Georgia State University
ScholarWorks @ Georgia State University

Heritage Preservation Projects

Department of History

Fall 2013

Thomas H. Moore House

Julie Bohn
Rachel Bragg
Nathan Brown
Susan Coleman
Jessica McCarron

See next page for additional authors

Follow this and additional works at: https://scholarworks.gsu.edu/history_heritagepreservation

Part of the Historic Preservation and Conservation Commons

Recommended Citation
Bohn, Julie; Bragg, Rachel; Brown, Nathan; Coleman, Susan; McCarron, Jessica; Neeley, Collier; Penque, Carla; Radke, Casey; Rooks, Whitney; Rose, Amber; Sheldon, Alyssa; Smith, Maggie; Sosebee, Brian; Tankersley, Clint; and Wiginton, Megan, "Thomas H. Moore House" (2013). Heritage Preservation Projects. 31.
https://scholarworks.gsu.edu/history_heritagepreservation/31

This Historic Structure Report is brought to you for free and open access by the Department of History at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Heritage Preservation Projects by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact scholarworks@gsu.edu.
Thomas H. Moore House
2201 Dixie Avenue SE, Cobb County
Smyrna, Georgia 30080-1578

Prepared for: Joel Powell, Property Owner
Prepared by: Conservation of Historic Building Materials Class
Georgia State University, Fall 2013
MOORE HOUSE PROJECT TEAM

Richard Laub & Laura Drummond, Instructors

Julie Bohn
Rachel Bragg
Nathan Brown
Susan Coleman
Jessica McCarron
Collier Neeley
Carla Penque
Casey Radke
Whitney Rooks
Amber Rose
Alyssa Sheldon
Maggie Smith
Brian Sosebee
Clint Tankersley
Megan Wiginton
ACKNOWLEDGMENTS

We would like to acknowledge and thank the following:

Joel Powell, Property Owner

Mr. and Mrs. James Stephens, Jr, Neighbors, 2221 Dixie Avenue

Richard Laub, Instructor

Laura Drummond, Instructor

Kara Hunter-Oden, Curator, Smyrna History Museum and Vice President, Smyrna Historical and Genealogy Society, Inc.

MaryEllen Higginbotham, Interior Specialist
TABLE OF CONTENTS

PART I: INTRODUCTION
- BACKGROUND ... 1
- EXECUTIVE SUMMARY ... 2

PART 2: DEVELOPMENTAL HISTORY
- LOCAL HISTORY .. 4
- PROPERTY OWNER HISTORY ... 7
- PROPERTY OWNER TABLE ... 14
- BUILDING CHRONOLOGY .. 15
- THE BASEMENT AND FOUNDATION .. 15
- EXTERIOR ... 15
- INTERIOR ... 16
- ATTIC .. 16
- CHRONOLOGY DRAWINGS .. 17

PART 3: PHYSICAL DESCRIPTION
- SETTING DESCRIPTION ... 18
- OUTBUILDINGS: OFFICE ... 20
- OUTBUILDINGS: CARPORT .. 21
- WELL .. 22
- LANDSCAPE .. 23
- SURROUNDING ENTITIES .. 24
- ARCHITECTURAL DESCRIPTION .. 27
- WEST FAÇADE ... 29
- NORTH FAÇADE ... 30
- EAST FAÇADE ... 31
- SOUTH FAÇADE .. 32
- ROOF .. 34
- ATTIC .. 35
- FOUNDATION & BASEMENT ... 40
- INTERIOR DESCRIPTION ... 50
- FIRST FLOOR .. 50
- ROOM 101 ... 50
- ROOM 102 ... 55
- ROOM 103 ... 60
- ROOM 104 ... 62
- ROOM 105 ... 63
- ROOM 106 ... 65
- ROOM 107 ... 65
PART I: INTRODUCTION

BACKGROUND:
This Historic Structure Report (HSR), for the Thomas Moore House, 2201 Dixie Avenue SE, Cobb County, Smyrna, Georgia, was completed by Georgia State University’s Conservation of Historic Building Materials class Fall Semester 2013. It provides historical context, building chronology, physical descriptions, current conditions assessment, and recommended treatment and use for the historic property. This information should form the basis for future planning and preservation efforts of the property.

The class conducted three, separate, on-site assessments of the house and site between September and November 2013. Investigation methods included drafting measured drawings of all the rooms and their features; close, invasive examination and identification of building materials, and limited archaeology assessment. The limited, invasive investigation included the removal of exterior vinyl siding and interior wall and ceiling treatments. The current conditions of the building materials were evaluated against ideal conditions for the house, to determine appropriate treatment and maintenance recommendations. The class collaborated as a team, contributing their specialty backgrounds in history, architecture, engineering, climate control systems and archaeology to examine the property, identify the property’s historic context, develop an accurate building chronology, describe its current conditions and features, and to provide the best possible recommendations available for the house.

This HSR focuses on the historic materials of the house. The materials were closely inspected to identify its many, varied, and layered material types, building construction methods, current conditions and their causes. The landscape of the property is only briefly addressed because of its lack of historic fabric. Much of the property’s landscape has been altered overtime by grating, installation of a gravel parking lot, and its current use as storage for building materials. The scope and level of detail of the report are also limited due the short timeframe of the project. Investigation and report preparation occurred between September 25, 2013 and December 4, 2013. Photographs, measurements, and drawings were created during these site visits, by the class, unless otherwise noted. There are limited details for the more technical aspects of the house systems: electrical, gas, plumbing, heating, ventilation, and air conditioning (HVAC). The goal of this report is to provide the property owner with an assessment of the property’s current conditions and possible treatment options that recognize the value and unique qualities of this historic property worth preserving. The report’s intent is to inform the property owner of historically sensitive options for future planning in relation to the property and specifically the historic house.
EXECUTIVE SUMMARY

The following report is designed to give the reader a clear understanding of the historic value of the property, its building chronology, a thorough physical description, an assessment of current conditions, and appropriate, recommended treatments. The first section addresses the history of the site, including Smyrna history, the property’s history during the Civil War, and its modern history. Next, the chronology of the building is described, providing an understanding of the stages of its construction. Following this is a detailed architectural description of the interior and exterior of the house and surrounding property. The next section highlights the conditions assessment, describing the current condition of the entire house and the state of its historic materials. The final, closing section is a list of recommendations for the house’s treatment and use. These recommendations are based on conversations with the property owner, the current conditions assessment, and the nationally recognized preservation standards. The appendix contains a bibliography and further references to use for future planning. It also contains full door and window schedules, site and floor plans, elevations, maps and a glossary.

The property where the Thomas Moore House currently sits was first purchased through Georgia’s unique land lottery system in the early nineteenth century. The home is believed to have been built ca. 1850s. The property owners, about whom there is little information, changed frequently over the last one hundred-and-sixty years. The house provides an excellent example of early settlement in Cobb County. The first stage of the house was built in ca. 1850s. The front facade and second story were added in the 1890s. Although the house was standing during the Civil War, there is currently no concrete evidence linking the house or property to specific events or people. The current site and setting have changed greatly since the construction of the home, leaving little evidence of the area’s historical nature. The house was built in a vernacular style, with colonial features, the physical description section describes the architecture, site, setting and decorative treatments of the house.

Much of the historic material remains in good condition. Excessive moisture penetrating the house structures has caused the majority of the damage to the house, which lead to a chain of other deteriorating factors, such as mold, insect infestation, and rot. It is recommended that the house be secured against further damage by repairing sections of the roof, exterior and flooring, currently causing many of these conditions. The conditions assessment section of this report details the damaged areas of the home and their root causes.

The recommended treatment for this house is preservation through stabilization. This recommendation is based on conversations with the property owner and information gleaned from on-site investigation. Stabilizing the house to ensure no further damage occurs will allow collaboration with parties interested in its restoration and preservation, ensuring a future for this structure. A prioritized list of repairs is included in the report to assist the property owner with a preservation treatment. More details about the recommended treatment can be found in the treatment and use section of this report.

This house is a historic structure with important ties to Georgia’s and Smyrna’s historic past. It contains valuable, irreplaceable, historic materials, and building methods that cannot be duplicated.
It has a unique history and represents an integral part of America’s southern history (the land lottery system, its building methods and materials, the railroad and the American Civil War to name only a few) that make this house worth preserving and maintaining. This report highlights essential action steps to address and prevent further decay and ruin. It also offers helpful guidance on how to protect, preserve, and enlist support from the surrounding historic community to accomplish the individual goals of the owner, while maintaining and honoring an important historic structure that represents a part of America’s past that cannot be replaced.
PART 2: DEVELOPMENTAL HISTORY

LOCAL HISTORY
The Moore House is located on land lot No. 492, which was distributed as a forty-acre gold lot in the 1832 land lottery. It sits 4.5 miles south-southeast of Marietta and one mile north of Smyrna City center in what was originally the seventeenth district of the second section of Marietta.

According to the , “between 1805 and 1833, the state of Georgia conducted eight land lotteries…. in which public lands in the interior of the state were dispersed to small yeoman farmers based on a system of eligibility and chance.”¹ No other state used a land lottery to distribute property as the state of Georgia did.

Cobb County was created from Creek and Cherokee Nation lands, established as a county on December 8, 1832. Following the Indian Removal Act of 1830, the forced removal of the Creek began in 1834 (the “Trail of Tears”), and the removal of the Cherokee began in 1838. Marietta, the county seat chartered in 1834, was thriving as a resort town by the 1840s. The first sawmill in the county was built in 1837 or 1838 and soon it became possible to build wood frame houses.² At the time the Moore House was built, ca. 1850, the area would have been considered rural Marietta since the town of Smyrna had not yet been established. The architect of the house is unknown (if it is an architect designed the building) and no historic plans or photographs of the house itself have been found to date.

The Western & Atlantic Railroad (W&A) tracks are immediately to the west of the property, across Dixie Avenue. The railroad was authorized for construction by an act of the Georgia General Assembly on December 21, 1836, with the first trip being from Marthasville (Atlanta) to Marietta on December 25, 1842. It was not until 1869 that the train started making regular stops in what would become Smyrna.³ The railroad focused on building in the area. The Methodist Church and cemetery were built in 1846 and Smyrna Academy, a private school for boys and girls, was well established by 1860.⁴ The Georgia Military Institute was built in Marietta in 1851⁵, and in July 1864, an early form of the Moore House was witness to the Battle of Smyrna during the Atlanta Campaign.

The Thomas Moore house sits just yards east of the W&A track. The route the two armies passed through brought them near this specific property during the Atlanta Campaign of the American Civil War. The home and property may have been a strategic place during the conflict as well, even

¹ Georgia Land Lottery: http://www.georgiaencyclopedia.org/articles/history-archaeology/land-lottery-system
² Temple, p. 109 (chapter IX “Development of Towns”)
³ Marchione, p. 36
⁴ Ibid
⁵ Georgia Military Institute: http://www.georgiaencyclopedia.org/articles/history-archaeology/georgia-military-institute
possibly the location of Federal Army’s General David S. Stanley’s divisional headquarters. More likely, however it was simply another piece of property devastated by retreating and advancing armies, like most property in the South during the American Civil War.

The action seen in the southeastern corner of Cobb County, where the present-day city of Smyrna currently lies on the Chattahoochee River, was considered limited at best. The fighting in this area resulted from the Confederate retreat towards Atlanta, after the Battle of Kennesaw Mountain in the days following July 2, 1864. Confederate forces withdrew from Kennesaw to prepare defensive works near present day Smyrna, roughly four miles south of Marietta. This is where General Joseph Johnston and the Confederate Army of the Tennessee could effectively retreat further across the Chattahoochee River and into Atlanta. Union Major General William T. Sherman and his army followed the Confederate retreat down the Western and Atlantic Railroad, through Marietta and on to what was then referred to as Neal Dow Station, now present-day Smyrna. There the rebel defensive works, consisting of rifle pits and artillery emplacements, momentarily stalled them.\(^6\)

The center of Sherman’s army, IV, XX and XVI Army Corps, made their main advance down the railroad from Marietta. According to the IV Corps report, written on July 3, 1864, the IV Army Corps, commanded by General Oliver O. Howard, crossed the railroad at 10:00 a.m. and moved down the east side of the railroad four and a half miles south of Marietta to Neal Dow Station, near the site of the Moore House. There were skirmishes all along the way, until stopped at 3:00 p.m. when the Federal troops came to the rebel defensive works. The two armies spent the rest of the day engaged in intense skirmishes. At 5:00 p.m. General Howard ordered General David S. Stanley to prepare his division to attack the rebel works the following morning.\(^7\)

On the morning of July 4, Union Major General William T. Sherman visited the front lines of IV Corps and David Stanley’s divisional headquarters several hundred yards away from the Confederate lines.\(^8\) In his memoirs, Sherman explains how he had outflanked Confederate General Joseph Johnston and his Confederate Army of Tennessee at Kennesaw Mountain and forced their retreat back to the Chattahoochee River. It is clear that Sherman believed his army had pushed Johnston across the river. However, on his Independence Day inspection of his lines, Sherman found that the Confederate troops had retreated to pre-constructed defensive works around Neal Dow Station in what is referred to as “Smyrna Campground”.\(^9\) According to General Oliver Howard’s account, Major General Sherman pushed him to take the visible rebel works, ignoring Howard’s reports of heavy enemy activity in the works. When elements of Stanley’s division moved forward around 11:00 a.m. hidden rebel batteries opened fire.\(^10\) Howard says, “Many of these shells appeared to be

7 Ibid
9 Ibid
aimed at the very place where Sherman, Stanley, and myself, with officers gathered around us, had formed a showy group.” Sherman became fully aware of the emplacements that his subordinate officers had warned him about. Howard said Sherman rode away very quickly yelling, “Howard, you were right!”

After General Sherman’s close brush with death, General Howard ordered his lines forward. The entire IV Corps and the brigades on its flanks saw constant action all day. Stanley’s division held the center of the line and his right flank held the east side of the railroad. Through constant skirmishes General Howard’s Corps took rifle pit after rifle pit through the night and into the morning, driving Johnston’s men across the river mid-day July 5, 1864.

The action at Neal Dow Station and the Smyrna Campground, known today as the Battle of Smyrna, is a minor piece of the overall story of the Atlanta Campaign. The battle resulted in Confederate General Johnston’s full-scale retreat and the Confederacy’s desperate attempt to defend Atlanta. The Moore House was in the middle of the battle and likely was damaged due to combat seen in the area.

Smyrna was incorporated on August 23, 1872. Prior to that date the sparsely-populated area was referred to by many names including Smyrna Campground (early 1830s and 1840s), Ruff’s Station or Ruff’s Siding, Varner’s Station, or Neal Dow Station. The siding was “thought to have been located about where Windy Hill Road now intersects Atlanta Road.” Martin L. Ruff helped establish the Concord Woolen Mill in the late 1840s, and Matthew Varner was a Marietta businessman, but there was no train depot or station structure of which to speak. A theory about the incorporation date is in the wake of the Civil War citizens did not want the town to be named for Neal Dow, who was a Yankee abolitionist and military officer.

The area was not a quickly growing metropolis in the late 1800s. Harold Smith’s book, summarizes growing pains through the 1870s: “In the outlying areas there were some houses and farms but even then the people were few and far between. It makes one wonder why the town fathers would think about incorporating such an isolated, unoccupied area. Eight years later, when the first U.S. Census of Smyrna was taken in 1880, there were still only fifty-one families in the town.”

