
improved problem-solving performance across a variety of
STEM domains, such as programming and statistics.
Within programming, an example assignment state-

ment may look like this:
C = A + B * D/E;
For a novice programmer, there are several steps in-

volved in determining exactly how the computer will in-
terpret this statement. The major subgoals (for Java and
many other typed programming languages) are deter-
mining the value and data type for the expression on the
right-hand side of the assignment operator (=) and de-
termining the data type of the variable on the left-hand
side of the assignment operator. For determining the
data type and value of the expression on the right-hand
side, the value and data type of each variable must be
determined, the order of operations must be determined,
and then the calculation occurs. An experienced pro-
grammer does not necessarily break down the right side
of the equation into these functional steps while pro-
gramming because they have automatized the process,
making their cognitive load while solving the problem
much less than that of a novice.
Novice programmers find it much easier to remember

how to evaluate an assignment statement if they break
down the task into manageable pieces. A focus on deter-
mining the parts of the assignment statement is much
less overwhelming than an outcome-focused problem
statement like “evaluate the assignment statement,” lead-
ing to less floundering for students who do not know
where to start (Margulieux & Catrambone, 2016). In

addition, because novices who learn subgoals follow func-
tional steps rather than a specific step from one example
solution, they find it easier to then transfer their knowledge
to other problems of the same type (Margulieux et al.,
2012; Morrison et al., 2015). Emphasizing subgoal learning
has helped college students to retain knowledge longer and
solve novel problems more accurately (Catrambone, 1998;
Margulieux et al., 2012).
By helping learners organize information and focus on

the structural features of worked examples, subgoal
labels are believed to reduce the extraneous cognitive
load that can hinder learning but is inherent in worked
examples (Atkinson et al., 2000). Worked examples
introduce extraneous cognitive load because they are ne-
cessarily specific to a context, and students must process
the incidental information about the context, even
though it is not relevant to the underlying procedure
(Sweller, 2010). Subgoal labels can reduce the focus on
these incidental features by highlighting the fundamental
features of the procedure (Atkinson et al., 2000).

Identifying subgoals for introductory programming and
designing worked examples
To select the programming topics for which to create
subgoal labeled worked examples, the authors compared
several introductory programming textbooks. At this
stage in the project, we considered only textbooks fo-
cused on teaching this material in the Java programming
language. After tallying the number of times that each
topic appeared across textbooks, the most common
topics were expressions, selection statements, loops,
methods, objects/classes, and arrays. Each of these topics
was split into evaluating (i.e., reading or tracing existing
code) and writing code. For methods, this split translated
into calling and writing methods, and for objects/class,
this split translated to using objects and writing classes.
To identify the subgoals in all 12 of these topics, the

authors used the Task Analysis by Problem Solving
(TAPS) protocol (Catrambone, 2011). A detailed account
of our application of the TAPS protocol in this project
can be found in Margulieux et al. (2019), as well as a
complete list of the subgoals identified and subgoal la-
bels used. As a summary of this process, the TAPS
protocol involves a subject matter expert and an analyst.
The purpose of TAPS is for the subject matter expert to
work through problems, describing how they are solving
them, while the analyst creates a complete list of proced-
ural steps for solving problems of a particular type. The
value of TAPS is that the analyst identifies procedural
knowledge that the subject matter expert has automa-
tized and asks questions to help the subject matter ex-
pert verbalize these processes. The analyst can identify
automatized knowledge when he asks the subject matter
expert why she took a certain step, and the subject

Margulieux et al. International Journal of STEM Education (2020) 7:19 Page 3 of 16

matter expert says something akin to, “that’s how it’s
done,” or “based on intuition.” The task analysis is
complete when the analyst can solve any novel problem
using only the identified procedural steps and any de-
clarative knowledge that is necessary. The identified
steps become subgoal labels in worked examples. In this
project, the subject matter expert was author Morrison,
who has 24 years of experience teaching introductory
programming, and the analyst was author Margulieux,
who has 7 years of performing the TAPS protocol in
various domains, including programming.
In a typical worked example for evaluating or writing se-

lection statements, the student would get the problem and
each step taken to solve the problem. Instructors typically
walk students through the example but would likely have
trouble articulating automated procedural knowledge, such
as why a step was taken (Atkinson et al., 2003). Therefore,
the authors added subgoal labels, as identified through the
TAPS protocol, to worked examples as short instructional
explanations of the procedural knowledge. In Fig. 1, the
problem is evaluating a selection statement. An instructor,
as a programming expert, likely considers solving this prob-
lem a single functional step. Through TAPS, however, the
authors found three functional steps: diagram which state-
ments go together; for if statement, determine whether true
or false; and follow the correct branch. The step for
diagramming is particularly important for novices once

statements get more complicated because novices need
practice to automate how to group lines (Hansen, Lums-
daine, & Goldstone, 2012). Eventually, these subgoals will
become automatized, and the novices will think of the
problem as a single procedural step, like their instructor.
To examine the effect of subgoal labeled worked examples
throughout an introductory programming course, the au-
thors compared students who learned with conventional
worked examples to those learned with subgoal labels.

