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SPANNING HALIN SUBGRAPHS INVOLVING FORBIDDEN SUBGRAPHS

by

PING YANG

Under the Direction of Guantao Chen, PhD

ABSTRACT

In structural graph theory, connectivity is an important notation with a lot of appli-

cations. Tutte, in 1961, showed that a simple graph is 3-connected if and only if it can be

generated from a wheel graph by repeatedly adding edges between nonadjacent vertices and

applying vertex splitting. In 1971, Halin constructed a class of edge-minimal 3-connected

planar graphs, which are a generalization of wheel graphs and later were named “Halin

graphs” by Lovász and Plummer. A Halin graph is obtained from a plane embedding of a

tree with no stems having degree 2 by adding a cycle through its leaves in the natural order



determined according to the embedding. Since Halin graphs were introduced, many useful

properties, such as hamiltonian, hamiltonian-connected and pancyclic, have been discovered.

Hence, it will reveal many properties of a graph if we know the graph contains a spanning

Halin subgraph. But unfortunately, until now, there is no positive result showing under

which conditions a graph contains a spanning Halin subgraph. In this thesis, we characterize

all forbidden pairs implying graphs containing spanning Halin subgraphs. Consequently, we

provide a complete proof conjecture of Chen et al. Our proofs are based on Chudnovsky

and Seymour’s decomposition theorem of claw-free graphs, which were published recently in

a series of papers.

INDEX WORDS: Forbidden pairs, Spanning subgraph, Halin graph, Strong spanning
Halin subgraph, 3-connected graph, Claw-free, Z3-free, B1,2-free.
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Chapter 1

INTRODUCTION

1.1 Halin graphs

A graph is called planar if it can be embedded in the plane without edge-crossings.

Such an embedded graph is called a plane graph. A tree T is a connected acyclic graph.

Every vertex in a tree with degree 1 is called a leaf and all others are called stems of the

tree. In particular, if a graph G has a spanning tree T with no stems of degree 2, T is

called a homeomorphically irreducible spanning tree (HIST) of G. A wheel graph is a graph

obtained from a tree with exactly one stem by adding a cycle along its leaves. A graph is

k-connected(resp. k-edge connected) if the removal of any vertex(resp. edge) set of size at

most k − 1 results in a connected graph. In 1961, Tutte [41] showed that a simple graph is

3-connected if and only if it can be generated from a wheel graph by repeatedly adding edges

between nonadjacent vertices and applying vertex splitting. This result led in a direction

to investigate the minimal k-edge connected graphs. In 1971, Halin [36] constructed a class

of minimal 3-edge connected graphs, which was later named Halin graph by Lovász and

Plummer. A Halin graph is a plane graph H = T ∪ C such that T is a HIST of H with

|T | ≥ 4 and C is a cycle obtained by connecting all leaves of T following the order given by

the plane embedding. According to the definition, we can see that a Halin graph is a natural

generalization of a wheel graph.

Since the Halin graph was introduced, massive research has been done and many inter-

esting properties were obtained. In 1973, Bondy [32] showed that Halin graphs are hamiltoni-

an (there exists a spanning cycle in H). Later, Barefoot [1] pointed out that Halin graphs are

also hamiltonian connected (there exists a hamiltonian path between every pair of vertices

in H). In [34], Lovász and Plummer illustrated that Halin graphs are 1-hamiltonian (both H

and the graph obtained from H by deleting a vertex are hamiltonian). In 1983, Cornuéjols,
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Naddef and Pulleyblank [22] proved that Halin graphs are 1-edge-hamiltonian (each edge

of H belongs to a hamiltonian cycle). Later, Skupien [39] discovered that Halin graphs are

uniformly hamiltonian (each edge of H is contained in some hamiltonian cycles and avoided

by some others ) and Bondy and Lovász [4], independently, Skowrońska [38] showed that

Halin graphs are almost pancyclic (the graph H contains cycles of length from 3 to |V (H)|

with the possible exception of a single even length) and is pancyclic if the underlying tree

has no vertex of degree 3. In addition, in [22], Cornuéjols, Naddef and Pulleyblank showed

that the traveling salesman problem (TSP) on Halin graphs was solvable in polynomial time.

Since Halin graphs have many interesting properties, it is natural to ask under what

conditions a graph contains a Halin graph as a spanning subgraph. Horton, Parker and

Borie [30] showed that deciding whether a graph has a spanning Halin subgraph is NP-

complete, which indicates this is a very hard problem. Since Halin graphs are hamiltonian

and almost pancyclic, the natural candidates are sufficient conditions for graphs to be hamil-

tonian. The majority sufficient conditions for hamiltonian graphs are results: 1) Tutte [40]

showed that every 4-connected planar graph contains a hamiltonian cycle, 2) Dirac [23], in

1952, proved that a simple graph with n vertices is hamiltonian if every vertex has degree at

least n
2
, 3) In term of forbidden subgraphs, Bedrossian [2], Faudree and Gould [25] completely

determined the forbidden pairs for 2-connected graphs containing a hamiltonian cycle.

In 1975, Lovász and Plummer [34] conjectured that: Every 4-connected plane triangu-

lation has a spanning Halin subgraph. Unfortunately, this conjecture was recently disproved

by Chen et al. [9]. Moreover, Chen et al. also pointed out that this conjecture does not hold

even if the graph is 5-connected, see [8]. Looking for the degree condition, Chen, Shan and

I [27] showed that: There exists n0 > 0 such that for any graph G with n ≥ n0 vertices, if

the minimum degree of G is at least n+1
2

, then G contains a spanning Halin subgraph. In this

thesis, it is natural to consider the sufficient conditions in term of “forbidden subgraphs”.
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1.2 Forbidden subgraphs

Let H be a graph. A graph H is an induced subgraph of G if there exists a set

A ⊆ V (G) such that 〈A〉 isomorphic to H . A graph G is said to be H-free if G does not

contain H as an induced subgraph. More generally, given a family of connected graphs

H = {H1, H2, · · · , Hk}, we say that a graph G is H-free if G contains no induced subgraph

isomorphic to any graph in H. In this case, we call the graphs in H forbidden subgraphs of

G. We call H a forbidden pair if H = {H1, H2}.

The research in this area has been mainly driven by the conjecture of Matthew and

Sumner [35] that: Every 4-connected claw-free graph is hamiltonian. Although Matthew and

Sumners conjecture is still open, Kaiser and Vrána [33] showed that every 6-connected claw-

free graph is hamiltonian, and Hu, Tian and Wei [31] showed that every 8-connected claw-free

graph is hamiltonian connected. On the other hand, Brandt, Favaron and Ryjácek [6] showed

that for any positive integer k, there are infinitely many k-connected claw-free graphs which

are not pancylic. Although in their examples only one even cycle is missing, I observed

that by modifying their examples, we can construct infinitely many k-connected claw-free

graphs without a spanning Halin subgraph. So, it makes sense to investigate what pair of

graphs {H1, H2} such that a k-connected {H1, H2}-free graph possesses some hamiltonian

properties.

In 1991, Bedrossian [2] completely determined all forbidden pairs for when a 2-connected

graph is hamiltonian. Later, in 1995, Faudree, Gould, Ryjáček and Schiermeyer [24] proved

that every 2-connected {Claw, Z3}-free graph of order at least 10 is hamiltonian. In [25],

Faudree and Gould also completely characterized the forbidden pairs for hamiltonicity of

2-connected graphs with large order by allowing a finite number of exceptions. In the same

paper, they also determined the forbidden pairs for the class of traceable graphs. In 2004,

Gould, Luczak and Pfender [29] got positive results about forbidden pairs for pancyclic

graphs. In 1997, Faudree and Gould [25]; in 2000, Chen and Gould [12]; and in 2002,

Broersma et al. [7] separately gave some necessary conditions in terms of forbidden pairs for
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the class of graphs that are hamiltonian connected.

Let H1 and H2 be two sets of forbidden subgraphs; we write H1 ≤ H2 if for every

H2 ∈ H2, there exists H1 ∈ H1 such that H1 is an induced subgraph of H2. Clearly, if

H1 ≤ H2, then every H1-free graph is also H2-free. A pair H of graphs is called a forbidden

pair for spanning Halin subgraph if every 3-connected H-free graph contains a spanning

Halin subgraph. The reason that we add connectivity condition is that Halin graphs are 3-

connected. In [11], Chen et al. investigated forbidden pairs for graphs containing a spanning

Halin subgraph, made the following conjecture and showed that the necessary condition

holds for graphs with large size.

Conjecture 1.2.1. Let H be a pair of connected graphs. Then every 3-connected H-

free graph has a spanning Halin subgraph (of sufficiently large order) if and only if H ≤

{Claw, Z3} or H ≤ {Claw,B1,2}.

In 2014, Chen et al. [11] showed that: Every 3-connected {Claw, P5}-free graph has

a spanning Halin subgraph. Later, in [10], Chen et al. showed that: There exists a span-

ning Halin subgraph in 3-connected {Claw, Z2}-free graphs or 3-connected {Claw,B1,1}-free

graphs.

In a series of papers([13, 14, 15, 16, 17, 18, 19, 20]), Chudnovsky and Seymour give a

decomposition theorem for claw-free graphs. Roughly speaking, a claw-free graph is a line

graph, or a long circular interval graph, or an antiprismatic graph, or several additional

classes of graphs, or could be decomposed into some smaller graphs by a few specified

operations, named “joins”. Since their theorem is much more involved in this thesis, in the

following, we only state the theorem and will give specific definitions in Chapter 2.

Theorem 1. [17](Decomposition Theorem For Claw-Free Graphs)

Let G be a claw-free trigraph. Then either

• G ∈ F0 ∪ · · · ∪ F7, or

• G admits either a 0-join, a 1-join, a generalized 2-join, a hex-join, a nondominating

W -join or twins.
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In this thesis, we will apply decomposition theorem for claw-free graphs to show that

the sufficient condition of Conjecture 1.2.1 holds by following two theorems.

Theorem 2. Every 3-connected {Claw, Z3}-free graph has a spanning Halin subgraph.

Theorem 3. Every 3-connected {Claw,B1,2}-free graph has a spanning Halin subgraph.

The specific plan for this thesis is given below. In Chapter 2, we will introduce some

definitions, notations, the decomposition theorem for claw-free trigraphs and illustrate that

some families of trigraphs mentioned in Theorem 1 are indeed some families of graphs(for

example, line trigraphs are also line graphs). In Chapter 3, we will show that every trigraph

in F1 ∪ F2 ∪ F4 contains both Z3 and B1,2 as induced subgraphs, every graph in F5 is not

3-connected and both Theorem 2 and Theorem 3 hold for near-antiprismatic trigraphs(F6).

In Chapter 4, we will prove some elementary lemmas which will be used repeatedly in later

chapters and will introduce the definition of “strong spanning Halin subgraph” and point

out the relations between strong spanning Halin subgraphs and spanning Halin subgraphs.

From Chapter 5 to Chapter 7, we will show that Theorem 2 and Theorem 3 hold for line

graphs, long circular interval graphs and antiprismatic graphs. From Chapter 8 to Chapter

11, we will discuss that a graph admits a 1-join, a (generalized) 2-join, a hex join or a

nondominating W -join. In Chapter 12, we will talk about twins.
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Chapter 2

PRELIMINARIES

2.1 Definitions and notations

In this thesis, we consider simple and finite graphs only. The notations and definitions

not defined here can be found in [5]. A graph G is an ordered pair (V (G), E(G)) that consists

of a set V (G) of vertices and a set E(G), disjoint from V (G), of edges, together with an

incidence function ψG that associates with each edge of G an unordered pair of vertices of

G. If e is an edge and u and v are vertices such that ψG(e) = uv, then e is said to incident u

and v, and the vertices u and v are called adjacent to each other and nonadjacent otherwise.

A graph is complete if any two vertices are adjacent. A graph is called planar if it can be

embedded in the plane without edge-crossings. Such an embedded graph is called a plane

graph. A graph G is called finite if both V (G) and E(G) are finite. A graph is simple if

there exists at most one edge between every two vertices.

Two graphs G and H are isomorphic, written G ∼= H , if there are bijections φ: V (G) →

V (H) and ϕ: E(G) → E(H) such that ψG(e) = uv if and only if ψH(ϕ(e)) = φ(u)φ(v).

Given two graphs H and G, if V (H) ⊆ V (G) and E(H) ⊆ E(G), then H is called a subgraph

of G and denoted as H ⊆ G. A subgraph obtained from G by deleting edges only is called

an edge-deleted subgraph, and a subgraph obtained from G by deleting some vertices and

all their incident edges is called a vertex-deleted subgraph. A spanning subgraph of a graph

G is a subgraph obtained by edge deletions only. A subgraph obtained by vertex deletions

only is called an induced subgraph; in such cases, the induced subgraph is denoted by 〈S〉

and referred to as the subgraph of G induced by S. A clique of a graph is a set of pairwise

adjacent vertices. A graph G is called a line graph of H if V (G) = E(H) and for every

distinct e, f ∈ E(H), e and f are adjacent in G if and only if they share a common vertex

in H .
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A path is a simple graph whose vertices can be arranged in a linear sequence in such a way

that two vertices are adjacent if they are consecutive in the sequence, and are nonadjacent

otherwise. Likewise, a cycle on three or more vertices is a simple graph whose vertices can

be arranged in a cyclic sequence in such a way that two vertices are adjacent if they are

consecutive in the sequence, and are nonadjacent otherwise. A hole is a cycle with at least 4

vertices. A path or cycle which contains every vertex of a graph is called a hamiltonian path

or hamiltonian cycle of the graph. A graph is traceable if it contains a hamiltonian path,

and hamiltonian if it contains a hamiltonian cycle. A graph is hamiltonian connected if any

two vertices are connected by a hamiltonian path. A simple graph on n vertices is pancyclic

if it contains at least one cycle of each length l, where 3 ≤ l ≤ n.

A graph is connected if, for every partition of its vertex set into two nonempty sets

X and Y , there is an edge with one end in X and the other in Y ; otherwise the graph is

called disconnected. Every graph G may be expressed uniquely (up to order) as a disjoint

union of connected graphs; these graphs are called the connected components, or simply the

components, of G. A graph is k-connected(resp. k-edge connected) if the removal of any

vertex(resp. edge) set of size at most k − 1 results in a connected graph. A vertex cut in a

graph G is a subset X of V (G) such that if we delete X from G and all edges incident to

X , then 〈G \X〉 has more than one components. In this thesis, vertex cuts of size one, two

and three are called cut vertex, 2-cut and 3-cut, respectively.

An acyclic graph is one that contains no cycles. A connected acyclic graph is called a

tree. A vertex of a tree having degree exactly one is called a leaf of and all others are called

stems. A star, denoted by 〈u; v1, v2, · · · , vt〉, is a tree with exactly one stem. The stem of

a star is also called a center. A homeomorphically irreducible tree(HIT) is a tree with no

stems having degree 2. In particular, if the homeomorphically irreducible tree is a spanning

subgraph of G, it is called a homeomorphically irreducible spanning tree (HIST) of G. A

Halin graph is a plane graph, denoted by H = T ∪ C, such that T is a HIST of H with

|T | ≥ 4 and C is a cycle obtained by connecting all leaves of T following the order given by

the plane embedding. Following the definition of H , we notice that for any stem x, there
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are degT (x) many faces Fx containing x and an edge on C. We call such a face an x-face.

A spanning Halin subgraph H = T ∪ C of G is called a strong spanning Halin subgraph

of G if for any stem x ∈ V (T ), there is an x-face Fx such that x is adjacent in G to two

end vertices x1, x2 of the edge of Fx on C, for any two different stems x and x∗, we have

x1x2 6= x∗1x
∗
2 if x and x∗ are not adjacent in T .

Let P be a hamiltonian property (such as traceable, hamiltonian, pancyclic and so on),

and k be the least connectivity possible in a graph with property P. Thus, for example,

if P is traceability, then k = 1, while if P is hamiltonicity, then k = 2. A set of graphs

H = {H1, H2, · · · , Hk} is called forbidden subgraphs of P if every k-connected H-free graph

has property P. In particular, we call H a forbidden pair of P if H = {H1, H2}.

A claw, denoted by 〈v; u1, u2, u3〉, is a star with exactly three leaves. For three nonneg-

ative integers k, l,m, let Nk,l,m, be obtained from a triangle K3 by attaching three disjoint

paths with length k, l,m to three distinct vertices of K3, respectively. Commonly, Nk,l,0 is

usually denoted by Bk,l, where B stands for “Bull”, and Nk,0,0 is denoted by Zk. In par-

ticular, we denote Z3 by 〈x, y, z; uvw〉, B1,2 by 〈u; x, y, z; vw〉, and N1,1,1 by 〈x, y, z; u; v;w〉,

where 〈x, y, z〉 is the triangle K3. Please refer to the following figures for examples.

N

claw

v

v

vv

u1

u2 u3

x
x

x

y

y

y

z

z

z

u

u

u

w

w

w

Z3

B1,2

Figure 2.1. Example of some forbidden graphs

For any two subgraphs H and K of G, E(H,K) denotes the set of edges in G with one
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end in H and the other in K. Let v ∈ V (G); the degree of v in G, denoted by degG(v), is

the number of edges that are incident with v. For any u, v ∈ V (G), the distance between u

and v in G is the number of edges in a shortest path connecting them, denoted by dist(u, v).

Similarly, dist(v, A) is the number of edges in a shortest path from v to A, where A ⊆ V (G)

and v ∈ V (G). For any vertex sets A,B ∈ V (G), N i
A(B) = {v ∈ B| dist(v, A) = i} and we

denote N1
A(B) by NA(B) for simplicity.

