
Georgia State University Georgia State University 

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University 

Computer Science Theses Department of Computer Science 

12-4-2006 

An Enhanced Algorithm to Find Dominating Set Nodes in Ad Hoc An Enhanced Algorithm to Find Dominating Set Nodes in Ad Hoc 

Wireless Networks Wireless Networks 

Naresh Nanuvala 

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Nanuvala, Naresh, "An Enhanced Algorithm to Find Dominating Set Nodes in Ad Hoc Wireless Networks." 
Thesis, Georgia State University, 2006. 
doi: https://doi.org/10.57709/1059374 

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ 
Georgia State University. It has been accepted for inclusion in Computer Science Theses by an authorized 
administrator of ScholarWorks @ Georgia State University. For more information, please contact 
scholarworks@gsu.edu. 

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_theses
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/1059374
mailto:scholarworks@gsu.edu


   
   
    

AN ENHANCED ALGORITHM TO FIND DOMINATING SET NODES IN 
AD HOC WIRELESS NETWORKS 
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                   ABSTRACT 
 

A wireless ad hoc network is a collection of wireless mobile nodes forming a temporary network 

without the aid of any established infrastructure or centralized administration. A connection is 

achieved between two nodes through a single hop transmission if they are directly connected or 

multi-hop transmission if they are not.  

The wireless networks face challenges to form an optimal routing protocol. Some approaches are 

based on a dominating set, which has all the nodes either in the set or within its neighborhood. 

The proposed algorithm is an enhancement of the distributed algorithm proposed by Wu and Li. 

The simulation results from the new algorithm are compared to results from Wu and Li’s 

algorithm. The simulation results show that the average dominating set of nodes decreased 

considerable after applying the new algorithm. The decrease in number of dominate set nodes is 

not very much noticeable in low density space. 

INDEX WORDS:  Wireless Mobile Ad-hoc networks, Connected Dominating Set, Routing 

Protocol, Position-based Routing.        
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1 INTRODUCTION 
 
 
Wireless networks can provide mobile users with widespread communication capability and 

easy information access regardless of location. There are currently two variations of mobile 

wireless networks. The first kind is known as infrastructured networks, i.e., those networks 

with fixed and wired gateways, the bridges for these networks are known as stations. Typical 

applications of this kind of network are WLAN’s and cellular networks. The second type of 

mobile wireless networks is the infrastructure less mobile network, known as self-organized 

network, and which is also referred to as Mobile Ad hoc Network (a term used in MANET 

[5]), Mobile Packet Radio Networking, Mobile Mesh Networking and Mobile, Multi-hop, 

Wireless Networking [5,29]. 

Self-organized networks consist of mobile radio nodes (hosts, routers or switches) 

forming a temporary network, without any aid of existing network infrastructure or centralized 

system administration. Network nodes, when out of the transmission range of each other, may 

communicate with intermediate nodes to forward their packets in a multi-hop mode. These 

networks are suitable in situations when an instant infrastructure is needed; typical applications 

include mobile computing in remote areas (e.g., sharing files in the field), tactical 

communications, law enforcement operations, and disaster recovery. 

A connection is achieved either through a single-hop radio transmission if two nodes 

are located within wireless transmission range of each other, or through relays by intermediate 

nodes that are willing to forward packets for them.  Mobile wireless networks have increased 

dramatically during the past few years. They can be quickly deployed in many applications. 
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Figure 1.1: A simple mobile wireless network 

 
Figure 1.1 shows a scenario where a wireless network is established between a single base 

station serving 5 connected wireless enabled devices, such as laptops, PDA’s, cell phones. 

1.1 MOBILE AD HOC WIRELESS NETWORKING 
 
 Ad hoc wireless network is an autonomous system consisting of mobile hosts (or 

routers) connected by wireless links [5]. It is a system of compatible wireless routers that set 

up a possibly short-lived network just for communication needs.  

Following are some of the characteristics of ad hoc wireless networks 

1) Nodes are mobile 

2) Each node has limited power 

3) Low bandwidth 
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An ad hoc wireless network is established without the aid of any infrastructure or centralized 

network [29]. 

A wireless ad hoc network can be represented as a simple graph G (V, E), where V 

represents a set of mobile nodes and E represents a set of edges. An edge (u, v) in E indicates 

that nodes u and v are neighbors, and that u is within v’s range of transmission, while v is 

within u’s range [34]. 

The following two assumptions are made: 

1) The transmission range of all nodes is identical. 

2) The graph is undirected. The edge between two nodes has no direction. If two nodes in 

the network are not directly connected, they need other nodes to forward packets 

between them. 

 
 

 
 

 
 

Figure 1.2: Simple Unconnected wireless networks 
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There are four nodes in the graph shown in Figure 1.2. Nodes A, B are within a certain 

transmission range, say 100 units. Nodes B and C are also within the same transmission range. 

But Node A and Node C are too far away that their distance is greater than the transmission 

range. Node D is too far away from all other nodes in the network hence there is no connection 

to node D from any other node in the network. If the wireless network needs to relay packets 

from Node A to Node C, Node B should be used as an intermediate node to forward packets 

between them. Other alternative paths could be used if there are other nodes between Node A 

and Node C. Most mobile nodes usually function as end nodes and connecting gateways 

simultaneously. 

1.2 CHALLENGES AND STATUS OF ROUTING PROTOCOLS 
 
Many unique characteristics of self-organized network have posed new challenges on routing 

protocol design: dynamic network topology, energy constraints, lack of network scalability 

and a centralized entity, and the different characteristics between wireless links and wired links 

such as limited bandwidth, unidirectional links, and poor security. Address migration, locality 

migration and other critical properties related to computing mobility are also key challenges. 

Volatility of the network i.e.; host mobility causes network topological changes, multi-

hop communication and limited resources (lower bandwidth, low battery power, limited CPU) 

are some properties that pose credible challenges to mobile networks. All these induce more 

failures in mobile networks. Several routing protocols have been proposed to address these 

problems. 

Routing problem is to find a route for sending a packet from a source to a given 

destination. There are two main classes of routing protocols [16, 27]. 

1) Topology based 

2) Position based 
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Topology based routing protocols are based on information about the links. 

Position based routing protocols use additional information about physical positions. 

Shortest path algorithm does not work well in MANETS because some nodes may become 

temporarily inactive or nodes might move. 

Wireless networks require localized algorithms; traditional routing protocols that use 

link state or distance vector in wired networks are not suitable in ad hoc wireless networks 

[14]. Greedy routing, Face algorithm, combination of Greedy Face Greedy (GFG) algorithm 

are other position based algorithms. Dynamic source protocol (DSR) has also been proposed 

[17]. DSR allows the network to be completely self-organizing and self-configuring. The 

protocol includes two parts:  Route Discovery and Route Maintenance. 

Some researches proposed a new approach where a sub-graph of the ad hoc wireless 

network is selected and then the sub-graph is searched for routing. This reduces the running 

time. Dominating set based routing is one such kind of sub graph routing. Wu and Li proposed 

an efficient algorithm to calculate connected dominating set [34]. 

1.3 RESEARCH QUESTION 
 

The research presented in this thesis implements Wu and Li’s algorithm to calculate the 

connected dominating set nodes in ad hoc wireless networks and extends further by adding an 

extra extensional rule to decrease the size of dominating set nodes. The simulation results from 

the new algorithm are compared to results from Wu and Li’s algorithm. 

The research question for this thesis is: 

“How does the new extensional rule decrease the size of the dominating set of nodes 

according to the topology of the wireless networks?” 
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1.4 ORGANIZATION OF THIS THESIS 
 
This thesis is divided into six chapters: Introduction (Chapter1), Literature Review (Chapter 

2), Dominating Set in Ad hoc Wireless networks (Chapter 3), New Extensional Rule 

Implementation (Chapter 4), Results and Explanation (Chapter 5) and Conclusion (Chapter 6) 

Chapter 1 is an introduction for this thesis. It describes definition of mobile wireless 

network, ad hoc wireless network and its characteristics. The challenges ad hoc wireless 

network provide for finding a route. In addition to this a summary of status of routing 

protocols, the research question and overview of this thesis are outlined. 

Chapter 2 gives the literature survey about the status of routing protocols. Mainly there 

are two kinds of protocols, topology based routing protocol and position based routing 

protocol. The characteristics and disadvantage of some protocols are described in this chapter. 

Chapter 3 describes the definition of Dominating Set and Wu and Li’s algorithm is 

introduced. Also the new extensional rule is described. 

Chapter 4 describes implementation process of Wu’s algorithm and the new 

extensional rule. 

Chapter 5 presents simulation results and explanation. Tables and figures are provided 

based on the two parameters used to run the algorithms (number of nodes, transmission range). 