Present study
The present study used subgoal labeled worked exam-
ples throughout a semester-long introductory program-
ming course to explore the long-term and cumulative
effects of subgoal labels. The experiment was conducted
during Fall 2018 in five sections of a course that used
Java at a Midwestern university. This research context
provided both the ecological validity of a classroom-
based experiment and a high level of experimental con-
trol for a quasi-experiment because all sections of the
introductory programming course at this university used
the same curriculum, timeline for topics, quizzes, and
exams. The students can register for any lab section
regardless of which lecture section they are enrolled in,
further ensuring that instruction is equivalent across
sections. Thus, problem-solving performance and grades
across sections can be directly compared.

Fig. 1 Subgoal labeled worked example for evaluating selection statements

Margulieux et al. International Journal of STEM Education (2020) 7:19 Page 4 of 16

Three of the sections used the instructional materials
that are typically used in this course, and the other two
sections replaced worked examples with subgoal labeled
worked examples. Because the subgoal labeled worked
examples developed for this research were aimed to
introduce new types of problems and not more advanced
procedures within each type, the new materials filled
only 5 of 15 weeks of the semester. Other than the
worked examples during these 5 weeks, all instruction
was the same throughout the courses.
The lecture sections of the course were similar except for

the design of worked examples. All sections were led by
three, full-time faculty, each with at least a decade of experi-
ence teaching intro programming. The course followed a
flipped classroom model in which the students watch lec-
tures about programming concepts and problem-solving
procedures before class time. Then during class time, the
instructors would present worked examples and practice
problems for the students. Outside of lecture, students had
homework assignments and 2-h lab sections with lab assign-
ments. They took weekly quizzes and four exams through-
out the semester, including a non-cumulative final exam.
The quizzes and exams provided both quantitative and

qualitative data to compare the groups. The quizzes in-
cluded a question that asked students to explain in plain
English how they would solve a given programming prob-
lem (i.e., not explain in a programming language). This
type of question is common in programming instruction
to measure students’ problem-solving schemata because it
asks students to focus on the procedural components of a
solution without focusing on the code of a specific prob-
lem (Corney et al., 2011; Sudol-DeLyser, 2015). As others
in programming instruction have done, these qualitative
data were analyzed using the SOLO taxonomy to quantify
the results for a large sample size (Lister et al., 2006;
Sheard et al., 2008; Whalley et al., 2006). The SOLO
(Structure of the Observed Learning Outcome) taxonomy
was developed by Biggs and Collis (1982) to analyze how
well responses to open-ended questions demonstrated
learning objectives based on five levels of complexity:

1. Prestructural—little to no demonstration of
understanding

2. Unistructural—single-dimensional understanding
3. Multistructural—multi-dimensional but disjointed

understanding
4. Relational—multi-dimensional and connected

understanding
5. Extended abstract—demonstration of understanding

based on abstract principles and concepts that can
be applied beyond the immediate problem

Using these data to compare the sections with subgoal
labeled worked examples to those with conventional

worked examples, the following research questions were
addressed:

1. How do subgoal labeled worked examples affect
problem-solving throughout an introductory
programming course?

2. Which learner characteristics predict whether
subgoal labeled worked examples will be more or
less effective?

The first research question has been addressed with
preliminary data analysis in previous conference papers.
Margulieux et al. (2019) focused on the design process for
identifying subgoals and designing materials, and simple
comparisons between quiz and exam scores were used to
demonstrate the efficacy of the new materials. In addition,
Decker, Margulieux, and Morrison (2019) focused on the
qualitative analysis of explain in plain English responses
using the SOLO taxonomy to explore early differences in
student problem-solving. This paper builds upon these
previous papers by simultaneously considering all data
sources and possible interactions to address the first re-
search question. More importantly, this paper is the only
one to address the second research question by examining
the role of learner characteristics in performance. Prior
subgoal studies before this project have considered learner
characteristics, but they largely found no differences in the
context of laboratory studies (Margulieux et al., 2012,
2018; Margulieux & Catrambone, 2016, 2019). Because
this study was conducted across a semester in authentic
courses, we found many significant predictors of perform-
ance based on learner characteristics, and the analyses
suggest that subgoal labeled worked examples are most ef-
fective for students whose learner characteristics suggest
they might be at risk of withdrawing or failing.

