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A continuous service innovation such as Cloud Computing is highly attractive in the business-to-business 

world because it brings the service provider both billions of dollars in profits and superior competitive 

advantage. The success of such an innovation is strongly tied to a consumer’s adoption decision. When 

dealing with a continuous service innovation, the consumer’s decision process becomes complicated. Not 

only do consumers need to consider two different decisions of both whether to adopt and how long to adopt 

(contract length), but also the increasing trend of the service-related technological improvements invokes a 

forward-looking behavior in consumer’s decision process. Moreover, consumers have to balance the benefits 

and costs of adoption when evaluating decision alternatives. Consumer adoption decisions come with the 

desire to have the latest technology and the fear of the adopted technology becoming obsolete. Non-adoption 

prevents consumers from being locked-in by the service provider, but buying that technology may be costly. 

Being bound to a longer contract forfeits the opportunity to capitalize on the technological revolution. 

Frequently signing shorter contracts increases the non-physical efforts such as learning, training and 

negotiating costs. Targeting the right consumers at the right time with the right service offer in the business-

to-business context requires an efficient strategy of sales resource allocation. This is a “mission impossible” 

for service providers if they do not know how consumers make decisions regarding service innovation. In 

order to guide the resource allocation decisions, we propose a complex model that integrates the structural, 

dynamic, and learning approaches to understand the consumer’s decision process on both whether or not to 

adopt, and how long to adopt a continuously updating service innovation in a B2B context.   
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Modeling the Dynamic Decision of a Contractual Adoption of  

a Continuous Innovation in B2B Market  

 

Abstract 

A continuous service innovation such as Cloud Computing is highly attractive in the 

business-to-business world because it brings the service provider both billions of dollars in profits 

and superior competitive advantage. The success of such an innovation is strongly tied to a 

consumer’s adoption decision. When dealing with a continuous service innovation, the consumer’s 

decision process becomes complicated. Not only do consumers need to consider two different 

decisions of both whether to adopt and how long to adopt (contract length), but also the increasing 

trend of the service-related technological improvements invokes a forward-looking behavior in 

consumer’s decision process. Moreover, consumers have to balance the benefits and costs of 

adoption when evaluating decision alternatives. Consumer adoption decisions come with the desire 

to have the latest technology and the fear of the adopted technology becoming obsolete. Non-

adoption prevents consumers from being locked-in by the service provider, but buying that 

technology may be costly. Being bound to a longer contract forfeits the opportunity to capitalize on 

the technological revolution. Frequently signing shorter contracts increases the non-physical efforts 

such as learning, training and negotiating costs. Targeting the right consumers at the right time with 

the right service offer in the business-to-business context requires an efficient strategy of sales 

resource allocation. This is a “mission impossible” for service providers if they do not know how 

consumers make decisions regarding service innovation. In order to guide the resource allocation 

decisions, we propose a complex model that integrates the structural, dynamic, and learning 

approaches to understand the consumer’s decision process on both whether or not to adopt, and how 

long to adopt a continuously updating service innovation in a B2B context.   
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Keywords: continuous innovation, service innovation, B2B hi-tech markets, dynamic 

programming, bellman equation, learning process, structural model.   

 

Introduction 

We are living in an era that is continuously innovating.  According to the famous Moore’s 

law(Moore, 1965), most of the high-tech related devices, such as CPU speed, hardware size, and 

memory capacity etc, shows exponential improvement rate over year.  In recent decades, the speed 

of innovation in the hi-tech markets creates turbulence in not only people’s everyday life but also in 

the global business environment.  In people’s everyday life, cell phones significantly improve the 

way that people communicate with each other and internet dramatically change people’s lives which 

were imaged before.  In today’s business world, enterprises find few opportunities to grow or even 

survive without applying the most advanced technology to their own networks. The inevitable 

consequence of rapid innovation in the high-tech market is that not only does the IT person’s 

burden becomes heavier, but also the resources that firms have to spend on the IT department grows 

significantly.  

Under such situation, cloud computing service walks into the B2B high-tech service market.   

Cloud computing is a high-tech delivery service provided through internet aiming at transferring the 

traditional IT burden to the service provider thus saving the business customers’ internal IT cost.  

Cloud computing targets at including all potential IT services such as data processing and storage, 

employee profile management, software and hardware development, information integration, 

communication/networking security etc.  Because of the emerging of the cloud computing services, 

whatever the internal IT department is doing, the B2B customers now have the option to shift to 

service provider for the 3 potential reasons:  the specific feature of expertise; the less cost involved 
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and relatively easier and quicker to scale up and down.  Therefore, there is a lot of incentive to go 

through the adoption.   

Although the cloud concept was introduced in 1960s, it becomes realization and popular 

only around late 2000s after the internet become prevalent.   From the launch to present, cloud 

service shows remarkable market potential.  Announced by IBM in 2011, more than 80% of the 

Fortune 500 companies become their cloud adopters, which include multiple industries such as 

airlines, cars, financing, insurance and supermarket (Tomasco, 2011).    And the global cloud 

market size is predicted to reach 19.5 Billion by 2016 (Columbus, 2013).   

In order to catch up with the fast changing business environment, many firms turn to 

purchase high-tech services from pioneering high-tech providers, which makes a continuous service 

innovation highly attractive in the business-to-business world because it brings the service providers 

both billions of dollars in profits and superior competitive advantage.   Moreover, although cloud 

computing is a promising and attractive service in the B2B high-tech market, certain concerns, such 

as security, capability, privacy and integrity still exists among cloud adopters.   Most of the 

concerns, fundamentally, are centered on the technological level of the cloud service.  Therefore, 

the technology improvement is always the key feature to alleviate customer’s concern, for example, 

increasing the data processing speed and storage size, introduce new methods to improve the 

security of the communication environment, build new data center to enhance the global connection 

etc.   All those improvement, we define as continuous innovation or “sustained improvement” in our 

paper.   

There is no doubt that the success of such a continuous innovation is strongly tied to a 

consumer’s adoption decision.  In such a unique and novelty hi-tech market, some potential 

problems require answers.  First is, if the technology level keeps on updating, how the service 

provider should manage such continuous innovation?   Specifically, should the service providers 
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gather all the improvements and publicize them together to alert customers, or should the service 

providers gradually announce each step of their innovation progress to remind customers?  Second 

is, how would the evolved technology impact B2B customers’ decision?  In order to answer these 

questions, we will have to understand customers’ behaviors and decision process, which is not easy 

task because:  

1) When dealing with a continuous service innovation, the consumer’s decision process 

becomes complicated. Not only do consumers need to consider whether to adopt and how long to 

adopt (contract length), but also the increasing trend of the service-related technological 

improvements invokes a forward-looking behavior in the consumer’s decision process.  

2) Consumers have to balance the benefits and costs when evaluating the decision 

alternatives. Consumer adoption decisions come with the desire of having the latest technology and 

the fear of the adopted technology becoming obsolete. Non-adoption prevents consumers from 

being locked-in by the service provider, but buying that technology may be costly. When they are 

bound to a longer contract, they forfeit the opportunity to capitalize on the technological revolution. 

Frequently signing shorter contracts increases the non-physical efforts such as learning, training and 

negotiating costs.  

Therefore, targeting the right consumers at the right time with the right service offer in the 

business-to-business context requires an efficient strategy of sales resource allocation. This is a 

“mission impossible” for service providers if they do not know how consumers make decisions 

regarding service innovation. In order to guide the resource allocation decisions, we propose a 

complex model that integrates the structural, dynamic, and learning approaches to understand the 

consumer’s decision process on both whether or not to adopt, and how long to adopt a continuously 

updating service innovation in a B2B context.  Our study offers both modeling contribution and 

substantive insights into an emerging, promising and continuously updating high-tech service B2B 
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market.  Our major modeling contribution is; different from adding covariates in the modeling 

framework; we structurally model customer decision process in a continuous innovation hi-tech 

B2B market.  Specifically,  

1) We simultaneously model customer’s two layer decision:  whether and how long to buy.  

To the best of our knowledge, this is the first study to integrate both learning and forward-looking 

in the customer’s two layer decision, especially the continuous decision of how long to buy.   

2) Using the structural model approach, we are able to quantify the underlying relationship 

between customer’s decision and technology evolution.   And we evaluate the impacts of 

technology evolution on customer’s decision.  Specifically, we are able evaluate how the two states 

of technology evolution could separately influence customer’s decision process:  one is overall 

technology level; the other is the technology evolution pace.  

3) Finally we integrate both contract length and technology evolution into the dynamic 

programming process to structurally explain customer’s dynamic decision process.   

 From substantive perspective, our model parameter estimation and policy simulation are 

very valuable for aiding firm’s decision making.  Based on our results, firms can know under 

different scenario, what strategy will be better choice.  Our findings suggest that:  

1) If a service provider expected the customers to try and purchase their new service, it will 

be better for the service provider to either select evenly distributed but relatively smaller steps of 

technology improvement or reduce the effort of signing a contract by offering customers some 

additional help.  This way, customers show higher purchase intention although the contract length 

they signed is relatively shorter.   

2) On the other hand, if a service provider is more willing to reap better profit from the 

customers, the better choice will be announcing less frequently but more influential technology 

improvement or providing relatively rigid policy for customers to make purchase.  This way, 
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although customer’s purchase intention is relatively low, customers tend more likely to sign a 

longer contract once make the purchase decision.   

3) Since we also provide quantitatively evaluation on the customer’s decision changes under 

different scenario, firms can combine with their internal profit function with our result to design the 

optimal strategy.   

 The rest of the article is organized as follows. We summarize the prior research on 

customer’s forward-looking behaviors.  We both discuss the development of modeling approach on 

forward-looking dynamics model and point out the research gap in the existing research that our 

study can contribute to.  Then we propose our structural modeling approach on customer’s decision 

process in the continuous innovation hi-tech market.  Specifically, we explain how we integrate 

both the customer’s two-layer decisions and technology evolution in the dynamic programming to 

account for consumer’s forward looking behavior, which is one of our major modeling contribution.  

Then we specify the modeling estimation process including both value function simulation and 

likelihood estimation.  Since we don’t have close-form results, our modeling estimation process is 

based on the empirical solution.  Following this, we will describe the data set we used, then discuss 

our model estimation result and policy simulation.  Next, we conclude with our modeling 

contribution and managerial implication.   Finally, we provide the study limitation and future 

research directions.   

 

Literature Review 

 Our study belongs to the research stream of modeling the consumer’s dynamic decision 

process in the high technology service market by taking into account forward looking behavior. The 

research stream began with the study of Guadagni and Little (1983) who utilized a multinomial logit 

approach to capture a consumer’s choice between alternative brands.  The decision process in the 



7 

 

study is referred to as a static decision as compared to forward looking decisions because the it 

assumes that the consumers make choice decisions based only on their current utility.   The 

fundamental modeling approach of the study is still rely on adding major explanatory variables to 

predict consumer’s brand choice on consumer package goods.  Therefore, this model can capture 

the probability of choice as a function of alternative attributes, such as price, promotion, and 

consumer loyalty etc. Although the study still relies on the current utility to model a consumer’s 

choices, it lays the foundation for future dynamic modeling approaches.  And the modeling idea of 

keeping the variable coefficients the same across different brand sizes shed light on the concept of 

modern structural model.   

 Recent studies pertain to the reality of the assumption behind the static modeling approach 

because consumers usually not only consider the current utility but also take into account the 

expectation on future utilities when making purchase decisions. For example, consumers can hold 

their current purchase decision when expecting an upcoming promotion season in order to get a 

better price cut. In this situation, consumers will show forward looking behaviors in their decision 

process. Moreover, consumers can learn from different sources of information or experiences and 

update their beliefs about the products/services, which in turn, will also impact their decision 

process.  

 The idea of “forward-looking behavior” was firstly appeared in a “regenerative optimal 

stopping model” introduced by Rust’s study (Rust, 1987).  The so-called “dynamic programming” 

approach was applied to determine an optimal decision for bus engine replacement.  The 

fundamental concept of the “optimal stopping rule” is that, the decision of whether or not should the 

Bus maintenance replaces the bus engine at a certain time period is determined by two forces: one is 

the required maintenance cost; the other is the unexpected engine failure in the future.  

Consequently, to optimize the current maintenance decision, we will have to integrate the future 
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discounted value into the current decision process, which is typically the “forward-looking” 

behavior.  Similar idea and the “optimal stopping” model is applied to the new and used car market 

(Schiraldi, 2011) to quantify the trade-in effect on consumer’s decision process.   

 Erdem and Keane (1996) demonstrated a structural modeling approach that embeds both 

forward looking dynamics and the Bayesian learning process. Different from the static model which 

only relates consumer’s decision with current utility maximization, the “forward-looking” dynamic 

model considers that consumer’s choice is determined by the maximization of the expected utility 

over a time zone. Furthermore, through the Bayesian learning process, the model can capture the 

influences of a consumer’s past usage experience and advertising exposure on the consumer’s 

choice between alternative brands. Through the combination of forward-looking dynamics and the 

Bayesian learning process, the model can evaluate the impact of a firm’s marketing strategy on the 

consumer’s brand choices in both the short and long run.   In the paper, the authors explicitly define 

the “structure” model which aims at deriving the underlying relationship between consumer’s 

choice and the marketing attributes based on the specification of consumer’s purchase behaviors.  

Using structural modeling approach, pointed out by the authors, we can drive reliable policy 

evaluation because the parameters in the structural model are considered as the intrinsic preference 

of the consumers thus the parameter estimation doesn’t vary with the policy change.    Therefore, 

Erdem and Keane (1996)’s paper serves as the milestone to combine forward looking behavior and 

learning process to structurally model customer’s decision process.   