2.2 Decomposition theorem for claw-free graphs

Because the main tool for proving Theorem 2 and Theorem 3 in this thesis is Chud-

novsky and Seymour’s decomposition theorem for claw-free graphs, in this section, we will

quote all definitions related to decomposition theorem for claw-free graphs from their paper

directly. We will also give some explanations for these definitions and convert some families

of trigraphs into graphs if necessary and possible.

In a graph, every pair of vertices is either adjacent or nonadjacent, but in a trigraph,

some pairs may be undecided. In [17], Page 1, Chudnovsky and Seymour defined a trigraph

as following. A trigraph G consists of a finite set V (G) of vertices, and a map θG : V (G)2 →

{1, 0,−1}, satisfying:

• for all v ∈ V (G), θG(v, v) = 0,

• for all distinct u, v ∈ V (G), θG(u, v) = θG(v, u),

• for all distinct u, v, w ∈ V (G), at most one of θG(u, v), θG(v, w) = 0.

θG is called the adjacency function of G. For distinct u, v in V (G), we say that u, v are

strongly adjacent if θG(u, v) = 1, strongly antiadjacent if θG(u, v) = −1, and semiadjacent if

θG(u, v) = 0. We say that u, v are adjacent if they are either strongly adjacent or semiadja-

cent, and antiadjacent if they are either strongly antiadjacent or semiadjacent. If we denote

by F (G) the set of all pairs {u, v} such that u, v ∈ V (G) are distinct and semiadjacent, then

a trigraph G is a graph if F (G) = ∅. By the definition of trigraph, we can easily see that the
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set of undecided pairs F (G) is a matching. If H is a graph and G is a trigraph, we say that

G is an H-trigraph if V (G) = V (H), and for all distinct u, v ∈ V (H), if u, v are adjacent in

H then they are adjacent in G, and if u, v are nonadjacent in H then they are antiadjacent

in G.

Based on “trigraphs”, Chudnovsky and Seymour defined some basic classes of trigraphs

for claw-free trigraphs and also introduced some decomposition operations, named as “joins”.

Although they did not explicitly state in their paper, some families of trigraphs defined

there are indeed families of graphs. For example, every line trigraph is indeed a line graph.

Here we strictly follow and directly quote their definitions (see [17], Page 3 to 6) for easily

understanding.

Some basic classes of claw-free trigraphs:

F0: Line trigraphs. Let H be a graph and G be a trigraph with V (G) = E(H). We

say that G is a line trigraph of H if for all distinct e, f ∈ E(H):

• if e, f have a common end in H then they are adjacent in G, and if they have a common

end of degree at least three in H , then they are strongly adjacent in G;

• if e, f have no common end in H then they are strongly antiadjacent in G.

We say that G ∈ F0 if G is isomorphic to a line trigraph of some graph. It is easy to check

that any line trigraph is claw-free. The following lemma shows that a line trigraph is also a

line graph.

Lemma 2.2.1. Let H be a graph. If G is a line trigraph of a graph H in F0, then there

exists a graph H∗ such that G is the line graph of H∗.

Proof. Let G be a line trigraph of a graph H . For every two vertices e and f in

V (G), if e and f share a common vertex with degree at least 3 in H or e and f do not

share a common vertex, then ef is determined (strongly adjacent or strongly antiadjacent)

in E(G). Thus we assume e and f share a common vertex u with degree 2 in H . Let e = v1u

and f = v2u. If ef exists in G, let H ′ = H ; if ef does not exist in G, then split u into
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two vertices, say u1 and u2, and let e = v1u1, f = v2u2 and denote the new graph by H ′.

Then G is a line trigraph of H ′ with ef is determined. If we perform this operation to all

undetermined edges of G and denote the final graph obtained from H by splitting degree 2

vertices, if necessary, as H∗, then G is a line graph of H∗. �

F1: Trigraphs from the icosahedron. The icosahedron is a planar graph with twelve

vertices and each vertex has degree exactly five (See Figure 2.2(1)). For k ∈ [0, 2], icosa(−k)

denotes the graph obtained from the icosahedron by deleting k pairwise adjacent vertices. We

say G ∈ F1 if G is a claw-free icosa(0)-trigraph, icosa(−1)-trigraph or icosa(−2)-trigraph.

In Section 5.1 and 5.2 of paper [17], Chudnovsky and Seymour showed that every claw-

free icosa(0)-trigraph G and every claw-free icosa(-1)-trigraph G satisfies F (G) = ∅, and

therefore they are graphs. Every claw-free icosa(-2)-trigraph G satisfies |F (G)| ≤ 2 and the

two undetermined edges do not exist in the corresponding icosa(-2)-graph.

(1) (2)

v1

v1

v2

v2

v3

v3

v4

v4

v5

v5 v6

v6

v7

v7

v8

v8

v9

v9

v10

v10

v11
v11

v12

v12
v13

Figure 2.2. Examples of trigraphs in F1 or F2.

F2: The trigraphs. Let G be the trigraph with vertex set {v1, · · · , v13}, with adjacency

as follows. v1 · · · v6v1 is a hole in G of length 6. Next, v7 is adjacent to v1, v2; v8 is adjacent

to v4, v5 and possibly to v7; v9 is adjacent to v6, v1, v2, v3; v10 is adjacent to v3, v4, v5, v6,

v9; v11 is adjacent to v3, v4, v6, v1, v9, v10; v12 is adjacent to v2, v3, v5, v6, v9, v10; and v13

is adjacent to v1, v2, v4, v5, v7, v8. No other pairs are adjacent, and all adjacent pairs are

strongly adjacent except possibly for v7, v8 and v9, v10. (Thus the pair v7v8 may be strongly
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adjacent, semiadjacent or strongly antiadjacent; the pair v9v10 is either strongly adjacent

or semiadjacent, see Figure 2.2(2)). We say H ∈ F2 if H is isomorphic to G \ X , where

X ⊆ {v7, v11, v12, v13}.

F3: Long circular interval trigraphs. Let Σ be a circle, and let F1, · · · , Fk ⊆ Σ be

homeomorphic to the interval [0, 1]. Assume that no three of F1, · · · , Fk have union Σ, and

no two of F1, · · · , Fk share an end-point. Now let V ⊆ Σ be finite, and let G be a trigraph

with vertex set V , in which, for distinct u, v ∈ V ,

• if u, v ∈ Fi for some i then u, v are adjacent, and if also at least one of u, v belongs to

the interior of Fi then u, v are strongly adjacent;

• if there is no i such that u, v ∈ Fi then u, v are strongly antiadjacent.

Such a trigraph G is called a long circular interval trigraph. We write G ∈ F3 if G is

a long circular interval trigraph. In particular, a graph G with vertex set V is called a long

circular interval graph if every distinct u, v ∈ V , u, v are adjacent if and only if there exists

i such that u, v ∈ Fi.

Lemma 2.2.2. Every long circular interval trigraph in F3 is also a long circular interval

graph.

Proof. If every edge in G is determined, then the conclusion is clearly true. Thus,

we can assume there exists an undetermined edge uv in G. By definition, there exists an

interval Fi containing both u and v as end-points.

Since no two of F1, · · · , Fk share an end-point and V is finite, if uv exists in G, we can

find two extremal small close intervals, say [a, u] and [v, b], such that [a, u], [v, b] ⊆ Σ\∪k
i=1Fk,

and for any vertices w ∈ V \ {u, v}, w /∈ [a, u] ∪ [v, b]. Let F ′
i = [a, u] ∪ Fi ∪ [v, b], then F ′

i

possesses the same properties as Fi. If uv does not exist in G, we can also find two extremal

small intervals [u, c) and (d, v] such that [u, c), (d, v] ⊆ Fi and for any vertices w ∈ V \{u, v},

w /∈ [u, c] ∪ [d, v]. Let F ′
i = Fi \ ([u, c) ∪ (d, v]), then F ′

i possesses the same properties as Fi.

If we perform this operation to all undetermined edges of G and denote the final intervals

as F ′
1, · · · , F

′
k(note that we have Fj = F ′

j if one end of Fj is not a vertex of G), then F ′
1, · · · , F

′
k
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have the same properties of F1, · · · , Fk and G is a long circular interval graph based on

F ′
1, · · · , F

′
k. �

F4: Modifications of L(K6). Let H be a graph with seven vertices v1, · · · , v7, in which

v7 is adjacent to v6 and to no other vertex, v6 is adjacent to at least three of v1, · · · , v5, and

there is a cycle with vertices v1v2 · · · v5v1 in order. Let J(H) be the graph obtained from

the line graph of H by adding one new vertex, adjacent precisely to those members of E(H)

that are not incident with v6 in H (See Figure 2.3(1)). Then J(H) is a claw-free graph. Let

G be either J(H) (regarded as a trigraph), or (in the case when v4, v5 both have degree

two in H), the trigraph obtained from J(H) by making the vertices v3v4, v1v5 ∈ V (J(H))

semiadjacent. Let F4 be the class of all such trigraphs G.

(1) (2)

v1

v1

v2

v2

v3
v3v4

v5

v6 v7
w1

w2

w3

v0

v

u1

u2

u3

u0

U VW

Figure 2.3. Trigraphs in F4 or F6.

F5: The trigraphs. Let n ≥ 2. Construct a trigraph G as follows. Its vertex set is

the disjoint union of four sets U, V,W and {x1, · · · , x5}, where |U | = |V | = |W | = n, say

U = {u1, · · · , un}, V = {v1, · · · , vn} and W = {w1, · · · , wn}. Let A ⊆ U ∪ V ∪ W with

|A ∩ U |, |A ∩ V |, |A ∩W | ≤ |W | − 1. Adjacency is as follows: U, V,W are strong cliques.

For 1 ≤ i, j ≤ n, ui, vj are adjacent if and only if i = j. And wi is strongly adjacent to uj if

and only if i 6= j, and wi is strongly adjacent to vj if and only if i 6= j . Moreover

• ui is semiadjacent to wi for at most one value of i ∈ [1, n], and if so then vi ∈ A,
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• vi is semiadjacent to wi for at most one value of i ∈ [1, n], and if so then ui ∈ A,

• ui is semiadjacent to vi for at most one value of i ∈ [1, n], and if so then wi ∈ A,

• no two of U \A, V \ A, W \ A are strongly complete to each other.

Also, x1 is strongly U ∪ V ∪W -complete; x2 is strongly complete to U ∪ V , and either

semiadjacent or strongly adjacent to x1; x3 is strongly complete to U ∪ {x2}; x4 is strongly

complete to V ∪ {x2, x3}; x5 is strongly adjacent to x3, x4; and all other pairs are strongly

antiadjacent. Let the trigraph just constructed be G, and let H = 〈V (G) \ A〉. Then H is

claw-free; let F5 be the class of all such trigraphs H .

F6: Near-antiprismatic trigraphs. Let n ≥ 2. Construct a trigraph as follows. Its

vertex set is the disjoint union of three sets U, V,W , where |U | = |V | = n + 1 and |W | = n,

say U = {u0, u1, · · · , un}, V = {v0, v1, · · · , vn} and W = {w1, · · · , wn}. Adjacency is as

follows: U, V,W are strong cliques. For 0 ≤ i, j ≤ n with (i, j) 6= (0, 0), let ui, vj be adjacent

if and only if i = j, and for 1 ≤ i ≤ n and 0 ≤ j ≤ n let wi be adjacent to uj, vj if and

only if i 6= j 6= 0; u0, v0 may be semiadjacent or strongly antiadjacent. All other pairs

not mentioned so far are strongly antiadjacent. Now let A ⊆ U ∪ V ∪ W \ {u0, v0} with

|W \ A| ≥ 2. Let all adjacent pairs be strongly adjacent except: ui is semiadjacent to vi for

at most one value of i ∈ [1, n], and if so then wi ∈ A (See Figure 2.3(2)).

Let the trigraph just constructed be G, and let H =〈V (G) \ A〉. Then H is claw-free;

let F6 be the class of all such trigraphs H . We call such a trigraph H near-antiprismatic,

since making u0, v0 strongly adjacent would produce an antiprismatic trigraph.

F7: Antiprismatic trigraphs. Let us say a trigraph is antiprismatic if for every

X ⊆ V (G) with |X| = 4, X is not a claw and there are at least two pairs of vertices in X

that are strongly adjacent. Let F7 be the class of all antiprismatic trigraphs.

A graph G is called antiprismatic graph if for every X ⊆ V (G) with |X| = 4, X is not

a claw and there are at least two pairs of vertices in X that are adjacent. It is clearly that

every antiprismatic trigraph is also an antiprismatic graph.
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Now we want to introduce some classes of graphs admit certain decomposition opera-

tions, which are named as “joins”:

0-join: Suppose that W1, W2 is a partition of V (G) such that W1,W2 are nonempty and

W1 is strongly anticomplete to W2. We call the pair (W1, W2) a 0-join in G. If a tirgraph

G admits a 0-join, then G is disconnected. Since the spanning Halin subgraph exists in a

graph with connectivity at least 3, we do not need to consider about the family of trigraphs

admit 0-join.

1-join: Suppose that W1, W2 is a partition of V (G), and for i = 1, 2 there is a subset

Ai ⊆Wi such that:

• Ai, Wi \ Ai 6= ∅ for i = 1, 2,

• A1 ∪A2 is a strong clique, and

• W1 \A1 is strongly anticomplete to W2, and W1 is strongly anticomplete to W2 \ A2.

In these circumstances, we say that (W1, W2) is a 1-join. If G admits a 1-join, all edges

between W1 and W2 are determined (strongly adjacent or strongly antiadjacent), and all

edges in W1 and W2 are not known.

Generalized 2-join: Suppose that W0, W1, W2 are disjoint subsets with union V (G),

and for i = 1, 2 there are subsets Ai, Bi of Wi satisfying the following:

• W0 ∪A1 ∪A2 and W0 ∪B1 ∪B2 are strong cliques, and W0 is strongly anticomplete to

Wi \ (Ai ∪Bi) for i = 1, 2;

• for i = 1, 2, Ai ∩Bi = ∅ and Ai ,Bi and Wi \ (Ai ∪Bi) are all nonempty; and

• for all v ∈ W1 and w ∈ W2, either v is strongly antiadjacent to w, or v ∈ A1 and

w ∈ A2, or v ∈ B1 and w ∈ B2.

We call the triple (W0 ∪W1 ∪W2) a generalized 2-join, and if W0 = ∅ we call the pair (W1,

W2) a 2-join. Note that every edge in (generalized) 2-join is either determined (strongly

adjacent or strongly antiadjacent) or not known.
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Hex-join: Let (W1, W2) be a partition of V (G), such that for i = 1, 2 there are strong

cliques Ai, Bi, Ci ⊆Wi with the following properties:

• W1, W2 are both nonempty;

• for i = 1, 2 the sets Ai , Bi , Ci are pairwise disjoint and have union Wi;

• if v1 ∈ W1 and v2 ∈ W2, then v1 is strongly adjacent to v2 unless either v1 ∈ A1 and

v2 ∈ A2, or v1 ∈ B1 and v2 ∈ B2, or v1 ∈ C1 and v2 ∈ C2; and in these cases v1, v2 are

strongly antiadjacent.

In these circumstances, we say that G is a hex-join of 〈W1〉 and 〈W2〉. The edges between

W1 and W2 are all determined and the edges between Ai, Bi and Ci are not known.

Nondominating W -join: The pair (A,B) is called a homogeneous pair in G if both

A and B are strong cliques, and for every vertex v ∈ V (G) \ (A ∪ B), either NA(v) = A

or NA(v) ∩ A = ∅ and either NB(v) = B or NB(v) ∩ B = ∅. Let (A,B) be a homogeneous

pair, such that NB(A) ∩ B 6= ∅ and NB(A) ∩ B 6= B, and at least one of A,B has at least

two members. In these circumstances, we call (A,B) a W -join. The W -join is called a

nondominating W -join if there exist a vertex of G \ (A ∪ B) has no neighbor in A ∪ B.

Twins: We call u, v are twins if uv ∈ E(G) and NG\{u,v}(u) = NG\{u,v}(v).

In [17], Chudnovsky and Seymour introduced decomposition theorem for claw-free tri-

graphs as follows.

Theorem 1:(Decomposition Theorem For Claw-Free Trigraphs)

Let G be a claw-free trigraph. Then either

• G ∈ F0 ∪ · · · ∪ F7, or

• G admits either a 0-join, a 1-join, a generalized 2-join, a hex-join, a nondominating

W -join or twins.

In Chapter 3, we will show that every trigraph in F1 ∪ F2 ∪ F4 contains both Z3 and

B1,2 as induced subgraphs on their strongly adjacent pairs; every trigraph in F5 is not 3-

connected; and there exists a strong spanning Halin subgraph in any near-antiprismatic
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trigraph by only using strongly adjacent pairs. Since all pairs are mentioned in a trigraph

admits a 1-join, a (generalized) 2-join, a hex-join or a nondominating W -join are either

determined (strongly adjacent or strongly antiadjacent) or not known, if G is a trigraph

admits these joins, there exists a graph H such that V (G) = V (H) and for any pair {u, v},

uv is adjacent in H if and only if uv is strongly adjacent in G and uv is nonadjacent in H

if and only if uv is strongly antiadjacent in G. To find a spanning Halin subgraph in G,

we only need to find a spanning Halin subgraph in H . By Lemma 2.2.1, Lemma 2.2.2 and

the definition of antiprismatic graphs, we only need to consider graphs, instead of trigraphs,

when we are searching a spanning Halin subgraph in G if G ∈ F0 ∪ F3 ∪ F7 or G admits a

0-join, a 1-join, a generalized 2-join, a hex-join, a nondominating W -join or twins.
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Chapter 3

GRAPHS IN F1 ∪ F2 ∪ F4 ∪ F5 ∪ F6.