Method
Research design
The classroom-based quasi-experiment manipulated one
variable, the design of worked examples when students
were first introduced to types of programming problems:
expressions, selection statements, loops, methods, and
arrays. Learner characteristics were also collected, in-
cluding self-reported reason for taking the course, level
of interest the course content, anxiety about course
performance, age, gender, race, primary language, family
socioeconomic status, academic major, full-time or part-
time student status, high school GPA, college GPA, year
in school, and prior experience with programming. All
except prior experience with programming were col-
lected with a single multiple-choice or short-answer
question on a demographic survey. To report prior ex-
perience, students filled out a matrix that asked them
which types of programming experiences they had (i.e.,

Margulieux et al. International Journal of STEM Education (2020) 7:19 Page 5 of 16

self-taught, informal setting, formal setting), during which
grades (i.e., elementary, middle, or high school), and how
extensive the experiences were (i.e., a day, a week, less
than 2 months, or more than 2 months). These learner
characteristics were analyzed as possible predictor vari-
ables, even though they were not manipulated.
The study collected data on problem-solving perform-

ance through two quantitative measures and one qualita-
tive measure. The two quantitative measures are grades
on the four exams (i.e., product data) throughout the
semester and the weekly quizzes (i.e., process data). Only
quizzes given during each of the 5 weeks after using the
subgoal labeled worked examples were analyzed to focus
on the effect of the instructional materials. Qualitative
data came from explain in plain English questions on
the quizzes. Though given the sample size, these data
were analyzed quantitatively after being scored based on
the SOLO taxonomy.

Participants
Participants were recruited from five sections of an
introduction to programming course, and all measure-
ments used for data collection were part of their normal
course requirements. A total of 307 students were en-
rolled in the course at the beginning of the semester.
Students were excluded from analysis if they did not
complete at least one weekly quiz or one exam to
account for non-participation in the course. A few

students also opted out of participating in the research
study. The final sample size was N = 265 with 120 stu-
dents in the two subgoal sections and 145 students in
the three control sections. One of the control sections
was taught 100% online. The online control section was
initially analyzed as a separate control group from the
in-person sections in case students in the sections were
systematically different (e.g., primarily part-time students
or primarily non-majors). No differences in demographic
characteristics or performance on quizzes or exams were
found between the in-person and online control groups,
except that the online group tended to be older. Thus,
they were combined for final analyses. Participants’
demographic characteristics are summarized in Table 1.
Differences in characteristics between the subgoal and
control group were explored via visual inspection of
measures of central tendency (i.e., mean, median, or
mode) and variance (i.e., standard deviation, range, or
distribution), but no meaningful differences were found.
The characteristics of this sample seem representative of
the population of students at public universities who are
taking introductory programming courses.

Data collection and analysis
The two measures of problem-solving performance were
five quizzes and four exams. Quizzes included multiple-
choice, short answer, and explain in plain English ques-
tions. Exams included multiple-choice (a third to half of

Table 1 Demographic and learner characteristics of participants

Characteristic Data collection Responses

Age Open-ended 85% between 18 and 23, range—17–46

Gender Male, female, other 67% male, 31% female, 2% other

Race Caucasian, Latinx, Asian, Black, other, mixed 73% Caucasian, 5% Latinx, 8% Asian, 3% Black,
11% other or mixed

Primary language English, not English 90% English

Family SES < $25k, 25–50k, 50–100k, 100–200k, > 200k 27% below $50k, 69% $50–200k, 4% above $200k

Major Computing, engineering, other 43% computing, 40% engineering

Status Full-time, part-time 92% full-time

High school GPA Open-ended Average—3.56/4.0

College GPA Open-ended Average—3.42/4.0

Year in school 1st, 2nd, 3rd, 4th, 5th, other 47% 1st, 25% 2nd, 16% 3rd, 12% higher

Expected grade A, B, C, D, F 64% A, 28% B, 8% C

Expected difficulty Likert type 1—very difficult to 5—not at all
difficult

Average—2.97

Level of interest in course Likert type 1—not at all interested to
5—very interested

Average—3.84

Reason for taking course
(select all that apply)

Advised to, required for major, interested
in topic, relevant to career path

31% advised to, 92% required for major, 57%
interested in topic, 56% relevant to career path

Prior experience with
programming (select all
that apply)

Matrix that crossed K-5, 6–8, and 9–12
grades with informal, formal, or
self-guided learning

34% had no prior experience; 31% had experience
in K-5, 25% in 6–8, and 61% in 9–12; 18% had
informal experience, 50% had formal, and 29% had
self-guided

Margulieux et al. International Journal of STEM Education (2020) 7:19 Page 6 of 16

mean and indicates that students are closer to a B average
than an A average.

