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RESEARCH ARTICLE

Effect of Osmotic Pressure on the Stability of
Whole Inactivated Influenza Vaccine for
Coating on Microneedles
Hyo-Jick Choi1,2, Jae-Min Song3, Brian J. Bondy1, RichardW. Compans4, Sang-
Moo Kang5, Mark R. Prausnitz1*

1 School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia,
United States of America, 2 Department of Chemical and Materials Engineering, University of Alberta,
Edmonton, Alberta, Canada, 3 Department of Global Medical Science, Sungshin Women's University, Seoul,
Korea, 4 Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta,
Georgia, United States of America, 5 Center for Inflammation, Immunity, & Infection and Department of
Biology, Georgia State University, Atlanta, Georgia, United States of America

* prausnitz@gatech.edu

Abstract
Enveloped virus vaccines can be damaged by high osmotic strength solutions, such as

those used to protect the vaccine antigen during drying, which contain high concentrations

of sugars. We therefore studied shrinkage and activity loss of whole inactivated influenza

virus in hyperosmotic solutions and used those findings to improve vaccine coating of

microneedle patches for influenza vaccination. Using stopped-flow light scattering analysis,

we found that the virus underwent an initial shrinkage on the order of 10% by volume within

5 s upon exposure to a hyperosmotic stress difference of 217 milliosmolarity. During this

shrinkage, the virus envelope had very low osmotic water permeability (1 – 6×10−4 cm s–1)

and high Arrhenius activation energy (Ea = 15.0 kcal mol–1), indicating that the water mole-

cules diffused through the viral lipid membranes. After a quasi-stable state of approximately

20 s to 2 min, depending on the species and hypertonic osmotic strength difference of disac-

charides, there was a second phase of viral shrinkage. At the highest osmotic strengths,

this led to an undulating light scattering profile that appeared to be related to perturbation of

the viral envelope resulting in loss of virus activity, as determined by in vitro hemagglutina-

tion measurements and in vivo immunogenicity studies in mice. Addition of carboxymethyl

cellulose effectively prevented vaccine activity loss in vitro and in vivo, believed to be due to

increasing the viscosity of concentrated sugar solution and thereby reducing osmotic stress

during coating of microneedles. These results suggest that hyperosmotic solutions can

cause biphasic shrinkage of whole inactivated influenza virus which can damage vaccine

activity at high osmotic strength and that addition of a viscosity enhancer to the vaccine

coating solution can prevent osmotically driven damage and thereby enable preparation of

stable microneedle coating formulations for vaccination.
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Introduction
This study focused on virus particle stability in hyperosmotic conditions is motivated by the
need to stabilize vaccines during preparation of microneedle (MN) patches. Previous studies
have shown that MN patches coated with influenza and other vaccines provide effective skin
vaccination that generates protective immune responses that are at least as potent as conven-
tional intramuscular or subcutaneous vaccination [1–3]. Advantages of MNs include the
potential for vaccine dose-sparing and improved immunogenicity via alternative administra-
tion routes [4–7]. Because solid MN vaccines provide a promising platform for long-term sta-
bility and maintenance of protective immunogenic potency, considerable efforts have been
devoted to the fabrication of various types of MNs and demonstrating their in vivo benefits.
However, there has been little mechanistic study done on the initial activity loss of the vaccine
during the MN preparation process [8]. Among many factors involved in this problem (e.g.,
phase transformation, dehydration effects, interaction between vaccine and substrate, osmotic
stress, pH change, etc.) we hypothesize that osmotic stress is a significant underlying problem
for MN coating with enveloped vaccines/viruses.

Enveloped biological systems are subjected to osmotic stress during drying processes and in
high osmotic strength solutions. Osmotic pressure, arising from osmolarity differences across a
semipermeable lipid membrane, induces swelling or shrinkage of biological systems as a result
of water/osmolyte transportation [9]. The result of osmotic gradient-driven movement of
water is morphological and these changes can influence the functional integrity and physiologi-
cal processes of the organisms [10]. Most microorganisms, as well as human/animal/plant
cells, maintain osmotic homeostasis through synthesis of osmoprotective molecules and/or
osmo-sensory/regulatory membrane proteins [11,12]. However, the absence of osmoregulatory
water channels such as aquaporins makes enveloped viruses more vulnerable to osmotic dam-
age [13]. For example, Marek’s disease vaccine demonstrated a significantly lowered viability at
an elevated osmolarity of 475 mOsm [14]. Therefore, the possible loss of functional activity
associated with osmotic pressure is an issue that needs to be addressed when developing viral
vaccine formulations.

Previous work has shown that spray-driedMycobacterium smegmatis, Bacillus Calmette—
Guérin (BCG), and influenza vaccines were not damaged during drying due to the absence of
osmolytes (salts, cryoprotectant) in the process [15,16]. Unfortunately, a spray drying method
is not compatible with typical MN fabrication processes. As another approach, previous studies
have shown that cryoprotectants such as non-reducing disaccharides can prevent fusion of
liposomes and leakage of entrapped materials from their cytoplasm, and preserve proteins in
an active form during drying [17,18]. However, our previous work has shown that sugars can
crystallize during long-term storage and thereby damage coated vaccine [19]. Despite stability
issues during the initial drying and long-term storage, cryoprotectants have become a common
component in preserving biomolecules during dehydration. As a result, non-reducing disac-
charides, specifically trehalose, are a major component of many MN formulations [20–22].
However, such disaccharides, when present at such high concentrations also generate osmotic
pressure on the vaccine during drying. Thus, the osmotic pressure increase caused by the addi-
tion of trehalose to the coating formulation could potentially offset any protective effects it
may offer.

Studies on the morphological changes of vaccines in the presence of osmotic gradients are
essential to understand the role of osmotic stress in vaccine stability. Osmotic pressure most
likely induces morphological changes such as shrinkage, fission, swelling, and fusion of viral
membranes, as seen in other enveloped organisms. For instance, events such as the formation
of daughter cells in unilamellar liposomes [23] were also observed in biological systems such as
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E. coli when subjected to hypertonic osmotic conditions [24]. In the case of algae, higher plants,
and Gram-negative bacteria, high osmotic pressure is needed to pull the cytoplasmic mem-
brane away from their rigid cell walls and induce plasmolysis. On the other hand, in eukaryotic
cells, plasmolysis occurs at relatively low hypertonic stress levels [25–27]. From these examples,
it is evident that understanding a membrane’s structure is a critically important step in under-
standing how it will respond to osmotic stress.