 Following the distinct study in 1996, Erdem and Keane spent efforts on enrich the dynamic 

learning model framework.  For example, the distinct study only considered the brand choice as the 

decision variable (Erdem and Keane, 1996).  To improve the decision complexity, they integrated 

both brand and quantity choice into the dynamic model and aimed at finding the effect of price 

fluctuation on the consumer’s decision process (Erdem, 2003).  Although this paper didn’t put the 
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quantity as a continuous decision but divide it into discrete level of choices in the model, it signaled 

to us the idea that the dynamic model is not limited to the discrete choice but applicable to the 

continuous decision as well.  Moreover, in the distinct study, consumer’s utility was defined as a 

function of price and consumer experienced attributes (e.g. quality) which was recovered by a 

normal distribution (Erdem and Keane, 1996).  To enrich both the utility function and the consumer 

learning process, Erdem et al. introduced both price and advertisement to help quantifying the 

consumer experienced product quality (Erdem et al., 2008).  Moreover, when dealing with high-tech 

product brand choice and if we can obtain data related to consumer’s information search, we are 

able to develop the “active learning” model which can quantify: to what extent that consumer gather 

the information can actually invoke an actual purchase decision (Erdem et al., 2005).   

 Using similar idea and modeling approach as the distinct study (Erdem and Keane, 1996), 

Ackerberg (2001, 2003) developed a dynamic learning model using data from consumer package 

goods (e.g. Yogurt).  Different from Erdem and Keane’s (1996) study that only exam the 

“informative” effect of advertising on consumer’s decision process, this study separately evaluate 

three effects of advertising:  informative, prestige and image. Although Ackerberg’s study had 

limited modeling contribution, it pointed out an important feature of dynamic model which is 

capable of separately quantifying the multi-dimensional effects of one attribute on consumer’s 

decision process.    

 Following the promising study, modeling the consumer’s forward-looking dynamic decision 

process under different marketing contexts becomes prevalent. Most studies focus on modeling the 

price-initiated forward-looking behaviors in a B2C consumer’s binary decision process, e.g., 

whether the consumer will buy or not buy a product.  

 Gönül and Srinivasan (1996) applied structural dynamic programming approach to model 

whether consumers will adjust their purchasing behaviors on consumer package good (e.g. 
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disposable diaper product) when they have expectation on future product promotions.  The central 

idea of the model setup is that, consumer’s forward-looking behavior is triggered by the potential 

cost of the product.  Therefore, as rational consumers, in order to maximize their expected utility of 

purchase, they will have to consider the future cost in the promotion season.  Although 

acknowledge the advantages of structural forward-looking dynamic model, the authors (Gönül and 

Srinivasan, 1996) also pointed out a potential limitation of the model – computation cost, which can 

significantly limit the state variables that we can include in the model.     

 Other than consumer package good, many structural dynamic models were built on 

consumer durable goods, especially the high-tech products.  The reason is that the rapid 

development of product related features, such as product quality, and the obviously declined price 

of the existing products serve as the perfect triggers of consumer’s forward looking behavior.  For 

example, Song and Chintagunta (2003) investigated the interesting phenomena in Camera (e.g. 

high-tech durable good) market that the price of the new camera in the market continuously drops 

over time.  The price declination invokes consumer’s forward-looking behavior, which affects their 

current decisions.  Reflected in the model, consumers will adjust their actual purchase time in order 

to maximize the expectation of both current utility and future discounted utilities.  Because of the 

forward-looking behaviors, the present variation of the price of the product can not only influence 

consumer’s current purchases but also alter their future decisions (Song and Chintagunta, 2003).   

 Using similar idea that price decline over time triggers customer’s forward-looking 

behavior, Sriram et.al (2010) extended the model in Song and Chintagunta’s study (2003)  into 

individual level data from three categories of high-tech durable products.  The major finding of the 

study is that, consumer’s forward-looking behaviors can be interactional.  Consequently, the price 

decline of one product category can change consumer’s purchasing behavior not only within the 

category but also across the categories.   
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  Ryan and Tucker’s study (2012) also focus on using dynamic model to understand 

individual-level consumer’s decision process on adopting high-tech product (e.g. video-calling 

technology).  The interesting part of the study is that, it brings in the idea that the network evolution 

can play an important role in determining the consumer’s dynamic decision process.  Therefore, 

consumer’s forward-looking behavior is no longer the “patent” of price or cost of the product, but 

can be closely related to the evolution of the technology related to the product.   

 Although dynamic model is a promising modeling approach, its modeling framework is 

more complicated and its estimation process requires more computing burden than the static 

models.  Therefore, to dispel the suspects on the necessity of using dynamic model over static 

model to understand consumer’s decision, many studies spent efforts on showing the advantages 

and benefits of dynamic model.  For example, based on still the high-tech durable product (e.g. 

digital camcorder), Gowrisankaran and Rysman (2012) integrate both product quality elevation and 

product price decline in modeling consumer’s dynamic demand.  Other than showing the estimation 

and analysis of consumer’s dynamic preference toward the product, the authors also confirmed that 

the dynamic model yield more realistic results than the static approach.  Hendel and Nevo (2006) 

also pointed out that, although price cut, such as promotion or deals, usually is a temporary action 

for many products, it can create a long-term effect on consumers’ decision.  The estimation of the 

long-term effect can be significantly biased if we omit the dynamic behavior features in our 

modeling approach (Hendel and Nevo, 2006).   Using forward-looking dynamic model to quantify 

consumer’s brand switch behavior, Sun et al. (2003) also found that dynamic model can provide 

unbiased estimation on the brand-switch elasticity thus has better model-fit than the reduced-form 

model.  And the biased estimation issue in the reduced-form model can’t be solved by adding 

covariates.  Moreover, in another study, Sun claimed that the forward-looking dynamic model is 

able to identify the behavioral link between the promotion and consumer’s consumption decision 
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even though the decision variable is endogenous (Sun, 2005).  Using data from computer printer 

market, Melnikov (2012) built logit-based discrete choice model integrating both forward-looking 

dynamics and endogenous prices.  His study not long empirically confirmed the existence of 

consumer’s forward-looking behaviors, but also showed the better performance of dynamic model 

on both forecasting consumer’s demand and measuring the benefits of new products than the static 

model.   

 In the high-tech product market, structural dynamic model can be applied to not only new 

product adoption but also other type of purchasing pattern.  For example, Gordon (2009) addressed 

that, in product replacement (e.g. PC processor) purchases, consumer’s dynamic decision process 

can be trigger by the obsolescence status of the product due to both the quality elevation and price 

reduction.  Lewis (2004) utilized the discrete-choice dynamic model using data from online grocery 

and drug items to solve customer’s sequential choices when facing loyalty program.  In the paper, 

other than the price-related marketing mix attributes, the author claimed that the loyalty program 

can also incite customer’s forward-looking behaviors because the benefits of the program are 

determined by the overall spending over time.   

 Different from studying consumer package goods or durable goods, Yang and Ching (2013) 

built a structural dynamic programming model to understand consumer’s decision process on 

adopting and using ATM cards.  Although the authors still followed the basic concept of 

establishing forward-looking structural model, they addressed an interesting result of identifying the 

impact of consumer’s age on their forward-looking zones.  The idea is that, compared with younger 

people, elder people have relatively shorter forward-looking zones, thus they receive lesser 

expected utility from adopting a new product which requires a certain level of adoption cost, such as 

learning cost.  Consequently, elder people can be more reluctant to learn and adopt the product.  

Although this study still focus on the discrete choice of whether to adopt or use the ATM card 
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which limit its modeling contribution, the idea of the length of forward-looking zones shed light on 

our study to integrate continuous decision into the forward-looking structural model.   

 The dynamic modeling approach not only can quantify the direct effects of attributes, such 

as price, promotion, quantify and advertising etc., on the consumer decision process, but also is able 

to identify the indirect effects.  Gowrisankaran et al. (2011) applied the dynamic model on data 

from both DVD player and DVD titles markets and found that, consumers with forward-looking 

behaviors may form expectation on the future benefits in the DVD title market thus make multiple 

purchase on DVD players over time.  This study pointed out a research direction of applying the 

dynamic model in complimentary product markets to understand consumers’ decision process in 

both market simultaneously.    

 Forward-looking dynamic model can also be applied to service market.  It is widely 

acknowledged that switching cost is a major consideration when consumers make decisions on the 

service providers.  Using data from different types of the service market, studies also found that, 

switching cost can also influence consumer’s decision process through invoking consumer’s 

forward-looking behaviors.   Using data from cellular service industry, Kim (2006) firstly pointed 

out that switching cost can be a source of consumer’s forward-looking behavior.  Using data from 

Medicare service market, Nosal (2011) addressed that switching cost significantly influence 

consumers’ decision between advantage plan and original plan, and the amount of people choosing 

advantage plan could be tripled if without the switching cost.  Shcherbakov (2009) specifically 

provided an estimation of switching costs of $109 and $186 for cable and satellite respectively in 

television service market.  Although our study focus was not the consumer’s switching behaviors, 

our study context belongs to the service market and the cost of signing a service contract is an 

important parameter that we need to estimate.   The findings from these papers suggest that the 

switching cost in the service market, although may not be fully observable, can be identified and 
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estimated in the dynamic model.  Therefore, bringing the cost of signing a service contract in our 

model setup (described later) is reasonable, convincible and estimable.   

 Other than understanding the dynamic decision process purely from consumer’s perspective, 

using data from video-game market, Nair (2007) developed a dynamic modeling from both 

consumer and firm’s perspective.  From consumer’s perspective, consumers form a forward-looking 

behaviors because of the of the price drop.  From the firm’s perspective, firms are also forward-

looking in order to consider consumer’s dynamic behaviors when formulating the optimal price 

strategy.   The findings in the study suggests that, understanding consumer’s forward looking 

behaviors can effectively help firm to design optimal pricing strategy thus better target the right 

consumers at the right time with the right price.  In our study, we only focus on studying 

consumer’s decision process from consumer’s perspective.  Therefore, we omit reviewing the 

literature of dynamic models from firms’ perspective which belongs to another stream of modeling 

stories.   

 

Study Motivation 

Although our study stems from the research stream of modeling consumer’s decision 

process, our study possesses many unique characteristics in not only the modeling approaches but 

also the application contexts (Table 1):    

1) We propose an improved and holistic modeling framework for a service innovation in the 

B2B hi-tech market. Being in the rapid developing high-tech market, a B2B consumer’s concern 

will not only come from the cost of adopting the service but also the level and the pace of 

continuously developing technology that they can receive from the service provider.  

2) As we pointed out previously, in this high-tech service market, there is always a contact 

associated with each individual purchase.  This aspect suggests that, customer’s adoption decision 
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has two layers, one is a discrete decision – whether to adopt and the other is a continuous decision 

which is how much to adopt, e.g. contract length. In our study, we jointly model two different 

decisions, e.g. a binary decision of whether to adopt and a continuous decision of how long to adopt 

(contract length). Although considering multiple angles of consumer decision is very common in 

static modeling approach (Chitaguanta 1993), up to now, binary decisions still dominate the forward 

looking dynamic model built on consumer’s perspective.  Moreover, there are some distinct features 

in the market which makes the customer’s decision process unique in our study.   

3) The first distinct feature in our study context is the physical cost of adopting the service, 

which can be considered as the unit price of the service.  From the previous literature review, we 

know that price is a powerful factor that invokes a consumer’s forward looking behavior that 

attracts most researchers’ interests.  In the general high-tech markets, such as camera, computer, 

printer, video-game etc, the price keeps on decreasing after the first release.  This is one reason that 

most studies using price as the trigger of customer’s forward looking behaviors.   However, we raise 

another important factor of technology evolution in our study. Through iterative discussion with the 

managers, we realize that in our context, one distinct feature is that the physical cost of adopting the 

service is primarily associated with the consumer’s need and will not show systematic changes 

within years, but the service-associated technology level keeps on updating rapidly.  This distinct 

feature suggests that the unit price of the service is relatively consistent but the technology keep on 

updating.  Therefore, customer still form forward looking behaviors, however, such forward looking 

is not triggered by price change but by the technology evolution.   In another word, unlike the 

common contexts, the uniqueness of my study is that, the physical cost of adopting the service is not 

critically important in determining consumer’s decision process, especially the forward-looking 

behavior.  In fact, such a phenomenon is not novel in the field, especially in a fast developing high-

tech market.   For example, like I-pad, its original launch price is always the same for all generation 
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but the features keep on updating.  Storage size increased exponentially from MB to GB to TB 

within a few years with the price being closer between newest models. With a similar price, 

consumers can always expect a better version coming in the near future.   

4) Another distinct factor in our study context is non-physical cost, which we can in general 

define it as “contract fee”.  As we all know that The adoption decision in the B2B world is not an 

easy process but associated with remarkable non-physical efforts, such as learning the technique, 

training employees, cooperating multiple internal departments, negotiating with service providers 

and sending budget application to top manager for approval etc..  All these non-physical efforts, 

from modeling perspective, is latent to the researcher but will also influence consumer’s decision.   

It is also worth mentioning that the non-physical cost is a one-time fee associated with each 

contract.  Each time the B2B consumers decide to adopt the service and sign contract, they will 

have to spend the “contract fee”.  However, once the decision is made and the contract is signed, 

within the contract length, there is no additional effort of “contract fee” required.  Obviously, 

because of this one-time contract fee, the business consumers are not willing to frequently sign the 

contract.  The idea is that, if the consumers have already spent greater energy and resources to 

finalize a contract, they will intend to sign a relatively longer contract to avoid another input.    

5) The last is the technology keeps on updating in the market as we illustrated previously.  

Moreover, once the customers make the decision of purchase, they will be bonded with the on-site 

technology level at the time of purchase.  Clearly, from the perspective of technology keep on 

updating, the consumers should be willing to sign the contract frequently, e.g. sign a shorter 

contract, because they can capture the technology evolution more effectively.   