Correlations for students with risk factors
We conducted a series of analyses using data from only
students who had risk factors to compare subgoal and
control groups. We cycled through each risk factor, allow-
ing us to explore the effect of subgoal labels on at-risk stu-
dents within the paradigm of correlational analyses. For
example, for students who expected the course to be diffi-
cult, all other risk factors correlated with performance. In
some cases, there was a significant correlation for both
groups, but the size of the coefficient in the control group
was substantially larger (see Table 8). In other cases, the
correlation was significant only for the control group.
Both findings suggest that the subgoal intervention miti-
gated the effect of risk factors on performance.
From the results of analyses based on all risk factors, we

have identified three patterns (see Table 9). The first is
that expected difficulty of the course correlated with per-
formance when accounting for other risk factors, but only
in the control group or more strongly in the control
group. These correlations were present both when analyz-
ing students who had the other risk factors and when ana-
lyzing students who expected the course to be difficult.
Furthermore, when looking at only students who expected
the course to be difficult, the average exam score in the
subgoal group was close to the average for all students
(74% compared to 75%) while the average in the control
group was lower (67% compared to 72%). Therefore, it is
likely that subgoal materials had a mitigating effect on this
risk factor that prevented multiple risk factors from having
a compound effect on performance

The second pattern is that college GPA correlated
with performance in the subgoal group but not the con-
trol group when analyzing students with risk factors. For
students who did not list interest in the topic or rele-
vance to career as reasons for taking the course and
students with lower high school GPAs, higher college
GPA related to higher exam performance only for the
subgoal group. Higher college GPA often relates to
higher performance because students are often internally
motivated to achieve a certain grade (Komarraiu et al.,
2009; Kusurkar et al., 2013). Moreover, when looking at
only students with below average college GPAs, the
average exam score in the subgoal group was close to
the average for all students (76% compared to 75%)
while the average in the control group was lower (69%
compared to 72%). Perhaps, for students with these risk
factors, the subgoal materials allowed them to achieve
their goals, as indicated by college GPA.
The last pattern is that age negatively correlated with

performance for students with risk factors, but only for the
subgoal group. This finding means that younger students
with risk factors, such as not indicating interest in the topic
or relevant to career, performed better in the subgoal
group than the control group. In this case, students who
were less than 20 years old in the subgoal group performed
better than the overall average (80% compared to 75%) and
those in the control group performed equivalently (72%
compared to 72%). The mostly likely reason for this differ-
ence is the difference in self-regulation and metacognitive
skills between more junior and more senior college stu-
dents (Kitsantas et al., 2008; Ramdass & Zimmerman,
2011; Strage, 1998). Younger students with less developed
self-regulation and metacognition, especially if they have

Table 8 Correlations between risk factors and performance for students who expected high difficulty. Statistically significant
relationships are highlighted with a gray background

Margulieux et al. International Journal of STEM Education (2020) 7:19 Page 12 of 16

risk factors, would likely benefit more from the additional
guidance that subgoal labels provide on worked examples
while more senior students have developed more strategies
for learning with less guidance. In summary, learner
characteristics can have strong relationships with perform-
ance, and subgoal labels seemed to help students with risk
factors to achieve better performance than those with risk
factors in the control group.

Comparison of students with missing exams or failing
average
To provide another perspective of students who strug-
gled in the course, we explored differences between the
subgoal and control groups for students who did not
complete all exams and students who had an average
exam score below 70%, which is failing in this course.
These are the students at highest risk of withdrawing or
failing the course. In both cases, we found that about
half as many students in the subgoal group met these
criteria as in the control group.
For students who were missing exams, the control

group had higher percentages of students not take exams.
The first two exams were before the deadline for with-
drawing the course. In the control group, 10 students took

one exam (7%) and 19 took two exams (13%). This rate
was halved in the subgoal group in which 6 students took
one exam (5%) and 6 took two exams (5%).
In addition to the difference in rates, the average exam

scores for students who missed at least one exam were
different between groups. The sample size was too small
to use inferential statistics meaningfully, but the descrip-
tive statistics suggest a meaningful difference. For stu-
dents who took all but one exam, the subgoal group had
a mean of 69.2% and a standard deviation of 20.8%, and
the control group had a mean of 59.2% and a standard
deviation of 23.4%. This difference represents a whole
letter grade difference between groups. For students who
took two exams, the subgoal group (M = 64.0%, SD =
14.4%) again performed almost a letter grade better than
the control group (M = 54.6%, SD = 17.2%). For students
who took only one exam, the subgoal group (M = 63.0%,
SD = 19.6%) had the same advantage over the control
group (M = 54.0%, SD = 17.6%). When we consider
these results in addition to previous results of exam per-
formance that showed lower variance in exam scores in
the subgoal group than in the control group, it is likely
that fewer students in the subgoal group had failing
exam grades earlier in the semester leading to fewer