Although there has been much research on the effects of osmotic pressure on the growth
and viability of viruses (influenza virus [28], polio virus [29], Sindbis virus [30], and herpes
virus [31]) and on the virus-cell fusion process [32–34], very little is known about osmotic
effects on enveloped virus/vaccine itself [35]. A lack of general knowledge about the osmotic
response of enveloped viruses is a major obstacle in predicting the stability of vaccine under
various conditions. Understanding osmotic pressure-dependant stability of virus/vaccine
coated on MNs is important to future clinical applications because it is directly related to the
efficacy of vaccination. Therefore, one of our goals is to understand the fundamental osmotic
behavior of the enveloped virus/vaccine.

In this work, osmotic shrinkage of live and inactivated H1N1 influenza A virus was
observed using stopped-flow light scattering (SFLS) analysis at different osmotic gradients.
Results were correlated with the infectivity and hemagglutination (HA) activity of the live and
inactivated viruses, respectively. Based on the assumption that osmotic pressure-induced mor-
phological change is a key factor affecting vaccine stability, vaccine-coating formulations were
modified by increasing viscosity to delay the viral shrinkage rate and to minimize viral mem-
brane perturbation. To validate this idea, the in vitro stability of virus/vaccine in coating forma-
tions with and without viscosity enhancer were examined in both liquid and dry states and
their activity differences were compared. Furthermore, the effects of viscosity enhancers in the
vaccine formulation were investigated in vivo using vaccine-coated MNs.

This research shows that enveloped influenza vaccine in hypertonic solutions experiences
step-wise morphological changes: a rapid initial shrinkage together with membrane perturba-
tions following a secondary shrinkage. This shrinkage was found to be related to vaccine activ-
ity loss. Our data suggest that osmotic pressure-induced vaccine destabilization in both liquid
and dry states can be prevented by adding a viscosity enhancer to the vaccine formulation. This
research is expected to contribute to improving our understanding of the behavior of envel-
oped viruses under osmotic stress as well as the development of immunogenic influenza vac-
cine-coated MNs.

Materials and Methods

Ethics Statement
All animal care and procedures presented in this work were approved by the Emory University
Institutional Animal Care and Use Committee (IACUC) review board and conducted in accor-
dance with the guidelines of the Emory University IACUC. Emory IACUC operates under the
federal Animal Welfare Law (administered by the USDA) and regulations of the Department
of Health and Human Services.

Virus preparation
A/PR/8/1934 influenza virus was prepared using hen’s eggs and purified as described previ-
ously [36]. Inactivation with formalin was followed by plaque assays on Madin-Darby canine
kidney (MDCK) cells to confirm virus inactivation. Both live and inactivated virus vaccines
were used to investigate the effects of osmotic pressure on their stability.
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Osmotic shrinking kinetics of virus
Osmotic leakage properties of the inactivated influenza virus were analyzed by SFLS. The
osmotic behavior of the virus was characterized by recording light scattering after a rapid mix-
ing of inactivated influenza virus stock in DPBS with an equal volume of a separate solution of
trehalose-dihydrate, sucrose, or NaCl (Sigma Aldrich, St. Louis, MO) in sterile Dulbecco’s
phosphate-buffered saline (DPBS, Mediatech, Manassas, VA; pH adjusted to 7.5).

Osmolarities of all solutions were measured using a vapor pressure osmometer (Vapro
5520, Wescor Inc., Logan, UT) with reference to Wescor osmolarity standards. Several osmo-
larities were tested to compare the effect of osmotic gradient on water permeability of the virus
and to monitor its shrinking behavior. This was performed with a stopped-flow spectrometer
(MOS-200/M spectrometer, SFM-20; Bio-Logic USA, Knoxville, TN) at a flow rate of 7 mL s–1

(injection volume 66 μL) at 4°C. The excitation wavelength was set at 546 nm using a 150 watt
Xe light source and monochromator (f/3.5 grating).

The osmotic water permeability coefficient of viruses (Pf) was calculated using the equation,

Pf ¼ k � V0=A � Vw � DCos

where k = rate constant, V0 = initial virus volume, A = initial virus surface area, Vw = molar vol-
ume of water, and ΔCos = osmolarity difference across the viral envelope [37]. Initial virus size
was measured by transmission electron microscopy (TEM, 100 kV) analysis after negative
staining using phosphotungstic acid (pH = 7.0, Electron Microscopy Sciences, Hatfield, PA)
[19]. A virus volume of 6.06 × 10−16 cm3 and a virus surface area of 3.46 × 10−10 cm2 in iso-
osmotic condition were determined in this way and used for calculations. Values of k were
obtained from the single exponential curve fitting of the light scattering spectra using Bio-Kine
32 V4.46 software (Bio-Logic USA).

The osmolarity of viral cytoplasm was determined to be Cos ~ 300 mOsm via measurements
of its equilibrium osmolarity with outer medium to show iso-osmotic SFLS response, i.e. no
light scattering intensity change. This allowed calculation of the osmotic gradient applied to
the virus.

Temperature-dependent water permeability coefficient of the virus membrane was mea-
sured at a hyperosmotic difference of ΔCos = 304 mOsm using trehalose (e.g., virus stock
mixed with 600mM trehalose solution in DPBS). Measurements were made at six temperatures
(4, 11, 18, 25, 32, and 40°C) maintained using a recirculating water bath.

Under the assumption that the relationship between SFLS light scattering and volume is the
same for inactivated influenza virus and liposomes, the time-course of viral volume change was
calculated following a method reported previously [38]. Briefly, the size change of liposomes
(made of egg phosphatidylcholine, Avanti Polar Lipids, Alabaster, AL) was measured using
dynamic light scattering (DLS), and SFLS was used at various osmotic gradients to relate the
change in scattered light intensity to viral volumetric change.

In vitro vaccine stability tests
To study the effects of osmotic pressure on virus activity, 2 μg (1 μg μL–1) of the live or inacti-
vated influenza virus in DPBS was mixed with an equal volume of trehalose solution to apply a
hyperosmotic difference of ΔCos = 217, 420, 682, and 1351 mOsm in the same manner as for
osmotic shrinkage experiments. That is, an osmotic strength difference of 217, 420, 682, or
1351 ΔmOsm was achieved by mixing virus stock with a 450, 800, 1200, and 2000 mM treha-
lose solution in DPBS, respectively. Virus-trehalose mixtures were incubated at 4°C in a sealed
container to prevent drying-induced activity changes. They were subsequently diluted with
DPBS after 10 s, 1 min, 5 min, 10 min, and 30 min to remove further application of the osmotic

Osmotic Stability of Microneedle Influenza Vaccine

PLOS ONE | DOI:10.1371/journal.pone.0134431 July 31, 2015 4 / 22



pressure. Over the course of incubation time, activity of the virus at each osmotic gradient was
assessed by measuring HA activity. For HA titer measurements, a serial dilution of the sample
was mixed with a 0.7% suspension of chicken red blood cells (Lampire Biological Laboratories,
Pipersville, PA). HA activity of the samples at each condition was calculated relative to that of
virus or inactivated virus in iso-osmotic condition (Cos = 300 mOsm, pH 7.4). All experiments
were performed at 4°C to eliminate the temperature effect on the remaining HA activity.

