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CHAPTER 1 

Introduction 

Global positioning has become an increasing concern in the United States.  The country 

that holds the position of leadership globally influences world economy and motivates policy 

(Williams, 2011).  During most of the time since the industrial age, the United States has held 

this position of leadership and has been a major competitor in the worldwide arena.  With the 

turn of the new century, this position has slowly become tenuous and the ranking is in a period of 

decline (Atkinson, 2010).  The urgency is magnified by the emergence of other countries 

advancing in innovation and manufacturing.  These advancements provide fuel for economic 

growth and global position.  With science, technology, engineering and mathematics driving a 

major portion of technological innovation, the nation’s focus has shifted to policies that address 

this matter. 

Wissehr, Concannon and Barrow (2011) define the period during the 1950’s to 1970’s as 

the Sputnik Era.  The Russian launch of the Sputnik satellite inspired America to engage in the 

movement of developing a mathematical and scientific literate society.  This movement was in 

response to Russia’s perceived leapfrog advancement over the United States.  This era served as 

a trumpet call to educate citizens with the intent of maintaining technological superiority.  

Technology advancements motivate a healthy and growing economy.  Innovation inspires the 

improvement or the creation of new products, processes and services.  Atkinson (2010) claims 

that it is these technological innovations that are driving forces behind economic growth and 

competitiveness.  Since this era, the prevalent perception is that the country is in decline 

technologically.  A fundamental question that has arisen asks what is needed to develop and 
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maintain economic stability and develop the 21st century workforce.  Zhao (2010) states that the 

risk of losing the highly regarded leadership position is due in part to the poor workforce 

development.  A properly trained workforce is integral to grow and sustain an economy driven 

by technology and innovation.  These factors have motivated many to ask if we are currently in 

this generation’s Sputnik Era. 

During this time, students have become disengaged in the mathematics and science 

classrooms.  Balfanz, Herzog and Iver (2007) assert that middle school students in the United 

States are falling behind especially in urban communities.  Many factors have attributed to 

student disengagement and performance decline in the middle schools.  Kieffer, Marinell and 

Neugebauer (2014) cite curricular demands and changing school environment as being some of 

the factors for the decline.  With the deterioration evident, the call for reform addressing student 

performance and engagement has been made (PCAST, 2010). 

Statement of the Problem 

 

The problem addressed in this study examined the need for middle school students to 

become STEM (Science, Technology, Engineering and Mathematics) literate, the lack of defined 

focus for STEM integration, and the decline of student performance and engagement in the 

mathematics classroom.  Following is a discussion of each aspect of the problem. 

Need for STEM Literacy 

 

  Bybee (2013) states that many of the jobs and careers needed to support innovation are 

currently and will be rooted in STEM disciplines.  The President’s Council of Advisors on 

Science and Technology, PCAST (2010), states that the workforce produced in the current 

education system has had their creativity dulled and stifled.  At the same time, students have not 

performed well in science and mathematics nationally.  Stephens (2014) states that 
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internationally, United States 15-year-old students are ranked below average on the Programme 

for International Student Assessment (PISA) given in 2012.  The assessment measured the 

acquired skills and knowledge that are essential for participation in modern technological 

societies.  Students in America showed weaknesses in performing higher-level cognitive tasks 

such as real world problem solving.  As a result, the students are inadequately prepared for 

success and prosperity in the workforce.  Atkinson (2010) states that the number of STEM 

degrees earned has been outpaced and at times doubled by Non-STEM degrees.  He also 

maintains that the low number of American students going into to STEM fields poses risks to the 

economy growth.    

 PCAST (2010) claims that STEM job and career growth will outpace the number of 

educated and trained professionals needed for these occupations.  Roberts (2012) claims that the 

United States is ranked 18th among industrialized nations of students graduating and the country 

is falling in graduation rates.  Bybee (2013) asserts that for the United States to maintain global 

competitiveness a greater effort must be made to produce STEM literate students to form a 21st 

century workforce.  These students will be equipped with fundamental concepts and knowledge 

in the areas of STEM.  Along with being STEM literate, the students will have critical problem-

framing and solving skills.  However, Roberts (2012) states that today’s educational system will 

not meet the demands to produce STEM literate members of the society thus causing a shortage 

of workers to regain the leadership position globally.  Even though there has been an increase in 

graduation rates as reported by the Department of Education as reported by Camera (2015), the 

celebration has been subdued with the evidence of misreporting and the fact that students’ 

mathematics and science scores dropped for the first time during the past decade.  Under the 

traditional methods of instruction, students are not being attracted to careers or majors in STEM.  
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With innovation and creativity being influential skills overlooked in the classroom today, we are 

manifesting a generation of students that have a strong disinterest in STEM related fields and 

disciplines. 

Lack of Defined Focus 

 

STEM education is seen as a vehicle in which the U.S. can educate and train a 21st 

century workforce.  Bybee (2010) describes that there still exists a wide gap of misunderstanding 

of STEM education.  STEM education from the onset of its inception was considered a basic 

label for anything that related to science, technology, engineering and mathematics.  Although, 

the focus was heavily placed on science and mathematics, the manner of instruction varied. 

Presently, Brown, Brown, Reardon, and Merrill (2011) state that there has been a lack of 

understanding of what STEM education is in schools today. 

Bybee (2013) claims that many perspectives of STEM pervade the educational landscape. 

The absence of focus has created many definitions.  For example, he describes the idea of STEM 

education starting with instruction facilitated in separated discipline silos.  This approach has a 

focus on either mathematics or science.  This approach is characterized by an emphasis on both 

subjects but still contained in their separate silo.  Another approach shows that STEM could 

possibly mean the incorporation of two or more subjects anchored by one subject.  For example, 

science teachers incorporate technology and engineering in lessons such as egg drop or drag 

racing car activities.  Another example highlights the efforts of mathematics teachers using 

biology and art to describe characteristics of nature through sequences.   

    Another perception of STEM education is the combination of two or more disciplines 

into one instructional course.  This combination is currently present in engineering and 

technology classes offered as electives just like band or orchestra.  The more complicated 
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version of STEM education has all of the disciplines combined to form a stand-alone course.  

With many forms and perceptions of STEM education, there is a need for forming a foundation 

that is present in the described characterizations.  Bybee (2010) claims that STEM education 

should be the place where students solve problems in context using non-routine problem solving 

skills, self management, and self development.  He describes an environment where a student 

participates socially developing complex communication to use systems thinking to solve real 

world challenges.  At all school levels, with an emphasis on middle school, the need to bring 

STEM into focus is evident.  Saxton, Burns, Holveck, Kelley, Prince, Rigelman and Skinner 

(2014) contend that a focused perspective of STEM aids the design of instruction and 

assessment.   

Student Engagement and Performance  

 

Students in the United States have lost interest in science and mathematics.  Chen (2015) 

claims that this problem has plagued education for generations.  Many reasons have been 

attributed to the disengagement of students.  For example, the use of lecturing as a primary mode 

of instruction to a teacher’s inability to include all students in the instructional activities have 

been identified as reasons why students disconnect from the learning process.  Another glaring 

reason for student disengagement is the continued teaching of skills and practices that do not 

translate to relevant material for the 21st century workplace (Atkinson, 2010).  As we move 

towards a more technologically advanced world, we are slow to educate and develop skills 

needed for the 21st century workplace. 

 Bybee (2013) also informs that after a decade of education reform, we still have a 

situation where students in the United States are below average proficiency.  There is a 

correlation to the student’s proficiency to the quality of mathematics and science instruction that 
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they receive.  With a consistent call for students to perform with abilities that are characterized 

by innovation and higher order problem solving, there is a place to incorporate activities that 

include design thinking and engineering.  Design thinking develops creative confidence through 

hands on projects and engineering allows for students to use the creativity to solve real life 

problems (Kwek, 2011).  

Purpose and Research Questions 

The purpose of this study was to investigate and describe the effects of using project-

based integrative STEM modules on eighth grade students’ performance and engagement in a 

unit on functions in Algebra.  The study was guided by the following research questions: 

1. What is the effect of using project-based, integrative STEM modules on 8th grade student 

performance and engagement in learning a unit on linear functions?  More specifically, to 

what extent are grade 8 students able to make connections between linear functions and 

its applications? 

2. What STEM-related situational factors contribute to 8th grade students’ success in 

learning using project based, integrative STEM modules? 

Significance of the Study 

 

The study is significant for many reasons.  First, there is a need to develop STEM literate 

students entering the workforce.  Secondly, there is a demand for the identification of strategies 

and practices that narrow the definition of integrative STEM education.  Lastly, there is a lack of 

reporting and communication of the effects of student participation in integrative STEM 

activities on their performance and engagement.   

The call for a STEM proficient and prepared society requires the improvement of STEM 

education.  The focus is on the preparation of all students.  Due to the complexity of the learning 
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environment, there is a question of determining viable processes to investigate, study and 

communicate the integrative STEM teaching and learning experience present in the model.  

Honey (2014) reports the recommendation posed by the National Academy of Sciences, which 

calls for the exploration of the curriculum and pedagogical interventions in detail with attention 

focused on the nature of integration and how it is supported. 

This study examined how the integrative nature of the learning experiences support the 

development of knowledge and practices that form the foundation of 21st century workplace 

skills.  By exploring the factors that lead to performance and engagement, instructional practices 

are identified and highlighted for use in other areas of instruction.  Aspects of the learning 

environment can be replicated to motivate the development of critical thinking skills.  

Ultimately, strategies are identified that promote student interest and proficiency in STEM with 

the purpose of guiding them to become STEM literate. 

Theoretically, the study examined the social nature of learning in the context of real 

world situations.  Honey (2014) asserts that the design of integrative STEM should be based in 

the interactions of students, teachers and the community.  This study was built upon the social 

nature of learning foundation and provided a blueprint to how one engages in integrative STEM 

problem solving.  By exploring the framework of situatedness, examples were given to show 

how students engage in activities where core discipline content is applied and transferred to 

similar situations.   

Theoretical Framework 

 

Xaviers’s School for Gifted Youngsters is a fictional school for Marvel’s X-Men.  Along 

with teaching subjects like English and math, Professor Charles Xavier primarily trains the 

young students with extraordinary skills and abilities to control their powers with the intent of 
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fostering a friendly human-mutant relationship.  Professor X recognizes their gifts and talents 

and wants to take them to higher measures of success and performance.  He uses various 

instructional strategies and lessons to facilitate the growth of each young mutant’s unique gift.  

The professor created a school to prepare them for life and the challenges they will have to 

endure.  He realized that their development would be benefited from learning as a team and not 

individually.  Thus he tailored their learning experiences to be done collaboratively.  Their 

primary classroom was a place called the Danger Room.  Here he designed simulations that 

replicated situations they would face as members of this unique team.  The simulations were 

intricate and detailed.  They resembled the ill structured problems and situations they would face 

in the real world.  Thus, the situation represented the actual problem in context, authenticity and 

danger.  The journey of solving these challenges could only be done as a team.  Only as a team, 

could they succeed and prepare themselves for other challenges that would come before them as 

they protected earth against enemies here and beyond. 

The above-mentioned description is from The Uncanny X-men comic from 1981.  The 

main learning environment that is described is called the Danger Room (Trushell, 2004).  The 

room is designed to present the situations of rescue and combat to a team of young mutants in 

preparation for their journey as superheroes.  Professor X guides them through exercises from 

the control room located at the top of the room.  Extensive modeling programs allow for training 

in realistic and authentic environments from outer space to the depths of an ocean.  Projectiles 

are hurled at them to sharpen skills and techniques.  The team of mutants collaborate and 

negotiate with themselves in the best manner to overcome each challenge presented to them in 

the Danger Room.  By using their unique gifts and resources, the team comes together as a 
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community to achieve success and develop lifesaving skills for preservation and protection of 

Earth.  Learning by doing in context is an overarching theme present in the Danger Room.   

The description for the Danger Room in the above paragraphs could also be painting a 

picture of a middle school classroom.  The students in the classroom can be immersed in an 

authentic real world challenge, for example developing exoskeleton robotic prosthesis to aid 

diabetic patients with the amputation of a limb.  As often displayed in the real world of science 

and engineering, the students would collaborate in design teams to find solutions.  These students 

would use relevant tools that are used by those in industry in the same manner as those would in 

professional settings.  Just as Professor X deems to immerse his young mutant learners in 

activities that foster the development of useful knowledge, the middle school classroom can be 

designed to afford relevant tasks that are interestingly meaningful and promote learning of the 

concepts involved.  Professor X believed that with the help and the aid of others in their group, 

they are able to utilize and develop the tools needed to achieve a successful mission.  Stein 

(1998) describes a classroom where students work together with experts to novices to develop 

meaning and solve problems. Even though students come with different unique talents and 

abilities, when they are joined together to solve the problems of the class, they can develop skills 

that go beyond and be successful throughout life.  Both of the examples, Professor X’s Danger 

Room and the middle school classroom, are spaces that demonstrate the tenets of situated 

cognition.   

This examination of the theoretical framework is divided into four parts.  In part 1, I will 

discuss and examine the definition of situated cognition theory.  The learning processes that 

make up situated cognition, communities of practice, legitimate peripheral participation and 
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cognitive apprenticeship, will be discussed.  An analysis of the basic tenets of situated cognition 

will solidify the theoretical framework developed. 

In part 2, I will explore the historical development of situated cognition.  A review of the 

precedents from which the development of situated cognition originated. Some of the pioneers 

and their theories will be inspected to discuss their influence on the framework.  The foundation 

of “situatedness” will be explored.  

Part 3 will focus on the ontological and epistemological underpinnings.  This section will 

discuss the definition of what knowledge is in relation to situated cognition to understand how 

attaining knowledge takes place. Finally, part 4 will investigate situated cognition in the 

instruction of STEM education.  The process of designing learning experiences on the foundation 

of investigating the world in an authentic manner through real world problem solving will be 

discussed.  Investigating the learning processes of situated cognition will provide insight to how 

engagement and proficiency is impacted.  

Situated Cognition Defined 

 

Lave (1988) states that situated cognition is a theory where an individual’s cognitive 

activity cannot be isolated from the social context from which it occurs.  Brown, Collins, and 

Duguid (1989) further develops Lave’s definition of situated cognition as the presupposition that 

learning and knowledge acquisition is embedded in an authentic context and activity within the 

culture it resides.  Lave (1988) defines authentic activities as purposeful, meaningful actions but 

ordinary to the practices of the culture.  Lave and Wenger (1991) believe that learning is situated 

in the activity in which it is taking place and is integral to a culture’s generative social practices. 

From this definition the notion of learning can be understood to be done by all in the community 

in the way or manner that the activities are done in real life.  Stein (1998) adds to the definition 
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that the process of learning occurs as a result of relationships established between the learners, 

the activities and the social organization of the communities involved.  Brown et al. (1989) state 

that the knowledge acquired as a result of these relationships and the associated concepts are like 

tools and resources of the culture.  These tools and resources can only be understood through 

expert guidance and use.  The conceptual knowledge acquired is no longer seen as a standalone 

acquisition of facts.  Knowledge becomes a tool that is applicable, useful and robust.  Through 

active use of the tools, participants will deepen their understanding.  Utilization of the tool will 

be developed much further than any abstract or explicit rules that may accompany the tool.  The 

use of the tool will aid in the development of its understanding.  The understanding will change 

and grow as expertise is developed.  Just as the understanding of the tools change, the 

participants’ roles in this process will develop and change over time (Brown et al., 1989).  

Participants will be afforded the opportunity to develop and adapt.  As Brown et al. (1989) 

asserts, participants become enculturated in the social structure of the situation.  Figure 1 below 

is a depiction of the interaction with the contexts that have been previously characterized. 

 

Figure 1.  Situated Cognition Theoretical Framework.  Adapted from “Situated cognition: A 

learning framework to support and guide high-fidelity simulation,” by J.B. Paige and B.J. Daley, 

2009, Clinical Simulation in Nursing, p. 99. 
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Varela, Thompson, and Rosch (1991) extend the theory stating that being situated lends 

to an understanding that cognition depends on bodily experience with its environment.  This 

perspective brings into view that cognition requires the immersion of the body’s sensorimotor 

capabilities.  The connection between mind and body is characterized as the embodiment of the 

mind.  Robbins (2009) claims that the embodiment of the mind allows for sensory perception of 

the environment as inputs and motor activity as outputs.  Varela et al. (1991) further describe this 

relationship as physical, temporal and functional.  As a result of the characterization of the 

relationship, the learner interacts with its environment to form reality and develop reason.  From 

this claim, Robbins (2009) concludes that thought is empty without the embodiment of the mind.  

Wilson (2002) further describes the embodiment of the mind as being on-line or off-line.  On-

line embodiment involves the body in a literal sense.  Robbins (2009) describes the on-line 

interaction between the mind and body as a dynamic relationship involving motor nerves, sense 

organs and limbs.  Wilson (2002) describes off-line embodiment as the condition where 

cognition occurs through memory and mental imagery.   

All of the characterizations of situated cognition lead to a focus on the social structures 

and learning processes in the environment.  The social structures and learning processes are 

communities of practice, legitimate peripheral participation and cognitive apprenticeship.  Figure 

2 below depicts their relationship with each other.  At the center is the situated context.  Lave 

and Wenger (1991) describe learning as being situated in a community of practice and represents 

development from peripheral activity to more expert participation where learning can be seen as 

a form of apprenticeship.  Students immersed in the situated context enter in as a newcomer to a 

community.  As the community engages in the context they are enabled to acquire, develop and 

use cognitive tools germane to the authentic activity.  The learning is enhanced and promotes the 
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social construction of knowledge.  Community of practice, legitimate peripheral participation 

and cognitive apprenticeship will be a described to give further insight to the theory of situated 

cognition.  

 

Figure 2.  Situated Cognition Concept Map.   

Community of Practice 

According to Lave and Wenger (1991), a community of practice is a group of people who 

share skills, inquiries, set of problems, or interests individually and as a group.  In the 

community, Hung (2001) argues that the members are connected socially by beliefs and ways of 

thinking.  As newcomers become engaged, they enter with little knowledge of the norms and 

practices of the community.  Learners begin to move from one level to another engaging in a 

process of collective learning in a shared space where the problem or challenge is presented.  

The members develop shared resources and tools that will aid them in problem solving.  Lave 

and Wenger (1991) inform us that this results in the formation of shared practices.  These shared 

practices can be communicated explicitly or not depending on the level they are used and 

communicated.  For example, in programming the code for a robot to perform a series of tasks, 

certain strategies may be assumed and communicated as standard.  Programming the motion of a 

robot to move linearly is an example where strategies can be assumed.  It may be assumed, 
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depending on the engineering of the robot, that motion will incorporate the use of two motors or 

one depending on design.  Another example where other strategies are constructed explicitly 

would be the determination of the best path to find a location for the deployment of solar stations 

for energy storage and consumption.  Brown et al. (1989) argue that these characteristics of 

domain, membership and practice form the foundation of a community of practice.  The domain 

refers to the commonality of interest amongst the community or membership.  The practice is the 

set of resources, experiences and tools that the membership uses for problem-solving.   

Winbourne (2010) further characterizes a community of practice as participation in 

identity formation.  Identity is formed in a community of practice by creating an 

apprentice/master scale structure.  The learner, by identifying their place on this scale, is 

informed of their manner of discourse and behavior.  A community of practice, as argued by 

Winbourne (2010), is described as all of the participants actively engaging in the activity of the 

practice that is constituted by the participants.  Wenger (1998) provided the foundation declaring 

that learning is central to the human identity.  The construction of identity through the social 

practices contributes to the learning process.  The individuals in this process participate to form 

the community’s shared identity. 

Aspects of interest to a community include the manner of how people are connected to 

the situation or context in which they are connected.  Wenger (1998) classifies this interaction as 

a relationship with a purpose (Figure 2).  This relationship distinguishes itself from other 

relationships that are created for reasons outside of a shared purpose.  Carlisle (2002) expounds 

on another aspect of interest, which is the use of the community’s tools that are used to stimulate 

learning and generate new knowledge.  The activities that afford the participation in the practices 
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of the community allows for a pathway to shared understanding and discarding of knowledge 

that is not used. 

Legitimate Peripheral Participation  

 

Legitimate peripheral participation, as coined by Lave and Wenger (1991), describes how 

newcomers move from a beginner to an experienced member and from experienced member to a 

veteran in a community of practice.  Legitimate peripheral participation is characterized by the 

relationship between the beginners and the veterans with regards to the activities, discourse and 

products of the culture.  Hudson (2010) extends the premise that the process of co-participation 

is integral to learning, as opposed to learning within the heads of individuals.  Lave and Wenger 

(1998) further state that novices enter this process by doing “peripheral” activity.  They describe 

peripheral activity as engagement at the lowest level or residing on the fringe with the least 

amount of participation.  As students progress through the processes, they may assume more than 

one role.  For example, in some engineering learning experiences students may come with 

limited knowledge of designing and manufacturing prototypes, but have developed problem 

solving skills.  Students may engage by observing or offering comments from the “outskirts” of 

the process.  Over time the students will take on more central responsibilities.  This can be seen 

in the example of the student using 3-D design software then moving to a place where the 

designs are used to manufacture prototypes for testing and data collection.  This process is 

tailored towards the student’s inquiry and ability.  The student can be an expert at a lower level 

but a novice at a higher level.  The student moves though this progression at different stages and 

times during their membership in the community.  The student is motivated to learn due to their 

need to gain more knowledge.  The movement continues until the student performs at their 

highest level and disengages from the community.  
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Cognitive Apprenticeship 

 

Brown et al. (1989) developed the model of cognitive apprenticeship which emerged 

from the theory of situated cognition.  Collins, Brown and Holum (1991) state that cognitive 

apprenticeship is a theory that assumes learning is done socially between learners/experts 

through observation, modeling and imitation.  Learning is a process that is done through 

experience and facilitated by an expert.  As stated earlier, the learning is tied to an activity and 

context which a novice joins in a community of practice from the periphery.  The novice learns 

in context and culture as an apprentice as they move though the process of legitimate peripheral 

participation.  Thus, Brown et al. (1989) claim that cognitive apprenticeship supports the learner 

through the acquisition, development and use of cognitive tools during the authentic learning 

activity. 

Collins et al. (1991) describe the traditional model of apprenticeship as the expert 

showing an apprentice how a task is done.  After observations, the apprentice practices certain 

aspects of the task under the facilitation of the expert.  As the apprentice gains proficiency doing 

the task, the expert turns over more responsibility of the task until he feels that the apprentice has 

gained the proper skill to complete the task on their own.  The traditional model is highlighted by 

four aspects of learning: modeling, scaffolding, guided practice and coaching.  