Table 9 Summary of correlations of compound risk factors and performance

Down the left side of the table is the first risk factor, based on factors identified in Table 7, used to narrow the analysis to only students at risk based on that
factor. Across the top of the table is the second risk factor
Details for risk factor cutoffs and analyses can be found earlier in the results section. The lighter shaded cells indicate the control group had a stronger
correlation, and the darker shaded cells indicate that the subgoal group has a stronger correlation
NS non-significant correlations for both groups
*Statistically significant relationship

Margulieux et al. International Journal of STEM Education (2020) 7:19 Page 13 of 16

students withdrawing from the subgoal group than the
control group.
To explore this possibility, we also examined students

in both groups who had taken all exams and had an
average exam score of 70% or lower. This cutoff, in
addition to being meaningful in terms of passing or fail-
ing, was close to the mean score, 73%. We again found
the rate of meeting this criterion was almost double in
the control group (n = 64, 44%) as in the subgoal group
(n = 30, 25%). Based on findings from exam performance
alone, which is a good but not perfect representative of
their overall grade, students in the subgoal group were
half as likely to withdraw and half as likely to fail than
the control group. These findings are important because
they indicate subgoals had a significant positive effect on
overall course performance, even though we found that
subgoals did not statistically improve average exam
performance.

Limitations
This study has many of the same limitations that most
classroom-based experiments do. First, we were not able
to randomly assign students to groups because students
select the sections that work best for their schedule,
weakening arguments for causal relationships. We
attempted to identify any systematic differences between
sections by comparing them based on an analysis of an
extensive list of demographic and learner characteristics,
and we found no meaningful differences.
The second limitation was that the instructor who

taught the subgoal group was part of the research team.
As with many classroom implementations of instruc-
tional manipulations, or at least the initial implementa-
tion, having a member of the research team as the
instructor ensures fidelity of implementation and that
the research team can quickly adapt to errors or over-
looked details. Thus, having a researcher as an instructor
might have improved the integrity of the instructional
manipulation, but it also introduces a potential source of
bias. In our case, the researcher is a veteran introductory
programming instructor with substantial prior experi-
ence. Having substantial prior experience can increase
consistency of instruction and reduce potential bias, but
some bias is still likely in the data.

Conclusion
Our research questions asked how subgoal labeled in-
structions affect problem-solving performance through-
out a semester-long programming class and how learner
characteristics interacted with that effect. Our results
found that the group who learned with subgoals per-
formed better than the group who learned with conven-
tional instructional materials on quizzes within a week
of learning new problems-solving procedures. Later

problem-solving performance on exams, however, was
equivalent between the two groups, suggesting that sub-
goal labels promote better initial performance but not
consistently better performance.
These performance findings are qualified by several re-

sults that suggest students who were at risk of struggling
in the control group were more likely to withdraw from
or fail the course than students who were at risk of
struggling in the subgoal group. First, the variance in
quiz and exam scores was lower in the subgoal group
than the control group, meaning that fewer students re-
ceived very low grades on these problem-solving assess-
ments. Second, students in the subgoal group were more
likely than those in the control group to take all quizzes
and exams, suggesting that they persisted until the end
of the course. Third, for students with risk factors based
on their learner characteristics, their performance was
more likely to be related to other risk factors in the con-
trol group but not the subgoal group, suggesting sub-
goals might mitigate risk factors. Last, for students who
did miss assignments, their scores on other assignments
were more likely to be higher if they were in the subgoal
group, suggesting that they were less likely to be strug-
gling overall.
Because the intervention is built into the instructional

materials that students receive, applying the intervention
in classrooms should have a low barrier. To make adop-
tion easier, our research group is developing and testing
online resources that have subgoal labeled worked exam-
ples and practice problems. These resources could be
used in class to demonstrate problem-solving procedures
with the worked examples and then practice applying
procedures with the practice problems. In addition, the
resources could be assigned as homework, which would
be the least adoption cost for instructors.
Beyond programming instruction, this is the first

classroom-based experiment of the subgoal learning
framework. Prior work has found subgoal labels to be ef-
fective in highly controlled classroom settings, but they
were never tested as a long-term intervention or when
learners have other pressures to succeed, such as to
achieve a minimum grade. In the general context of the
subgoal learning framework, this study contributes two
important findings. First, as was theorized but not previ-
ously tested, the benefit of subgoal learning diminishes
as learners gain more experience with the problem-solving
procedure. Subgoal labels help point out similarities in
problem-solving instances before learners have enough
knowledge to recognize similarities for themselves. There-
fore, it fits with the framework that students who learn
without subgoal labels would eventually catch up to their
peers who learned with subgoal labels as they gain more
knowledge. The experience of learning without subgoals,
however, might be more time-intensive or frustrating than