To assess the effects of viscosity on the stability of the virus against osmotic stress, carboxy-
methyl cellulose sodium salt (Sigma Aldrich; abbreviated as CMC) was added to the trehalose
solution as a viscosity enhancer. Over time, the HA activity change of a mixture composed of
trehalose (ΔCos = 682 mOsm), 0.5% w/v CMC, and inactivated influenza virus in DPBS was
tested by measuring HA titer. HA titer measurements were performed on inactivated influenza
virus (1 μg) in trehalose solution (ΔCos = 217, 420, 682, and 1351 mOsm) with 0.5% w/v CMC
after incubation for 30 min.

To investigate the effects of osmotic pressure on the stability of the live virus, viral infectivity
was assayed by reading viral plaque forming units (PFU) from live influenza virus both with
and without viscosity enhancer. Live influenza virus was mixed with trehalose only (ΔCos =
682 mOsm) and trehalose (ΔCos = 682 mOsm) plus 0.5% w/v CMC. Samples were incubated
for 30 min at 4°C. Live influenza virus in iso-osmotic condition was used as a control. Viral
titers were determined by counting the number of plaques formed on MDCK cells.

Effect of viscosity on the stability of virus upon drying
To investigate the effects of viscosity on viral stability during drying, remaining HA activity of
both live and inactivated viruses was tested using virus-embedded coatings on a titanium (Ti)
plate, which is the same material and surface on which microneedle coatings are performed.
Two different coating formulations were used for stability tests: trehalose (ΔCos = 682 mOsm)
solution; and trehalose (ΔCos = 682 mOsm) plus 0.5% w/v CMC solution. It should be noted
that the addition of CMC in the formulation had no detectible effect on the osmolarity of the
solutions. One microgram of the live or inactivated influenza virus in these formulations was
coated on a Ti plate at room temperature. The Ti plate was cleaned using acetone, methanol,
and isopropanol (Sigma Aldrich), followed by plasma cleaning (PDC-32G, Harrick Plasma,
Ithaca, NY) prior to use. The effects of viscosity enhancers on the stability of inactivated influ-
enza virus were further tested using vaccine coating formulations composed of trehalose plus
xanthan gum (Sigma Aldrich) or sodium alginate (Sigma Aldrich). For equal comparison, the
concentrations of xanthan gum and sodium alginate were adjusted to have the same viscosity
(i.e., 4.5 cP) as the trehalose plus 0.5% CMC formulation (0.075% for xanthan gum and 0.3%
for sodium alginate). Coatings were air-dried at ambient conditions for 24 h and their remain-
ing activity was assessed by HA titer measurement. HA titers of live and inactivated influenza
virus in iso-osmotic condition at 4°C were used as controls of virus coatings. For HA titer mea-
surement, dried coating samples were reconstituted in 200 μL of DPBS overnight at 4°C. Vis-
cosity of the coating formulations was measured using glass capillary viscometers following the
manufacturer’s protocol (Cannon Instrument, State College, PA). Viscosity was determined in
triplicate.

Fabrication of vaccine-coated MNs
To further evaluate the effects of viscosity on osmotic stress-induced viral instability, in vivo
experiments were performed using two different kinds of inactivated influenza virus-coated
MNs: virus coating with trehalose (ΔCos = 682 mOsm) solution; and virus coating with treha-
lose (ΔCos = 682 mOsm) plus 0.5% w/v CMC solution. MN arrays of five in-plane
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microneedles were fabricated by lithographic masking followed by wet etching of Ti sheets
(needle dimension: 750 μm in length and 200 μm in width), as described previously [39]. MNs
were cleaned following the same cleaning procedure as above for the Ti plates. MNs were
coated using a dip-coating apparatus, as described elsewhere [39] and air-dried for 24 h at
ambient conditions. Virus-coated MNs were imaged using optical microscopy (SZX12, Olym-
pus America, Center Valley, PA) with a CCD camera (RT Slider, Diagnostic Instruments, Ster-
ling Heights, MI).

Immunization of mice
Female inbred BALB/c mice (Harlan Laboratories, Indianapolis, IN) 6–8 weeks of age were
immunized once with inactivated influenza virus. Dried virus-coated MNs were reconstituted
in DPBS for intramuscular immunization. Four groups of mice (6 mice per group) were immu-
nized with 0.2 μg of the protein via intramuscular route: naïve (negative control), virus in iso-
osmotic buffer solution at 4°C (positive control), virus in trehalose (ΔCos = 682 mOsm) solu-
tion coated onto microneedles and then reconstituted, virus in trehalose (ΔCos = 682 mOsm)
solution containing 0.5% w/v CMC coated onto microneedles and then reconstituted. Protein
concentrations were calculated using the bicinchoninic acid assay (BCA protein assay kit,
Thermo Fischer scientific, Waltham, IL) with bovine serum albumin as a standard. To avoid
interference from the coating materials, the concentration of coating excipients was maintained
to be the same between the reconstituted virus solution fromMNs and bovine serum albumin
standard samples.

Antibody responses
Serum samples were collected on the second week following immunization. Influenza virus-
specific IgG antibody were measured using enzyme-linked immunosorbent assay (ELISA)
plates coated with inactivated influenza virus and by goat anti-mouse IgG-specific secondary
antibodies (Horseradish Peroxidase Conjugate, SouthernBiotech, Birmingham, AL) [40]. Opti-
cal densities were measured at 450 nm from the above-mentioned four groups.

Statistical analysis
All parameters were recorded for individuals within all groups. Multiple conditions were com-
pared using Student's t-test and general linear model (ANOVA), and P value of less than 0.05
was considered to be significant. In some cases, mean values were compared to validate the
results.

Results

Permeability of inactivated influenza virus under osmotic stress
To understand the effects of osmotic stress on influenza virus stability, we first determined
viral membrane permeability by measuring changes in virus size as a function of osmotic
strength. The osmotic permeability of the viral membrane was characterized using SFLS by
monitoring the change in light scattering intensity after rapidly mixing of inactivated influenza
virus (diameter at ΔCos = 0 mOsm is 105 ± 16 nm, see Fig A in S1 File) with high osmotic
strength solutions. In SFLS, increased light scattering correlates with decreased virus size [41].