Now, we can see that there exists a decision conflict in customer’s decision process.  To 

save the efforts on “contract fee”, consumers tends more likely to sign longer contract.  However, to 

better capture technology updating, consumers should be more inclined toward shorter contract.  
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Consequently, both too long and too short are not good.  Customers will have to go through a 

“value maximization” process to select an optimal decision for the contract length decision.   In 

order to quantify this “value maximization” process, we firstly need clarify consumer’s behaviors in 

their decision process.    

Because of the continuous technology innovation in the market, consumers will show two 

kinds of behaviors in their decision process.  First, customer will be bonded with the on-site 

technology level once the contract is signed.  This phenomenon suggests that customer’s current 

decision will not only influence the current but also the future benefit associated with the purchase 

decision.  Consequently, customers will have to consider both current utility and discounted future 

utility to make an optimal current adoption decision.  To achieve this goal, consumers will have to 

form future expectation on the technology evolution according to the information set that is 

available to them because they are not certain about the future technology level influencing the 

future potential utility.   From modeling perspective, this is a typical forward looking behavior.   

Second, because of the technology updating, customer will have uncertainty about the speed 

of the technology evolution in their decision process.  Therefore, consumers will form and update 

their belief about the future technology evolution speed.  We assume customers will update their 

belief on future tech evolution based on the historical information.  From modeling perspective, we 

define this as a learning behavior.  In our model, we want to quantify both behaviors.   

Moreover, considering the remarkable influence of technology evolution on customer’s 

behaviors, we also want to quantify the effect of tech evolution on customer decision.   Learned 

from the previous literature (Erdem and Keane, 1996;  Ackerberg 2001 & 2003), we are able to 

identify multi-dimensional effects of one attribute on consumer’s decision process in the forward-

looking dynamic model.  In our study, we define that the technology evolution will create two 

factors influencing consumers’ decision process:  
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The first factor is the overall technology capability level which will encourage buyers to 

purchase.   This means that the overall technology capability level will only influence consumers’ 

decision of whether to buy or not.  The idea is that, only if the technology level meet or exceed 

customer’s needs, the adoption decision will be invoked.    The second is the speed of technology 

evolution which we define as “technology evolution pace”.   The technology evolution pace will 

produce two effects: one is postponing customers’ adoption decision; the other is to encourage a 

short term contract.  This suggests that the technology evolution pace will influence consumers’ 

both decisions of whether or not to buy and how long to buy, e.g. contract length.  The intuition is 

that, if the customers consider the technology evolution to be very fast and expect a more advanced 

technology to appear in the near future, then the customers may either hold their current adoption 

decision to wait for the future better offer, or at most take a try on the service with a shorter 

contract.   

Based on the previous motivations, we are interested in the following research questions:  

How can we structurally model customer’s decision process on the high-tech service adoption?  In 

this structural model, we want to address two issues in consumer’s decision process:   

1) We want to simultaneously model consumer’s two-fold decisions at each decision time 

point: whether or not to buy and how long to buy, e.g. contract length 

2) We want to evaluate the impacts of technology evolution on customer’s decision.   

There are several reasons that the structural model is the most appropriate modeling 

approach in our study.  The major modeling contributions in our study are also embedded in the 

reasons.   

1) The first reason is that we want to understand the underlying relationship between 

customer’s decision and technology evolution; therefore, we can’t rely on the approach of putting 

co-variates into modeling framework.  Evidences from multiple previous studies show that, 
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especially when forward-looking behavior exists, using the reduced-form model to quantify 

consumer’s decision process can create biased results which can’t be completely alleviated by 

adding co-variates (Hendel and Nevo, 2006;  Sun et al., 2003; Sun, 2005;  Melnikov 2012).  

Discovering the underlying relationship between technology evolution and consumer decision 

process is also the first major modeling contribution in our study.   

2) We will introduce in detail in the model setup section that, we will use dynamic 

programming approach to account for customer’s forward looking behavior.  Specifically, we want 

to integrate both consumer’s contract length decision and the technology evolution (both overall 

technology and technology evolution pace) into the dynamic programming process to structurally 

explain customer’s decision.  In other words, we want to provide if-what answers on the impacts of 

technology on customer’s decision.  This is the second reason that we have to build a structural 

model.  The modeling approach of integrating contribution length and technology evolution into the 

dynamic programming approach serves as another modeling contribution in our study.   

3) The last reason is that, using structural model, we can also do the counterfactual study to 

show, under different scenarios of announcing the technology evolution, how the customer’s 

decision will change.  Recalled that we laid out two potential problems in the market, one is how to 

manage this continuous innovation and the other is how to evaluate impacts of tech evolution on 

customer’s decision.  The two unique contributions in our model setup will help us to solve the 

potential problems.   

In summary, this dissertation offers a significant contribution in two areas: 1) we specify a 

model to include a consumer’s multiple decisions; and 2) we develop a model estimation procedure 

that can provide insights on understanding a consumer’s decision process in the technology 

evolution market by taking into account both forward-looking and learning behavior. 

Insert Table 1 here 
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Modeling Framework 

In the conceptual framework (as shown in Figure 1), we first start with modeling a 

consumer’s current utility at each decision time point. We build the consumer’s current utility as a 

function of the overall technology level.  The current utility addresses the relationship between the 

“whether to adopt” decision and the current overall consumer technology need level has to be 

reached in order to invoke his/her purchase decision.   

Next, we structure the model to account for consumer’s forward looking behavior and 

learning behavior, which are incited by the technology evolution. The relationship between the two 

behaviors and the consumer’s current adoption decision can be illustrated in the following manner. 

First, the continuous technology evolution will encourage consumers to form expectations on the 

future technology updating pace. Second, being in a turbulent environment, consumers will have to 

continuously learn from the existing information related to the technology evolution in order to 

update their beliefs about the technology level. Therefore, both behaviors will impact the 

consumers’ process of determining the future value of what they expect to receive from the evolved 

technology, which in turn, will impact their current purchase decisions. The intuition is that, with a 

greater technology evolution pace, consumers should expect a better value from adopting in the 

future, thus either withdraw their current adoption decision or select a shorter contract to experience 

various aspects of the adopted technology (ie. learn the technology and apply it to the business) and 

decide whether or not continuing with it would be beneficial to the company.   

Insert Figure 1 here 

We propose to operationalize the conceptual framework by integrating three modeling 

approaches: dynamic programming, learning process, and structural modeling paradigm. The 

dynamic programming (DP) approach offers a parsimonious way to solve a sequential decision 

process under uncertainty (Rust, 1994) which allows us to quantify a consumer’s forward looking 
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behavior in a joint-decision model. Different from the static choice models, the DP model suggests 

that the consumer should generate an expected value including the utilities of both current and all 

future decisions to evaluate alternatives. Following the methodology proposed by Rust (1994), we 

will utilize the “Bellman equation” to solve the consumer’s value function. The theoretical 

derivation of the “Bellman equation” takes into account several unique perspectives, which is also a 

novel and representative contribution in our study. 

First, considering both discrete and continuous decisions in the DP model elevates the 

difficulty in both deriving and solving the “Bellman equation.” Second, quantifying a consumer’s 

forward looking behaviors, in our study, requires taking into account the consumer’s learning 

process. The well-documented learning model has been widely applied to capture consumer’s 

beliefs updating (Erdem and Keane 1996).  The traditional learning model (Erdem and Kean, 1996) 

focused on updating consumer’s belief on the mean level while assuming variance of perception to 

be both constant over time and known to the consumer.  Moreover, the traditional learning model 

considered the all information that available to the consumer over time to be equally important to 

the consumers.  Consequently, when time approaches infinity, consumer’s belief becomes a 

constant because consumers have no uncertainty about their belief.   This idea in traditional learning 

model was found to be less realistic in the turbulent market especially product crisis exists (Zhao et 

al., 2011).  To better capture consumer’s learning behavior, Zhao et al. (2011) not only relaxed the 

assumption of constant and known variance of perception, but also introduced an information 

discount factor to account for the diminishing confidence over time in consumers’ belief.  We will 

adopt this more realistic methodology in consumer learning model to capture a consumer’s beliefs 

updating on both the mean level and variance of perception (Zhao et.al 2011). Finally, deriving the 

“Bellman equation” requires the specification of transition probability for state variables which are 

deterministic of consumer’s expected value. Our study includes four state variables originated from 
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the consumer’s future expectation and innate learning process. Not only has the number of state 

variables almost reached the upper limit in the dynamic programming model, but also the majority 

of the state variables are partially latent to the researcher which adds the “Partially Observed 

Markov dynamic model” to our modeling framework (Ricardo et.al 2010).   

We will use a maximum likelihood function for model estimation. Both the latent 

parameters, such as the non-physical effort, and the consumer heterogeneity bring in multiple layers 

of integration in deriving the likelihood function. Moreover, both the Bellman equation and 

Likelihood function have no close-form solution and require iteratively searching for numerical 

solution until convergence.  Basically, in order to empirically solve our model, we will have to do 

two loops of numerical searching:  one is the searching for “value function”; the other is the 

searching for “value function”.  The process of solving “value function” is embedded in the solution 

of “likelihood function”.  This means that: 1) In order to reach the optimal solution of parameter 

estimations, we will have to strategically change the parameter settings and find the associated 

solution of “likelihood” at any given parameter settings.  2) The solution of “value function” 

depends on both state variables and the value of parameters in the model.  Therefore, in order to get 

the result of “likelihood” at any one set of parameter values, we will have to solve “value function” 

through iteration.   Therefore, these two loops of numerical searching are not parallel but two levels 

of nesting.   Other than the two levels of nesting, to get the answer of “likelihood”, we also need to 

solve the stochastic term at a given contract decision which also depends on numeric searching 

because there is no analytical solution between the stochastic term and decision variable.   

It is worth mentioning that our framework is built upon the structural modeling approach. 

The major advantage of structural model is that the parameter estimation is invariant to the firm 

policy (Erdem and Kean 1996), which enables our model to detect a consumer’s innate sensitivity 

to technology evolution.  
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We will estimate our model using data from a global high-tech company who continuously 

invests in developing an innovated high-tech service to its business partners since 2009.   

 

Model Setup  

Part 1 – current utility function  

Consider in our study context where there is a set of consumers I = {i|i = 1, 2, ..., I} who 

make decisions on purchasing the service at different time point.  Therefore, consumers’ purchases 

are observed over the period T = {t|t = 1, 2, ..., T}, where T is the time span of the period.  Let     

represents the current utility that consumers (i) receive with their decision at a given purchase 

occasion (t).   As we mentioned previously, in our study context, the technology of the service keep 

on updating over time.  Reflected in the model, we use       to represent the actual overall 

technology level at a given purchase occasion (t).   

In our model, we assume that the utility (   ) derived by consumer (i) for whether to adopt 

the high-tech service given the actual technology level         at current purchase occasion (t) can 

be represented as:  

                                       

 

Where     represents the consumer specific mean-level net-utility when the actual overall 

technology level =0.  This mean-level net-utility represents the difference between the consumer’s 

baseline preference toward the actual overall technology level and the potential unobserved cost 

associated with consumer’s need.   Please note that, the mean-level net-utility     is only consumer 

i-specific not a time t-specific parameter although it embraces the unobserved cost, because the 

unobserved physical cost is not a t-specific item in our study.  As we stated previously that the 
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physical cost of the service in our context is associated with consumer’s need and has no systematic 

change over time.  Therefore, mean-level net-utility parameter is      not     .  Moreover, we don’t 

separately specify a “physical cost” function in our model setup because the “physical cost” data 

has tremendous variance which blocks the valuable information that we can use to recover 

parameters in our model.  To avoid the identification issue, we use one consumer specific parameter 

    to estimate the difference between consumer’s baseline preference and the potential cost with 

consumer’s need.  We acknowledge this as a data limitation in our study.  But this is not our model 

limitation because, once more valuable “physical cost” data is available, our model can be flexibly 

extended to add in another layer of “cost” function to empirically estimate the physical cost. 

      is the consumer specific coefficient of the actual overall technology level.  It captures 

customer’s utility sensitivity of the overall technology level, e.g. to what extent the change of 

overall technology level will impact consumers’ current utility.  

        indicates the actual overall technology level at a purchase occasion (t).  

     is the net-utility error for consumer (i) at purchase time (t). It captured the unobserved 

factors impacting consumer’s net-utility, for example the service provider may provide a short-term 

promotion to incite consumer making purchases.   We assume a normal distribution for the random 

component             
  .  We fix the variance term at 1, e.g.        for identification issue.   

We represent the consumer utility for the outside (or no adoption/purchase) option as 

      e.g. set the corresponding current utility level to zero.   

This utility function setup has the following properties: a) a consumer’s current utility is 

only associated with the current overall technology level; b) both “utility” and the “parameters” are 

consumer-specific in order to address the consumer heterogeneity. In our model setup, we assume 

that although consumers possess distinct requirements for technology, each individual consumer’s 

need is consistent over time. Therefore, the consumer-level     also demonstrate the discrepancy of 
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needs between consumers.  Each consumer (i) will make purchase decision only if the current 

technology level          matches or exceeds their needs (e.g.      ).  

It is worth mentioning that, the current utility       defined in our study is a “one-period” 

utility.  It means that, given the technology level         at current purchase occasion (t), if the 

consumers decide to make the purchase and sign a contract, then on each time period within the 

contract length, customers will receive this utility      .  This is different from the CPG goods or 

durable goods that, once the customers purchase the product, they will receive an overall utility 

associate with the goods.  Therefore, this is not a “one-time” overall utility but a “one-period” 

sequential utility.   

 

Part 2 – Technology Evolution  

 As we mentioned previously that, in our study context, the technology level of the 

service keep on updating, which invokes consumer’s forward looking behavior.  We assume that, at 

current purchase occasion (t), consumers are able to fully observe the actual overall technology 

level        .  However, when consumers have forward looking behavior, they will have to 

consider both current utility and discounted future utilities to the current purchase occasion to make 

an optimal current decision.  To quantify the future utilities, we will need the future overall 

technology level thus we need to define the technology evolution function.   