The bridge from traditional apprenticeship to cognitive apprenticeship involves 

transitioning methods used that would relate to a classroom learning experience.  In a traditional 

apprenticeship the skills needed to learn a specific task are easily observable.  Collins et al. 

(1991) claim that the students’ thinking and problem solving skills need to be made visible so 

that the teacher can guide and facilitate their development.  This action is promoted by 

collaborative and collective problem solving.  Also, as with traditional apprenticeship, the tasks 
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arise out of real world situations.  To bridge this idea, Polo (2015) states that cognitive 

apprenticeship emphasizes that learning should be done in context embedded in real world 

problems.  Finally, traditional apprentices learn skills which are inherent to the task.  Schooling 

expects students to transfer knowledge to different tasks.  To bridge this idea to cognitive 

apprenticeship, diverse situations should be presented that show the common use of skills 

learned.     

Lave and Wenger (1991) further developed the social nature of cognitive apprenticeship 

describing how learning occurs in partnership with others.  Learners develop cognitive processes 

while interacting within a social context of a community.  Hung (2001) points to Vygotskian 

thought that individuals can learn more through interacting with others than they could do 

independently.  Brown et al. (1989) support the importance of social interaction stating that the 

learner’s engagement with a culture’s practices affords them the ability to adapt and assimilate 

these norms.  Smith (2004) shows how this premise forms the foundation of the work in artificial 

intelligence (AI).  The study of how robots are programmed to interact and behave in certain 

communities to acquire knowledge is an area of interest in this field.  The robots are 

programmed with the ability to assimilate itself into a membership by observing the members’ 

behaviors and practices and adopting them for the purpose of engagement.  Cognition moves 

from being rich with representations and symbols to a self-organizing system with its 

environment.  The robot becomes a socially active component of the community and participates 

with the formation of resources that are used and are relevant to the context of interest.  Smith 

(2004) claims that knowledge and understanding is distributed socially.  Socially shared 

cognition permits the opportunity for knowledge to be developed for use in a situated activity.  
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Basic Tenets of Situated Cognition 

Lave and Wenger (1988) proposed four basic tenets of situated cognition as a theoretical 

framework: (1) learning is grounded in the actions of everyday situations, (2) knowledge is 

acquired “situationally” and transfers only to similar circumstances, (3) social processes 

influence the way people think, interact and solve problems to attain knowledge, and (4) 

meaning is made socially and is a product of learning.  Brown et al. (1989) argue that the four 

basic tenets underpin the assumption that learners are participating in actual experiences that are 

relevant to the content learned.  First, learning is a function of the activity, context and culture in 

which it occurs.  It is further explained that the activities involved must represent the same that 

are peculiar to the culture where meaning and purpose is socially negotiated.  For example, the 

ruler used by a community of newspaper editors to measure copy layout would be different for a 

community of engineers using a ruler to measure proper placement of support joists.  The 

authenticity of the context, as claimed by Herrington (1995), reflects how the knowledge will be 

used in real life without fragmenting the problem and counting for real world complexity.  

Secondly, Choi (1995) claims that the transfer of knowledge is influenced by situational factors 

and is successful when cognition is anchored in realistic contexts.  Real life problem solving is 

where transfer is most likely to happen.  For example, the Boy Scout transferring knowledge of 

knot tying to storing food tied to a tree out of the reach of animals.  The Boy Scout uses his 

knowledge of knots to make it easy to retrieve the stored food while at the same time keeping it 

secure.  Thirdly, Brown et al. (1998) explain that learners are continuously interacting with the 

cultural values and norms in the process’s context.  As learners engage in authentic contexts, 

they are applying the process as a means of participating in this social structure.  Finally, as a 

participant of a culture, knowledge is developed as well as a sense of when and how to use it.   
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Historical Development 

Situated cognition has its beginnings in psychology, anthropology, sociology and 

cognitive science (Gallagher, 2009).  The question that drives interest in the phenomenon of 

learning is how does cognitive development take place and what is its role in learning?  Young 

(2003) states that the emerging perspectives carry the beliefs that the constructivist platform 

directs the act of meaning making.  These emerging perspectives provide the nutrients where the 

roots of situated cognition are fortified and developed.  Several theories provide the path to 

situated cognition, Lev Vygotsky and John Dewey socio-cultural theory, ecological psychology, 

everyday cognition and critical theory.  

Lev Vygotsky’s view of cognitive development differs from the work of Piaget and 

provides foundation on which situated cognition is constructed.  At the heart of his view is the 

premise that learning is a social experience.  This is a key difference between his view and 

Piaget’s view.  Piaget believed that development must precede learning.  Vygotsky believed that 

“social learning is likely to precede development (Yilmaz, 2011, p. 207).”  Knowledge is an 

internalization of social activity.  Yilmaz (2011) claims that Vygotsky argues that culture plays a 

key role in cognitive development.  The people are important players just as the cultural artifacts 

and practices.  Learners actively engage in all of the interactions between these players to 

construct knowledge and skill.  Subsequently, learning is viewed as the relationship and 

connection between the individual and the society.  This relationship promotes, dictates and 

regulates the development of cognition.  Thus the social experience is bounded by the culture in 

which it inhabits. 

Hung (2001) claims the importance of learning and characterizes it as a social act.  The 

belief is that people construct meanings socially with tools afforded to them or forged by them.  
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People assemble in a community of practice where they develop the rules and structures that 

support the community.  Freeman (2008) argues that the co-creation of knowledge among the 

peers promotes active learning.  Lehman (2014) claims that working from this perspective, 

individuals can be seen as meaning makers of the experiences and situations around them.  It is 

from this community that members are engaged in collaboration and problem solving that leads 

to adaptation, growth and change. 

Lave (1991) states that Vygotsky mentioned how the analysis of child’s psychological 

development is centered around two basic tasks, the analysis of the social situation and the 

analysis of the psychological structures that develop in the social situation.  These ideas underpin 

the concept of Zone Proximal Development (ZPD).  Hung (2001) describes Vygotsky’s ZPD as 

the area or distance between what the learner can do by himself with assistance to what the 

learner can do unaided.  The intent is for the educator to provide experiences that are within this 

zone to enhance and promote learning.  As mentioned before, the focus is not only on the end 

result but also on the process to arriving the end result.  Learning in this zone can be scaffolded 

through the guidance of an expert or in collaboration with other learners.  The formation of a 

community of learners could be created where novices and those who are more developed can 

interact.  During this process the teaching and instruction can be tailored to the individual based 

on the needs within the culture.  

Bredo (1994) argues that John Dewey’s assertion that there is no separation between 

mind and body is another point of foundation for social cognition.  Much of the teaching and 

learning through lecture promotes the idea that learning is done mostly without an interaction 

between the body and the environment.  The situated shift calls for a description of the 

relationship between the learner and the environment.  The relationship is described as the 



 21 

interaction between oneself and its surroundings.  The action is described as orchestrated or 

composed.  Therefore, this relationship results in meaningful experiences that are part of the 

learning process.  Bredo (1994) explains how Dewey describes a transactional system that 

emphasizes the mutual development across abilities.  He characterizes it as the space where 

understanding is obtained through doing.  Meaning is co-constructed between the learner and the 

culture.   The community’s environment is the place where the development occurs. 

Gallagher (2009) says that the systemic view of cognition, which is described as the 

philosophical, psychological and social development, is influenced by theories and designs from 

Dewey.  Dewey’s school explored how learners are able to construct meaning using physical 

models and representations.  The underlying thought is that the facilitation of learning abstract 

and general concepts can be done through the manipulation of models.  Wenger (2014) states 

that these ideas are found in the theory of constructivism and discussed in the response to 

Artificial Intelligence’s model of knowledge acquisition.  The model stated that learning is an 

active process.  Comprehension requires some prior knowledge or experience.  A recurring 

theme is that conceptual understanding is gained by doing.  Bredo (1994) contends that Dewey 

argued against the idea that thinking is a separate activity between perception and action.  Dewey 

states that actively moving and manipulating things shape perception.  From this perspective, 

there is no distinction between mind and body.  The moving involved is part of the 

understanding and meaning making aspect of the process. 

The ecological platform of situation cognition gives the foundation of “situatedness.”  

The relationship of the subject and the environment aids in the process of understanding and 

meaning making.  Pick (1992) states that Eleanor Gibson classified affordance as active 

perceptual learning and development.  Learning is based on the perception through the senses 
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based on what is in the environment.  Thus, sense is made based on the context of the 

environment.   

Everyday cognition solidifies the framework for situated cognition.  Born from the field 

of cognitive science, the area of investigating every day learning strategies of a certain field is of 

interest.  Henning (2004) espouses that everyday cognitive activity uses the relevant and 

situational resources and tools, which have been provided, to produce and construct new 

knowledge.  Here the priority is taking a contrived, concerted and sterile experience to a real 

world authentic study.  The real world authentic study is outside of the formal environment and 

can be viewed as everyday activities.  Everyday cognition views of learning of an everyday 

activity is characterized as developing everyday strategies which are not necessarily taught in a 

classroom but taught in the environment of the situation.  This ideology provides the groundwork 

for activity being situated.  Situatedness is very specific to the activity and authentic in the 

workings and design of the function.  

Ontological Underpinnings 

The ontological question aims at addressing the philosophical ideologies of reality in 

regards to situated cognition.  Ontologically, situated cognition does not accept that there is one 

truth.  Stead (2004) argues that there are many truths present based on how it is perceived and 

situated in relationships.  The implications of this assumption reach far and deep in integrative 

STEM education.  The role of the teacher is reshaped from the traditional sage or expert that 

provides the answer or ultimate truth.  The instructor’s role moves from providing and 

structuring information to the position of guide and co-learner.  The teacher now engages as part 

of the process and facilitates the students through this process.  
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The view of many truths also leads to the idea that the construction of knowledge is done 

socially through the interaction and relationships between actors and tools of the community.  

Scotland (2012) claims that this regard of knowledge construction is done in various ways, but 

the truth is a consensus formed by the participants in the community.  Social construction can 

include an array of different perspectives.  The array includes perspectives from the 

acknowledgement of how social factors shape interpretations to views on how processes shape 

the meaning making.  The appearance of the interpretations leads to a thorough description that 

gives insight and depth. 

Richards (2001) claims a further assumption that learning is based on context.  Human 

thought and action have a strong relationship to context and are affected by the external 

characteristics of the contextual surroundings.  Cobb (1999) argues that the situated context is 

traced to the notion of physical location and explains how this view is apparent in example 

investigations where comparisons are made between learning mathematics in a mathematics 

class and learning mathematics in a technology class.  During the mathematics class, the 

practices and skills learned may develop a different form of mathematical reasoning than what is 

used in the technology class.  Lave and Wenger (1991) attribute this to the social nature of 

engaging in the practice in a particular space. 

 Yilmaz (2011) states that when context is investigated in respect to the learning 

environment it is assumed the environment uses relevant and authentic tools and resources in the 

designed environment.  It is important to provide situations that utilize skills taught and 

developed as the learners use them.  Lave (1988) states the range of use can be from everyday 

use by “just plain folks” to those identified as experts.  As mentioned before, Yilmaz (2011) 

states that since the instructor is seen as a guide and a facilitator, teaching is more concerned 
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with the process of learning rather than the instruction of specific skills.  Through cognitive 

development, understanding and knowledge is constructed using the community crafted tools 

and resources. 

 Theories of situated cognition argue that the learning space is a complex system and can 

be viewed from many perspectives.  Based on the foundation of theory, an allowance is made to 

view the world from many historical and cultural contexts.  Peters-Burton (2014) argues that an 

assumption of the integrative STEM approach is that complex critical thinking and problem 

solving skills are instructed as well as academic knowledge from specific subjects.  Thus, there 

are multiple perspectives that the integrative STEM approach can provide.  These multiple 

perspectives allow for the development of more than discipline content knowledge.  

Development of critical thinking skills, problem-solving techniques and other soft skills are also 

addressed in integrative STEM education.   

Epistemological Underpinnings  

 

The roots of situated cognition are anchored with social constructivism.  Young (2004) 

contends that “Social constructivist, such as Bruner and Vygotsky, recognize that influences on 

individual construction are derived from and preceded by social relationships” (p.376).  Brown et 

al. (1989) claim that the community and culture craft and develop the tools used in practice by 

the input made by the individual members of the community.  The tools are constructed that 

resemble the belief structure and values that permeate the culture of the activity.  This learning 

follows a path where the culture influences thinking.  As learning progresses, changes in the 

individual occur in relation to the community or culture.  The change is part of the process where 

the adaptation and evolution can take place and make new rules and tools. 



 25 

An important aspect to constructivism is that the world and the culture are present from 

birth.  Crotty (1998) argues that there is a pre-existing system in place from birth.  There are 

beliefs and values that have been agreed upon and the acquisition of new knowledge is bound by 

this system and structure. 

 With foundations formed in constructivism, situated cognition formed out of behavioral 

and cognitive science.  From the ideology of systems thinking, symbol manipulation enables 

individuals to describe, express, and create ideas of the environment around them.  Seel (2001) 

holds that situated cognition fundamentally gives the frame that provides meaning making by 

extracting and organizing information from a given environment.  The process gives insight to 

the relationship and interaction between the individual and the environment.  The interaction is 

defined by the cognitive processes, such as activity, characterized by the interaction between 

mind, body and the environment.    

 Now that it is established that the relationship between the individual and the 

environment produces knowledge, Stead (2004) avows that it is important to establish that 

knowledge is culturally and socially constructed through discourse.  He contributes this to the 

social nature of knowledge.  Learning is done through enculturation.  Brown et al. (1989) argue 

that either consciously or unconsciously humans from an early age assimilate behavior and 

beliefs systems of social groups.  By practicing the culture norms and beliefs, meaning is made 

by observation or active involvement.  Through this involvement, individuals have the chance to 

develop a base of knowledge and determine relevancy with regards to the construction of 

meaning.  Practicing also gives opportunity to strengthen their culture’s membership.  By the 

immersion of culture, individuals are given access to the conceptual tools and resources used in 

the activity to strengthen the core of knowledge developed. 
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 Zheng (2010) claims that the research in situated cognition shows that individuals 

participating in valued social practices through the immersion in authentic activities promote 

knowledge acquisition.  Marra (2014) states, “Knowledge that is anchored, or “situated” in 

specific contexts is more meaningful, more integrated, better retained and more transferable” (p. 

226).  Authentic contexts promote engagement from the community and the individuals in the 

community.  Seel (2001) declares that situated, however, differs in understanding among 

cognitive and educational psychologists.  Seel (2001) agrees that the semantics of being situated 

is thought to be a “product of the internal operations which occur when a learner interacts with a 

physical and social situation” (p. 406).  The learner interacts with the situation by making mental 

models to simulate the situation in order to make meaning of the situation.  A model-based 

reasoning is promoted where cognitive operations simulate what is happening in real life.  As the 

learner engages cognitively with the environment, the learner develops knowledge.  This 

knowledge is not a separate entity but is in concert with the surroundings it was derived from. 

 Due to the social nature of knowledge and the process embedded in real authentic 

contexts, issues of power have to be considered critically.  James (2012) declares that knowledge 

is not only constructed socially but it is subject to the influence of the power structures within the 

society.  Investigation into the power structure seeks to uncover issues of social justice and 

marginalization.  The acquisition of knowledge will be a function of emancipation from a power 

structure or the modification of how knowledge is acquired.  Critical ideology seeks to place 

value on the making of knowledge.  The critical perspective places judgment on reality and 

makes a statement for what knowledge should be. 
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Situated Cognition in STEM Learning 

Historically STEM educators have discussed and debated the intention and motivation of 

various models of integration of the four disciplines.  From a positivist’s point of view, the 

integration of the four disciplines would not be necessary.  James (2012) contends that a 

positivist epistemological aim is to obtain knowledge that is descriptive and factual.  This 

knowledge has an independent existence without influence from the environment or the person 

researching it.  From the view of situated cognition, the effectiveness of discipline integration 

can be explained through the lens of obtaining knowledge by doing and investigating the culture 

where it is occurring.  Moye (2014) explains that as STEM education has developed, integration 

has been unclear and void of a consensus form.  The disciplines were taught separately.  

Instruction was described by the formation of silos where learning experiences that were not 

connected.  It has been recognized that integrative instruction promotes the retention of facts and 

abstract concepts as well as an understanding of how to apply knowledge and information gained 

(Wirth, 2008).  The application of STEM concepts in one setting is the intent of integrative 

STEM.   

 Gomez (2013) affirms the description of integrative STEM as learning concepts using 

critical thinking and applying problem solving skills.  The motivation is to gain understanding 

how to apply concepts, processes and design thinking in an authentic context.  The view of 

situated cognition provides a lens to understand the intended purpose of STEM education.  

Learners can obtain an understanding of how things work in the world and how things are 

interconnected.  Moye (2014) maintains that STEM education can enable students to be critical 

of the world and find answers to solve issues present in society.  Peters-Burton (2014) holds that 

the knowledge gained equips the learner with a better understanding.  The learner gains 
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membership in the community and earns the right to the knowledge, resources and tools.  

Therefore, the process gains more meaning pass the low level of just acquiring facts.  Peters-

Burton (2014) reminds that the nature of STEM education is underpinned with an assumption 

that the way of knowing has depths that is not being taught in classrooms today.   

 Integrative STEM education is characterized as student-centered.  Brown et al. (1989) 

argue that placing the student at the center of instruction places responsibility on the students to 

be aware of what they know and what they do not know.  In light of the shift in responsibility, 

the integrative STEM model calls for an instructor that has the ability to navigate and facilitate 

this space.  Billiark (2014) states that the model calls for a well-trained instructor equipped with 

strong social constructivist pedagogical skills and content knowledge.  Although the content 

knowledge is not taught where the expert is pouring the knowledge from their container into 

their heads.  The content knowledge is used as a resource to guide students in a direction to 

conduct their own research.  Brown et al. (1989) state that the teacher is more of a guide and a 

resource that allows the students to move through the experience regulated by their own inquiry.  

Here the teacher and student assume the roles of expert/apprentice.  Brown et al. (1989) argue 

that cognitive apprenticeships provide unique experiences where learners are immersed in 

authentic practices and use tools of social interaction in the process of meaning making.  Collins 

et al. (1991) describe cognitive apprenticeship as people learning from one another through 

observation, imitation and modeling embedded in an authentic activity.  Due to the complexity of 

the problem, many solutions or strategies can be formulated to show that there is not an absolute 

process to solve or a singular solution to the problem.  In the generation of their own solution, 

learners become conscious and creative members of the culture and use the tools germane to the 

culture and the community. 
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CHAPTER 2 

 

A Review of the Literature 

 

The acronym STEM Education has been catapulted into national focus and is a point of 

debate among politicians, school personnel, parents and students.  The world is evolving into a 

technology driven society.  Bybee (2013) states that many of the jobs and careers needed to 

support innovation are currently and will be rooted in STEM disciplines.  As a result, President 

Obama has made education reform a high priority in his administration and platform.  He 

commissioned the President’s Council of Advisors on Science and Technology (PCAST) to 

examine the education system.  PCAST (2010) released findings outlining the need for better 

teaching and learning in STEM disciplines.  The council made an explicit call for 100,000 well-

trained STEM teachers with many added to the field of mathematics.  The committee suggested 

that these teachers should have strong content knowledge and pedagogical skills.  Along with the 

need for better instruction, there is a push to design and create a learning environment that 

promotes discipline integration and encourages the use of technology.  The intended result is to 

produce a generation of students equipped with critical thinking and problem solving skills. 

Armed with these skills, the hope is that he or she becomes STEM literate and pursue a career in 

a STEM field.   

A closer look at the relevant literature revealed a lack of clarity in the focus of STEM 

Education.  The acronym is defined in various ways and has several connotations contingent on 

the teacher, administrator, state department personnel or politician.  Out of the many 

interpretations, ideas have emerged that stress the importance of K-12 discipline integration.  

Yet, depending on the grade band and school, the appearance of integration can look very 

different.  In many schools, integration is in the form of the science classroom incorporating 
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mathematics as a tool for statistics and to calculate measurement.  There is a call to expand this 

perspective and provide a richer and more meaningful learning experience. 

This literature review is divided into four parts.  First, I will examine the development of 

STEM education historically to provide a context to why STEM Education is relevant and 

important.  A review of science and mathematics instructional models will provide the platform 

on which STEM is constructed.  Major national events that inspired government policy and 

change will be discussed.  The discussion will lead to an examination of how the writing of 

national science and mathematics standards influenced the development of STEM.    

Secondly, I will explore successful designs and implementation of integrative STEM in 

K-12 grades.  The integrative STEM instructional model will be defined to provide a foundation 

for how the STEM disciplines are woven together.  Strategies of implementation will be 

identified and discussed.  Literature on the inclusion of the engineering design cycle will be 

reviewed.  The role of engineering and technology will be examined in integrative STEM 

education.  A discussion will examine how Common Core Mathematics Standards and Next 

Generation Science Standards both call for integration across disciplines and inclusion of the 

engineering design cycle into instruction.  

Next, I will focus on instructional practices.  This section will discuss the role of 

pedagogical practices such as problem-based, cased based and inquiry based learning in STEM. 

The use of robotics, 3-D design and printing will be considered.  Finally, the last section will 

investigate methodological challenges and literature gaps.  These challenges include an 

examination of how research is defined, how areas of inquiry are determined and how evidence 

is presented to achieve the goal of successful problem based integrative STEM education.  With 

STEM being a relatively new area of inquiry, the gaps in the literature will be highlighted.  
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Development of STEM 

The literature review on the development of STEM will focus on the need for STEM and 

provide a brief historical context. 

The Need for STEM 

US News (2014) reports that according to their recent rankings of the 100 best jobs in 

2014, 10 out of the top 10 best jobs listed are careers rooted in science, technology, engineering 

and mathematics.  For the first time in the history of their rankings, the number one career is in 

the technology field.  Software Developer is at the top of the list with a forecast of nearly 

140,000 brand new positions predicted before 2022.  With over half of the top 100 careers 

belonging to a STEM field, the business and industry sector have pressured education leaders to 

prepare students to critically think, problem solve and be STEM proficient and literate.  The 

appropriate time of instruction to address these concerns is important.  Hossain and Robinson 

(2012) argue that researchers have determined that the skills and competencies needed for these 

careers are developed during the late elementary and middle school years.  Hossain and 

Robinson (2012) claim that between the fourth grade and eighth grade developmental period is 

where students make choices to study STEM subjects.  The literature reflects that an increase of 

STEM programming occurred in the upper elementary to middle grades.  With students 

graduating without STEM competencies and skills, the demand is not being met.  The looming 

prospects reported by the White House have determined that STEM education will be a focus of 

policy in efforts to address the needs. 