The time-course of SFLS spectra were recorded for the first 12 s after exposing virus suspen-
sions to hypertonic solutions of trehalose (Fig 1A), sucrose (Fig B(i) in S1 File), and NaCl (Fig
B (ii) in S1 File). To test the effect of osmolytes on the leakage property of the virus, osmolarity
of the external medium was controlled by changing the concentrations of the three osmolytes
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(trehalose, sucrose, and NaCl). The resulting data were fitted with single exponentials and cor-
responding curves are represented in Fig 1B after normalization.

As shown in Fig 1A and Fig B in S1 File, the influenza virus was found to exhibit typical
osmotic behavior [37,42]. In the absence of an osmotic gradient (i.e., ΔCos = 0 mOsm), no
detectable level of SFLS intensity variation was observed from trehalose, sucrose, or NaCl solu-
tions, indicating no change in virus size. In contrast, when exposed to outwardly directed,
hyperosmotic gradients, viruses showed an abrupt increase in light scattering intensity (i.e.,
indicating shrinkage) followed by a slow saturation over time. Thus, the hyperosmotic gradient
is thought to have triggered an efflux of water molecules out of the virus particles leading to a
viral shrinkage with a rate dependant on the level of the applied hyperosmotic gradient.

Further examination of these data shows that the delay to saturation decreased as the
osmotic differences across the viral membrane increased (Fig 1B). The shrinkage rate constant
k increased in proportion to the osmotic strength imposed on the virus (Fig 1C). It should also

Fig 1. Time course of Stopped-flow light scattering (SFLS) analysis of inactivated influenza virus exposed to hypertonic solutions. A virus
suspension (0.2 μg/μL) was abruptly exposed to hyperosmotic solutions of trehalose (A). Hyperosmotic viral shrinkage results in an increase of light
scattering intensity, believed to be a result of water efflux from the virus. (B) Data in (A) were curve-fitted using single exponentials and plotted after
normalization: trehalose (T), sucrose (S), NaCl (N). (C) Rate constants (k [s–1]) of the single exponential curves and (D) corresponding osmotic water
permeability coefficients (Pf [cm s–1]). Data are presented as the mean ± standard deviation (SD) for n > 30. Hypertonic osmotic differences across the viral
envelope (ΔCos) are indicated within the plots of (A) and (B).

doi:10.1371/journal.pone.0134431.g001
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be noted that NaCl exhibited slightly smaller k values than those of sucrose and trehalose solu-
tions (ANOVA general linear model, P< 0.005), indicating the existence of a smaller osmotic
difference across the viral membrane in the presence of NaCl than for sugar molecules. This
can be explained by leakage of the viral membrane to small ions like Na+ and Cl−. As shown in
Fig 1D, the osmotic water permeability Pf of the virus measured from all osmolytes ranged
from 1×10−4 cm s–1 to 6×10−4 cm s–1 under the test conditions employed, which is similar to
that of a lipid bilayer membrane [43].

The kinetics of osmotic water transport through the viral membrane was investigated at six
different temperatures between 4°C and 40°C by applying a hyperosmotic difference of ΔCos =
304 mOsm with trehalose across the viral membrane. Thermal fluctuations and instability in
the virus envelope led to a noisy spectroscopic response upon hypertonic osmotic shock that
showed greater variation at higher temperature (Fig 2A). Moreover, at higher temperature, the
osmotic water permeability of the membrane significantly increased too (Fig C in S1 File). For
example, a mean Pf of 3×10

−4, 17×10−4, 45×10−4, and 92×10−4 cm s–1 was measured at 4, 25,
32, and 40°C, respectively. From the linear regression of the ln(k) vs. 1/T plot, a Arrhenius acti-
vation energy of 15.0 kcal mol–1 was calculated (Fig 2B). This is similar to the reported activa-
tion energy for water permeation across lipid bilayer membranes (10–17 kcal mol–1), as
opposed to the much lower activation energy required for water transport through aqueous
channel proteins (e.g., 3.7 kcal mol–1 for Aquaporin Z) [37,44]. This indicates that the pathway
for water flow out of the virus during osmotically driven shrinkage was through the viral lipid
membranes.

Biphasic osmotic shrinkage behavior of inactivated influenza virus
To further investigate the morphological changes of the virus during osmotic stress, a long-
term course of SFLS analysis was performed. Virus shrinkage was examined for 4 min under
the same test conditions as in Fig 1. Fig 3A shows the SFLS data measured from inactivated
virus exposed to osmotic strength difference of ΔCos = 217 mOsm of trehalose. It is of interest
to note that the SFLS curve exhibited a biphasic intensity increase over time. A steep increase
in scattering intensity in the first few seconds (as seen in Fig 1) was followed by a plateau,
which is attributed to the first shrinkage. About 100 s later, another SFLS intensity increase was
observed, which had a steep slope for about 60 s and a shallower slope for at least another 80 s.

We translated these light scattering intensity changes into relative volumetric changes of the
virus particles. This revealed that a rapid volumetric shrinkage down to about 93% of the initial
volume occurred in the first phase, followed by a secondary shrinkage down to about 77% and
then 69% of the initial total volume at 155 s and 240 s, respectively (Fig 3B). As indicated by
the plateau on the SFLS curve (Fig 3A), it appears that osmotic shrinkage of the influenza virus
proceeded in two separate phases (Fig 3B).

We carried out similar studies over a range of osmotic gradients generated by trehalose (Fig
3C), sucrose (Fig D(i) in S1 File), and NaCl (Fig D(ii) in S1 File) solutions. Both trehalose and
sucrose solutions demonstrated similar osmotic responses. As seen in Fig 3C and Fig D(i) in S1
File, the viruses went through the previously observed biphasic morphological change at each
of the osmotic strengths studied, although the time and degree of morphological change varied.
The onset time for the secondary shrinkage (t2nd) decreased with the increase of osmotic stress
(Fig 3D). It is important to note that at osmotic differences above ΔCos = 682 mOsm, unstable
intensity fluctuations were observed during or after the secondary shrinkage. This is important
because that level of scattered light fluctuation can be explained by membrane destabilization.
It appears that above a certain level of osmotic gradient, the lipids and matrix proteins (i.e., M1
proteins) comprising the envelope of the virus cannot adjust themselves to accommodate the
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stress during the secondary shrinkage phase, which results in the loss of membrane integrity
and/or irreversible morphological change. This is discussed further below. In contrast, below
this threshold osmotic gradient, secondary shrinkage can proceed without generation of signif-
icant or permanent membrane deformation. This explains why no notable level of intensity
undulation was observed at ΔCos = 28, 217, 304, and 420 mOsm osmotic strength after the sec-
ondary shrinkage. Therefore, we expect that the threshold stress above which viruses lose
membrane integrity would be between ΔCos = 562 and 682 mOsm.