We assume that the technology evolves in this way.  The current actual overall technology 

level         is a function of previous actual overall technology level          , the observed 

improvement of technology        and some unobserved technology evolution     . (Equ (2)) 

                                                     

Where       is the actual overall technology level at current purchase occation (t), this is 

the same as the       in the current utility function (Eqn (2)).   
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        is the actual overall technology level at previous purchase occation (t-1).  

      is defined as the “improvement of technology” at current purchase occasion (t), it was 

captured by the number of technology related official news released by the high-tech service 

provider at time (t).  In our context, the high-tech service provider keeps on announcing official 

news to their customers.  The customers can read the official news publicized on the official website 

every months.  We collect the data of the number of news from the official website too and use it as 

the indicator of the “improvement of technology” in the technology evolution function. 

    is the stochastic term capturing the unobserved technology evolution.  We assume a 

normal distribution for the random component             
  .  

In this modeling approach, we assume that the improvement of technology can be fully 

captured by the     , e.g. the number of technology related official news released by the high-tech 

service provider at current purchase occasion (t).   We acknowledge that this can be a big 

assumption because we may have other resources that can capture the technology improvements.  

At current stage, we don’t have other effective attributes that can help us to refine the technology 

evolution function.  This can be another limitation of our study and suggests a direction for future 

study, e.g. improve the technology evolution function.  We also acknowledge that, the quality of 

each individual news can be different, which means that the weight of each individual news 

representing the technology improvement can be different. However, in our model, we don’t control 

for such quality deviation.  We introduce an error term “  ” to capture all aspects of the unobserved 

technology evolution.  Therefore, the estimation of    can inform us about the capability of official 

released news on capturing the improvement of technology.   

As we mentioned previously, in our model setup, we assume that customers can fully 

observe the current technology level        .  However, to form forward looking structural model, 

we need the consumers to make prediction on future overall technology level.  In order to do so, 
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consumers will also need to predict the future technology evolution.  And this requires a learning 

process.  Specifically, consumers firstly obtain the historical information on how much official 

news were released in different months (e.g.                  , then they form a belief on the 

future improvement of technology         , e.g. news released speed, finally they could make a 

prediction on the future overall technology level          .   

 

Part 3 – Consumer learning on News releasing frequency  

As pointed out previously that, it is a learning process that consumers form belief on the 

future improvement of technology based on the historical information of how much official news 

were released.   And this learning process is critical for consumers to make prediction on future 

overall technology level.  Therefore, in this section, we will specify the consumer’s learning model 

on the “improvement of technology”, e.g. the news releasing frequency      .   

In the learning model, we focus on the information role of news releasing frequency on 

consumer’s perceptions about the improvement of technology.  We assume that consumers have 

uncertainty about both the true mean level and the precision of the improvement of technology 

contained in and conveyed by the news releasing frequency.  Consequently, consumers will base on 

the signals that they received from the news releasing frequency to form their perception on both 

the mean level and precision of the improvement of technology.   

Therefore, we firstly specify consumers’ learning of mean level and the precision of 

“improvement of technology” after exposure to the news releasing frequency.  We assume that, the 

news frequency released each month provides a noisy but unbiased signal for the improvement of 

technology.  Specifically, We defined that consumers believe the “improvement of technology 

      ” at time (t) following a Poisson distribution with parameter of  .   

                                               



28 

 

 

Where   represents the true mean level of the       , which is unknown to the consumers. 

This equation suggests that the news released frequency provides imperfect information about the 

true mean level of the       .  As we all know that, the mean and variance are the same for Poisson 

distribution.  Therefore, the   not only represents the true mean level of the       , but also 

captures the noisiness of information conveyed by the news released frequency.   

Next we define that, consumers will learn this   from the previous information set (   ). 

Given the existing information set (    , a consumer has formed a prior opinion about the true mean 

level of       , e.g.  , which follows a gamma distribution: 

                                                  

 

Where         are the parameters of the prior distribution.   

In the equation (4),      is defined as consumer (i)’s existing information set at time t. Several 

sources can contribute to the consumer information set    : 1) The first source is consumer prior 

knowledge about the high-tech          , e.g. the prior knowledge level before observing any 

official released news. The prior knowledge is an i-specific term as each consumer holds different 

opinions about the high-tech. 2) The second source is the official released online news (    ), 

which is considered as the representative of the improvement of technology. Obviously, the news is 

a t-specific term as it is released by the high-tech service provider thus the publishing cycle has no 

relationship with the consumers. 3) The third source is the consumer intrinsic information process, 

which demonstrates how consumers continuously evaluate on the periodically released news. Each 

source will contribute to updating the consumer beliefs about the news described in the following 

equations.   
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After observing the actual news released at time (t), consumers begin to update their beliefs 

on the true mean level of       , e.g.   through updating the two parameters of gamma 

distribution          .   

{
   

            

   
        

}         

 

Where         are the parameters of the prior distribution before observing the historical 

technology related news before time (t) and    
     

  are the parameters of posterior distribution of    

after the consumers are exposed to the number of news released at time (t). 

The idea of learning model can be summarized at follow (Figure 2): 

At the beginning of time t, consumers pertain a prior opinion about the true mean level of 

      , which follows a gamma distribution with parameters of        .  The true mea level of 

       is represented by  .   

During time t, the consumers receive a new information set of        e.g. they are exposed 

to a new set of official released news.  According to customers belief, the number of the newly 

released official news         should follow a poisson distribution with the parameter of  .  

Combine the prior opinion and the new information set, the consumers form the posterior 

belief about the  , which follow a gamma distribution with the parameter of    
     

 .   

Insert Figure 2 

 

Finally, we consider that consumer will always place a higher weight on the more recently 

perceived information. We want to integrate the fact that consumer’s confidence about their belief 

can gradually decrease by time into our model setup.   To do so, we posit that consumers recall their 

prior evaluation on the technology related news with noise. In the model set up, we introduce the 
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information discount factor in customer’s learning.  This modeling idea is originated from 

information processing theory in psychological study and was firstly introduced in learning model 

by Zhao et al. (2011).   

The idea of information discount factor can be described more visually as follow.  For 

example, we can posit ourselves as the decision makers of whether to adopt the high-tech service or 

not.  We continuously learn from the official information that is available to us.  Suppose that, we 

have only two information in hand, one information was a one-year old information and the other 

one was a new information publicized yesterday.  What we need to do is to derive today’s actual 

overall technology level to aid our decision making.   The question is which information we should 

give more weight and which information we should give less weight when making the judgment?   

From a common and realistic perspective and in a rational consumer’s decision process, the recent 

information should receive more weight, and older information is discounted.  This is the concept of 

information discount.   

Reflected in our model (Equation 6), we capture such noise in the information updating 

model by keeping the mean level of the news perception constant and allow the variances to 

increase over time (Zhao et.al 2011).  

{
             

 

            
 }                                     

 

Where   is the parameter that accounts for the information discount process and takes the 

value between 0 and 1.  If      , it suggests that there is no information discount, e.g. consumers 

treat all period information equally important in their decision process.   

This setting ensures that the information discount process only impacts the variance of news 

perception while keeping the mean level constant, as shown in Equation (7):    
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Figure 3 visually displays the difference in the belief formation process between including 

the information discount factor     and without the  .  From the plot, we can straightforwardly 

explain why we introduce the information discount factor in our study.  On the plot, the X-axis 

represents the purchase occasion time (t) and the Y-axis represents the consumer’s belief on the true 

mean level of       , e.g. the consumer’s belief on  .   It is worth mentioning that, the phenomena 

shown in the graph happens at infinity time condition, e.g.     .   

In the consumers’ traditional learning process, as t approach infinity, consumers’ belief gets 

close to a constant level regardless of the new coming information set. The reason is that, as t 

approach infinity, the two parameters of  , e.g. both   and  , approach infinity at the same rate. 

Consequently, the variance of   , e.g.        
 

  , will approach zero regardless of the future 

information set. The variance of   approaching zero means that consumer’s uncertainty about their 

belief will approach zero, which is equivalent to that the consumer’s belief on   becomes constant 

regardless of any newly released information set in the future.  The underlying idea of the 

traditional learning process is that, when time is long enough and all the historical information were 

treated equally important, the consumers have already observed enough information to form their 

belief on  , thus they have absolute confidence about their belief, e.g. have no uncertainty about  . 

As a result, the new coming information will not alter consumers’ evaluations about  . Shown in the 

Figure 3, the expectation of  , e.g.     , becomes a straight line.   

However, when we introduce the “information discount” of  , consumers’ uncertainty will 

never approach zero. Consequently, whenever new information set shows up, consumer’s belief, 
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both mean level and uncertainty will be affected. The idea of learning process with information 

discount factor is that, with the information discount of  , the historical information is no longer 

functional thus consumers’ uncertainty will never become zero.  Whenever new information are 

released, consumer’s evaluation will be influenced.  Shown in the Figure 3, consumer’s expectation 

of  , e.g.     , is always related to the most recent information.  

Clearly, the learning process with the discount factor of   should match better with the 

actual consumer’s learning process (Zhao et al., 2011). In order to make our assumption more 

realistic, we assume the information discount exists. But our model is very flexible because we 

allow the discount factor to vary between 0 and 1. Our estimation will tell us whether the discount 

equals 1 or not. If it equals 1, this means that there is no discount, e.g. consumers treat all historical 

information equally important in their learning process. Clearly, the smaller the discount factor is, 

the heavier the historical information will be discounted.   

Insert Figure 3 here 

 

Part 4 – Consumer Dynamic Optimization on the Contract Length   

So far, we have already defined the consumer’s current utility function (Equation (1)); 

technology evolution function (Equation (2)); and consumer’s learning model (Equation (3) ~ (7)).  

Recalled that, the reason of we develop technology evolution function and consumer learning model 

is because consumers have forward looking behavior in their decision process.  We emphasized 

again that, in our model setup, we assume that customers can fully observe the current technology 

level        .  However, to form forward looking structural model, we need the consumers to make 

prediction on future overall technology level            because they have to consider both 

current utility and discounted all future utilities to optimize the current decisions: whether to buy 

and how long to buy (contract length).  That is why we need the technology evolution function.  
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Moreover, in order to make prediction on the future overall technology level, consumers will need 

to form belief on the future technology evolution, e.g. the future “improvement of technology” 

         .  And this is the reason we define learning model.  Based on all the model setup from 

part 1 to part 3, we now can develop the consumer dynamic decision model to account for the 

forward looking behavior.   

We model the consumers’ decisions of whether to adopt the high-tech service and how long 

to sign a specific length of contract      as a dynamic programming process. The objective of the 

consumer is to make a sequential decision in each of the T discrete period where T is infinite. This 

corresponds to the method of using infinite-horizon dynamic programming to solve consumer’s 

markov decision process (Rust, 1994).  Basically, the optimal decisions of whether to buy and how 

long to buy for each consumer (i) at any purchase occasion (t) is the solution to the following 

problem:  

   
{                                 } 

 {∑ [ ∑ (       (      ))

        

     

     ]

 

   

}          

With the constrain of  

                                                           

 

Where           indicates that consumer (i) make the kth adoption decision at time     with 

a contract length of     .  

    
       is the “current net-utility” that consumer (i) possessed from making the kth 

adoption decision at purchase occasion    .  For consumer (i), as shown in Equation (1), 

    (      ) is defined as follow:  

    (      )                                  
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Both Equation (1) and (9) define the consumer’s current utility associated with the current 

decision.  The only difference is that:  Equation (1) in general defines the current net-utility at any 

given purchase occasion (t); while Equation (9) specifically indicates the current net-utility at any 

kth adoption decision occasion (  ).  Therefore, we use      in Equation (9) instead of    .   

         is the utility discount factor, which is used to discount all the future utilities to 

the current purchase occasion.   

    is the customer (i)-specific unobserved non-physical cost associated with signing a 

contract.    is the short-term for “efforts of signing a new contract”.  As we described previously, 

the non-physical cost is a unique feature in the B2B world and can include searching cost, learning 

the technique, training employees, cooperating multiple internal departments, negotiating with 

service providers and sending budget application to top manager for approval etc.  Considering that 

consumer’s resources input on signing a new contract can be diversified because the consumer’s 

needs are unique, we assume that the unobserved non-physical cost     will follow a normal 

distribution, e.g.         ̅̅ ̅̅     
   

Equation (8) fully describes how we account for consumer’s dynamic decision property, e.g. 

forward-looking behavior in our modeling approach.  The modeling idea behind the Equation (8) is 

described as follow:  

First, in this equation, we define that consumer’s decision time span is from 0 to infinity 

because consumers need to consider a long-term decision.  Within this decision time span, 

consumers can sign infinity number of contracts.  As shown previously, we use the     as the 

contract index indicating each individual contracts from 1 to  .   Obviously,     indicates each 

consumer and       tells the contract length.      , being more specific, is defined as the starting 

point of the kth contract.     
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Next, each contract can bring customer an overall value, which is represented by the 

expression within the bracket, e.g.   [∑ (       (      ))
        
     

     ] in Equation (8).   In this 

expression, the     , as stated before,  is the current net-utility of consumer (i) making the kth 

adoption decision at decision time, also the contract starting point of     .  It is worth mentioning 

again that this net utility is a “one-period” utility, which means, within the contract, at each time 

period from      to           , consumer will receive this same net-utility.   The expression of  

∑ (       (      ))
        
     

  in the bracket is called the “discounted cumulative utility”, which 

means that, we discount all the periodically future utility (e.g.     ) within the contract length 

        to the current decision time     .      is the utility discount factor and      is the 

unobserved non-physical cost.  We mention again that      is a one-time fee associated with each 

individual contract.   