Margulieux et al. International Journal of STEM Education (2020) 7:19 Page 14 of 16

learning with subgoals, leading to higher withdrawal or fail-
ure rates from students who are at risk. Therefore, perform-
ance for those who persist might end up the same, but
performance for those who do not is substantially different.
The second important contribution to the subgoal

learning framework is that the subgoal labeled materials
were effective for each new procedure that was intro-
duced. For each quiz given after subgoal labeled materials,
the subgoal group performed better than the control
group. This finding suggests that subgoal labeled materials
are effective for new procedures even as the learners gain
knowledge and experience in other problem-solving pro-
cedures in the domain. Because the average exam scores
were equivalent between groups in between these quizzes,
we do not expect that the subgoal group gained an advan-
tage early in the semester that they maintained through-
out the semester, but it is possible. We think that it is
more likely, however, that subgoal labels are most effective
when students are learning a new procedure that they
have little knowledge about and that the efficacy dimin-
ishes as students gain more knowledge. Based on the dif-
ference in quiz scores, equivalence in exam scores, and
difference in withdrawal and failure rates, subgoal labels
should be used to improve problem-solving performance,
especially by those who might otherwise struggle during
initial problem-solving attempts. Subgoal labels are likely
not effective for improving problem-solving for those who
already know the problem-solving procedure or whose
personal learning strategies already help them to master
new material.

Abbreviations
ANOVA: Analysis of variance; ICC(A): Intraclass correlation coefficient of
absolute agreement; GPA: Grade point average; HS: High school;
SES: Socioeconomic status; SOLO: Structure of the Observed Learning
Outcome; STEM: Science, technology, engineering, and mathematics;
TAPS: Task analysis by problem-solving

Acknowledgements
The authors would like to thank the National Science Foundation for funding
this work and the instructional team and students at University of Nebraska
Omaha for their support in conducting this research.

Authors’ contributions
Authors Decker and Morrison selected the topics to be included in the
instructional design and created the worked examples and practice
problems. Authors Margulieux and Morrison conducted the task analysis
procedure. Author Morrison taught the subgoal sections of the course and,
thus, was responsible for most of the daily maintenance of data collection.
Author Margulieux conducted the analysis to address the second research
question and wrote the first draft of the paper. All authors conducted the
analysis to address the first research question and revised drafts of the paper.
The authors read and approved the final manuscript.

Funding
This work is funded in part by the National Science Foundation under grants
1712025, 1712231, and 1927906. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the NSF.

Availability of data and materials
The datasets used and analyzed during the current study are available from
the authors on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Learning Sciences, Georgia State University, Atlanta, GA
30302-3978, USA. 2Department of Computer Science, University of Nebraska
Omaha, Omaha, NE, USA. 3Department of Engineering Education, University
at Buffalo, Buffalo, NY, USA.

Received: 20 December 2019 Accepted: 28 April 2020

References
Atkinson, R. K. (2002). Optimizing learning from examples using animated

pedagogical agents. Journal of Educational Psychology, 94(2), 416–427.
Atkinson, R. K., Catrambone, R., & Merrill, M. M. (2003). Aiding transfer in statistics:

Examining the use of conceptually oriented equations and elaborations
during subgoal learning. Journal of Educational Psychology, 95(4), 762–773.

Atkinson, R. K., & Derry, S. J. (2000). Computer-based examples designed to
encourage optimal example processing: A study examining the impact of
sequentially presented, subgoal-oriented worked examples. In B. Fishman &
S. O'Connor-Divelbiss (Eds.), Fourth International Conference of the Learning
Sciences (pp. 132–133). Mahwah, NJ: Erlbaum.

Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from
examples: Instructional principles from the worked examples research. Review
of the Educational Research, 70(2), 181–214.

Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory
programming. ACM SIGCSE Bulletin, 39(2), 32–36.

Bennedsen, J., & Caspersen, M. E. (2019). Failure rates in introductory
programming: 12 years later. ACM Inroads, 10(2), 30–36.

Biggs, J. B., & Collis, K. F. (1982). Evaluating the quality of learning: The SOLO
taxonomy (Structure of the Observed Learning Outcome). Academic Press.

Catrambone, R. (1994). Improving examples to improve transfer to novel
problems. Memory and Cognition, 22, 605–615.