In this chapter, we will show that every trigraph in F1 ∪ F2 ∪F4 contains both Z3 and

B1,2 as induced subgraphs by only using strongly adjacent pairs, every trigraph in F5 is not

3-connected and every trigraph in F6 contains a strong spanning Halin subgraph.

3.1 Trigraphs in F1 ∪ F2 ∪ F4 are neither Z3-free nor B1,2-free.

Proposition 1. Every trigraph in F1 contains both Z3 and B1,2 as induced subgraphs.

Proof. Let G be a trigraph in F1, v11, v12 be the two possible deleted vertices, and

v2v4, v7v9 be two semiadjacent edges in F (G) if both v11 and v12 are deleted. By Lemma 5.1

and 5.2 in Chudnovsky and Seymour’s paper, we know every edge, except for v2v4 and v7v9,

id strongly adjacent. So 〈v1, v2, v3; v6v8v10〉 is an induced Z3 and 〈v6; v8, v10, v7; v2v1〉 is an

induced B1,2. �

v1
v1

v2
v2

v3
v3

v4
v4

v5
v5

v6
v6

v7
v7

v8
v8

v9
v9

v10
v10

v11
v11

v12
v12

Figure 3.1. Every trigraph in F1 contains both Z3 and B1,2 as induced subgraphs.

Proposition 2. Every trigraph in F2 contains both Z3 and B1,2 as induced subgraphs.
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Proof. By the definition, it is easy to see that 〈v8, v4, v5; v6v1v2〉 is an induced Z3 and

〈v3; v4, v8, v5; v6v1〉 is an induced B1,2. �

Proposition 3. Every trigraph in F4 contains both Z3 and B1,2 as induced subgraphs.

Proof. We may assume v1v6, v3v6 ∈ E(H) and denote the new vertex of J(H) as v.

Then 〈v1v6, v6v7, v3v6; v3v2, v, v4v5〉 is an induced Z3 and 〈v1v2; v1v6, v6v7, v3v6; v3v4, v4v5〉 is

an induced B1,2(See Figure 3.2). �

(1) (2)

v1

v1

v2

v2

v3

v3

v4

v4

v5
v5

v6

v6

v7

v7

v

Figure 3.2. Every trigraph in F4 contains both Z3 and B1,2 as induced subgraphs.

3.2 Connectivity of trigraphs in F5

Proposition 4. Every trigraph in F5 is not 3-connected.

Proof. If G is a trigraph in F5, then NG(x5) = {x3, x4}. Thus G is not 3-connected.

�

3.3 Near-antiprismatic trigraphs contain strong spanning Halin subgraphs

Since we will show that every antiprismatic trigraph contains a strong spanning Halin

subgraph in Chapter 7, here, by the definition of near-antiprismatic trigraphs, we can assume

u0v0 /∈ E(G). We will prove the following proposition in this section.
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Proposition 5. If G is a 3-connected near-antiprismatic trigraph, then G contains a strong

spanning Halin subgraph on its strongly adjacent pairs.

We want to introduce the following two claims about near-antiprismatic trigraphs before

searching a strong spanning Halin subgraph in G.

Claim 3.3.1. |U \ A| ≥ 4 and |V \ A| ≥ 4.

Proof. Since G is 3-connected and u0wi, u0vj, v0wi, v0uj /∈ E(G) for all wi ∈ W ,

uj ∈ U and vj ∈ V , we have degU\A(u0) ≥ 3 and degV \A(v0) ≥ 3. Thus |U \ A| ≥ 4 and

|V \ A| ≥ 4. �

Claim 3.3.2. For any wi ∈ W \ A, |NU\A(wi)| ≥ |U \ A| − 2 ≥ 2 and |NV \A(wi)| ≥

|V \ A| − 2 ≥ 2.

Proof. Since for any wi ∈ W \ A, it is strongly antiadjacent to at most two vertices,

u0 and ui, in U \ A, we have |NU\A(wi)| ≥ |U \ A| − 2 ≥ 2. Similarly, we can show that

|NV \A(wi)| ≥ |V \A| − 2 ≥ 2. �

According to Claim 3.3.1 and 3.3.2, we can find a strong spanning Halin subgraph in

G as follows.

Case 1: |W \ A| ≥ 3.

We let W \ A = {w1, w2, · · · , wt} and assume uiw1, ujw2, ukw3, vsw1, ujw1, vtw2, vlwt ∈

E(G), where i, j, k, s, t, l ∈ [1, n]. Since U \ (A∪{ui}), V \ (A∪{vs}) and W \ (A∪{w1, w2})

are strong cliques, there exist strong hamiltonian paths, say P1 = ujP1uk, P2 = vtP2vl

and P3 = w3P3wt in them, respectively. Let W = P1P3P2 ∪ {vtw2, w2uj} be a strong

cycle and all vertices on the strong path uiw1vs be stems of T with NW (ui) = V (P1),

NW (w1) = V (P3) ∪ {w2} and NW (vs) = V (P2). Let H = T ∪W , since both ui and vs are

adjacent to two consecutive vertices of C∗ in T , ujw1, w2w1 ∈ E(G) and ujw2 ∈ E(C), we

know H is a strong spanning Halin subgraph of G (See Figure 3.3(1)).

Case 2: W \ A = {w1, w2}.
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Since G is 3-connected, there must exist k ∈ [1, n] such that ukbk ∈ E(G). By Claim

3.3.1 and 3.3.2, we may assume that uiw1, ujw2, ujw1, vsw1, vtw2 ∈ E(G). Since both U \(x∪

{ui}) and V \{x∪{vs}} are strong cliques, there exist hamiltonian strong paths P1 = ujP1uk

and P2 = vtP2vk in them respectively. Let W = P1P2∪{vtw2, w2uj} be a strong cycle and all

vertices on the strong path uiw1vs be stems of T with NW (ui) = V (P1), NW (w1) = ∪{w2}

and NW (vs) = V (P2). Let H = T ∪W , similar as seen as Case 1, we know H is a strong

spanning Halin subgraph of G (See Figure 3.3(2)).

w1w1

w2

w2

w3
wt

u0u0 ui
ui

uj

uj
uk

uk

v0v0

vk

vsvs

vt

vt

vl

(1) (2)

Figure 3.3. G is a 3-connected near-antiprismatic trigraph.



22

Chapter 4

SOME LEMMAS

From this chapter and after, we only consider graphs. We introduce several lemmas in

this chapter, which will be used repeatedly in later chapters.

4.1 Properties of minimum vertex cut in a claw-free graph

In the remaining part of this thesis, we always assume G is a non-complete claw-free

graph and reserve S as a minimum vertex cut of G.

Lemma 4.1.1. Let G be a claw-free graph, then

1. For any x ∈ S and any component D of G \ S, N(x) ∩D 6= ∅

2. G \ S has exact two components, say G1 and G2.

Proof. The first statement holds for minimum cuts in any graph. The second one

follows the first one and that G is claw-free. �

Let Vi = V (Gi) for i ∈ [1, 2], and assume, without loss of generality, that |V1| ≤ |V2|. In

addition, we assume |V1| is a minimum subject to |S| being minimum.

Lemma 4.1.2. Following the above definitions of G, S and V1, we have the following state-

ments.

1. |NV1(x)| ≥ 2 for each x ∈ S if |V1| ≥ 2. In general, for each A ⊆ S, we have

|NV1(A)| > |A| or NV1(A) = V1 and |NV2(A)| > |A| − 1 or NV1(A) = V2.

2. NVi
(x) is a clique for each x ∈ S, where i ∈ [1, 2].

Proof. Suppose to the contrary, there is a vertex x ∈ S such that degV1(x) = 1. Let

w be the unique neighbor of v in V1. Then, S∗ = (S \ {v}) ∪ {w} is also a cut of G, and
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V1 \{w} is not adjacent to any other vertices in G\S∗. Thus G\S∗ has a component smaller

than V1, giving a contradiction.

The second conclusion is true since G is claw-free. �

4.2 Strong spanning Halin subgraph and spanning Halin subgraph

Let G be a graph, and x, y are two vertices of G. x and y are called twins of G if

xy ∈ E(G) and NG(x) = NG(y). Twins emerge when we duplicate vertices. For any vertices

v ∈ V (G), by duplicating a vertex v, we mean that we add a new vertex w to G and let w

be adjacent to all neighbors of v and v itself. Clearly, v and w are twins in a new graph.

If G is a claw-free graph, then duplicating any vertex of G results in a claw-free graph. A

3-connected claw-free graph is called twins-free if every pair of twins appears only in the

3-cut. Recall that a Halin graph H = T ∪ C is a plane graph. Following the definition of

H , we notice that for any stem x of T , there are degT (x) many faces Fx containing x and an

edge on C. We call such a face an x-face.

Let G be a graph. A spanning Halin subgraph H = T ∪ C of G is called a strong

spanning Halin subgraph of G if for any stem x ∈ V (T ), there is an x-face Fx such that x

is adjacent (in G) to two end vertices x1, x2 of the edge of Fx on C. For any two different

stems x and x∗, we have x1x2 6= x∗1x
∗
2 if x and x∗ are not adjacent in T .

Note that the induced subgraph on all stems of T is still a tree, denoted by T ′. Every

leaf of T ′ is adjacent to at least two consecutive vertices of V (C) in T . So to check whether

H is a strong spanning Halin subgraph, we only need to investigate that for every stem x of

T ′, there is a x-face Fx that contains an edge uv of C such that both u and v are adjacent

to x in G.

Lemma 4.2.1. Let G be a graph and {x, y} be a pair of twins of G. If G \ {y} has a strong

spanning Halin subgraph, then G also has one.

Proof. Let H = T ∪ C be a strong spanning Halin subgraph of G \ {y}. We will

insert y to C to form a strong spanning Halin subgraph of G by considering either x in
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V (C) or x is a stem of T .

Case 1: Assume that x ∈ V (C).

Let x+ and x− be the successor and the processor of x on C. Set v as the stem of

T is adjacent to x. After replacing x by x, y, we insert y in C to obtain a cycle C∗ =

(C \ {x+x, xx−}) ∪ {x+x, xy, yx−} and a tree T ∗ = T ∪ {vy}.

We are now checking that H∗ = T ∗ ∪ C∗ is a strong spanning Halin subgraph of G.

For any stem w ∈ V (T ), if w = v, then w has two neighbors x, y in G∗ and xy is on C∗; if

w 6= v, then NG(w) contains two consecutive vertices u and u+. If uu+ 6= x−x, then u, u+

are also consecutive on C∗; if uu+ = xx−, then y, x− are two consecutive neighbors of w on

C∗. In any case, we are done.

Case 2: Suppose that x is a stem of T .

In this case, we insert y between x1, x2 by letting C∗ = (C \ {x1x2}) ∪ {x1y, x2y} and

a tree T ∗ = T ∪ {xy}. Clearly, x1, y ∈ NG(x) are two consecutive vertices on C∗. For each

stem z with z 6= x, let z1, z2 ∈ NG(z) be two associated neighbors of z, which are consecutive

on C. If z1z2 = x1x2, which implies x and z are adjacent in T , then yz ∈ E(G) and y, x2

are two consecutive vertices associate with z on C∗. If z1z2 6= x1x2, then z1, z2 are still two

consecutive vertices associate with z on C∗. Clearly, each stem is associated with a distinct

edge of C∗. �

In Chapter 12, we will show that if G is 3-connected {claw, Z3}-free or {claw,B1,2}-free

and admits a twins in its 3-cut, then G contains a spanning Halin subgraph. Thus, from

the next chapter on (except Chapter 12), we always assume G is twins-free and try to find

a strong spanning Halin subgraph, instead of a spanning Halin subgraph, in G.

4.3 One special case of 3-connected {claw, Z3}-free graph

In this section, we assume G is a 3-connected {claw, Z3}-free graph with |V1| ≥ 2, and

at least one of V1 and V2 is not a clique. Then the following proposition is showing that G

contains a strong spanning Halin subgraph.
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Proposition 6. Let G be an n-vertex 3-connected {claw, Z3}-free graph with |V1| ≥ 2, and

at least one of V1 and V2 is not a clique, then G contains a strong spanning Halin subgraph.

Proof. Let G be a graph satisfying the condition of Proposition 6. We will find a

strong spanning Halin subgraph through the following sequence of claims.

Claim 4.3.1. For any x ∈ S, the induced subgraph 〈V2 ∪ {x}〉 does not contain an induced

path xw1w2w3 and |N2(x)| ≥ 2.

Proof: To prove the first part of the claim, suppose on the contrary that there is an

x ∈ S and an induced path xw1w2w3 with w1, w2, w3 ∈ V2. Since |V1| ≥ 2, there are two

vertices u1, u2 ∈ N1(x), then 〈u1, u2, x;w1w2w3〉 is an induced Z3, a contradiction.

We now prove the second part of the claim. If there exist x ∈ S such that |N2(x)| = 1,

let N2(x) = {w}. By the above statement, we know V2 = {w} ∪ N2
2 (x). Since G is claw-

free, N2(w) \ {v} is a clique, as well as V2. This in turn implies V1 is not a clique. Let

w′, w′′ ∈ N2
2 (x). Since N1(x) is a clique, V1 \N1(x) 6= ∅. Let xu1u3 be an induced path with

u1, u3 ∈ V1. Then 〈w′, w′′, w; xu1u3〉 is an induced Z3, giving a contradiction. �

For any vertex x ∈ S, since |V1| ≥ 2, we have |N1(x)| ≥ 2. Following Claim 3.1, we have

|N2(x)| ≥ 2. So |Ni(x)| ≥ 2 for both i ∈ [1, 2]. Thus V1 and V2 are symmetric if we only

use the property |Ni(x)| ≥ 2. We assume, without loss of generality, that V2 is not a clique.

Moreover, in the following proof, we let x be a vertex in S and W1,W2, · · · ,Wk be the vertex

sets of components of 〈N2
2 (x)〉. Let W ′

i = N(Wi) for each i ∈ [1, k]. Clearly W ′
i ⊆ N2(x) ,

otherwise, Z3 will be found.

Claim 4.3.2. Wi ∪W
′
i is a clique for all i ∈ [1, k].

Proof: For any w ∈ W ′
i , we have N(w) ⊇Wi, otherwise there is an induced path xww1w2

with w1, w2 ∈ W , giving a contradiction to Claim 4.3.1. Then E(Wi, w
′
i) contains every

possible edge between Wi and W ′
i . Since G is claw-free, Wi is a clique. Since W ′

i ∈ N2(w),

it is a clique. So Wi ∪W
′
i is a clique. �
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Claim 4.3.3. If N1(x) 6= V1, then N2
2 (x) is an independent set. Thus |W1| = |W2| = · · · =

|Wk| = 1.

Proof: Since V1\N1(x) 6= ∅, there exists an induced path xu1u3 with u1, u3 ∈ V1. If there

exists i ∈ [1, k] such that |Wi| ≥ 2, denote w1, w2 ∈ Wi and w′ ∈ W ′
i , then 〈w1, w2, w

′; xu1u3〉

is a Z3, giving a contradiction. �

Claim 4.3.4. For any y ∈ S \ {x}, we have

1) N2(x) = N2(y) and xy ∈ E(G) if N2(y) ∩N2
2 (x) = ∅.

2) N2
2 (x) = W1 and N2(y) = W1 ∪W

′
1 if N2(y) ∩N2

2 (x) 6= ∅.

Proof 1) Suppose that N2(y) ∩ N2
2 (x) = ∅. Since V2 is not a clique, N2

2 (x) 6= ∅. Thus,

there exists an induced path xw1w2 with w1, w2 ∈ V2. We can show that N(y)∩N(w2) 6= ∅.

Otherwise, let w ∈ N(y) \ N(w2). Then yww1w2 is an induced P4. This path and two

neighbors of y in V1 induce a Z3, showing a contradiction. Similarly, we can prove that

N(w2) ⊆ N(y). We now claim that N2(x) \N(w2) ⊆ N(y). Otherwise, there exists a vertex

w′′ ∈ N(x) \N(y), then 〈w1; y, w2, w
′′〉 is a claw.

2) Suppose that N2(y) ∩ N2
2 (x) 6= ∅. Recall that N2

2 (x) is a union of disjoint cliques

W1,W2, · · · ,Wk. We assume, without loss of generality, N2(y)∩W1 6= ∅. Let w1 ∈ W1∩N(y)

and w′
1 ∈ N(w1)∩N(x). Since N2(y) is a clique, N2(y) ⊆ W1 ∪W

′
1. If N2

2 (x) \W1 6= ∅, then

N2
2 (x)\W1 * N2(y)∪N2

2 (y), which contradicts Claim 4.3.1. Thus N2
2 (x) = W1. We now show

that N2(y) = W1∪W
′
1. Since V2 is not a clique, there exists a vertex w′ ∈ N2(x)\W1∪W

′
1. If

there exists a vertex w′′ ∈ W ′
1 \N(y), then there is an induced path yw1w

′′w′, together with

the two neighbors of y in V1, it will induce a Z3. Thus W ′
1 ⊆ N2(y). For any w′′′ ∈ W1\{w1},

since w′′′, y, w′ ∈ N(w′
1) and G is claw-free, w′′′y ∈ E(G), which implies W1 ⊆ N2(y). �

Following Claim 4.3.4, S could be divided into two subsets, S1 and S2, such that S1 =

{y ∈ S |N2(y) = N2(x), xy ∈ E(G)} and S2 = {y ∈ S |N2(y) = W1 ∪W
′
1}.