11 , 596-97
12 , 597
13 pp. 892-893
14 Marchione, p. 37
15 Ibid
16 Smith, p. 6
PROPERTY OWNER HISTORY

Green Andrews won land lot No. 492 in the 1832 land lottery. He is listed in the 1830, 1840, and 1850 census records as a resident of Washington County. This indicates he may have never lived on the property he owned in Cobb County from 1832-49. Sarah Temple’s book, , discusses a possible theory: “People from lower and middle Georgia were willing to dispose of their forty-acre lots when it was seen that gold in no considerable quantity was to be found. There was no incentive for them to leave their comfortably established homes and plantations in lower Georgia to become pioneers in the up country”17

Kinchen Womble, who owned land lot No. 492 from 1849-50, lived in Jefferson County, which was next to Andrews’ Washington County. Both counties are just east of Milledgeville which was the capital of Georgia from 1804-68. There is little documentation of Womble living in Cobb County. He went on to enlist in the Confederate Army (Company G, 46th Regiment) on March 4, 1862. He was captured at Kennesaw Mountain on June 20, 186418, and it is possible he died before the war ended the following spring.

Thomas H. Moore was a court clerk, then a judge in Marietta and bought land lot No. 492 in 1850; he also bought land lots to the west of No. 492 in 1849. In the 1850 census he is listed as married with three young children. It is believed that the house was built while he owned the property; he sold it in 1856 but remained in the Cobb County area. According to research by Kara Hunter-Oden, curator of the Smyrna Museum “Following the close of the Civil War, Thomas H. Moore was removed as Inferior Court Judge of Cobb County by General Pope, commander of the Third Military District of Georgia, for openly opposing the Reconstruction of Georgia. [Moore] was replaced by Dix Fletcher of Marietta on 22 August 1865.”19

While the historic saddlebag portion of the house may have been constructed on the property prior to Moore’s ownership, no mention of a house is made in deed records. The simple, two-room structure may have been built first for the family to live in while the larger I-house section was being built immediately adjacent to and facing the existing railroad tracks. “Many of [the new settlers] built half-face camps for temporary dwellings ‘until the logs were up,’ a common expression at the time.”20 Photographs from the Vanishing Georgia collection held by the Georgia Archives (Figures 2.1 and 2.2) indicate that this I-house-with-rear-ell type may have been a vernacular style in Cobb County due to the way in which middle class houses were built.

17 Temple, Chapter VI, Pioneer Families, p. 46
19 Executive Documents: United States Congressional serial set, Volume 1324, p. 372
20 Temple, p. 40
John D. Smith owned land lot No. 492 from 1856-77 and is listed in the 1870 census records as a 59-year-old farmer, born in South Carolina, married, with many children. He was a large landowner in Cobb County.

Reuben Fleming Hill (1846-1921) is buried in New Smyrna Cemetery. He bought land lot No. 492 from Smith in 1877 and sold it in 1881. He would later go on to build a general store and post office in Vinings, in 1890. This structure is still standing and is now known as the Old Vinings Inn restaurant.

Wyatt F. Buise owned the property from 1881-83. It is possible his surname might have been spelled Buice or Buse. A thread on Ancestry.com could be a clue to family information. A Wyatt F. Buise is listed as being born on 15 February 1834. If this is accurate, he would have been 47 years old when he purchased the property.

Figure 2.1: T.D. Ellison home ca. 1920 on Highway 293 (Old Highway 41) was a hospital during the Civil War. No longer there - current location is that of McCollum airport. Note the extended porch and addition or wing on the left side of the house as well as the door and porch on the second floor. (from Vanishing Georgia collection held by Georgia Archives, accessed online)

Gravestone of Reuben F. Hill [http://www.findagrave.com/cgi-bin/fg.cgi?page=gr&GRid=31457190]

History of Vinings Inn [http://oldviningsinn.net/2012/03/21/the-history-of-vinings-inn/]

“Cobb and Walton Counties, Georgia”: [http://boards.ancestry.com/surnames.buse/83/mb.ashx]
Mrs. Ann Hendricks (spelled Hendrix in some records) owned land lot No. 492 from 1883-95, when she sold it to her grandson, John Wesley Segars, who owned the property until 1906. Although there is a 23-year span of ownership with this family, no further information could be obtained concerning these individuals at this time.

John D. Northcutt was the son of Jesse J. Northcutt and Asenath Baber, and the brother of R.H. Northcutt, a cotton farmer and later mill owner in Cobb County. His mother, Asenath Baber Northcutt, was “one of the oldest citizens in Marietta, and identified with the early history of our town” according to her obituary in 1906.24 The Vanishing Georgia collection contains a photograph of cotton picking on the R.H. Northcutt farm ca. 1890 (Figure 2.3).

24 Obituary of Asenath Baber Northcutt: http://files.usgwarchives.net/ga/cobb/obits/ob3854northcut.txt
MOORE HOUSE IN THE TWENTIETH CENTURY

On January 31, 1906, John Wesley Segars conveyed land lot No. 492 (where the Moore House is located) and a portion of 445 (hereafter, “lot No. 492”) to Mrs. Ella J. Miles. Five days later, Mr. Segars sold the same lot to John D. Northcutt. Although Mr. Segars’s double-dealing was dishonest and possibly fraudulent, the later conveyance to Mr. Northcutt may have resulted in a superior deed, as long as Mr. Northcutt did not have notice of the first conveyance to Mrs. Miles. Mr. Northcutt’s deed was superior to Mrs. Miles’s deed because Mrs. Miles waited over three years to record her deed at the Cobb County Superior Court, while Mr. Northcutt recorded his deed the same day it was conveyed. Perhaps some time in 1909, Mrs. Miles learned that Mr. Northcutt was the actual owner of her property. Fortunately for her, Mr. Northcutt conveyed all of his interest in the land to Mrs. Miles—via a quit claim deed—on February 27, 1909. Having learned the importance of recording deeds, Mrs. Miles recorded her deed the same day. Therefore, although Mrs. Miles purchased lot No. 492 in 1906, she did not have legal title to the land until 1909.

Sometime before September of 1926, lot No. 492 was conveyed to Mr. F. W. Eldridge. The Eldridge family may have moved to Smyrna from Lumberton, North Carolina. Mr. Eldridge is especially

25 “Deed Records at Georgia Archives,” n.d.
26 Ibid
27 Ibid
29 “Deed Records at Georgia Archives.”
30 Ibid
32 Mrs. Eldridge was known to frequently visit her two adult daughters who resided
significant to the history of the Moore House because he was responsible for the 1926 subdivision of the original forty-acre lot into over two hundred rectangular lots that were mostly twenty-five feet wide and three-hundred feet long. Mr. Eldridge is presumed to have continued to occupy the Moore House even after the subdivision of lot No. 492 because, when he subdivided the lot, he retained ownership of Lots 5, 6, 7, 8, and 9. Further, Mr. Eldridge set apart lot 5, where the Thomas Moore House was located, as the largest lot in the entire subdivision. It was one-hundred feet wide, rather than the typical twenty-five foot width of every other subdivided lot (Figure 2.4).

Modern property tax records still identify this area around Dixie Avenue Southeast as the “Eldridge Subdivision.”

After Mr. Eldridge died, Mrs. Eldridge continued to live at the Moore House along with Ethel Eldridge, her minor daughter. In June of 1941, Ethel married W. T. Westbrook at the Moore House. Although it is unclear whether the Westbrooks immediately moved into the Moore House to care for the aging Mrs. Eldridge (she was 66 in 1941), it is possible that they did move in at some time prior to her death at the age of 74 in 1949. According to long-time Moore House neighbors, Mr. and Mrs. James Stephens, Jr., the Westbrooks already resided in the Moore House when they moved in next door (2221 Dixie Avenue) in 1974. Mr. Stephens stated that the Westbrook family had been there “forever” before he and his wife moved in. Therefore, it is believed that Ethel Westbrook (née Eldridge) inherited the Moore House in 1949, and continued to reside there for several decades.

Deed records show that the Moore House was conveyed to Mr. Brent P. Rowlett on July 1, 1961. Despite a change in ownership, the Westbrook families may have continued to live in the Moore House, since they were still there in 1974 and beyond. Mr. Rowlett never lived in the Moore House because he purchased the home “just to make money” and began renting it out. Mr. Stephens believed that Mr. Rowlett must have been desperate for money because he recalls Mr. Rowlett with their husbands in Lumberton. “Personals,” , August 31, 1936.

33 “Cobb County Land Records.”
34 Ibid
36 “Personals”
37 “Miss Ethel Eldridge Weds In Smyrna, Ga.,” , June 24, 1941.
38 “Mother of Local Woman Dies in Ga.,” , December 6, 1949.
39 James Stephens, Jr. and Mrs. Stephens, interview by Clint Tankersley and Susan Coleman, November 9, 2013.
40 Ibid
41 “Cobb County Land Records.”
42 James Stephens, Jr. and Mrs. Stephens, interview.
working through a severe snowstorm in order to construct a staircase over the porch, which allowed the Moore House to be rented as a multi-family residence.44 At one time, two Westbrook couples lived in the Moore House—the older couple lived upstairs and the younger couple lived downstairs.45 Although the names of the younger couple are unknown, the older couple was Doug and Ethel Westbrook; Doug was a plumber and Ethel was a homemaker.46 Mr. Stephens also stated that a trailer was moved onto the property at some point to house an “Aunt Ethel.”47

Mr. Rowlett sold the Moore House to Mr. Robert E. Hipps on January 12, 1987.48 Mr. Hipps owned a trucking business.49 Although Mr. Hipps never lived in the Moore House, he built a garage on the property that he used as a residence.50 Like the previous owner, Mr. Hipps rented out the Moore House.51 At one point, there was a female accountant who ran an accounting firm out of the first floor of the Moore House.52 In October 2010, the Moore House went into foreclosure and remained vacant until it was purchased by Royce R. Powell on March 31, 2011.53 The property is now owned by JT Powell Properties, LLC, and is maintained by company president Joel Powell.54 Since acquiring the property, Mr. Powell has demolished the detached garage/residence and replaced it with his business office.55 He also uses the lot for materials storage for his construction business.56
Figure 2.4: Plat identifying the subdivided lots of lot No. 492. Note the size of Lot 5, where the Moore House is located.
<table>
<thead>
<tr>
<th>Year</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>1827-1849</td>
<td>Green Andrews</td>
</tr>
<tr>
<td>1849-1850</td>
<td>Kinchen Womble</td>
</tr>
<tr>
<td>1850-1856</td>
<td>Thomas H. Moore</td>
</tr>
<tr>
<td>1856-1877</td>
<td>John D. Smith</td>
</tr>
<tr>
<td>1877-1881</td>
<td>Reuben F. Hill</td>
</tr>
<tr>
<td>1881-1883</td>
<td>Wyatt F. Buise</td>
</tr>
<tr>
<td>1883-1895</td>
<td>Mrs. Ann Hendricks</td>
</tr>
<tr>
<td>1895-1906</td>
<td>John Wesley Segars</td>
</tr>
<tr>
<td>1906-1909</td>
<td>John D. Northcutt</td>
</tr>
<tr>
<td>1909-1917</td>
<td>Mrs. Ella J. Miles</td>
</tr>
<tr>
<td>1917-1926</td>
<td>J.E. and Rosa Davis</td>
</tr>
<tr>
<td>1926-1949</td>
<td>Mr. and Mrs. F.W. Eldridge</td>
</tr>
<tr>
<td>1949-1961</td>
<td>Ethel Westbrook</td>
</tr>
<tr>
<td>1961-1987</td>
<td>Brent P. Rowlett</td>
</tr>
<tr>
<td>1987-2010</td>
<td>Robert E. Hipps</td>
</tr>
<tr>
<td>2010-2011</td>
<td>bank-owned (foreclosure)</td>
</tr>
<tr>
<td>2011-present</td>
<td>Joel T. Powell</td>
</tr>
</tbody>
</table>
BUILDING CHRONOLOGY

The purpose of this section is to document the changes in the Thomas Moore House (referred to as the Moore house from this point forward) over time and approximately, when they occurred. Unfortunately, many documents that indicate the change in ownership and potential change in the house’s structure have been lost or destroyed. As a result, this investigation primarily relies upon physical evidence that has manifested itself in the basement, foundation, exterior, interior and attic.

The hand-hewn timber floor joists in the crawlspace, hand cut nails, and reciprocating saw marks on wood floors found in Rooms 102 and 103 indicate that the original house was built ca. 1850. Rooms 102 and 103 share a double flue chimney and are exactly the same size, which suggests the Moore house was originally built as a saddlebag type home (see Figure 2.5). According to the Historic Preservation Division of Georgia, saddlebag houses derive their name from a central chimney flanked on either side by two identical rooms and often have two entrances. The bay windows in Room 102 and 103 were likely the original doors to the structure.

Figure 2.5: Saddlebag house type

The attachment of a two-story I-house, ca. 1860, created a central-hall floor plan and a pyramidal hipped roof. Central-hall floor plans are typically marked by a center hall that is flanked on either side by rooms. Pyramidal hipped roofs are marked by steeply-pitched slopes rising to a peak in the center. Evidence of construction indicates that by 1970, additional rooms and a detached garage were added onto the house.

The Basement and Foundation

The basement under the I-house portion of the house and the crawlspace under the saddlebag portion of the house provide further evidence of the evolution of the Moore house. The crawlspace shows material and craftsmanship from the early 1800s. Hand-hewn timber sills and uncut sapling joists lay over brick piers with historic limestone mortar.

The dug-out basement, located beneath the historic I-house, features joists made of un-milled saplings, which rest on irregularly shaped and sized sills, some of which are created from historic brick-and-mortar.

Exterior

The existing vinyl siding of the house is indicative of modern building materials, which covers several additional layers of siding including asbestos, and clapboard. Further investigation of the exterior provides additional clues to the development of the house. The chimney on the north side of the house is constructed of historic brick and lime-based mortar. The historic chimney on the east side of the house supports the theory that the house was originally a saddlebag. A projection on the north side of the house suggests the addition of the I-house to the saddlebag.
There are also three mailboxes in front of the house, which indicates that the home was once a multi-family dwelling. According to long-time Moore house neighbors, one family lived on each floor of the house, and a detached garage behind the house served as the third residence. The house was partitioned by the 1960s and the detached garage was built in the 1980s. Another informative roadside feature is the split-rail fence. Although the ubiquity of these fences throughout the years makes it difficult to date, many fences of this type were constructed during the American Civil War.

Interior

Like the exterior, modifications have also been made to the interior of the Moore House. These modifications provide several clues to the house's progression. Wallpaper samples in rooms 101 through 108 indicate that many of the layers of wallpaper are historic (Appendix F). Much of the historic wallpaper is laid on top of Muslin and patterned in Scrolls or Vine and Stripe. Each of these is reflective of the progressive use of wallpaper from the 1860s to the 1890s. In addition to the wallpaper, the first floor rooms have historic tongue-and-groove wood walls concealed beneath several layers of gypsum board and early gypsum plaster board.

Wide molding found in rooms 102 and 103 indicate that these rooms are likely the oldest rooms in the house. The second floor rooms (Appendix B) also help with identifying the progression of the house. Various building materials from the second floor help date the house, including: gypsum plaster board, circular saw marks on the historic hardwood floors, and a combination of hand cut and wire cut nails. In rooms 201 through 207, there is evidence of vinyl flooring dating to 1962 (based on newspaper found beneath the floor in room 206).