These results, however, were not the same for a similar range of osmotic gradients caused by
NaCl, which showed no such biphasic intensity increase (Fig D(ii) in S1 File). This can be

Fig 2. Temperature dependence of the osmotic response of inactivated influenza virus. The kinetics of
osmotic water transport through the viral envelope were investigated at several temperatures while applying
a hyperosmotic difference of ΔCos = 304 mOsmwith trehalose. (A) Scattered light intensities and fitted curves
and (B) Arrhenius plot for water transport across the viral membranes (mean ± SD, n = 8–20). The Arrhenius
activation energy was calculated from the linear regression of the ln(k) vs. 1/T plot.

doi:10.1371/journal.pone.0134431.g002
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explained by leakiness of the viral envelope to NaCl ions, which are much smaller than sugar
molecules and can therefore cross the viral membrane more easily (Fig E in S1 File). Due to
this dissipation of the osmotic gradient by membrane leakage, it is expected that significantly
higher initial osmotic gradients are necessary to induce the secondary shrinkage of the virus in
NaCl solutions (Fig 3D). Although the three osmolytes in this study exhibited different mem-
brane leakage properties, it is reasonable to assume that effective osmotic stress is inversely
related to t2nd. Thus, an osmotic difference of ΔCos = 2388 mOsm by NaCl (t2nd = 84 s) gener-
ated a similar level of effective osmotic difference to that of roughly 217 mOsm of trehalose
(t2nd = 86 s).

Time-dependent functional hemagglutination activity of the virus
To evaluate the correlation between morphological change and viral activity, the functional activity
of hemagglutinin in live and inactivated influenza virus was investigated at four osmotic conditions

Fig 3. SFLSmeasurement of inactivated influenza virus. (A) Long-term course of SFLS behavior at an osmotic difference of ΔCos = 217 mOsm trehalose
and (B) the corresponding relative volume calculated as the initial volume divided by the volume at time t. (C) SFLS curves in response to hyperosmotic
gradients in trehalose solutions. Hypertonic osmotic differences are indicated at the right side of each curve. The same test conditions were used as in Fig 1
except for an increased monitoring time. (D) The onset time for the secondary shrinkage (t2nd) as a function of osmotic gradients by trehalose, sucrose, and
NaCl. (Mean ± SD, n = 9–19.)

doi:10.1371/journal.pone.0134431.g003
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using trehalose. Functional hemagglutinin activity of the virus was assessed via HA assay as a func-
tion of incubation time in high osmotic strength solutions (Fig 4 and Fig F in S1 File).

The results in Fig 4 show that the inactivated virus began to show signs of activity loss
within 1 min of exposure to an osmotic difference of at least ΔCos = 682 mOsm, with an HA
activity loss of about 10–20% after 30 min. The live virus reacted in a similar way, with a slight
activity loss after the first minute followed by an increase in activity loss to about 10–20% after
5 min in response to osmotic differences of ΔCos = 682 mOsm and 1351 mOsm, as shown in
Fig F in S1 File. It should be noted that the activity loss at 1 min corresponds to the second
phase of morphological change, where irregular scattering was observed at ΔCos = 682 mOsm
(Fig 3C). However, no significant viral activity loss was observed at ΔCos = 217 mOsm or 420
mOsm, even after t2nd. For this reason, although systematic investigations on membrane defor-
mation pattern were not performed in this work, we believe that the significant membrane per-
turbations caused by extreme osmotic stress, rather than the shrinking itself, could be the cause
of the deactivation of the virus’ surface proteins, resulting in lower activity.

Effect of viscosity on the stability of the influenza virus in solution
It is well known that increased viscosity decreases osmotic pressure [45,46]. Based on the
expectation that integrity loss of the viral membrane during the secondary shrinkage is a key
factor for vaccine stability, osmolyte solutions were modified to have higher viscosity with the
goal of decreasing the extent of shrinkage and thus, minimizing membrane perturbation. In
this work, CMC was used as a viscosity enhancer due to its expected safety as a widely used
excipient in FDA-approved formulations (Fig G in S1 File for viscosity measurements). To
evaluate this idea, stability of live and inactivated influenza virus in trehalose solution with and
without CMC was examined.

Fig 5A shows the time-course of functional HA activity change of the inactivated virus in an
osmolyte solution composed of trehalose (ΔCos = 682 mOsm) and CMC (0.5% w/v). As shown
in the plot, the virus did not show any significant activity loss, which contrasts with the results
in the trehalose-only solution at the same concentration (Fig 4). Additional experiments over a
range of trehalose concentrations incubated for 30 min at 4°C with CMC showed no functional
HA activity drop, regardless of the osmotic strength contributed by trehalose (i.e., up to ΔCos =
1351 mOsm) (Fig 5B).

In the case of live influenza virus, the effect of osmotic stress on its infectivity was investi-
gated via plaque assay. For this purpose, viral titers of live influenza virus in both trehalose-
only (ΔCos = 682 mOsm) and trehalose (ΔCos = 682 mOsm) plus CMC (0.5% w/v) solutions
were assayed and compared to a control (i.e., virus in iso-osmotic solution of PBS). As expected
from the experiment of live virus hemagglutinin activity loss in hypertonic solutions (Fig F in
S1 File), a lower viral titer was measured from the trehalose-only solution than from the virus
in iso-osmotic solution (Fig 5C). We also confirmed that the addition of CMC (0.5% w/v)
resulted in a slower primary shrinkage (60% drop of k), a delay in the secondary shrinkage (1.8
fold increase of t2nd), and no irregular scattering after t2nd compared with the trehalose-only
solution (data not shown). These experiments indicate that the addition of a viscosity enhancer
produces a dampening effect on the effective osmotic stress applied to the virus, thereby stabi-
lizing viral membranes. The significance of this finding is that viscosity enhancers can play a
critical role in stabilizing enveloped virus/vaccine under osmotic stress conditions.