Historical Context 

 

Reform of education has been constant since the start of the 1900’s.  Ma (2013) credits 

the October 4, 1957 Russian launch of the first artificial satellite, Sputnik, as the launching point 
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for the modern movement to examine science and mathematics education in the United States.  

The short flight of the satellite alarmed citizens.  The launch was perceived as a threat to the 

general public of the United States.  Wissehr et al. (2011) affirm that not only did concern grow 

that Russia was a major cold war threat of the time, but the United States was losing the 

technology race to them as well.  The perception of Russia’s military superiority was determined 

by Sputnik’s launch.  This motivated America to critically assess their ability to compete.  One 

of the areas of response identified was to improve education.  

The improvement of education called for reform of science and mathematics education.  

Science and mathematics educators were excited about the possibility of designing and 

implementing innovative rigorous curriculum.  As Jolly (2009) maintains, Title III of NDEA 

(National Defense Education Act) provided states with matching funds to strengthen 

mathematics, science and foreign language instruction.  The funding would include better 

equipment, resources, and professional development for teachers.  Along with a focus on 

improving teachers, the NDEA also provided funding for programming to increase interest and 

participation for students going into science or mathematics research.  

Dancy and Johnson (2010) assert that instructional practices in science and mathematics 

classes relied heavily on basic lecture and rote memorization at the turn of the century.  These 

predominant methods of instruction prevailed instead of engaging and thought provoking 

teaching and learning experiences.  Instruction of the science laboratories relied on step-by-step 

instructions with sterile predetermined results.  National Science Board (2007) maintained that 

these instructional practices led to a STEM illiterate America.  Students were graduating without 

critical thinking skills and a depth of content knowledge.  Burke and McNeill (2011) affirm that 
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new methods would have to be explored to address the substandard academic performance in 

schools.  

Breiner et al. (2012) argue that at the beginning of the century, the letters of SMET were 

rearranged to form STEM.  Vasquez (2014) further holds that former Director of NSF, Dr. Judith 

Ramley was the first to coin the term.  Dr. Ramley believed that SMET sounded too close to 

smut and incidentally placed superiority on science and mathematics because of their order in the 

term.  Breiner et al. (2012) state that Dr. Ramley wanted to emphasize the application of science 

and mathematics by placing them on the outside of technology and engineering.   

With the separate letters in the acronym STEM being taught in their respective silos well 

into the turn of the new century, each acquired a particular definition.  Dugger (2010) says that 

each of the letters in STEM were defined as such: science is concerned with what exists in the 

natural world, technology is the modification of the natural world, engineering is the profession 

where the knowledge of math and science are used to develop for the benefit of mankind, and 

mathematics is the science of patterns and relationships.  Bybee (2010) argues that STEM will 

have to go beyond the acronym and determine its meaningful existence and determine what it 

means for educational policies, programs and practices.  This initiative will provide a blueprint 

for consensus.  Identified in the blueprint will be standard practices and strategies that will 

promote success in STEM teaching and learning.     

Integration to Integrative STEM 

 

Heil (2013) argues that after the coined conception, there was still considerable confusion 

on what STEM education was and how it looked.  Definitions of this newly formed space varied 

from class to class, school to school, district to district and state to state.  Stolhmann (2012) 

asserts that the idea of interdisciplinary education is beneficial and needed.  The concept of 
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interdisciplinary instruction was not new.  But as claimed by Heil (2013), there was no 

consensus on a succinct definition of integrated STEM instruction or a description of the 

appearance of integration in the classroom.   

Dugger (2010) maintains that there are a number of ways to teach STEM that utilizes 

several strategies of integration.  One method of STEM instruction is by teaching each discipline 

separately without integration.  Hernandez et al. (2014) hold that this manner of instruction 

neglects technology and engineering but focuses only on mathematics and science.  This method 

continues the traditional manner of teaching these subjects independently from the other.  

Dugger (2010) claims another method of STEM instruction is where engineering is integrated 

into science, mathematics and technology.  Becker (2014) affirms an example of how the 

implementation of an engineering design project focusing on water sources was used in an 8th 

grade science class.  The water sources and water cycle are the main concepts instructed and the 

engineering design cycle is used to facilitate the problem solving for the challenge.  Another 

method claimed by Dugger (2010) is a comprehensive approach to integrating all of the 

disciplines.  This method teaches the combination of all the disciplines into one integrated 

subject.  Reeve (2015) characterizes this approach as a space where real world lessons are 

coupled with rigorous and relevant science, technology, engineering and mathematics concepts.  

The concepts are related and taught appropriately in the same lesson, same time and same 

classroom.  The literature describes this space as the ideal level of integration.  Dugger (2010) 

argues that the manner of instruction prevalent in schools today is where emphasis is placed on 

two of the four disciplines.  The two disciplines most likely to be integrated are mathematics and 

science.  As Hansen and Gonzalez (2014) state that integration focused on math and science is 

easily implemented.  Robertson and Carrejo (2011) give an example of teachers using modeling 
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as an approach to integrate mathematics and science concepts.  Inquiry activities were discussed 

that use mathematical modeling to unify key physics concepts.  The idea that is in agreement of 

all of the methods of integration except the first manner, as stated by Breiner et al. (2012), is that 

integration should be purposeful and deliberate. 

Many States have utilized standards to motivate integration.  Dobson et al. (2013) reveal 

that state and local education agencies are adopting their version of the Common Core 

Mathematics Standards and the Next Generation Science Standards.  Capraro (2014) contends 

that Common Core Mathematics Standards challenge students to apply mathematical thinking to 

real world situations and engage in mathematical thinking and reasoning.  Many of the activities 

that exercised mathematical thinking could be connected to other disciplines, such as science and 

art.  The same movement could be seen in the science standards.  Kracjik (2014) voices that 

there is a concurrent movement to integrate science concepts contextually with other disciplines.  

The movement allows for the integration of science, mathematics and engineering concepts.  For 

example, the understanding of human locomotion can lead to the engineering of prosthetic limbs 

for injured soldiers returning from war.  Capraro (2014) offers another example how the 

concepts of data analysis and science are integrated to provide opportunities for students to make 

data driven decisions using modeling.  In this example, integration is motivated by the 

mathematical practices in the Common Core and the crosscutting concepts of the Next 

Generation Science Standards.  Both practices focus on problem solving using models.  Ardito 

(2014) supplies an example how robotic models were used in an authentic context to explore the 

concepts of force of motion and measurement.   

Wang et al. (20011) argue that the movement was not only in mathematics and science 

standards, but was in the emergence of engineering and technology standards as well.  In 
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engineering standards, the focus of STEM education and integration should be on the application 

of mathematics, science and engineering design.  Hernadez et al. (2014) maintain that the 

presence of engineering standards puts emphasis on process and design of solutions.  With the 

focus of the universal systems model and the engineering design cycle in instruction, students are 

engaged in meaningful experiences in the application of science, mathematics and technology.  

The literature shows students participating as scientists and engineers conducting experiments, 

analyzing and interpreting data. 

The presence of various strategies to integrate STEM disciplines shows an area of growth 

to develop a unified definition.  Basham et al. (2010) argue a common theme echoed in the 

literature that integrating all disciplines across the curriculum is a main characteristic.  Heil 

(2013) further describes the common theme of integration as spaces where students are 

challenged to problem solve and engage in inquiry.  Science and mathematics content and 

processes are explicitly integrated with engineering and technology.  But as Heil (2013) 

contends, integration is more than the merging of concepts.  Kain (1993) argues that there are 

two purposes for integration: 1) to increase engagement and 2) to increase performance.  Thus, 

the idea of integrative STEM is conceived.  Wells (2013) defines integrative STEM as the 

application of technological/engineering design approach to teach mathematics and science 

concepts at the same time.  Sanders (2009) deepens the definition by arguing that integrative 

STEM education includes research and design in efforts to solve a real world problem in an 

authentic context.  Integrative STEM also is not exclusive from other disciplines, but is inclusive 

of concepts from language arts to social studies.  Dugger (2010) argues that this is the most 

progressive view of STEM integration.  Breiner et al. (2012) describe the integration as the 

instruction of one cohesive entity.  This manner of integration is similar to how STEM 
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professionals naturally work in this space without sectioning the individual STEM disciplines.  

Reeve (2015) claims that students engaging in integrative STEM perform the same practices as 

engineers applying principles from mathematics and science. 

Instructional Practices 

 

Pedagogical Approach 

 

 Huber (2002) argues that pedagogy refers to the method and practice of teaching.  

Glasgow (1997) contends that the student-centered model assigns the role of guide and facilitator 

to the teacher.  The teacher-centered model views the teacher as the expert and deliverer of 

knowledge.  Heil (2013) declares that many student-centered models are being used in 

integrative STEM.  The models include, but are not limited to, case-based, guided inquiry and 

project/problem based learning.  Holstein (2013) shows teachers using guided inquiry to 

implement mathematical decision-making curriculum.  The emphasis of the curriculum is using 

mathematical models based on technology and engineering concepts to solve real world 

problems.  Gehlhar and Duffield (2015) explain how teachers use case-based techniques to 

promote students to become global thinkers while building awareness of STEM related fields.  

 Smith et al. (2009) argue that project/problem based learning strategies work well with 

integrative STEM teaching and learning.  Project/problem based learning involves the process of 

working toward a solution or a challenge.  Savery (2015) claims that project/problem based 

learning is a student centered approach where the learner integrates theory and practice to 

develop solutions to problems or challenges.  A critical component to the approach is the 

selection of a real world, ill structured problem.  The problem represents an authentic context for 

the application of the concepts and skills acquired.  The teacher becomes a guide and facilitator 

in the learning process.  Capraro (2014) states that problem/project based learning affords the 
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students the ability to collaboratively engage with other students in the problem solving process 

while receiving guidance from their teacher.  Savery (2015) outlines characteristics of 

project/problem based learning which include: 1) students take control of their own learning, 2) 

ill structure design of the problem, 3) the integration of many disciplines, 4) essential 

collaboration, 5) communication of concepts learned, 6) self and peer assessment and 7) 

project/problem based learning must be the pedagogical base of the curriculum.   

Estes, Liu, Zha and Reedy (2014) claim that the belief of how learning is done and 

meaning is acquired should be reflected in the design of the learning space.  For collaboration to 

be effective in project based learning, the classroom has to afford them the opportunity to 

discuss, perform research and test ideas and claims.  The learning space has large round tables 

especially designed for collaboration around computer workstations where work can be viewed 

equally from different positions.  Students are encouraged to work together as they research, 

plan, design, test and iterate the solution to the challenges.  These characteristics are found in the 

literature to be successful aspects of integrative STEM instructional models. 

Project-based learning mainly involves areas of constructivism and situated learning 

theories.  Blumenfeld (1991) argues that students join together and cooperate to solve an 

authentic problem.  Based on prior knowledge, students collectively construct new knowledge.  

Marra (2014) argues that when engaged in this approach, students are given the opportunity to 

construct knowledge as a member of a community of learners that participate in teamwork and 

problem solving using various but shared methods.  Project-based learning has shown in many 

studies that learners are benefited by group problem solving experiences and gain knowledge 

where there is an opportunity for various outcomes and solutions.  Strobel and van Barneveld 

(2009) concluded through a qualitative synthesis of a meta analyses of problem based learning 
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that the effectiveness of teaching is enhanced using this method.  Tseng, Chang, Lou and Chen 

(2011) assert that using problem based learning enhances the student engagement and interest in 

STEM concepts.  Their study’s purpose was to understand student motivation and attitudes while 

engaging in an electric vehicle challenge. 

 Tamim (2013) claims that teachers use project/problem based learning as a way to 

initiate, navigate, reinforce or extend content.  Concepts can be introduced with a problem or a 

challenge to create student interest.  When used as a lesson starter, student inquiry can generate 

motivation to research the concepts taught.  Using the project/problem based learning experience 

to navigate content gives the teacher opportunity to teach the concept where it naturally occurs.  

The answer to the student’s question, “when will I ever use this”, is answered.  Using 

project/problem based learning techniques to reinforce or extend concepts presents opportunities 

for the teacher to use an alternative assessment to written tests.  Jones et al. (2014) explain that 

collaborative project-based learning experiences can also be used as a capstone project to assess 

learning at the end of a course. 

 Estes et al. (2014) argue that the problem based learning environment is active and 

promotes engagement and collaboration.  The literature agrees with this statement.  Kolodner, 

Camp, Crismon, Fasse, Gray, Holbrook and Ryan (2003) affirm the use of challenge activities, 

such as balloon powered vehicles to motivate collaboration between students.  The study 

contends that situating the students as practitioners in a context that represents a real world 

problem engages and interests the learners.  The STEM learning environment must be designed 

for active, student-centered, project based learning experiences.  The environment must allow for 

authentic activities designed to show STEM relevancy and connections to STEM careers.  The 

learning environment must also relate to students’ interests and develop skills that will aid the 
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students in their field of interest.  Tamin (2013) argues that the design of the space permits 

students to engage in the iterative process of research, design, solve, test, and redesign.  The 

collaboration of students will promote the development of critical thinking skills needed to 

become successful in STEM concepts. 

Innovative Instructional Technology   

 

Grubbs (2014) argues that technology influenced education with the America’s 

participation in the Space Race and was motivated by the technology rich event of placing men 

on the moon.  Technology motivated education reform but was absent in the use of daily 

classroom instruction.  The literature discusses the current instructional technology that increases 

the quality of current integrative STEM education.   

Catlin (2012) explains that educational robotics engage students in learning activities 

mediated by technology requiring solutions to problems using engineering.  Alemdar and Rosen 

(2011) affirm that robotics is an effective tool that is used in the integrative STEM classroom.  

Casteldine (2011) contends that using robotics in an instructional setting has the ability to 

motivate problem solving and encourage innovation.  In the effort to develop these skills, the 

literature points to the use of the robotics platform to motivate student inquiry and sharpen 

investigation and experimentation skills.  As the use of the robotics platform grows, the need to 

expand their use into the engineering discipline becomes increasingly apparent (Casteldine, 

2011). 

By the same token, Ardito et al. (2014) describe the use of the robotics in a sixth grade 

classroom.  The goal of the instruction was to introduce the robots in a manner that explores the 

relationship between the learned concepts in mathematics and robots.  This was done in a manner 

where the students intuitively connected the skills.  Problem solving skills were nurtured and 
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inquiry was encouraged.  Benitti (2012) argues that robotics has been used to support other 

disciplines, but there is a shift in the role robotics will play in the future of integrative STEM.  

Furthermore, Schelly et al. (2015) explain that robotics competitions and races began to 

give way to innovation and creation with the emergence of 3-D printing.  Eisenberg (2013) 

reports that with manufacturing and innovation being seen as a place of weakness for U.S. 

students, 3-D design and printing provides opportunities for students to gain these competencies.  

Also, using prototyping activities offers exposure and experience that is very close to real world 

application.  With the emergence of real time technology, the organization of the school 

environment and instructional design are constantly changing in the literature.  Lipson (2007) 

argues that 3-D printing and prototyping engages the students in active learning.  Students are 

able to feel and touch the prototype model and have discussions about their design.  Also, 

Schelly et al. (2015) explain that 3-D prototyping leads to students becoming proficient in data 

driven decision making and being contributors as well as consumers of content and knowledge. 

The literature informs that these developments in the use of robot technology lead to 

unique integrative STEM experiences.  Brown (2012) discusses how the development of 

technology has created ways to integrate science and technology in a manner where true 

collaboration between the disciplines can occur.  He discusses how technology is the discipline 

that can inspire, ease and motivate the integration with the other disciplines.  Wells (2013) 

reports that the underpinning of technology leads to the definition of the concept of integrative 

STEM.  Wells (2013) calls this manner of integration a new paradigm where 

technology/engineering, design based activities are used to intentionally teach core discipline 

concepts. 
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Related Studies 

 

An examination of the literature shows a wide range of studies with varied purposes.  For 

example, some studies were conducted at all grade bands from elementary schools to 

undergraduate levels, while others focused on instruction outside of the normal school day.  

However, these studies had little focus on STEM student performance and engagement (Brown, 

2012).  PCAST (2010) highlights the fact that upper elementary to middle school are periods of 

interest to study.  Nevertheless, very few studies have been conducted to show STEM student 

performance and engagement during regular instruction at the middle school level.  

  Inspecting the literature, it is clear that there is emphasis on two major areas: 1) student 

engagement in STEM as extracurricular activities and 2) student self-efficacy after participating 

in a STEM activity. 

   For example, Yuen, Boecking, Tiger, Gomez, Guillen, Arreguin and Stone (2014) 

conducted a study examining the nature of community and collaboration and how it developed 

during elementary and middle school students’ engagement in a summer robotics camp.  The 

researchers investigated the type of group tasks, activities, dynamics and interactions that 

occurred during collaborative projects and predicted on-task behavior.  The participants for the 

study were 3rd to 8th grade camp attendees assigned by the researchers.  The quantitative study 

was conducted using group observational forms and behaviors were recorded using momentary 

time sampling by determining the percentage of occurrences in a ten-minute observational 

period.  A stepwise multiple regression was used to find predictors for on-task behavior.  The 

study found that children were mostly on-task during the collaborative robotics projects.  

Students were close in proximity with their group and did not exclude others from working with 

the group.  Discussion plays a large part of the collaborative process.  Students were engaged in 
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discussion during problem solving as well as conversations that addressed the team’s work on 

the solution for the challenge.  The study showed that the collaboration observed justified the use 

of group projects using robotics in a problem based learning environment.  During the study, 

there was an unscheduled regrouping of the students.  The researchers did not anticipate 

movement between the groups.  Therefore, the researchers could not track the students as they 

moved from one group to another.  Furthermore, the camp was independent from the researchers 

thus the researchers did not have any input in the structure of the camp.   

In a similar manner, Barrett, Moran and Woods (2014) developed a study that measures 

the changes in students’ knowledge and understanding after engaging in a STEM unit during a 

summer camp.  The study investigated how the integration of meteorology and engineering 

changed student engagement and performance.  The Naval Academy Department of 

Oceanography and Mechanical Engineering developed an interdisciplinary unit for their summer 

STEM camp.  The module was intended to present basic concepts in meteorology and 

engineering.  The result was the design of a prototype that was be tested in a wind tunnel.  The 

goal of the unit was to improve awareness of severe weather hazards.  The module’s objectives 

were to increase student knowledge about meteorological factors associated with tornadoes and 

increase their understanding of structures in high wind environments.  The quantitative study 

included approximately 160 participants ranging in age from 12 to 16.  The study employed a 

pre/post test design with classroom observations.  The outcomes indicated that the students 

learned content in both meteorology and engineering.  The study documented content learning as 

a major finding due to the fact that most studies do not report this occurrence.  The researcher 

mentioned a number of limitations including the small number of items on the pre/post test, the 
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pre/post test only attended to short term learning, and the project occurred outside of the school 

day.  

For an example involving robotics competition, ChanJin, Cartwright and Cole (2014) 

evaluated the impact of participating in a robotics competition in upper elementary to middle 

schools across several states.  The competition lasted 3 to 4 months with students engaged in 

afterschool experiences.  The study was based on beliefs that using a robotics based pedagogy 

offered opportunities for multidisciplinary integration, transference of abstract concepts into real 

world applications and engaged students in meaningful hands on learning opportunities.  The 

goals of the study were to attract students to STEM subjects and careers and increase 

preparedness for college by increasing proficiency in STEM disciplines.  The study used robotics 

competitions to teach mathematics and science concepts including but not limited to, numbers 

and operations, algebra and force of motion.  Students in the control group were from the 

southeastern portion of a particular state.  The students that formed the experimental group were 

randomly chosen from different states.  Instruments used were pre/post assessments aligned to 

5th through 8th grade mathematics concepts.  The findings reported improved mathematics scores 

as students participated in the robotics competition.  Several limitations were identified by the 

researchers.  The control group represented the general US population.  However, in regards to 

gender, the experimental group displayed an unbalanced gender representation in favor of males.  

Moreover, the experimental group had prerequisite knowledge of STEM and had a high interest.  

There was no concrete incentive for the students to do well on the assessment which may have 

influenced assessment scores. 

    On the other hand, in the area of gaming, Alfieri, Shoop, and Schunn’s (2015) study 

examined the use of a computer based 3D robot game to teach engineering design and 
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proportional reasoning skills with a focus of reinforcing mathematics understanding.  The case 

study was designed to investigate effects within three diverse sites.  Approximately 120 students 

participated from grades 6 to 8.  The study employed pre/post tests, prior experience and 

motivation surveys.  The pre/post tests were analyzed first using ANCOVA and then by paired 

sample t-tests.  Overall, the researcher’s intervention improved scores on proportional reasoning.  

There was also an increase noted in student interest of mathematics using robotics.  The 

improved outcomes were attributed to the instruction of a specific mathematics topic, simplicity 

of robot programming, the reduced need for guess and check and the presence of specific world 

problems associated with the general application of the intervention.  The study was limited by 

the short duration, week long intervention time.  The need for a longer study would address this 

issue.  Also, the study’s lack of a control group to give comparison brings forth another 

limitation. 

      In the area of self-efficacy and attitudes, Star, Chen, Taylor, Durkin, Dede and Chao 

(2014) evaluated the impact of technology based activities on the students’ short term motivation 

for learning mathematics.  The purpose of the study was to explore the impact of the four-day 

intervention on student’s motivation in mathematics and the extent of the impact influenced by 

the type and nature of the technology used.  The three different technology environments 

included virtual environment, web based pre-packaged curricular activity and video.  The 

researchers hypothesized that the virtual environment and the web based activity would have the 

strongest impact.  The quantitative study was conducted with 350 teachers and 19,000 students 

from 38 elementary and 12 middle schools.  For the research, a pre/post test experimental design 

was used.  After the pretest administration, teachers were randomly assigned to one of the three 

technology interventions.  Data was collected to provide a description on the quality of 
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implementation in regards to professional development and math lesson implementation.  

Analysis of the data revealed no significant gains found in the students’ self-efficacy.  With 

respect to the students’ view on math learning, all three technology interventions had modest 

improvements.  The impact of the technology and student level factors had moderate influence 

on the motivational impact of the technology intervention.  Data showed that the second 

technology intervention was more successful over the other two.  The researchers reported 

several limitations including the large amount of missing data, short duration of the study and 

absence of the posttest at the end of the intervention.  