Attic

The attic has little to no historical material left due to numerous changes to the roof line. However, what remains are historic-ceiling joists and rafters with circular saw marks that help to date the lumber to post-1850. These joists’ size (average 2” x 4”) suggests that they are from the late nineteenth century or early twentieth century, installed prior to the standardization of lumber. The joists are laid 15” to 18” apart on center, and run east to west. A new set of joists overlap the historic circular saw-marked joists. Throughout the attic there are scatterings of historic wood shingles, and wire cut nails, which were building materials used after 1890. Modern bracing can also be found, reflecting modern construction of the hipped roof line that can be seen on the backside of the house.
CHRONOLOGY DRAWINGS

CIRCA 1850

CIRCA 1870

CIRCA 1920

Modern Additions
PART 3: PHYSICAL DESCRIPTION

SETTING DESCRIPTION
The Moore House property, which is just outside Smyrna’s city limits (Figure 3.1), is zoned heavy industrial (HI). According to the Cobb Country Code of Ordinances, “HI districts are established to provide locations for heavy industrial uses such as intensive automobile repair and service, heavy manufacturing, chemical manufacturing and storage, petroleum or petrochemical storage, warehousing and storage, which are on properties delineated within an industrial category as defined and shown on the Cobb County Comprehensive Plan: A Policy Guide, adopted November 27, 1990. When located on the perimeter of an industrial node, the HI district should provide for uses that are lower in intensity and scale such as to ensure compatibility with surrounding properties.”

It is a corner lot that contains a mix of vegetation, green space, and an assemblage of buildings that vary in age, material, construction technique, and use. The Moore house, positioned in the southwest corner of the lot, is the main building on the land parcel (Figure 3.1). Two west-facing out-buildings flank the eastern border of the property. Two gravel driveways provide access to the lot. The main entrance, on the west side of the property is located off Dixie Avenue, while the other entrance, off Davis Road, enters from the north. A 6’-0” construction fence marks the southern and eastern property lines, which separate the Moore house property from the surrounding parcels.

Along the west side of the property, adjacent to Dixie Avenue and facing the Western and Atlantic Railroad (W&A), a low-brick retaining wall runs the width of the house, and then follows the driveway east on the south side. A dilapidated, fungus-covered, wood, two-rung post-and-rail fence also runs the full length of the western property line, and extends approximately 12’-0” along the driveway off Dixie Avenue (Figure 3.2). An opening in the post-and-rail fence, in front of the Moore house’s front door, leads to a grass path that leads to the front steps. On the brick retaining wall, in front of the post-and-rail fence opening, two brick-and-mortar steps lead to Dixie Avenue; these steps are flanked by three mailboxes to the south. On the south side of the property, the main driveway off Dixie Avenue leads to the outbuildings that reside behind the Moore house.
The entrance to the drive is pictured in the bottom right corner with a broken-wood, post-and-rail fence and some overgrown shrubbery in the background. The old growth maple (with leaves) and oak (mostly bare) trees that are closest to the house can be seen as well.

Outbuildings: Office

A west-facing 28’-6” x 66’-6” building, with two front windows on each side of a main entry door, is located behind the Moore House on the east side of the property. It is painted beige with white trim and has an awning with two white, square columns. The office has a new, gabled roof covered in asphalt shingles and has working electrical and plumbing systems. It is currently the headquarters for the property owner’s construction business. The front half of the office is constructed with concrete masonry units (CMUs), (Figure 3.3), while the back half is a two-car garage addition composed of plywood and composite board siding (Figure 3.4).
Outbuildings: Carport
The non-historic carport is approximately 20’-0” x 30’-0” and sits on top of a concrete pad of relatively similar dimensions. The carport is supported by a series of aluminum posts. There is partial covering over the posts on the southeast corner of the south façade, and full-wall coverage on the east façade. There is a small door on the eastern façade of the carport (Figure 3.5).
Well
Additionally, a small, decorative, wood well is positioned on the northeast corner of the Moore House. (Figure 3.6). Construction materials and parked vehicles take up the remainder of the space on the property. They sit on a gravel lot that extends from the north entrance on Davis Road, to the eastern and southern borders of the property (Figure 3.7).

Figure 3.6: Simple, decorative, wood, well.

Figure 3.7: Gravel parking lot. The lot behind the Moore House is gravel and provides space for parking and construction materials.
Landscape

The 1.2 acre Moore house property is roughly 50 percent natural vegetation, and 50 percent built construction. Vegetation on the property consists of a variety of grasses, vines, and trees; old growth maple, cedar and oak are present. The oldest trees are between 10’ to 28’ from the Moore house. The bulk of the vegetation and green space is located on the northern half of the property and consists of wild grasses, various trees (such as cedar, oak, maple and walnut), large camellia bushes, and an ivy bed, which trails around the base of the house (Figure 3.8).

The property is located on a slight rise, the grassy yard slopes down slightly from the Moore house towards Davis Road to the north (Figure 3.9). The trees that dot the property provide ample shade over the entire parcel. A wild mix of ivy, weeds and other shrubs comprise the vegetation on the southern face.

Figure 3.8: North facade of Moore House, facing south. A grassy lawn stretches toward the house where a large, old, vine covered cedar tree extends the height of the house. Several varieties of shrubs are present.

Figure 3.9: North yard. Panoramic shot of the north section of the land parcel that is primarily vegetation and green space.
Surrounding Entities

The Thomas Moore House property is framed by Dixie Avenue and the W&A railroad to the west, and by Davis Road to the north. This heavy industry zoned area is one land parcel north of the Smyrna city limit.

Three American Small homes face the property on the north side of Davis Road. According to the Georgia Department of Natural Resources Historic Preservation Division, the American Small House is a small single-family house that was built in large numbers all across the state of Georgia, from the mid-1930s to the early 1950s. The American Small house was a response to the need for affordable housing during the Great Depression and World War II. They are sometimes referred to as “minimal traditional houses” or “Cape Cods.” Behind the Moore house to the east, is an auto repair shop facing Davis Road. To the south at 2221 Dixie Avenue, a single-family bungalow constructed in 1935 faces Dixie Avenue and the W&A railway to the west. From the front porch of the Moore house, looking west over Dixie Avenue and the railroad tracks, a small commercial, strip mall faces east. Aside from the three homes on Davis Road and the bungalow on Dixie Avenue, the area surrounding the Moore House is primarily composed of industrial and commercial properties (see Figures 3.10 through 3.15).

![Figure 3.10: 2189 Dixie Avenue. This American Small House has a Dixie Avenue address and faces Davis Road and the Moore House to the south.](image-url)
Figure 3.11: 1087 Davis Road. American Small adjacent to the secondary entrance to the Moore House property.

Figure 3.12: 1087 Davis Road. This American Small House shares a lot with the other home at 1087 Davis Road.

Figure 3.13: 1096 Davis Road. Joe's Advance Auto and Truck Repair is behind the eastern border of the Moore House property, and is slightly downhill from the fence line.
Figure 3.14: Property at 2220 Atlanta Road, Smyrna, Georgia. Looking west across Dixie Avenue and the railroad tracks, a small strip mall faces the Moore House property.

Figure 3.15: 2221 Dixie Avenue. This single-family bungalow occupies the lot south of the Moore House.
ARCHITECTURAL DESCRIPTION

SUMMARY

The Moore house is currently a 2,857 square foot, two-story, wood-frame house on top of a brick pier foundation in-filled with concrete masonry units (CMUs) along the inside perimeter. The original configuration is believed to be a two-room saddlebag construction characterized by its central chimney found between rooms 102 and 103, the oldest sections of the home (Appendix B). Later, the main part of the home, the popular I-house configuration of one-room-deep, two-rooms-wide, and two-stories-high construction was added on (Appendix B. Floor Plan, Room 101 and 108). The main façade of the home faces west; its front entrance opens onto a front porch looking out over Dixie Avenue and the railroad. I-Houses were only seen in Georgia between the 1840s – 1850s and 1870s – 1880s,[57] during the same period the Moore house is believed to have been built. Other additions and modifications were put in overtime including its most recent modifications of being divided into apartments.

The home is vernacular in style with some classical details such as the ionic columned, west-facing porch. The exterior siding has at least four layers beginning with what appears to be the original wood clapboard with four to five layers of paint covered by tarpaper, then asbestos, and finally the current outer layer of white vinyl siding (Figure 3.16).

![Figure 3.16: Exterior layers of the south facade siding.](image)

The roof has at least three different types: hip, shed, and gabled (Figure 3.17).
Figure 3.17: This photograph is the east facade of the Moore House showing the three types of roofs. The shed roof is highlighted green, the hip is blue, and the gable roof is red.

All but one set of exterior windows are double-hung, two-lights-over-two-lights, while one set of windows on the second floor are one-over-one light and one interior window, not viewed from outside looking through to interior Room 110, is six-over-six lights (Appendix E). Some external windows have vinyl shutters, but most do not. The exterior brick appears to be built with historic mortar and patched later with Portland-cement-based mortar. This is significant because historic mortar is lime-based and soft, which compliments historic brick, allowing the brick to expand and contract as necessary. Portland cement on the other hand is more rigid and does not allow for this natural expansion and contraction cycle, which overpowers the historic brick, causing the brick to break, fall away from a structure or deteriorate. There are two brick chimneys on the north and south exteriors of the I-house configuration (Figure 3.18 and 3.19).

Figure 3.18: North facade chimney
EXTERIOR DESCRIPTION

West Façade

The main façade of the Moore house faces west, running parallel to Dixie Avenue. It consists of a five-bay, symmetrical façade with a door as the central bay on both the first and second floors (Figure 3.20).
The I-house (Appendix A, B), house type, which describes the portion of the house facing Dixie Avenue, is one room deep, two rooms wide, and two stories tall. The balloon frame structure has historic-wood-clapboard siding beneath a layer of tarpaper, asbestos, and white vinyl siding (Figure 3.16). The asphalt-shingled, hipped roof has very little overhang and terminates above the second floor. There are two flanking, brick, exterior chimneys on the front segment or I-House portion.

The house sits on brick piers with historic mortar that have been in-filled with periodic CMUs to create a continuous foundation. The historic mortar was in-filled with modern, Portland-cement-based mortar, which damages historic brick because of its rigidity.

The front, brick-porch pattern is a running-bond set in approximately 4’ on each side of the house. The brick porch consists of a brick base made of historic non-Portland-cement mortar with evidence of Portland-cement repair patches and a Portland-cement slab topping. Each of the four wood Ionic columns that flank the front of the porch stands on top of a brick pier with a square concrete pad. These columns support the shed roof covering the porch. The exterior walls shielded by the porch roof are covered with vinyl siding. The roof beams and the interior main framing beams of the porch are made of wood with reciprocating saw marks. Reciprocating saw technology was used prior to the widespread use of the circular saw in the early nineteenth century, indicating they are older beams. The wire nails, show through the peeling, white paint are a more modern technology that have been used from the 1890s to today. The windows in the main house portion are two-over-two-light, double-hung-sash windows. Several of the windows have black-fiberglass shutters, but several have been lost or damaged.

North Façade

The north façade of the building reveals the additions to the house overtime; moving north from the I-House portion there is an extension with a pop-out (Figure 3.21). Just beyond this pop-out, the roof-line drops to a front-gabled roof running parallel to the side of the house that covers a one-story portion. There is a small, narrow, bay window in this portion. The beginning of the drop in the roof is marked with a brick, running-bond chimney that terminates into the larger overhang of the front portion rear of the house. Then there is a second less dramatic drop in the roofline for the back portion of the house.
East Façade

The east side of the building includes access to the narrow gabled addition as well as a series of additional shed roofed working spaces that are attached to the house (Figure 3.22). Both of the additions are covered in the white vinyl siding. The east façade provides another view of the chimney attached to the saddlebag, where it terminates underneath the hipped roof of the main house. The chimney caps on the hipped roof are visible from the east façade, they are located at the center.
South Façade
The south facade mirrors the transitions in the roofline as on the northern façade, but without the pop-out and bay window. The back or eastern portion consists of the extended shed-roof garage structure (Figure 3.23 and 3.24). An exploratory opening in the siding just beyond the main house of approximately 1’-0” by 2’-0” revealed the original 2” wide wood-clapboard siding, tarpaper, asbestos panels intact below the current out layer of vinyl siding.
Figure 3.23: Southwestern view of south facade

Figure 3.24: Southeastern corner view of south facade
Roof

The roof on the main house is a hip roof covered in asphalt shingles. The two chimney caps are in the center of the hipped roof (Figure 3.25). The saddlebag has a gabled roof as well as the addition attached to its east side. These two gables form a double-gabled roof (Figure 3.26). Both gables are covered in asphalt shingles. The brick chimney from the saddlebag has been cut short and now ends at the hipped roof of the main house. The garage addition contains a shed roof that is covered in asphalt shingles. The roof contains metal flashing along the gables and chimney on the saddlebag.

Figure 3.25: East side of the Moore House hip roof displaying two chimney caps.
ATTIC
The attic can be accessed through an informal cut-out in the ceiling of room 208 of the second floor (Figure 3.27). The attic creates a single, open, space with exposed rafters and covers the original portions of the house (the saddlebag house and the I-house) as well as some of the additions. All four sides of the attic angle inward because the roofline is hipped. Because all the rafters and beams are exposed, the attic is not easily navigated. There is no continuous flooring nor protection from exposed ceiling rafters (Figure 3.28).

Very little historic building material dating before the twentieth century remains in the attic. As additions were made to the house over the years, the roof structure was altered and replaced to create a hipped roof that would cover the original house as well as the additions with one continuous space. The exposed materials consist mainly of pine two-by-fours, oriented strand board (OSB) decking, and rigid foam panels (Figure 3.29). Some insulation particles remain on the floor filling the space between floor beams (Figure 3.30) and there are two ventilation holes near the peak of the ceiling (Figure 3.31). One has a ventilation fan and the other is covered by a plastic bucket duct taped to the ventilation stack.
Figure 3.27: Informal cut out in ceiling of room 208 provides access to the attic.

Figure 3.28: Exposed rafters and beams of the hipped roof are seen from within the attic.
Figure 3.29: Building materials in the attic consist of twentieth century insulation particle board

Figure 3.30: Twentieth century insulation fill the spaces between beams.
Figure 3.31: Exposed beams and rafters within the attic show the modern roofing system used to cover portions of the original house as well as the 20th century additions. The hipped roof is comprised of 20th century building materials including two-by-fours, plywood, and composite panels. Modern ventilation holes and insulation are used within the attic.

The historic materials that remain include some of the second floor ceiling joists and rafters that have evidence of circular saw marks (Figure 3.32). These joists average 2” x 4” and are laid 15” to 18” apart on center. They give some evidence to the construction development of the house. The ceiling joists run continually east-to-west starting at the west side of the house and continuing to the far west end of the current staircase on the second floor below. At this point, a newer set of ceiling joists overlap the historic joists and continue running east-to-west across the southeast portion of the house. Where the two sets of joists overlap, there is a row of circular sawn uprights that run the length of the attic from north-to-south standing about 2’-0” tall. They mark the boundary between the oldest portions of the house and the southeast additions (Figure 3.33). After the first
and second floor additions to the southeast portion of the house, the roof was reconstructed into its current state as a hipped roof that covers the entire house (except the eastern shed additions) in one continuous space.

The reconstruction of the roof included the installation of modern lumber sistered to historic rafters, modern knee bracing, and decking made with oriented strand board that was covered with the current asphalt shingles. Scattered through the attic are some remnants of historic wood shingles with round wire nail holes or remaining wire nails. This evidence indicates that the roof was wood-shingled sometime after the 1890s and those shingles were removed with the reconstruction of the hipped roof.

Figure 3.32: Evidence of circular saw marks on rafters found in the attic.
Figure 3.33: Facing north the north-to-south 2'-0” tall ceiling joist marks the boundary between the oldest portions of the house and the southeast additions.

FOUNDATION & BASEMENT
Originally, there was only the crawl space under the older portions of the house (the saddlebag house and the I-house). The current basement was made possible by digging out a portion of the dirt foundation, pouring a concrete floor within that space, and installing a set of concrete stairs allowing access from the interior of the first floor. Installed to accommodate modern systems in the house, including air conditioning, a hot water heater, and gas units, the dugout portion of the basement is 13’-7” wide, 9’-3” long, and 8’-6” deep. Evidence of the installed modern systems remain, including a return unit for the air conditioning, duct work, and gas and water piping (Figure 3.34 through 3.36).