 Finally, in order to understand customer’s decision, we will have to maximize the long-term 

value that consumers obtained from signing each individual contract from 1 to infinity, e.g. the 

expression of  {∑ [∑ (       (      ))
        
     

     ]
 
   } in the Equation (8).  That is why we 

see the mathematical notation of      at the beginning of Equation (8).  It has to be pointed out 

that maximizing this value is a very complicated process because customers have to consider all 

future possibility of decisions in order to optimize the current decision.  Moreover, since we don’t 

know the future technology level               at any given decision occasion      , we have to 

compute the expectation of the value, which is the reason that we see the mathematical notation of 

    representing expectation at the beginning of the expression.   

To illustrate this value function better, we draw a graph (Figure 4) to visually explain the 

modeling idea.   In Figure 4, let’s assume that consumer (i) decides to adopt the high-tech service at 

decision time of       and sign a contract of       .   Then within the contract length of        , like 
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we said before that, on each time point from        to           , this consumer will receive the 

same net-utility of        as the net-utility at the decision time      (      )  because consumer 

will be bonded with the on-site overall technology level once the contract is signed.  In the B2B 

world, since the consumers will have to spend effort on signing each contract, we assume that 

consumers will try to solve their problems in one holistic decision thus will not make any new high-

tech service purchase within the signed contract duration.  And there is little change that consumers 

will break the contract, especially in the B2B world, due to the remarkable resources they have 

already spent on signing the contract and the potential penalty of breaking an existing contract.  

This suggests that once the consumers make the adoption decision at time      , the next available 

decision time is              .  

When the contract of         ends, consumers can continue to make decision on whether to 

adopt again or not.  At each decision occasion after           , the decision can be either yes or 

no.   In order to make the optimal decision at each decision occasion, the consumer will have to 

consider all the future decision possibilities and discount the potential utilities to the current 

decision occasion.  This dynamic decision process will move on to the infinity decision occasion 

     and infinity number of contract length decision        .  That is why it is called “infinite-

horizon dynamic programming”.  It doesn’t matter whether or not there is a time gap between 

consecutive decisions.   

Insert Figure 4 

 

It has to be pointed out that, in our dynamic model setup, decision variable         is a 

“continuous decision” not a “discrete choice”.   When         , it indicates “no adoption 

decision”.  When         , the actual number of        indicates the contract length signed by 

the consumer.  Ideally,        can be any number between 0 and infinity.  This is a key difference 
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between our proposed dynamic decision model and the standard dynamic decision model in the 

existing studies from consumer’s perspective.  Introducing the continuous decision in the dynamic 

decision model makes the derivation process of value function (described in part 5 below) 

becoming a contribution in the paper because the solution of the Bellman Equation (described in 

part 5 below) is significantly different from that in discrete dynamic decision model.   

 

Part 5 – Derive Bellman Equation (Value Function) 

As we described previously, to solve the optimal decision shown in Equation (8), we need to 

derive the bellman optimality equation.  The fundamental idea of Bellman Equation, which was part 

of the dynamic programming theory, was invented by Bellman (1954, 1956) in applied mathematics 

studies, and later was introduced into economics field to solve discrete Markov decision process 

(Rust, 1994; Puterman, 1990).   

When we use dynamic programming theory to solve discrete Markov decision process, we 

firstly need to be clear about the major components in the Markov decision process (Rust, 1994).  

The components, which are also the foundation for developing Bellman Equation, include:   

1) The time variable    ;  the time variable corresponds to the decision occasion in the 

market, and                                  

2) State variables   ̃ ; the state variables determine the outcomes of value function.  Once 

we specify the value of state variables, we know the outcomes of value function.   

3) Decision variable(s)   ̃ :  the decision variables indicate consumers’ decision at each 

decision occasion.  In discrete Markov decision process, the decision variables can be either 

whether to buy the product or not, such as Song & Chintagunta’s study (2003), or the choice 

between alternative brands, such as Erdem et al.’s study (2003).  In our study, the decision variable 

is consumer’s “contract length” decision, which is a continuous variable.   

http://www.springerlink.com/content/?Author=Inseong+Song
http://www.springerlink.com/content/?Author=Pradeep+K.+Chintagunta
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4) The transition probabilities for all state variables   ̃  ̃     ̃   ̃  : the transition 

probability is used to identify the conditional expectation of the utility over all future decision 

occasions.  As we mentioned previously that, the essence of using dynamic structural approach to 

model consumer’s forward looking behaviors is:  in order to optimize a current purchase decision, 

consumers need to combine both current utility at the decision occasion and all future discounted 

utilities.  When consumers evaluate the all future utilities, they don’t know the corresponding level 

of the state variables.  Therefore, we will have to take the expectation thus require the transition 

probability.   

Following the theory defined in dynamic programming, we derive the Bellman Equation, 

e.g. the value function.  The definition of “value function” is very similar as the “utility function”.  

Defining “value function” in dynamic model, from the modeling idea perspective, is equivalent to 

defining “utility function” in static model.  The only difference is that, the utility function refers to 

the current utility that consumers received from the static decision at current decision occasion; 

while the value function indicates the expected discounted summation of all utilities (both current 

and future) that consumers received from their dynamic decision under forward-looking behaviors.   

Next, we derive the value function specifically for our study as follow:   

  ( ̃  ) 

    
  

{∑     ( ̃     )

  

   

      ∫   ( ̃        )    ( ̃        | ̃     )
 ̃        

          } 

           

Where   ( ̃  ) is the value received by consumer     at a decision occasion     with a given 

set of states   ̃  .  The   ( ̃  ) is an “optimal” value, which means that, if the consumer     make an 

optimal contract length decision at decision occasion     with a given set of states   ̃  , s/he should 
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receive a value of   ( ̃  ) which is the best value comparing with all other possible contract length 

decisions.  This is the reason that we have     
  

  at the beginning of the right side of the equation.  

 ̃   represents the current state variables that consumer     face at the current decision 

occasion    . In our model, the state variables include:  ̃                       .  Recalled that,   

      is the actual overall technology level;          are the parameters in consumer learning model 

determining consumer’s perception on the true mean level of news released frequency;      is the 

error component in the current utility function (Equation (1)) which is assumed to follow a normal 

distribution.   

 ̃         represents the transition states, meaning the states at the beginning of next 

available decision occasion, e.g. (      ), e.g. after the current chosen contract duration ends. 

The state variables include:  ̃                                                 .   

To better understand the value function, we need to view it in two parts:  

1) The first part is the expression of ∑      ( ̃     )  
   , which represents the cumulative 

discounted utilities that consumer     received from the contract length decision      that s/he 

made at the decision occasion     with a given set of state   ̃   .  Within the contract length    , at 

each time period, consumer     received the same utility as the one at the decision time    , 

therefore, we are able to compute the exact value of the cumulative discounted utilities within the 

contract length.   

2) The second part is the expression of      ∫   ( ̃        )    ( ̃        | ̃     )
         

,  

which represents the discounted expected value of the all future utilities after the contract length 

     ends.  Consumers should face the new set of states ( ̃        ) when the contract length      

at decision occasion     ends, consequently, the value of the all future utilities should be 

  ( ̃        ).  Because we don’t observe the actual value of the future new states  ̃         when 
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consumers are trying to optimize the decision at current occasion (t), we need to take the 

expectation, e.g. integrate the new states out in the expression, thus need the transition probability 

of   ( ̃        | ̃     ).   

It is worth mentioning that, the derivation of the Bellman Equation is based on the 

assumption of stationary Markov decision process, meaning that, consumer’s decision rule is 

consistent at each decision occasion     (Rust, 1994).  That is the reason that we see the value 

function only depends on the state variable but not depends on the decision occasion    .   

 

Part 6 – Likelihood Function 

After we specify the value function (Equation (10)) to quantify consumer’s decision process, 

the next step is to empirically estimate the model, which requires the likelihood function.   

In our model setup, we can categorize the parameters into four groups: 1) the parameters in 

the utility function:         ;  2) the parameters in the technology evolution function:    ; 3) the 

parameters in the consumer learning model:            ; where         represents the initial value 

of the      ;  and 4) efforts of signing the contract:     .  Please note that, since the             are 

consumer-specific parameters, therefore, the ultimate parameters estimated by the MLE become 

  ̅    
   ̅    

   ̅̅ ̅̅     
 . 

Next, we need to derive the probability distribution of decision variable      given all the 

parameters.  This requires us to know the expression of stochastic terms as a function of the 

decision variable     , which requires the value function we defined before (Equation (10)). 

According to the value function (Equation (10)), we know that 
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To show the expression more obviously, here we use “  ” to represent the value function.   

Based on our model setup of technology evolution function (Equation (2)) and consumer 

learning model (Equation (5) & (6)), we have the following functional forms:   

                                                        

                                              

                                                       

 Similarly, we use the “               ” to represent the function of technology evolution 

and the two parameters in learning model respectively.   

Combine equation (11) and equation (12), we have:  

                                                                       

 

As shown in Equation (13), we have two sets of stochastic terms in our model: one is    ; the 

other include          . To simplify the expression and the estimation process of our likelihood 

function, we want to derive the relationship between decision variable        and       only.  To do 

so, we denote the contract length      as a function of     conditional on both the parameters and 

stochastic term of      , e.g.  

             ̃ {    }                             

 

 

Where  ̃ represents the set of all parameters, e.g.   ̃  {                             } 

Please note that the {    }   are not parameters but the “news frequency per month” and 

“decision time” in our data.   The Equation (14) suggests that, we don’t treat         as stochastic 

term but as time-specific parameters in our likelihood function.   

Based on the assumption of             
   and            

  , we can write the conditional 

density function of observed data      by using the Change-of-Variable theorem:  
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        ̃   (  
  (     ̃ {    }  ))  ‖           ‖               

Next, what we need to do is integrating out all the heterogeneity terms and the unobserved 

terms including                              .   Finally, we could derive the Likelihood function 

as:  

 ( ̃|{    } {    }  )   ∮  (  
  (     ̃ {    }))  ‖           ‖   ̃  ̃  ̃ 

 ̃
               

 

Where  ̃  {   ̅    
   ̅    

   ̅̅ ̅̅     
               ̅̅ ̅    

   
̅̅ ̅    

 } 

 

Obviously that, in order to find the Likelihood for parameter estimation, we need the 

function of        , which is actually the   
  

 function in Equation (15) and (16).  Since we 

still don’t have the close-form solution for        , we will need to empirically compute the 

following items:  1) Given a     , find the corresponding    ; and 2) the ‖           ‖ by 

iteration.   

We can draw a diagram to visually show the logical link between the six parts of the model 

setup (Figure 5).  Basically, when consumers optimize their dynamic decisions, they will consider 

two parts of the benefits associated with the current decision:  One is the current utility of the 

decision, e.g. the utility function we established in Part 1; the other is the future utilities of 

decisions.  In static model, consumers only have to consider the first part of the benefit.   The 

second part of benefits, which involves the evaluation of future utilities of current decision, is the 

major difference from the static model and is the major reason why we call it forward-looking 

dynamic model.   

Consumers don’t know the future states to quantify the future utilities thus they will have to 

form expectation on the future states. Reflected in our model, we need to build the technology 

evolution function in Part 2 and the learning model in Part 3 to understand how consumers form 
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their expectation on the future states.  Finally, we put both current utility and future utilities together 

to understand consumers’ dynamic decision optimization process, which lead to the dynamic model 

in Part 4.  Next, to solve the maximization process in the dynamic model, we utilize the bellman 

equation to derive the Value Function shown in Part 5.  And to estimate our model, we need to 

derive the Likelihood function discussed in Part 6.   

Insert Figure 5 here 

Model Estimation 

We estimate the model parameters using a “Maximum Likelihood Estimation” approach.  

Specifically, we use the “Simplex Method” to identify the optimal parameter estimation result 

(Nelder and Mead, 1965).  The detailed steps of performing “Simplex Method” are described in 

Appendix C.  As we mentioned previously in Modeling Framework section, our model estimation 

process includes two loops of numerical searching, e.g. the simulation of “value function” and the 

searching for maximum likelihood function.  We described the detailed steps of value function 

simulation in Appendix A.  Moreover, in order to compute the likelihood function, we also need to 

find the   at a given contract decision of    and solve the Jacobian of ‖           ‖, whose 

detailed steps are described in Appendix B and D respectively.  We can draw a diagram to visually 

show the estimation process (Figure 6) and summarize the detail steps as follow:  

Step 1:  At a given set of parameters and pre-defined boundary and grids of state variables, 

we can compute the corresponding value function (Appendix C) 

Step 2:  Combined the simulated value function and the actual data of purchase time, 

contract length and news frequencies; we can calculate the likelihood function for the given set of 

parameters.  Here we need to utilize Appendix A, B and D to identify the result of likelihood.   

Step 3:  We integrate the likelihood computation into Simplex Process to find the optimal 

parameter estimation, e.g. the set of parameters corresponding to maximum likelihood.  If the 
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results pass the searching criteria of Simplex Process, then we stop and report the results; otherwise, 

we go back to step 1 and do the computation again.   

Insert Figure 6 Here 

 

 

Data Description 

Our data comes from a global leading high-tech company (service provider). Its products 

include almost all kinds of high-tech products and infrastructures, such as hardware, software, and 

personal computers, and covers both B2B and B2C settings. From 2007, they began to build a cloud 

service for their B2B consumers.   

In total our data includes 218 business-to-business buyers. All of them have had at least one 

historical purchase with the service provider before purchasing the hi-tech service. The 

characteristic suggests that the 218 buyers should consider the service provider in our study as the 

first choice over other competitors when adopting the high-tech service, not only because the 

service provider holds the superior power in the market, but also because the buyers are existing 

B2B consumers who retain better knowledge about having a relationship with the service provider.   