     Another international study examining student attitudes was conducted by Cuperman 

(2013) in Israel, which highlighted the relationship between engineering and science.  In this 

examination, the students were immersed in the process of learning by doing while at the same 

time investigating and exploring science concepts. The learning by doing included hands on 

activities that related to the concepts instructed.  The investigation reviews the specific features 

of learning presented during this approach and the students’ attitudes towards this learning 

practice.  The study used a multi-case framework based on grounded theory methodology.  

Constant comparison procedures of data collection and refinement were focused on robot design, 

redesign, learning activities, prototypes and perception of learning with models.  The researchers 

found that students were highly engaged and motivated to learn scientific and technological 

concepts using models that facilitated the learning and understanding of biological and 

engineering concepts.  A major limitation was reported, namely the lack of triangulation between 

student questionnaires and interviews was not addressed in the study. 

     The studies reviewed present findings that did not address STEM discipline 

integration and its impact on learning in the mathematics classroom.  Also missing from the 
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literature are the potential factors that influence student engagement and performance when 

students are engaged in STEM instruction during the school day.  Brown (2012) and others claim 

that there is a need for rigorous mixed methods research that examine the impact of integrative 

STEM on student performance, proficiency and engagement.   

Literature Gaps 

 

     The review of the literature presents four gaps where two methodological challenges 

emerge.  The first methodological challenge that unfolds in the literature reflects the lack of 

longitudinal studies that investigate the impact of integrative STEM over an extended time.  The 

inspection of the literature does not provide longitudinal studies showing a correlation between 

integrative STEM instruction dosage to engagement and proficiency in STEM disciplines for 

secondary and post-secondary grade levels.  Secondly, Brown (2012) argues that with the 

newness of integrative STEM teaching and learning, there is a challenge to show a causal 

relationship between integrative STEM teaching and student performance.  Empirical research is 

lacking that reports the explicit investigation of how STEM experiences lead to hypothesized 

outcomes. 

     With regards to the gaps, the literature calls for a narrower focus and strategic 

definition of research in the field of STEM education.  Brown (2012) states that the literature 

shows varied instruction of STEM integrated concepts and there are inconsistencies on how to 

effectively design and implement an integrative STEM learning environment.  The literature 

reveals a need for research committed to defining STEM integration and providing evidence of 

successful strategies.  

   Thirdly, with the lack of STEM integration focus in the literature, there are many ways 

to show and provide evidence of the outcomes.  The literature does not show evidence presented 
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that can lead to reform of instructional practices.  Smargorinsky (1995) insists that it can be 

problematic if the data collected does not lead to analysis that produces evidence that 

demonstrates development and advancement.  Often evidence may address the individual 

disciplines in STEM and not the integration of STEM.  Evidence from the analysis should focus 

on the integrative nature of STEM and how it is instructed.  Brown (2012) contends that the 

analysis should be focused on the outcomes that inform strategies of implementation of 

integrative STEM curriculum.  Several models of implementation could include the instruction 

of the curriculum in an elective or connections strand or the instruction of the curriculum in a 

single discipline class that integrates the other disciplines in the same learning experience. 

Lastly, the literature is lacking a detailed description of implemented integrative STEM 

curriculum.  Specifically missing is the research showing how integrative STEM curriculum 

reaches high level mathematics skills and goes beyond concepts of statistics and measurement.  

The literature does not address how the curriculum supports the integrative STEM teaching and 

learning environment.  The effectiveness of the curriculum has not been reported and is widely 

missing in the literature.  Brown et al. (2011) state that there is an area available to explore the 

curriculum’s effectiveness and how it supports the ideology of integrative STEM. 

Generally, STEM education research has been done with a solid base of a wide range of methods 

and analysis, but suggests that the area of research regarding description be explored in detail 

and depth (Brown, 2012).  The literature begins the exploration of some strategies used in 

instruction and their effect on student engagement.  Problem–based learning is highlighted as a 

major instructional strategy that is widely used.  The need to develop critical thinkers and 

problem solvers is evident across the literature.  The gaps show there is a need to do research that 

unveil characteristics of effective integrative STEM curriculum and teaching during normal 
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school hours.  The research should provide an understanding and description of the learning 

environment to inform instructional design and influence student performance and engagement. 
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CHAPTER 3 

Methodology 

 

The purpose of this study was to investigate and describe the effects of using project-

based integrative STEM modules on eighth grade students’ performance and engagement in a 

unit on functions in Algebra.  The study was guided by the following research questions: 

1. What is the effect of using project-based, integrative STEM modules on 8th grade student 

performance and engagement in learning a unit on linear functions?  More specifically, to 

what extent are grade 8 students able to make connections between linear functions and 

its applications? 

2. What STEM-related situational factors contribute to 8th grade students’ success in 

learning using project based, integrative STEM modules?  

Research Design 

 

This study employed an exploratory single case study approach.  Yin (2014) states that 

the motivation for doing case study research lies in the interest to understand a real world case.  

By developing understanding for this real world case, reasons and conditions that are related to 

the case will become apparent.  Yin (2014) further declares that there are three conditions that 

could determine the use of case study: 1) the manner of research question, 2) the degree of 

researcher control and 3) the degree of focus on contemporary events desired.  The first 

condition will be discussed later in the research design.  Yin (2014) reasons, according to the 

second condition, that case study is preferred when the examination of the event is done in real 

time, but relevant behaviors cannot be managed.  Direct observation of the integrative STEM 

instruction enabled exploration of the factors that influence student performance and 

engagement.  The second condition was also addressed by the acknowledgement that the 



 51 

motivation to examine the intervention, the instruction of integrative STEM module, provided 

opportunity to collect data from many different sources.  As Yin (2014) holds, the presence of 

many different sources does not require control of the researcher.  

The case study can be classified as exploratory due to the nature of the questions as 

required by the first condition mentioned earlier.  Yin (2014) argues that “what” questions are 

exploratory due to the ability to develop hypotheses and propositions that can be further studied.  

Gomez (2013) expresses that the integrative STEM education model is a fairly new area of 

research and in search of a systematic approach to meet the demands currently placed on schools. 

Acknowledging the relatively newness of integrative STEM teaching and learning justifies the 

use and rationale to conduct an exploratory case study (Yin, 2014).  The interest, as Thomas 

(2014) asserts, lies in exploring a phenomena or events that warrant an investigation into areas 

that lead to further discoveries. 

This case study is bounded by the project based learning instruction, the integrative 

STEM curriculum and the use of instructional technology (robotics kits, 3-D design and printing) 

in two 8th grade mathematics classes.  The case is further bounded by the 8th grade pacing guide 

for the curriculum.  The integrative STEM unit covers concepts and standards addressed in the 

school’s second quarter of the first semester pacing guide.  The mathematics concepts included 

single variable equations and linear functions and the science concepts included force of motion 

and the practice of data visualization.  

Yin (2014) argues that to explore a case that is unusual and deviates from everyday 

practice, a single case design should be employed.  Pinnell et al. (2013) maintain that the 

integrative STEM model is relatively new and differs in the instructional practices currently used 

in the classroom.  Bybee (2010) argues that one of the most significant challenges in STEM 
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instruction is introducing real world context into instruction.  The hurdle calls for an approach to 

instruction that emphasizes addressing the real life problem and situation in the development of 

concepts and practices.  Clearing this hurdle calls for a change from the lecture of abstract 

concepts to the application of context based instruction.  Resta, Christal, Ferneding and Puthoff 

(1999) claim that the use of technology as a tool to change teacher practice presents a significant 

challenge.  Roles of the teacher and the student are changed as a new manner of instruction is 

implemented.  The learning environment is new and contrasts what is done in traditional 

schooling.  As Yin (2014) states, an extreme or unique case is a rationale for single case design.  

The manner of student engagement and participation in this unique STEM teaching and learning 

model used in this study explored and identified effective strategies using real world contexts 

and real time instructional technology (i.e. 3-D prototyping).  

The single exploratory case study was employed at one purposefully selected school.  

The school was purposefully selected due to the availability of resources needed for the 

instruction of the curriculum.  The study investigated the experience of students designing and 

testing 3-D printed prototypes in response to an engineering design challenge.  During the study, 

students collaborated in groups to design and create a foot like device for a robot model of an 

insect.  The major goal for the students was to better the performance and efficiency of the 

robotic insect’s movement.  The uniqueness of the activity begins with students approaching the 

challenge using the engineering design cycle developed by Hynes et al. (2011).  Students 

conducted the same practices and used the same tools that engineers currently use to respond to 

the design challenge.  Through testing and data collection, students used data to drive decisions 

to facilitate and aid the problem solving process.  For example, students used graphs and 

calculations to determine the evidence of slippage in the robot’s movement.  The gathering of 
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data helped the students make decisions for the design of the foot like device.  Bybee (2010) 

argues that the manner of data driven instruction is uncommon in classrooms.  Also, the 

instruction occurred in a school in a high needs district.  The school lacks access to tools and 

resources currently used in industry, much less average classrooms in the district.  Providing the 

school with these tools and resources allowed for the investigation of the influence these items 

had on students who usually would not have access to these resources.  Yin (2014) states that 

testing the benefits of a unique event can be investigated using an exploratory case study.  For 

the reasons stated earlier, the use of single exploratory case design was warranted. 

Research Setting 

 

The study was conducted in an urban middle school located in a major southeastern city 

of the United States.  The school neighborhood recently transformed from a low-income area to 

one of the fastest gentrified communities in the United States.  The school serves a high poverty 

community with nearly all of the students participating in the free or reduced lunch program.  

During the time of the study, the percentage of students participating in the free or reduced lunch 

program was more than the 60% of students state-wide.  

The school is characterized by having a high minority population enrolled with mostly 

Black female students in the eighth grade.  Close to a third of the 8th grade students failed the 

district mathematics standardized test, compared to the district average of approximately 25%.  

For the district science standardized test, a third of 8th grade students have failed the test 

compared to 30% of district middle school students during the period of the study.  The school 

divides students into two instructional teams per grade level.  Each instructional team includes a 

social studies, English/language arts, science and mathematics teacher.  Students are pulled from 

the teams based on gifted or special needs instruction per individual education plans.  The school 



 54 

also allows for inclusion of certain special needs students.  The school participates in an 

afterschool robotics competition.  

Sampling Techniques and Participation 

 

Selection of the curricular participants began with the solicitation of schools giving them 

the opportunity to participate in professional development for teachers from various disciplines.  

The training was part of a federally funded project to improve teacher quality in high need 

districts as per the free/reduced lunch criteria.  Teachers were assigned by school administration 

to participate in a robotics and engineering design professional development workshop.  The 24-

hr workshop trained the teachers on the implementation of an integrative STEM curriculum 

where a project-based design challenge is solved using the engineering design cycle.  Using 

purposive sampling, two teachers were chosen based on their willingness to implement the 

curriculum in their mathematics and science classrooms.  During the professional development 

training, two teachers demonstrated understanding of the curriculum goals and expressed interest 

in implementing the modules.  Subsequently they were asked to participate in the study.  

Students were selected from two randomly chosen classes to comprise the sample of the study.    

The sample included 54 eighth grade students from the two mathematics classes selected 

randomly from a pool of four classes.  Students were administered pre/post test and an 

engagement survey.  The pretest was administered one week before the intervention and the post 

test was administered one week after the intervention.   

 For qualitative analysis, a subsample of seven students was collected, three from one 

mathematics class and four from the other mathematics class.  These students were selected 

randomly to participate in interviews using a random number generator.  The last four digits of 

their student number were entered into the random number generator and selected.  Observations 
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of class behaviors and related items were made from the qualitative sample.  Students were 

interviewed to discuss areas of interest, engagement, nature of the learning environment and 

performance.  Interviews included discussions with the students on their ability to make 

connections across the STEM disciplines.   

Integrative STEM Curriculum 

 

The instruction of the integrative STEM modules took place over five weeks.  The 

module’s focused on the construction and application of knowledge and skills guided by the 

engineering design process.  At the heart of the investigation was the relationship between 

project-based instruction, STEM content integration and technology inclusion to achieve 

learning gains in STEM disciplines (Hansen, 2014).  The curriculum used was the Robotics and 

Engineering Design Curriculum (REDC), an intervention developed by Georgia Tech’s Center 

for Education Integrating Science, Mathematics, and Computing (CEISMC) and funded by Race 

to the Top (RT3) and the Georgia Department of Education.  I served as the Project Director and 

Team Lead for the development of the curriculum.   

The REDC presents an alternative instructional philosophy that changes the traditional 

instructional environment used in classes to a project-based, integrative STEM environment.  

Wells (2013) describes the term integrative as an ongoing, dynamic, student-centered process of 

teaching and learning emphasized in this instructional design.  The REDC is aligned to the 

Georgia Performance Standards 8th grade physical science, 8th grade mathematics Georgia 

Standards of Excellence, and 8th grade Technology Systems Career Tech and Agricultural 

Education (CTAE) course.  Through project work, students formulated questions, conducted 

research, collected data, and engineered and designed solutions.  The REDC utilizes engineering 

design, robotics, and 3-D prototyping and manufacturing to teach four standalone units 
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integrated with algebra and geometry; 1) biomechanics, 2) electromagnetic radiation and waves, 

3) energy and 4) analog to digital electric circuits.  The purpose and content of the teacher 

training aligned with the activities in the biomechanics unit.  Thus, the biomechanics unit was 

used for this study.  

The curriculum is designed on the platform of the universal systems model and the 

engineering design cycle.  The foundation of the curriculum assumes that learning and 

instruction occurs across various instructional strategies and includes the belief that students 

actively engage in their learning process and the development of content.  Students were given 

the opportunity to reflect and assess their knowledge and develop new tools and resources based 

on prior knowledge.  The development and use of these tools during the socialization of the 

classroom is imperative to the learning environment (Hernandez, 2014).  These beliefs undergird 

the use of the engineering design process.  Through the process, students designed their own 

experiments to address the project-based learning experience and engaged in collaborative 

learning.  The engineering design cycle places priority on process and solution design and not 

solely on the solution itself. 

The study utilized the biomechanics unit.  The unit provided 45 to 50 minutes of 

instruction for several days each week during the five weeks.  The unit is sectioned into seven 

investigations.  Investigation 1 is the launcher of the unit and introduces the students to the 

engineering design cycle and the Request for Proposal 
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Figure 3.  The Engineering Design Model.  Adapted from “Infusing engineering design 

into high school STEM courses,” by M. Hynes, M. Portsmore, E. Dare, C. Rogers and D. 

Hammer, 2011, National Center for Engineering and Technology Education website, p. 3.  

Copyright 2011 by the National Center for Engineering Technology. 

 

The REDC biomechanics unit used the model from Hynes et al. (2011) of engineering 

design that correlates to the model shown above in Figure 3.  The model shows a series of steps 

used to solve problems.  The process is cyclical and iterative.  The iterations made to the 

proposed solutions are prompted by data collection and analysis.  Students are able to shift back 

and forth through components to derive the desired solution.  The Request for Proposal (RFP) is 

a solicitation by an agency or company looking for goods and/or services from other companies 

using a bidding process.  The use of the RFP in the curriculum situated the students in the 

context of a design or engineering firm.  In this context, students performed activities that were 

common to entities involved in this process.  The investigation has activities that provided an 

overview of the process used for the remainder of the unit.  Students took part in activities which 

included an introduction to the week’s challenge, explanation of the RFP, discussion of criteria 

and constraints, brainstorming, creating, testing, improvement on design and presentation.  

Activities correlated to the steps of the engineering design cycle. 
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The study utilized portions of the described curriculum above and was taught in a science 

and mathematics class simultaneously.  The science class presented the challenge listed in the 

RFP.  Table 1 below lists the investigations and activities conducted in this study as well as the 

duration for these activities.  The launcher investigation 1is a preview investigation and is used 

as a launcher for the curriculum.  Due to instructional time constraints, Investigation1 was not 

used. 

 Investigation 1 is a common launcher activity that introduces students to the universal 

systems model.  Students are introduced to how engineering firms respond to a request for 

proposal (RFP) and the process used to respond to the request.  The investigation is the same for 

all four units and addresses student inquiry standards and skills. 

Investigation 2 introduced the unit’s challenge.  Students were asked to design a foot like 

device to increase the performance and effectiveness of a robotic insect’s motion.  The robot was 

a predesigned model that replicated a six-legged bug.  The class was situated in the context of 

assuming the role of an engineering design company.  Instructional objectives included 

understanding locomotion, calculating velocity, and understanding gait.  

 Investigation 3 continued the student’s journey to designing a foot like device.  The 

groups were still in step 2 of the engineering design cycle researching the problem and 

understanding the robotic system.  In this investigation, students explored the concept of force 

and motion.  Students were expected to make connections between solving velocity equations 

and the presence friction.  The instructional objectives of this investigation were to describe how 

friction affects movement and velocity, identify the forces acting on the foot during locomotion 

and draw concept force diagrams of the movement. 
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 Investigation 4 focused on using data to drive design thinking.  Students performed 

experiments with the robot to determine how the robot moved over different surfaces.  The data 

was recorded and analyzed in effort to influence the design of the robot’s foot.  Instructional 

objectives for investigation 4 included analyzing graphs to determine slope, use slope to describe 

motion, calculate slope to determine velocity and interpret data to make decisions on foot 

designs.   

 Investigation 5 began the stage of developing possible solutions.  Students drafted 

different designs based on the data collected in the previous investigation.  After the drafts were 

made, students used 3-D design software to design several possible solutions.  Instructional 

objectives of this investigation were for students to use mathematical concepts of measurement 

and scale while utilizing a 3-D design software package for the drafting of their solutions.   

 Investigation 6 had the students print prototypes of their solutions from their drafted 

designs made with the 3-D design software.  The prototypes were printed using a 3-D printer.  

The prototypes were tested to collect data.  The data collected motivated iterations to the design.  

The students were in the redesign portion of the engineering design cycle.  In this part of the 

cycle students moved to any step of the process necessary to redesign and draft iterations of the 

solution.  The instructional objectives of this investigation were to modify, print and test 

designed iterations of the prototype. 

 Investigation 7 had the students compile their data, draft and design notes, as well as 

printed prototypes into a presentation.  The presentation focused on why their design should be 

the one chosen to represent the engineering design company (class).  Each group made a 

presentation explaining why their design was the best.  Based on the presentations, the company 

(class) selected the winning prototype design.   
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Table 1 

Instructional time of activities per Investigation 

Investigation Activities Time Duration 

Investigation 2   Introduce RFP 

 Explore locomotion with robotic models 

 Graph the motion of the robots and calculate 

velocity 

First week: 3 days 

Investigation 3  Explore locomotion with robotic models over 3 

different surfaces 

 Graph the motion of the robots and calculate 

velocity and draw force diagrams 

Second week: 3 days 

Investigation 4 

Investigation 5 
 Use the data logging function to collect robot 

motion over smooth lined track 

 Analyze the graph.  Determine slope and 

velocity from the graph. 

 Create designs for foot like device 

Third Week: 3-4 days 

Investigation 6 

 
 Print, test and iterate designs of foot like device Fourth Week: 3 days 

Investigation 7  Final presentation 

 

Fifth Week: 1-2 days 

Note.  Investigations are taken from the Biomechanics Standards and Activity Matrix, see 

Appendix A. 

 

Ashgar et al. (2012) state that the role of the teacher in a problem-based learning 

environment is that of a guide and facilitator.  The teacher provided content in the manner 

prescribed by the curriculum.  Most concepts were explored by developing new knowledge built 

upon the foundation of existing knowledge.  Concepts of linearity and slope build upon the 

students’ knowledge of equations, ratios and proportions.  The Students gained real time training 

on the use of instructional technology such as robotics and 3-D printing.  The programming and 

building of robotics was not a learning objective of the curriculum.  The insect-robot model was 

pre-made by the teacher.  The curriculum developers provided the robot programs.  The students 

gained challenge specific training and knowledge in regards to the operation of the robot.  

Students acquired the skills of powering the robot, initiating the pre made program and operating 

the insect robot on different surfaces and conditions.   
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The curriculum design answers the call from PCAST to produce STEM proficient 

students who successfully perform the activities that are being performed by mathematicians and 

scientists in their respective professional careers (PCAST, 2010).  The curriculum also focuses 

on the manufacturing and innovation aspect of engineering that has been highlighted as being a 

special need for American students.  The overarching theme of manufacturing throughout the 

curriculum filled the need of developing student creativity and innovation while they were 

equipped with skills needed to use the tools found in the manufacturing sector.    

The curriculum is designed with the intended purpose to use innovative tools, such as real 

time industry relevant robotics and 3-D printing, to provide context and relevance.  The 

curriculum assumes that when the students are engaged in experimentation and data collection, 

similar to scientists and mathematicians in practice, the context will shape their identity and 

disengage the dominant narrative of “I cannot do this” and “Why are we learning this?”.  The 

design, development and manufacturing of solution prototypes provide a unique look at how 

problem solving occurs.  From the prototypes, students are able to perform experiments and 

collect data to inform the decisions made toward answering the challenge of the RFP. 

Data Collection 

 

Following Yin’s (2014) four principles of data collection: 1) using multiple sources of 

data, 2) creating a data management plan, 3) maintaining a chain of evidence, 4) securing the 

safety of the data, data was triangulated using multiple sources: tests, surveys, interviews, 

observations and collection of artifacts.  These sources of evidence are all included in the six 

primary resources suggested by Yin (2014).  The other principles of data collection, as stated by 

Yin (2014), creating and managing a database, insuring the safety and security of the evidence 

collected, and maintaining a chain of evidence will be discussed later in the paper. 



 62 

Three qualitative and two quantitative data collection methods were used.  Leech (2007) 

argues that collecting qualitative data allows for the exploration and understanding of factors of 

interest to the study.  The factors of interest included the situational components that influence 

student performance during the learning of an integrative STEM unit on linear functions.  The 

qualitative data collection techniques that allowed for the exploration of the complex integrative 

STEM model included: semi-structured interviews, observations and collection of artifacts.  

Quantitative data collection techniques included: pre/post tests and surveys to measure student 

performance and engagement during the instruction of an integrative STEM module.  

Semi-structured interviews were conducted to understand the nature of the impact of the 

integrative STEM curriculum on student performance and engagement.  Thomas (2011) defines 

semi-structured interviews as a guided conversation structured by an interview schedule with a 

list of issues or points to discuss.  The interviews asked approximately 15 questions with some 

followed by further probing questions.  Students reflected on the instructional practices and 

curriculum and described how their participation in this learning model helped form critical 

thinking and problem solving skills.  As Thomas (2011) states, the conversation is not bound by 

sequential questioning but facilitated by the issues of discussion.  Questions for the interview 

focused on prior knowledge of skills in the activity, specific concepts learned during the activity, 

ideas of the learning environment and what they thought of the experience as a whole.  