The basement dugout is accessed through Room 104 (Appendix B) by a poured concrete staircase (Figure 3.37) and stretches from under Room 101 into room 108 oriented from north to south. The remaining portions of the basement still exist as narrow crawl space and extend past the dugout of the basement underneath Rooms 101, 102, 108, and partially under 104 and 107.
Figure 3.35: Duct work as evidence of installed modern systems

Figure 3.36: Duct work as evidence of installed modern systems
The earliest portions of the house were built-up on brick-and-stone piers at the corners of the house and along the house’s hand-hewn timber sills. The hand-hewn timber sills appear to be mainly pine and are cut to create lap joints over the piers (Figure 3.38). Eventually, brick-and-concrete blocks were used to close in the crawl space, filling in the gaps between the brick piers along the border of the house (Figure 3.39). These foundations and changes to the foundation can be seen from the basement. The timber framing beneath the floors of the first floor can also be easily seen from the basement.

A variety of timbers were used to create a series of sills and joists including hand-hewn and circular-sawn sills (Figure 3.40), and uncut-sapling and circular-sawn joists (Figure 3.41). The foundations had to be changed and manipulated to continue supporting the house when the basement was dug out and modern systems were installed. Several of the brick piers were removed below rooms 101 and 108 leaving that section of the house unsupported. The weight within that space is now being supported by five metal posts bolted to the concrete floor (Figure 3.42). These posts hold up circular-sawn timber sills that appear to have been recycled as evidenced by unnecessarily cut niches and remaining wire nails found in the timber (Figure 3.43). These newer sills and joists replaced original timbers that were removed or cut through in order to install the staircase, dig out the basement space, and install modern systems (Figure 3.44).
Figure 3.38: Lap joint over brick pier

Figure 3.39: Brick and concrete between brick piers on boarder of the house close in crawl space
Figure 3.40: Hand-hewn timber sill.

Figure 3.41: Circular-sawn timber sill.
Figure 3.42: Uncut sapling joists.

Figure 3.43: Circular-sawn joists
Two new cinder-block piers were installed on either side of the staircase to continue supporting an original timber spanning across the space that was cut through in order to construct the staircase (Figure 3.45). Other timbers were cut to allow space for HVAC systems and duct work. A number of make shift support systems were constructed to make up for shifting load bearing supports when the space was dug out. These include plywood shims into uneven crevasses, and the use of stones to balance shifting and crumbling piers affected by the changes to the foundation (Figure 3.46).

The borders of the dugout have been lined with brick and concrete block to reinforce the standing dirt foundations. These barrier walls help to keep the dirt from crumbling or collapsing into the cleared, open space. The brick wall lines the east and part of the north side of the dugout (Figure 3.47). The cinderblock wall lines the south and part of the west side of the dugout (refer back to Figure 3.44). A small portion of the north and west side of the dugout is not reinforced with brick or cinderblock walls and leaves the dirt foundation exposed (Figure 3.48). The exposed foundation still has the tool marks left by the digging out process (Figure 3.49).
Figure 3.45: Original hand-hewn timber cut to make room for concrete staircase.

Figure 3.46: Concrete piers replace brick piers to hold up circular-sawn sill.
Figure 3.47: Brick reinforcement wall along east side of dugout.

Figure 3.48: Brick reinforcement wall along part of north side of the dugout.
Figure 3.49: Evidence of the tool marks left by the digging out process.
INTERIOR DESCRIPTION
FIRST FLOOR
Room 101

Figure 3.50: Room 101 south and west wall.

Figure 3.51: Room 101 south and east wall.
The main entrance to the house is through the front, west, door leading from the front porch into Room 101. This room is considered the northern portion of the I-house addition, with ghosts (visual remnants of a previous construction footprint) on the walls and floor that indicate it had a central-hall configuration (Appendix B, Floor Plans). A large, open, space with entry points to room 102, through a set of French doors, Room 104 (hallway), Room 108 (considered the southern room of the I-house) and stairs leading to the second floor. The room is not a perfect square (Appendix B). There are baseboards on all walls at a height of 9-½”.

The front door is a solid wood, multi-paneled, craftsman style door (Appendix E) and is not the original door to the house. An indication of that includes its turn-of-the-century to early 1930s craftsman style design. The locks on the door, deadbolts and a turnkey also indicate it is not part of the original I-House. The room has two floor coverings; the bottom layer is the original, historic, pine, tongue-and-groove boards, exposed on the eastern side of the room. It measures 1” thick and 4” wide and runs north-south the length of the room. The top flooring, also runs north-south and is a more modern pine floor, which covers two thirds of the historic floor on the western portion of the room measuring 1” thick and 2-½” wide. The French doors are fifteen-glass-paned doors leading into to Room 102. The doors measure 5’-9” across and 6’-6” high with 6” molding all the way around.

There are three windows in the room, two on the north wall, one on each side of the stone-over-brick fireplace, and a third window on the west wall facing Dixie Avenue and the railroad tracks.
The historic, two-over-two, double-hung windows match all the window types in the home with the exception of three (Appendix E). This is an indication the historic windows may date to the late nineteenth century during the addition of the I-House or early twentieth century, when the additions to the home were complete. The molding profiles are consistent on all three windows (Appendix D). The stone-over-brick fireplace is 4’-8-7/8” wide with a mantelpiece measuring 5’-3” across.

There are two ceiling heights visible in the room, the original wood ceiling measuring 9’-8-7/8” from the historic ceiling to the floorboards and the drop ceiling beams, measuring 8’-11-1/8” to the floorboards. The drop ceiling beams are part of modern, twentieth century, alterations to the room. The historic ceiling beyond is unpainted and in good condition (Figure 3.53).

Wall analysis revealed possibly four decorative finishes (Appendix F). Most significant to the analysis was the muslin-lined, multi-colored foliate scroll on tan ground wallpaper tacked to the substrate bead-board (Figure 3.54). This is because bead-board is usually considered a fine wood finish; however, the Moore House possibly did not use this as a finished wall covering, but rather papered over it. The wallpaper pattern flows from room 101 into room 102 on the east wall along the French doors. This continuity suggests the wallpaper was applied after the construction of the I-house addition onto the saddlebag.
Different wallpaper was uncovered on the west wall beside the front door in room 101. From the west wall analysis a possible seven decorative layers were uncovered (Appendix F). The most significant of these layers is the nineteenth century red damask muslin lined wallpaper (Figure 3.55). A frieze in addition to the ceiling was wallpapered with a mica-finished, meandering-patterned gold ground wallpaper discovered in room 104 (Figure 3.56). This frieze would have come down at least a foot from the wallpapered ceiling. The seam where these two wallpapers would have meet would most likely be covered by picture molding.

Figure 3.54: Room 101 north wall wallpaper analysis uncovering bead-board substrate and multi-colored foliate scroll patterned wallpaper.

Figure 3.55: late nineteenth century muslin lined red damask wallpaper uncovered in Room 101 on the west wall near the front door. This wallpaper would have covered the central hallway of the I house.
Figure 3.56: Meandering-pattern on a gold ground wallpaper that historically would have been applied to the ceiling and brought down the walls to create a frieze.
Room 102

Figure 3.57: French doors on west wall of room 102. Left door leads to hallway 104.

Figure 3.58: Fireplace on east wall and six paneled door leading to room 103. South wall displays multi-colored foliate patterned wallpaper and historic fluch boards on wall.
Room 102 is thought to be the east room of the original two-room, saddlebag house (Appendix B). Consistent with Room 101 this room is also not a perfect square (Appendix B). The east wall has a stone-over-brick fireplace set into it, matching the one in Room 101 (Figure 3.60). The room has two entry points, one through Room 101 via the French doors on the west wall and another via the main hallway (Room 104) on the east wall. Room 102 also leads into Room 103 via a swinging door next to the fireplace on its south side. The hallway door is made of solid wood, has six panels, and measures 6’-7-½” x 2’-6-½” (Appendix E).

The ceiling has two layers, one of gypsum board and a historic-wood ceiling. The historic ceiling height to the floor is 9’-7”; the gypsum board ceiling height to the floor is 9’-6-1/2”. The historic wood ceiling boards measure 3” across and run from east to west. Three quarters of the gypsum board was torn off exposing the original ceiling covered in peeling paper. This muslin tacked to the ceiling paper has evidence of a mica-painted grass cloth pattern. Water damage has deteriorated more than half of the wallpaper pattern (Figure 3.61).

Analysis on the south wall reveals four layers of wall coverings. Underneath the top outer layer of gypsum board is a tacked-muslin, multi-colored foliate scroll patterned wallpaper matching the wallpaper found in Room 101 (Figure 3.62). This paper would have tied Rooms 101 and 102 aesthetically together after the construction of the I-house addition. Prior to this layer of wall covering the walls in room 102 were covered in a wallpaper of cream and white swirls with mica decoration dating to the 1850s (Figure 3.63). This paper was tacked to tongue-and-groove boards.
Figure 3.60: Eastern wall stone-over-brick fireplace.

Figure 3.61: Evidence of tacked muslin to ceiling and deterioration of wallpaper.
painted at one time a deep green. The baseboards, a significant feature of the room, were painted on in an ocher color, rather than being made of wood molding attached to the wall, which is often used as a decorative detail (Figure 3.64).

There is a set of two windows on the north face of the room, which recess out by 1’-6-1/4”. The windows on the northeast side of the wall are double-hung, two-over-two, while the windows on the northwest side are four-over-two. The upper window is a more modern replacement. Three quarters of the window is loosely covered with a large piece of plywood (Appendix E.). The modern, pine floors cover historic flooring underneath although both measure 3” wide (Figure 3.65). The modern flooring runs north-and-south, while the exposed historic floors near the entrance to room 103 run east-and-west.
Figure 3.64: Baseboards painted directly onto flush wood create a decorative molding.

Figure 3.65: Historic flooring underneath modern pine flooring.
Room 103

Figure 3.66: Room 103 North Bay windows.

Figure 3.67: Room 103 east wall displaying built-in cabinets.
Room 103 is the east room of the original two-room saddlebag house (Appendix B). There is a swinging, six-panel door between room 102 and 103, which opens into a small closet with built-in shelving. The molding around the door is approximately 5-3/4” on one side and 5” on the other (Appendix B). The closet measures 3'-7-1/2” across and 3’-2” in length. The built-in shelves are 1’-6” deep. The ceiling in room 103 is 7’-4” high.

Overtime the room was converted to a kitchen with modern, built-in cabinets on the east wall (Figure 3.67). There is a built-in pantry along the west wall and is possibly part of the original structure. The walls and historic ceiling are covered in drywall including a historic fireplace, which is only partially exposed after the removal of drywall on the west wall (Figure 3.69). There is a bay window in the northern wall. The windows match the others in the home indicating this is a historic bay window. The roof covering the windows is a modern addition. When this room was part of the east room of the saddlebag house a door leading into the home would have been where the windows are (Appendix E). A door, on the south side of the room, leads into a modern addition, room 110. The door is 2’-8-1/4” wide. Vinyl roll flooring covers the floor.

Figure 3.68: Room 103 west and north walls.
Room 104
Room 104 is the first floor hallway that leads off of room 101. The room has pine-wood floors and walls made of drywall. The ceiling is a drop-drywall ceiling measuring 7'-11-¼” high. There is no wall on the east side of the hallway.
Room 105

Room 105 had its west-facing hallway wall torn out, exposing the room to the rest of the house (Figure 3.72). A quarter of the north side floors are remnants of historic pine and are partially covered in plywood boards, while the floors on the remaining three quarters is rolled vinyl flooring (Figure 3.70). Even though the walls facing the hallway were torn down, there is still a door frame and a door intact.

The interior, historic, wood, walls are partly intact. Drywall on the east wall is partly attached to the wall under the window. The plumbing has been removed and there is a window with six-over-six lights on the interior east wall (Figure 3.71). The window is boarded up from the outside. There are wires hanging in a cluster from the ceiling indicating a defunct electrical system in this portion of the house. The ceiling measures 7’-10-7/8” high (Appendix B).

Figure 3.70: Room 105 north wall exposing historic saddlebag exterior siding.
Figure 3.71: Room 105 north and east wall.

Figure 3.72: Room 105 north and east walls looking through Room 104.
Room 106

Room 106 is a hallway that leads to a boarded-up door that once led to the garage, room 111, (Figure 3.73). The ceilings are 7'-10-1/16". The walls are made of drywall. The floors are historic pine, tongue-and-groove (Appendix B, Floor Plan).

![Figure 3.73: Room 106 east wall boarded-up door leading to garage, Room 111](image)

Room 107

The door to Room 107 is a six-panel door measuring 7'-7-½" in height with 6" moldings (Figure 3.74). The room is almost a perfect square. There are two windows in the room, one on the east wall with a view to the outside and one on the south side, with a view of room 111. Both windows have 6-½" moldings (Figure 3.7 an Appendix D). There is a closet on the north wall (Figure 3.75). The room ceiling is 9'-13/16" high, while the closet ceiling is 9’-11-7/8”. The floors are historic pine.
Figure 3.74: Room 107 north wall showing entrance to Room 106 and closet

Figure 3.75: Room 107 north wall and northwest corner
Room 108

Room 108 is on the west side of the building, to the south of room 101. It is assumed this room functioned as the parlor due to its high baseboards and decorative wallpaper. This was the appropriate room for the family to receive guests. They would have decorated with their best finishes and furniture in this parlor. The door to the room is a six-panel, solid-wood door measuring 7’-7-½” (Appendix E). Like Room 101 and 102, this room is not a perfect square. There are three windows in the room, two on the southern wall on either side of the fireplace (Figure 3.79). The third window is on the west wall (Appendix E).

The fireplace is nearly flush with the southern windows. The mantel is a Classical Revival style measuring 5’-¼” across (Figure 3.80). It is detailed with egg-and-dart and various decorative detailed molding (Figure 3.81). Such attention to detail would suggest this mantel to be in a room of significance or to entertain guests. The brick fireplace is shallow and is constructed of historic-brick, patched with Portland-cement-based mortar (Figure 3.82). This is causing the historic, lime-based brick to separate from the mortar due to Portland cement’s rigidity. It does not allow the brick to expand and contract naturally, causing it to separate and eventually fall out, causing the loss of historic-brick material.
Figure 3.78: Southwest corner of room 108 wall showing the western two-over-two double-hung window flanking the fireplace. West wall to the right.

Figure 3.79: Room 108 facing the west wall. North wall to the right showing six paneled door entrance to room 101 and three paneled door to western closet.
Figure 3.80: Room 108 facing the south wall showing classical fireplace and flanking windows.

Figure 3.81: Room 108 historic classical revival fireplace showing egg-and-dart decorative molding.
The room has two closets, both with different measurements (Figure 3.79). The closet on the west side has a six panel, solid wood door measuring 1'-9-½” deep and 4’-7-½” wide. The closet door is 2'-0” wide with 3” moldings. The closet on the northeast side is 1'-8-1/3” deep and 4’-5-3/4” wide. The closet door has one, long-panel, over two, short-panels and is 2'-0” wide with 3” moldings. The height of the room is 8'-8 7/8”.

Wall analysis uncovered seven layers of wallpaper. Most significant was the discovery of a tan-ground, mica-detailed, foliate patterned wallpaper (Figure 3.83). This wallpaper was found underneath a layer of faux-fiberboard, striped-mica wallpaper, Gypsum, wood-pulp-mica fiberboard, and a bottom layer of wallpaper painted green (Figure 3.84). The foliage-mica wallpaper is historic and was most likely installed ca.1880-90 when the room was completed as the parlor portion of the I-House. The presence of mica once gave the paper a high sheen. When light hit the paper the foliage pattern would be revealed. These decorative details signify this room to be of importance. Paint analysis on the east-wall baseboards in closet A of Room 108 revealed eight layers of paint (Figure 3.85). Historically the color most likely for the baseboard would have been gray, which corresponds to the paint analysis of the fireplace painted with the same color.
Figure 3.83: Foliate pattern, mica-decorated on a tan-ground wallpaper.