Claim 4.3.5. Both S1 ∪N2(x) and S2 ∪W1 ∪W
′
1 are cliques.

Proof: By Claim 4.3.1, S1 ∪ N2(x) is clearly a clique. Since V2 is not a clique, there
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exists w1 ∈ W ′
1 and w2 ∈ N2(x) \ {W ′

1}. For any y1, y2 ∈ S2, to avoid 〈w1; y1, y2, w2〉 be a

claw, y1y2 ∈ E(G). Together with Claim 4.3.1, we have S2 ∪W1 ∪W
′
1 as a clique. �

Claim 4.3.6. If S2 6= ∅, then |W ′
1| ≥ 2.

Proof: Since V2 is not a clique, N2(x) \W ′
1 is a component of G \ (S1 ∪W ′

1). By the

minimality of |S|, we have |S1 ∪ W ′
1| ≥ |S| ≥ |S1 ∪ S2|, which implies |W ′

1| ≥ |S2|. If

|W ′
1| = 1, then |S2| = 1, which implies S2 ∪W

′
1 is a vertex cut of size 2, contradicting that

G is 3-connected. �

Since V1 and V2 are symmetric in this case, we can get similar properties for 〈V1〉 and

can partition S into two subsets: S ′
1 = {y ∈ S |N1(y) = N1(x)} and S ′

2 = {y ∈ S |N1(y) =

U1 ∪ U
′
1}, where U1 = N2

1 (x) and U ′
1 = N(U1) ∩N(x).

Our goal is to find a strong spanning Halin subgraph H in G. First we want to find

the part of H in 〈V2 ∪ S〉 by considering two cases.

Case 1: S2 = ∅.

In this case, N2(y) = N2(x) for any y ∈ S. Since G is 3-connected, |W ′
i | ≥ 3. Let

w′
i1
, w′

i2
, w′

i3
∈ W ′

i , V
′
2 = N2(x) \ (∪k

i=1{w
′
i1
, w′

i2
, w′

i3
}) = {w′

1, w
′
2, · · · , w

′
t′}, Pi = w′

i2
Piw

′
i3

be

hamiltonian paths in (Wi∪W
′
i )\{w

′
i2
} for i ∈ [1, k] and P0 = w1P0wt′ be a hamiltonian path

in 〈V ′
2〉. Let S = {x1, x2, · · · , xt} and P ′ = x3P

′xt be a hamiltonian path in S \{x1, x2}. Let

C2 = P0P1 · · ·PkP
′∪{x2w1} be a path and the vertices on the star {x1}∪(∪k

i=1{w
′
i2
}), where

{x1} is the center, be stems of T2 with NC(x1) = V (S) ∪ V ′
2 and NC(w′

i2
) = Wi ∪ {w′

i1
, w′

i3
}

for all i ∈ [1, k]. Then T2 is a HIST of 〈V2 ∪ S〉 and V (C2) = {u ∈ T2 | degT2(u) = 1}.

Case 2: S2 6= ∅.

In this case, both S1∪N2(x) and S2∪W1∪W
′
1 are cliques and N2

2 (x) = W1. We let S1 =

{x1, x2, · · · , xt1} and S2 = {y1, y2, · · · , yt2}, where we assume t1 ≥ 2 since |S| ≥ 3. In partic-

ular, we regard y1 is the same vertex as xt in Case 1. We denote W1 = {w21 , w22, · · · , w2k2
},

N2(x) = {w11, w12 , · · · , w1k} and assume w11 , w12 ∈ W ′
1 by Claim 4.3.6. Let P ′ = x2P

′xt1 ,

P ′′ = yt2P
′′y1, P1 = w12P1w13 and P2 = w21P2w2k2

be hamiltonian paths in S1 \ {x1}, S2,
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N2(x) \ {w11} and W1, respectively. Let C2 = P ′P1P2P
′′ be a path and {x1, w11} be stems

of T2, with NC2(w1) = (V (P ′) \ {x2}) ∪ V (P1) ∪ V (P2) ∪ V (P ′′) and NC2(x1) = {x2}. Then

T2 is a HIST of 〈V2 ∪ S〉 and V (C2) = {u ∈ T2 | degT2(u) = 1}.

We now find the other part of H in 〈V1 ∪ {x1}〉 by considering three following cases.

Case 1: We assume that |V1| ≥ 3 and it is not a clique.

If |V1| ≥ 3 and V1 is not a clique, similarly as V2 is not a clique, we can also find a

HIST T1 in 〈V1 ∪ {x1}〉 and a path C1 goes through all leaves of T1. Moreover, we can also

guarantee C1 ∪ T1 is a planar graph and x1 is one stem of T1. We may denote the two

endpoints of C1 by u1 and u2.

Case 2: We assume that |V1| ≥ 3 and it is a clique.

Let u1, u2, u3 ∈ V1 such that u3x1, u1x2, u2xt ∈ E(G). We denote by C1 = u1C1u2 as a

hamiltonian path in V1 \ {u3} and T1 as a HIST of 〈V1 ∪{x1}〉 with stem u1, which connects

to all leaves.

Case 3: We assume that |V1| ≤ 2.

Note that N1(x) = V1 for all x ∈ S. Let C1 = u1u2 and T1 be a HIST of 〈V1 ∪ {x1}〉

with stem x1, which connects to leaves {u1, u2}.

Note that we can assume u1x2, u2y1 ∈ E(G). This is clearly true if V1 is clique or

S ′
2 = ∅ or S2 = ∅. If neither S2 nor S ′

2 is empty, since x2 is an arbitrary vertex of S1 and

y1 is an arbitrary vertex of S2, we only need to show that x2 ∈ S ′
1 and y1 ∈ S ′

2. Suppose

this is not true. Then either x2, y1 ∈ S ′
1, which implies S = S ′

1, or x2, y1 ∈ S ′
2, which implies

S2 ∪ (S1 \ {x1}) ⊆ S ′
2. Contradicting to the assumption that S ′

2 6= ∅ and |S ′
1| ≥ 2.

Now we let T = T1 ∪T2, C = C1 ∪C2 ∪{u1x2, u2y1} and H = T ∪C. Then T is a HIST

of G and C is a cycle obtained by connecting all leaves of T , H is planar. Moreover, the

subgraph induced on all stems of T is a star with center x. Furthermore, we have |S−1| ≥ 2

or x1w12 ∈ E(G). Thus, H is a strong spanning Halin subgraph of G. We only give the

figure for S2 6= ∅ and S ′
2 = ∅ (See Figure 4.1). �
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Figure 4.1. {claw, Z3}-free graph with |V1| ≥ 2 and V1 or V2 is not a clique.
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Chapter 5

LINE GRAPHS

A graph G is called the line graph of H if V (G) = E(H) and two vertices in G are

adjacent if and only if the corresponding edges in H are incident. In this chapter, we will

show following two propositions.

Proposition 7. If G is a 3-connected Z3-free line graph, then G contains a strong spanning

Halin subgraph.

Proposition 8. If G is a 3-connected B1,2-free line graph, then G contains a strong spanning

Halin subgraph.

5.1 Characterization of line graphs

In 1970, Beineke [3] used the following lemma to give a full characterization of line

graphs.

Lemma 5.1.1. [3] The following statements are equivalent for a graph G.

1. G is a line graph of some graphs.

2. The edges of G can be partitioned into complete subgraphs in such a way that no vertex

belongs to more than two of the subgraphs.

3. None of the nine graphs in Figure 5.1 is an induced subgraph of G.

Assume that G is a graph with n-vertex and S is a minimum vertex cut of G. We still

follow the definitions and notations in Section 4.1. Let G1 and G2 be the two components

of G \ S, and V1 = V (G1), V2 = V (G2). Subject to the minimality of |S|, we always assume

that |V1| is minimum. From Lemma 5.1.1, we can easily get the following two corollaries.
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H-1 H-2 H-3 H-4 H-5

H-6 H-7 H-8 H-9

Figure 5.1. Forbidden subgraphs for line graph

Corollary 5.1.1. For any x, y ∈ S and i ∈ [1, 2], if |Ni(x) ∩Ni(y)| ≥ 2, then xy ∈ E(G).

Proof. Suppose to the contrary, there exist two vertices x, y in S having two common

neighbors w1, w2 in V2. Since Ni(x) is a clique, w1w2 ∈ E(G). If N3−i(x)∩N3−i(y) 6= ∅, then

G contains an induced subgraph isomorphic to H-2. Otherwise, let u1 ∈ N3−i(x) \ N3−i(y)

and u2 ∈ N3−i(y) \N3−i(x). Then either 〈u1, u2, x, w1, w2, y〉 ∼= H-3 or 〈u1, u2, x, w1, w2, y〉 ∼=

H-4, showing a contradiction. �

Corollary 5.1.2. If there exists x ∈ S such that N1(x) = V1, then N1(y) = V1 for all y ∈ S.

Consequently, V1 ∪ S is a clique.

Proof. By Claim 4.1.2, |N1(x)| ≥ 2 for every x ∈ S. So this corollary holds if |V1| ≤ 2.

Thus we suppose |V1| ≥ 3, by Claim 4.1.2 again, for any y ∈ S, |N1(x)∩N1(y)| = |N1(y)| ≥ 2.

By Corollary 5.1.1, xy ∈ E(G). Let u1, u2 ∈ N1(y). If there exists u3 ∈ V1 \ N1(y), then

〈u3, x, u1, u2, y〉 ∼= H-9, the contradiction implies N1(y) = V1 for all y ∈ S \{x}. When apply

Corollary 5.1.1 again, we get V1 ∪ S is a clique. �
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5.2 Proof of 3-connected Z3-free line graphs

Proposition 9. If G is a 3-connected Z3-free line graph, then G contains a strong spanning

Halin subgraph.

To prove Proposition 9, we only need to consider two cases depending on whether

|V1| ≥ 2. By Proposition 6, we only need to consider either |V1| ≥ 2 and both V1 and V2 are

cliques or |V1| = 1.

Case 1: |V1| ≥ 2.

By Proposition 6, both V1 and V2 are cliques.

Claim 5.2.1. For each x ∈ S, if |Vi| ≥ 4 and degGi
(x) ≥ 2, then Ni(x) = Vi for each

i ∈ [1, 2].

Proof. Let u1, u2 ∈ Ni(x) and w1 ∈ N3−i(x). If |Vi \Ni(x)| ≥ 2, let u3, u4 ∈ Vi \Ni(x),

then 〈u3, u4, u1, u2, x, w1〉 ∼= H-6. Assume |Vi \ Ni(x)| = 1. Let u1, u2, u3 ∈ Ni(x) and

u4 ∈ Vi \Ni(x). Then 〈u4, u3, u1, u2, x〉 ∼= H-9, showing a contradiction. �

We will consider the following two cases to show that there exists a strong spanning

Halin subgraph in G.

Case 1.1: |V2| 6= 3.

Claim 5.2.2. For any x ∈ S, we have N1(x) = V1 or N2(x) = V2.

Proof. Suppose to the contrary, there exists x ∈ S such that N1(x) 6= V1 and N2(x) 6=

V2. Since degG1(x) ≥ 2, by Claim 5.2.1 and we assume |V2| 6= 3, we have |V1| = 3. Since

|V2| ≥ |V1|, we have |V2| ≥ 4. Applying Claim 5.2.1 again, |N2(x)| = 1. Denote V1 =

{u1, u2, u3}, N1(x) = {u1, u2} and N2(x) = {w1}. Then 〈w2, w3, w1; x, u2, u3〉 is a Z3, giving

a contradiction. �

Claim 5.2.3. We claim that V1 ∪ S or V2 ∪ S is a clique.
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Proof. Suppose there exists x ∈ S such that V1 \ N1(x) 6= ∅. Then N2(x) = V2 by

Claim 5.2.2. Since |V2| ≥ 4, similarly as Corollary 5.1.2, we can show that N2(y) = V2 for

all y ∈ S \ {x}. Thus V2 ∪ S is a clique. �

By Claim 5.2.3, we may assume V1 ∪ S is a clique. Let x, y, z, z′ ∈ S, u1, u2 ∈ V1,

w1, w2, w3 ∈ V2 such that u1, w2 ∈ N(y), w1 ∈ N(x), u2 ∈ N(z) and w3 ∈ N2(z
′). Since

V1, S \ {x, y} and V2 \ {w1} are cliques, let P1 = u1P1u2, P2 = zP2z
′ and P3 = w3P3w2 be

hamiltonian paths in them, respectively. Let C = P1P2P3∪{w2y, yu1} be a cycle and {x, w1}

be stems of T with NC(x) = V (P1) ∪ V (P2) ∪ {y} and N(w1) = V (P3). Let H = T ∪ C.

Clearly, H is a strong spanning Halin subgraph of G (See Figure 5.2(1)).

Case 1.2: We assume that |V2| = 3.

If there exists x ∈ S such that N1(x) = V1 or N2(x) = V2, then similarly as Case 1.1,

we can find a strong spanning Halin subgraph in G. Thus we can assume N1(x) 6= V1 and

N2(x) 6= V2 for all x ∈ S. Consequently, we have |V1| = |V2| = 3. Denote V1 = {u1, u2, u3}

and V2 = {w1, w2, w3}. By Lemma 4.1.2, we know S = {x, y, z}. By symmetric, we may

assume N1(x) = {u1, u2}, N1(y) = {u2, u3}, N1(z) = {u3, u1}, N2(x) = {w1, w2}, N2(y) =

{w1, w3} and N2(z) = {w2, w3}. Let C = xu1u3zw2w1x be a cycle and all vertices on the

path u2yw3 be stems of T with NC(u2) = {u1, u3, x}, NC(y) = {w1} and NC(w3) = {w2, z}.

Let H = T ∪ C. Clearly, that H is a strong spanning Halin subgraph of G (See Figure

5.2(2)).

(1) (2)

x

x

z′

u1
u1

u2

u2

u3

y

y

z
z

w1

w1

w2

w2

w3

w3

Figure 5.2. |V1| ≥ 2, both V1 and V2 are cliques.
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Case 2: |V1| = 1.

Lemma 5.2.1. Let G be a 3-connected, claw-free graph, and let S be as a minimum vertex

cut, V1 and V2 be the two components of G \ S. If V1 = {u} is singleton and V2 is a clique,

then there exists a strong spanning Halin subgraph in G.

Proof. We will find a strong spanning Halin subgraph according to following two

cases.

Subcase 1: 〈S〉 is connected.

Chvátal and Erdös [21], in 1972 , showed that: If G is a k-connected graph with no

independent set of k + 2 vertices, then G contains a hamiltonian path. Since V1 = {u} and

N(u) ≥ S, 〈S〉 does not contain an independent set with more than two vertices. Thus 〈S〉

contains a hamiltonian path, say P = x1Pxt, where we denote S = {x1, x2, · · · , xt} if S is

connected.

If V2 = {w} and S = {x1, x2, x3}, let C = ux1wx3u be a cycle and {x2} be the stem

of T with NC(x2) = {u, x1, w, x3}. If |S| ≥ 4, let C = x2Pxt ∪ {xtw,wx2} be a cycle and

{u, x1} be stems of T with NC(u) = S \ {x2} and NC(x1) = {x2, w}. Let H = T ∪ C, it is

easy to check that H is a strong spanning Halin subgraph of G.

If V2 = {w1, w2} and N2(x1) = {w1, w2}(or N2(xt) = {w1, w2}), we may assume w1 ∈

N2(x2) and w2 ∈ N2(xt) by Lemma 4.1.2. Let C = x2Pxt ∪ {xtw2, w1w2, w1x2} be a cycle

and {u, x1} be stems of T with NC(u) = S and NC(x1) = {w1, w2}. If V2 = {w1, w2},

N2(x1) = {w1} and N2(xt) = {w2}, by Lemma 4.1.2 again, N2(xi) = {w1, w2} for all

xi 6= x1, xt. Let C = x3Pxt ∪ {xtu, ux1, x1w1, w1x3} be a cycle and {w2, x2} be stems of T

with NC(x2) = {x1, u} and N2(w2) = (S \ {x1, x2}) ∪ {w1}. Let H = T ∪ C, it is easy to

check that H is a strong spanning Halin subgraph of G (See Figure 5.3(1)).

If |V2| ≥ 3 and S = {x1, x2, x3}, denote w1 ∈ N2(x1), w2 ∈ N2(x2) and w3 ∈ N2(x3) by

Lemma 4.1.2. Let P2 = w1P2w3 be a hamiltonian path in 〈V2\{w2}〉. Set C = P2∪{x1u, ux3}

be a cycle and {x2, w2} be stems of T with N2(x2) = {x1, u, x3} and N2(w2) = V (P2). If

|V2| ≥ 3 and |S| ≥ 4, denote w3 ∈ N2(xt). Let P2 = w2P2w3 be a hamiltonian path in
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〈V2 \ {w1}〉. Set C = x2PxtP2 be a cycle and all vertices on the path ux1w1 be stems of T

with NC(u) = V (P ) \ {x1, x2}, NC(x1) = {x2} and NC(w1) = V (P2). Let H = T ∪ C, it is

easy to check that H is a strong spanning Halin subgraph of G (See Figure 5.3 (2)).

Subcase 2: The induced subgraph 〈S〉 is disconnected.

Since G is claw-free and S ⊆ N(u), 〈S〉 consists of exact two vertex disjoint cliques,

say S1 and S2. We may assume S1 = {x1, x2, · · · , xt}, S2 = {y1, y2, · · · , yt′} and |S1| ≥ |S2|.