In Chapter 6 relevant conclusions are drawn. The contributions of this work are briefly 

discussed followed by future areas of research that might be investigated in order to build upon 

the work presented in this thesis. 
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2 LITERATURE REVIEW 
 

Various routing protocols have been proposed in recent years to address the routing problem 

in ad hoc wireless networks. Mainly they are classified into two routing classes. 

One type is topology based routing protocol, based on the information about the 

links. The other is position based routing protocol that uses additional information about 

physical location. 

2.1 TRADITIONAL ROUTING PROTOCOLS 
 

Distributed algorithms for Minimum Connected Dominating Set (MCDS) in mobile ad hoc 

networks were first developed by Das et al. [3,10]. These algorithms provide distributed 

implementations of the two centralized algorithms given by Guha and Khuller [13].  The 

shortest path algorithm does not work very well in MANETS because some nodes maybe 

temporarily inactive or some might move. Wireless networks require localized algorithms in 

which nodes make routing decisions based on the neighboring nodes information. 

Other traditional routing protocols that use link state or distance vector in wired 

networks are not suitable for ad hoc wireless networks [14,12,17,18]. Lower bandwidth in 

wireless networks makes information collection expensive. The power limitation leads users 

to get disconnected from mobile host frequently. Routing information needs to be localized 

to adapt quickly to topology changes caused by node movements. Link state routing 

algorithms are closer to the centralized shortest path algorithm. Each node maintains a view 

of the network topology with a cost for each link. Each node periodically floats the link cost 

between it and all other nodes. If a node gets the information, it updates its view of topology 

and applies shortest path algorithm to select next hop. Although link state routing generally 

requires each node to know the entire topology, there are some link state algorithms where 
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each node only maintains partial information of the network. 

The distance vector routing algorithms use the distributed version of Bellman-Ford 

algorithm (DBF), each node maintains for each destination a set of distances. A node selects 

next hop node if that node has the minimum distance for a destination. Compared to link 

state algorithm, it requires less storage space and less network bandwidth overhead. But this 

algorithm might be effective only when network topological changes are rare [12,17,18 ]. 

The details of these two routing protocols and their problems are discussed in the 

papers [16,18]. 

2.2 POSITION-BASED ROUTING PROTOCOLS 
 

In position-based routing protocols, forwarding decision of a node depends on the 

destination node’s position and it’s one hop neighbors position. One method, called Greedy 

routing algorithm, is a position based protocol. Each node forwards packet to its neighbor 

that is closet to destination based on the location information. The greedy algorithm may fail 

to find a path if the node does not have a neighbor that is closer to destination than the node 

itself. When that problem arises, the message needs to be forwarded to the node with the 

least backward distance; this introduces another problem of looping packets. Greedy 

algorithm’s route is very close to the shortest path algorithm, but it has high failure rate 

because of loop or low degree graphs. 

To solve the local maximum problem, another algorithm called FACE algorithm is 

provided. It guarantees the package delivery in connected graph, but it has longer route. Face 

algorithm is to forward the packet on faces of the planar sub-graph, which are progressively 

closer to the destination. It also increases the hop count. GFG algorithm is a combination of 

these two algorithms. First Greedy algorithm is run, when it fails, face algorithm is run, and 
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then greedy algorithm is run. The GFG algorithm combines the two algorithms advantages: 

it guarantees the package delivery and a relative short route [12]. 

2.3 DYNAMIC SOURCE ROUTING PROTOCOLS 
 

Other researches propose a dynamic source routing protocol [17]. DSR is a simple and 

efficient routing protocol, specially in multi-hop wireless ad hoc networks. The network is 

allowed by DSR to be completely self-organizing and self-configuring. The protocol has two 

parts: Route Discovery and Route Maintenance. They work together to allow nodes to 

discover and maintain source routes to arbitrary destinations in the ad hoc wireless network. 

The algorithm does not need to construct any routing tables. All protocols operate on-

demand, allowing the routing packet overhead of DSR to scale automatically to only that 

needed to be changed in the routes currently in use. This protocol adapts quickly to routing 

changes when node movement is frequent. 

2.4 SUBGRAPH-ROUTING PROTOCOLS 
 

Some researches try to find a sub-graph of ad hoc wireless network and search the routing in 

the sub-graph and reduce the running time. These approaches are known as dominating–set 

based routing protocols. Another type of routing protocols known as Cluster based 

algorithm, divides a graph into several overlapping clusters [19]. Each cluster is a clique, 

which is a complete sub-graph. The routing protocol is completed in two phases: cluster 

formation and cluster maintenance. The routing process centralizes the whole network into a 

small connected sub-network so that if the network topological changes do not affect this 

centralized part of the network, there is no need to recalculate routing tables in the sub-

network [21, 22]. Dominating-set-based routing is also one kind of sub-graph routing [1, 2, 

21, 33]. 
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If every vertex not in the subset is adjacent to at least one vertex in this subset, the 

subset is called dominating set. The dominating-set-based routing is based on the theory of 

dominating theory. This approach reduces the routing and search process to a reduced sub-

graph. The efficiency of the approach depends on the process of finding a connected 

dominating set and the size of the dominating set nodes. 

2.5 OTHER ROUTING PROTOCOLS 
 

Some protocols aim to consider the power problem in ad hoc wireless networks [12,18], 

because nodes are power-constrained in ad hoc wireless networks. One tries to select 

different nodes as route to balance the power assumption in the nodes, other designs an 

energy efficient routing protocols that dynamically makes local routing decisions so that a 

near optimal power efficient end to end route is formed for forwarding data packets. Because 

in ad hoc wireless networks, geographical routing protocols take advantage of location 

information, it heavily depends on the existence of scalable location management services. 

Therefore some researches studied the location management scheme in mobile ad hoc 

networks [18]. Grid’s location service (GLS) is a new distributed location service, which 

tracks mobile node location. 

2.6 SUMMARY 
 

All of these studies are based on different assumption and try to achieve different objectives. 

Quite a few algorithms are based on the dominating set based principle. This research 

focuses on the dominating-set-based routing protocol, particularly Wu and Li’s algorithm 

[34]. 
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3 AN ENHANCED ALGORITHM TO FIND DOMINATING SET IN AD-
HOC WIRELESS NETWORKS. 

 
3.1 DOMINATING SET PROBLEM AND DEFINITION  
 
A Dominating Set (DS) is a subset of nodes such that each node is either in DS or has a 

neighbor in DS. A Connected Dominating Set (CDS) is a connected DS, that is, there is a path 

between any two nodes in CDS that does not use nodes that are not in CDS. It is favorable to 

have few nodes in the CDS or DS. This is known as the Minimum Connected Dominating Set 

(MCDS) problem. Given an arbitrary undirected graph finding a MCDS or CDS is a NP-hard 

problem. Various algorithms have been proposed to address this problem. One such approach is 

dominating-set-based routing theory. 

Assume a wireless ad hoc network is deployed in a two-dimensional space where each 

node has equal maximum transmission range. Thus the topology of an ad hoc network can be 

described as a unit-disk graph (UDG). A graph is a unit graph if and only if its vertices can be 

put in one to one correspondence with equi-sized circles in a plane in such a way that two 

vertices are joined by an edge if and only if the corresponding circles intersect [5].  

A wireless ad hoc network can be represented as a simple graph G (V, E), where V 

represents a set of mobile nodes and E represents a set of edges. An edge (u, v) in E indicates 

that nodes u and v are neighbors, and that u is within v’s range of transmission, while v is 

within u’s range. 

A dominating set (DS) is a subset of vertices of a graph G where every vertex that is 

not in the subset is adjacent to at least one vertex in the dominating set (DS) subset. A 

connected dominating set (CDS) is a dominating set that induces a connected sub-graph. 
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This approach reduces the routing and searching process to a reduced sub-graph, 

therefore it simplifies the routing and search process. Several algorithms have been proposed 

based on the dominating set theory [2, 12, 22]. One such algorithm is Das’s algorithm [3, 10]. 

In Das’ algorithm, a CDS is found by growing a set U starting from a vertex with the 

maximum node degree. It then iteratively adds to U a node that is adjacent to the maximum 

number of nodes not yet in U until U forms a dominating set. Finally, it assigns each edge with 

a weight equal to the number of neighbors not in U, and then finds a minimum spanning tree T 

in the resulting weighted graph. All the non-leaf nodes form a CDS. There are several 

advantages to this approach but the main drawback of this algorithm is that the process of 

constructing a spanning tree is almost sequential, that is, it needs a non-constant number of 

rounds to determine a CDS. Further more, the algorithm suffers from high implementation 

complexity and message complexity. 