Interviews for each student were conducted once during the last week of the study.  Each 

interview lasted between 45 - 60 minutes and was conducted in the media center.  The sample 

protocol for the investigation can be found in Appendix B. 

Observations were employed to observe the students as they interacted with each other in 

the integrative STEM environment.  Yin (2014) argues that observational data is useful in 
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obtaining information of a new technology or curriculum at work.  The observations were used 

as a guide to explore how the curriculum tools, resources and environmental factors were related 

to the student’s performance and engagement.  The observation protocol developed by the 

University of North Carolina at Greensboro and supported by National Science Foundation and 

Race to The Top funding was used (Arshavsky, Edmunds, Charles, Rice, Argueta, Faber & 

Parker, 2012).  The goal of the observation protocol was to describe the implemented curriculum 

as close as possible to the manner it was experienced by the students.  Six questions guided the 

observation in telling the nature of the lesson.  The observation looked for evidence in the 

following five areas: (1) student cognitive engagement in meaningful instruction, (2) student 

activities during project-based learning, (3) student engagement, (4) teacher instruction, and (5) 

classroom culture.  The observations focused on student engagement in class activities, their 

interaction with the material, their construction of the solution prototype, the lesson topic and 

goals, and gave an account on curriculum materials used (See Appendix C).  Two to three 55-

minute observations were conducted in both classes each week for the duration of the study.  

Artifacts including student notes contained in their engineering notebook and 3-D printed 

foot like device prototypes were collected during the study.  Student notes included design drafts, 

data recordings from various experiments and student observations from testing.  Artifacts 

provided an inspection into the engagement and performance of the students.  The relationship of 

the draft to the actual product made showed how the student was able to focus and replicate a 

two dimensional object from a three dimensional perspective.  Yin (2014) maintains that artifacts 

can be insightful into the use of technology and its impact on the case.  The students’ use of 

robotics and 3-D printing in this case provides a broader perspective into the students’ thinking 

process individually and as a group.  The notebooks will give a “real-time” view into the 
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cognitive process used in the development of the skills and knowledge needed to produce the 

prototype for the project challenge.  An engineering notebook was collected from each student at 

the end of the five weeks.  The foot like device prototype showed the understanding of the 

concepts of force, motion and velocity.  The understanding is demonstrated by the foot design 

that promotes the required amount of grip and reduces slippage.  The prototype(s) were collected 

from each student group at the end of the five weeks.  Photographs and videos were taken to 

observe the instruction of the integrative STEM activities and student engagement.  Photographs 

of the design, printing and testing of the foot like device prototype and project-based instruction 

were taken during classroom observations.  Photographs focused on students actively solving the 

project-based activity challenge. 

Pre/post tests were administered to measure the effect of the integrative STEM 

instruction on student performance and engagement.  The same test was administered at the 

beginning (pretest) and end of the instruction of the unit (posttest).  The pre/post test measured 

any changes in student performance in mathematics, science and engineering integrated concepts 

covered in the curriculum.  There were a total of 25 multiple-choice items for the Biomechanics 

pre/post test (Table 2),  Due to research question number 1 being concerned  with the effects the 

curriculum has on students’ performance on linear equations and their application, only the 

mathematics questions results will be considered for the study. The duration of the pre/posttest 

was thirty minutes.  The tests were administered in one class period.  Students who were not 

present were tested on their first day back from their absence. 
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Table 2  

Pre/Post Test Concepts and Number of Items Per Concept 

 

Concept Number of Items 

1.  Relationship between force, mass, and motion of objects. 

Calculate Velocity. 5 

Determine the effect of unbalanced and balanced forces. 5 

2.  Expressions and Equations 

Calculate measurements in the metric system.  Scaling from very small 

quantities to larger quantities.  Determine appropriate units of 

measurement. 

2 

Graph proportional relationship; determine the rate of change for the 

relationship.  Determine if the relationship is linear. 

3 

Determine if a relationship is a function.  If the relationship is a 

function, determine if the function is increasing or decreasing. 

3 

Use a linear model to make data driven decisions. 2 

3.  Engineering Standards 

Identify the step of the engineering design cycle. 2 

Understand the components of the universal systems model. 1 

Adjust the input of a system to alter the output for greater efficiency. 1 

Identify technology and their use in the engineering design process. 1 

4.  Total 25 

 

The content mathematics standards that were addressed included graphing proportional 

relationships, interpreting the unit rate as the slope of the graph and comparing two different 

proportional relationships represented in different ways.  The related science concepts included 

the relationship between force and motion and velocity.  The pretest was administered prior to 

the first week of the study which started the instruction of the integrative STEM modules.  For 

students who were absent, the test was administered before their first activity in the modules.  

The posttest was administered the week after the completion of the unit.   

To measure student engagement, the Motivation and Engagement Scale (MES) Junior 

School (elementary/middle school) instrument developed by Martin (2005), was employed.  The 
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survey was chosen because of its wide use in the field.  The purpose of the MES survey was to 

describe general academic engagement and motivation during the teaching and learning of the 

project-based, integrative STEM instructional unit.  Internal consistency for the MES survey was 

tested and reported an acceptable Cronbach’s alpha with a range of .70 - .87.   

Martin (2014) states that the instrument measured students’ motivation and engagement 

through three adaptive cognitive dimensions (booster thoughts), three adaptive behavioral 

dimensions (booster behaviors), three maladaptive cognitive dimensions (mufflers) and two 

maladaptive behavioral dimensions (guzzlers). 

The boosters were self-belief, valuing of school, learning focus, persistence, planning and 

time management (Martin, 2014).  Self-belief was the students’ perception of themselves about 

their ability to perform well in school and meet challenges that they face.  Learning focus refers 

to the students’ ability to stay on task and focus on developed skills such as problem solving.  

Valuing of school relates to the students’ idea of what they were learning in school was relevant 

and important.  Planning and time management were the students’ ability to plan their school 

work, organize their timetable for completion, and track their progress.  Persistence was the 

ability for the students to persevere through challenging material. 

The mufflers were failure avoidance, anxiety and uncertain control.  Anxiety was the 

students feeling of nervousness and worry that they were not doing well with their schoolwork.  

Failure avoidance was the students’ likelihood to avoid certain task due to their fear of failure.  

Students were uncertain in control when they did not understanding how to avoid from 

performing poorly. 
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The guzzlers were self-sabotage and disengagement.  Self-sabotage referred to the 

students doing things that would reduce their chances of performing well.  Disengagement 

referred to the students losing interest in their classwork and their feeling of giving up.  

The raw scores of the MES survey were grouped into the 11 subscales.  The scores for 

each subscale of motivation and engagement were compared meaningfully using descriptive 

statistics.  Each subscale contained four questions.  The subscales reflected a multidimensional 

model of motivation and engagement which included the following: self-belief, learning focus, 

valuing school, persistence, planning, study management, disengagement, self-sabotage, anxiety, 

failure avoidance and uncertain control.  The measurement used a Likert scale response ranging 

from 1 (strongly disagree) to 5 (strongly agree).  The items for the subscales failure avoidance, 

anxiety, uncertain control, self-sabotage and disengagement were reverse coded due to the 

negative phrasing of the items.  Students were administered the MES survey right after the 

performance pretest during the week prior the instruction of the integrative STEM module.  

Students also completed the MES post survey after the Biomechanics academic performance 

posttest was completed one week after the completion of the unit.  

Procedure 

 

Schools were invited to participate in a teacher training grant focused on project-based 

learning using the engineering design cycle to integrate mathematics and science concepts.  The 

schools that accepted the invitation assigned teachers to participate in the spring training.  During 

the weeklong training, teachers engaged in the activities that were part of the project-based 

challenge in the integrative STEM module.  Teachers received training on the operation and use 

of instructional technology such as the robotics kit, 3-D design software and printing.  At the 

conclusion of the workshop, possible dates were scheduled for follow up professional 
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development.  The professional development was scheduled after the spring workshop and 

focused on providing a supplement to the training received in the spring.  The curriculum was 

divided and trained in 3 sessions; 1) first and second weeks, 2) third and fourth weeks, 3) and 

fifth and sixth weeks.  Teachers scheduled two dates for training on the first two thirds of the 

curriculum and implementation planning.  The last date for professional development occurred 

during the second week of implementation.  Student assent and consent forms were delivered to 

the teachers at the second meeting.  The students completed both forms prior to the start of the 

study.  

 The study began during the instruction of unit 3-Equations and unit 4-Functions.  These 

units are usually instructed the second quarter of the first semester.  The teacher began 

implementation of the integrative STEM module the week after the pretest for performance and 

pre-survey for engagement were administered.  Students were situated in the real life context of 

an engineering firm with 10 design groups.  Students responded to a Request for Proposal (RFP), 

a current industry practice.  The students were placed in groups of three to four members, per the 

teacher’s discretion.  Each group represented a design team for the engineering design company 

(class).  The class was then instructed that each design team would create a solution.  During the 

introduction the class was informed that each group would present their solution and 

subsequently, the engineering design company (class) would choose the best one.  The class was 

informed that they would draft a unified response to the RFP.  Along with the introduction to the 

RFP, the students identified criteria and constraints of the challenge and began preliminary 

research needed for the solution to the challenge.  The researcher observed each class 

(mathematics and science) twice per week during the study.  The study concluded with the 

module’s final activity which included each group’s final presentation.  The administration of the 
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posttest and MES survey occurred the week after the completion of the unit.  During the last 

week of the study, seven interviews were conducted with students chosen randomly from each of 

the two mathematics classes.  A number generator was used to select 7 students by the last four 

digits of their student number.  The interviews were scheduled at an available time during school 

for 45 minutes.  At the completion of the final day of the module, the teacher submitted to the 

researcher the posttest, engineering notebooks and artifacts. 

Data Management Plan 

 

 As mentioned earlier, Yin (2014) stated one of the four principles of data collection 

referred to the development of a database to manage the data.  Yin (2014) refers to the data being 

organized into an orderly compilation.  The raw data collected were sectioned into three 

categories including paper, digital and artifacts.  All data collected was managed and stored in a 

manner where each individual’s data were matched and kept with non-identifiable demarcation.  

All paper-based data was filed and stored in a locked cabinet.  The digital data, including videos, 

photographs, audio recordings and related transcripts, were stored on an external digital storage 

device.  The device was stored in a locked cabinet.  The artifacts collected, including the 

engineering notebooks, graphs and prototypes, were collected and stored in a locked storage 

cabinet.    

Data Analysis 

 

A combination of deductive and inductive approaches was employed to perform the 

study’s analysis of the qualitative and quantitative data.  The primary unit of analysis was the 

student learning behavior and performance as they engaged in the integrative STEM instructional 

model using robotics, 3-D design and printing in two eighth grade mathematics classes.  Student 

behavior was investigated as they assumed the role of engineers in an engineering firm 
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responding to a Request for Proposal (RFP).  Students were observed as they entered into this 

situated context as apprentices, making thinking visible by collaboratively participating as a 

community of practice in an engineering group inside the firm.  Developing solutions for the 

engineering design challenge (Figure 4). 

           

Figure 4. Concept Map Linking Study Design to Situated Cognition Framework. 

  To analyze the qualitative data, explanation-building techniques were used to 

investigate the teaching and learning of the project-based integrative STEM instructional unit.  

Paired sample t-tests to analyze the quantitative data collected.  Yin (2014) affirms that the 

collection of data from multiple sources aids in the triangulation of data.  Denzin (2012) offers 

methodological triangulation as a manner of including quantitative data analysis in case study.  

Both qualitative and quantitative analysis techniques will be described further. 

Qualitative Data Analysis 

 

To analyze the qualitative data, an inductive strategy using an explanation-building 

technique was employed to investigate the teaching and learning of the project-based integrative 

STEM instructional unit.  Yin (2014) presents four general strategies for the analysis of the data 
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collected; (1) relying on theoretical propositions, (2) working from the ground up (3) developing 

a case description and (4) developing rival explanations.  Yin (2014) characterizes the strategy of 

working from the ground up as an inductive approach that allows themes and concepts to emerge 

during the analysis.  Kohlbacher (2005) further describes the inductive approach as the collection 

of data in the beginning of the study then moving to general propositions.  After a substantial 

amount of data was collected, an inspection of the data was performed to look for materialized 

patterns.  The aim was to explore the nature of integrative STEM teaching and learning then 

presenting the themes that addressed the research questions.  Yin (2014) maintains that using the 

inductive strategy employs some aspects of grounded theory that is relevant to all case studies.  

Yin (2014) claims that this allows the ability to explore the qualitative data to explain and give 

reasons why an event is happening.  

Transcriptions from semi-structured interviews and observations were analyzed using 

qualitative techniques.  I used the verbatim transcription technique to transcribe the interview.  

After browsing through the transcripts, I made note of my initial impressions.  After my initial 

impressions were noted, I read the transcription carefully and used coding techniques developed 

by Saldana (2012) to locate distinct concepts and categories in the data.  Relevant words and 

phrases that described the student’s engagement and identified factors of motivation in the 

learning process were noted.  Themes of critical thinking and understanding of the concepts 

taught were highlighted in the coding.  Saldana (2012) claims that the primary goal for the 

researcher is to find patterns of action and consistencies.  After a review of the initial codes were 

made, I used pattern coding to employ a directed examination of the themes determined from the 

first analysis of the transcriptions to insure that the important aspects have been identified.   
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Artifacts such as the engineering notebooks, prototypes and image-based data were 

analyzed using visual content analysis.  Rose (2011) argues that there are four steps to visual 

content analysis: 1) finding content that is representative of the research question, 2) choosing a 

manner of sampling, 3) development of coding categories per the research question and 4) 

analysis done by exploring the relations between the coding categories.  In the artifacts, evidence 

and characteristics of engagement and problem solving were identified.  Student notes, drawings, 

and data collection entries in the engineering notebooks were coded similarly to the classroom 

observations and interviews.  Coding was done to identify and examine patterns that emerged.  

Photographs of students immersed in activity were examined for engagement characteristics, 

which were defined and coded by level of participation and involvement.  Visual content 

analysis was interpretive in the efforts of exploring these characteristics of integrative STEM 

teaching and learning.  Representation of the students’ activity was addressed by observing the 

manner that the participants wanted to be perceived in the pictures.  The manner that the students 

present themselves in front of the camera is relevant data to be considered (Gibson, 2005).  

Coding was done to account for the occurrence of particular characteristics.  The coding process 

was used to triangulate the physical data with other evidence collected. 

Quantitative Data Analysis  

 

To analyze the quantitative data a deductive approach was used to build a complete 

understanding of the teaching and learning of the project-based integrative STEM instructional 

unit.  The pre/post tests employed to measure performance and engagement were analyzed using 

paired sample t-tests to aid in the triangulation of the data analysis.  Paired sample t-tests 

compared the means from the performance pretest/posttest and the engagement pretest/posttest.  

The null hypothesis for the performance paired sample t-test stated that there is no difference in 
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the means of the pretest and posttest administered.  For the engagement pretest/posttest, the null 

hypotheses stated that there is no difference in the mean scores for each subscale of the 

engagement pretest and posttest.  

Cronbach’s alpha was used as a measure internal consistency of the academic test and the 

motivation and engagement scale survey to measure internal consistency of both instruments.  

The analysis of the coefficients informed the researcher whether the test scores were strongly 

related.  The developer of the Motivation and Engagement Scale survey used exploratory factor 

analyses techniques to test validity on 44 items of the survey (Fredricks, 2012).  Confirmatory 

factor analysis was conducted to test the fit of the booster cognitions, booster behaviors, mufflers 

and guzzlers.  The analysis yielded an excellent fit to the data (𝜒2=3,197.18, df= 886, CFI=0.98, 

RMSEA=0.046).  The findings of the analysis resulted in the 11 sub scales of the survey. 

Validity and Reliability 

Qualitative Data   

 

 Yin (2014) expounds that triangulation strengthens the reliability and validity when the 

evidence is gathered from a variety of sources.  The convergence of this data aided in the 

construction of validity for the study.  Collecting from the various sources mentioned addressed 

the validity.  Yin (2014) holds that maintaining a chain of evidence increases the construct 

validity of a procedure.  A chain of evidence was maintained to insure that the evidence collected 

was accurate and consistent with the protocols and procedures.    

 Yin (2014) maintains that internal validity is a test needed for explanatory case studies 

where causality is reported.  The research design of this case study was exploratory in nature.  

Yin (2014) states that internal validity is not a concern of exploratory case study.  The research 

questions were looking to explore the situational factors and use of project-based, integrative 

STEM modules influence on student performance and engagement.  
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 Yin (2014) states that external validity tests whether a study’s findings can be 

generalized.  Since this exploratory case study has an interest in giving an overview of what the 

effects were on performance and engagement when using the integrative STEM curriculum, the 

nature of the research question hinders the need to seek generalizations.  Yin (2014) also affirms 

that reliability can be achieved by minimizing error in the study.  The database of evidence and 

protocols in collecting and managing data were addressed with this concern. 

Quantitative Data 

 

Trochim (2006) argues that in a single case design there are four threats to internal 

validity concerning pre/post test data: 1) history, 2) maturation, 3) testing and 4) instrumentation.  

The protection against these threats were taken through the analysis of the pre/post data in 

concert with the analysis of the other data sources.  The tests and questionnaires were tested for 

internal consistency using Cronbach’s alpha measure. 

Confidentiality and Ethics 

 

 The last principle of data collection expressed by Yin (2014) says that precautions should 

be taken with the collection, storage and usage of data.  Protection of participants is a central 

principle in research.  All efforts were taken to insure that harm and danger was non-existent in 

the study.  Several main issues were addressed concerning the participant’s engagement with the 

study.  Participant privacy and safety was guarded and protected using protocols that do not 

identify the participant’s responses or artifacts to an identifiable person.   

 IRB approval was obtained to maintain the privacy or confidentiality of the participants. 

Informed consent and assent was obtained prior to the study.  Instructional activities were 

designed with an honest assessment of safety concerns identified and proper procedures 
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implemented to insure safety.  The reporting of findings was done ethically and accurately to 

protect the participants and the community in which the investigation was conducted.   

Limitations of the Study 

 

 Berg (2004) states that a single case study has the limitations of lacking methodological 

rigor, researcher subjectivity and external validity.  Berg (2004) further states that the lack of 

systemic procedures for doing case study has been a concern, especially in regards to 

methodology.  Flyvbjerg (2006) adds that there is a misunderstanding that a generalization on the 

basis of an individual case will not contribute to scientific development.  The audience of this 

research will look for a cookie cutter process to implement the model as a way to produce better 

STEM students.  It is the researcher’s intent not to provide a cookie cutter plan but to provide 

and expand generalized theories that can inform decisions made on the development of similar 

STEM instructional models.  It is the aim to develop context-dependent knowledge about 

learning which is needed to move practitioners to experts. 

 Another limitation to the study included the difficulty in measuring engagement. 

Fredricks et al. (2012) explain that although engagement has been of interest to the education 

arena, just like the idea of STEM education having many variations to its definition, engagement 

has many conceptual variations as well.  With the many different constructs available, having 

approached the study with a broad understanding of engagement, aided in addressing the 

limitations.  Instruments used have a measure of limitation that is associated with them.  

Instrumentations used in research may force respondents into particular responses.  Forcing 

respondents to a certain path of answers may inhibit the study and falsely encourage conclusions 

that are incorrect.   
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 There are possible limitations with the fidelity of implementation with the curriculum.  

O’Donnell (2008) defines “fidelity of implementation” as the extent and manner to which an 

intervention was implemented as originally planned.  The study considered the intent and manner 

of the teacher’s instruction of the engineering design cycle and the use of 3-D printing.  The 

degree of enactment in perspective to the designed and intended enactment was considered.  

O’Donnell (2008) also claims that fidelity can reveal important information regarding how well 

the curriculum is taught.  If the fidelity is hard to achieve, then it is difficult to explore the 

effectiveness of integrative STEM.  Insuring fidelity begins with the development and training of 

the instructor before implementation.  After the formal professional development activities were 

facilitated, communication by email and face-to-face meetings took place in order to prepare the 

teacher to enact the curriculum as intended.  These steps were documented and recorded for 

consideration in the study. 
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CHAPTER 4 

Data Analysis and Results 

 

The purpose of this study was to investigate and describe the effects of using project-

based integrative STEM modules on eighth grade students’ performance and engagement.  The 

integrative STEM curriculum was implemented in two randomly selected eighth grade 

mathematics classes and their corresponding eight grade science classes in an urban middle 

school located in a major southeastern U.S. city. 

This chapter examined the findings from the sample and subsample that were selected 

from these classes.  The quantitative sample included 54 students selected from both 

mathematics classes and the qualitative subsample included 7 students selected randomly from 

each of the two mathematics classes.  The students will be mentioned by number.  The case 

study addressed the following questions: 

1. What is the effect of using project-based, integrative STEM modules on 8th grade student 

performance and engagement in learning a unit on linear functions?   

2. What STEM-related situational factors contribute to 8th grade students’ success in 

learning using project based, integrative STEM modules? 

Quantitative and qualitative data were collected to address the concerns of the research 

questions.  The quantitative data collected included students’ responses to pre/post tests to 

measure performance and a motivation and engagement survey to measure engagement.  The 

qualitative data collected consisted of semi-structured interviews, observations and student 

artifacts.  Artifacts included entries and notes made in the students’ engineering notebook, 

manufactured prototypes and photographs.  Following, I have outlined the analysis techniques 
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and results for the quantitative and qualitative data respectively.  After the discussion of the 

techniques and results, a summary will be provided. 

Quantitative Data Analysis 

Analysis Techniques 

 

The paired sample t-test was employed to answer research question 1.  The null 

hypothesis for performance stated that there is no difference in the means of the pretest and 

posttest administered.  For engagement pretest/posttest scores, the null hypotheses stated that 

there is no difference in the mean scores between the two tests.  A two-tailed test using 

significance level of .05 was used for both.  Paired sample t-test assumptions were tested with 

descriptive methods and data management verification.  The results informed the proper use of 

the data.  The following will discuss the result for achievement and then engagement. 

Achievement 

 

Testing Assumptions.  Minium and Clark (1982) state that all statistical tests, such as the 

t-test, operate under certain assumptions to produce valid results.  The first assumption states that 

the distribution should be measured on a continuous scale.  Examples of this would include time, 

intelligence quotient test scores or exam scores.  The second assumption calls for the data to 

come from two related groups and reside in both groups as well.  For example, if you are 

measuring 10 individual’s performance on a timed run, then you will measure the time for the 

second run from the same 10 individuals.  The first two assumptions were verified through the 

management of the data.  The scores from both pre/post tests were continuous and fromed 

matched pairs.  Minium and Clark (1982) offers that the third assumption states that there should 

be no significant outliers in the differences between the two related groups.  The presence of 

outliers negatively affects the results of the paired sample t-test.  The check for outliers was 

made by inspecting a boxplot for both the pre/posttests (Figure 5). 
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Figure 5.  Pre/Post Test Concepts and Number of Items per Concept. 