Effect of viscosity on the stability of influenza virus during drying
Next, the stabilizing effects of a viscosity enhancer on the influenza virus were tested during
drying. It is necessary to remember that during the drying process, osmotic stress increases
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with the progress of dehydration. After one day drying at ambient conditions, functional HA
activity change was measured both in the presence and absence of CMC using live and inacti-
vated influenza virus (Fig 6A: inactivated virus, Fig 6B: live virus). HA titers of each virus type
in iso-osmotic solution were used as a reference. As shown in Fig 6A and 6B, while viruses with
the trehalose (ΔCos = 682 mOsm) plus CMC (0.5% w/v) solution maintained most of their
original activity even after drying (100% for inactivated virus, 90% for live virus), only 56% and
45% of the remaining HA activity were measured with the trehalose-only (ΔCos = 682 mOsm)
solution from the inactivated and live viruses, respectively (Student's t-test, P< 0.001).

The stabilizing effect of the viscosity increase was further investigated using the trehalose
solutions with different viscosity enhancers, but with the same viscosity as the trehalose
(ΔCos = 682 mOsm) plus CMC (0.5% w/v): i.e., trehalose (ΔCos = 682 mOsm) plus xanthan
gum (0.075% w/v) and trehalose (ΔCos = 682 mOsm) plus sodium alginate (0.3% w/v). As
shown in Fig 6C, the presence of viscosity enhancer exhibited significantly higher level of HA
activity than the trehalose only (91% for sodium alginate, 81% for xanthan gum) (Student's t-
test, P< 0.001). These results further support the hypothesis that a viscosity enhancer can sta-
bilize enveloped virus against osmotic stress by suppressing membrane perturbation-induced
defunctionalization of antigenic proteins.

In vivo experiments using influenza-vaccine coated MNs
To confirm previous in vitro findings, in vivo experiments were performed using two different
kinds of inactivated influenza virus-coated MNs: virus coating with the trehalose-only (ΔCos =
682 mOsm) formulation (Fig H(i) in S1 File) and virus coating with the trehalose (ΔCos = 682
mOsm) plus CMC (0.5% w/v) formulation (Fig H(ii) in S1 File). Coated MN arrays of five nee-
dles each (Fig H in S1 File, (i) and (ii) insets) were air-dried for one day at ambient conditions
(23°C, 30–60% relative humidity). Vaccine coatings were then resuspended in iso-osmotic
solution and given by intramuscular injection to vaccinate mice. In vivo experiments were per-
formed using four different groups of mice: naïve (negative control), virus in iso-osmotic

Fig 4. Hemagglutinin activity change as a function of incubation time and osmotic strength. The effect
of osmotic pressures on the activity of the inactivated influenza virus was investigated by measuring HA
activity change at four osmotic differences (ΔCos = 217, 420, 682, 1351 mOsm) using trehalose with the
increase of incubation time (10 s, 1 min, 5 min, 10 min, and 30 min). (Mean ± SD, n = 8–24.)

doi:10.1371/journal.pone.0134431.g004
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Fig 5. Effects of the viscosity enhancer CMC on the functional activity of the influenza virus. (A) Time-
course of HA activity change of the inactivated influenza virus in a vaccine formulation composed of trehalose
and CMC (n = 8). (B) HA activity as a function of osmotic differences (217, 420, 682, 1351 mOsmwith
trehalose) in the presence of 0.5% w/v CMC after incubation for 30 min (n = 8). (C) Viral titers of live influenza
virus as assessed by plaque assay (n = 3). (Mean ± SD.)

doi:10.1371/journal.pone.0134431.g005
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Fig 6. Effects of viscosity enhancer on the HA activity of influenza virus after drying. (A) Inactivated
virus, (B) live virus, and (C) inactivated virus (mean ± SD, n = 8–16). In (C), HA activity of w/o viscosity
enhancer was reused from (A) for better comparison.

doi:10.1371/journal.pone.0134431.g006
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solution (positive control), solution reconstituted from dried vaccine coating on MN (treha-
lose-only), and solution reconstituted from dried vaccine coating on MN (trehalose plus
CMC). Vaccine fromMN coatings was reconstituted and given by injection rather than being
administered directly using the MNs in order to remove the effects of the intradermal route of
administration using solid MNs and thereby provide a more direct comparison among liquid
formulations injected intramuscularly.

To evaluate the immunogenicity of these four groups, virus-specific IgG antibody levels
were determined by ELISA from the sera of mice two weeks after vaccination with 0.2 μg of
viral proteins. As shown in Fig 7, a lower level of influenza virus-specific antibody production
was observed from the trehalose-only group than the positive control group. On the other
hand, the trehalose-plus-CMC group showed a similar level of antibody production to the posi-
tive control group, and higher levels of antibodies compared to the trehalose-only group. The
high levels of IgG antibodies observed from the influenza vaccine-coated MNs with the treha-
lose-plus-CMC formulation further support our previous finding that the addition of viscosity
enhancer in the vaccine formulation reduces osmotic stress-induced vaccine activity loss dur-
ing drying. The results of this study suggest that maintaining a high viscosity during drying is
important for maintaining vaccine stability.

Discussion
Vaccine-coated MNs have been proposed as a promising vaccine administration method that
simplifies vaccination and has the potential to thereby increase vaccination coverage. This led
us to investigate destabilizing factors on influenza vaccine-coated MNs and their associated
mechanisms. Similar to other enveloped organisms, osmotic pressure is an important factor
affecting the stability of influenza viral vaccines. Unlike bacteria or other cells, there is an inher-
ent lack of systematic study on viral osmotic behavior. This makes it difficult to predict the sta-
bility of viral vaccines under various environmental conditions, and to identify solutions to
stability problems. Therefore, this study deals with conditions under which enveloped virus
becomes damaged under osmotic stress and proposes a strategy to avoid osmotic pressure-
induced stability loss when making influenza vaccine-coated MNs.

Inactivated influenza virus was used as a model system to investigate osmotic stability of
enveloped viruses. Our first goal was to characterize osmotic water leakage of the viral envelope
via SFLS analysis using trehalose, sucrose, and NaCl as osmolytes. Under a hypertonic osmotic
gradient, at the initial shrinkage phase (i.e.,< 4 s), the virus’ shrinking behavior was similar to
other enveloped biological systems, as determined by scattered light intensity as a measure of
viral volume change. At an osmotic difference of ΔCos = 304 (trehalose), 314 mOsm (sucrose),
and 326 mOsm (NaCl), osmotic water permeability was measured to be 3.4 ± 0.4×10−4 (treha-
lose), 2.7 ± 0.6×10−4 (sucrose), and 2.2 ± 0.5×10−4 (NaCl) cm/s, with a high activation energy
(Ea = 15.0 kcal mol–1). These measurements are similar to those previously found for pure lipo-
somes without any osmoregulatory proteins, indicating that only pathway for water transport
is through the membrane lipids [44].