3.2 WU AND LI’S ALGORITHM 
 
Wu and Li [34] proposed a simple and efficient distributed algorithm that can quickly find a 

DS in a mobile ad hoc network. In an ad hoc wireless network represented by a graph G= (V, 

E) all vertices are unmarked initially. m (v) is a marker for vertex v. 

Vertex v is marked by setting m (v) = T (marked) and unmarked by setting m (v) = F 

(unmarked). The open neighbor of vertex v is represented by N (v) = {u| {v, u} <E}. 

The basic marking rule is: 

1) Every node v exchanges its open neighbor N (v) with its neighbors. 

2) If node v finds any two of its neighbors x, y, that are not directly connected, the node is 

marked to be a dominating set node (gateway node) m(v) = T. 
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Using the basic marking rule, there are too many dominating set nodes. Wu and Li 

proposed two extensional rules to eliminate the number of dominating nodes. 

  Extensional rules are defined as: 

1) Any two nodes u, v ∈ dominating sets, If N[v] ⊆ N[u] and id (v) < id (u), change the   m 

(v) to F. 

2) Any three nodes u, v, w ∈ dominating sets, u and w are two marked neighbors of v. 

  If N (v) ⊆ N (u) ∪ N (w) and id (v) < id (u) and id (v) < id (w), change the m (v) to F.  

Where N[v] ∪ {v} = N[v], it is the closed neighbor set of v. Another condition is that assign a 

distinct id, id (v) to each vertex in the dominating set. 

 
The main idea of the extensional rules is that if a dominating set node A can be covered 

by another dominating set node(s) (B, C …)  and A’s id is the smaller, it can be unmarked to 

be a non dominating set node. “Cover” means the N[v] ⊆ N[u] or N (v) ⊆ N (u) ∪ N (w) etc. 

By applying the extensional rules, some nodes can be unmarked and the size of the dominating 

set is reduced. The number of dominating set nodes is largely reduced and is proved by the 

simulation tests in this thesis. 

 
The above algorithm proposed by Wu and Li is distributed and constant number of 

rounds is needed for the marking process. The dominating set includes all intermediate nodes 

of any shortest path. The efficiency of the approach depends on the size of the dominating set 

nodes. Wu and Li also proved that the dominating set is connected and closed to minimum. 

Figure 3.1 is a domain with 10 nodes randomly located. Figure 3.2 shows the results of Wu’s 

algorithm using basic rule and extensional rules 1 and 2. 
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Figure 3.1: A Domain with 10 randomly located nodes 

 

Figure 3.1 shows 10 nodes randomly distributed in a 2D space. 

 

 

Figure 3.2:  A Connected Graph 

Figure 3.2 shows connections between nodes. A connection is established if the 

distance between node A and node B is less than the transmission range. For example, the 

distance between node 1 and node 6 is less than the range and a connection is established. 
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Figure 3.3: A Graph Marked by Basic Rule 

Figure 3.3 shows the graph after applying basic rule. A node is marked red if that node 

has any two nodes that are not directly connected. For example node 4 has 0, 2, 3, 7 as 

neighbors. Since there is no direct connection between node 3 and node 7, node 4 can be 

marked red. The same rule is applied for all other nodes in the graph. 

 

 

 

Figure 3.4: A Graph Marked by extensional rule 1 
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Figure 3.4 shows the graph after applying extensional rule 1. A node is unmarked blue 

if extensional rule 1 applies for that node. For example N[1] = {1,6,8,9}, N[6] = {1,6,8,9}, 

N[1] ⊆  N[6] and id(1) < id(6), therefore 1 can be unmarked by extensional rule 1. In above 

example there are no other nodes where this rule satisfies. 

 

 

 

Figure 3.5 A Graph Marked by extensional rule 2 

There are 10 nodes randomly located in 2-D space. Nodes are connected if there are 

within the transmission range. Nodes are marked by red if the node has any two-neighbor 

nodes that are not connected directly. For example, node 0 has neighbor nodes 2, 3, 4, 7, 8 and 

has some nodes for example nodes 3 and 7 are not connected; therefore node 0 is marked by 

basic rule. In the figure nodes 3, 5, 7, 9 are not marked because all of their corresponding 

neighbors are connected. For example, for node 9, 1 and 6 are neighbors. There are lines 

between 9 and 1, 9 and 6, 1 and 6. Applying extensional rule 1, node 1 is marked. 

For example N [1] = {1, 6, 8, 9} 

      N [6] = {1, 6, 8, 9} and 
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     N [1] ⊆ N [6] and id (1) < id (6). Therefore node 1 can be unmarked (marked blue) 

Applying extensional rule 2, node 0 can unmarked (marked green). Node 0 can be 

unmarked by extensional rule because it can be covered by other nodes (2, 4, 8). This is shown 

in Figure 3.5. Nodes that are unmarked by extensional rule 1 can also be unmarked by 

extensional rule 2. There is some overlap between extensional rule 1 and rule 2. 

3.3 NEW ALGORITHM 
 
In this section we introduced a new rule to extend Wu and Li’s algorithm. This section describes 

the new rule and a sample result is also shown 

Rule 3: 

Node u is covered by two connected neighbors v and w if and only if  

N (u) ⊆ N (v) ∪ N (w) and one of the following conditions is satisfied: 

a) key(v) < key(u) < key(w) and u has no neighbor z such that key(v) < key(z) and 

N(v) ⊆ N(u) ∪ N(z). 

b) key(v) < key(u) and key(w) < key(u) and 

u has no neighbor z such that key(v) < key(z) and N(v) ⊆ N(u) ∪ N(z), and 

u has no neighbor z such that key(w) < key(z) and N(w) ⊆ N(u) ∪ N(z). 

 

In high density networks new extensional rule should unmark some dominating set nodes 

and decrease the size of DS. Based on the above rule, Wu and Li’s algorithm can be enhanced by 

the following steps: 

1) Finding the dominating set nodes using basic rule (Basic rule) 

2) Using extensional rules to eliminate the number of dominating set nodes. (Wu and Li’s 

extensional rule 1, extensional rule 2) 
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3) Add the new rule and implement the new algorithm to find dominating set nodes. 
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4. IMPLEMENTATION OF THE NEW ALGORITHM 
 

 

In this chapter we describe how the new Algorithm was implemented and how the simulation 

was carried out. It is important that we test the performance of the algorithm by simulating it 

over a wide range of simulation parameters.  

We start off this chapter by describing how the code is  implemented and how the 

code operates. In the next chapter we present some results and analyze the results so obtained.  

Finally, we present the conclusions drawn from our simulation study. 

4.1 PROCEDURES TO IMPLEMENT NEW ALGORITHM 
 

The new algorithm was implemented in Windows 2000 or XP operating systems by using 

Visual C++ 6.0. Microsoft Foundation Classes (MFC) was used to implement the interface. 

Two assumptions are postulated: 

1) Each mobile host has some transmission radius. 

2) Graph is undirected. 

There are 6 steps in the new algorithm. 

1) Generate randomly distributed nodes. 

2) Connect two nodes if their distance is less than or equal to the transmission range. 

3) Use the depth-first search algorithm (DFS) to check if the graph is connected or not. If 

the graph is connected, do step 4 else go back to step 1 again. 

4) Use basic rule to mark dominating set nodes. 

5) Use Wu and Li’s extensional rule 1 and rule 2 to unmark some dominating set nodes. 

6) Use new extensional rule to unmark some dominating set nodes. 
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Compare the results from the new algorithm with basic rule and Wu and Li’s extensional rule 1 

and extensional rule 2. 

4.2 EXPLANATION OF NEW ALGORITHM 
 
We improved the existing algorithm proposed by Wu and Li. Wu and Li [34] proposed a simple 

and efficient distributed algorithm that can quickly find a DS in a mobile ad-hoc network.  

The basic rule of the algorithm proposed by Wu and Li is: 

• A node is marked as dominating node it has two unconnected neighbors. 

Since this returns a large set of dominate set two extensional rules were proposed: 

• In the first extension rule if a dominating set node can be covered by another dominating 

node with higher id, then it can be removed from dominating set of nodes. 

• In the second extension rule if a dominating set node can be covered by two dominating 

nodes with higher id's, then it can be removed from dominating set of nodes. 

 
We implement the basic rule and the two extensional rules first and extend it further by 

introducing these two rules:  

• If a dominating set node can be covered by two dominating nodes, one with higher ID 

and one with lower ID, then it can be removed from dominating set of nodes. 

• If a dominating set node can be covered by two dominating nodes with lower id’s, then it 

can be removed from dominating set of nodes. 