The final assumption requiring testing is that the two related groups should be normally 

distributed.  The assumptions were that if the sample is of normal shape, then the population of 

which it was obtained is of normal shape.  If the results of the test show that it is not a normal 

shape, then non para-metric tests would need to be employed.  The scores of the achievement 

pretest were normally distributed with a skewness of 0.310 and kurtosis of -0.610.  The scores of 

the achievement posttest were normaly distributed with a skewness of -0.143 and kurtosis of -

0.234 (Table 3). 

 

Table 3 

Skewness and Kurtosis Statistics for the Achievement Pre/Posttest  

 Skewness Kurtosis  

Achievement Pretest 0.310 -0.610   

Achievement Posttest -0.143 -0.234  
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Reliability Analysis.  The reliability was used to determine and confirm the internal 

consistency of the items on the pre/post tests.  Reliability provides a measure of the extent to 

which a score reflects random measurement error and is a precursor to test validity.  Cronbach’s 

alpha provides a measure of the extent to which the items on a test provided consistent 

information with regards to the students’ mastery of that particular domain.  Cronbach’s alpha 

for the pretest was found to be reliable (10 items; α = .843).  Cronbach’s alpha for the posttest 

was found to be reliable (10 items; α = .839). 

Paired sample t-test.  In regards to achievement, the results indicated that the mean of 

the posttest (M = 3.926, SD = 1.358) was significantly greater than the mean of the pretest (M = 

3.204, SD = 1.294) where t(df = 53) = 5.646 and p < .001.  The results indicated that there was a 

statistically significant difference in achievement between the pretest and posttest. 

Engagement 

 

Testing Assumptions.  As stated earlier, parametric statistics have assumptions which 

must be met and tested.  There were four assumptions be tested for the paired sample t-test                                                                                                                                                                                                                    

performed for the MES survey.  The first two assumptions were tested in the same manner as 

was done for the pre/posttests for achievement.  It was observed that the responses from the MES 

survey were continuous and from matched pairs. DeWinter and Dodou (2010) state that there 

have been debates and disagreements on whether five-point Likert data should be analyzed using 

parametric statistics or nonparametric statistics.  Part of the issue deals with the assumption of 

normality for the data.  By studying various possible distributions from 5-point Likert item 

surveys, the t-test was found to be accepted and favored.  In regards to the MES presurvey, for 

the 11 subscales, each were normally distributed with skewness of a range -1.210 to 0.231 and 

kurtosis of a range -1.355 to 1.553 (Table 4).  In regards to the MES postsurvey, four out of the 
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11 subscales were non-normal: (1) self-belief, (2) valuing school, (3) planning, and (4) uncertain 

control (Table 4).  The responses on the postsurvey for the subscale self-belief had a skewness of 

3.332 and kurtosis of 15.049.  The responses for valuing school had a skewness of -1.336 and 

kurtosis of 3.191.  The responses for planning had a skewness of -1.032 and kurtosis of 2.305.  

The last non normal subscale, uncertain control had a skewness of -1.140 and kurtosis of 2.049. 

Seven subscales on the postsurvey were normal: (1) learning focus, (2) study 

management, (3) persistence, (4) anxiety, (5) failure avoidance, (6) self-sabotage, and (7) 

disengagement.  The responses for theses subscales had a skewness from -1.543 to 0.163 and 

kurtosis from -0.980 to 1.355 (Table 4). 

 

Table 4 

Skewness and Kurtosis Statistics for the MES Survey Subscales 

 
Pretest  Posttest 

Skewness Kurtosis  Skewness Kurtosis 

Self-belief −1.045 0.306   −3.332 15.049 

Valuing school −1.210 1.553  −1.336 3.191 

Learning focus −1.174 0.609  −1.032 0.450 

Planning −0.158 -0.877  −1.032 2.305 

Study management −0.373 -0.679  −1.180 1.050 

Persistence −0.929 0.914  −0.618 0.369 

Anxiety −0.042 -0.730  0.163 -0.657 

Failure avoidance 0.231 -1.355  −0.031 -0.980 

Uncertain control −0.313 -0.287  −1.140 2.049 

Self-sabotage −0.777 .057  −1.543 1.355 

Disengagement −0.397 -1.035  −0.824 0.128 
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Reliability Analysis.  Cronbach’s alpha was used to determine and confirm the internal 

consistency of the items on the pre/post surveys.  Cronbach’s alpha for the pre-survey was found 

to be reliable (44 items; α = ,787).  Cronbach’s alpha for the post-survey was found to be reliable 

(44 items; α = .773). 

Paired sample t-test.  To compare the pre/post survey for the motivation and 

engagement subscales, a paired sample t-test was employed for each subscale using the raw 

scores.  The negative subscales were reverse coded, as described in the previous chapter. 

In regards to the self-belief subscale, the results indicated that the mean of the post-

survey (M = 4.482, SD = 0.840) was not significantly greater than the mean of the pre-survey (M 

= 4.333, SD = 0.657), where t(df = 53) = 0.974 and p = .334. 

In regards to the valuing school subscale, the results indicated that the mean of the post-

survey (M = 4.167, SD = 0.634) was not significantly greater than the mean of the pre-survey (M 

= 4.324, SD = 0.732), where t(df = 53) = −1.195 and p = .237. 

In regards to the learning focus subscale, the results indicated that the mean of the post-

survey (M = 4.412, SD = 0.643) was not significantly greater than the mean of the pre-survey (M 

= 4.380, SD = 0.702), where t(df = 53) = 0.240 and p = .811. 

   In regards to the planning subscale, the results indicated that the mean of the post-survey 

(M = 3.551, SD = 0.957) was not significantly greater than the mean of the pre-survey (M = 

3.657, SD = 0.908) where t(df = 53) = −0.583 and p = .562. 

In regards to the study management subscale, the results indicated that the mean of the 

post-survey (M = 3.819, SD = 0.952) was not significantly greater than the mean of the pre-

survey (M = 3.940, SD = 0.692) where t(df = 53) = −0.710 and p = .481. 
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In regards to the persistence subscale, the results indicated that the mean of the post-

survey (M = 3.921, SD = 0.718) was not significantly greater than the mean of the pre-survey (M 

= 3.889, SD = 0.691) where t(df = 53) = 0.246 and p = .806. 

In regards to the anxiety subscale, the results indicated that the mean of the post-survey 

(M = 2.468, SD = 1.047) was not significantly greater than the mean of the pre-survey (M = 

2.380, SD = 0.775) where t(df = 53) = 0.498 and p = .620. 

In regards to the failure avoidance subscale, the results indicated that the mean of the 

post-survey (M = 3.199, SD = 1.224) was significantly greater than the mean of the pre-survey 

(M = 2.611, SD = 1.090) where t(df = 53) = 2.718 and p = .009. 

In regards to the uncertain control subscale, the results indicated that the mean of the 

post-survey (M = 3.773, SD = 0.967) was not significantly greater than the mean of the pre-

survey (M = 3.569, SD = 0.967) where t(df = 53) = 1.236 and p = .222. 

In regards to the self-sabotage subscale, the results indicated that the mean of the post-

survey (M = 4.208, SD = 1.011) was significantly greater than the mean of the pre-survey (M = 

3.792, SD = 1.002) where t(df=53) = 2.165 and p = .035. 

In regards to the disengagement subscale, the results indicated that the mean of the post-

survey (M = 3.954, SD = 0.894) was not significantly greater than the mean of the pre-survey (M 

= 3.958, SD = 0.848) where t(df = 53) = −0.031 and p = .976. 

The results indicated that for the motivation and engagement 11 subscales there were 

only significant differences in the failure avoidance and self-sabotage subscale. 

Qualitative Data Analysis 

Method of Analysis: Coding 

 

Miles, Hubberman and Saldana (2013) offer that one of the strengths of qualitative data is 

the manner of understanding what real life is through observing natural and regularly occurring 
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events.  Understanding the unit of analysis, the student behavior and performance as they engage 

in a project-based robotics and engineering design module, attention to the analysis of the 

qualitative data must start with an analytic strategy (Yin, 2014).  Collecting multiple data points 

occurring in a complex, real world context requires a coordination to search for patterns, 

categories and themes.  Data collected to examine the primary unit of analysis of student 

behavior included classroom observations, semi-structure interviews and researcher’s notes. 

Using a four step process outlined by Saldana (2009), the descriptions, codes and 

categories were extracted to find the emerging themes throughout the analysis of the data.  By 

the researcher’s and teacher’s interpretation and reflections, transcribed interviews, observations, 

and students’ engineering notebook were hand coded to describe indicators and develop 

categories.  Observation protocols and researcher reflections were used to identify indicators of 

engagement during both student specific and group specific actions.  Indicators included the 

following: (1) student engagement in discussion with the teacher during whole class instruction, 

(2) student engagement and behavior during whole class instruction, (3) physical position during 

whole class instruction, (4) the students individual actions in response to the challenge’s context, 

(5) the students interaction with group members, (6) students’ engagement in discussions, (7) the 

students use of STEM related terms and phrases (8) the students group interaction during 

experimentation and testing, (9) the groups formation of social structures and norms created to 

regulate and organize group behavior, (10) groups’ negotiating and collaborating, (11) the groups 

formation of STEM related and challenge specific language, (12) group’s formation and 

construction of meaning, (13)  the use of the constructed meaning, (15) students’ behavior during 

the interaction with robotics and 3-D printing, (16) the group behavior using robotics and 3-D 

printing during the problem solving process and (17) the class discussion and negotiation during 
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solution presentation and selection.  With these indicators in mind, I was guided through the 

three step process offered by Saldana (2009). 

Step 1: Initial coding.  Saldana (2009) defines a code as a word or phrase that gives 

some connective characteristic that summarized or assigned a characteristic to a particular piece 

of collected qualitative data in writing or in imagery.  Yin (2014) suggests that the analysis of the 

data from an exploratory case study be continual and ongoing.  I started the coding process as 

soon as data was collected.  Reviewing the data at this level throughout the study allowed for the 

formation of codes to explore many facets of the unit of analysis.  The following 33 codes were 

identified by hand not necessarily in order of identification: (1) activity transfer, (2) reading and 

writing, (3) perseverance, (4) decision making, (5) technology frustration, (6) classroom 

discussion, (7) project-based learning, (8) career goals, (9) subject integration, (10) student 

perception of project-based learning, (11) student self-perception, (12) application of concepts, 

(13) student and robot relationship, (14) student thinking, (15) use of scientific ideas, (16) 

student inquiry, (17) group thinking, (18) group collaboration, (19) STEM language, (20) use of 

technology, (21) knowledge acquisition, (22) assimilation, (23) application, (24) adaptation, (25) 

classroom environment, (26) mathematics computation, (27) engineering design, (28) artistic, 

(29) data representation, (30) data visualization, (31) skills transfer, and (32) emotional.   

Step 2: Descriptive coding.  As recommended by Miles, Hubberman and Saldana 

(2013), I refined the coding using descriptive phrases or terms to collapse, expand and revise the 

codes.  Also, as Saldana (2009) suggests, descriptive coding works well when you have a variety 

forms of data such as interview transcripts, field notes and artifacts.  Since the research questions 

are looking into what effects are present, descriptive coding affords the approach the ability to 

explore these items.   
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Step 3: Pattern coding.  Saldana (2009) states that pattern coding is a viable step in the 

cycle of initial-descriptive coding.  Examination of the codes identified similarities between 

them.  The similar codes were grouped together based on their commonalities and labeled.  The 

label for each of the categories showed a deeper meaning of the relationship between the codes 

and provided an inspiration for the subsequent theme that emerged.  Pattern coding allowed a 

way to group the similar codes into categories.   

Step 4: Emerging Themes.  The categories were examined for relationship and 

commonality to provide deeper context.  The purpose of pattern coding is to be a catalyst for 

themes to emerge.  The themes emerged by identifying the commonalities of their relationship, 

function or patterns.  During the movement through the coding cycle, six emerging themes 

developed and are presented in Table 5.  The themes were partitioned by effects and factors. 
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Table 5 

Categories to Themes 

Categories Themes 

1. Physical interaction with Robot 

1.  The developing anthropomorphic relationship 

with the robot enhanced student engagement. 

1. Assigning robot human 

characteristics 

1. Robot's Human Characteristics 

1. Student extension of self 

2. Student operation of the robot 

2.  Purposeful and intentional student physical 

action supported meaningful engagement in the 

design environment. 

2. Experimentation 

2. Student motion and action 

2. Application of concepts 

2. Manufacturing 

3.Peer discussion 

3.  Purposeful collaboration promotes engagement 

through the construction of meaning and 

interaction. 

3. Peer decision making 

3. Role assumption/assignment 

3. Leadership/Accountability 

3. Construction of meaning  

4. Adapting and changing of learner 

role 
4. A learning environment that has transformative 

learning potential fosters student success. 
4.Superficial to meaningful learning 

4. Student inquiry 

4. Ownership/leadership 

5. Innovation 

5. Learning experiences underpinned by design 

thinking lead to positive student outcomes. 

5. Group Collaboration 

5. Modeling mathematically 

5.  Willingness to create 

5. Student perseverance 

6. Contextual ownership 
6. Contextual relevance is enhanced when students 

have freedom to design their own learning journey. 
6. Acknowledgement of skills 

6. Emotional connectivity 

Emerging Findings 

Six themes emerged as a result of data analysis providing evidence of effects and 

presence of situational factors that impacted student engagement during their journey through the 

integrative STEM robotics and engineering curriculum. 
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Effects on student engagement: 

1. The developing anthropomorphic relationship with the robot enhanced student 

engagement. 

2. Purposeful and intentional student physical action supported meaningful engagement in 

the design environment. 

3. Purposeful collaboration promotes engagement through the construction of meaning and 

interaction. 

STEM-situational factors contributing to students’ success: 

4. A learning environment that has transformative learning potential fosters student success. 

5. Learning experiences underpinned by design thinking lead to positive student outcomes. 

6. Contextual relevance is enhanced when students have freedom to design their own 

learning journey. 

Effects on student engagement 

 

Theme 1: The developing anthropomorphic relationship with the robot enhanced 

student engagement.  Groom, Takayama, Ochi and Nass (2009) claim that robots may be 

responded to as an extension of oneself.  When a student attributes behaviors and characteristics 

that they have to a non-human object or agent, such as a robot, it is referred to as 

anthropomorphism and regularly occurs in science education (Al-Balushi, 2013).  During the 

first investigation, students were excited at the possibility of using the robots in class.  Student #1 

expressed her interest by questioning “Can we build one (robot) that moves like a man?”  The 

nature of the question transfers human characteristics to the object of interest.  Even though the 

project-based context described the modeling of an insect like robotic device, the students were 

intent with attaching human like behaviors and characteristics to the robot.  As a result of the 
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projection of human characteristics, the robots became a form of self-expression by the students 

(Catlin, 2012).   

When performing tasks with the robot the students used the term “run” to mean operate.  

During an observation of the students conducting trials of the robot traversing a lined track to 

determine velocity during Investigation 4, Student #4 said, “Move, it’s my turn to run the robot.”  

The use of the term “run” is further correlated to human characteristics as Student #1 describes 

her enthusiasm for using robots.  Student #1 mentioned “it was cool and then I got to see it 

(robot) run, run around and stuff”  Her description of the way the robot was using its legs and the 

shape of its feet running around was similar to how she would describe a friend running around a 

playground or a field.  

Other behaviors were acknowledged by the students as the robot moved from an 

extension of self to having its own human like presence.  Korkmaz, Aultman, Ussta and Ozkaya 

(2014) state that as the novelty of using robots wears off, students begin to assign personalities to 

the robots to help with their understanding and guide them in their thinking.  When describing 

the motion of the robot in Investigation 2 to determine the optimal gait, Student #3 was observed 

in a group discussion describing the robot’s motion as “the robot wasn’t stable, because it was 

going all across the paper.”  Student #1 in an interview described the testing of the robot 

operation over different surfaces noticing “how the robot responds to different surfaces.”  The 

word respond was used in the fashion of how someone would respond to the change in the 

weather. 

As a result of giving the robot a personality, a relationship developed with the robot and 

the students.  Student #3 in an interview noted how interesting it was to see the robot “interact 

with different surfaces.”  The nature of this interaction is akin to their interaction with others in 
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their class or school.  Student #4 in an interview further described how the relationship 

developed with themselves and the robot.  Student #4 explained that one of the differences 

between this activity and other activities done during the school year as such, “I never like got to 

actually work with a robot.  It’s interesting to see how it works and see how different things 

affect how it moves and what not.”  Working with the robot was said as though the student was 

working with a partner in class on an assignment or homework.  Student #6 and her group 

appeared to accept it as one of their group members.  The students invited their robot into their 

physical space as if the robot was a fellow classmate or friend.  The acceptance of the robot into 

their community is evident as seen in Figure 6.   

 

 

Figure 6.  Students in Close of Proximity to the Robot During Testing 

Theme 2:  Purposeful and intentional student physical action supported meaningful 

engagement in the design environment.  Embodied or extended cognition holds that cognitive 

processes are deeply rooted in the body’s interactions with the world or environment (Wilson, 

2002).  The study exposed many instances of doing that are characterized by deeply rooted 

cognitive processes that give evidence to student engagement.  During the first investigation, 

students were asked to review a Request for Proposal (RFP) and determine the criteria and 

constraints for the challenge.  Students found it difficult at times to read the RFP and determine 

the essential parts needed to identify the criteria and constraints.  These activities resembled 
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aspects of a traditional class where the student participated in a reading and writing activity.  

Student #6 was observed in a whole class discussion regarding the identification of criteria and 

constraints to have said that “all the stuff in the middle (letter of response, testing documentation, 

daily log of work, presentation)” was required and could be considered criteria.  Here stuff is 

said in a manner that devalues its presence and is mentioned as a matter of fact.     

After determining the criteria and constraints, students were then assigned a robot.  The 

students discussed optimal movement and were told that to begin understanding the motion, they 

were going to test different robots with different leg configurations.  During the experimentation, 

the students were able to claim which robot leg configuration was the best after operating each 

robot with their respective leg configuration.  It was observed that Student #2 during a group 

discussion offered that “the black robot moved in different directions.”  During the subsequent 

whole class discussion, he extended the conversation by saying “the orange robot is most 

balanced but the green is the fastest.”  By doing the activity, they were able to experience the 

motion and begin to develop understanding of what was happening. 

During Investigation 3, after having determined the optimal leg configuration, students 

were tasked to observe the robot moving over different surfaces.  The first activity engaged the 

students to experience and gain an experiential understanding of each of the surfaces.  The Foot 

Friction Experiment has each student personally explore push, pull and friction with their feet.  

After completing the Foot Friction Experiment, Student #2 recorded his observations in his 

engineering notebook.  The observations were written in bulleted form as seen in Figure 7.  The 

observations used verb and action phrases recounting the student’s actual experience during the 

experimentation.  The entry was completed without sentence structure and basic one-word 

description.  Even with the simplicity of the description, the observation was rooted in 
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movement.  Student #6 recorded her observations for the same experiment using a sentence for 

each of the surfaces.  She used the same type of descriptions but was very limited in her writing 

of the observation (Figure 8). 

 

 

 

Figure 7.  Student #2 Engineering Notebook Entry Foot Friction Experiment. 

 

 

Figure 8.  Student #6 Engineering Notebook Entry Foot Friction Experiment. 

These observations described the action and reaction of Student #2 and Student #1 with 

the surfaces after completing the experiment.  After completing the Foot Friction Experiment, 

the students performed similar experiments with the robots over the different surfaces.  The 

students were asked to write their observations describing the movement of the robots over the 

different surfaces.  When reminded to write their observations, Student #7 expressed to his group 

“I’m not writing, I’m doing the robot.”  He made his preference to “doing” clear when asked in 
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an interview what part of the unit he liked least.  He responded, “The worst part of the…it was 

probably the writing.  I like writing but sometimes writing becomes boring.”  The expression 

“doing” shows the intentional action combining the movement of the robot with the movement 

of the student. 

Student #4 engaged in a conversation with the teacher during the experimentation.  In the 

group discussion, Student #4 said “The robot is slower on the carpet than on the vinyl.”  The 

teacher overhearing the statement, joined the discussion and asked, “How do you know?”  

Student #4 replied, “The velocity for the vinyl is 4.5 and the velocity for the carpet is 3.5.”  From 

the manipulation of the robot over different surfaces, Student #4 is beginning to form his 

understanding of speed and velocity.  As student are engaged in the context of the challenge, 

more cognitive decisions are made to purposefully overcome any challenges they face in the 

design process.  The students in their groups were making sense of their new experiences 

through their interaction physically with their robot.  Notice in Figures 9 and 10, all members of 

the groups containing Student #1 and Student #7 are in action as each has assumed a role in the 

operation of the robot.  

 

 

Figure 9.  Student #1 Testing the Robot Operating on a Vinyl Surface. 
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Figure 10.  Student #7 Testing the Robot Operating On a Tile Surface. 

Investigation 4 had them use the data logging feature of the robot to produce graphs to 

record the robot’s motion.  During a whole class instruction, Student #3 asked, “Can we run the 

robot again?”  A member of his group joined him after he performed another trial to analyze the 

data from the trial.  The group member pointed to the data and said “I think this is when it runs 

over the black lines.”  Here, the students are forming understanding of action graphically.  

Student #3 replied, “So since there are six lines there should be six spikes…1, 2, 3, 4, 5, 6 

(counting each one). So now we look at the space between each?”  See Figure 11 for their data 

using the data logging feature of the NXT. 

 

 

Figure 11.  Screenshot NXT Data Logging Student #3’s Engineering Notebook. 

The entire system becomes part of the cognitive process.  During the interview with 

Student #3, I asked him what was the impact of collecting the data from the robot using the data 

logging feature.  I also asked him about his experience translating the data to a coordinate graph.  
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I asked him if it helped him with the understanding of slope and velocity.  Student #3 answered, 

“I liked it because it helped the group like (make) a connection, like almost like connected the 

hands on activity to the actual calculations.” 

Moreover, students began to relate the action of operating the robot to calculating slope 

and velocity.  Students collaboratively formed the meaning of relating the data logging graph to 

data represented on a coordinate plane (Figure 12 and 13).   