Figure 3.84: Analysis on west wall showing layers of decorative and non-decorative wall finishings. Further information can be found in Appendix F.

Figure 3.85: Closet 109b paint analysis revealed eight layers of paint. Further information can be found in Appendix F.
Room 109a & 109b

Room 109a and 109b, considered the rear ell of the home, generally a historic outbuilding attachment, are positioned as the furthest northeastern rooms of the Moore house. These two rooms are only accessible through room 110 (Figure 3.86 and 3.87). These rooms are used for storage and a workspace (Figure 3.88). The interior has wood-clapboard walls and a green-painted wood ceiling. The paint matches the same green paint uncovered in several of the first floor rooms, particularly room 102 and 101. The ceiling height for room 109a is 10'-2". Room 109b had two different ceiling heights, 9’-4” on the southern end and 10’-2” on the northern end.

![Figure 3.86: Room 109a south wall entrance towards room 110](image)
Figure 3.87: Room 109a facing north looking into room 109b.

Figure 3.88: Room 109a south wall.
Rooms 110 & 111

Room 110 and Room 111 are modern additions on the east façade of the Moore House. Room 110 is an enclosed workspace with doors leading into Room 103 and Room 109a &b (Figure 3.89). Room 110 has plywood nailed to the wall, which is covering the six-over-six light window in room 105, the former first floor bathroom (Figure 3.90). Room 110 does have electricity that is accessible and functioning. The ceiling heights slope in an east-to-west manner and the measurements are 8’-4” to 9’-6”, respectively.

Room 111 is a two-car garage with walls on all sides except the east, which is the open portion exposing the interior of the garage (Figure 3.91). Currently this space is used for storing lumber, paint, and supplies for the current owner’s construction business. The exterior has matching white siding. On the south, exterior side of room 111 there are two rectangular windows each with black vinyl shutters (Figure 3.92). The room is covered by a shed roof and was added to the home in the last quarter of the twentieth century. The ceiling heights slope in a south-to-north manner and the measurements are 8’-6” to 10’-5”, respectively.

Figure 3.89: Room 110 east wall and entrance to Room 109a to left on north wall.
Figure 3.90: Room 110 west wall with boarded-up window to former bathroom, room 105.

Figure 3.91: Room 111 facing west showing relation of garage addition to rooms 109a and 109b along with the main Moore House.
SECOND FLOOR

Room 201

Room 201 is the northwestern room on the second floor (Appendix B, Floor Plan). This room is roughly a square. Room 201 can be access through Rooms 202 to the east and 207 to the south (Figure 3.95). The flooring is 3’-1/2” wide pine, tongue-and-groove boards running north-to-south. The wood has been painted or stained brown. There is a large section where the paint has worn off, and untreated sections of the boards are exposed (Figure 3.96). The colonial baseboards and picture molding continue throughout the room (Figure 3.94 and Appendix D).

Three, two-over-two, double-hung windows are in this room (Figure 3.93). They all consistently measured 5’-3/4” x 2’-5/8”. One window is located on the western wall and the other two on the north wall flanking the exterior, north chimney. Each window’s molding measures 5’-1/2” on all sides (Appendix D). The ceiling reach 8’-7/8” high and features unmarred sheets of synthetic-gray wood paneling running north-to-south (Figure 3.94).
Figure 3.93: Northeast corner of room 101, depicting wall damage. Eastern door to the right leads to room 102.

Figure 3.94: West wall showing paneled ceiling and colonial molding, as well as moisture damage.
Figure 3.95: Room 101 south wall leading to room 107 to the left.

Figure 3.96: Pine, tongue-and-groove floor boards showing evidence of brown staining.
Room 202 (Bedroom)

Room 202 is the northeastern room with a four-vertical, paneled, solid-wood door measuring 6’-1” x 2’-0” door (Appendix E). Room 204 and Room 201 can be accessed through Room 202. Water and gas lines on the north and east wall indicate this room was used as a small kitchen or kitchenette in the southeastern corner of the room (Figure 3.97). These features reflect that the house had been subdivided for apartment living. The historic floorboards measure 3-½” wide and run east-to-west. A residue on the floor suggests an asphalt-floor-covering was once present (Figure 3.98). It is undetermined whether this flooring was historic or added for the purpose of the kitchen later. The colonial baseboard continue from the hall measuring 9’-½” high from the floor (Room 204), and a simple molding of 5-½” wide follows the window and door surrounds consistently (Appendix D).

There is a set of two, two-over-two, double-hung, windows on the north wall (Figure 3.99). The windows measure 5’-¼” high 2’-1/3” wide on the north wall separated by a 9’-½” molding divider. Colonial-style, picture moldings run on all four walls (Appendix D). The walls are drywall and have been damaged by animal incursion and the removal of fixtures (Figure 3.100). This damage exposes bevel-rabbeted, wall cladding between the exterior side of the wall stud and the chimney (Figure 3.101). There are reciprocating saw marks on vertical studs exposed from the damaged drywall, suggesting construction ca. 1850s (Figure 3.100).

Figure 3.97: Southeast corner of Room 202 showing water line for possible kitchen or kitchenette. Additionally, damage caused by removal of fixtures can be seen.
Figure 3.98: Room 202 flooring showing residue.

Figure 3.99: Northwest corner of room 202 showing entrance to room 201 and the set of two, two-over-two, double-hung, windows on the north wall.
Figure 3.100: Damaged by animal incursion and the removal of fixtures in the east wall of room 202.

Figure 3.101: Exposed bevel-rabbeted, wall cladding between the exterior side of the wall stud and the chimney.

Figure 3.102: Evidence of reciprocating saw marks on vertical studs.
Room 203 (Bathroom)

Room 203 is the central of the eastern room by access from the upstairs hall. This rectangular room (Appendix B, Floor Plans) is in poor condition since it has been gutted and no useable fixtures remain (Figure 3.103). The floor is composed of oriented strand board (OSB), plywood, and modern-cut boards, which may be covering older layers of flooring. The walls are also a mixture of OSB, plywood and modern boards secured with machine-made, wire, nails (Figure 3.104). There appears to be some heat damage to portions of the north and west wall covering, which is made from an unknown material. The only natural light source is a 36” x 30” six-over-six, double-hung, window on the east wall (Appendix E).
Room 204 (Hall)

Room 204 is accessed through a centrally located, L-shaped, stair at the southeast corner of the room (Figure 3.105 and 3.106). Almost every room, 202, 203, 205, 206 and 208, on the second floor can be accessed through Room 204. Room 201, however can only be entered through either Room 202, 207, or 208 (Appendix B, Floor Plans).

The newel-posts of the banister are large, squared, craftsman style, and show reciprocal saw marks (Figure 3.107) suggesting construction ca. 1850s. The stairs were once carpeted since carpet tacks remain. The wallpaper is modern, twentieth century and not historic to the Moore house I-house construction.

Wood floors boards measure 3-½” in width running east-to-west until a threshold is met before entering Room 206 where the flooring turns to run north-to-south. Colonial-style baseboards run throughout the second floor, and plain molding surrounds the windows and doors (Appendix E). These features are missing or replaced in parts of the second floor. The floor in this room is in good condition; carpet tacks remain around the perimeter of the room.

The ceiling measures 8’-1/4” high. Strips of bent metal are nailed approximately 1’ from the ceiling suggesting a drop ceiling was installed during the twentieth century after the wallpaper was installed (Figure 3.108). The ceiling in this room has moisture damage and a large hole has been cut into it. Though no damage to the surrounding walls and flooring is evident, it does create an entry for rodent habitation and water damage to occur.
Figure 3.107: Craftsman-style banister newel posts in room 204.

Figure 3.108: Evidence of drop ceiling from the bent metal strips attached to the wall.
Room 205 (Bedroom)

Room 205 has doors at both entrances that are painted wood, two-over-two panels (Appendix E). The closet is located in the southwestern corner of the room, and measures 3’-1/4” deep and 5’-0” long. The door into this closet is hollow, white-latex-painted wood. The ceiling in Room 205 measures 8’-3/4” high while the closet ceiling is approximately 9’ high.

There are two, two-over-two, double-hung windows, one on the east wall and one on the south wall (Figure 3.109). The floors are 3-½” wide, painted, tongue-and-groove, wood boards running east-to-west. The baseboards, picture molding, and window casements are similar to the other rooms (Appendix E). The ceiling is covered in a textured, striped-vinyl wall covering and it is separating along the seams and is bulging elsewhere.

Figure 3.109: Room 205 southeastern corner displaying the two, two-over-two, double-hung windows, one on the east and south walls.
Room 206 (Bedroom)

Room 206 is located in the southwestern corner of the second floor. This room can be accessed through Rooms 205 and 204. Room 206 measures a rough square (Appendix B). The doors are painted-wood, two-over-two panels. The closet on the northern wall has same style of door (Figure 3.111).

There are three intact, two-over-two, double-hung windows, one on the west wall and two in the south wall (Figure 3.112). The floors are 4” wide, tongue-and-groove boards, running north to south and are painted. Carpet tacks are visible along the edges. The same colonial baseboards are carried from Room 204 and 205 into this room, 206 (Appendix D). Bent-metal lining around the room, at the same height as the picture molding, mimicking Room 204, suggests a drop ceiling was present. Additionally, there is unpainted crown molding. The walls are painted, and there is a fan pattern on the walls, below the plastic lining.
Figure 3.111: Northwest corner of Room 206. The ceiling damage is evident, some portions from being cut, some from having hooks inserted into their surface to secure a drop ceiling. Note painted floor, baseboards, window casement, and missing picture molding. The closet is on the right of the frame.

Figure 3.112: Southeast corner of Room 206. This image depicts the 2/2 double hung window details, the wood floor, baseboard and removed picture molding. Note the damage to the ceiling and walls.
Room 207 (Porch Roof Entrance)

This room opens into Room 204 to the east and on to the roof of the porch to the west (Figure 3.113). The door leading to the roof is craftsman style, solid-wood measuring 7’ 1/8” high by 3’ wide. The door is painted in what seems to be latex paint with three-arched, rectangular-glass panels over a single-wood panel, the only door of this style in the house. There are no windows in this room.

The floor is roll-vinyl covering and underneath is newspaper dating to 1962 as a buffer between the vinyl and tongue-and-groove wood flooring (Figure 3.114). This room was once carpeted, as indicated by the presence of tacks. The colonial baseboards are present, and there is a crown molding along the four walls (Appendix D).

Figure 3.113: Southwest corner of room 207 showing west door entering to roof. Note the holes in the drywall in the bottom southwest corner.

Figure 3.114: 1962 newspaper found under vinyl flooring in room 207.
Room 208 (Closet)

This room may be accessed from the hall or the two bedrooms: Rooms 204, 202, or 201 (Appendix B, Floor Plans). There is a small, intact, one-over-one, double-hung window in the northern wall of the room. A wall with a door divides the room; the door is a single-panel 6'-8" x 2' wood door. There is a large, single-light transom above the door, helping to illuminate the southern half of the room (Figure 3.115). The floors are wood, and the walls feature the same colonial baseboard through the floor. The door moldings are simple, square moldings (Appendix D).

![Figure 3.115: Single-light transom above the door in Room 208 looking north.](image-url)
SYSTEMS
The utility systems that exist in some capacity HVAC, electrical, cable television, telephone, gas, security alarm, doorbell, water/sewer, and sump pump. There is also one smoke alarm located in room 105. These utilities were installed at different periods in the history of the house and some have been upgraded, removed, or changed since the initial installation. Currently, the gas, sewer, some electrical, doorbell, security alarm and water systems are shut off.

The HVAC system has been removed. The remaining evidence of the HVAC consists of, remaining duct works in the crawl space, one large return vent in room 101, and some smaller, supply vents in the remaining rooms (Figure 3.116). None of the vents are attached to any ductwork. There is a concrete pad on the south side of the house where the condenser unit would have been located, as well as a hole in the masonry-foundation wall that would have served as an entrance for coolant lines. Portions of the ductwork system remains are located in the crawl space in the basement but they do not serve a function.

The electric meter is located on the north side of the house next to the chimney (Figure 3.117). One cable runs from the electric meter into the basement. This cable features areas where it has burned through the outer coating and connects to a junction box. The outgoing wiring of another

Figure 3.116: HVAC vents no longer in use underneath room 101 and 108.
Junction box in the basement has been snipped. Each room in the house features between one to three electric outlets either two or three pronged. The modern garage additions are on a separate electrical system. There is a breaker panel located in room 110, which controls the lights and outlets.

The cable box, a small metal enclosure, is located underneath the electric meter on the north side (Figure 3.117). The cable box features several cables, which run around the perimeter of the house and into various rooms. Rooms 107 and 206 have visible cable connections.

On the south side of the house there are two telephone boxes. Multiple wires come out of these telephone boxes and are wired around the perimeter of the house and into various rooms. There are telephone connections in rooms 101, 102, 107, 108, 201, 202, 205, and 206. There is telephone junction box located in the stairway to the basement.

The gas meter is located on the south side of the house (Figure 3.118). The meter itself is located at the corner between the house and room 111. There are also gas pipes outside the north façade and inside the garage. A gas pipe runs from the meter to the second story in room 205. Additionally, there is gas pipe in the basement that was used when there had been HVAC located there.

Figure 3.117: Electric meter and cable box; located on north side of house.
There is a security alarm control panel located in room 103 and an alarm horn located in the basement. A doorbell system used at the exterior door to room 101 is located in room 105 and consists of a bell and a small box on the exterior south wall.

The water systems exist in room 103, 104, 203 and 204 featuring water supply lines for sinks. Sewer systems exist in room 104 and 203 featuring a main drain line in the floor of each room (Figure 3.119). All of the plumbing fixtures; sink, toilet or bathtubs are missing, except in room 103.

In the basement there is a functioning, electric, submergible, sump pump, which is used to remove water that has accumulated in the sump basin. There is a sum-pump drain line that exits out of the masonry wall on the south side of the house.
PART 4: CONDITIONS ASSESSMENT
SETTING CONDITIONS

LANDSCAPE
The land parcel features several different varieties of trees at various stages in their life cycles. Some of the oldest trees are within thirty feet of the Moore house, and have been taken over partially by vines, which have also encroached on portions of the main structure. A younger tree near the middle of the southern façade of the house has limbs that are brushing against the south side of the house and roof. Older trees around house have large, heavy limbs, both alive and dead, that drape and scrape over parts of the north and west façades.

These limbs have the potential to damage the house significantly. Specifically, the maple tree that stands near the northwest corner of the western façade of the Moore House has a substantial number of large limbs that stretch onto the home that have already caused abrasions to the siding and damage to the second-story roof as shown in Figure 4.1. Detail of the large limbs of the maple tree (right) and the cedar tree (upper left) that encroach on the western and northern facades of Moore house structure; moss growth is present on the chimney on the north facade due to microclimate conditions caused by excessive tree coverage.

Figure 4.1: North chimney of the Moore House.
This tree also drops significant amounts of dead limbs and leaves onto the roof of the front porch, putting unnecessary strain on both of these roof sections, while leaf build up facilitates the conditions that lead to trapping moisture and creates rot as shown in Figure 4.2. The cedar tree on the north façade may be dead, and thus presents a high risk of falling onto the house. Currently, some of its limbs are brushing up against the north side of the house as well. Shade coverage on the north façade has prevented sun exposure on and near the chimney, causing moss to form on the historic brick and lime-based mortar. Furthermore, this shady environment has contributed to moisture and rot that has caused a section of the chimney to separate from the second-story of the house as shown in Figure 4.3. If this condition is left unattended, serious deterioration, and ultimately structural failure could result.