Catrambone, R. (1996). Generalizing solution procedures learned from examples.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 22,
1020–1031.

Catrambone, R. (1998). The subgoal learning model: Creating better examples so
that students can solve novel problems. Journal of Experimental Psychology:
General, 127, 355–376.

Catrambone, R. (2011). Task analysis by problem solving (TAPS): Uncovering expert
knowledge to develop high-quality instructional materials and training. Paper
presented at the 2011 Learning and Technology Symposium. GA, June:
Columbus.

Chi, M. T., De Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self-
explanations improves understanding. Cognitive Science, 18(3), 439–477.

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-
explanations: How students study and use examples in learning to solve
problems. Cognitive Science, 13, 145–182.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.).
Mahwah: Erlbaum.

Corney, M., Lister, R., & Teague, D. (2011). Early relational reasoning and the novice
programmer: Swapping as the hello world of relational reasoning, In
Proceedings of the Thirteenth Australasian Computing Education Conference-
Volume 114 (pp. 95-104). Inc: Australian Computer Society.

Decker, A., Margulieux, L. E., & Morrison, B. B. (2019). Using the SOLO Taxonomy to
understand subgoal labels effect on problem solving processes in CS1. In
Proceedings of the Fifteenth Annual Conference on International Computing
Education Research. New York, NY: ACM.

Eiriksdottir, E., & Catrambone, R. (2011). Procedural instructions, principles, and
examples how to structure instructions for procedural tasks to enhance
performance, learning, and transfer. Human Factors: The Journal of the
Human Factors and Ergonomics Society, 53(6), 749–770.

Garner, S. (2002). Reducing the cognitive load on novice programmers. In
Proceedings of 2002 World Conference on Educational Multimedia, Hypermedia,
& Telecommuniations (pp. 578-583). Association for the Advancement of
Computing in Education (AACE).

Margulieux et al. International Journal of STEM Education (2020) 7:19 Page 15 of 16

Hansen, M., Lumsdaine, A., & Goldstone, R. L. (2013). An experiment on the
cognitive complexity of code. In Proceedings of the Thirty-Fifth Annual
Conference of the Cognitive Science Society. Berlin: Germany.

Hansen, M. E., Lumsdaine, A., & Goldstone, R. L. (2012). Cognitive architectures: A
way forward for the psychology of programming. In Proceedings of the ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (pp. 27-38). ACM.

Jordan, K. (2014). Initial trends in enrolment and completion of massive open
online courses. The International Review of Research in Open and Distributed
Learning, 15(1).

Kitsantas, A., Winsler, A., & Huie, F. (2008). Self-regulation and ability predictors of
academic success during college: A predictive validity study. Journal of
Advanced Academics, 20(1), 42–68.

Komarraju, M., Karau, S. J., & Schmeck, R. R. (2009). Role of the Big Five personality
traits in predicting college students' academic motivation and achievement.
Learning and Individual Differences, 19(1), 47–52.

Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass
correlation coefficients for reliability research. Journal of Chiropractic Medicine.
, 15(2), 155–163.

Kuncel, N. R., Credé, M., & Thomas, L. L. (2005). The validity of self-reported grade
point averages, class ranks, and test scores: A meta-analysis and review of
the literature. Review of Educational Research, 75(1), 63–82.

Kusurkar, R. A., Ten Cate, T. J., Vos, C. M. P., Westers, P., & Croiset, G. (2013). How
motivation affects academic performance: a structural equation modelling
analysis. Advances in Health Sciences Education, 18(1), 57–69.

Lee, M. J., & Ko, A. J. (2015). Comparing the effectiveness of online learning
approaches on CS1 learning outcomes. In Proceedings of the Eleventh Annual
International Conference on International Computing Education Research (pp.
237–246). New York, NY: ACM.

Leppink, J., Paas, F., Van Gog, T., van Der Vleuten, C. P., & Van Merriënboer, J. J.
(2014). Effects of pairs of problems and examples on task performance and
different types of cognitive load. Learning and Instruction, 30, 32–42.

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing
the forest for the trees: novice programmers and the SOLO taxonomy. ACM
SIGCSE Bulletin, 38(3), 118–122.

Margolis, J., & Fisher, A. (2003). Unlocking the Clubhouse: Women in Computing.
MIT press.

Margulieux, L. E., & Catrambone, R. (2016). Improving problem solving with
subgoal labels in expository text and worked examples. Learning and
Instruction, 42, 58–71.

Margulieux, L. E., & Catrambone, R. (2019). Finding the best types of guidance for
constructing self-explanations of subgoals in programming. Journal of the
Learning Sciences, 28(1), 108–151.