We model a mobile ad-hoc network as a set of mobile nodes deployed in a predetermined 

rectangular area of dimension 600 × 600 square units. Each node has a unique ID.  In our model 

we assume that mobile nodes do not move out of the deployed area. 

The following shows the steps in our simulation: 
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1) Generate n pairs of random numbers, representing nodes in wireless network. 

2) Connect two nodes if the distance between the two nodes is less than the transmission 

range (factor of density).  

3) Verify if the graph is connected. If the graph is not connected go to step 1. Use the BFS 

algorithm to check the connectivity of the graph. 

4) Using Wu and Li’s basic rule mark dominating set nodes. 

5) Apply Wu’s extensional rules 1 and 2 to unmark some dominating set nodes. 

6) Apply the new rule to unmark some dominating set nodes. 

7) Compare the results using three variables, number of nodes, density, number of running 

circles. 
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Figure 4.1: Generate randomly located nodes. 
 
Figure 4.1 shows 100 nodes randomly located in 2D space. Each number represents a node. The 

density of the network d = 6. The following figures show sample results after applying basic 

marking rule, extensional rule 1 and extensional rule 2. 
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Figure 4.2: Connect nodes if their distance is less than transmission range 
 

The above figure shows connections between nodes if the distance between them is less than the 

transmission range. For example, node 42 is not connected to the rest of the network. So the 

above figure is an unconnected graph. Unconnected graph can be discarded and a new graph has 

to be generated. 
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Figure 4.3: Verify if the graph is connected. 

 
The above figure shows connections between nodes if the distance between them is less than the 

transmission range. The above figure is a connected graph. Basic marking rule is applied only 

after a connected graph is generated. 
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Figure 4.4: Mark dominating set nodes using basic rule 
 
 

  Initially all the nodes are unmarked. Use the basic marking rule to mark dominating nodes in red.  

The above figure shows the graph after the basic rule is applied. The number of dominate nodes 

after applying basic rule is high; it is almost equal to the total number of nodes in the network. 
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Figure 4.5: Unmark some nodes to blue nodes by extensional rule 1 
 

  

The above figure shows the graph after Wu and Li’s extensional rule 1 is applied. Unmark the 

nodes by turning them to blue. There is a considerable decrease in the number of dominate set of 

nodes. 
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Figure 4.6: Unmark some nodes to green nodes by extensional rule 2 
 
 
 
 

The above figure shows the graph after Wu and Li’s extensional rule 2 is applied. Unmark the 

dominating nodes by turning them to green. There is a considerable decrease in the number of 

dominating set of nodes after Wu and Li’s two extensional rules are applied. There is certain 

overlap between nodes unmarked by rule 1 and rule 2. 
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Figure 4.7: Unmark some red nodes using the new extensional rule 
 
 
 

The above figure shows the graph after the new extensional rule is applied. Unmark the nodes 

where the new algorithm applies. The nodes in light blue, maroon, and grey are nodes unmarked 

after the new rule is applied. There is further decrease in the number of dominate set of nodes 

after the new rule is applied. The results are shown on the left panel. In this particular example, 

Basic rule = 82, Wu’s rules = 62, New Algorithm = 57. The next chapter shows the simulation 

results. 
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5. RESULTS 
 

In this section we conducted the simulation study which computes the average size of the CDS 

derived from our algorithm and compared with results from existing Wu and Li’s algorithm. We 

have simulated three algorithms: Wu and Li’s basic rule, Wu and Li’s extensional rules and our 

new algorithm. The results were not compared with results from other enhancements of the 

algorithm like Ni’s [26] here because Ni’s simulation uses transmission radius as a parameter 

whereas we used density as a parameter for our simulation.  

 In our simulation environments, random graphs are generated in 600 × 600 square units of a 

2-D simulation area, by randomly inducing a certain number of mobile nodes. We assume that 

each mobile node has the same transmission range r, thus the generated graph is undirected. If 

the distance between any two nodes is less than radius r, then there is a connection link between 

the two nodes. If generated graph is disconnected, simply discard the graph. Otherwise continue 

the simulation. 

Note that, for a constant r, the network density, in terms of the average vertex degree d, will 

increase rapidly as the network size (n) increases. Simulation is carried out by varying average 

degree d of the network (i.e. the average number of neighbors of a node in the network), such 

that the impact of network size can be observed independent of density. The transmission range 

can be set as a function of d, number of nodes n, and the network area using relation r2 = (d * 

600 *600) / π * (n-1).  In order to observe the impact of density, each simulation is repeated on 

various average vertex degrees (d = 6, 12, 18, 24, 30). Since the topology of ad hoc networks 

change very dynamically, our simulation takes snapshots on dynamic ad hoc networks. For each 
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average vertex degree d, the number of nodes n is varied from 20 to 200. For each n, the number 

of running times is 500 times.  

 



  31 

Table 5.1: Number of dominating set nodes relative to varying density for 20 nodes 

 
Number of 
Nodes 

Density Basic Rule Wu’s Algorithm New Rule 

20 6 15 11 10 

20 12 17 9 8 

20 18 18 7 6 

20 24 18 6 5 

20 30 19 5 4 

 
Table 5.1 shows the average number of dominate set of nodes for a network size of 20 with 

varying densities. The size of dominate set increases as density increases for Basic rule whereas 

the size of the dominate set of nodes decreases for Wu and Li’s extensional rules and for the new 

rule as expected (Refer to Figure 5.1). 
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Figure 5.1: Average number of dominate set nodes relative to varying density for 20 nodes 
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Table 5.2: Number of dominating set nodes relative to varying density for 40 nodes 

 
Number of 
Nodes 

Density Basic Rule Wu’s Algorithm New Rule 

40 6 32 23 21 

40 12 36 21 17 

40 18 37 17 14 

40 24 38 15 12 

40 30 39 13 11 

 
Table 5.2 shows the average number of dominate set of nodes for a network size of 40 with 

varying densities. The size of dominate set increases as density increases for Basic rule whereas 

the size of the dominate set of nodes decreases for Wu and Li’s extensional rules and for the new 

rule as expected (Refer to Figure 5.2). 
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Figure 5.2: Average number of dominate set nodes relative to varying density for 40 nodes 
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Table 5.3: Number of dominating set nodes relative to varying density for 60nodes 
 
Number of 
Nodes 

Density Basic Rule Wu’s Algorithm New Rule 

60 6 50 36 32 

60 12 56 32 26 

60 18 58 28 22 

60 24 58 25 19 

60 30 59 22 17 

 
Table 5.3 shows the average number of dominate set of nodes for a network size of 60 with 

varying densities. The size of dominate set increases as density increases for Basic rule whereas 

the size of the dominate set of nodes decreases for Wu and Li’s extensional rules and for the new 

rule as expected (Refer to Figure 5.3). 
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Figure 5.3: Average number of dominate set nodes relative to varying density for 6 nodes 
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Table 5.4 Number of dominating set nodes relative to varying density for 80 nodes 
 
Number of 
Nodes 

Density Basic Rule Wu’s Algorithm New Rule 

80 6 67 49 43 

80 12 75 44 36 

80 18 77 39 30 

80 24 78 34 26 

80 30 79 31 23 

 
 
Table 5.4 shows the average number of dominate set of nodes for a network size of 80 with 

varying densities. The size of dominate set increases as density increases for Basic rule whereas 

the size of the dominate set of nodes decreases for Wu and Li’s extensional rules and for the new 

rule as expected (Refer to Figure 5.4). 
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Figure 5.4: Average number of dominate set nodes relative to varying density for 80 nodes 
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Table 5.5: Number of dominating set nodes relative to varying density for 170 nodes 
 
Number of 
Nodes 

Density Basic Rule Wu’s Algorithm New Rule 

170 6 147 107 96 

170 12 164 100 79 

170 18 167 88 66 

170 24 168 78 58 

170 30 169 70 51 

 
 
Table 5.5 shows the average number of dominate set of nodes for a network size of 170 with 

varying densities. The size of dominate set increases as density increases for Basic rule whereas 

the size of the dominate set of nodes decreases for Wu and Li’s extensional rules and for the new 

rule as expected (Refer to Figure 5.5). 
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Figure 5.5: Average number of dominate set nodes relative to varying density for 170 nodes 
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Table 5.6: Number of dominating set nodes relative to varying density for 180 nodes 
 
Number of 
Nodes 

Density Basic Rule Wu’s Algorithm New Rule 

180 6 155 114 101 

180 12 173 106 84 

180 18 177 93 70 

180 24 178 83 61 

180 30 179 75 54 

 
 