Figure 4.2: Roof of porch facing southeast.
The shrubs that flank the entrance to the house from Dixie Avenue as well as the front porch on the western façade, are overgrown and in need of pruning. Shrubs on the north side of the house shown in Figure 4.4 are overgrown and too close to the structure putting the siding, windows, and foundation material at risk.

Overall, the condition of the yard is fair. Vines and creeping weeds prevail in several locations, specifically around the northern and western perimeter of the house. Grass is fairly hearty, but patchy in the northern half of the property, while the eastern section of the property is mainly gravel infill shown in Figure 4.5. Currently, much of the property is covered in leaves, as this lot was analyzed during the fall of 2013, and much of the vegetation was either dying or dead. It will be necessary to investigate growth during spring and summer months to see where weeds and vines are the most pervasive and therefore threatening to the structures on the property. There are likely problem areas in many locations that are not currently identifiable.
Figure 4.3: North facade of the Moore House.

Figure 4.4: Porch on west façade.
OUTBUILDINGS: OFFICE
The newest construction on site, the office is in excellent condition. Unlike the Moore house, the office has functional electrical and plumbing systems, and is not a historic structure. The roof and roofing material are in good shape, and the paint covers the building consistently; no chips or scratches are present. With regular maintenance, the office should be functional for years to come.

OUTBUILDINGS: CARPORT
The non-historic carport is in good condition though there is a significant amount of leaves and dead tree limbs that have been deposited on the roof by the trees above as shown in Figure 4.6. Because the carport and the office are beneath several trees that line the eastern border of the property, the likeliness of natural debris falling on or around the structure and causing future damage is high. Since most of the carport is not covered, there is a potential risk that high winds could blow the loose material surrounding the carport underneath the roof or through gaps in the structure, thus damaging its valuable contents as shown in Figure 4.7.

WELL

Figure 4.6: North side of carport.
The well house is a non-historic decorative wood construction that has an unfinished roof. It is in fair condition.

ARCHITECTURAL CONDITIONS
EXTERIOR
Despite the many additions and alterations that have occurred to the Moore house over time, the wood structure, as well as the historic-wood siding seem to have been well maintained beneath the subsequent layers of siding. Below is an overview of the primary causes of decay as well as the resulting conditions of the house.

The house, due to the amount of rain and humidity in Georgia, requires a higher amount of attention to maintenance of exterior features such as gutters and flashings, but also of the moisture protective barriers of the house, such as siding and the roof. Prolonged exposure to moisture, without drying, are particularly detrimental to wood-framed and wood-sided structures. A relative moisture content of 30 percent is all that is required to allow for the start of fungi and other biological growths in wood, while only 20 percent relative moisture content in wood is necessary to allow for the continued growth of biological agents in wood. Additionally, termites and other pests prefer
moist wood. Once failure of exterior barriers such as siding is compromised by moisture, interior finishes, as well as structural members, are at risk of damage as the water further permeates the system.

The vinyl siding provides protection from the sun’s ultraviolet rays that can cause up to 1/4” of deterioration a year on historic wood; however, it serves as a moisture barrier both for the wetting and drying of the underlying wood. The various coverings can all contribute to additional water being held inside this layered system leading to deterioration of the substrate. Therefore a careful removal process of these overlays may reveal patches of rot in the wood siding beneath. Another important barrier system is at the windows. There are a number of historic windows intact as well as a number of storm window covers; storm windows help to seal these vulnerable areas of the building.

Rainwater Effects

An important element of managing moisture is a successful rainwater runoff plan; roof overhangs, gutters, splash blocks, and flashing contribute to a successful runoff system. On the Moore House, the overhang on the southern main façade is very shallow while the northern side is much wider. This wider overhang on the eastern façade helps to keep the sides of the house from the abrasive action of run-off as well as limiting the opportunity for the water to sit on the surface. The pitch of the porch is very shallow and should be reviewed to ensure there are no signs of standing water immediately after a prolonged rain. The flashings on the roof of the porch are in good condition and should be maintained. There is an existing gutter system that has a number of disconnections, bends, and debris. Along the gutter around the house, there are a number of bulges in the soffit due to these gutters backing up or leaking. Areas with more complex roofing intersections rely purely on overhangs for water management, which is not enough protection as shown by the mold following the splash pattern in Figure 4.8. The existing grade sloping downward from the house also aids in directing water away from the house.

One of the most prevalent sources of damage to the exterior of the Moore house is the result of a microclimate, or local climate zone, created by the shade of the surrounding trees. Moisture is trapped, as described above, and prevents the soils and building materials from drying out sufficiently. The shade blocks sunlight and wind that would allow for evaporation to occur. Other microclimates are

Figure 4.8: Splash molding pattern at corner of pop-out on western side.
created in areas where biological agents such as mosses, lichen, vines, and fungi have taken hold as they further entrap moisture on surfaces that can contribute to further deterioration the wood surfaces. The worst affected area by this process is on the northwest corner of the house, which is shaded by a large maple tree and a large Cedar tree. The maple tree covers the porch and is responsible for much of the debris shown in Figure 4.2. The Cedar tree shades the area around the northern chimney, as well as the adjacent pop out roof. The mold and debris on the pop-out roof is shown in Figure 4.9 while the growth on the chimney is shown in Figure 4.1.

Patterns of moisture damage can be seen around the house in areas where shrubbery are close to the

![Figure 4.9: Northern pop-out roof molding due to microclimate created by Cedar tree.](image)

house or there are additions or surfaces changes within primarily shaded regions shown in Figure 4.10 and Figure 4.11. The historic-brick mortar on the porch and the wood ionic columns on top of Portland-cement pads, have considerable damage caused by the constant shade. The wood bases of the columns, especially on the northwest and southwest corners, have considerable damage due to the damp environment and the lack of breathability of the cement pads as shown in Figure 4.4 and Figure 4.12. The paint is also peeling on the full height of the columns.
Figure 4.10: Zones of moisture damage on the north side facing southwest

Figure 4.11: Zones of moisture on the north side facing south

Figure 4.12: Southwest column damage.
Structural Conditions

Moisture issues can lead to the deterioration of structural members beneath timber members, as well as threaten the structural stability of the soils and reduce the monolithic behavior of brick masonry structures. There are signs of masonry damage on the porch and northern chimney. There is a stepped crack pattern on the southern portion of the brick porch base that frames the stairs. This portion of brick appears to be separating from the porch and brick-column pedestal. The cracking could result from soil settlement as well as the differential expansion of the brick. Historic brick is very expansive in moisture due to its clay content. This is in direct contrast to concrete or Portland cement, which has a higher strength, but a much lower expansion capacity. Since there is cracking in the mortar and no cracking in the concrete, which signifies soil settlement, it is more likely that the rigidity of the Portland cement versus the historic brick, in the presence of moisture is causing the damage.

The main structural concern for the Moore house is the northern chimney. It is out of plumb 1” in 2’, and is separated from the house by several inches at the top. There are no signs of considerable cracking and the chimney appears to be stable, however a considerably large patch made with Portland cement runs along a large portion of the northern chimney height, which may be covering indications of the structural instability of the chimney. This patchwork is not cracked, however, indicating its stability since the insertion of the patch. It is evident that vines had been removed from this chimney. The pulling of the vines may have contributed to the separation and the process may be arrested due to their removal.

INTERIOR: FIRST FLOOR

Room 101

In room 101 the panels from a modern drop ceiling were removed with the wood framing left intact. Taking out the panels revealed the original, wood ceiling approximately one foot taller than the drop ceiling. The original ceiling shown in Figure 4.13 appears to be entirely intact and in good condition, though further investigation will be needed to confirm that assessment. One of the greatest historic features of the Moore House are the original pine wood floors and the joists made from un-milled logs, which support the floor; however these are also the features most in need of attention. There is no sub-flooring below the original, pine floors, which has made the floor particularly vulnerable. The original pine, tongue-and-groove boards are attached directly to the log joists, which have significant termite damage as shown in Figure 4.14. The termite-damaged joists and flooring have left the floor structure soft and vulnerable. The points where the floorboards and joists meet have the most concentrated damage as shown in Figure 4.15. This is caused by moisture trapped between the floorboards and the joists, which would create an attractive environment for insects and mold. Additionally, there is a second, more modern wood tongue-and-groove flooring on top of the original shown in Figure 4.16, which will need to be removed to assess the condition of the original floors for the entire room.
Figure 4.13: Room 101 ceilings.

Figure 4.14: Termite damage on original, pine floors.
Figure 4.15: Log joists with severe termite damage causing the floor to deteriorate, soften and weaken significantly.

Figure 4.16: Modern flooring and historic flooring in Room 101.
The walls appear to be in good condition, though it was revealed in other rooms that the historic walls are buried beneath several layers of various materials. This may also be the case in Room 101. Further investigation is needed to determine how many layers cover the historic material. The original, wood, tongue-and-groove walls are covered in at least two layers of wallpaper, which has been stripped intermittently throughout the room. The more modern paper is thick and peeling off in heavy strips revealing another patterned wallpaper underneath as shown in Figure 4.17.

The windows, moldings, doors, and fireplace appear to be in good condition, though the window on the west wall has a loose piece of plywood covering it. The house is not secure from wildlife and stray animals. There are soiling marks on the window frames and walls that appear to be raccoon prints and paw prints of feral cats that occasionally occupy the house.

Figure 4.17: Room 101 wallpaper, peeling revealing another layer of wallpaper underneath.
Room 102

Gypsum boards were torn off from three quarters of the ceiling exposing the original historic wood ceiling covered in peeling paper. There is significant water damage to the ceiling, possibly caused by faulty plumbing from the second floor above shown in Figure 4.18. There is also considerable water damage on the ceiling at the pop-out for the windows shown in Figure 4.19.

The historic pine floors are beneath the current, more modern floors. A section of exposed historic flooring at the entrance to room 103 is deteriorating, weak, broken and missing sections. This is an indication of deteriorating joists and floorboards likely caused by moisture and termite damage as demonstrated in Figure 4.20 throughout the home. Just inside the entrance from the hallway the layers of the wall are exposed. The first layer is the original wood wall covered in wallpaper and then covered in drywall as shown in Figure 4.21. There is evidence of water damage behind the drywall as shown in Figure 4.22, likely caused by plumbing issues from the floor above or the former bathroom next door, room 105. There are cracks in the drywall intermittently throughout the room as shown in Figure 4.23. Part of the historic wood wall boards are broken or damaged with a section that appears was spackled as a form of repair.

The windows on the north wall are in relatively good condition; however the upper window sash in the northwest window was replaced with a different window type, four-over-two rather than two-over-two to match the windows throughout the house. The window is also covered over with loose plywood, to prevent animals, weather, and humans from entering the building.

Figure 4.18: Ceiling of Room 102.
Figure 4.19: Ceiling of Room 102 at pop-out with windows.

Figure 4.20: Room 102 flooring indication of deteriorating joists and floorboards likely caused by moisture and termite damage.
Figure 4.21: Room 102 original wood wall covered in wallpaper and then covered in drywall.

Figure 4.22: Room 102 evidence of water damage behind the drywall.
Figure 4.23: Room 102 shows cracks in the drywall intermittently throughout the room.
Room 103

All the walls in room 103 are covered in drywall, concealing a wood ceiling, a fireplace believed to be part of the original saddlebag construction in the west wall, and possibly other historic materials. This is shown in Figure 4.24 and Figure 4.25. The bay window, set in the north wall, is an addition to this room with three windows. A portion of the ceiling has been removed to expose newly constructed beams and a green-painted, wood ceiling beneath the drywall as shown in Figure 4.26.

Figure 4.24: Room 103 drywall was concealing this fireplace.
Figure 4.25: Detail of fireplace uncovered after drywall removal in Room 103.

Figure 4.26: Removal of the drywall ceiling exposed new construction for this bay window addition.
Room 104

The historic-pine-wood floors in hallway (Room 104) are severely damaged and deteriorating as shown in Figure 4.27. There are missing boards leaving holes throughout the flooring. It should be noted there is no subflooring, which would have provided a protective layer between the floor and the joists. The deterioration could be caused by water damage from leaking pipes and termites. The hallway is next to Room 105, which was once a bathroom and appears to have had plumbing leaks, which could have contributed to the destruction of the floors. The walls at the end of hallway (Room 106) have large holes punched through the drywall as shown in Figure 4.28.

![Figure 4.27: Room 104 historic pine floors deteriorated and rotted leaving large gaps and damage throughout the floor.](image)

![Figure 4.28: Room 104 holes punched through the drywall and plywood covering holes in floor.](image)
Room 105

The floors in Room 105 are partly gone, leaving large holes and gaps, covered with plywood. The floor is weak and soft where the wood floor remains and is a hazard. This former bathroom may have had plumbing problems that caused significant water damage to the floors, both wood and vinyl flooring. The vinyl is peeling and has water spots. It is possible the floor covered by the plywood is the location of the previous shower or bathtub. Plumbing issues from the shower or tub are likely the reasons for this part of the floors having such significant deterioration, causing rot and attracting termites. There is also termite damage and cubical rot on the north wall, both indicating persistent, remaining moisture. The walls are in a very poor condition with some boards broken or missing. The wood walls appear to be historic; some of boards are stripped bare while remnants of paint and wallpaper remain. The walls are covered in nails that once held up the drywall, which has been torn out of the entire north wall, though some drywall remains on the east wall, exposing more wood walls shown in Figure 4.29 and Figure 4.30. The plumbing has removed, but a few pipes remain.

Figure 4.29: Room 105 wall conditions.
Room 106

Room 106 is a hallway that currently leads to the garage (Room 111) (Figure 4.31). The door is boarded up with plywood boards. The walls have gouge marks and holes at the wall opposite the door. The original, pine, floors are sturdier than floors in other areas of the home; however they still merit further analysis to determine if they suffer the same water and termite damage other areas of the first floor are experiencing.
Room 107

The ceiling in Room 107 is bubbling and peeling due to apparent water damage caused by a water source above the room. On the second floor there was once a sink or some other kind of plumbing directly above this room, which is likely the cause of the water damage shown in Figure 4.32. The floors are the original pine floors and are more sturdy and solid than other rooms on the first floor. There is white rot on the floorboards caused by the water leak coming through the ceiling shown in Figure 4.33.

The wall on the north side of the room has holes punched through it as shown in Figure 4.34. The walls are soiled and show remnants of raccoons and cat paws marks on the walls and windowsills shown in Figure 4.35. The inside doorknob to the room door is missing. The window on the east side has a modern, metal frame, either a screen or a storm window on the outside, which diminishes the historic appearance of the window.

Figure 4.32: Ceiling with water stains and peeling paint in Room 107.
Figure 4.33: White rot on floorboards in Room 107.

Figure 4.34: Holes in the drywall on north side of room Room 107.
Room 108

The floors in Room 108 are modern, 2-½” wide pine, wood, the same modern pine floors found in room 101. They cover historic pine floors underneath. The floor appears sturdy, but conditions of the original floor are difficult to determine without removing the modern floors. The walls have multiple layers of material covering the historic wood walls. The first layer seems to be wallpapered particleboard, covering over wallpapered or painted drywall. Under the drywall is another layer of paint over more particleboard and then the inner, historic, bead board walls.

The fireplace has been altered at some point in order to accommodate burning coal, making the firebox shallower. The bricks are historic bricks; however they were installed or patched with Portland cement as shown in Figure 4.36 and Figure 4.37. The bricks are separating from the mortar, because Portland cement is a more rigid material forcing the historic bricks, made of softer material, to separate and eventually fall out. The fireplace also is stuffed full of rotted leaves indicating an opening in the chimney.
Figure 4.36: Fireplace in Room 108.