Margulieux, L. E., Catrambone, R., & Schaeffer, L. M. (2018). Varying effects of
subgoal labeled expository text in programming, chemistry, and statistics.
Instructional Science, 46(5), 707–722.

Margulieux, L. E., Guzdial, M., & Catrambone, R. (2012). Subgoal-labeled
instructional material improves performance and transfer in learning to
develop mobile applications. In Proceedings of the Ninth Annual International
Conference on International Computing Education Research (pp. 71–78). New
York, NY: ACM.

Margulieux, L. E., Morrison, B. B., & Decker, A. (2019). Design and pilot testing of
subgoal labeled worked examples for five core concepts in CS1. In ITiCSE '19:
Innovation and Technology in Computer Science Education Proceedings (pp.
548–553). New York, NY: ACM.

Mason, R., & Cooper, G. (2012). Why the bottom 10% just can't do it: Mental effort
measures and implication for introductory programming courses, In Proceedings
of the Fourteenth Australasian Computing Education Conference-Volume 123
(pp. 187-196). Inc: Australian Computer Society.

Morrison, B. B., Decker, A., & Margulieux, L. E. (2016). Learning loops: A replication
study illuminates impact of HS courses. In Proceedings of the Twelfth Annual
International Conference on International Computing Education Research (pp.
221–230). New York, NY: ACM.

Morrison, B. B., Margulieux, L. E., & Guzdial, M. (2015). Subgoals, context, and
worked examples in learning computing problem solving. In Proceedings of
the Eleventh Annual International Conference on International Computing
Education Research (pp. 21–29). New York, NY: ACM.

Pea, R. D., & Kurland, D. M. (1983). On the Cognitive Prerequisites of Learning
Computer Programming. Technical Report No., 18.

Quille, K., & Bergin, S. (2019). CS1: how will they do? How can we help? A decade
of research and practice. Computer Science Education, 29(2-3), 254–282.

Ramdass, D., & Zimmerman, B. J. (2011). Developing self-regulation skills: The
important role of homework. Journal of Advanced Academics, 22(2), 194–218.

Renkl, A., & Atkinson, R. K. (2003). Structuring the transition from example study
to problem solving in cognitive skill acquisition: A cognitive load perspective.
Educational Psychologist, 38(1), 15–22.

Robbins, S. B., Lauver, K., Le, H., Davis, D., Langley, R., & Carlstrom, A. (2004). Do
psychosocial and study skill factors predict college outcomes? A meta-
analysis. Psychological Bulletin, 130(2), 261–288.

Rountree, N., Rountree, J., Robins, A., & Hannah, R. (2004). Interacting factors that
predict success and failure in a CS1 course. In ACM SIGCSE Bulletin (Vol. 36,
No. 4, pp. 101-104). ACM.

Scaffidi, C., Shaw, M., & Myers, B. (2005). Estimating the numbers of end users and
end user programmers. In 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing (pp. 207–214). IEEE.

Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson, E., & Whalley, J. L.
(2008). Going SOLO to assess novice programmers. ACM SIGCSE Bulletin,
40(3), 209–213.

Strage, A. A. (1998). Family context variables and the development of self-
regulation in college students. Adolescence, 33(129), 17–31.

Sudol-DeLyser, L. A. (2015). Expression of abstraction: Self explanation in code
production. In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education (pp. 272-277). ACM.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning.
Cognitive Science, 12(2), 257–285.

Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane
cognitive load. Educational Psychology Review, 22(2), 123–138.

Sweller, J. (2011). Cognitive load theory. In Psychology of Learning and Motivation
(Vol. 55, pp. 37-76). Academic Press.

US Bureau of Labor Statistics (2017). Projections Overview : Occupational Outlook
Handbook.

van Merriënboer, J. J., & Paas, F. G. (1990). Automation and schema acquisition in
learning elementary computer programming: Implications for the design of
practice. Computers in Human Behavior, 6(3), 273–289.

Weiser, M., & Shertz, J. (1983). Programming problem representation in novice
and expert programmers. International Journal of Man-Machine Studies, 19(4),
391–398.

Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins, P., Ajith Kumar, P. K., &
Prasad, C. (2006). An Australasian study of reading and comprehension skills
in novice programmers, using the bloom and SOLO taxonomies. Conferences
in Research and Practice in Information Technology Series, 243–252.

Wiedenbeck, S., Fix, V., & Scholtz, J. (1993). Characteristics of the mental
representations of novice and expert programmers: an empirical study.
International Journal of Man-Machine Studies, 39(5), 793–812.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Margulieux et al. International Journal of STEM Education (2020) 7:19 Page 16 of 16