Moreover, since G is 3-connected, we know |V2| ≥ 2.

If V2 = {w1, w2}, then S = {x1, x2}, S2 = {y1} and N2(x2) = {w1, w2}. We denote

w1 ∈ N2(x1) and w2 ∈ N2(x2). Let C = ux1w1y1u be a cycle and {x2, w2} be stems of T

with NC(x2) = {u, x1} and NC(w2) = {y1, w1}. Let H = T ∪ C, it is easy to check that H

is a strong spanning Halin subgraph of G.

If V2 = {w1, w2, w3}, there must exist xi ∈ S1 and yj ∈ S2 such that N2(xi)∩N2(yj) 6= ∅.

We may denote w2 ∈ N2(x1) ∩ N2(y1) and w1 ∈ N2(x2). Set P = x2Pxt and P ′ = y2P
′yt′

be hamiltonian paths in S1 \ {x1} and S2 \ {y1}, respectively. If S2 = {y1}, let C =

P ∪ {uxt, x2w1, w1w3, w3y1, y1u} be a cycle and {x1, w2} be stems of T with NC(x1) =

V (P ) ∪ {u} and NC(w2) = {w1, w3, y1}. If |S2| ≥ 2, we may assume w3 ∈ N2(y2). Let

C = PP ′ ∪ {uxt, x2w1w1w3, w3y2, yt′u} be a cycle and all vertices on the path x1w2y1 be

stems of T with NC(x1) = V (P ) ∪ {u}, NC(w2) = {w1} and NC(y1) = V (P ′) ∪ {w3}. Let

H = T ∪ C, it is easy to check that H is a strong spanning Halin subgraph of G.

If |V2| ≥ 4 and S2 = {y1}, let w1, w2 ∈ N2(x). Let x1 and x2 be two vertices in S1

and w4 ∈ N2(x1)(we may take w4 = w1 if N2(x1) ⊆ {w1, w2}) and w3 6= w1, w2, w4 in

N2(x2). Denote by P = zPxt and P2 = w3P2w2 be two hamiltonian paths in S \ {x1} and

V2 \ {w1, w4}. Let C = PP2 ∪ {w2y1, xu, uxt} and all vertices on the path yw4w1 be stems

of T with NC(x1) ⊆ V (P ) ∪ {u}, NC(w4) ⊆ V (P2) \ {w2} and NC(w1) = {y1, w2}. Let

H = T ∪ C, then H is a strong spanning Halin subgraph (See Figure 5.3(3)).

If |V2| ≥ 4, |S2| ≥ 2 and |S1| ≥ 3. Let w1, w2, w3, w4 be four distinct vertices of V2

such that w1x1, w2x2, x3y1, w4y2 ∈ E(G). Set P = x2Pxt, P
′ = y2P

′yt′ and P2 = w2P2w4

be hamiltonian paths in S1 \ {x1}, S2 \ {y1} and V2 \ {w1, w3}, respectively. Let C =
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PP2P
′ ∪ {yt′u, uxt} be a cycle and all vertices on the path x1w1w3y1 be stems of T with

NC(x1) = V (P ), NC(w1) ⊆ V (P2) \ {w4}, NC(w3) = {w4} and NC(y1) = V (P ′) ∪ {u}. Let

H = T ∪C, it is easy to check that H is a strong spanning Halin subgraph of G (See Figure

5.3(4)).

If |V2| ≥ 4, S1 = {x1, x2} and S2 = {y1, y2}. Similarly, denote w1x1, w2x2, w3y1, w4y2 ∈

E(G). Since 〈w1, w4, w3; y1, u, x2〉 is not a Z3, we have either N2(x1)∩N2(x2) 6= ∅ or N2(y1)∩

N2(y2) 6= ∅ or N2(xi) ∩N2(yj) 6= ∅, where i, j ∈ [1, 2].

Assume N2(xi) ∩N2(yj) 6= ∅, for {i, j} = {1, 2}. We assume, without loss of generality,

w1 ∈ N2(x1)∩N2(y1). Let P2 = w2P2w4 be a hamiltonian path in V2\{w1, w3} and all vertices

on the path x1w1y1w3 be stems of T with NC(x1) = {u, x2}, NC(w1) = {w2}, NC(y1) = {y2}

and NC(w3) = V (P2)\{w2}. Let H = T ∪C, it is easy to check that H is a strong spanning

Halin subgraph of G (See Figure 5.3(5)).

If N2(x1) ∩ N2(x2) 6= ∅(or N2(y1) ∩ N2(y2) 6= ∅). Let w3 ∈ N2(y1) ∩ N2(y2) and P2 =

w2P2w4 be a hamiltonian path in V2 \ {w1, w3}. Let P = w4y2y1ux2w2 and C = P2P

be a cycle and all vertices on the path x1w1w3 be stems of T with NC(x1) = {u, x2},

NC(w1) = V (P2) \ {w4} and NC(w3) = {w4, y1, y2}. Let H = T ∪C, it is easy to check that

H is a strong spanning Halin subgraph of G (See Figure 5.3(6)).

By Lemma 5.2.1, we only need to show that if V1 = {u} and V2 is not a clique, then the

structure of 〈V2〉 can be described and there exists a strong spanning Halin subgraph in G,

we plan to show this by following two case.

Case 2.1: There exists a triangle x1x2x3x1 in 〈S〉.

Lemma 5.2.2. If G is a 3-connected claw-free graph with S as a minimum vertex cut, V1, V2

are the exact two components of G \ S. If V1 = {u} and there exists a triangle x1x2x3x1 in

S, then either V2 is a clique or |V2| ≤ 6 and the structure of V2 can be described.

Proof. We prove Lemma 5.2.2 by the following series of claims.

Claim 5.2.4. If x1x2x3x1 is a triangle in S, then N2(x1) ∩N2(x2) ∩N2(x3) = ∅.
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Figure 5.3. V1 = {u} and V2 is a clique.

Proof. Otherwise, let w ∈ N2(x1) ∩ N2(x2) ∩ N2(x3), then 〈u, x1, x2, x3, w〉 ∼= H-9, a

contradiction. �

Claim 5.2.5. For any two distinct i and j with 1 ≤ i ≤ j ≤ 3, we have |N2(xi)∩N2(xj)| ≤ 1,

for any two distinct i and j with 1 ≤ i ≤ j ≤ 3.

Proof. Otherwise, let {i, j, k} = {1, 2, 3} and w1, w2 ∈ N2(xi) ∩ N2(xj). By Claim

5.2.4, w1, w2 /∈ N2(xk), we have 〈xk, u, xi, xj , w1, w2〉 ∼= H-7, showing a contradiction. �

Claim 5.2.6. If N2(xi)∩N2(xj) 6= ∅, then N2
2 (xi) ⊆ N2(xj)∪N2(xk) and N2

2 (xj) ⊆ N2(xi)∪

N2(xk), where {i, j, k} = {1, 2, 3}.

Proof. Let w1 ∈ N2(xi) ∩ N2(xj). If there exists w ∈ N2
2 (xi) such that w1w ∈ E(G),

then since 〈xk, u, xi, xj , w1, w〉 ≇ H-7, by Claim 5.2.4, w ∈ N2(xj)∪N2(xk). Otherwise, there

must exist w2 ∈ N2(xi) \N2(xj) such that w2w ∈ E(G). To avoid 〈u, xk, xj ;w1w2w〉 to be a

Z3 and 〈w2;w1, xk, w〉 be a claw, by Claim 5.2.4 and 5.2.5, we have w ∈ N2(xj) ∪N2(xk).

Similarly, we can show that N2
2 (xj) ⊆ N2(xi) ∪N2(xk). �
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For this case, in the following, let Ri = N2(xi) \ (N2(xj) ∪N2(xk)) and reserve wi ∈ Ri

if Ri 6= ∅ and wij ∈ N2(xi) ∩N2(xj) if N2(xi) ∩N2(xj) 6= ∅, where {i, j, k} = {1, 2, 3}.

Claim 5.2.7. If N2(xi)∩N2(xj) = ∅, denote Ri+3 = N2
2 (xi)\(R1∪R2∪R3) and wi+3 ∈ Ri+3

such that wiwi+3 ∈ E(G), where {i, j, k} = {1, 2, 3}. The following claims hold.

1) V2 = ∪6
i=1Ri;

2) There exist i, j ∈ {1, 2, 3}, such that E(Ri, Rj) 6= ∅;

3) E(Ri, Rj) 6= ∅ for all {i, j} ∈ {1, 2, 3}, |R1| = |R2| = |R3| = 1, R4 = R5 = R6 and V2 is a

clique.

4) G contains a strong spanning Halin subgraph.

Proof. 1) Suppose to the contrary, there exists w ∈ V2\∪
6
i=1Ri such that w4w ∈ E(G),

then 〈u, x2, x1;w1w4w〉 is a Z3, showing a contradiction.

2) If E(Ri, Rj) = ∅ for all i, j ∈ {1, 2, 3}, since 〈V2〉 is connected, we may assume

w4w5 ∈ E(G). To avoid 〈u, x2, x1;w1w4w5〉 be a Z3, w1w5 ∈ E(G). However, this will force

〈u, x3, x2;w2w5w1〉 to be a Z3.

3) By 2), we may assume w1w2 ∈ E(G), which in turn gives us w2w4 ∈ E(G) since

〈w1; x1, w4, w2〉 is not a claw. Since neither 〈w4, w2, w1; x1x3w3〉 nor 〈w1, w2, w4;w3x3u〉 is

a Z3, we can assume w2w3 ∈ E(G), which also implies w1w3 ∈ E(G) since 〈w2; x2, w1, w3〉

is not a claw. If there exists w′
1 ∈ R1 \ {w1}, then to avoid 〈u, x3, x2;w2w1w

′
1〉 be a Z3,

w′
1w2 ∈ E(G). However, this will force 〈x2; x1, w1, w

′
1, w2〉 ∼= H-2, showing a contraction.

Thus |R1| = 1. Similarly, we can also prove that |R2| = |R3| = 1.

For any w ∈ R5, since w2w3 ∈ E(G) and 〈w2; x2, w3, w〉 is not a claw, ww3 ∈ E(G), this

means R5 ⊆ R6. By the same method, we will get R4 = R5 = R6, which illustrates V2 is a

clique. �

4) This is clearly true by Lemma 5.2.1.

Claim 5.2.8. If |{w12, w23, w13}| = 1, then

1) V2 = N2(xi) ∪N2(xj) ∪N2(xk), where {i, j, k} = {1, 2, 3};

2) V2 ⊆ {w1, w2, w3, w12, w23, w13}.
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Proof. 1) By symmetric, we may assume w12 exists and w23, w13 do not exist. By

Claim 5.2.6, N2
2 (x1) ⊆ N2(x2) ∪ N2(x3) and N2

2 (x2) ⊆ N2(x1) ∪ N2(x3). Thus we only

need to show N2
2 (x3) ⊆ N2(x1) ∪ N2(x2). Suppose this is not true and there exists w6 ∈

N2
2 (x3) \ (N2(x1) ∪ N2(x2)) and w3 ∈ N2(x3) such that w3w6 ∈ E(G). Note that w12w6 /∈

E(G), otherwise 〈x3, u, x2, x1, w12, w6〉 ∼= H-6, which in turn gives w12w3 /∈ E(G), otherwise

〈w3; x3, w6, w12〉 is a claw. On the other hand, since |N2(x1) ∪ N2(x2)| ≥ 2, we can assume

w2 exists. To avoid 〈w12, w2, x2; x3w3w6〉 be a Z3, we have both w3w2 and w2w6 in E(G).

Because if w3w2 ∈ E(G), then w2w6 ∈ E(G), otherwise 〈w3; x3, w6, w2〉 is a claw; if w2w6 ∈

E(G), then w2w3 ∈ E(G), otherwise 〈x1, u, x3;w3w6w2〉 is Z3. However, this will force

〈w3, w6, w2;w12x1u〉 to be a Z3, showing a contradiction.

2)Firstly, we will show R3 = {w3} and w3w12 ∈ E(G). Suppose this is not true, there

exist w3, w6 ∈ R3. Since neither 〈w3, x3, x2, x1, w12〉 nor 〈w6, x3, x2, x1, x12〉 isomorphic to H-

2, w3w12, w6w12 /∈ E(G). Since 〈V2〉 is connected and |N2(x1)∪N2(x2)| ≥ 2, we may assume

w2 exists and w2w3 ∈ E(G). To avoid 〈u, x1, x2;w2w3w6〉 be a Z3, we have w2w6 ∈ E(G).

However, this will force 〈x2, x3, w3, w6, w2〉 ∼= H-2, a contradiction.

Secondly, we will show R2 = {w2}. Since 〈V2〉 is connected, we may assume w2w3 ∈

E(G). If there exists w5 ∈ R2 \ {w2}, then w5w3 /∈ E(G), otherwise 〈x3, x2, w5, w2, w3〉 ∼=

H-2. However, this will force 〈w12, w5, w2;w3x3u〉 to be a Z3, showing a contraction.

Thirdly, we will show |R1| ≤ 1. If there exists w1, w4 ∈ R1, to avoid 〈w4, w1, w12; x2x3w3〉

be a Z3 and we can assume w3w1 ∈ E(G) and w3w4 /∈ E(G), otherwise, 〈x3; x1, w1, w4, w3〉 ∼=

H-2. But this will in turn give 〈w4, w12, w1;w3x3u〉 is a Z3 by above three observations, we

get |Ri| ≤ 1, which implies V2 ⊆ {w1, w2, w3, w12}. �

Claim 5.2.9. If |{w12, w23, w13}| ≥ 2, then

1) V2 = N2(x1) ∪N2(x2) ∪N2(x3).

2) If there exists i ∈ [1, 3] such that |Ri| ≥ 2, then V2 is a clique. Otherwise V2 ⊆

{w1, w2, w3, w12, w23, w13}.

Proof. 1) This is clearly true by Claim 5.2.6.
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2) We may assume there exist w3, w4 ∈ R3. The following three statements give us

V2 = N2(x3), which implies V2 is a clique.

Firstly, we have w13 ∈ V2. Suppose this is not true, then w12, w23 ∈ V2 by assumption.

Since 〈w3, w4, w23;w12x1u〉 is not a Z3, we can assume w12w3 ∈ E(G). However, this in turn

gives 〈x1, w12, w23, w3, x3〉 ∼= H-2.

Secondly, we have w12 /∈ V2. Otherwise, since 〈w3, w4, w13;w12x2u〉 is not a Z3, we can

assume w12w3 ∈ E(G). But this gives us 〈u, x2, x1, w12, w13, w3〉 ∼= H-8.

Thirdly, we have R2 = ∅ and R1 = ∅. We only show that R2 = ∅. Suppose to the

contrary, there exists w2 ∈ R2. To avoid 〈w3, w4, w13; x1x2w2〉 be a Z3 and 〈w13;w3, w2, x1〉

be a claw, we can assume w2w3 ∈ E(G). Moreover, since 〈w13, w4, w3;w2x2u〉 is not a Z3,

we have w2w13 ∈ E(G), which implies 〈x2, x3, w3, w13, w2〉 ∼= H-2, or w4w2 ∈ E(G), which

implies 〈x2, w2, w4, w3, x3〉 ∼= H-2.

If |Ri| ≤ 1, then by 1), we have V2 ⊆ {w1, w2, w3, w12, w23, w13}. �

From Claim 5.2.7, Claim 5.2.8 and Claim 5.2.9, we can see that Lemma 5.2.2 is true.

Lemma 5.2.3. Let G be a 3-connected Z3-free line graph with S as a minimum vertex cut

and V1, V2 as the exact two components of G \ S. If V1 = {u}, |V2| ≤ 6 and there exists a

triangle, say x1x2x3x1, in S, then there exists a strong spanning Halin subgraph in G.

Proof. We still follow notations that wi ∈ N2(xi)\(N2(xj)∪N2(xk)) and wij ∈ N2(xi)∩

N2(xj), where {i, j, k} = {1, 2, 3}. Then, by Lemma 5.2.2, V2 ⊆ {w1, w2, w3, w12, w23, w13}.

The following series of claims are showing this lemma is true.

Claim 5.2.10. For any t ∈ S \ {x1, x2, x3}, one of the following conclusions holds.

1) For any t ∈ S \ {x1, x2, x3}, |NS(t) ∩ {x1, x2, x3}| 6= 2.

2) If Ns(t) ∩ {x1, x2, x3} = {x1, x2, x3}, then N2(t) ⊆ {w1, w2, w3}.

3) If Ns(t) ∩ {x1, x2, x3} = {xi}, then N2(t) = N2(xi), where i ∈ [1, 3].

4) If Ns(t) ∩ {x1, x2, x3} = ∅, then N2(t) ⊆ {w1, w2, w3}.

5) For any t ∈ S, N2(t) ∩ {w1, w2, w3} 6= ∅.
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Proof. 1) Suppose Ns(t)∩{x1, x2, x3} = {x1, x2}, then 〈u, x1, x2, x3, t〉 ∼= H-9, showing

a contradiction.

2) We may assume w12 ∈ N2(t), then 〈u, x1, x2, t, w12〉 ∼= H-9. Since N2(t) 6= ∅, we have

N2(t) ⊆ {w1, w2, w3}.