Our data includes both the service transaction and the official news items. Both data were 

collected at the monthly level. The time frame of service transaction data ranges from January. 2009 

to September 2011 and the data include both consumer adoption decision time (year & month) and 

the decision of contract length (in unit of months). The official news-count data time-frame ranges 

from October 2008 to January 2012 and the data were recorded as number of news items per month.   

We present both a graphical illustration and summary statistics of consumer’s contract 

length decision and officially released news-counts in Figure 7. On average, consumers purchase 

the service for 14.5 months, which is slightly longer than one year, but the range can cover from 1 

month to 60 month, e.g. 5 years (Figure 7, left table). Additionally, the average number of official 
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news-counts that the service provider released every month is 3.95, with the minimum of 1 and 

maximum of 11 (Figure 7, right table). Moreover, the patterns of the contract length and the news-

counts (Figure 7) suggest that, in general when the news-count is high, the contract length tends to 

be low. Recall that news-count is used to capture the improvement of technology. We previously 

mentioned that when consumers consider the tech evolution to be fast, they may either postpone 

their adoption decision or take a try with a shorter contract; our data pattern shows that the concept 

is empirically true.   

Insert Figure 7 here 

Structure of Value Function 

Before illustrating the model estimation results and policy simulation, it is worth showing 

the structure of the value function because the essence of using the dynamic programming approach 

to model consumer’s forward looking behavior is the construction of value function for capturing 

consumer’s decision process. Since our primary interest is to explore the underlying relationship 

between technology evolution and consumer’s decision process, we will illustrate the pattern of 

consumer’s value as a function of contract length and the two drivers of technology evolution, e.g. 

the overall technology level and technology evolution pace.   

Please note that the “value” we compute and plot on Figure 8 and Figure 9 is the  ( ̃    ) 

(Equation (A2)) thus it is a function of both state variable   ̃   and the decision variable     .  

Since the state variable  ̃ , after simplification (Appendix A), includes (     
 

 
  ).  To show the 

relationship between  ( ̃    ) and      at different states of        and  
 

 
  respectively, we 

compute the  ( ̃    ) at fix value of      .   

Figure 8 shows the pattern of value function as a function of both contract length and the 

overall technology level, e.g.       .  When overall the technology level is low (Figure 8, left 
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panel), the shape of consumer’s value indicates an optimal contract length at       . This 

suggests that, when technology level is very low, consumers don’t think about making a purchase. 

When the overall technology level is higher (Figure 8, right panel), the optimal contract length is 

greater than zero, meaning consumers purchase the service. The relationship between the 

consumer’s decision and the overall technology level implies that, only if the overall technology 

level elevates to exceed the consumer’s need, then the consumer will consider making the purchase.   

Insert Figure 8 here 

Next we will show that, how the pattern of value functions as a function of both contract 

length and the technology evolution pace, e.g.  
 

 
   (Figure 9). From the Figure 9 – Panel 1, we can 

see that when the technology evolution speed is low, the shape of consumer’s value indicates that 

the optimal contract length decision appears at very high      value. This suggests that, when 

technology evolution pace is low, if the buyer decides to buy, they are more likely to buy with a 

longer contract because they may not expect a significant technology improvement to happen in the 

near future. The comparison of the 4 panels in Figure 9 shows a clear relationship between 

technology evolution pace and consumer’s contract length decision, e.g. consumer’s contract length 

decreases as the technology evolution pace increases. The relationship matches with our prior 

expectation that, consumers will tend to have a try on approach the cloud service when expecting a 

fast technology innovation pace.   

Insert Figure 9 here 

Simulation 

In this section, we demonstrate the ability of our model to recover parameters and ensure 

empirical identification.  Our simulation scheme is as follow:  First, we simulate the news frequency 

data, based on a Possion distribution,           and we generate the news frequency for 36 time 
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periods.  Then, we simulate the two random error term:                             .  Now we 

can compute the         using the technology evolution function (Equation (2)).  Next, we simulate 

the purchasing behavior of 200 individual consumers.  Then reasons that we select 36 time periods 

and 200 individuals are:  first, they match with our actual data size; second, the simulation and 

estimation process take heavy computation burden.  Therefore, to both satisfy the requirements of 

simulation and reduce the computation burden, we select the 36 time periods and 200 individuals.  

In order to simulate consumer’s purchasing behavior, it is obvious that we need the value function.  

First, we generate the three heterogeneous terms:      (  ̅    
)       (  ̅    

)   and 

        ̅̅ ̅̅      .  Then combine both the heterogeneous parameters of                 and the fix 

parameters of         , we can generate the value function   ( ̃ ) (Appendix A).  Based on the 

computed value function, we can decide both the timing of purchase and the length of contract for 

each consumer at each purchase occasion.  Please note that, we only consider parameters of 

{  ̅    
   ̅    

   ̅̅ ̅̅     
       } and in our simulation process with the following reasons:   

1) Since   is the random error in current utility function (Equation (1)) which determines 

consumer’s decision of whether to buy or not, e.g. binary decisions.  It is acknowledged that in 

choice model, the variance of error term is not identifiable.  Therefore, we fix      for 

identification issue.   

2) Also, we fix the both the initial parameter of belief updating, e.g.             for two 

reasons. First, the cloud service is a novel technology in the market thus it is reasonable to assume 

that consumers don’t possess knowledge about the specification of the technology at the beginning 

time. Second, from our empirical findings, the absolute values of these two initial parameters don’t 

contribute significantly to the parameter estimation but add a computation burden.  Therefore, we 

fix             at zero for all consumers.   
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As shown in Table 2, all the parameters are reasonably estimated.  This result suggests that 

we are able to reasonably identify and recover the parameters.   

Insert Table 2 Here 

Model Comparison and Validation 

We compare our model with the static models (OLS and Tobit) for model comparison and 

validation.  In the Tobit model, we use both the news frequency and the cumulative news-count as 

the independent variables.  The model fit statistics are shown in Table 3.  The Bayesian information 

criterion (BIC) result shows that our proposed model outperforms both OLS and Tobit model in 

quantifying consumer’s purchasing decision.  The superiority of our model over the static model 

suggests the importance of including consumer’s forward-looking behavior in understanding 

consumer’s dynamic purchase behaviors.  We will focus on discussing the full model specification 

in the next section.   

Insert Table 3 Here 

Empirical Results and Discussion 

In this section, we first discuss some of the estimation results of the proposed model and 

explain the meaning of the estimation results. Based on the parameter estimation results, we will 

show how consumer’s value is shaped and how the consumers’ contract length decision will change 

as a function of the focal state variables (Equation (10)). Then we will illustrate the policy 

simulation outcomes and propose the associated managerial implication.   

Parameter Estimation 

The parameter estimation appears in Table 4. Standard error of the estimation suggests that 

all estimated parameters are significant at the 95% significance level. We take into account the 

consumer heterogeneity for three parameters in the model, e.g.    which is the mean-level net-
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utility;   , which is the coefficient of technology in the utility function (Equation (1)), and   , 

which is the parameter to capture the efforts of signing a contract. Therefore, their parameter 

estimations include both mean-level and standard deviation.  Also, we ignore the estimation of the 

two initial parameters             and fix them at zero for all consumers with the reason described 

previously in simulation section.   

Insert Table 4 here 

From Table 4, we can see that,   ̅ is estimated to be negative.  Recall that    indicates the 

mean-level net-utility when the actual overall technology level =0 and represents the difference 

between the consumer’s baseline preference toward the actual overall technology level and the 

potential unobserved cost associated with consumer’s need.  A negative   ̅ suggests that, on 

average, consumer’s baseline preference toward the technology can’t outperform the cost of the 

technology thus is not strong enough to incite a purchase.   

Next, we can see that, the   ̅ is a positive number suggesting that, on average, consumer’s 

utility should increase as the overall technology level increase, which make sense in the real world.  

And we observe that the estimated absolute value of   ̅ appears to be small, but the resulting 

contribution of technology on the net-utility is remarkable. We can use some rough calculation to 

show. In our data, if we only compute the overall technology level by the summation of news in 

each month, e.g. we assume the unobserved part of      in Equation (2); within our data time 

frame (e.g. from Jan. 2009.1 to Sep. 2011), we can reach an approximate result of overall 

technology from 3 to 147. Then, using Equation (1), we can compute the impact of the overall 

technology level on the consumer’s net-utility, which is from 0.0417 to 2.0433. Since we fix the 

variance of the net-utility error      due to the identification issue, we can see that given the 

parameter estimation of   ̅, the contribution of the overall technology level on consumer’s net-

utility is significant.   
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  is the information discount factor, which is used to capture the process of consumer 

retrieving information. As we mentioned previously that, information processing theory suggests 

that consumers put more weight on the more recent information. The estimated information 

discount is 0.829 suggesting a relatively heavy information discount. It is worth mentioning again 

that, the smaller the value of information discount is, the less weight that historical information will 

stay in consumer’s mind when consumers making prediction on future technology level. With a 

discount factor of 0.829, more than two-year old information is no longer considered in consumer’s 

evaluation of future technology level.  This also suggests that, consumers may concentrate more on 

the most recent information on evaluating the technology evolution.   

The    is the standard deviation term for the random error in technology evolution function 

(Equation (2)). It is used to capture all the unobserved impacts on technology level other than the 

news-count. According to the estimation result, the estimated    1.2764 suggests a relatively 

large variance. This result implies that the news-count is not able to fully capture the technology 

improvement thus there some errors exist in the technology evolution setting. 

 

Value Function under Parameter Estimation Results 

Based on the estimated parameters, we can compute the value function specifically for our 

study. Figure 10 shows the 3D plot between the cloud adopter’s value and the two focal state 

variables of the technology evolution pace and the overall technology level, represented by 
 

 
 and 

     respectively.  The     state variable has been integrated out. Therefore, the “value” we plot in 

Figure 10 is the   ( ̃ 
 ), which is independent of the decision variable     .   

The 3D value function (Figure 10) shows that, the increase of both overall technology and 

technology evolution will increase the consumer’s value. In the reality, consumers should benefit 
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from evolutions in technology. Therefore, the value function result matches with the real world 

situation in that consumers gain value from both overall technology elevation and increases in the 

speed of innovation .   

Insert Figure 10 here 

 

Relationship between Contract Length Decision and Technology Evolution 

Figure 11 is a 3D plot showing the relationship between the optimal contract length decision 

and the two focal state variables of  
 

 
  and       . The optimal contract length is the “decision” 

variable of      in the value function (Equation (10)). Since optimal contract length (CL) is a 

function of all state variables of  
 

 
             , in order to show how consumer’s optimal contract 

length decision changes by the two focal variables of  
 

 
      ,  we calculate the optimal contract 

length shown in Figure 11 at     .  

We find several observations from Figure 11. First, from the direction of “overall 

technology”, we can see that the “optimal contract length” stays at “zero” until the “overall 

technology” reach a certain level.  This finding suggests that, only if the overall technology level, 

e.g.       , beyond consumer’s need, the purchase decision will be invoked.  Second, from the 

direction of “technology evolution pace”, we can see that the “optimal contract length” shows a 

clear downhill shape.  This observation indicates that, the contract length decision is impacted by 

the technology evolution pace, e.g.  
 

 
  and the relationship is clearly negative; e.g. the optimal 

contract length decreases as technology evolution becomes faster. Third, still from the direction of 

“technology evolution pace”, we observe that, when “technology evolution pace” increase to a 

certain level, the shape of “optimal contract length” shows a clear “indentation” toward larger 
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“overall technology level”.  The phenomenon tells that, when the pace of technology evolution 

increases to a certain level, the consumer’s purchase decision is also delayed.  

In summary, the results shown in Figure 11 suggest that, our model supports our previous 

assumption of: when technology evolution is fast, consumers will expect a better technology to 

show in the near future thus they may either postpone their purchase decision or sign a shorter 

contract to try the new technology. 

Insert Figure 11 here 

 

Policy Simulation 

Given the parameter estimation results, we will conduct two settings of policy simulation. 

The first setting is that we will compare consumer’s adoption decisions at two different paces of 

technology evolution. The first is that the technology evolution happens more frequently but each 

step of evolution is relatively smaller, which is defined as “jogging pace” evolution.  The “jogging 

pace” evolution is represented by an evenly distributed news-count per month. The second is that 

the evolution happens less frequently but each step of evolution is relatively larger, which is defined 

as “leaping pace” evolution.  The “leaping pace” is represented by a large amount of news released 

simultaneously in one month, and then no news for several months.  To make the two paces of 

evolution comparable, we will keep the total news-count released constant.  The second setting is 

that we will compare the consumer’s adoption decisions at two different levels of the “effort of 

signing a contract”: benchmark efforts vs. half of the benchmark efforts.  

The reason of selecting the two settings is that, both settings can be linked with service 

provider’s strategic decision-making, meaning that the service provider, at least to some degree, can 

adjust the levels of the two settings. As we all know that in hi-tech market, both releasing new 

technology and update existing tech are very strategic. It is a very common phenomenon in hi-tech 
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market that firms may research and develop a new tech this year, but release it 5 years later. The 

results of our first setting policy simulation can aid firms in strategically managing the evolution in 

their technology. Although the efforts of signing a contract is majorly under the control of business-

to-business consumers, service providers can still implement some plans to partially alter it. For 

example, the service provider could proactively offer to help reduce their consumers’ efforts in 

signing the contract, such as help the consumers train their internal IT employees. On the other 

hand, the service provider could increase the effort involved in signing a contract by acting less 

friendly toward the consumer. Therefore, both of the two settings of policy simulation can provide 

valuable strategic implications.   