Figure 4.37: Detail of patch with Portland cement.
Room 109 A and B
Room 109 A and B have no signs of severe damage. The historic-wood siding has some damage due to nail holes that attached shelves and racks to the walls. There are signs of poor drainage along the edge of the roof. The ventilation fan inserted at the roof should be maintained or removed and covered to prevent the infiltration of vermin.

Room 110
This modern addition to the main house does not have signs of severe interior damage. The historic siding is covered with vinyl siding. The junctions between the exterior and interior are in good condition and should be regularly monitored. There however areas that have significant moisture damage along the soffit, on the edge of the roof. An improved gutter system needs to be installed to prevent further damage.

Room 111
Room 111 does not have signs of damage on the interior; however, the soffit along the edge of the roof continuing from Room 110 is separating due moisture damage. An improved gutter system needs to be installed.

INTERIOR: SECOND FLOOR

Room 201
Located in the northwest corner of the house, Room 201 has significant water damage in the flooring. A hole in the attic above Room 201 is causing this deterioration. There is also evidence of animal damage areas of the wall. The molding is missing around the windows close to Room 208. The ceiling is made of paneling. Layers were removed to reveal that the walls are made of layers of plasterboard. The paint is peeling off a large section of the western wall in response to moisture leaching into the wall from damaged, exterior, vinyl siding Figure 4.38. There is extensive wear and damage to the painted, wood, floor in the northeast corner as shown in Figure 4.39.
Figure 4.38: Northeast corner of Room 201, showing moisture and animal damage.

Figure 4.39: Northeast corner of Room 201, depicts flooring with moisture damage caused by hole in the attic.
Room 202

Located on the northeastern side of the house is Room 202. This room is connected to Room 201 by a closet and a possible half bathroom (Room 208). The walls consist of layers of plasterboard. On the back wall is a double, two-over-two, double-hung window. The molding around this window is missing on the bottom portion. The eastern wall of this room is connected to the original chimney. This damage exposes a bevel-rabbeted wall cladding between the exterior side of the wall stud and the chimney. There are reciprocal saw marks on the exposed, vertical, wall studs. The ceiling is made from drywall. Although the wall seams are clearly visible, they are not heavily damaged. It can be assumed this room was a community kitchen because there is evidence of soot, indicating where a stove was affixed on the eastern wall shown in Figure 4.40. There is a hole in the eastern wall that has evidence that animal inhabitation with an animal burrow and droppings as shown in Figure 4.41. The wood flooring is in good condition. The doors in this room are both four-panel doors and in fairly decent condition.

Figure 4.40: Southeast corner of Room 202, depicting wall damage.
Figure 4.41: Animal Burrow Room 202.
Room 203

This room was gutted and is in poor condition, no fixtures remain. The floor is mainly composed of oriented strand board (OSB), plywood and modern cut boards, which may be covering older layers of flooring. The walls are a mixture of OSB, plywood and modern boards secured with machine made, wire nails. There are glue marks on the walls as shown in Figure 4.42 that were used to secure the ceramic tile up to just above where a tub would have been. It can be concluded that this room was a bathroom. The window in this room is one of two six-over-six window in the house, the other one is in Room 105, the former first floor bathroom.

![Figure 4.42: Southeast corner of Room 203.](image)

Room 204

The second floor is accessed by a centrally located L-shaped stair. The stairs were once carpeted, and the carpet tacks remain. The original, wood floor is visible with baseboards along the side. A modern banister is attached to one of the wallpapered walls. The wallpaper, some of which is pulling away from the wall, and the wood floors continue in the upstairs hall. Colonial style baseboards run throughout the second floor. Plain molding surrounds the doors, these features are missing or replaced in parts. The floor in this room is in good condition; carpet tacks remain around the perimeter of the room. There is a strip of plastic attached to the walls, at such a height that it suggests a picture molding, but its purpose is unclear. The ceiling in this room has been damaged by moisture and a large hole has been cut into it, potentially associated with the installation of a drop ceiling. The end posts of the banister are squared, and show reciprocal saw marks, a sign this banister could have been installed as early as 1850. The dropped ceiling is heavily deteriorated as shown in Figure 4.43 and Figure 4.44.
Figure 4.43: Room 204 facing west.

Figure 4.44: Room 204 facing east.
Room 205

In Room 205, the paint is starting to peel, particularly above the picture molding, because of high levels of humidity. The walls consist of plasterboard and gypsum board that are cracking in some places. The ceiling is covered in a textured material, and it is separating along its seams and is bulging elsewhere as shown in Figure 4.45. The floors are painted wood and are in fair condition.

![Figure 4.45: Northwest corner of Room 205, note moisture damage between the picture moulding and the ceiling.](image-url)
Room 206

The south wall in Room 206 has been painted with an acoustic (popcorn) design. The floors are painted wood and in good condition, carpet tacks are visible along the edges. The same colonial baseboards are present. There is a plastic lining around the room at the same height as a picture molding, similar to the hall (Room 204). Additionally, there is unpainted, crown molding throughout. The walls are painted, and there is a fan-pattern on the walls, below the plastic lining. The ceiling is in poor condition, some sections have been cut, others deteriorated, and one section damaged by hooks inserted into the material to install a drop ceiling, as shown in Figure 4.46.

Figure 4.46: Northwest corner of Room 206, depicting damage to the ceiling caused by installation of a drop ceiling.
Room 207

Room 207 opens into the hall (Room 204) and onto the roof of the porch. The exterior door is painted wood with three-lights over one-panel. The paint on the exterior side of the door is peeling from exposure to humidity, heating, and cooling cycles as shown in Figure 4.47. The paint has curtailed damage to the door. The floor is a layer of vinyl, covering a newspaper (dated June 8, 1961). Both the newspaper and vinyl cover wood flooring. The colonial baseboards are present, and there is a crown molding along the four walls. The door casements are square and simple. The walls and paint are mostly intact, with a small hole near the southwest corner and some peeling paint as shown in Figure 4.48.

Figure 4.47: Exterior door into Room 207. The paint has protected the door from moisture damage.
Figure 4.48: Southwest corner of Room 207, depicting wall damage.
Room 208

Room 208 is a closet that connects rooms 201 and 202 and leads to room 204 (hallway). Piping in the walls shows that this room could have also served as bathroom. There is one, one-over-one window. The room has wood flooring, the walls are layers of plasterboard, and the outer most layer is painted green. Just above the clothing racks in the closet is a knob and tube lighting fixture that dates back to the late 1800s. The doors in this room are both four-panel doors (Appendix E).

BASEMENT AND FOUNDATION

Poor and deteriorated conditions found in the basement and foundations of the Moore house are mainly the result of negligence and have created some hazardous conditions. There are two particularly deteriorated patches of floorboards on the first board that correspond with section loss and disconnection of the floor joists. One is located in the hallway (Room 104) at the top of the stairs to the basement, and the other is in Room 101 at the junction with Room 102 to the south of the French doors (Figure 4.49).

Figure 4.49: Room 101 showing deteriorating floor boards due termite damage and negligence.
First, termite damage is prevalent throughout the basement weakening many of the timber sills and joists (Figure 4.50). It appears that live insects no longer inhabit the space. Subterranean termites were likely the cause of the damage as they prefer moist wood close to the ground, especially softwoods like pine. The termites ate “tunnels” through the timbers significantly weakening many and even eating completely through some.

Second, evidence of powder-post beetles can be seen in nearly every timber, especially the older historic timbers. Powder-post beetles begin as larvae in wood, feeding off the starch content. They emerge from the wood as adults by boring holes to exit the wood. The most obvious evidence of their presence are the tiny holes left behind. While the holes seem harmless form the surface, the damage within the timbers can be significant as the feeding of the beetles may turn the insides of the timbers into dust or “powder”.

The basement is already a naturally damp location in the house, especially since the accessible portion of the basement was dug directly into the dirt foundation. This dug out portion often allows water to pool and settle with heavy rains. Water must continually be pumped out after basement flooding caused by excessive amounts of rainfall. There is a submersible, electric sump pump in the southeast corner of the dugout; however, it only operates with electricity so it is not in continuous use. A constant state of moisture has led to portions of the dirt foundations to crumble, which are not being reinforced by brick or concrete masonry unit (CMU) retaining walls. Some limited growth of mold and white rot is also the result of moisture build-up in the basement.
Finally, several hazardous conditions have been created by improper installation or removal of modern systems. For example, water piping spans across the dug-out area without proper support at risk of falling or becoming an obstruction to people within the space.

Some duct work and other systems have been removed leaving nails, wires, and sharp exposed metal edges behind. These cause some risk to people using the space. The continued use of electric wiring within the basement must also be reconsidered, given the high levels of moisture and susceptibility to flooding. Burn marks on a number of timbers are evidence of electric wiring in contact with the foundational materials.

ATTIC

Poor and deteriorated conditions found in the attic are due mainly to negligence that left the attic exposed to the elements, creating further problems of deterioration. Holes in parts of the roof have allowed rainwater in, creating a moist environment that has allowed some isolated instances of white and black rot to grow on the attic’s rafters, beams, and oriented-strand-board decking (Figure 4.51). In some cases, the growth of rot has only helped to enlarge the holes in the roof by eating away at the wood.

![Figure 4.51: Holes in parts of the roof have allowed rainwater in, creating a moist environment allowing white and black rot growth.](image-url)
Holes in the roof have also allowed in animals as evidenced by remaining fecal matter (Figure 4.52). Animal infestations lead to bacterial growth and other possible damage by animal behaviors such as chewing on electrical wiring. Unlike the basement however, there seems to be no evidence of long-term insect damage.

Hazardous conditions have been created by a lack of sturdy flooring in the attic. Many weak boards supporting the attic have fallen through into the second floor rooms. The attic is difficult to navigate due to exposed rafters and ceiling joists and a lack of substantial flooring that is safe to walk over. Outdated insulation may also be a hazard, as crumbling particles and debris are dangerous to touch or inhale (Figure 4.52).

ROOFS
Overall, the roof is in decent condition. The roof consists of three roof types: shed, gable and hipped, which can be seen from the eastern façade. The overgrown vegetation from the trees has allowed trapped moisture to damage the roof. On the eastern façade (outside room 205), the asphalt sheet has begun to sag which allows water to infiltrate the interior walls. The turban vent and trash
can vent covers need to be replaced to allow for better ventilation (Figure 4.53). The roof on the bay addition, on the northern façade, is beginning to rot. Likewise, the soffit on the shed roof is completely rotten. It is evident the roof and the original chimney began to separate because an effort to rejoin them was made by filling the hole with asphalt (Figure 4.54). However, the asphalt is cracking which has formed a hole.

The porch roof consists of an asphalt sheet attached to metal flashing, which is attached to the vinyl siding on the house. This roof is full of debris such as tree limbs and leaves. Last but not least, all of the gutters and down spouts are either broken or full of debris (Figure 4.55). This can become dangerous when it rains because there is some evidence of electricity in the house and these wires are exposed and next to the gutters on the northwestern and southwestern sides of the house.

![Figure 4.53: Turban vent and trash can vent cover on hip roof facing west.](image-url)
Figure 4.54: Historic saddlebag chimney on east facade patched with multiple layers of asphalt.

Figure 4.55: Look north on roof near room 205 showing close-up of debris build-up.
DOORS
Vandalism is a major source of damage in historic properties. The front door does not lock, which leaves the house vulnerable to security breaches. The paint is peeling on the exterior of the porch roof door. On the interior, the doors are generally in good condition, and have several layers of paint. Rooms 105 and 203 are without doors. For further information regarding the door profiles, please see the Door Schedule, Appendix E.
PART 5: TREATMENT AND USE
POTENTIAL FUTURE USE & TREATMENT PHILOSOPHY

This section of the historic structure report is intended to outline a treatment plan for the Thomas Moore house. After thorough investigation of the property, the preferred treatment option and recommendation for the Moore house is Preservation. According to , Preservation is “the act or process of applying measures necessary to sustain the existing form, integrity, and materials of an historic property. Work, including preliminary measures to protect and stabilize the property, generally focuses upon the ongoing maintenance and repair of historic materials and features rather than extensive replacement and new construction.”59 This suggestion is being made with the understanding that the Thomas Moore house has much to offer in the way of historic building techniques as well as its connection to Civil War history.

If funds are not available to properly rehabilitate the Moore house at this time, the house should be preserved and stabilized, to prevent further deterioration. It is recommended that the building be “Mothballed,” or secured and closed to protect it from incurring any further damage. Information and procedures for this treatment can be found in the National Park Service’s Preservation Brief 31, “Mothballing Historic Buildings.”60 The Brief lists nine steps:

Documentation
1. Document the architectural and historical significance of the building.
2. Prepare a condition assessment of the building.

Stabilization
3. Structurally stabilize the building, based on a professional condition assessment.
4. Exterminate or control pests, including termites and rodents.
5. Protect the exterior from moisture penetration.

Mothballing
6. Secure the building and its component features to reduce vandalism or break-ins.
7. Provide adequate ventilation to the interior.
8. Secure or modify utilities and mechanical systems.
9. Develop and implement maintenance and monitoring plan for protection.

These steps are reversible and, if done properly, can protect the building for up to ten years while planning for its future. This historic structures report provides the documentation and conditions assessment necessary to begin this process. A maintenance plan and detailed recommendations for treatment can be found in the following pages.

After stabilization of the house, a preservation minded buyer can be sought. There are several

60 http://www.nps.gov/tps/how-to-preserve/briefs/31-mothballing.htm
local and statewide preservation organization that can help with this process. Alternatively, the home could be donated in exchange for a tax credit. The Georgia Trust for Historic Preservation established the Revolving Fund for Endangered Properties Program in 1990 to promote the rehabilitation of historic buildings. According to their website:

“The Endangered Properties program accomplishes this goal by either accepting property donations or by purchasing options on endangered historic properties. The properties are then marketed nationally to locate buyers who agree to preserve and maintain the structures. Protective covenants are attached to the deeds to ensure that the historic integrity of each property is retained, and purchasers are required to sign rehabilitation agreements based on the work to be performed on the structure.”

The Georgia Trust does not offer financing, but tax credit incentive programs are available through the federal government (for income-producing properties) or through the state (for homeowners).

For more information, contact:

Kate Ryan
kryan@georgiatrust.org
Director of Preservation
The Georgia Trust for Historic Preservation
1516 Peachtree Street, NW
Atlanta, Georgia 30309-2908
404-885-7817

RECOMMENDATIONS FOR SHORT-TERM TREATMENT AND USE

The immediate short-term goal for the exterior should be to stabilize deterioration and set up a regular maintenance plan. With regard to moisture management, an important element is a successful rainwater runoff plan; roof overhangs, gutters, splash blocks, and flashing contribute to a successful runoff system. There are a number of disconnected gutters around the house that should be reconnected as well as areas with small overhangs that should be monitored for designing a new gutter system. The roof should be cleared of all debris and the asphalt shingles patched and molded shingles removed.

Splash blocks should be added at the outlets of the gutters and the ivy bedding should be removed to allow for a clear run off path as well as to allow the soil around the foundation of the house to dry completely. Splash blocks are used to direct the water away from the foundations before it is allowed to saturate the ground, which helps to protect the foundations. The trees, bushes, and vines should be cut back from the house. The vinyl-siding surfaces and brick should be cleaned from all mold or growth to help remove these moisture-locking barriers. All steps for moisture and vegetation management should be guided by “Preservation Brief 39: Holding the Line: Controlling Unwanted Moisture in Historic Buildings.”

http://www.georgiatrust.org/what/revolving_fund.php
Despite the current stability of the chimney, due to the moist nature of the substrate, it is advisable to tie the chimney back to the house for safety reasons. This precaution is especially advisable due to the amount of train traffic and subsequent vibrations experienced by the chimney. There are no signs on the interior of the house that the separation of the chimney has caused any damage or strain on the structural integrity of the house or the historic finishes.