3) By symmetric, we may assume Ns(t)∩{x1, x2, x3} = {x3}, Since neither 〈x3; t, x1, w3〉

nor 〈x3; t, x1, w23〉 nor 〈x3; t, x2, w13〉 is a claw, we have {w3, w13, w23} ⊆ Ns(t). Moreover

tw1, tw2, tw12 /∈ E(G), otherwise either 〈w1, x1, u, x3, t〉 or 〈w2, x2, u, x3, t〉 or 〈w12, x2, u, x3, t〉

isomorphic to H-2. Thus N2(t) = N2(x3).

4) If Ns(t) ∩ {x1, x2, x3} = ∅, then wij /∈ N2(t), otherwise 〈u, xi, xj , wij, t〉 ∼= H-2, where

{i, j, k} = {1, 2, 3}.

5) This is easily followed by above conclusions. �

We may denote S1 = {x1, x2, x3}, S2 = {t ∈ S|Ns(t) ∩ {x1, x2, x3} = {x1, x2, x3}},

S3 = {t ∈ S||Ns(t) ∩ {x1, x2, x3}| = 1} and S4 = {t ∈ S|Ns(t) ∩ {x1, x2, x3} = ∅}. Clearly

S = S1 ∪ S2 ∪ S3 ∪ S4.

Claim 5.2.11. By the definition of S1, S2, S3 and S4, we have:

1) S1 ∪ S2 is a clique.

2) S3 ∪ S4 is a clique.

Proof. 1) This is true since otherwise 〈{u} ∪ S1 ∪ S2〉 contains an induced subgraph

isomorphic to H-9.

2) For any t, t′ ∈ S3 ∪ S4, we may assume tx1, t
′x1 /∈ E(G). Since 〈u; t, t′, x1〉 is not a

claw, we have tt′ ∈ E(G). �

Claim 5.2.12. For any xi ∈ S1, we have |NS3(xi)| ≤ 1, where i ∈ [1, 3].

Proof. We may assume there exist t, t′ ∈ NS3(x1), then 〈t, t′, x1〉 is a triangle. Let

w′ ∈ N2(x1), then 〈u, t, t′, x1, w
′〉 ∼= H-9, where w′ ∈ {w1, w12, w13} by Claim 5.2.10. �

Claim 5.2.13. For any wi ∈ {w1, w2, w3}, we have |NS2(wi)| ≤ 1, |NS3(wi)| ≤ 1 and

|NS4(wi)| ≤ 1.
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Proof. We only show this is true for w1. If there exist t, t′ ∈ S2(or there exist t, t′ ∈ S3)

such that tw1, t
′w1 ∈ E(G), then 〈u, t, t′, x1, w1〉 ∼= H-9. If there exist t, t′ ∈ S4 such that

tw1, t
′w1 ∈ E(G), then 〈u, t, t′, w1, x1〉 ∼= H-2. �

Claim 5.2.14. If all wi, wj, wjk exist, then wiwjk /∈ E(G), where {i, j, k} = {1, 2, 3}.

Proof. Suppose to the contrary, all w1, w2, w23 exist and w1w23 ∈ E(G). Since

〈w23;w1, w2, x3〉 is not a claw, we have w1w2 ∈ E(G), which in turn gives 〈w1, w2, w23, x2, x1〉 ∼=

H-2, showing a contradiction. �

Claim 5.2.15. If there exists t ∈ S4, then S4 = {t} and N2(t) = {w1, w2, w3}. Moreover, if

there also exists t′ ∈ S2, then {t, t′, w1, w2, w3} is a clique and |S2| ≤ 1.

Proof. Suppose this is not true, we may assume tw3 ∈ E(G) and tw1 /∈ E(G).

Note that w1w3, w12w3 /∈ E(G) since neither 〈w3; t, x3, w1〉 nor 〈w3; t, x3, w12〉 is a claw.

If w2w3 ∈ E(G), since 〈w3;w2, x3, t〉 is not a claw, we have tw2 ∈ E(G). Moreover, since

〈w2, w3, t; ux1w1〉 is not a Z3, we have w1w2 ∈ E(G), which implies 〈w2;w1, x2, w3〉 is a claw,

showing a contradiction. If w2w3 /∈ E(G), then w13 or w23 exists since 〈V2〉 is connected. We

may assume w13 exists, then 〈w1, w12, w13;w3tu〉 is a Z3, showing a contradiction. Thus we

have tw1 ∈ E(G). Similarly, we can show that tw2 ∈ E(G) if w2 exists. By Claim 5.2.10, we

know N2(t) = {w1, w2, w3}, and by Claim 5.2.13, we get S4 = {t}.

If there also exists t′ ∈ S2, we may assume t′w3 ∈ E(G) by symmetric. Since 〈w3;w23, t, t
′〉

is not a claw, we have tt′ ∈ E(G). Moreover, since neither 〈w2, w3, t
′, x3, x2〉 nor 〈w1, w3, t

′, x3, x1〉

isomorphic to H-2, we have t′w2 ∈ E(G), which in turn gives us {t, t′, w1, w2, w3} is a clique

and |S2| ≤ 1 by Claim 5.2.13.

By Claim 5.2.13, we know |S4| ≤ 1 and |S2| ≤ 1. �

Claim 5.2.16. If S3 6= ∅ and there exists t′ ∈ S2, then N2(t
′) = {w1, w2, w3} and S2 = {t′}.

Proof. We may assume there exists t ∈ S3 such that tx3 ∈ E(G), then N2(t) = N2(x3).

Firstly, we want to show that t′w3 ∈ E(G). Suppose this is not true and t′w1 ∈ E(G),

then neither w1w3 nor tt′ in E(G). Otherwise 〈w3, w1, t
′, x1, u, t〉 ∼= H-4 or 〈w23, w1, t

′, x1, u, t〉 ∼=
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H-4 or 〈t′, x1, x3, t, u〉 ∼= H-9, showing a contradiction. However, if w23 exists, then w1w23 /∈

E(G) by Claim 5.2.14, which in turn gives 〈w23, w3, t; ut
′w1〉 a Z3; if w12 exists, then either

〈w3, t, x3; t
′w1w12〉 is a Z3 or 〈w12;w1, w2, w3〉 is a claw; if neither w23 nor w12 exists but

w13 exists, since 〈V2〉 is connected and neither 〈w13;w1, w2, w3〉 nor 〈x2;w1, w2, w3〉 is a claw,

we have either w1w2 ∈ E(G) or w2w3 ∈ E(G), both of them will force w2w13 ∈ E(G),

contradicts to Claim 5.2.14.

Note that tt′ /∈ E(G), otherwise 〈u, x3, t, t
′w3〉 ∼= H-9.

Secondly, we want to show that w1t
′, w2t

′ ∈ E(G). Suppose this is not true, then

w1w2 /∈ E(G). Otherwise 〈t′, u, x2;w2w1w13〉 is a Z3, which implies w12 and w13 exist since

degG(w1) ≥ 3 and there dose not exist t′′ ∈ S2 ∪ S3 ∪ S4 such that t′′w1 ∈ E(G) by Claim

5.2.10. Moreover, since neither 〈w3; t, t
′, w1〉 nor 〈w3; t, t

′, w2〉 nor 〈w3; t, t
′, w12〉 is a claw,

we have w3w1, w3w2 /∈ E(G), which in turn gives 〈w12, w1, x1; t
′w3t〉 to be a Z3, showing a

contradiction.

Thus N2(t
′) = {w1, w2, w3} and we have S2 = {t′} by Claim 5.2.13. �

Claim 5.2.17. If S3 = S4 = ∅ and there exists t ∈ S2, then 〈w1, w2, w3〉 is a clique and

N2(t) = {w1, w2, w3}. In particular, S2 = {t}.

Proof. We may assume tw3 ∈ E(G) by symmetric.

If both w23 and w13 exist, since neither 〈x1, u, t;w3w23w2〉 nor 〈x2, u, t;w3w13w1〉 is a

Z3 and neither 〈x2, w2, w23, w3, t〉 nor 〈x1, w2, w23, w3, t〉 isomorphic to H-2, we have w2w3,

w1w3, tw2, tw1 ∈ E(G). Thus N2(t) = {w1, w2, w3} and 〈w1, w2, w3〉 is a clique.

If either w23 or w13 exists, we may assume w23 exists. Similarly, we can show that both

w2w3 and tw2 in E(G). Since w13 does not exist and w1w23 does not in E(G) by Claim 5.2.14,

we have w1w2 or w1w3 in E(G), which implies 〈w1, w2, w3〉 is a clique since G is claw-free.

Since 〈x1, x3, t, w3, w1〉 ≇ H-2, we have w1t ∈ E(G). Thus N2(t) = {w1, w2, w3}.

If neither w23 nor w13 exists, since 〈V2〉 is connected, we can assume w2w3 ∈ E(G) by

symmetric. If fact, we can show that there does not exist t′ ∈ S2 such that t′w1 ∈ E(G).

Otherwise, since w12 exists, similarly as w23 exists, we can show that t′w2, t
′w3 ∈ E(G).
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Then t, t′ ∈ NS(w3), showing a contradiction. Since degG(w1) ≥ 3, we have w1w2 or w1w3

in E(G), which implies 〈w1, w2, w3〉 is clique since G is claw-free. Moreover, since neither

〈x2, x3, t, w3, w2〉 nor 〈x1, x3, t, w3, w1〉 isomorphic to H-2, we have both tw2 and tw3 in E(G).

Therefore, N2(t) = {w1, w2, w3}.

By Claim 5.2.13, we know S2 = {t}. �

Claim 5.2.18. If S2 ∪ S4 = ∅ and S3 6= ∅, then 〈w1, w2, w3〉 is a clique.

Proof. If there exist t, t′ ∈ S3, we may assume tx1, t
′x3 ∈ E(G) by Claim 5.2.10. Then

N2(t) = N2(x1) and N2(t
′) = N2(x3) . If neither w12 nor w23 exists, since 〈V2〉 is connected

and 〈w13;w1, w2, w3〉 is not a claw, we can assume w2w3 ∈ E(G) by symmetric. Moreover,

to avoid 〈w1, t, x1; x2w2w3〉 be a Z3, 〈w2; x2, w1, w3〉 or 〈w3; x3, w1, w2〉 be a claw, we have

both w1w2 and w1w3 in E(G). If w12 or w23 exists, we may assume w12 exists. To avoid

〈w3, t
′, x3; x1w12w2〉 be a Z3 and 〈t′; u, w2, w3〉 be a claw, we have w2w3 ∈ E(G). Similarly

as w12 does not exist, to avoid 〈w1, t, x1; x2w2w3〉 be a Z3, we have both w1w2 and w1w3 in

E(G). Thus 〈w1, w2, w3〉 is a clique since G is claw-free.

If S3 = {t}, we may assume tw3 ∈ E(G) by symmetric. If neither w12 nor w13 exists,

since degG(w1) ≥ 3, we have w1w2, w1w3 ∈ E(G). If w12 does not exist and w13 exists, since

〈t, w3, w13; x1x2w2〉 is not a Z3, we have w2w3 ∈ E(G). Moreover, if both w12 and w13 exist,

since neither 〈t, w3, w13; x1x2w2〉 nor 〈t, x3, w3;w2w12w1〉 is a Z3, we have w2w3 and w1w2 in

E(G) or w1w3 in E(G). Since degG(w1) ≥ 3, we have w1w2 or w1w3 in E(G). G is claw-free

gives us that 〈w1, w2, w3〉 is a clique. �

Claim 5.2.19. There exists a strong spanning Halin subgraph in G.

Proof. We want to find a strong spanning Halin subgraph in G by following subcases.

Subcase 1: Suppose S2 ∪ S3 ∪ S4 = {t}.

We may assume tw3 ∈ E(G) by symmetric.

Subcase 1.1: At least one of {w23, w13} exists.

We may assume w23 exists. If w2 exists or w1 exists, then let C = ux3x1w12w13w1w3tu

be a cycle and all vertices on the path x2w23w2 be stems of T with NC(x2) = {u, x3, x1},
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NC(w23) = {w12, w13} and NC(w2) = {w3, w1, t} (See Figure 5.4(1)). If neither w1 nor w2 ex-

ists, then t ∈ S2∪S3 since |NG(t)| ≥ 3, which implies tx3 ∈ E(G). Let C = ux2x1w12w13w3tu

be a cycle and {x3, w23} be stems of T with NC(x3) = {w3, t, u, x2, x1} and NC(w23) =

{w12, w13}. Let H = T ∪C, it is easy to check that H is a strong spanning Halin subgraph

of G (See Figure 5.4(2)).

Subcase 1.2: Neither w23 nor w13 exists.

If neither w23 nor w13 exists, then w12 must exist.

If N2(t) = N2(x3), let C = x3ux1w12w1tx3 be a cycle and all vertices on the path x2w2w3

be stems of T with NC(x2) = {u, x1}, NC(w2) = {w1, w12} and NC(w3) = {x3, t} (See Figure

5.4(3)). If N2(t) = {w1, w2, w3}, let C = ux3x1w12w1w3tu be a cycle and {x2, w3} be stems

of T with NC(x2) = {x1, x3, u} and NC(w2) = {w1, w12, w3, t} (See Figure 5.4(4)). Let

H = T ∪ C, it is easy to check that H is a strong spanning Halin subgraph of G.

Subcase 2. Assume |S2 ∪ S3 ∪ S4| ≥ 2.

By Claim 5.2.13 to Claim 5.2.18, we have |N2(S2 ∪ S3 ∪ S4) ∩ {w1, w2, w3}| ≥ 2. And

we may assume there exist t ∈ S2 and t′ ∈ S4(since other cases are similarly and much

easier), then tw1, t
′w3 ∈ E(G). Let C = tt′w3w13w23w2w12w1t be a cycle and all vertices on

the path ux1x2x3 be stems of T with NC(u) = {t, t′}, NC(x1) = {w1, w12}, NC(x2) = {w2}

and NC(x3) = {w23, w13, w3}. Let H = T ∪ C, it is easy to check that H is a strong

spanning Halin subgraph of G (See Figure 5.4(5)). Note that if S3 6= ∅, we may as-

sume S3 ⊆ {t1, t2, t3} and t1x1, t2x2, t3x3 ∈ E(G). Then adding x1t1, x2t2, x3t3 to E(T ),

w1t1, t1w12, w12t2, t2w2, w13t3, t3w3 to E(C) if they exist and deleting w1w13, w12w2, w23w3

from E(C). Similarly, we can find a strong spanning Halin subgraph in G.

Case 2.2: There does not exist a triangle in 〈S〉.

Since G is claw-free and ux ∈ E(G) for any x ∈ S, we have α(G) ≤ 2. Moreover,

since neither H-5 nor triangle is an induced subgraph of G, there is no induced cycle with 5

vertices in 〈S〉, which implies |S| ≤ 4. Now we want to consider following subcases.

Case 2.2.1: Assume 〈S〉 is connected.
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Figure 5.4. V1 = {u}, V2 is not a clique and 〈S〉 contains a triangle.

We may denote by P = xyz is an induced path in 〈S〉, then we can easily get following

claims.

Claim 5.2.20. N2(x) ∩N2(z) = N2(x) ∩N2(y) ∩N2(z).

Proof. If there exists w ∈ N2(x) ∩N2(z) \N2(y), then 〈w, x, y, z, u〉 ∼= H-2. �

Claim 5.2.21. |N2(x) ∩N2(y) ∩N2(z)| ≤ 1.

Proof. Otherwise, let w1, w2 ∈ N2(x) ∩N2(y) ∩N2(z), then 〈x, y, w1, w2, z〉 ∼= H-9. �

Claim 5.2.22. Either N2(y) ⊆ N2(x) or N2(y) ⊆ N2(z).

Proof. For any w ∈ N2(y), since 〈y; x, z, w〉 is not a claw, wx ∈ E(G) or wy ∈

E(G). If there exist w1 ∈ N2(y) ∩ N2(x) \ N2(z) and w2 ∈ N2(y) ∩ N2(z) \ N2(x), then

〈y; u, x, w1, w2, z〉 ∼= H-5, giving a contradiction. Thus, either N2(y) ⊆ N2(x) or N2(y) ⊆

N2(z). �

From here and after, we always assume N2(y) ⊆ N2(x), then we can show that N2(x) =

N2(y) by following claim.
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Claim 5.2.23. N2(x) = N2(y).

Proof. Since N2(y) 6= ∅, we may denote w1 ∈ N2(y) ⊆ N2(x). Suppose there exists

w2 ∈ N2(x) \ N2(y). If w1 /∈ N2(z), then 〈w2, w1, x, y, u, z〉 ∼= H-8; if w1 ∈ N2(z), since

|N2(x) ∩ N2(y) ∩ N2(z)| = 1 and |N2(y) ∪ N2(z)| ≥ 2, we may assume w3 ∈ N2(z) \N2(y),

however this in turn gives us 〈w1;w2, w3, y〉 is a claw or 〈w3, w1, w2, x, y, u〉 isomorphic to

H-8. �

Case 2.2.1.1: Suppose 〈S〉 is an induced path with four vertices, denote by P .

Claim 5.2.24. If 〈S〉 is an induced path with four vertices, say P , then P = txyz and

|V2| ≤ 6.

Proof. Suppose P = xyzt is an induced path in 〈S〉, then there exists w1 ∈ N2(x) =

N2(y) \ (N2(z) ∩N2(t)) since |N2(x) ∪N2(y)| ≥ 2, |N2(x) ∩N2(y) ∩N2(z)| ≤ 1 and N2(y) ∩

N2(t) ⊆ N2(z). However, this illustrates that 〈w1, x, y, u, z, t〉 ∼= H-8. Thus S = P = txyz.

We want to show |V2| ≤ 6 by following five statements.