The policy simulation of the first setting shows the following results. First, comparing the 

“optimal decision time” between the two paces of evolution (Figure 12), we find that the jogging 

pace has “longer” decision time. Specifically, from jogging pace to leaping pace, we see a 54.18% 

drop in the optimal decision time. It is worth mentioning that, the “longer” decision time indicates a 

“later” purchase decision thus actually suggests a “smaller” purchase probability. The comparison 

of optimal decision time between the jogging and leaping evolution paces suggests that, when 

facing more frequent but smaller steps in technology evolution, consumer’s purchase probability 

tends to be low, meaning consumers are less interested in making the purchase.  On the contrary, 

although less frequent, the larger step evolution in the leaping pace can create a stronger incitement 

on consumer’s purchase decisions, e.g. consumers are more likely to make purchase. Therefore, 

from the perspective of optimal decision time, the leaping pace is better than the jogging pace 

because consumers show higher purchase intention (probability).  

Next, comparing the “optimal contract length” between the two paces of evolution (Figure 

13), we find that the jogging pace has “longer” contract length. Specifically, from the jogging pace 

to leaping pace, we observe a 16.93% drop in the optimal contract length decision. Intuitively, a 
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longer contract length should give higher profitability. Therefore, from the perspective of contract 

length decision, the jogging pace is better than the leaping pace because consumers tend more likely 

to give long-term profits. In summary, the result of the first setting policy simulation (Figure 12 and 

13) tells us that, when facing more frequent but smaller steps in evolution, although the purchase 

probability is relatively low, once the consumer makes the purchase decision, they tend to sign a 

longer contract. On the contrary, although the larger step in evolution tends to incite consumers to 

make purchases, consumers are less likely to sign a profitable contract.   

Insert Figure 12 and 13 here 

 

The policy simulation of the second setting also shows very interesting results. First, we find 

a 14.02% drop in the optimal decision time when the efforts of signing contract reduce 50% (Figure 

14). As we mentioned previously that a “longer” decision time suggests a “lower” purchase 

probability, while a “shorter” decision time suggests a “higher” purchase probability. The finding 

indicates that, when the efforts of signing a contract are reduced, consumers should be more willing 

to make a purchase, which makes sense in the actual world. Therefore, from the perspective of 

optimal decision time, lower effort involved in signing a contract is better because consumers are 

more likely to make purchase.  

Next, we observe a 9.71% drop in the optimal contract length decision when the efforts of 

signing a contract is reduced 50% (Figure 15). Considering that a longer contract is more profitable, 

from the perspective of contract length decision, a higher effort of signing a contract is better 

because consumers are more likely to give higher profits.   This finding maybe contradicts to some 

common sense because we may easily think why consumers should even make the purchase if the 

efforts of signing a contract are high?  It need to be clarified that, the case of “how long consumers 

will sign the contract” that we discuss here is conditional on “consumers make the purchase 
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decision”.  The underlying idea behind our result here is that, when consumers decide to purchase 

and they have already spend great efforts on finalizing the contract, they are more likely to sign a 

longer contract to avoid another input; which make perfect sign in B2B world.   

In summary, the result of the second setting policy simulation (Figure 14 and 15) reminds us 

that, although lowering the efforts of signing a contract tends to positively stimulate a consumer’s 

purchase decisions, the firm may not reach desirable profitability because consumers tend to sign a 

shorter contract in order to better capture future technology evolutions.  On the other hand, 

consumers are more reluctant to make the purchase when facing relatively higher efforts of signing 

a contract; however, once they make the purchase decision, they tends more likely to sign a 

profitable contract.   

Insert Figure 14 and 15 here 

 

Managerial Implication 

 Our study contributes substantively in two ways.   First, our model demonstrate that it is 

important to consider both consumer heterogeneity and forward-looking in consumer’s decision 

process especially in the rapidly developed high-tech market.  Both researchers and managers 

should recognize that the necessary to account for forward-looking behavior in modeling 

consumer’s purchase decision.  Moreover, based upon our model estimation results, we can 

improve a firm’s understanding on consumer’s behaviors in the turbulent market.  For example, the 

parameter estimations of    ̅  and   ̅ tell us that, although at baseline condition (e.g. technology 

level =0), consumer’s preference is not strong enough to suppress the cost, consumers’ sensitivity 

toward the technology improvement is still remarkable.  The negative mean-level net-utility may 

reflect the properties of the emerging technology which consumers don’t want to take the risk of 

being the first adopters, especially in B2B world.  But, managers should be confident on the impacts 
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of technology improvement thus be consistent in the innovation to attract consumer’s purchase 

intention.  Furthermore, the estimation of information discount factor   tells us that, when 

evaluating the technology evolution, consumers are far from treating all available information 

equally but place relatively more weight on the more recent information.  This suggests that 

managers can strategically alter consumer’s decision process by altering the way of how to 

publicize the information.   

 Second, based on our policy simulation findings, firms can know what strategy will be the 

better choice under different scenarios.  Moreover, to be more specific on how the result can aid 

firm’s decision making, we draw a managerial decision making diagram to show it (Figure 16).   

The findings in our policy simulation study shows that, each policy has both strength and weakness 

from managerial point of view in continuously developing high-tech B2B market. For example, the 

“leaping” pace technology evolution and “reducing efforts of signing contract (e.g. reducing non-

physical cost)” can incite consumers to make purchase, but consumers are more likely to sign a 

shorter contract, e.g. relatively less profitable.  In fact, both the “leaping pace” technology evolution 

and the “reducing non-physical cost” strategies are very common in high-tech B2C market.  The 

reason is that, in B2C world, consumers only decide on whether to buy or not which also determines 

firms’ profit, therefore these two strategies perfectly matches firms’ need of inciting consumers to 

buy.  We can easily find examples in B2C world that belongs to the domain of these two strategies, 

such as Apple who announces a new model of product only once every year and keeps silence in 

between.  Although consumers don’t have “contract efforts” in B2C world, they need to spend 

“searching and comparing etc.” efforts on their decisions which also belongs to the “non-physical 

cost”.   The phenomena of opening new stores, providing online services and exhibiting products 

for consumers to try and compare etc. show how the firms put in efforts on helping consumers to 

reduce the “non-physical cost”.   However, in B2B contractual market, service providers have to 
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consider consumer’s both decisions because 1) their profit is mainly from the contract length 

decision and 2) the contract length is conditional on consumer’s purchase decision.  Therefore, 

service providers make trade-off between the two policies within each scenario (Figure 16) 

depending on which consumer’s decision they put on more weight in the current environment.  For 

instance, if a service provider is relatively new and aims to seize a share in the market, they may be 

more willing to incite consumers to buy and try their new service.  Then suggested by our findings, 

it will be better for the firm to select the “leaping evaluation pace” or “reduce contract signing 

effort” by offering consumers additional aid, because these two strategies can help elevate the 

consumers’ purchase probability.  On the other hand, if the firm is already very dominant in the 

market and are primarily concerned about profit (e.g. contract length), then it will be better to select 

the “jogging evaluation pace” or “increase the contract signing effort” by initiating strict and 

inflexible contract policy to the consumer. Then according to our results, although consumers are 

less inclined to make the purchase decision, if they still decide to buy or there is no other choices, 

consumers tend to sign a longer contract. 

 Finally, since our policy simulation also provides a quantitative evaluation of the 

consumer’s decision changes under different scenarios, service providers can combine our results 

with their internal profit function to design the optimal strategy for profit maximization.   

 It is very straightforward to apply our decision making framework (Figure 16) to help 

service providers on selecting a better strategy.  First, we only need the consumer’s purchase data, 

e.g. purchase time and purchase quantity (e.g. contract length) and the news released frequency data 

to build the consumer dynamic model.  If the news-count data is not available, the model can also 

be flexibly revised for other type of “count” data representing technology evolution.  Next, we can 

perform the policy simulation by putting in different types of the policies, such as the pattern of 

announcing technology evolution and the possible degree of “contract effort” decrease/increase 
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from service provider’s side, and quantitatively compute the impact of each type of policy on 

consumers’ two decisions:  whether to buy and how long to buy.  Then we can entail the policy 

simulation findings to optimize service provider’s strategy plan and potential profitability.   

 

Conclusion and Future Directions 

 In this study, we develop a new dynamic modeling approach to understand the impact of 

technology evolution on consumer’s purchasing behaviors.  In the model, we account for both 

consumer heterogeneity and consumer’s forward-looking behaviors.  Our model extends the current 

dynamic model by introducing consumer’s continuous decision into the dynamic decision process.  

This study makes significant contribution to the marketing literatures from both methodological and 

substantive perspectives.  From the modeling perspective, we develop an estimable dynamic model 

to understand how consumers make the purchase decisions in a turbulent environment where the 

technology is continuously developing.  From the substantive domain, we provide insights into 

consumer’s decision process under different scenario that can aid in manager’s decision making.  

We show that, consumer’s sensitivity toward the technology evolution is remarkable thus improving 

technology is an effective strategy on inciting consumer to make purchase.  We address that, at 

current stage of the high-tech service, consumers still rely more on the most recent information to 

evaluate the technology evolution.  We also empirically demonstrate that, both the pattern of 

technology improvement and the efforts of signing a contract can affect consumer’s forward-

looking behaviors thus the consumer’s final decisions on both purchasing time and contract length.   

 Finally, our study still has several development spaces for future research.   First, we only 

have the news frequencies in our data to help us quantify the technology evolution function 

(Equation (2)).  If more information were available, we may be able to incorporate them into the 

technology evolution function thus better quantify the technology improvement.  Second, we 
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assume a linear relationship in the technology evolution function.  Although the technology 

evolution model setup is still applicable in our study context after discussing and confirming with 

the managers, it may not be applicable to other study context.  It would be a good avenue for future 

research to select a more flexible relationship in the technology evolution function, such as log-

linear or multi-nomial etc..  Last, we assume that the news-count follows a Possion distribution in 

our study.  Although Poisson distribution is a well-utilized discrete distribution for “count” data, its 

lack of flexibility in many applications is also well-documented, such as the over dispersion 

problem.  Future research can consider select a more flexible distribution to better quantify the 

news-count distribution, for example, the negative binomial distribution etc.   
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Tables and Figures 

 

Figure 1.  Modeling Framework of Consumers’ Dynamic Adoption Decision Process  
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Figure 2.  Graphical illustration of the learning model 
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Figure 3.  Graphical illustration of the discounted information process 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Graphical illustration of idea of dynamic decision model framework 
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Figure 5.  Graphically show the logical link between 6 parts of model setup 
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Figure 6.  Graphically illustration of the parameter estimation process 
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Figure 7.  Graphical illustration of the monthly basis contract length and news-count per month 
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Figure 8.  Comparison the patterns of consumer’s value between different levels of overall 

technology 

  

 

Figure 9.  Comparison the patterns of consumer’s value between different levels of technology 

evolution page 
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Figure 10.  Relationship between cloud adopter’s value and two focal state variables 

 

 

Figure 11. Relationship between contract length decision and two focal state variables 
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Figure 12.  Comparison of optimal decision time between jogging and leaping pace 

 

  

 

Figure 13.  Comparison of optimal contract length decision between jogging and leaping pace 
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Figure 14.  Comparison of optimal decision time between two levels of “efforts of signing contract” 

 

 

Figure 15.  Comparison of optimal contract length decision between two levels of “efforts of 

signing contract” 

 

 

24

25

26

27

28

29

30

31

32

33

34

Benchmark Efforts Half Benchmark Effort

P
u

rc
h

a
se

 T
im

e
 

Optimal Decision Time (t) 

14.02% 

19

19.5

20

20.5

21

21.5

22

22.5

23

Benchmark Efforts Half Benchmark Effort

A
v

er
a

g
e 

o
p

ti
m

a
l 
C

L
 

Optimal Contract Length (CL) 

9.71% 

Decrease purchase time  <->  increase 
purchase probability 

Lower Contract length <->  Lower Profit 



70 

 

Figure 16.  A Managerial Decision Making Diagram of Consumer’s Dynamic Purchasing Behavior 
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Table 1.  Relative Contribution of this Study  

Consumer Decision 
Process Studies 

Offers in sights 
for consumer’s 
choice between 

alternative? 

Account for 
consumer’s 

forward 
looking 

dynamic 
behavior? 

Consider 
consumer’s 

learning 
behavior? 

Consider 
both binary 

and 
continuous 
decision? 

Consider 
factors 

invoking 
forward 
looking 

behavior 
other than 

price? 

Guadagni &Little 
(1983) 

      

Erdem & Keane 
(1996) 

         

Gönül & 
Srinivasan (1996) 

       

Ackerberg (2001, 
2003) 

         

Erdem (2003) 
         

Song 
& Chintagunta 

(2003) 

       

Sun, et al. (2003) 
       

Lewis (2004) 
        

Sun, et al. (2005) 
       

Erdem et al., 
(2005) 

         

Hendel and Nevo 
(2006) 

       

Kim (2006) 
        

Nair (2007) 
(equilibrium) 

       

Erdem et al., 
(2008) 

         

Gordon (2009) 
        

Sriram, et al. 
(2010) 

       

http://www.springerlink.com/content/?Author=Inseong+Song
http://www.springerlink.com/content/?Author=Pradeep+K.+Chintagunta
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Nosal (2011) 
        

Gowrisankaran, 
et al. (2011) 

        

Schiraldi, 2011 
       

Gowrisankaran 
and Rysman 

(2012) (equilibrium) 

        

Ryan and Tucker 
(2012) 

        

Shcherbakov, 
2009 

        

Yang and Ching 
(2013) 
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Table 2.  Simulation Results 

Parameters 
True 

Value 
Estimation SE 

Mean-level Net-Utility 

    
-1 -0.9852 0.0246 

  
0.1 0.1213 0.0359 

Technology Coefficient 

    
1.5 1.5345 0.3157 

  
0.1 0.0982 0.0348 

Effort of Contract 

    
10 11.753 1.7248 

  
1 1.2001 0.4948 

Information Discount 

    

0.95 0.9392 0.0941 

Technology Evolution Error 

    

1 0.9893 0.1339 

 

 

 

Table 3.  Model Comparison Results 

  BIC 

OLS 12596 

Tobit 2809 

Proposed Model 1131 

 

0

0


1

1


EC

EC





i0

i1

iEC

t



74 

 

 

 

 

Table 4.  Parameter Estimations 

Parameters Estimation SE 

Mean-level Net-Utility 
  

-1.7711 0.0396 

 

0.0576 0.0177 

Technology Coefficient 
  

0.0139 0.0055 

 

2.2824E-04 9.2499E-05 

Effort of Contract 
  

14.9406 2.0719 

 

1.0472 0.5136 

Information Discount 
 

 0.8291 0.0822 

Technology Evolution Error 
  

1.2764 0.3004 

Initial Parameter of Belief Updating  
 

Fix at 0 N.A. 