Table 5.6 shows the average number of dominate set of nodes for a network size of 180 with 

varying densities. The size of dominate set increases as density increases for Basic rule whereas 

the size of the dominate set of nodes decreases for Wu and Li’s extensional rules and for the new 

rule as expected (Refer to Figure 5.6). 
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Figure 5.6: Average number of dominate set nodes relative to varying density for number of 
nodes N = 180 
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Table 5.7: Number of dominating set nodes relative to varying density for N = 190 
 
Number of 
Nodes 

Density Basic Rule Wu’s Algorithm New Rule 

190 6 165 121 107 

190 12 183 112 88 

190 18 187 99 74 

190 24 188 88 65 

190 30 188 79 58 

 
 
Table 5.7 shows the average number of dominate set of nodes for a network size of 190 with 

varying densities. The size of dominate set increases as density increases for Basic rule whereas 

the size of the dominate set of nodes decreases for Wu and Li’s extensional rules and for the new 

rule as expected (Refer to Figure 5.7). 
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Figure 5.7: Average number of dominate set nodes relative to varying density with number of 

nodes N = 190 
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Table 5.8: Number of dominating set nodes relative to varying density for N = 200 
 
Number of 
Nodes 

Density Basic Rule Wu’s Algorithm New Rule 

200 6 173 127 112 

200 12 193 118 94 

200 18 197 104 78 

200 24 198 93 68 

200 30 199 84 61 

 
 
Table 5.8 shows the average number of dominate set of nodes for a network size of 200 with 

varying densities. The size of dominate set increases as density increases for Basic rule whereas 

the size of the dominate set of nodes decreases for Wu and Li’s extensional rules and for the new 

rule as expected (Refer to Figure 5.8). 
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Figure 5.8: Average number of dominate set nodes relative to varying density for number of 
nodes N = 200 
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Table 5.9: Average number of dominating set nodes for constant density d = 6 
 
Number of 
Nodes 

Density Basic Rule Wu’s Algorithm New Rule 

20 6 15 11 10 
40 6 32 23 21 
60 6 50 36 32 
80 6 67 49 43 
100 6 85 62 55 
120 6 102 75 66 
140 6 120 87 80 
160 6 137 99 88 
180 6 155 114 101 
200 6 173 127 112 

 
Table 5.9 shows the average number of dominate set of nodes for a constant density of 6 with 

varying network sizes. The size of dominate set increases as the network size increases for all 

three rules as expected (Refer to Figure 5.9). 
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Figure 5.9: Average number of dominating set nodes relative to number of nodes for constant 
density d = 6 
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Table 5.10: Average number of dominating set nodes for constant density d = 12 
 
Number of 
Nodes 

Density Basic Rule Wu’s Algorithm New Rule 

20 12 17 9 8 
40 12 36 21 17 
60 12 56 32 26 
80 12 75 44 36 
100 12 95 57 45 
120 12 114 69 55 
140 12 134 81 64 
160 12 155 93 75 
180 12 173 106 84 
200 12 193 118 94 

 
Table 5.10 shows the average number of dominate set of nodes for a constant density of 12 with 

varying network sizes. The size of dominate set increases as the network size increases for all 

three rules as expected (Refer to Figure 5.10). 
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Figure 5.10: Average number of dominating set nodes relative to number of nodes for constant 

density d = 12 
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Table 5.11: Average number of dominating set nodes for constant density d = 18 
 
Number of 
Nodes 

Density Basic Rule Wu’s Algorithm New Rule 

20 18 18 7 6 
40 18 37 17 14 
60 18 58 28 22 
80 18 77 39 30 
100 18 97 50 38 
120 18 117 61 46 
140 18 137 71 54 
160 18 157 83 62 
180 18 177 93 70 
200 18 197 104 78 

 
 
Table 5.11 shows the average number of dominate set of nodes for a constant density of 6 with 

varying network sizes. The size of dominate set increases as the network size increases for all 

three rules as expected (Refer to Figure 5.11). 
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Figure 5.11: Average number of dominating set nodes relative to number of nodes for constant 

density d = 18 
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Table 5.12: Average number of dominating set nodes for constant density d = 24 
 
Number of 
Nodes 

Density Basic Rule Wu’s Algorithm New Rule 

20 24 18 6 5 
40 24 38 15 12 
60 24 58 25 19 
80 24 78 34 26 
100 24 98 44 33 
120 24 118 54 40 
140 24 138 61 46 
160 24 158 71 52 
180 24 178 83 61 
200 24 198 93 68 

 
Table 5.12 shows the average number of dominate set of nodes for a constant density of 6 with 

varying network sizes. The size of dominate set increases as the network size increases for all 

three rules as expected (Refer to Figure 5.12). 
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Figure 5.12: Average number of dominating set nodes relative to number of nodes for constant 

density d = 24 
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The above tables show the number of dominating set nodes versus the number of nodes 

in the space for the increasing order of density. The averages are recorded in the tables by 

using basic rule, Wu’s extensional algorithms and the new algorithm. All these figures show 

that the number of dominating set nodes increased by the number of nodes. The efficiency of 

basic rule is poor because the ratio of the line is almost 1, especially when the density is very 

high. That means the number of dominating set nodes is almost equal to the number of nodes 

i.e.; almost every node is dominating set node decided by basic rule. The range (maximum-

minimum) and SD of the number of dominating set is decreased by the nodes and density 

increasing because the number of dominating set tends to equal the number of nodes.  But after 

applying the two extensional rules of Wu’s algorithm, the size of dominating set decreased 

considerably, especially when the density is increased. The ratio of Wu’s algorithm of nodes 

over the number of nodes changes from 0.64 to 0.25. The range (maximum-minimum) and SD 

of the number of dominating set is increased. By using the new algorithm, the size of the 

dominating set decreased further, it is less than the nodes decided by Wu’s algorithm. The 

ratio of dominate nodes over the number of nodes changes from 0.55 to 0.2. In low density 

nodes space, every node has fewer neighbors, sometimes a node has less than three neighbors 

that it can’t even use the new extensional rule. There is only some change in low density 

space. In high density space the size of the dominating set nodes is already decreased a lot.  
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6. CONCLUSION 
 
An Ad hoc wireless network is a special kind of wireless network without the aid of any 

established infrastructure or centralized administration. The routing of packets between any 

two nodes not directly connected can be achieved through intermediate nodes. Finding an 

optimal route faces many challenges in ad hoc networks. Dominating-set-based routing is one 

kind of routing protocol proposed to reduce running time. A dominating set has all the nodes 

with in the set or within its neighborhood. Wu and Li proposed an efficient algorithm to 

calculate the connected dominating set. The research presented in this thesis extended Wu and 

Li’s algorithm to calculate dominating set in ad hoc wireless network. 

Our simulation results verify that Wu and Li’s algorithm results from using basic rule 

only is poor and generates a large dominating set. Wu and Li’s extensional rules 1 and 2 

decrease the dominating set nodes considerably. After applying the new algorithm the decrease 

in numbers is more evident in high-density medium. The simulation results also show that 

results from the new algorithm constantly out performs Wu and Li’s extensional rules. 

The future research direction is to compare the new rule with other enhancements of 

Wu and Li’s algorithm. Ni’s [26] enhancement uses transmission range as a parameter and we 

used density as a parameter. One future area of work would be to compare these two 

enhancements using one single parameter either density or transmission range. Another 

direction for extending this research is to observe the simulation results using other 

parameters; we have used density, transmission range and number of nodes as the parameters 

in this research. 
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Appendix – A 
 
 
VC++ code for simulating the new algorithm [26]:  
 
// CDSView.cpp : implementation of the CCDSView class 
// Other files and include files not listed here 
// 
 
#include "stdafx.h" 
#include "CDS.h" 
#include <afxwin.h> 
 
#include "CDSDoc.h" 
#include "CDSView.h" 
#include "NodeSizeDlg.h" 
#include "TransmitionRangeDlg.h"  
#include "FormCommandView.h" 
#include "MainFrm.h" 
 
#ifdef _DEBUG 
#define new DEBUG_NEW 
#undef THIS_FILE 
static char THIS_FILE[] = __FILE__; 
#endif 
 
///////////////////////////////////////////////////////////////////////
////// 
// CCDSView 
 
IMPLEMENT_DYNCREATE(CCDSView, CView) 
 