The most significant finding from the long-term measurements by SFLS with trehalose and
sucrose is that the virus experienced biphasic osmotic shrinking behavior under hypertonic
osmotic conditions. As demonstrated by the biphasic increase of scattered light intensity, a
gradual secondary shrinkage over the course of tens of seconds to minutes was observed to fol-
low a rapid primary shrinkage. For the NaCl osmolyte solution, a much higher level of osmo-
larity was required to observe the secondary shrinkage than sucrose/trehalose, believed to be
due to leakage of small Na+ and Cl− ions through the viral membrane. Theses SFLS results
observed over a range of experimental conditions and seen in both live and inactivated virus
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indicate that this biphasic pattern represents a characteristic osmotic shrinking behavior of
influenza virus in response to hyperosmotic gradients. Furthermore, from the relationship
between osmotic gradient and t2nd, we hypothesize that t2nd can be used to estimate the effec-
tive osmotic gradient applied to the virus, regardless of osmolytes.

To further understand this osmotic shrinking behavior, we should consider the viral struc-
ture. An influenza virus contains two outer layers: a lipid bilayer (~ 3.8 nm thick) and a matrix
protein (M1) layer (~ 7.2 nm thick) [47,48]. The outer surface of the virus consists of a lipid
envelope where antigenic glycoproteins such as hemagglutinin and neuraminidase (NA), and
ion channel proteins (M2) are embedded. The inner surface is lined by the M1 protein (27
kDa), which has been thought to provide mechanical protection to the virus, similar to viral
capsids [49,50] and determine the morphology of the virus through the interactions with lipids,
glycoproteins, and the ribonucleoprotein complex (RNP) [47,51–56]. Although the compress-
ibility for M1 is unknown, the volumetric compressibility of globular proteins have been
reported to exhibit 1–2 orders of magnitude smaller than that of liquid crystalline lipid bilayers
[57]. From a mechanical property point of view, these two viral layers can be viewed as a com-
posite structure with a flexible lipid bilayer membrane supported internally by a shell of M1.
As a consequence, the shrinking kinetics of the virus is largely determined by physical features
of these two layers.

We hypothesize that the presence of biphasic morphological changes could be attributed to
this double-shell structure. Upon exposure to hyperosmotic shock, an efflux of water molecules
from the virus causes the viral envelope to shrink, which is expected to increase lateral packing
density of both lipid molecules in the lipid bilayer and protein molecules in supporting the M1
layer. These layers will compress easily to a certain degree, as reflected by the initial rapid
change in viral volume followed by a quasi-steady state indicated by the plateau seen in the
SFLS spectra. This resistance to further shrinkage can be explained mainly by the resistance of
the M1 protein layer to further compression. In a previous study by Ivanovska et al.,

Fig 7. Effect of dried formulations of vaccine on in vivo immunogenicity. Influenza vaccine-coated MNs
were air-dried for one day at ambient conditions and reconstituted in DPBS for intramuscular vaccination of
mice (n = 6 per group). Naïve (negative control), vaccine in iso-osmotic solution (positive control), dried
vaccine-coated MNs (w/o CMC: trehalose-only, w/ 0.5% w/v CMC: trehalose plus CMC). Virus-specific IgG
was assayed by ELISA with the immune sera of mice two weeks after vaccination with 0.2 μg of viral proteins.
Optical density was measured at 450 nm. (Mean ± SD, n = 6.)

doi:10.1371/journal.pone.0134431.g007
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bacteriophage capsids have been found to exhibit bimodal elastic properties [49]. We are
uncertain about the quantitative contribution of the glycoprotein-embedded lipid membrane
and M1 shell to the morphological change. Additionally, the effect of structural change due to
formaldehyde inactivation on the shrinkage process was not investigated in this work. Without
M1, the virus would be almost the same as a liposome, except for the glycoproteins.

When the compressive stress exceeds a tolerance level during and/or after the secondary
shrinkage, membrane integrity is lost, and further deformation of the virus is expected to occur
in order to relieve the stress being applied to it. The membrane perturbation/morphological
change would result in highly undulating light scattering intensity profile, which explains SFLS
spectra of the influenza virus during strong osmotic shock (ΔCos = 682 mOsm for trehalose
and 737 mOsm for sucrose) as shown in Fig 3C and Fig D(i) in S1 File.

The effects of structural differences among biological membranes on shape change have
been studied in the past using liposomes filled with polymer gels [58,59] or actin polymers
[60–63] to mimic the composite membrane structure of eukaryotic cells. Viallat et al. have
shown that gel-filled liposomes developed a spike-like morphology under hyperosmotic condi-
tions [58]. More importantly, in the case of a slight deformation, upon re-exposure to iso-
osmotic conditions, the liposomes were found to swell and the spike-like protrusions disap-
peared. However, significantly deformed liposomes (to about 80% of initial volume) were not
able to completely recover their morphology even after the re-swelling process. Despite the
possible difference in the ultimate osmotic stress between liposome and influenza virus, such
an irreversible membrane deformation provides a reasonable explanation for the undulating
SFLS profile following the biphasic viral shrinkage. This is also in agreement with our hypothe-
sis describing the osmotic stress-induced perturbation of the viral membranes.

We also concentrated on studying the relationship between membrane deformation and
viral activity loss by means of HA titers and viral plaque assay. As demonstrated in Fig 4 and
Fig F in S1 File, both live and inactivated influenza viruses exhibited activity loss at the time
points corresponding to membrane deformation in the SFLS spectra. HA activity decreased by
about 10–20% after incubation for 30 min in hyperosmotic solution. The large errors in HA
activity at 1351 ΔmOsm for inactivated virus (Fig 4) and the apparent decrease in HA activity
at 682 ΔmOsm compared to 1351 ΔmOsm for live virus (Fig F in S1 File) can be explained by
the unpredictable pattern of membrane deformation at high hyperosmotic stresses as observed
from SFLS analyses. Consequently, we conclude that irreversible membrane deformation dur-
ing and/or after the secondary shrinkage are associated with viral activity loss. During defor-
mation, a certain degree of membrane distortion can occur, and the lipids are stretched or
compressed depending on the curvature of the membranes. According to previous reports, a
variation of lipid length can generate hydrophobic mismatch and curvature stress, which has
been successfully used in predicting the conformation, function, and lifetime of proteins and
peptides [57,64–69]. Considering the fact that antigenic proteins (i.e., hemagglutinin) reside in
the membrane in order to maintain their functional integrity, we propose that mechanical per-
turbation of the membrane increases the probability of imposing locally high stress to the pro-
teins, thereby inducing irreversible conformational changes to the proteins. In spite of
differences in both the membrane structure and osmotic conditions, this finding shares a simi-
larity with Gram-negative bacteria in osmotic pressure-induced loss of wall integrity and thus,
the resulting viability loss [24,58,70–72].