 

          

   

             

Figure 12.  Screenshot NXT Data Logging Student #3’s Engineering Notebook. 
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Figure 13.  Screenshot NXT Data Logging Student #5’s Engineering Notebook. 

Investigations 6 and 7 had the students design a procedure to test their solutions and 

determine what improvements had to be made.  The students now were in control of their action 

and their learning.  Student #6 felt so excited that she wanted to test the feet out herself (Figure 

14).  Student #3, while engaging with the group during the creation of their procedure to test 

their feet said, “I’d rather find the distance and time myself than use the light sensor.”  Finding 

the distance and the time involved physical action of the students.  In Figure 15, Student #5 

suggested to his group that “(they) should measure the distance and time, calculate velocity and 

then observe how straight it traveled.”   
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Figure 14.  Student #6 Printed Feet. 

 

 

Figure 15.  Student #5 Testing Printed Feet  

I asked the students during interviews if the activities increased their interest in STEM 

and if it had an impact on how they formulated their understanding.  Student #1 offered, “I think 

so, because it’s not like…We’re not just like re…We’re not just like…Not that reading is bad or 

anything, but we’re not just like reading off a packet or whatever filling stuff in, we actually get 

to work with it, see actually visually see how it operates and stuff…Yeah, yeah.”  She also said 

that, “It’s (integrative STEM curriculum) more interactive and you actually get a chance to 

actually do something rather than just sitting there and just filling…basically filling out 

information.”  Student #8 answered, “I liked it, I mean because it was more…It was better 

because you got to really do it.  Instead of like someone else doing it you really got to do it and 

understand it yourself.”  Student #2 echoes the comments by saying, “It was kind of different but 

it was like in a way…It was kind of helpful because a lot of times, well math is like…It’s kind of 
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like you follow this set of rules, this process, and you have to get like this certain answer, but it 

(integrative STEM curriculum) helps when you can like do experiments and when you make 

mistakes you can see kind of how it would lead you to get this actual process and how you would 

actually get the answer that you’re supposed to get or something like that.” 

Theme 3: Purposeful collaboration promotes engagement through the construction 

of meaning and interaction.  According to Wenger (1998) belonging to a Community of 

Practice displays aspects of engagement.  Engagement can be observed while the students 

interact with their groups during discussion, collective thinking, and collaborative meaning 

making.  While interviewing Student #1, I asked her to describe the discussions that were 

occurring in the group.  Student #1 replied, “Okay, so one, we were trying to decide how, like 

what kind of pattern would be better, like if we should do for the foot, if we should use like a 

spike, like more like spikes, or if we should use like round to see which one would probably 

maybe grip the surface better.”  From previous experimentation, the students have determined 

that when the robot is operated at a higher power, the robot begins to loose traction.  Figure 16 

shows the drafted designs from student #1 that were the subject of this discussion. 

 

 

Figure 16.  Student #1 Bumpy Foot Design and Spike Foot Design. 

These two design depict their understanding for solving the problem of having just the 

right amount of friction by designing the foot’s surface in a way that would apply the needed 

amount of friction.  This description details some of the collaborative thinking and collaborative 
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cognitive processes that were used to make decisions regarding the design process.  During 

group discussions, the group recorded ideas that group members had.  These ideas were recorded 

in their engineering notebook in Figure 17. 

 

    

Figure 17.  Student #4 Engineering Notebook Entry Foot-Like Device Ideas. 

The many engineering groups in the class (engineering firm), took advantage of the 

opportunity to create and make meaning by analyzing graphical representation and relate them to 

science and mathematics concepts.  It was observed in a group discussion that Student #4, while 

inspecting the data logging graph from the LEGO Mindstorms NXT data logging software that 

“one has more spikes than that one (Figure 18).”  One group member replied pointing to the 

graph, “I think this is when it runs over the black line.”  Student #4 replied “So, since there are 

six lines there should be six spike…1, 2, 3, 4, 5, 6.  So now we look at the space between each?” 

The students are making the meaning that for this activity, space between each spike relates to 

the time that the robot took to get from one line to the next.  The group came to the conclusion 

that if the space was wider than other spaces on the graph this showed either a lack of friction or 

presence of unbalanced motion (Figure 18).  Collaboratively the group members correlated the 

lack of friction using data visualization to the velocity of the robot.  
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Figure 18.  Data Logging Graph from The Engineering Notebook. 

Group collaboration allows for the formation of practices and social structures that the 

students participate in as a unit.  As students begin to share their thinking with each other, they 

are forming standards and expectation that allow them to come to a group decision on how the 

solution should be design and crafted.  Student #6, when asked in an interview if working in 

groups was helpful, she answered, “I like that (working in groups) a lot because you get to see 

how different people think and how would they think about doing it.”  The joining of ideas and 

thinking processes allows for the group to devise a plan of action that uses the agreed parts of 

everyone’s thinking.  The students negotiate within the group what is needed to meet the criteria 

of the design challenge 

I asked Student #2 how he liked working in groups he said, “With working in groups it’s 

kind of easier to tell where you go wrong.  Like math, if we’re doing a process and I kind of, if I 

forget a step or do a step wrong, because there are other people in the group with me it’s easier 

to…I can talk to them about it and they can show me exactly where, what, like where I went 

wrong and what happened so that I can kind of bring it back in and I can do it later on my own.” 

Collaboration allows each of the group members to capitalize on each other’s suggestions, skills 

and ideas (Heidrich, Kasa, Shu & Chandler, 2015).  As group members develop skills and 
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become more experienced, they can offer help and expertise to others that are not as developed.  

So, in this community the students are assuming many roles at the same time.  They can be less 

experienced in one manner and experienced in another.   

STEM-situational factors contributing to students’ success 

 

Theme 4: A learning environment that has transformative learning potential fosters 

student success.  Mezirow (2000) defines transformative learning as the process where frames 

of reference, which were taken for granted, are changed to make them more critical, open, 

reflective and inclusive.  Transformative learning was designed to be used in adult education but 

has made it way to the middle school level.  Elsey (2011) claims that transformative learning at 

the middle school level promotes student responsibility, student critical reflection, students 

change in perception as a learner.  Transformative learning provides a self-directed and 

innovative learning environment particularly in STEM concepts where students can take control 

of their learning and use the skills they have to achieve the goal of the activities.  Students’ fear 

of failure is lessening and students are empowered in their new role.  

To explore the STEM-situational factors data was collected with the intention of looking 

at the impact made on student success throughout the 6 investigations.  As mentioned before, the 

module started with the introduction to the challenge in Investigation 2.  I asked Student #2 if the 

context set by the teacher that situated the class as an engineering firm responding to a Request 

for Proposal (RFP) was an instructional strategy that he liked or disliked.  Student #2’s response 

was, “I kind of, I like it because it's like when you give situations, when you're given situations 

like that it helps you see that like…It helps you bring it in to all the things that you do in 

everyday life, like in a lot of other problems, maybe like personal problems you kind of sit with a 

problem and situate it and then it helps you bring out like the desired kind of outcome that you 
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want.”  In mentioning that the end result is the “outcome that you want” shows the level of 

ownership taken by the student.  In context of the RFP, the student starts to develop the type of 

information that they want to acquire and in turn plan what the students want to do with that 

information to get the desired result and respond to the RFP.  Taking ownership of the learning 

leads to an increase of social awareness, and how the skills learned can breed a connection 

between themselves and the world around them.  Student #7’s response to the same question 

was, “Yes, I liked it because it made you feel like…It made it feel more realistic and what you 

were doing would really help something, like an actual problem.”  

 Student #3 further described the impact of the context of the challenge and made a 

comparison to previous experiences, “…usually in Math we just sit around, the teacher will talk, 

we take notes and have to study and this we interact with stuff and it makes it interesting.”  The 

accounts show a shift of the perception of the class by the student.  The student sees the 

classroom as an arena of interaction using technology to develop new meaning.   

As the perception shifts, the role of the learner also shifts.  Students begin to see that they 

can take control of their own learning.  Investigation 3 has the students perform trials observing 

the robot’s motion over different surfaces.  At the start of class during the second day of 

Investigation 3, Student #1 directed her group members telling them, “Get the robot and let’s go, 

I’ll get the carpet.”  The students began to take more control and facilitated their journey through 

the module.  There occurred a personal transformation in the learning process.  It was also 

observed when Student #6 was heard telling her group, “Let’s put a book under the carpet, see 

what happens.”  This attitude and behavior was evident in Investigation 4 as well when during 

the analysis of the data collected using the data logging feature of the robot, she asked the 
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teacher, “Can we run the robot again?”  At this moment, the role of the teacher has moved to 

facilitator and the role of the learner has moved from passive to active.  

Subsequently, students became very critical of their work and debated during group 

discussions.  In Investigations 5 and 6, during an interview Student #1 gave an account of the 

discussion as such, “So one, we were trying to decide how, like what kind of pattern would be 

better, like if we should do for the foot, if we should use like a spike, like more like spikes or if 

we should use the round to see which one would probably maybe grip the surface better, 

yeah…Like one person who had the spike idea and then the other person had the wave idea and 

others agreed as well.”  This critical reflection on the design of spikes on the foot show evidence 

of higher order mental processes (Mezirow, 1990).  From these discussions, students began to 

take control of their learning and meaning formation.  As observed in a group discussion student 

#5 said, “We should measure the distance and time, calculate velocity and then observe how 

straight it traveled.”  Student #6 summed the experience by saying “I’m not always a problem 

solver because sometimes, depending on what it is, it’s just not always worth the…trying to go 

out of my way to solve it.  This activity has allowed me to determine if it needs to be solved, 

then I’ll solve it.” 

Theme 5: Learning experiences underpinned by design thinking lead to positive 

student outcomes.  At the core of the design thinking environment is the students’ progression 

through the engineering design cycle.  Students at the beginning of the module enter the cycle at 

Step 1 Identifying the need or problem (Figure 19).  The teacher presented the problem using the 

RFP.  As they moved through the cycle, students in Step 2 began researching the problem. 
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Figure 19.  The Engineering Design Model.  Adapted from “Infusing engineering design into 

high school STEM courses,” by M. Hynes, M. Portsmore, E. Dare, C. Rogers and D. Hammer, 

2011, National Center for Engineering and Technology Education website, p. 3.  Copyright 2011 

by the National Center for Engineering Technology. 

 

The problem asked for a foot like device that would improve the motion of the robot in 

terms student derived meanings of performance and effectiveness.  During the research phase of 

the engineering design cycle, the engineering groups are tasked to research information that will 

aid in their development of the solution prototype.  To understand locomotion, the students were 

given three robots with different leg configuration.  Each leg configuration made the robot move 

a certain way.  In a whole class discussion, students came to a consensus to define effective 

movement.  After the class agreed on what effective movement was, they performed experiments 

with the robot to gain an understanding of motion.  During an experiment to determine the 

optimal leg configuration of the robot, Student #5 made an observation and entered it in their 

engineering notebook (Figure 20). 
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Figure 20. Student #5’s Path Graph Observation Entry Engineering Notebook. 

Student #4 made a similar entry in their engineering notebook describing the motion to 

determine optimal leg configuration in Figure 21.  These observations that were made gave the 

students a unique perspective on the concepts of locomotion and gait.  By doing their 

experimentation and research, each group is able to form a point of view that will address and 

assist the design of the solution.  Kwek (2011) states that these activities promote a student 

centered learning environment and promotes activity guided problem solving that is connected to 

the real world context of the design challenge. 

 

 

Figure 21. Student #4’s Path Graph Observation Entry Engineering Notebook. 

Students completed more experimentation to gather data that would aid them in their 

organization of ideas for solutions to the challenge.  During Investigation 3, Student #7 made the 

remark to his group that “there is more friction on the carpet than on the floor.”  Testing the 
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robot on three surfaces afforded the students the opportunity to make predictions about the 

robot’s performance.  Student #5 said to his group, “Bet that the robot is fastest on the floor.”  

Students were then able to test their hypothesis and record their observations.  In Investigation 4 

students were able to further explore the concept of friction and look at it graphically.  Student 

#2 during the analysis of the data generated from the data logging made the correlation of 

friction and “space” on the data logging graph Figure 22.  Student #7 said, “So, if the spaces 

between one spike and another spike is bigger, than there must be something slowing the robot 

down.” 

 

 

Figure 22. Student #7’s Data Logging Graph Entry Engineering Notebook. 

The data collected by the students informed their creation of solutions in Investigations 5 

and 6.  In Steps 3 and 4 of the Engineering Design Cycle, students create different solutions and 

choose the best two.  Student #3 in an interview explained, “We changed it up because we were 

thinking about the friction so we had to get as close as possible to what we were thinking about 

the foot when it would experience friction with the surface.  So we changed it enough.”  It is 
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evident that the gathering of information to inform the design is guiding their decisions.  Student 

#7’s group decided that the foot should be able to operate on different surfaces.  Student #7 

suggested that “We should make the foot rigid so that it can be able to move on different surfaces 

(Figure 23).” 

 

                                 

Figure 23. Student #7’s Foot Design Draft and the Corresponding Printed Feet. 

 

Student #1’s group decided to edit their design during the computer drafting stage from 

their recorded design in their engineering notebook (Figure 24). 

 

                             

Figure 24. Student #1’s Foot Design Draft and the Corresponding Printed Feet. 

 

Investigation 6 allowed the students to take the data from the newly created feet along 

with data collected during the module and iterate their designs.  Student #1 shares his group’s 

willingness to iterate and make adjustments to his design.  He says, “I won’t say it was hard 

because you can just keep trying until you get something that works.”  Student #2 echoes his 

thoughts by saying, “It’s like you put together this really good solution and if something doesn’t 
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turn around you’ve got to go back and fix it and that’s okay but it’s like it’s just maybe 

intimidating because you’ve got to sit there and you’re like okay, well the think I just did didn’t 

work, now I have to sit here and think about something that I can do to fix whatever I just didn’t 

do right.”  The ability and willingness to persevere is evident in these two statements. 

Theme 6: Contextual relevance is enhanced when students have freedom to design 

their own learning journey.  Contextual relevance refers to the connection the learner has with 

the situation.  As depicted in the situated cognition concept map in Figure 2, the situated context 

is characterized as a relationship with a purpose.  The students are a member of a community 

with a purpose or charge to respond to the RFP.  The contextual relevance includes the shared 

tools, resources and processes used to respond to the RFP.  When control is given to the students 

giving them the freedom to decide on the manner in which they want to respond, the connection 

between the context and student is enhanced.  The students are not only bound by the same 

purpose but are motivated by meaningfulness toward creating the solution to the challenge. 

During interviews, I asked students their perception and feeling about the integrative 

STEM module.  Student #6 raves about the excitement of Step 5 building a prototype.  Student 

#6 says, “I like 3-D printing because you get to see how stuff….Because it’s not like regular 

printed like stuff that just come out like one dimension, you get to see like things really form, 

like a three-dimensional  shape actually, coming, like printing out itself (Figure 25).”  Student #4 

made this remark about 3-D printing, “I liked it because I never saw something printed in 3-D 

before (Figure 26).”  The student began to see himself as a manufacturer of a product.  He was a 

maker.  He then added, “It was different than what we do in math class, well math is like…it’s 

like you follow this set of rules, this process and you have to get like this certain answer.  But it 

helps when you can like do experiments and when you make mistakes you can see kind of how it 
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would lead you to get this actual process and how you would actually get the answer that you’re 

supposed to get.”    

 

 

Figure 25. Student #6 Manufactured Foot Prototype 

 

 

Figure 26. Student #4 Manufactured Foot Prototype 

Student #1 replied that the context “made it feel more realistic and what you were doing 

would really help something, like an actual problem.  Like you can kind of…if you take a real 

life example you can kind of bring it back to science and then you can kind of bring it back to 

math.” 

Students were guided through the process of taking control of their learning.  Student #3 

and his group designed the testing procedure that they felt would give them the best evidence for 

suggesting their foot design.  Figure 27 is the group’s created and designed procedure for testing 

their prototype foot-like devices.  The entry shows how this group plans to collect data to support 
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their prototype as the response to the RFP.  The members of this group have decided to use their 

understanding of velocity as the main point of evidence to use their prototype.   

 

Figure 27. Student #3 Group Created Procedure for Testing Prototype 

Student #6 was observed discussing the operation of the robot on an inclined plane.  She 

suggested that they collect data of the robot operating on the table with one end supported by 

books (Figure 28).  This manner of control goes further than the previous example due to the 

students’ curiosity to perform experiments that were outside of the curriculum.  Allowing the 

exploration of concepts using student driven inquiry takes the context and makes it meaningful to 

them.  By the students taking control of what and how they learn they become invested owners 

of their learning.   

When asked if they enjoyed the process, Student #2 said, “I did, I did like doing that part.  

I’m very artistic so I like I have this whole sketch book.  It’s actually in the classroom but it was 

fun, to put like…YOU create, like you draw it and I get to use my skills to kind of…It adds to 

the system that you’re doing, it’s like giving me an opportunity to be innovative (Figure 27).”  

Student #5 said “designing something and having it be created and then seeing how it works 

gives me a sense of accomplishment.” 
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Summary of the Results 

 

The quantitative results for achievement showed that there was a statistically significant 

difference in pretest and posttest scores.  The analysis showed that students were able to 

correctly answer one to two questions more on the posttest than on the pre-test.  The quantitative 

results for the paired samples t-test for each of the subscales of the Motivation and Engagement 

Scale survey showed that there were no significant differences in means for nine subscales: (1) 

self-belief, (2) valuing school, (3) learning focus, (4) planning, (5) task management, (6) 

persistence, (7) anxiety, (8) uncertain control and (9) disengagement.  For the failure avoidance 

and self-sabotage subscales the results show a statistically significant difference.  The analysis of 

the instrument showed that students after participating in activities of the REDC were not 

motivated by the fear of failure as they were at the beginning of REDC instruction.  The fear of 

failure can overshadow any other motivation because they did not want to appear as a failure in 

the classroom.  Failure avoidance may have motivated students to do work or many have 

motivated students to accept failure and not do the work at all.  The analysis of the study showed 

that students’ fear of failure lessened, they did not feel pessimistic or anxious when thinking 

about their school work.  Students felt that the collaboration with group members and the 

environment created by the teacher, made the classroom room a safe place to explore 

experiment, innovate and create.  The analysis showed that students did not feel the need to do 

things that would reduce their chance to achieve success.  The self-sabotage feeling lessened and 

students felt that the curriculum allowed them to make the most of their abilities and afforded 

them the opportunity to take more control of their learning.  Students showed a decreased bad 

feeling about school and became genuinely interested in the activities of the curriculum.  The 

remaining subscales interpreted showed that students generally came to class moderately 
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engaged.  The subscales learning focus, persistence and self-belief according to the instrument 

scored a “B” out of an A to D scale.  The usual activities that occurred in the class prior to the 

instruction of the REDC did not sustain the motivation and engagement.  During the REDC 

integrative STEM instruction, motivation and engagement remained relatively constant, showing 

that their engagement was held by the robotics and engineering activities.  The students’ fear of 

failing reduced as a result of engaging in the integrative STEM curriculum.  Along with the 

decreased detrimental behavior that would prohibit success, students began to have a stronger 

feeling of control and purpose in their learning.  

The qualitative analysis showed that the curriculum positively affected performance and 

engagement.  Data triangulation from interviews, field notes, and student artifacts provided the 

story of the manner of engagement.  Azevedo, diSessa and Sherin (2012) describe engagement in 

mathematics and science by the intensity and manner of participation in the learning activities.  

The students indicated that the humanistic perspective of the robot, their physical interaction and 

collaborative meaning making enhanced their engagement in the module.  The social bond 

formed between student and the robot aided in the cognitive process developed by the students 

individually and collectively.  The anthropomorphic relationship helps form the cognitive 

process by starting with an accessible knowledge structure as a base to help understand what the 

robot (non-human object) is doing (Epley, Waytz & Cacioppo, 2007).  The students showed they 

had the ability to monitor and manipulate the robots to gain understanding of force, velocity, 

slope and other concepts.  A hands-on real-world strategy has the capability to educate 

mathematics, science and engineering concepts (Carlson and Sullivan, 1999).  The students were 

engaged in physical movement with the intent of gaining information to solve the engineering 

design challenge.  Being in action also helped the students build community.  Students were 
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assigned to engineering groups that made up the engineering firm (entire class).  Collaboration 

addresses the need for multiple perspective, different skill sets and different knowledge bases 

(Yuen et al., 2014).  The study showed that students benefited from the collaborative nature of 

the curriculum.  Students were able to explore and investigate ideas.  When needed, students 

took the role of apprentice and were guided in their thinking during certain tasks during the 

curriculum.  This evidence supports the findings from the quantitative analysis.  The learning 

focus subscale remained constant throughout the instruction.  Students were focused on the tasks 

and developing skills based on the knowledge structure they had or were made collectively in 

their learning community.  The students displayed a constant learning focus by holding 

discussions, using graphic organizers and reflecting on the process used to obtain the final 

solution.  Their fear of failure was seemingly reduced while working with their engineering 

group in the development of their solution.  It was evident that collaboration provided a safe 

environment inhibiting behavior that would derail or limit their success. 

The themes showed that an environment with transformative educational potential is 

important to the students’ success.  Christie, Carey, Robertson and Grainger (2015) argue that 

transformative learning is akin to developing independent thinkers.  This study showed that 

students began this process by shifting from a passive to an active learner.  During the shift, the 

students took control of their learning and became their own guide on this path.  Furthermore, the 

learning environment was transformed as instruction shifted from being conducted in the 

traditional manner to occurring in two classes simultaneously while being taught by two 

teachers.  The transformative nature of integrative instruction afforded unique learning 

experiences that were not constricted by subject or concept.  The design thinking platform 

supported the students to engage in taking control of their learning.  Design thinking allows for 
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innovation, critical thinking, collaboration and creativity to solve problems (Carroll, 2014).  

Students were able to focus on the criteria of the project and were not concerned with getting a 

right answer.  Moreover, students were able to explore mathematics concepts within the context 

of the situation ultimately lessening any fear or anxiety.  Contextual relevancy incorporated 

hands-on experience, active and integrated learning and allowed students to design their own 

learning journey.  The project-based learning component deepened students’ understanding by 

letting their inquiry be the guide.  Correlation of findings from qualitative and quantitative 

analyses was Affirmed that students became self-directed have ownership of their own learning. 

When students were challenged, they continued to work towards a solution for their response to 

the RFP.  With a decreased apprehension and a subsided fear of failing, students felt comfortable 

traveling this path.   
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CHAPTER 5 

Discussions 

 

By using an exploratory single case study methodology utilizing both qualitative and 

quantitative research methods, this study investigated and described the effects of using project-

based integrative STEM modules on eighth grade students’ performance and engagement in a 

unit on functions in Algebra.  The study was underpinned by the situated cognition framework.  