BEGIN_MESSAGE_MAP(CCDSView, CView) 
 //{{AFX_MSG_MAP(CCDSView) 
 ON_COMMAND(ID_OPERATIONS_GENERATENODES, 
OnOperationsGenerateNodes) 
 ON_WM_PAINT() 
 ON_COMMAND(ID_OPERATIONS_CONNECTINGNODES, 
OnOperationsConnectingNodes) 
 ON_COMMAND(ID_OPERATIONS_DS1, OnOperationsDs1) 
 ON_COMMAND(ID_OPERATIONS_DS2, OnOperationsDs2) 
 ON_COMMAND(ID_OPERATIONS_DS3, OnOperationsDs3) 
 ON_COMMAND(ID_OPERATIONS_DS4, OnOperationsDs4) 
 ON_COMMAND(ID_OPERATIONS_READ, OnOperationsRead) 
 ON_COMMAND(ID_CheckConnected, OnCheckConnected) 
 ON_COMMAND(ID_OPERATIONS_RUN, OnOperationsRun) 
 ON_COMMAND(ID_OPERATIONS_DS5, OnOperationsDs5) 
 //}}AFX_MSG_MAP 
 // Standard printing commands 
 ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint) 
 ON_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnFilePrint) 
 ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview) 
END_MESSAGE_MAP() 
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///////////////////////////////////////////////////////////////////////
////// 
// CCDSView construction/destruction 
 
CCDSView::CCDSView() 
{ 
 // TODO: add construction code here 
 
} 
 
CCDSView::~CCDSView() 
{ 
} 
 
BOOL CCDSView::PreCreateWindow(CREATESTRUCT& cs) 
{ 
 // TODO: Modify the Window class or styles here by modifying 
 //  the CREATESTRUCT cs 
 
 return CView::PreCreateWindow(cs); 
} 
 
///////////////////////////////////////////////////////////////////////
////// 
// CCDSView drawing 
 
void CCDSView::OnDraw(CDC* pDC) 
{ 
 CCDSDoc* pDoc = GetDocument(); 
 ASSERT_VALID(pDoc); 
 // TODO: add draw code for native data here 
} 
 
///////////////////////////////////////////////////////////////////////
////// 
// CCDSView printing 
 
BOOL CCDSView::OnPreparePrinting(CPrintInfo* pInfo) 
{ 
 // default preparation 
 return DoPreparePrinting(pInfo); 
} 
 
void CCDSView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/) 
{ 
 // TODO: add extra initialization before printing 
} 
 
void CCDSView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/) 
{ 
 // TODO: add cleanup after printing 
} 
 
///////////////////////////////////////////////////////////////////////
////// 
// CCDSView diagnostics 
 

 



  50 

#ifdef _DEBUG 
void CCDSView::AssertValid() const 
{ 
 CView::AssertValid(); 
} 
 
void CCDSView::Dump(CDumpContext& dc) const 
{ 
 CView::Dump(dc); 
} 
 
CCDSDoc* CCDSView::GetDocument() // non-debug version is inline 
{ 
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CCDSDoc))); 
 return (CCDSDoc*)m_pDocument; 
} 
#endif //_DEBUG 
 
///////////////////////////////////////////////////////////////////////
////// 
// CCDSView message handlers 
 
void CCDSView::OnOperationsGenerateNodes()  
{ 
 // TODO: Add your command handler code here 
 OperationsGenerateNodes();  
} 
 
bool CCDSView::OperationsGenerateNodes() 
{ 

CFormCommandView* pCommondView = (CFormCommandView*) 
GetFormCommandView();  

 m_Data.GenerateRandomNumber(pCommondView->m_Nodes_Size);   
     operations=0; 
 this->InvalidateRgn(NULL);  
 return true; 
} 
 
void CCDSView::OnOperationsConnectingNodes()  
{ 
/* CTransmitionRangeDlg Dlg; 
 if(Dlg.DoModal() != IDOK) 
  return;  Dlg.m_Transmition_Range*/ 
     operations=1; 

CFormCommandView* pCommondView = (CFormCommandView*) 
GetFormCommandView();  

 m_Data.Set_Transmition_Range(pCommondView->m_Transmission_Range);  
 
 this->InvalidateRgn(NULL);  
 return; 
} 
 
void CCDSView::OnCheckConnected()  
{ 
 OperationsCheckConnected();  
} 
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bool CCDSView::OperationsCheckConnected() 
{ 
 CString strYes="YES"; 
 CString strNo="NO"; 

CFormCommandView* pCommondView = (CFormCommandView*) 
GetFormCommandView();  

 int count=0; 
 for(int p=0; p<m_Data.m_Nodes.GetSize(); p++) 
  m_Data.m_Nodes[p].m_colour=0; 
 DFS(0,count); 
 if(count==m_Data.m_Nodes.GetSize()) 
 { 
  pCommondView->m_Connected=strYes; 
  pCommondView->UpdateData(FALSE);  
  return true; 
 } 
 else 
 { 
  pCommondView->m_Connected=strNo; 
  pCommondView->UpdateData(FALSE);  
  return false; 
 } 
} 
 
 
void CCDSView::OnOperationsDs1()  
{ 
    operations=2; 

this->InvalidateRgn(NULL); 
 return; 
} 
 
void CCDSView::OnOperationsDs2()  
{ 
    operations=3; 
 this->InvalidateRgn(NULL); 
 return; 
} 
 
void CCDSView::OnOperationsDs3()  
{ 
    operations=4; 
 this->InvalidateRgn(NULL); 
 return;  
} 
 
void CCDSView::OnOperationsDs4()  
{ 
 operations=5; 
// bool connected=OperationsCheckConnected(); 
 this->InvalidateRgn(NULL); 
 return;  
} 
 
void CCDSView::OnOperationsDs5()  
{ 
 operations=7; 
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// bool connected=OperationsCheckConnected(); 
 this->InvalidateRgn(NULL); 
 return;  
} 
 
void CCDSView::OnOperationsRun()  
{ 

CFormCommandView* pCommondView = (CFormCommandView*) 
GetFormCommandView();  

 
 CString str1="ab"; 
 CString str2="ab"; 
 CString str3="ab"; 
 CString str4="ab"; 
 int numberOfCycles=(pCommondView->m_Running_Cycles); 
 int avgBasic=0; 
 int avgJie=0; 
 int avgNew=0; 
 int avgMyRule=0; 
 
 int i=0; 
 do 
 { 
  OnOperationsGenerateNodes(); 
  OnOperationsConnectingNodes(); 
  OnPaint(); 
  if(OperationsCheckConnected()) 
  { 
   OnOperationsDs5(); 
   OnPaint(); 
    
   avgBasic=avgBasic+numberDS; 
   avgJie=avgJie+numberDS-numberDSRuleTotal; 

avgMyRule = avgMyRule+numberDS-numberMyRuleADS-
numberMyRuleBDS-numberMyRuleCDS; 

    
   i++; 
  } 
 }while(i<numberOfCycles); 
  
 avgBasic=(int)(avgBasic/double(numberOfCycles)+0.5); 
 avgJie=(int)(avgJie/double(numberOfCycles)+0.5); 
 avgNew=(int)(avgNew/double(numberOfCycles)+0.5); 
 avgMyRule=(int) (avgMyRule/double(numberOfCycles)+0.5); 
 str1.Format("%s%d", "", avgBasic); 
 str2.Format("%s%d", "", avgJie); 
 str3.Format("%s%d", "", avgNew); 
 str4.Format("%s%d", "", avgMyRule); 

str1="avgBasic is: "+str1+" || avgJie is: "+str2+" || avgNew is: 
"+str3+" || avgMyRule is: "+str4; 

    AfxMessageBox(str1); 
 
// this->InvalidateRgn(NULL);  
  
} 
 
void CCDSView::OnPaint()  
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{ 
CFormCommandView* pCommondView = (CFormCommandView*) 
GetFormCommandView();  

 CRect rect; 
 GetClientRect(rect); 
 
 numberDS=0; 
 numberDSRuleTotal=0; 
 int x=(rect.right-600)/2; 
 int y=(rect.bottom-600)/2; 
 
 CPaintDC dc(this); // device context for painting 
  
 dc.SetTextAlign(TA_BASELINE | TA_CENTER); 
 dc.SetTextColor(::GetSysColor(COLOR_WINDOWTEXT)); 
 dc.SetBkMode(TRANSPARENT); 
 
 CString str = "Some Data"; 
 // TODO: Add your message handler code here 
 
 for(int i=0; i<m_Data.m_Nodes.GetSize(); i++) 
 { 
  str.Format("%s%d", "", i); 

dc.TextOut((int)(x+m_Data.m_Nodes.GetAt(i).m_x), 
(int)(y+m_Data.m_Nodes.GetAt(i).m_y) , str); 