As a way to prevent osmotic stress-induced viral activity loss, we tested the effect of viscosity
on viral stability. The data showed that time-dependant osmotic shrinkage was significantly
inhibited by the presence of a viscosity enhancer. In other words, the viscosity enhancer played
a critical role in reducing osmotic pressure-mediated effects on the virus. As a result, the effec-
tive osmotic gradients which would cause the virus to become destabilized under low-viscosity

Osmotic Stability of Microneedle Influenza Vaccine

PLOS ONE | DOI:10.1371/journal.pone.0134431 July 31, 2015 17 / 22



conditions were reduced to below destabilizing levels. For that reason, no loss in viral activity
(HA titer, virus infectivity) was observed even at ΔCos = 682 mOsm and 1351 mOsm in the
osmolyte solution containing viscosity enhancer (CMC in trehalose).

Another effect of viscosity enhancer is on the stabilization of viral vaccines during drying. It
is well known that osmotic pressure increases as water content decreases through dehydration.
The resulting increased stress is a major destabilization factor for biomolecules (e.g., in vesicles,
cells, vaccines, etc.). Therefore, controlling osmotic stress-induced destabilization is of special
interest to scientists working in the area of designing drug formulations (liquid, solid) and
devising drying methods. As seen in the liquid state, we similarly observed a stabilizing effect
on both live and inactivated influenza viruses in the post-drying, solid state when a viscosity
enhancer was added (see Fig 6). Importantly, the same stabilizing effects were observed when
different viscosity enhancers, such as sodium alginate and xanthan gum, were added instead.
This indicates that the vaccine stabilization is due to the viscosity increase, not just CMC, and
could be a general feature of viscosity-enhanced vaccine formulations. These results are impor-
tant because controlling viscosity in a formulation is a simple means to overcome osmotically
driven destabilization during drying that does not require developing new drying methods or
protocols.

As a result, solid MNs coated with influenza virus using the trehalose-plus-viscosity
enhancer formulation were shown to maintain their original antigenic immunogenicity even
after 24 h of drying. This indicates that our in vitro findings about the effects of osmotic stress
on viral stability could be generalized from the liquid state to the more important solid state.
Although our research was performed only on influenza virus, we propose that the general idea
of osmotic pressure-induced viral deactivation and the stabilizing effect of a viscosity enhancer
can be used in the future development of both solid and liquid drug formulations for other
enveloped vaccines, as exemplified by influenza vaccine-coated MNs.

Conclusion
In this work, SFLS analysis has been employed in monitoring the time-dependent structural
stability of an enveloped influenza virus under various osmotic test conditions and in develop-
ing MN vaccine formulations. We found that disaccharide-induced osmotic stress generated
biphasic morphological change of the influenza virus. The onset time for the secondary shrink-
age/morphological change and the degree of undulation in scattered light intensity provided
quantitative/qualitative information about the effective osmotic stress applied to the virus and
the structural integrity of the virus envelope, respectively. The presence of a viscosity enhancer
in the solution was shown to protect virus from osmotic damage both in liquid and in dried
states, by means of in vitro and in vivo experiments. Overall, our results suggest that enveloped
influenza virus undergoes biphasic shrinkage under hyperosmotic conditions that can lead to
loss of virus immunological activity. The addition of a viscosity enhancer (CMC) in a hyperos-
motic sugar-based vaccine formulation was shown to inhibit this osmotically driven damage
and therefore is a useful excipient in dried-vaccine coating formulations on MNs.

Supporting Information
S1 File. Fig A Transmission electron microscopy image of inactivated influenza virus. As
shown in the micrograph, viruses are spherical in shape and spike-shaped glycoproteins are
observed on the surface of the viral envelope. A mean diameter of the virus was measured to be
105 ± 16 nm from the analysis of such micrographs. Fig B Time course of SFLS analysis of
inactivated influenza virus exposed to hypertonic solutions. Virus suspensions (0.2 μg μL−1)
were abruptly exposed to hyperosmotic solutions of (i) sucrose and (ii) NaCl in a stopped-flow
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apparatus and the resulting changes in scattered light intensity were monitored at 546 nm as a
function of time for 12 s. All measurements were made at 4°C. Data are presented as the
mean ± standard deviation (SD) for n> 30. Hypertonic osmotic differences (ΔCos) are indi-
cated within the plots of (i) and (ii). Fig C Temperature dependence of the osmotic water per-
meability coefficients of inactivated influenza virus derived from data in Fig 2. (Mean ± SD,
n = 15–30.) Fig D Long-term course of SFLS behavior of inactivated influenza virus in response
to hyperosmotic gradients by (i) sucrose and (ii) NaCl solution. Hypertonic osmotic differences
(ΔCos) are indicated at the right side of each curve. Fig E Long-term course of SFLS analysis of
inactivated influenza virus in response to a hyperosmotic difference of ΔCos = 239 mOsm by
NaCl solution. A biphasic intensity increase was not observed from the virus with NaCl solu-
tion at this condition. This can be explained by the leakage of the viral envelope to Na+, Cl−

ions, as indicated by a gradual intensity decrease following the first phase of rapid intensity
increase. Fig FHA activity change as a function of incubation time in hypertonic solutions.
The effect of osmotic pressure on the activity of live influenza virus was investigated by mea-
suring HA activity change at four osmotic strength differences (ΔCos = 217, 420, 682, 1351
mOsm) using trehalose with the increase of incubation time (10 s, 1 min, 5 min, 10 min, and
30 min). HA activity change was calculated with respect to HA titer of the virus in iso-osmotic
solution. All measurements were performed at 4°C. (Mean ± SD, n = 8–16.) Fig G Viscosity of
the trehalose (ΔCos = 682 mOsm) solution and the trehalose (ΔCos = 682 mOsm) plus CMC
(0.5% w/v) solution. (Mean ± SD, n = 3.) Fig HDried vaccine-coated MNs with inactivated
influenza virus in formulations of (i) trehalose (ΔCos = 682 mOsm) only and (ii) trehalose (682
mOsm) plus viscosity enhancer CMC (0.5% w/v). Influenza vaccine-coated MNs were air-
dried for one day at ambient conditions and reconstituted in DPBS for vaccination of mice.
(PDF)

S1 Dataset.
(XLSX)
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