From the exterior, there are no major signs of damage due to pests such as insects or animals, but there are a large number of spider webs and mud-dabber nests that should be addressed before the space is occupied. There are a few small holes around the exterior that may have been created by animals or other pests. Openings should be located and covered with a minimum of some mesh wire to animal intruders. On the interior, there are more dramatic signs of damage in the form of animal burrows in the walls as evidenced by nests and animal droppings. Securing possible entry spaces and contacting an animal control professional can avert further damage of this type. Although not a large problem at this time, further insect damage can be mitigated in the same way, by securing possible entrance holes and contacting a professional exterminator to secure ongoing treatment. In addition to animal burrows, holes were created in the same areas of the ceilings and walls to address maintenance issues or for other reasons. Both types of holes should be patched with historically appropriate materials, most of which is drywall or plaster board, to ensure no further foreign incursion of insect or animal.

Although the property is fenced in and locked, it is recommended that all of the exterior doors be locked to prevent vandalism especially since the site is somewhat isolated due to the industrial nature of the area. Buildings that appear to be abandoned have a higher risk of vandalism and arson, therefore, completing any of the safety precautions mentioned as well as completing some basic improvements to the property such as the window maintenance as well as the clearing of natural debris will aid in keeping and protecting the property. Guidance on property security and strategies for mothballing a home in its current state our outlined in “Preservation Brief 31: Mothballing Historic Buildings.”

RECOMMENDATIONS FOR LONG-TERM TREATMENT AND USE

The roofing on the lower levels of the house with signs of drainage issues should be replaced and the underlying surface examined for damage. Gutter systems around transition areas should be properly reconfigured or replaced entirely. “Preservation Brief 4: Roofing for Historic Buildings” should be consulted. Clean and re-point the historic masonry on the porch and chimney with considerable growth and decay. Mortar used to re-point the bricks should maintain the same stiffness, absorption, and shrinkage characteristics as well as the same width and thickness as the historic mortar. Test the strength, stiffness, moisture absorption, and shrinkage compatibility of the historic brick and concrete overlay to avoid the early cracking patterns on the porch. In order to maintain the historic character of the home, the work to restore the brick wall should be done in keeping with Secretary of Interior Standard for repair of masonry outlined in “Preservation Brief 2: Repointing Mortar Joints in Historic Masonry Buildings.”
Further investigation of the state of the soil at the front of the house is advisable. Methods such as soil borings would help determine the status of the soil and the potential for future leaning. However, the tie back system would ensure some stability for the house. Some instances of potential moisture damage beneath the exterior siding are not noted, therefore the vinyl siding should be maintained until a program for proper removal of the asbestos siding is established. If the wood siding is to be salvaged, a program of careful removal of the overlaying materials must be implemented. Until then, the methods of cleaning, sealing, and localized replacement of overlaying siding will need to be determined based on the Secretary of Interior Standards outlined in “Preservation Brief 8: Aluminum and Vinyl Siding on Historic Buildings: The Appropriateness of Substitute Materials for Resurfacing Historic Wood Frame Buildings” and “Preservation Brief 16: The Use of Substitute Materials on Historic Building Exteriors.”

On the interior, the largest issue is the deterioration of some wall surfaces, most readily apparent in the peeling of paint and sagging ceilings. This is caused by excessive moisture either from rain improperly draining from the roof and becoming trapped beneath the vinyl siding or from moisture leached from the air. This condition can be reversed and stabilized by first repairing the vinyl siding on the western exterior wall, ensuring the gutter system is draining properly, and ensuring that the vinyl is securely fixed to the exterior wall. Securing any external openings, doors and windows can combat the excessive humidity issues. A humidity monitor device as well as the use of a dehumidifier is also recommended. Peeling paint should be removed by the least abrasive means possible, in accordance with the Secretary of Interior’s Standards for Rehabilitation. Surfaces that will be in contact with moisture, such as the external side of the porch door, should be repainted to ensure no further deterioration.

All systems should be further inspected for fire potential and systems should be secured. Other issues to be addressed include the absence of historic fabric, such as sections of flooring and walls. These should be replaced with materials that are distinguishable from the originals, but follow their lead in form and design. Some sections of the original flooring have traces of previous treatments, like carpet tacks and synthetic flooring residue. These should be removed in the least abrasive way possible to alleviate safety concerns in the case of the tacks and to provide an even surface for future treatment in the case of the residue. Once again, all work should conform to the Secretary of Interior’s Standards for Rehabilitation. If new systems such as electricity, plumbing, and HVAC are to be re-established in the house, careful planning per “Preservation Brief 24: Heating, Ventilating, and Cooling Historic Buildings: Problems and Recommended Approaches” should be completed.
Time Table for Treatment Recommendations and Ongoing Maintenance Plan

<table>
<thead>
<tr>
<th>Action Item</th>
<th>Urgency</th>
<th>Frequency</th>
<th>NPS Brief</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof/Gutter System</td>
<td></td>
<td></td>
<td>4, 39</td>
</tr>
<tr>
<td>Gutter Cleaning</td>
<td>A</td>
<td>Monthly; *Weekly (NW)</td>
<td></td>
</tr>
<tr>
<td>Gutter Installation</td>
<td>A</td>
<td>I-Weekly</td>
<td></td>
</tr>
<tr>
<td>Splash Blocks</td>
<td>A</td>
<td>I-Annually</td>
<td></td>
</tr>
<tr>
<td>Localized Asphalt Shingle Replacement</td>
<td>A</td>
<td>Annually</td>
<td></td>
</tr>
<tr>
<td>Roof Substrate Investigation</td>
<td>B</td>
<td>Annually</td>
<td></td>
</tr>
<tr>
<td>Full Roof Replacement</td>
<td>C</td>
<td>10 years; I-Annually</td>
<td></td>
</tr>
<tr>
<td>Roof clearing of Debris</td>
<td>A</td>
<td>Monthly; *Weekly (NW)</td>
<td></td>
</tr>
<tr>
<td>Cleaning/Replacement of Rotted Soffits</td>
<td>B</td>
<td>10 years; I-Annually</td>
<td></td>
</tr>
<tr>
<td>Vegetation & Pest Control</td>
<td></td>
<td></td>
<td>24, 39</td>
</tr>
<tr>
<td>Cut back trees, plants, vines</td>
<td>A</td>
<td>Weekly</td>
<td></td>
</tr>
<tr>
<td>Spiders, Mud dabbers Pest Control</td>
<td>A</td>
<td>Monthly</td>
<td></td>
</tr>
<tr>
<td>Basic landscaping</td>
<td>A</td>
<td>Weekly</td>
<td></td>
</tr>
<tr>
<td>Masonry</td>
<td></td>
<td></td>
<td>6, 2</td>
</tr>
<tr>
<td>Cleaning-chimney and porch</td>
<td>A</td>
<td>Annually</td>
<td></td>
</tr>
<tr>
<td>Repointing-chimney and porch</td>
<td>B</td>
<td>I-Annually</td>
<td></td>
</tr>
<tr>
<td>Reconstruction front wall</td>
<td>C</td>
<td>I-Annually</td>
<td></td>
</tr>
<tr>
<td>Concrete/Masonry Interaction Study</td>
<td>C</td>
<td>I-Annually</td>
<td></td>
</tr>
<tr>
<td>Tie Back Chimney</td>
<td>A</td>
<td>I-Annually</td>
<td></td>
</tr>
<tr>
<td>Soils Investigation</td>
<td>C</td>
<td>I-Annually</td>
<td></td>
</tr>
<tr>
<td>Siding</td>
<td></td>
<td></td>
<td>6, 8, 16</td>
</tr>
<tr>
<td>Cleaning</td>
<td>A</td>
<td>Monthly</td>
<td></td>
</tr>
<tr>
<td>Removal of layers/inspection base layer</td>
<td>C</td>
<td>I-Annually</td>
<td></td>
</tr>
<tr>
<td>Resealing</td>
<td>C</td>
<td>I-Annually</td>
<td></td>
</tr>
</tbody>
</table>
Action Item

<table>
<thead>
<tr>
<th>Action Item</th>
<th>Urgency</th>
<th>Frequency</th>
<th>NPS Brief</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porch</td>
<td></td>
<td></td>
<td>6, 45</td>
</tr>
<tr>
<td>Clean and Repaint Exposed Wood</td>
<td>A</td>
<td>Annually</td>
<td></td>
</tr>
<tr>
<td>Clean and Repaint Columns</td>
<td>A</td>
<td>I-Annually</td>
<td></td>
</tr>
<tr>
<td>Monitor base decay after plants removed</td>
<td>A</td>
<td>I-Annually</td>
<td></td>
</tr>
</tbody>
</table>

Urgency: A=Immediate, B=Short Term (within 1-5 years), C=Long Term (5 years or more)

Frequency: Daily, Weekly, Monthly, Annually. I=Inspection

LIST OF INCLUDED SECRETARY OF INTERIOR PRESERVATION BRIEFS

2. Repointing Mortar Joints in Historic Masonry Buildings
4. Roofing for Historic Buildings
6. Dangers of Abrasive Cleaning to Historic Buildings
9. The Repair of Historic Wood Windows
10. Exterior Paint Problems on Historic Woodwork
16. The Use of Substitute Materials on Historic Building Exteriors
18. Rehabilitating Interiors in Historic Buildings—Identifying Character-Defining Elements
24. Heating, Ventilating, and Cooling Historic Buildings: Problems and Recommended Approaches
31. Mothballing Historic Buildings
39. Holding the Line: Controlling Unwanted Moisture in Historic Buildings
45. Preserving Historic Wood Porches
47. Maintaining the Exterior of Small and Medium Size Historic Buildings

RECOMMENDATIONS FOR REHABILITATION TREATMENT

Rehabilitation is defined by the Secretary of the Interior as “the act or process of making possible a compatible use for a property through repair, alterations, and additions while preserving those portions or features which convey its historical, cultural, or architectural values.”

After following the aforementioned recommendation and treatment plans to arrest current deterioration mechanisms for the preservation of the Moore house, the following recommendations may be followed in the future to work towards a complete rehabilitation of the house. Rehabilitation by a future preservation and rehabilitation minded owner may lead to a variety of potential reuses for the Moore House. The following is a list of recommended treatments:

I. Landscape
 a. Repair brick retaining wall on southwestern corner and entrance steps
 b. Consult an arborist to inventory and date historic trees based on arborist’s inspection
 c. Repair/re-erect fence on the western edge of property
 d. Establish area for site visitor parking with least disruption to the front views and historic site
 e. Remove gravel parking lots and debris immediately adjacent to the house.
 f. Commission a Cultural Landscape Report to determine the historical plant life and terrain
 g. Remove gravel parking lots and debris immediately adjacent to the house
 h. Commission and archaeologist to inspect the mound areas and well for historic materials
 i. Repair brick retaining wall on southwestern corner and entrance steps.

II. Exterior
 a. Foundation
 i. Remove infill CMU and Portland cement patches and re-establish pier supports or infill to protect from wildlife.
 ii. Rebuild heavily deteriorated brick piers.
 iii. Repoint bricks with appropriate mortar.
 iv. Remove previous ductwork from the crawl space.
 v. Ensure that repairs to the foundational air ventilation systems are maintained
 vi. Maintain drainage system.
 vii. Inspect foundation for deterioration not detectable through visual observation
 viii. Treat entire perimeter for termites and powder post beetles.
 ix. Replace or add supplemental supports for failed floor joists and beams.
 x. Stabilize splitting framing members with wood epoxies or banding based on degree of splintering
 xi. Commission a structural engineer to access the foundation and the above mentioned repair methods for structural members.
 b. Facades
 i. Remove vinyl and asbestos siding.
 ii. Replace missing siding with appropriate material.
 iii. Paint and seal historic wood appropriately.
 iv. Repair windows and frames.
 v. Repair bore holes resulting from the application of plywood.
 c. Porch
 i. Re-point brick with appropriate mortar.
 ii. Cut control joints in the concrete slab at projections for the stairs.
 iii. Strip and repaint wood elements.
 iv. Maintain flashing at the roof.
d. Roof
 i. Clean, repair, and install gutters with downspouts and splashguards.
 ii. Install flashing at all joints in the roof.
 iii. Install chimney crickets at intersections of internal chimneys and metal roofing
 iv. Maintain humidity control or ventilation system in the attic.
 v. Map soft spots for determining potential structural consultation.
 vi. Fill all holes with appropriate historic material or cover with a fine mesh wire

e. Chimneys
 i. Conduct a structural review and tie back the north chimney.
 ii. Repoint bricks with appropriate mortar.
 iii. Maintain cap/covering for chimney openings.
 iv. Remove all surrounding vegetation to allow for sunlight and air circulation

III. Interior
 a. Basement
 i. Consult a structural engineer to determine the integrity of the house, including the timber joist and brick/stone piers.
 ii. Repair and stabilize deteriorating piers.
 iii. Reinforce floor joists as needed.
 iv. Continue brick or concrete masonry unit walls around dugout areas of the dirt foundation.
 v. Consult with a pest removal specialist to ensure there is no longer an
 vi. Spot repair historic timbers as needed to save historic materials from infestation of termites or powder post beetles in order to prevent further damage
 vii. Remove unnecessary wiring, piping, nails, and duct work.
 viii. Confirm that sump pump has power and is turned on.
 b. First Floor
 i. Repair and preserve historic wood flooring when possible; replace with in kind material as needed.
 ii. Catalog and document floorboards in each room.
 iii. Remove drywall from walls and ceilings to reach the historic layers underneath.
 iv. Remove beams used for previously installed drop ceiling (Room 101).
 v. Repair water damage to wood walls (Room 102, 104, 105, 107).
 vi. Repair water damage to wood ceiling (Room 102, 104, 105, 107).
 vii. Replace non-historic window with an appropriate window to match the rest of the house (Room 102).
 viii. Remove drywall from the fireplace (Room 103).
 ix. Assess the condition of the fireplace to determine if it is functional (Room 103).
 x. Remove boards covering window (Room 105).
xi. Replace faulty plumbing (Room 105).

xii. Remove historically inappropriate metal framing from the historic window (Room 107).

xiii. Remove Portland cement (Room 108) and replace with historically appropriate material.

c. Second Floor

i. Remove peeling and deteriorating paint by least abrasive means possible.

ii. Repair ceiling as needed.

iii. Repair drywall as needed.

iv. Repaint the door leading to the porch.

v. Remove previously installed carpet tacks in wood floors (Room 204).

vi. Secure external doors, windows and any other opening to reduce the impact caused by excessive humidity.

vii. Install humidity monitoring device and dehumidifier.

viii. Secure possible entry spaces for animals.

ix. Consult with a specialist to ensure that an animal infestation no longer exists.

x. Replace missing flooring and walls (Room 203).

d. Attic

i. Repair holes in the roof.

ii. Replace roof decking in areas where water damage has occurred.

iii. Repair or replace rafters on the northern end of the attic that have incurred significant water damage.

iv. Remove outdated insulation and replace with new insulation.

v. Remove debris.

vi. Consult with a specialist to ensure that an animal infestation no longer exists.

vii. Install attic ladder to improve access.

viii. Install a few sheets of plywood or use an alternative method to increase mobility within the attic.

IV. Systems

a. Consult an electrician.

b. Install a new, code compliant electrical system, including lightning protection and wiring for fire alarms.

c. Replace existing features such as outlets and switches.

d. Remove all old wiring, especially exposed wires in close proximity to wood.

e. Consult an HVAC technician.

f. Install a new HVAC system- ductwork should be run in the crawlspace and attic.

g. Install new insulation in the attic and crawl space.

h. Contact the gas company and a plumber.
i. Install new gas system, including new gas pipes and fittings.

j. Install new plumbing system, including new drain lines, water lines and sewage.