 } 
 
 if(operations>=1) 
 { 
  for(int p=0; p<m_Data.m_Nodes.GetSize(); p++) 
  { 
  
 m_Data.m_Nodes[p].m_ConnectedVertexIndices.RemoveAll(); 
   m_Data.m_Nodes[p].m_ClosedVertexIndices.RemoveAll(); 
   m_Data.m_Nodes[p].m_colour=0; 
   m_Data.m_Nodes[p].m_Marked=0; 
   m_Data.m_Nodes[p].m_MarkedRule1=0; 
   m_Data.m_Nodes[p].m_MarkedRule2=0; 
   m_Data.m_Nodes[p].m_MarkedRule3=0; 
  } 
  for(int j=0; j<m_Data.m_Nodes.GetSize()-1; j++) 
  { 
   int x0 = x+(int)m_Data.m_Nodes.GetAt(j).m_x;  
   int y0 = y+(int)m_Data.m_Nodes.GetAt(j).m_y;  
   m_Data.m_Nodes[j].m_ClosedVertexIndices.Add(j); 
   for(int k=j+1;k<m_Data.m_Nodes.GetSize();k++) 
   { 
    dc.MoveTo(x0, y0); 
    int x1 = x+(int)m_Data.m_Nodes.GetAt(k).m_x;  
    int y1 = y+(int)m_Data.m_Nodes.GetAt(k).m_y;  

if(((x0-x1)*(x0-x1)+(y0-y1)*(y0-
y1))<((m_Data.Transmition_Range * 600 * 600 )/ 
(3.14 * (m_Data.m_Nodes.GetSize()-1)))) 

     
    { 
    dc.LineTo(x1,y1); 
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 m_Data.m_Nodes[j].m_ConnectedVertexIndices.Add(k); 
            
    
 m_Data.m_Nodes[k].m_ConnectedVertexIndices.Add(j); 
    m_Data.m_Nodes[j].m_ClosedVertexIndices.Add(k); 
    m_Data.m_Nodes[k].m_ClosedVertexIndices.Add(j); 
    } 
 
   } 
  } 
  int size1=m_Data.m_Nodes.GetSize()-1; 
  m_Data.m_Nodes[size1].m_ClosedVertexIndices.Add(size1); 
 } //end operations=1 
 
 //Code for Basic Rule 
 if(operations>=2) 
 {  
 for(int j=0; j<m_Data.m_Nodes.GetSize(); j++) 
 { 
 int 
indices_size=m_Data.m_Nodes[j].m_ConnectedVertexIndices.GetSize(); 
    
 if(indices_size>1) 
 {   
       for(int m=0;m<indices_size-1;m++) 

 {    
 int u=m_Data.m_Nodes[j].m_ConnectedVertexIndices[m]; 

  for(int n=m+1;n<indices_size;n++) 
  { 
  int v=m_Data.m_Nodes[j].m_ConnectedVertexIndices[n]; 
  bool marked=true; 
for (int 
l=0;l<m_Data.m_Nodes[u].m_ConnectedVertexIndices.GetSize();l++) 
 {        
  if(m_Data.m_Nodes[u].m_ConnectedVertexIndices[l]==v) 
  {          
   marked=false; 
  l = m_Data.m_Nodes[u].m_ConnectedVertexIndices.GetSize() - 
1;   
  }        
 } 
  if(marked==true) 
  { 
  m_Data.m_Nodes[j].SetMark(marked); 
  n = indices_size - 1;        
  } 
 } 
 if( m_Data.m_Nodes[j].m_Marked) 
  m = indices_size - 2; 
 } 
 } 
 } 
 for(int z=0; z<m_Data.m_Nodes.GetSize(); z++) 
 { 
  if(m_Data.m_Nodes[z].m_Marked==true) 
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  { 
DrawDotCircle(dc, x+m_Data.m_Nodes[z].m_x, 
y+m_Data.m_Nodes[z].m_y,RGB(255, 0, 0));  

  numberDS++; 
  } 
 } 
  str.Format("%s%d", "", numberDS); 
  pCommondView->m_Basic=str; 
  pCommondView->UpdateData(FALSE);  
   
 }//end if operations=2 
 
  
 
 
//Code for Extensional Rule 1 
 if(operations>=3) 
 { 
   
 for(int j=0; j<m_Data.m_Nodes.GetSize(); j++) 
 {   
  if(m_Data.m_Nodes[j].m_Marked==true)  //if@2 
  {  
  int size1= 
m_Data.m_Nodes[j].m_ConnectedVertexIndices.GetSize(); 
   
  for(int m=0;m<size1;m++) 
  { 
  int u=m_Data.m_Nodes[j].m_ConnectedVertexIndices[m]; 
   
  int 
size2=m_Data.m_Nodes[u].m_ClosedVertexIndices.GetSize(); 
   
  if(m_Data.m_Nodes[u].m_Marked==true && j<u && size1<size2) 
  { 

bool 
marked=subset(m_Data.m_Nodes[j].m_ConnectedVertexIndices, 
m_Data.m_Nodes[u].m_ClosedVertexIndices); 

  
   if(marked==true) 
   {  
   m = size1-1; 
   } 
  }//end if@2 
  } 
  }//end if@1 
  } //end for every node 
   
  numberDSRule1=0; 
  for(int z=0; z<m_Data.m_Nodes.GetSize(); z++) 
  { 
   if(m_Data.m_Nodes[z].m_MarkedRule1==true) 
   { 

DrawDotCircle(dc, x+m_Data.m_Nodes[z].m_x, 
y+m_Data.m_Nodes[z].m_y,RGB(0, 0, 255));  

    numberDSRule1++; 
   } 
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  } 
 } //end operations=3 
 
 //Code for Extensional Rule 2 
 if(operations>=4) 
 { 
 intArray C; 
   
 for(int j=0; j<m_Data.m_Nodes.GetSize()-1; j++) 
 { 
 int size1= m_Data.m_Nodes[j].m_ConnectedVertexIndices.GetSize(); 
   
 bool marked=false; 
   
  if(m_Data.m_Nodes[j].m_Marked==true && size1>=2) 
  {   
  for(int m=0;m<size1-1;m++) 
  { 
   
  int u=m_Data.m_Nodes[j].m_ConnectedVertexIndices[m]; 
   
  if(u>j&&m_Data.m_Nodes[u].m_Marked) 
  { 
  for(int n=m+1;n<size1;n++) 
   { 
   C.RemoveAll(); 
   int v=m_Data.m_Nodes[j].m_ConnectedVertexIndices[n]; 
   if(m_Data.m_Nodes[v].m_Marked) 

{         
 
 unionArray(m_Data.m_Nodes[u].m_ConnectedVertexI
ndices, m_Data.m_Nodes[v].m_ConnectedVertexIndices, 
C); 

            
  
 marked=subset(m_Data.m_Nodes[j].m_ConnectedVertexIndices,C); 
   
    if(marked) 
    n=size1-1; 
   } 
   } 
 
   if(marked) 
   {         
     m_Data.m_Nodes[j].SetMarkRule2(marked); 
    m=size1-2; 
   } 
  } 
  } 
  }//end if@1 
  } //end for every node 
   

int numberDSRule2=0; 
 for(int z=0; z<m_Data.m_Nodes.GetSize(); z++) 
 { 
  if(m_Data.m_Nodes[z].m_MarkedRule2) 
  { 
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DrawDotCircle(dc, x+m_Data.m_Nodes[z].m_x, 
y+m_Data.m_Nodes[z].m_y,RGB(0, 255, 0));  

  numberDSRule2++; 
  } 
 } 
  
 for(int w=0; w<m_Data.m_Nodes.GetSize(); w++) 
 { 

if(m_Data.m_Nodes[w].m_Marked && 
(m_Data.m_Nodes[w].m_MarkedRule1||m_Data.m_Nodes[w].m_MarkedRule2
)) 

  { 
   numberDSRuleTotal++; 
  } 
 } 
 str.Format("%s%d", "", numberDS-numberDSRuleTotal); 
 pCommondView->m_JieWu=str; 
 pCommondView->UpdateData(FALSE);   
   
 } 
 
 
 if(operations==7) 
 {    
 intArray C1,C2,C3a,C3b; 
 for(int u=0; u<m_Data.m_Nodes.GetSize()-1; u++) 
 { 
    
 int 
indices_size=m_Data.m_Nodes[u].m_ConnectedVertexIndices.GetSize(); 
 
 if(m_Data.m_Nodes[u].m_Marked && indices_size>=2) 
 { 
       for(int m=0;m<indices_size-1;m++) 

   { 
    int v=m_Data.m_Nodes[u].m_ConnectedVertexIndices[m]; 
     
    for(int n=m+1;n<indices_size;n++) 
    { 
  int w=m_Data.m_Nodes[u].m_ConnectedVertexIndices[n]; 
       