Firstly, There is at most one vertex, in N2(t) \ N2(x) ∪ N2(y) ∪ N2(z)(or N2(z) \ N2(x) ∪

N2(y) ∪N2(t)). Otherwise, let w,w′ ∈ N2(t) \N2(x) ∪N2(y) ∪N2(z), then 〈w,w′, t; xyz〉 is

a Z3.

Secondly, |N2(t) ∩N2(z)| ≤ 1. Otherwise, let w1, w2 ∈ N2(t)∩N2(z), then 〈u, z, w1, w2, t〉 ∼=

H-2.

Thirdly, |N2(t) ∩ N2(x) ∩ N2(y)| ≤ 1 and |N2(z) ∩ N2(x) ∩ N2(y)| ≤ 1. Otherwise, let

w1, w2 ∈ N2(t) ∩N2(x) ∩N2(y), then 〈t, x, y, w1, w2〉 ∼= H-9.

Fourthly, N2(t)∩N2(x)∩N2(y)∩N2(z) = ∅. Otherwise, let w ∈ N2(t)∩N2(x)∩N2(y)∩N2(z),

then 〈w, t, x, u, z〉 ∼= H-2.

Fifthly, |N2(x) = N2(y)| ≤ 3. Otherwise, we may assume there exist w1, w2 ∈ N2(x)\(N2(t)∪

N2(z)). If N2(x)∩N2(y)∩N2(z) 6= ∅, denote w3 ∈ N2(x)∩N2(y)∩N2(z), then 〈w1, w2, w3; zut〉

is a Z3. If N2(x) ∩ N2(y) ∩ N2(z) = ∅, then there exists w3 ∈ N2(x) \ (N2(z) ∪ {w1, w2}),

clearly, dist(z, w3) ≥ 2, we can also find a Z3 in G. �
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By Claim 5.2.24, we may denote S = P4 = txyz, N2(x) = N2(y) ⊆ {w1, w2, w3},

w4 ∈ N2(t)∩N2(z), w5 ∈ N2(t)\N2(x)∪N2(y)∪N2(z) and w6 ∈ N2(z)\N2(x)∪N2(y)∪N2(t).

Note that any vertex in {w1, w2, w3, w4, w5, w6} may not exist.

Claim 5.2.25. If w5 exists( or w6 exists), then 3 ≥ |N2(w5)∩{w1, w2, w3}| ≥ |{w1, w2, w3}|−

1.

Proof. IfN2(w5) = {w1, w2, w3}, then 〈w5, w1, w2, w3, x〉 ∼= H-9. If there exist w1w5, w2w5

not in E(G), then either 〈w1, w2, x; uzw5〉 is a Z3 or 〈z; u, w1, w5〉 is a claw or 〈z; u, w2, w5〉

is a claw, showing a contradiction. �

Now we want to find a strong spanning Halin subgraph in G by following two subcases.

Subcase 1: Assume |{w1, w2, w3}| = 3.

We may let w2w6, w3w6, w2w5 ∈ E(G) by Claim 5.2.25, then we can also assume zw3 ∈

E(G) since 〈w2, w3, w6, z, y〉 ≇ H-2, which implies w3w5 /∈ E(G) since 〈w3; z, w1, w5〉 is not

a claw and 〈y, w1, w2, w3, w5〉 ≇ H-9. Thus w1w5 ∈ E(G), which implies tw1 ∈ E(G) since

〈x, w1, w2, w5, t〉 ≇ H-2. Moreover, since 〈y, w1, w2, w5, w4, z〉 ≇ H-4 and 〈w4; t, z, w2〉 is not

a claw, we have w3w4 ∈ E(G). Similarly, we can show that w1w4 ∈ E(G).

Let C = utw1w5w4w6zyu be a cycle and all vertices on the path xw2w3 be stems of T

with NC(x) = {u, t}, NC(w2) = {w1, w5} and NC(w3) = {w4, w6, z, y}(Note that even if w4

or w5 or w6 does not exist, we can also find a cycle C or a tree T similarly). Let H = T ∪C,

it is easy to check that H is a strong spanning Halin subgraph of G (See Figure 5.5(1)).

u u u

(1) (2) (3)

x
xx

z
zz

y
yy

w1
w1

w1

w2
w2

w2

w3

w4

w4

w4

t
t

t

w5
w5

w5

w6

w6
w6

Figure 5.5. V1 = {u}, V2 is not a clique and 〈S〉 is an induced P4.
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Subcase 2: We assume that |{w1, w2, w3}| = 2.

We may assume w3 does not exist. By Claim 5.2.25, we can assume w2w6 ∈ E(G).

Since 〈x, y, w2;w6w4w5〉 is not a Z3, we have w2w4 ∈ E(G) or w5w6 ∈ E(G).

If w2w4 ∈ E(G), then zw2 ∈ E(G) since 〈w2, w4, w6, z, y〉 ≇ H-2. By symmetric ,we

can also show that w1w4, w1t, w1w5 ∈ E(G). Let C = utw5w4w6zyu be a cycle and all

vertices on the path xw1w2 be stems of T with NC(x) = {u, t}, NC(w1) = {w5, w4} and

NC(w2) = {w6, z, y}(Note that even if w4 or w5 or w6 does not exist, we can also find a cycle

C or a tree T similarly.) Let H = T ∪ C, it is easy to check that H is a strong spanning

Halin subgraph of G (See Figure 5.5(2)).

If w5w6 ∈ E(G), since neither 〈w6;w5, w2, z〉 is a claw nor 〈w5, w2, w6, z, u, t〉 isomorphic

to H-4, we have either w2w5 or w2z in E(G). If w2z ∈ E(G), to avoid 〈u, y, z, w2, w6, w4〉 ∼=

H-4, we have w2w4 ∈ E(G). Then we can find a strong spanning Halin subgraph in G as

above. If w2w5 ∈ E(G), to avoid 〈w1, x, y; zw6w5〉 be a Z3, we have w1z or w1w6 or w1w5 in

E(G), but not both w1w6 and w1w5 in E(G) since 〈x, y, w1, w2, w5, w6〉 ≇ H-7. If w1z ∈ E(G),

since 〈z; u, w1, w6〉 is not a claw, we have w1w6 ∈ E(G). Moreover, since 〈w1, z, w6, w4, w5, t〉

does not isomorphic to H-8, we have w1w4 ∈ E(G). Let C = utw5w6w4zyu be a cycle and

all vertices on the path xw1w2 be stems of T with NC(x) = {y, u, t}, NC(w1) = {w5, w6}

and NC(w2) = {w4, z}(Note that if w1w6 ∈ E(G), then w1z ∈ E(G) since 〈w6; z, w1, w5〉 is

not a claw. If w1w5 ∈ E(G), then tw1 ∈ E(G) since 〈w5; t, w1, w6〉 is not a claw. Moreover,

w1w4 ∈ E(G) given by 〈w5, t, w1, w2, w6, w4〉 ≇ H-5. Similarly as zw2 ∈ E(G), we can find a

cycle C and a tree T in G.) Let H = T ∪C, it is easy to check that H is a strong spanning

Halin subgraph of G (See Figure 5.5(3))

Case 2.2.1.2: Assume 〈S〉 is an induced C4 or P3.

Claim 5.2.26. If 〈S〉 is an induced cycle with four vertices or a path with three vertices,

then |V2| ≤ 6.

Proof. If |S| = 4, we denote by S = xyztx be the cycle with N2(x) = N2(y) and

N2(z) = N2(t) by Claim 5.2.23. If |S| = 3, we denote by S = xyz with N2(x) = N2(y).
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Moreover, we reserve w ∈ N2(y)∩N2(z) if it exists. The following two statements are showing

this lemma is true.

Firstly, for any w′ ∈ N2(z)\{w}, |N2(w
′)∩N2(x)| ≥ |N2(x)|−1 and |N2(x)\{w}| ≤ 2.

It is clearly true if N2(y) = {w,w1}. Thus we may assume there exist w1, w2 ∈ N2(y) \

{w} and w′ ∈ N2(z) \ {w}. Since 〈w1, w2, y; uzw′〉 is not a Z3 and 〈z, y, w1, w2, w
′〉 ≇ H-2,

we can assume w1w
′ ∈ E(G) and w2w

′ /∈ E(G), which implies |N2(w
′)∩N2(y)| ≥ |N2(y)|−1

and |N2(y) \ {w}| ≤ 2. Similarly, we can prove that |N2(z) \ {w}| ≤ 2.

We may denote by N2(x) = N2(y) = {w1, w2, w}, N2(z) = N2(t) = {w,w3, w4} and

w1w4, w2w3 ∈ E(G) if they exist.

Secondly, For any w′ ∈ V2 \ N2(x) ∪ N2(z), we have ww′ /∈ E(G), {w1, w2, w3, w4} ⊆

N2(w
′) and V2 ⊆ {w1, w2, w3, w4, w, w

′}, which implies |V2| ≤ 6.

Since 〈w; x, z, w′〉 is not a claw, we get ww′ /∈ E(G). Moreover, N2(w
′)∩{w1, w2, w3, w4} 6=

∅. Otherwise, let w′′ ∈ V2 \ (N2(x) ∪ N2(z) ∪ {w}) such that w1w
′′, w′′w ∈ E(G), then

〈z, u, y;w1w
′′w′〉 is a Z3. Thus, we may assume w′w1 ∈ E(G), which implies w′w4 ∈

E(G) since 〈w1; x, w4, w
′〉 is not a claw. Furthermore, there does not exist w′′ ∈ V2 \

{w1, w2, w, w3, w4, w
′} such that w′w′′ ∈ E(G). Otherwise, either 〈z, u, y;w1w

′′w′〉 or 〈w′, w′′,

w1; yzt〉 is a Z3, which in turn gives that 〈V2 \N2(S)〉 is an independent set. On the other

hand, since G is 3-connected, {w1, w2, w3, w4} ⊆ N2(w
′) for all w′ ∈ V2\N2(S), which implies

|V2 \N2(S)| ≤ 1. Therefore, V2 ⊆ {w1, w2, w3, w4, w, w
′}. �

Since any vertex in {w1, w2, w, w3, w4, w
′} may not exist and |N2(x) ∪ N2(y)| ≥ 2,

|N2(z) ∪N2(t)| ≥ 2 and |N2(w
′)| ≥ 3 if w′ exists. We may assume w2, w3 exists. If |S| = 4,

let C = uxw1w2w
′w4wtu be a cycle and all vertices on the path yzw3 be stems of T with

N2(y) = {u, x, w1}, N2(z) = {t} and NC(w3) = {w2, w
′, w4, w}. Let H = T ∪ C, it is easy

to check that H is a strong spanning Halin subgraph of G (See Figure 5.6(1)). If |S| = 3,

let C = uxw1w
′w4wzu be a cycle and all vertices on the path yw2w3 be stems of T with

N2(y) = {u, x1}, N2(w2) = {w1} and NC(w3) = {w′, w4, w, z}. Let H = T ∪ C, it is easy to

check that H is a strong spanning Halin subgraph of G (See Figure 5.6(2)).

Case 2.2.2: Assume 〈S〉 is not connected.
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Figure 5.6. V1 = {u}, V2 is not a clique and 〈S〉 is an induced C4 or P3.

Since G is claw-free and for any x ∈ S, ux ∈ E(G), there exist exact two components,

say S1 and S2, in 〈S〉. Moreover, 〈S〉 does not contain an induced triangle implies |S1| ≤ 2

and |S2| ≤ 2. We let S1 = {x1, x2} and S2 ⊆ {x3, x4}. The following claims are true.

Claim 5.2.27. N2(xi) ∩N2(xj) ∩N2(xk) = ∅, where i, j, k ∈ [1, 4].

Proof. If there exists w ∈ N2(x1) ∩N2(x2) ∩N2(x3), then 〈x3, u, x1, x2, w〉 ∼= H-2. �

Claim 5.2.28. |N2(xi) ∩N2(xj)| ≤ 1, where i, j ∈ [1, 4].

Proof. By symmetric, we only show that |N2(x1)∩N2(x2)| ≤ 1 and |N2(x2)∩N2(x3)| ≤

1. Suppose to the contrary, there exist w1, w2 ∈ N2(x1)∩N2(x2), then 〈w1, w2, x1, x2, u, x3〉 ∼=

H-6. If there exist w3, w4 ∈ N2(x2) ∩N2(x3), then 〈u, x2, w3, w4, x3〉 ∼= H-2. �

Claim 5.2.29. N2
2 (xk) ⊆ N2(xi) ∪ N2(xj), where {i, j} = {1, 2} and k ∈ {3, 4} or {i, j} =

{3, 4} and k ∈ {1, 2}.

Proof. Suppose to the contrary, there exist w1 ∈ N2(x3) and w2 ∈ N2
2 (x3). Since

〈x1, x2, u; x3w1w2〉 is not a Z3, we may assume w1x2 ∈ E(G). However, this in turn gives us

〈w1; x2, x3, w2〉 is a claw. �

We may denote by wij ∈ N2(xi) ∩ N2(xj) and wi ∈ N2(xi) \ ∪j 6=iN2(xj) if they exist,

where i, j ∈ [1, 4].

Claim 5.2.30. If S1 = {x1, x2} and S2 = {x3, x4}, then V2 ⊆ {w12, w13, w14, w23, w24, w34}

and there exists a strong spanning Halin subgraph in G.
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Proof. We prove this claim by following three statements.

If both w12 and w34 exist, then V2 ⊆ {w12, w13, w14, w23, w24, w34}. We may suppose w1

exists, then 〈x3, x4, u; x2w12w1〉 is a Z3, showing a contradiction. Similarly, we can show that

w2, w3, w4 all do not exist.

If either w12 or w34 exists, then V2 ⊆ {w12, w13, w14, w23, w24, w34}. We may assume w12

exists and w34 does not exist. Then neither w1 nor w2 exists. Since |N2(x1)∪N2(x2)| ≥ 2, we

may assume w13 exists, then w4 does not exists otherwise 〈w12, w13, x1; ux4w4〉 is a Z3. If w3

exists, then w14 does not exist. Otherwise 〈w12, w14, x1; ux3w3〉 is a Z3, which in turn gives

w24 exists since N2(x4) 6= ∅. To avoid 〈w24, w12, x2; ux3w3〉 be a Z3 and 〈w12; x2, w3, w24〉 be

a claw, we have w24w3 ∈ E(G). However, this force 〈w24; x2, w3, w24〉 to be a claw. Thus

neither w3 nor w4 exists. Therefore, V2 ⊆ {w12, w13, w14, w23, w24, w34}.

If neither w12 nor w34 exists, then V2 ⊆ {w13, w14, w23, w24}. Firstly, if both w13 and

w14 exists, then w1 does not exist. Otherwise, 〈w1, w13, w14; x3ux2〉 is a Z3. Secondly, if

both w13 and w24 exist, then w1 does not exist. Since 〈w1, x1, w13; x3x4w24〉 is not a Z3,

we have w13w24 ∈ E(G), which implies 〈w13; x1, x3, w24〉 is a claw, or w1w24 ∈ E(G), which

implies 〈w24; x4, x2, w1〉 is a claw. Thirdly, if w1, w2, w4 exist, then w13 or w23 does not

exist. Otherwise, since 〈x1, w1, w13; x3x4w4〉 is not a Z3 and 〈w13; x1, x3, w4〉 is not a claw,

we have w1w4 ∈ E(G). Moreover, since 〈w23, w2, x2; ux4w4〉 is not a Z3, we have w2w4 ∈

E(G) which implies w1w2 ∈ E(G) since 〈w4; x4, w2, w1〉 is not a claw, or w23w4 ∈ E(G)

which implies w23w1 ∈ E(G) since 〈w4; x4, w23, w1〉 is not a claw. If both w1w2 and w2w4

in E(G), then 〈w1, w4, w2; x2ux3〉 is a Z3. If w23w1 ∈ E(G), then 〈w23; x2, x3, w1〉 is a

claw, showing a contradiction. Futhermore, V2 6= {w1, w2, w3, w4}. Otherwise, since V2 is

connected, we have {w1, w2, w3, w4} is a clique, which implies 〈w1, w4, w2; x2ux3〉 is a Z3.

Thus V2 ⊆ {w13, w14, w23, w24}.

Let C = ux1w12w13w14w34x4x3u be a cycle and all vertices on the path x2w23w24 be

stems of T with NC(x2) = {u, x1, w12}, NC(w23) = {w13, x3} and NC(w24) = {w14, w34, x4}.

Let H = T ∪ C, it is easy to check that H is a strong spanning Halin subgraph of G (See

Figure 5.7(1)). �
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Figure 5.7. V1 = {u}, V2 is not a clique and 〈S〉 is not connected.

Claim 5.2.31. If S1 = {x1, x2} and S2 = {x3}, then V2 ⊆ {w12, w13, w23, w1, w2, w3},

〈w1, w2, w3〉 is a clique and there exists a strong spanning Halin subgraph in G.

Proof. For any w ∈ V2\N2(S), w12w,w23w,w13w /∈ E(G). Otherwise, 〈w;w12, x1, x2, u;

x3〉 isomorphic to H-3 or 〈w23; x1, x3, w〉 is a claw or 〈w13; x2, x3, w〉 is a claw. Let R1 =

N2(x1)\N2(x2)∪N2(x3), R2 = N2(x2)\N2(x1)∪N2(x3) and R3 = N2(x3)\N2(x1)∪N2(x2).

We may assume V2 6= N2(x3) since it is not a clique. In fact R1 ∪ R2 ∪ {w12} 6= ∅ since

N2
2 (x3) ⊆ N2(x1) ∪N2(x2). This lemma is true illustrated by following two statements.