The study is guided by the following research questions:  

1. What was the effect of using project-based, integrative STEM modules on 8th grade 

student performance and engagement in learning a unit on linear functions?   

2. What STEM-related situational factors contributed to 8th grade students’ success in 

learning using project based, integrative STEM modules? 

In concluding this research study, this chapter will situate the six findings within the 

context of relevant literature.  Moreover, this chapter will provide an in-depth discussion of 

implications for practice and offer recommendations for future research. 

Discussion of Research Findings 

 

An investigation of the effect of using project-based, integrative STEM modules on 

eighth grade students’ performance and engagement and the identification of STEM-

situational factors that contribute to the students’ success yielded six themes.  Three themes 

emerged describing the effect of the integrative STEM module and three emerged identifying 

the STEM-situational factors: 

1. The developing anthropomorphic relationship with the robot enhanced student 

engagement. 

2. Purposeful and intentional student physical action supported meaningful engagement 



 116 

in the design environment. 

3. Purposeful collaboration promoted engagement through the construction of meaning 

and interaction. 

4. A learning environment that has transformative learning potential fostered student 

success. 

5. Learning experiences underpinned by design thinking led to positive student 

outcomes. 

6. Contextual relevance was enhanced when students have freedom to design their own 

learning journey. 

Connections to Literature 

 

Recent national and local interest has placed a healthy interest in STEM.  Bybee (2013) 

announced that two major national goals have been made: (1) increase proficiency of all students 

in STEM and (2) increase the number of students in STEM.  Attending to the concerns of the 

first goal can result in a wide variety of studies looking to meet the metric stated in goal number 

one.  Chapter 2 highlighted studies that were wide in range and scope with the intention of 

increasing student proficiency (Yuen, Boecking, Tiger, Gomez, Guillen, Arreguin & Stone, 

2014; Barrett, Moran, & Woods, 2014; ChanJIn, Cartwright & Cole, 2015; Alfieri, Higashi, 

Shoop and Schunn, 2015; Star, Chen, Taylor, Durkin, Dede and Chao, 2014; Cuperman & 

Verner, 2008).  In the wide variety of research reviewed in Chapter 2, there were similarities 

between the previous studies and certain aspects of the current study.  A similarity between 

earlier studies and this study was the reported findings that inform strategies, products or 

processes to increase the interest and proficiency in STEM concepts and disciplines.  ChanJin et 

al. (2015) claim that students who engage in robotics through extra-curricular competitions 
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experience higher performance scores in mathematics and science.  As well, Barrett, Moran and 

Woods (2014) argue that student participation in extracurricular meteorology and engineering 

camp increases student knowledge.  Although these studies showed an increase in performance 

and engagement, the interventions studied occurred outside of the school day.  The normal 

expectations of classroom instruction, management and student accountability were not present.  

The robotics competitions highlighted earlier were a part of an afterschool program.  The 

meteorology and engineering competition was a summer program.  Implementing these activities 

and experiences outside of the normal school day is very different than the integrative STEM 

model used in this study.  The curriculum was instructed in the mathematics and science classes 

simultaneously and during the natural school day. 

Another similarity between the studies previewed shows an increased in student 

performance, motivation and engagement.  For example, Alfieri et al. (2015) contended that 

student self-efficacy and motivation improved due to the instruction of a specific mathematics 

topic using a gaming context.  The computer based robot game had the students use their 

proportional reasoning skills to navigate an aquatic environment.  However, the situated context 

of the studies reviewed did not relate to real world application.  The studies appealed to the 

fantasy nature of gaming.  In this study, the curriculum provided a contextual relevance that 

promotes the development of thinking skills that the students see as helpful in everyday life.  

Students were situated as engineers solving and engineering design challenges.  Furthermore, the 

context dictated how the students used the tools and resources in resolving the challenge.  As 

such, students became practitioners and engineers.  The contextual background of the REDC 

curriculum differs from the context of the reviewed studies, which were situated in an 

entertainment gaming environment.   
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Cuperman and Verner (2008) reported findings that highlight the use of modeling with 

robotics created motivation to learn and understand STEM concepts.  The similarity to the 

current study is the use of robotic models to engage and motivate student learning as they solve 

the engineering design challenge.  This research study looks to investigate the use of robotic 

models in an integrated science and mathematics context over simultaneous instruction in a 

mathematics and science class taught by two teachers.  Situated in a learning environment as 

described takes a deeper look at how modeling can be used in the classroom. 

Examining the interaction between the robot and the student helps to describe the 

influence it has on engagement and student performance.  Shahid, Khrahmer, and Swerts (2014) 

report that children who are able to form and develop a social bond with educational robots over 

time show positive learning effects.  I argue that forming an anthropomorphic relationship aids in 

developing the social bond.  This research study shows that students can be more expressive with 

robots than they are with their friends.  Such relationship allows students the opportunity to 

construct arguments built upon an established base of understanding.  The base of understanding 

results from a frame of reference that starts with their interaction with the environment around 

them.  Lemaignan, Fink, Dillenbourg, and Braboszcz (2014) explain that anthropomorphizing 

the actions of the robot affords students the ability to explain things that are not well understood 

by them in terms of things they do understand.  The learning was enhanced because of the bond 

created and the connection socially students had with the robot.  In this relationship, social robots 

are seen as human-like mimicking many characteristics of living beings (Shahid et al., 2014).  

Several studies have shown that critical thinking skills can be developed along with other higher 

order thinking processes such as abstraction and analysis skills (Atmatzidou, 2016).  Existing 

research on robotics in learning shows that children perceive robots as companions.  Several 
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questions still arise about the nature of the social bond that is seemingly formed and its influence 

on the child’s academic performance.  This current study has shown that an observable bond 

formed between students and the robot.  The bio-inspired design of the robot gave students an 

opportunity to new perceptions regarding the nonliving object.  Students attributed human 

characteristics to the robot and formed a bond with the model.  I argue that the anthropomorphic 

relationship afforded a deeper understanding of the system that it represents and allowed a 

meaningful investigation into students’ inquiry.  Students employed the knowledge they have of 

themselves and extended it to the robot.  Through iteration and testing of the prototype, students 

were able to form a deeper understanding of the system and use concepts of mathematics, 

science, and technology to engineer the solution for the project based learning challenge.     

Another major finding of the current research study is that students were more engaged 

with hands on, physical activity when there was an explicitly stated reason to perform the 

activity.  ChanJin et al. (2015) claim that students enjoy giving life to the robot and interacting 

with it.  The art of learning by doing was what grabbed the attention of the students and engaged 

them in meaningful learning opportunities.  Moye et al. (2014) defines “doing” as a hands on 

process that involves human needs and wants. “Doing” inspired innovation, creation and 

building.  With this in mind, new approaches have been made to expand the “doing” experience 

using robots in the classroom from blindly doing tasks to purposefully experimentation with 

ideas.  The emphasis was on the embodied nature of understanding where learning depends on 

the relationship between the mind, body, and the environment (Dautenhahn, 2007).  Students in 

the current study actively engaged in authentic activities originally performed by engineers.  

During the design, test and iteration phase of the engineering design cycle, students performed 

tests that informed the redesign of the prototype to meet the criteria of the RFP.  Dautenhahn 
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(2007) states that in this type of learning environment, robots move from being a computer on 

wheels to being an extension of the students’ self.  Students operating and observing the robot on 

different surfaces helped them form understanding through purposed motion that displayed the 

concept of force and velocity in action.  The purpose was for students to gain knowledge through 

observation and data collection to inform their decision about their designs.  Employing robots to 

simulate these instances provided a unique opportunity of embodiment where the “doing” is 

more authentic. 

Likewise, there were findings of embodiment where the “doing” was more authentic.  In 

the results it was noted that purposeful collaboration promotes engagement through collective 

meaning making and interaction.  Peer-to-Peer relationships that have purpose and relevancy 

validate the learning experience.  These collaborations make the social activities pertinent and 

not superficial. Freeman et al. (2008) explain that at the center of the social structure was the 

group’s function to make sense of the situation around them.  When the students understood their 

purpose collectively, meaningful discussions ensued in the effort of making sense of what 

challenges were before them.  Collaboratively, the groups formed strategies and decided on the 

things they needed in order to solve the challenge.  During the integrative STEM modules, 

students in their groups crafted a STEM specific language that was used to form meaning and 

create strategies needed to aid the problem solving process.  Collaboration is key, as Freeman et 

al. (2008) assert, the community afforded confidence, motivation and persistence for learning 

where fear was lessened and opportunities for deep conceptual mastery prevailed.  Findings of 

this research study reinforced the fact that group collaboration acted as the catalyst to foster 

learning the activities of the curriculum.  The challenge given in the RFP motivated the group 

and the charge given by the RFP, promoted meaningful and purposeful collaboration in action 
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and thought.  Students in their engineering groups agreed on a common purpose and developed 

plans for designing and testing their solutions.  Likewise, the collaboration provided a place 

where each of the members were supported and ideas could be shared safely.  Members were 

relied upon for various expertise in the many skills used to solve the challenge.  In this manner, 

the relationship between group members can be described as that of an expert and apprentice.  

Assistance such like this appeared to help members of the group as become academically and 

cognitively mature. 

Additionally, results of this study showed that several STEM-situational factors 

contributed to the success of students.  For example, the physical environment had 

transformative learning potentials, which directly influenced student success as they maneuvered 

new options and roles in the learning process (Elsey, 2011).  I argue further that the 

transformative learning potential secured by the challenging situation motivated students to 

become self-disciplined and encouraged their self-control.  The integrative STEM learning 

experience facilitated the integration of mathematics and science thereby providing a space for 

students to use their mathematics knowledge bases to interact with science, technology, and 

engineering design.  Through collaborative work, students took part in constructing new 

knowledge and understanding supported by and situated in an integrated context.  Schelly et al. 

(2015) explains that 3-D printing has a transformative educational potential by enabling students 

with the ability to innovate and create material objects through the design process.  Immersing 

students in also in an environment where state-of-the-art instructional tools such as the 3-D 

design and printing allowed for the ingenuity and creativity to be a focal point of the activity.  

Students positioned themselves as contributors and makers.  The shift in students’ self-

perception from a “line filler” to an idea creator fostered an atmosphere of success.  The move 
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continued as students began to explore questions they started to formulate during instruction.  

Schelly et al. (2015) argue that students can become critical of the world or the things around 

them.  Through an interrelated sequence of action and reflection, students negotiated ways to 

make their problem solving better.  Students were empowered to take control and responsibility 

for their learning.  Hence, students changed their role from being passive receivers to active 

learners.   

In this study I argue that learning environment afforded by integrative STEM activities 

underpinned by design thinking promoted student success.  Kwek (2011) defines design thinking 

as an approach to learning that focuses on developing critical thinking and creativity through 

hands on projects that focus on empathy, encourage ideation and nurture problem solving skills.  

Students having the opportunity, engaged in practical work that test the theoretical concepts they 

were learning (Ayar, 2015).  Students examined the problem critically.  Each group engaged 

researched and used resources to create solutions that were tested and revised.  Using this cycle 

of analysis, research, production, testing and revising created a setting where ideas flowed freely. 

I argue that engaging in this cycle peaked students’ motivation and inspired interest to become 

innovators.  The focus was not on arriving at the right answer but on the journey taken to achieve 

the solution.  Mathematics and science concepts were used in concert with students’ ideas and 

inquiries.  Students had the ability to interact with new situations and were inspired to create and 

develop new meanings.  Kwek (2011) contends that s increased interest, ability and self-

confidence can positively impact learning.    

  Lastly, the contextual relevance contributed to success by allowing students to take 

ownership of their learning.  Students were motivated to design and direct their learning paths. 

Skinner, Wellborn and Connell (1990) propose that students’ perception of taking control of their 
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learning can lead to success in school.  Being immersed in an engineering design challenge, 

students conducted research independently with the purpose of designing a solution.  Quinn 

(2015) contends that students should be placed in situations that encourage them to make 

decisions about their learning.  By the same token, Harris, Penuel, D’Angelo, DeBarger, 

Gallagher, Kennedy, Cheng and Krajcik (2015) affirm that students’ gaining control of their 

learning in a project-based learning environment leads to student success.  During the project-

based learning activity, students were encouraged to conduct independent research in order to 

gain conceptual and practical understanding of relevant mathematics concepts.  Students were 

exposed to several experimentation techniques to understand balanced and unbalanced forces, 

motion and velocity.  Moreover, students were given the ability and opportunity to analyze data 

collected from the robot in various ways to address questions that emerged during group 

deliberations and experiments.  As students assumed the role of manufacturers, they became 

owners of the content, process and prototypes made in response to the RFP.  Keengwe, Onchwari 

and Onchwari (2009) describe technology as having the ability to shift the role of the student 

where they are encouraged to construct meaning from their experiences.  Students reflected on 

how they thought, learned and planned strategies used to solve problems.  From the beginning of 

the curricular intervention, students were situated as problem solvers.  They used the engineering 

design cycle as a guide to plan their course to toward a meaningful and relevant solution.   

Some of the gaps in the literature identified areas where there was a lack of evidence 

reporting successful strategies, evidence of STEM curriculum promoting the use of high level 

mathematics skills and strategies for STEM curriculum integration.  Findings reported in this 

study provided an overview of how the integrative STEM curriculum impacted student 

engagement and performance.  For example, the anthropomorphic relationship between the 
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student and the robot showed how engagement was fostered and promoted.  The evidence of the 

relationship led to a need of understanding the complexity of the relationship and the effect it has 

on learning.  Project-based learning curriculum that used engineering design challenges provided 

an integrated way for students to develop and use higher order critical thinking skills.  The 

movement through the engineering design process promoted increased engagement in rigorous 

activities.  For example, students explored slope of a line to calculate velocity then analyzed the 

velocity at different points of motion to detect the presence of friction.  They were willing to 

complete the design challenge as their purpose changed.  Instead of each student individually 

working on getting the same answer, students joined communities with a common purpose of 

creating solutions that met the criteria of the challenge.   

The STEM integrated curricular intervention in the mathematics and science classroom 

simultaneously displayed a design example for discipline integration.  The use of this model 

added to the discussion of strategies used to implement integrative STEM across the science and 

mathematics curricula.  

Implications for Practice 

 

The aim for this research study was to explore the effect on performance and engagement 

when using a project-based, integrative STEM module on eighth grade students’ performance 

and engagement in learning a unit on functions and identify the STEM-situational factors that 

contribute to their success.  The exploratory nature of the case study intends to identify areas of 

further study which call for deeper investigation.  The implications for practice include continual 

study and examination on the design and structure of the STEM learning space and simultaneous 

integration of disciplines throughout teaching and learning. 

The STEM learning space is ever changing, just like the learner that will occupy these 
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rooms.  Estes et al. (2014) describe several significant characteristics that should be found in 

today’s STEM classroom.  Today’s classroom must honor the fact that students today learn and 

communicate differently from previous generations.  Integrated technology should be present 

that encourages for small group work and individual learning.  The classroom allows for 

intentional learning where the students become advocates for their own schooling.  It should 

nurture relationships where community, collaboration and learning are encouraged.  The place 

should also be a crossroads for community, business and academic partnership.  There is limited 

literature outlining the design of such spaces.  This research aims to be a catalyst for discussions 

regarding this matter. 

The model of integration, in this study, implements one description called integrative 

STEM.  Wells (2014) defines it as the design based approach using technology and engineering 

to teach science and mathematics content.  This research study has investigated the 

implementation of this model in the science and mathematics class simultaneously.  The 

definition of STEM in schools nationwide has been a matter of preference and preparation.  With 

the evidence of the model communicated in this study, schools, communities and academia 

should be motivated to rethink what STEM integration looks like.  This study aims to be a 

catalyst for the study and design of several models of integration. 

Recommendations for Future Research 

 

The state of STEM education research has not changed much since Brown (2012) 

claimed that there were many attempts to answer the goal of STEM education: (1) increase 

student proficiency and (2) increase the students in the STEM major and career pipeline.  The 

reviewed studies (Yuen, Boecking, Tiger, Gomez, Guillen, Arreguin & Stone, 2014; Barrett, 

Moran, & Woods, 2014; ChanJIn, Cartwright & Cole, 2015; Alfieri, Higashi, Shoop and Schunn, 
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2015; Star, Chen, Taylor, Durkin, Dede and Chao, 2014; Cuperman & Verner, 2008) showed the 

wide variety of research conducted.  Several areas would benefit from focused research including 

the social anthropomorphic bond between the student and robot, teacher professional 

development, models of STEM integration, and writing in STEM.  An investigation into these 

areas will provide a clearing agent to the current muddied waters of STEM. 

The social bond between student and robot.  Findings of this study highlighted the 

bond between the student and the robot as anthropomorphic.  To further this discussions, aspects 

of the student-robot interaction should look into the cognitive processes developed as a result of 

the bond.  Furthermore, an investigation of the influences on the social bond, such as cultural 

background, age or gender, and the impact it has on learning is necessary.   

Teacher Professional Development.  In the spirit of the old saying, “you can’t teach an 

old dog new tricks,” school districts are faced with the dilemma of helping teachers change their 

practices.  At the same time, colleges and universities are challenged to train new teachers with 

these competencies.  With time constraints, district pressures and an ever changing student, it has 

become difficult to train teachers “on the fly” to become STEM teachers.  One area of major 

concern is providing professional development in the appropriate use of relevant and cutting 

edge technology in the classroom.  Oftentimes teachers are well versed in more traditional ways 

of teaching with little working knowledge of coding, robotics systems, 3-D printers and laser 

cutters.  This area of teacher professional development is rich in opportunity.  

Models of STEM Integration.  This area is still in need of research to provide blueprints 

to create a learning environment that integrates two or more disciplines at the same time.  This 

study investigated how using an example model was implemented in a mathematics and science 

class simultaneously.  By providing insight to the professional development needed for this 
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model, planning and implementation may inform practitioners on the design of integrative 

STEM in schools. 

Incorporating Writing in STEM.  Writing is very important to the design process.  

Students have a desire to only engage in hands on activities as seen by the current study.  

Research in strategies to encourage writing in all STEM disciplines would be very helpful and 

beneficial. 

Conclusion 

 

Findings reported in this study support the fact assertion that using robotics maintained 

curiosity and interest when presented in the mathematics and science classrooms.  The effect on 

engagement was evident by the three themes: (1) the developing anthropomorphic relationship 

with the robot enhanced student engagement, (2) engagement is impacted by purposeful and 

intentional student physical action, (3) purposeful collaboration promotes engagement through 

the construction of meaning and interaction.  The STEM-situational factors that contribute to 

student success emerged from three themes: (1) a learning environment that has transformative 

learning potential fosters student success, (2) learning experiences underpinned by design 

thinking lead to positive student outcomes, (3) contextual relevance is enhanced when students 

have freedom to design their own learning journey. 

As a nation we are in an exciting yet frightening period.  Bybee (2013) describes this as 

our “Sputnik moment.”  Will we answer the call and let this time motivate and inspire up to 

greater heights or do we shrink and cower under the pressures affecting us during this period?  It 

has been my intention since the day I walked into the classroom, to do whatever it takes to 

prepare students for the rest of their lives.  The situations that they will encounter will require 

critical thinking skills, adaptation, and innovation.  With the findings of this study, we can begin 
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the journey to insure that each student is prepared for success in our ever advancing 

technological world. 
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Appendix A: Biomechanics Standard and Activity Matrix cont. 
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Appendix A: Biomechanics Standard and Activity Matrix cont. 
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Appendix A: Biomechanics Standard and Activity Matrix cont. 
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Appendix A: Biomechanics Standard and Activity Matrix cont. 
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Appendix A: Biomechanics Standard and Activity Matrix cont. 

 

 

 

 

 



 155 

Appendix A: Biomechanics Standard and Activity Matrix cont. 
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Appendix B: Interview protocol (Sample) 

 

Introduction 

 My name is Storm Robinson.  I am a PhD student at Georgia State University.  Thank 

you so much for your help.  Today you are going to take part in a study on integrative STEM 

teaching and learning.  This study will help with the development of teacher and student 

materials to make learning engaging and meaningful.  So your help is very important and I thank 

you. 

 We want to understand what you are thinking and how you feel during the instruction of 

integrative STEM curriculum.  Would you like to participate in this interview? 

 

Yes: continue 

No: stop the interview 

 I am going to ask you some questions.  Before I start, I would like to let you know that I 

am going to record what we say using this digital recorder.  I will not use your name to identify 

the audio recording.  The recording will be stored on a password protected hard drive.  Are there 

any questions? 

 

1.  What project are you doing in mathematics class? 

 Do you think the project is important? Why or why not? 

2.  Have you learned anything about mathematics?  Why or why not? 

3.  Have you learned anything about science?  Why or why not? 

4.  Have you learned anything about engineering?  Why or why not? 

5.  How often do you have projects like this in class? 
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Appendix B: Interview protocol (Sample) cont. 

 

6.  How is this class the same or different from other classes? 

 Do you do this type of projects in any other classes? 

7. I am going to describe different teaching strategies that your teacher used in the class.  I want 

you to describe something that you like or something that you didn’t like about the strategy?  

One of the things the teacher did was at the beginning of the lesson he presented a problem.  Was 

it helpful or not? 

 The teacher guided you though the calculation of velocity with data collected from your 

robot. 

 You were allowed to discuss with your group how graphs can determine slope and 

velocity 

 You used the robot to gain understanding of force. 

8.  Tell me how you feel about the robots, computer aided design and 3-D printing? 

 Did they help or hurt the lesson? 

 Could you have solved the problem using something else? 

 Do you feel like you are using up to date technology? 

9.  What was the best/worst part of the activities? 

10.  Let’s imagine that you receive another RFP to design a device that helps people with 

mobility issues due to diabetes.  How would you solve this challenge? 

11.  Since there was little homework from the activities, did you think about them after school or 

have a discussion with a family member or friend about what you did in class? 

12.  Did these activities help your problem solving? Why or why not? 
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Appendix B: Interview protocol (Sample) cont. 

 

13.  Would you agree that these activities increase your interest in science, technology, 

engineering or mathematics?  Why or why not? 

14.  What do you think mathematicians do in their normal workday? Scientists? Engineers? 

15.  Did you enjoy the experience overall? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 159 

Appendix C: Observation protocol (Sample) 
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Appendix C: Observation protocol (Sample) cont. 
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Appendix C: Observation protocol (Sample) cont. 
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Appendix D: Engagement Survey Sample Items  
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