  C1.RemoveAll(); 

unionArray(m_Data.m_Nodes[v].m_ConnectedVertexIndices, 
m_Data.m_Nodes[w].m_ConnectedVertexIndices, C1); 

       
  if (subset(m_Data.m_Nodes[u].m_ConnectedVertexIndices,C1)) 
  {      
  bool markeda = false; 
  if (u<v && u<w) 
  {          
    markeda = true; 
            
    m_Data.m_Nodes[u].SetMyRuleA(markeda); 
  } 
            
  if (v<u && w<u) 
 { 
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  bool markedc = true;         
  
  for(int o=m+1;o<indices_size;o++) 
  { 
  int z=m_Data.m_Nodes[u].m_ConnectedVertexIndices[o]; 
            
   if (z!=w && z!=v)  
  {          
   C3a.RemoveAll(); 

unionArray(m_Data.m_Nodes[u].m_ConnectedVertexIndices, 
m_Data.m_Nodes[z].m_ConnectedVertexIndices, C3a); 
if (subset(m_Data.m_Nodes[v].m_ConnectedVertexIndices,C3a) 
&& subset(m_Data.m_Nodes[w].m_ConnectedVertexIndices,C3a)) 

   {          
   markedc = false;       
    } 
  } 
 } 
  if (markedc == true)  
  { 
  m_Data.m_Nodes[u].SetMyRuleC(markedc); 
  } 

} 
 
            
  if (v<u && u<w) 
 {           
  bool markedb = true;         
  
 for(int o=m+1;o<indices_size;o++) 
 { 
  int z=m_Data.m_Nodes[u].m_ConnectedVertexIndices[o]; 
            
   if (z!=w)  
  { 
            
   C2.RemoveAll(); 

unionArray(m_Data.m_Nodes[u].m_ConnectedVertexIndices, 
m_Data .m_Nodes[z].m_ConnectedVertexIndices, C2);  
   

            
   if 
(subset(m_Data.m_Nodes[v].m_ConnectedVertexIndices,C2)) 
   { 
   markedb = false; 
            
    } 
  } 
 } 
  
  if (markedb == true)  
  {       
 m_Data.m_Nodes[u].SetMyRuleB(markedb); 
  } 
 } 
} 
} 
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} 
} 
} 
 
     
 numberMyRuleADS=0; 
 for(int z=0; z<m_Data.m_Nodes.GetSize(); z++) 
 {   
  if(m_Data.m_Nodes[z].m_MarkedMyRuleA) 
  { 

DrawDotCircle(dc, x+m_Data.m_Nodes[z].m_x, 
y+m_Data.m_Nodes[z].m_y,RGB(0, 255, 255));  

  numberMyRuleADS++; 
  } 
 } 
 numberMyRuleBDS=0; 
 for(int z=0; z<m_Data.m_Nodes.GetSize(); z++) 

{ 
if(m_Data.m_Nodes[z].m_MarkedMyRuleB&&(!m_Data.m_Nodes[z].m
_MarkedMyRuleA)&&(!m_Data.m_Nodes[z].m_MarkedMyRuleC)) 

  { 
DrawDotCircle(dc, x+m_Data.m_Nodes[z].m_x, 
y+m_Data.m_Nodes[z].m_y,RGB(165, 42, 42));  

  numberMyRuleBDS++; 
  } 
 } 
 numberMyRuleCDS=0; 
 for(int z=0; z<m_Data.m_Nodes.GetSize(); z++) 
 { 

if(m_Data.m_Nodes[z].m_MarkedMyRuleC&&(!m_Data.m_Nodes[z].m
_MarkedMyRuleA)&&(!m_Data.m_Nodes[z].m_MarkedMyRuleB)) 

  { 
 DrawDotCircle(dc, x+m_Data.m_Nodes[z].m_x, y+m_Da
 ta.m_Nodes[z].m_y,RGB(122, 122, 122));  

  numberMyRuleCDS++; 
  } 
 } 
  

str.Format("%s%d", "", numberDS-numberMyRuleADS-numberMyRuleBDS-
numberMyRuleCDS); 

 pCommondView->m_New=str; 
 CString str1="ab"; 
 CString str2="ab"; 
 CString str3="ab"; 
   
 str1.Format("%s%d", "", numberMyRuleADS); 
 str2.Format("%s%d", "", numberMyRuleBDS); 
 str3.Format("%s%d", "", numberMyRuleCDS); 
 

str1="Total is: "+str+" || RuleA is: "+str1+" || RuleB is: 
"+str2+" || RuleC is: "+str3; 

     
 pCommondView->UpdateData(FALSE);  
   
}//end if operations=7 
 
} //end OnPaint() 
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bool CCDSView::DrawDotCircle(CPaintDC &dc, double x, double y, COLORREF 
clr ) 
{ 
 int radius = 5;  
 dc.FillSolidRect((int)x-radius, (int)y-radius, 2*radius, 
2*radius,clr); 
 return true; 
// FillRect( LPCRECT lpRect, CBrush* pBrush ); 
 
} 
 
 
bool CCDSView::subset(intArray &A, intArray &B) 
{ 
 int position=0; 
 bool marked=false; 
 for(int p=0;p<A.GetSize();p++) 
 { 
  if(position==B.GetSize()) 
   break; 
  int s=A[p]; 
  for(int q=position;q<B.GetSize();q++) 
  { 
   int t=B[q]; 
   if(s==t) 
   { 
    position=q+1; 
    if((position==B.GetSize())&&(p==A.GetSize()-1)) 
     marked=true; 
    q=B.GetSize()-1; 
   } 
   else if(s<t) 
   { 
    marked=false; 
    q=B.GetSize()-1; 
    p=A.GetSize()-1; 
   } 
 
  } 
 } 
 return marked; 
} 
 
void CCDSView::unionArray(intArray &A, intArray &B, intArray &C) 
{ 
 int sizeA=A.GetSize(); 
 int sizeB=B.GetSize(); 
 int position=0; 
 for(int i=0;i<sizeA;i++) 
 { 
  for(int j=position;j<sizeB;j++) 
  { 
   if(A[i]<B[j]) 
   { 
    C.Add(A[i]); 
    position=j; 
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    j=sizeB-1; 
   } 
   else if(A[i]==B[j]) 
   { 
    C.Add(A[i]); 
    position=j+1; 
    j=sizeB-1; 
   } 
   else 
    C.Add(B[j]); 
 
  } 
 } 
 if(A[sizeA-1]>B[sizeB-1]) 
  C.Add(A[sizeA-1]); 
 else if(A[sizeA-1]<B[sizeB-1]) 
  C.Add(B[sizeB-1]); 
 
 for(int p=0;p<C.GetSize();p++) 
 { 
  int temp=C[p]; 
 }  
} 
 
void CCDSView::OnOperationsRead()  
{ 
 m_Data.ReadNodesFromFile();  
    operations=0; 
 this->InvalidateRgn(NULL);  
} 
 
void CCDSView::DFS(int start, int &count) 
{ 
 m_Data.m_Nodes[start].m_colour=1; 
 count++; 
 if(count==m_Data.m_Nodes.GetSize()) 
  return; 
 int 
size=m_Data.m_Nodes[start].m_ConnectedVertexIndices.GetSize(); 
 for(int i=0;i<size;i++) 
 { 
  int j=m_Data.m_Nodes[start].m_ConnectedVertexIndices[i]; 
  if(m_Data.m_Nodes[j].m_colour==0) 
   DFS(j,count); 
 } 
} 
 
CView * CCDSView::GetFormCommandView() 
{ 
 CCDSApp *pApp = (CCDSApp *)AfxGetApp(); 
 CMainFrame *pMainFrame = (CMainFrame *)pApp->m_pMainWnd; 
 CView *pView = (CView *)pMainFrame->m_wndSplitter.GetPane(0,0); 
 return pView; 
} 
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Appendix – B 
 
Sample Input file: This file has 80 nodes. 
 
 
135 556 
285 239 
508 340 
321 456 
383 2 
270 218 
426 227 
525 299 
548 274 
25 232 
186 215 
107 39 
102 410 
473 381 
477 84 
209 207 
576 239 
248 208 
130 154 
426 352 
526 501 
122 419 
567 546 
421 196 
460 47 
8 471 
422 525 
113 264 
350 317 
535 447 
138 301 
244 192 
512 281 
203 593 
336 527 
315 105 
472 473 
109 340 
562 53 
506 274 
591 483 
51 394 
210 366 
363 244 
480 133 
400 105 
414 499 
263 445 
178 129 
160 311 
322 422 
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253 266 
516 383 
191 255 
344 301 
469 413 
248 210 
211 578 
367 434 
118 541 
159 407 
375 387 
158 65 
453 558 
350 599 
225 398 
129 468 
302 206 
296 263 
421 155 
88 312 
393 514 
480 430 
41 120 
157 95 
237 534 
199 56 
258 244 
269 56 
193 140 
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