Initial Parameter of Belief Updating  
 

Fix at 0 N.A. 

Utility Time Discount Factor  
 

Fix at 0.90  
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Appendix A – Computation of the value function 

 In this section, we describe the details of how we empirically solve the value function.   To 

simplify the expression, we neglect the consumer     subscripts.  As we mentioned previously, in 

our model, the consumers solve an infinite-horizon stationary Markov decision process in order to 

optimize their current contract length decision.  Ideally, we should iteratively compute the value 

function until it converges at all decision time points.  However, to reduce the computation burden, 

we follow the “backsolving” method introduced by Erdem and Keane (2003).  We select a terminal 

period T and assume that:  when the transit period beyond the terminal period T, consumer’s value 

become zero at all state points (Erdem and Keane, 2003), e.g.           .  The underlying 

idea of this method is that, when consumers make current purchase decision, the utilities at far away 

future is almost discounted to zero although consumers have forward looking behavior.   

After we assume           , we can backwardly calculate the                

          using the value function in Equation (10).  As addressed in Erdem and Keane’s study 

(2003), in the “backsolving” computation procedure, we need to select an enough large terminal 

period T in order to ensure that the value functions become stable.  We follow the criteria specified 

in Erdem and Keane’s study (1996) to find the terminal period T, e.g. if we fix the utility discount 

factor at 0.9, a terminal period       is enough for finding a converged value function.  In our 

study, we select a terminal period         with the utility discount factor fixed at 0.9.   

It is worth mentioning that, in our dynamic programming model, we have in total four state 

variables                    .  All of the state variables are continuous.  Therefore, as pointed out in 

Erdem and Keane’s study (2003) that, we can’t solve value function for all potential state points.  

Therefore, we need to use approximation method (Erdem and Keane, 2003).   First, we define 

“region” and “grid” for each state variable.  Then, we can compute the exact result of value function 
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at each “grid” points (Note: the grid points are defined by all state variables).   Next, if the states of 

the value function that we need don’t fall on the “grid” points, we will use the Kernel non-

parametric regression (Altman, 1992) to find the approximate solution.   

Then, we want to reduce the dimension of the state variables to both simplify the value 

function computation process and ease the computation burden.   We can use a simple example to 

show why reducing the dimension of the state variables offers us the computation advantages.  

Suppose we select 10 grids for each state for calculating the value function, and then we need to 

compute value function for 10
4
 grid points occupying a 4-dimensional matrix.  If we can reduce the 

dimension of state variables, the number of value function that we need to compute can be reduced 

exponentially.   We finally are able to reduce the dimension of state variables to 2-dimension and 

the process is shown as follow:   

First, we can integrate out the state variable of      in the value function because it is an 

      random component (Equation (1)), which means that       doesn’t depend on the value of 

              .  Then the value function shown in Equation (10) can be re-defined as follow:  

  ( ̃ 
 )   ∫  ( ̃ )

 

   

 ∫    
  

{∑    ( ̃    )

  

   

      ∫  ( ̃      )    ( ̃      | ̃    )
 ̌      

          }
 

   

 ∫    
  

{∑    ( ̃    )

  

   

      ∫   ( ̃      
 )    ( ̃      

 | ̃ 
    )

 ̃      
 

          }
 

   

       

Where  ̃ 
                  and  ̃      

                               ; and we now can 

reduce the state variable space from 4-dimensional to 3-dimensional.   
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Second, we know that, unlike the state variables of         and     , the parameter      is a 

deterministic term and can be exactly computed by time because it has no relationship with the 

unobserved or random components of                                .  Therefore, we can 

create a new state variable by combining both      and     ,  e.g.  
 

  
 .  This new state variable is 

not a pure mathematical expression but have physical meaning.  Recalled that in consumer learning 

model (Equation (4));   
 

  
  indicates consumer’s mean-level perception about    , while     is the 

true-mean level of news released frequency.  Therefore,   
 

  
  actually suggests consumer’s 

perception on the mean-level of the technology evolution pace.   It is worth mentioning that, 

reducing state space by replacing      and      with  
 

  
  makes our value function non-stationary.  

The reason is that,       and      can create both   
 

  
   and  

 

  
 
  (e.g. consumer’s uncertainty 

about    ) influencing the value function at different period.  Although we reduce the state space by 

introducing  
 

  
  as the state variable, we lose control on the  

 

  
 
  thus both our transition 

probability and our value function becomes t-specific, e.g.   ( ̃      
 | ̃ 

    )   ( ̃ )       
 ( ̃ 

 )  

instead of  ( ̃      
 | ̃ 

    )  ( ̃ )       ( ̃ 
 ) respectively.   Begin from here, we denote all 

value function and transition probability as t-specific at a given the state space.    

Last, we explain how we compute the maximization process in the value function.  Let’s 

first define another format of value function without the maximization notation, e.g.  

  ( ̃    )   ∑    ( ̃    )

  

   

      ∫   
 ( ̃      

 )     ( ̃      
 | ̃ 

    )
 ̃      
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Note, the difference between the value function   ( ̃    ) defined here and those we defined 

previously (either   
 ( ̃ 

 ) or or   ( ̃ )) is that,   ( ̃    ) is the function of both state variables 

(      
 

  
   ) and decision variable (contract length,       .  In discrete dynamic model, 

consumer’s decision space only contains two values:  0 = not purchase and 1 = purchase.  

Therefore, we can identify consumer’s optimal decision only by compare the value function 

between   ( ̃   ) and   ( ̃   ).  However, in our study, the decision variable of contract length is a 

continuous variable.  Therefore, unlike the discrete dynamic model, we will need to iteratively 

searching for the optimal decision point, and we use “Golden Search” method to reach the optimal 

decision at a given state, e.g.               ̃          (  ( ̃     )) and the associated value is 

  
 ( ̃ 

 )  ∫   ( ̃ ) 
  ∫   ( ̃              ) 

. Please note that the “Golden Search” method can 

only help us to find the    (  ( ̃    )) for       because it is only applicable to finding the 

extremum of a strictly unimodal function. Therefore, we also need to compare the “Golden Search” 

result with the   ( ̃   ) to find the value function:    ( ̃ )     (  ( ̃   )    (  ( ̃    )     

 )). 

Now, we can simulate the value function as follow:  

Step 1:  Define the “region” and “grid” for the state variables.  Now we have three groups 

state variables (     
 

 
  ) and   can be separately integrated out like the unobserved components.  

Therefore, we only need to define “region” and “grid” for       
 

 
 .   Because of the existence of 

unobserved components, we can’t identify the exact “region” for       
 

 
 .   The ideal region for 

“      and  
 

 
  can be        and      .  But according to their physical meanings, e.g.        

is the overall technology level and  
 

 
  is the technology evolution pace, we can approximately use 
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the real data to help us define the “region” of them in the value function computation.  Next, 

suppose that we select M “grid” for both state variables.  We can discretize the “region” of the state 

variables by selecting “M” evenly distributed points, e.g.                and  
 

  
 

 

  
 . 

Step 2:  Assume terminal period T=150, and   
 ( ̃ 

       )   .  Please note that, the 

value function we used here is   
 ( ̃ 

 )        ̃ 
         

 

  
 .   

Step 3:  At T=149, use equation (A2), we can compute the   ( ̃     ).  Here, we also need 

to specify the “region” of    that we use to compute the value function.  Ideally, the region of     

should be      .  To reduce the computation burden, we will use the           in the data as the 

upper limit for computing the value function of   ( ̃     ).   

Step 4:  We use the iterative computation of   ( ̃     ) to help us identify the   
 ( ̃ 

 ) for 

       .  The detailed steps are:  first, we find the    (  ( ̃     )) for                 

using “Goldern Search” method; then we compare the result with   ( ̃       ) to get   ( ̃ ); 

finally, we can update the value function for   
 ( ̃ 

       ) using   
 ( ̃ 

 )  ∫   ( ̃ )  
 

 for all 

    combination of grid points.  For any value that the “region” of the state variables doesn’t 

belong to, we can use the “Kernel non-parametric regression” to find the approximated solution.  At 

the same time, we can also find the consumer’s decision rule at any given state, e.g. 

              ̃  .   

Step 5:  Finalize the solution of value function by computing both   
 ( ̃ 

 ) and 

              ̃   to the time period of     , e.g. iteratively redo step 3 and 4 for         

        .   
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Appendix B – Empirical finding      at a given      

This appendix describes how we empirically compute the     at a given      since we don’t 

have close-form function for        .  We empirically observed that there is a monotonic 

increasing relationship between     and          , which means that, as     increases, the      

also increases for all       when       .  Therefore, we will use the bisection method to 

iteratively find the solution of     at a given     .  The detailed steps are described as follow:   

Step 1:  We need to compute the Value Function, e.g.   ( ̃ )  at a given set of parameters, 

e.g. {                           } following the steps shown in Appendix (A).   

Step 2:  Assume an initial upper and lower bound of    , e.g.             for computing the 

corresponding     , e.g. e.g.              .  For example, we can select the               

  . 

Step 3:  We use the finalized   ( ̃ ) to compute the               corresponding to 

            respectively.  The process is very similar as the “step 3 and 4” defined in Equation 

(A2): at a given    ,  first, we find the    ( ( ̃    )) for                using “Goldern 

Search” method; then we compare the result with  ( ̃      ) to find the            ̃   where 

           ̃         ( ( ̃   )    ( ( ̃    )     )).   

Step 4:  We can use the bisection method to find the exact     for       .  If       , we 

can find the upper limit of      , e.g.        for all values of          
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Appendix C – Simplex Method for finding MLE 

In this section, we describe the details of how we empirically solve the MLE using Nelder–

Mead Simplex Method (Nelder and Mead, 1965), which is a well-established numeric method for 

searching for the extremum when the first-order derivative of the function can’t be analytically 

solved.     Since this method targets at the “minimum” of the non-linear function with multi-

dimensional parameter space, we revise the process to find the “maximum” of              

function in our study.    The detailed steps are described as follow:   

 

Step 0: We select initial values for the m-dimension parameters in the likelihood function: 

e.g.  ̃  {  
    

    
     

   }.  Then for each individual parameter, we add in a certain step-length 

   and keep other parameters unchanged so that we obtain the following vector space:  

{ ̃   ̃   ̃    ̃ }, which we name as the “simplex” (Nelder and Mead, 1965).  To be clear of the 

notation, we use     to denote the set of parameters;  and use     to denote values of each individual 

parameter.   

Step 1:  For each of the (m+1) set of parameters, we can compute the corresponding 

            .  To simplify the exposition, we use     to denote the             .   Therefore, we 

obtain   ̃  {         }  where      is the              outcome of parameter set   ̃   where 

        . 

Step 2:  We find the maximum and minimum in   ̃ .  We denote that:        
  

(  );  

 ̃   ̃     
  

(  );        
  

(  );   ̃   ̃     
  

(  ).    

Step 3:   We compute the centroid for each parameter, e.g.  the  ̅  where    .  We use  ̅ to 

denote the centroid for all parameters:   ̅   { ̅   ̅    ̅   } 
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Step 4:  We will use three operators: reflection, contraction and expansion to replace one set 

of the parameters in the “simplex”.  The detailed steps are shown as below:  

Step 5 (reflection):  We compute the “reflection” as  ̃         ̅     ̃  and the 

corresponding              as     .  The     is an arbitrarily selected positive constant.  

Step 5-1:  If         , then we replace the      with      and the associated   ̃   with 

  ̃  .  

Step 5-2 (Expansion):  If      , then we compute the “expansion” as  ̃     ̃  

       ̅ and the corresponding              as     .  The     is an arbitrarily selected positive 

constant.  We replace the      with      and the associated   ̃   with   ̃  .   

Step 5-3 (contraction):  If                  , then we compute the “contraction” as 

 ̃                ̃          ̅ and the corresponding              as     .  The     is 

a number between 0 and 1.  If       , then we replace the      with      and the associated   ̃   

with   ̃  .   If       , then we compute a new (m+1) set of  m-number parameters as:       

  

  
            

  
   

    
  

 
             ;  and the associated new (m+1) results of              , e.g.  

  ̃ .   

Step 6:  If the    ( ̃)   , then we go to Step 2, otherwise, we finalize the results.    
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Appendix D – Computation of Jacobian in Likelihood Function 

 In this section, we describe the details of how we empirically compute the Jacobian, e.g. 

‖           ‖ in the Likelihood function.  As described previously, there is no close-form 

solution for        ,  we will need to empirically compute the Jacobian by iteration.  

Fundamentally, the Jacobian of ‖           ‖ is the partial derivative of 
  

   
.   We follow 

fundamental concept of partial derivative, e.g. 
  

   
       

                               

 
 and  

we derive the detailed steps to empirically find the solution of 
  

   
 as follow:  

 Step 1:  For a given set of parameters, we find the value function following the steps 

described in Appendix A.   

 Step 2:  At a given number of    and       , where     is a very small value, we 

empirically compute the corresponding   and      following the steps described in Appendix B.   

 Step 3:  We can approximately compute the Jacobian as:  
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