Firstly, |R3| ≤ 1. Suppose this is not true, we may assume there exist w4, w5 ∈ R3,

then w12 does not exist. Otherwise, w12w4, w12w5 /∈ E(G) since neither 〈x3;w4, x1, x2, u〉 nor

〈x3;w5, x1, x2, u〉 isomorphic to H-4, however, this will induce 〈w4, w5, x3; ux2w12〉 to be a Z3.

Thus we may assume w6 ∈ R1, to avoid 〈w4, w5, x3; ux1w6〉 be a Z3 and 〈u; x3, w4, w5, w6; x1〉

isomorphic to H-4, we may assume w6w4 ∈ E(G) and w6w5 /∈ E(G). But this will force

〈x3, w5, w4;w6x1x2〉 to be a Z3, showing a contradiction.

Secondly, |R1| ≤ 1 and |R2| ≤ 1. Since degG(x3) ≥ 3 and |R3| ≤ 1, we may assume

w13 exists, then |R2| ≤ 1. Otherwise, let w6, w7 ∈ R2, then 〈w6, w7, w13; x3ux1〉 is a Z3.

Similarly, if w23 exists, then |R1| ≤ 1, which implies |N2(S)| ≤ 6. Since G is 3-connected

and for any w ∈ V2 \N2(S), w12w,w23w,w13w /∈ E(G), we have R1 ∪R2 ⊆ N2(w). However,

this will force 〈w,w4, w5; x2ux3〉 be a Z3, where w4 ∈ R1, w5 ∈ R2. Therefore, V2 ⊆

{w12, w13, w23, w1, w2, w3}.
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Now we want to show that 〈w1, w2, w3〉 is a clique.

Firstly, we can observe that wiwjk /∈ E(G), since 〈u, x1, x2, w12, w3, x3〉 ∼= H-4 and

neither 〈w13;w2, x1, x3〉 nor 〈w23;w1, x2, x3〉 is a claw. If w12 exists, we have w1w3 ∈ E(G)

since 〈w1, w12, x1; uzw3〉 is not a Z3. Similarly, we can show that w2w3 ∈ E(G). Since

〈w3;w1, w2, x3〉 is not a claw, we have w1w2 ∈ E(G). Thus {w1, w2, w3} is a clique. If w12

does not exist, since degG(w1) ≥ 3, degG(w2) ≥ 3, we can assume w1w2 in E(G) or both w1w3

and w2w3 in E(G). If both w1w3 and w2w3 in E(G), then w1w2 in E(G) since 〈w3;w1, w2, x3〉

is not a claw. If w1w2 ∈ E(G), to avoid 〈x3, w3, w23;w2w1x1〉 be Z3, we have w2w3 ∈ E(G)

or w1w3 ∈ E(G), which also implies 〈w1, w2, w3〉 is a clique.

Let C = ux1w12w1w2w3x3u be a cycle and all vertices on the path yw23w13 be stems of

T with NC(x2) = {u, x1}, NC(w13) = {w1, w12} and NC(w23) = {w2, w3, x3}. Let H = T ∪C,

then H is a strong spanning Halin subgraph in G (See Figure 5.7(2)). �

5.3 Proof of 3-connected B1,2-free line graphs

In this section, we always assume G is a 3-connected B1,2-free line graph and prove

Proposition 8 by following series of claims.

Claim 5.3.1. If |V1| ≥ 4, then N1(x) = V1 or N2(x) = V2 for all x ∈ S.

Proof. We may assume there exists x ∈ S, such that N1(x) 6= V1 and N2(x) 6= V2.

Since |V2| ≥ |V1| ≥ 4, we can assume there exists w1 ∈ N2(x), w2 ∈ N2
2 (x), u1, u2 ∈ N1(x)

and u3 ∈ N2
1 (x), such that w1w2, u1u3 ∈ E(G). Since 〈u3; u1, u2, x;w1w2〉 is not a B1,2,

we have u3u2 ∈ E(G), which means N1(x) ⊆ N1(u3). On the other hand, the fact that G

does not contain H-9 as an induced subgraph gives us N1(x) = {u1, u2}. Moreover, we can

also assume N3
1 (x) = ∅ according to G is H-3 free, thus |N2

1 (x)| ≥ 2 since |V1| ≥ 4. Let

u3, u4 ∈ N2
2 (x), then 〈u3, u4, u1, u2, x, w1〉 ∼= H-6, showing a contradition. �

Claim 5.3.2. If |V1| = 3, |V2| ≥ 4 and N1(x) 6= V1 for all x ∈ S, then

1) There exists x ∈ S such that |N2(x)| ≥ 2;
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2) V2 ∪ S is a clique;

3) There exists a strong spanning Halin subgraph in G.

Proof. We can assume 〈V1〉 is a triangle and |S| = 3. Otherwise, we can find two

vertices, say x and y, in S, such that N1(x) = N1(y) = {u1, u2}. Let S ′ = (S \ {x, y}) ∪

{u1, u2}, V ′
1 = V1 \ {u1, u2} and V ′

2 = V2 ∪ {x, y}, then S ′ is also a minimum vertex cut with

|V ′
1 | < |V1|, contradicts to the assumption of S and V1.

Thus we denote by N1(x) = {u1, u2}, N1(y) = {u1, u3} and N1(z) = {u2, u3}.

1) Suppose this is not true. Let N2(x) = {w1}, N2(y) = {w2}, N2(z) = {w3} and

w4 ∈ N2
2 (z) \ {w1, w2}. Since 〈x; u2, u3, z;w3w4〉 is not a B1,2, xz ∈ E(G). However, this will

induce 〈z; u3, x, w3〉 to be a claw, showing a contradiction.

Therefore, we may assume |N2(x)| ≥ 2 here and after.

2) Since N1(x) 6= V1 and |V2| ≥ 4, similarly as Claim 5.3.1, we can show that N2(x) = V2.

Moreover, by the same method as Corollary 5.1.2, we will get N2(x) = N2(y) = V2 for all

y ∈ S \ {x} . Therefore, V2 ∪ S is a clique.

3) We may continue to denote by w1 ∈ N2(x), w2 ∈ N2(y) and w3 ∈ N2(z). Since

V2 \ {w2} is a clique, there exists a hamiltonian path, say P = w1Pw3, in it. Let C =

P ∪ {w3z, zu2, u2u1, u1x, xw1} be a cycle and all vertices on the path u3yw2 be stems of T

with NC(u3) = {u1, u2}, NC(y) = {x, z} and NC(w2) = V (P ). Set H = T ∪ C, it is easy to

check that H is a strong spanning Halin subgraph of G. �

Remark: According to Lemma 4.1.2, Claim 5.3.1 and 5.3.2, we can assume N1(x) = V1

for all x ∈ S. Moveover, if |V1| ≥ 2, then V1 ∪ S is a clique by Corollary 5.1.1. We want to

consider following cases.

Case 1: Suppose 〈V2〉 is a clique.

If |V1| = 1, similarly as G is a 3-connected Z3-free line graph, we can find a strong

spanning Halin subgraph in G.

If |V1| ≥ 2, let S = {x1, x2, · · · , xt}, w1 ∈ N2(x1), w2 ∈ N2(x2) and w3 ∈ N2(xt) by

Lemma 4.1.2. Since V1, S1 \ {x1, x2} and V2 are cliques, there exist hamiltonian paths, say
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say P1 = u1P1u2, P2 = x3P2xt and P3 = w2P3w3, in them, respectively. Let C = P1P2P3 ∪

{x1u1, x1w1, x3u2, xtw3} and {x2, w2} be stems of T with NC(x2) = V (P1) ∪ V (P2) ∪ {x1}

and N2(w2) = V (P3). Set H = T ∪C, it is easy to check that H is a strong spanning Halin

subgraph of G. �

Case 2: Suppose 〈V2〉 is not a clique.

The following two claims are showing the structure of 〈V2〉.

Claim 5.3.3. There exist x, y ∈ S such that N2(x) ∩N2(y) 6= ∅.

Proof. Suppose for any x, y ∈ S, N2(x) ∩ N2(y) = ∅. Denote by w1 ∈ N2(x), w2 ∈

N2(y) and w3 ∈ N2(z).

Firstly, we want to show that S is a clique. This is true if |V1| ≥ 2, thus we assume

|V1| = 1. Then there is no induce path of length 3 in 〈S〉, otherwise 〈y; x, z, w2〉 is a claw.

Therefore, 〈S〉 contains exact two cliques, say S1 and S2, in it. We may assume x, y ∈ S1

and z ∈ S2. Since 〈w1; x, y, u; zw〉 is not a B1,2, we have w1w ∈ E(G), which implies

N2(z) ⊆ N2(w1) and |N2(z)| = 1 since G does not contain H-4 as a subgraph. Moreover,

degG(z) ≥ 3 gives us that there exists t ∈ S2 \ {z} such that tz ∈ E(G), then 〈y; u, t, z;ww1〉

is a B1,2, showing a contradiction.

Secondly, we will prove that 〈V2〉 is a clique. Denote by R = V2 \ N2(S). If R = ∅,

we may assume w1w2 ∈ E(G) since 〈V2〉 is connected. To avoid 〈w3; z, u, x;w1w2〉 be a B1,2

and claw exist, both w2w3 and w1w3 in E(G). If there exists w4 ∈ N2(x) \ {w1}, since

〈w4;w1, w2, w3; zu〉 is not a B1,2 and 〈V2〉 is claw-free, we have w2w4, w3w4 ∈ E(G), which

implies N2(x) ∪ N2(y) ∪ N2(z) is a clique. Similarly, we can show that V2 = N2(S) is a

clique since S is a clique. If R 6= ∅, we may assume there exists w4 ∈ N2
2 (x) such that

w1w4 ∈ E(G). Since 〈w2; y, u, x;w1w4〉 is not a B1,2 and 〈w1; x, w4, w2〉 is not a claw, we get

w2w4 ∈ E(G), which implies N2
2 (x) ∩ R ⊆ N2

2 (y) ∩ R. Since S is a clique, by symmetric,

we have N2
2 (x) ∩ R = N2

2 (S) for all x ∈ S. Moreover, N3
2 (S) = ∅. Otherwise, assume there

exists w5 ∈ N3
2 (x) such that w4w5 ∈ E(G), then 〈w5;w4, w2, w1; xu〉 is a B1,2. Furthermore,

we can assume w1w2 ∈ E(G) since 〈w;w1, w2, w3〉 is not a claw for any w ∈ R. Similarly
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as R = ∅, we can show that N2(S) is a clique, which implies V2 = N2(S) ∪ N2
2 (S) is also a

clique. �

Let S ′ = {x ∈ S|there existsy ∈ S such thatN2(x)∩N2(y) 6= ∅} and x ∈ S ′ be the vertex

with |N2(x)| is maximum.

Claim 5.3.4. V2 = N2(x) ∪N2
2 (x)

Proof. Suppose this is not true. By Claim 5.3.3 and Lemma 4.1.2, we can assume there

exist w1, w2 ∈ N2(x), w3 ∈ N2
2 (x), w4 ∈ N3

2 (x) and u ∈ N1(x) such that w1w3, w3w4 ∈ E(G),

then either 〈u; x, w2, w1;w3w4〉 is a B1,2 or 〈u, x, w1, w2, w3, w4〉 isomorphic to H-2, giving a

contradiction. �

Remark: We may reserve y ∈ S ′ \ {x} with N2(x) = N2(y) if it exists. Note that if

|V1| ≥ 2, y does not exists since G does not contain H-7 as an induced subgraph. If V1 = {u},

there exists at most one such y, since G does not contain H-9 as an induced subgraph.

Now we want to find a strong spanning Halin subgraph in G by following subcases

depending on the size of N2(x).

Case 2.1. |N2(x)| ≥ 4. Denote by {w2, w3, w4} ⊆ N2(x) \ {w1}.

Claim 5.3.5. N2
2 (x) ⊆ N2(z) for any z ∈ S \ {x, y}.

Proof. Firstly, we will show that N2
2 (x) ⊆ N2(z) for all z ∈ S ′ \ {x, y}. For any

w ∈ N2
2 (x), if ww1 ∈ E(G), then we can assume ww3 /∈ E(G) since G is H-9 free. This

in turn gives us wz ∈ E(G) since 〈w1; z, w3, w〉 is not a claw. If ww1 /∈ E(G), since V2 =

N2(x)∪N2
2 (x), we may assume ww2 ∈ E(G). To avoid 〈x, w2, w3, w4, w〉 ∼= H-9, we still have

w3w /∈ E(G). Since 〈w;w2, w3, w1; zu〉 is not a B1,2, we have wz ∈ E(G).

Secondly, we want to show that N2
2 (x) ⊆ N2(z) for all z ∈ S \ S ′. This is clearly

true if |N2
2 (x)| = 1 or S \ S ′ = ∅. Therefore, we may assume |N2

2 (x)| ≥ 2 and there exist

w,w′ ∈ N2
2 (x) and z ∈ S \ S ′ such that tw ∈ E(G) and tw′ /∈ E(G). We may also assume

ww1 ∈ E(G), then wwi /∈ E(G) for all wi ∈ N2
2 (x)\{w1}. Otherwise, G contains a H-4 or H-

2 as an induced subgraph. Since G is H-9 free, we can assume w3w
′ /∈ E(G); if w1w

′ ∈ E(G),
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then 〈w3;w1, w
′, w; zu〉 is a B1,2. If w1w

′ ∈ E(G), we may assume w2w
′ ∈ E(G) since

〈w′;w2, w3, w1;wz〉 is not a B1,2, then we have ww′ ∈ E(G). This forces 〈w;w1, w
′, z〉 to be

a claw.

We want to find a strong spanning Halin subgraph in G by following subcases for

|N2(x)| ≥ 4.

Subcase 1: Assume |V1| ≥ 2.

By the remark after Claim 5.3.2, we know V1 ∪ S is a clique. Then we have y does not

exist since G is H-7 free; N2
2 (x) = {w} by Claim 5.3.6; and S \ {x} = {z, t} since 〈S〉 is a

clique and G is H-9 free. We denote by N2(z) ∩ N2(x) = {w1} and assume ww2 ∈ E(G)

since {x, w1} is not a minimal vertex cut. Since both V1 and N2(x) \ {w1} are cliques, there

exist hamiltonian paths, say P1 = u1P1u2 and P2 = w2P2w3, in them, respectively. Let

C = P1P2 ∪ {xw3, w2w,wt, tu1, u2x} be a cycle and {z, w1} be stems of T with NC(z) =

V1 ∪ (S \ {z}) ∪ {w1} and NC(w1) = V2 \ {w1, w}. Let H = T ∪ C, it is easy to check that

H is a strong spanning Halin subgraph of G (See Figure 5.8(1)).

Subcase 2: Suppose that V1 = {u} and |N2
2 (x)| ≥ 2.

By Claim 5.3.6 and Corollary 5.1.2, we know |S\{x, y}| ≤ 2. We may assume xz ∈ E(G)

since |S| ≥ 3 and G is H-2 free and H-6 free. If S = {x, y, z} or S = {x, z, t}, since

neither {w1, x} nor {w1, z} is not a 2-cut, we can assume there exists w ∈ N2
2 (x) such

that ww1, ww2 ∈ E(G). Similarly as Subcase 1, we can find a strong spanning Halin

subgraph in G. If S = {x, y, z, t}, since both N2(x) and N2
2 (x) = N2(z) are cliques, there

exist hamiltonian paths, say P1 = w1P1w2 and P2 = wP2w
′, in them, respectively. Let

C = P1P2∪{yw2, w
′t, tu, uy} be a cycle and {x, z} be stems of T with NC(x) = V (P1)∪{y}

and NC(z) = V (P2)∪{t, u}. Let H = T ∪C, it is easy to check that H is a strong spanning

Halin subgraph of G (See Figure 5.8(2)).

Subcase 3: Assume V1 = {u} and N2
2 (x) = {w}.

Since G is H-9 free, |N2(w) ∩ N2(x)| ≤ 2. We may assume {w1, w2} ⊆ N2(w) since

V2 = N2(x) ∪N2
2 (x)(Note that ww2 may not exist).

If ww2 does not exist, then y exists since {x, w1} is not a 2-cut and S \{x, y} ⊆ {z, t} by
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Lemma 4.1.2. Similarly as Subcase 1 and 2, we can find a strong spanning Halin subgraph

in G.

If ww2 exists, we have S\{x, y} ⊆ {z, t, t′} by Lemma 4.1.2, we can assume t′w2 ∈ E(G)

if |{z, t, t′}| = 3. Since 〈w3, w4, w1, w2;w, t〉 ≇ H-6, we have either tw2 ∈ E(G) or tw1 ∈ E(G).

If tw2 ∈ E(G) and both t and t′ exist, then tt′ ∈ E(G) by Claim 5.1.1. We may assume

zt, zw1 ∈ E(G) but zt′ /∈ E(G) since 〈z, u, t, t′, w〉 is neither isomorphic to H-2 nor isomorphic

to H-9 and |N2(x, t, t
′)| ≥ 3. We may also assume w2z /∈ E(G), otherwise swipe w1 as w2.

Then zt ∈ E(G) since 〈w; z, t, w2〉 is not a claw, which also implies zt′ /∈ E(G). Moreover, we

have xt′ ∈ E(G) since 〈u; x, z, t′〉 is not a claw and 〈z, u, t, w, w1, x〉 does not isomorphic to

H-5. Since N2(x) \ {w1} is a clique, there exists a hamiltonian path, say P1 = w2P1w3, in it.

Let C = P1∪{w2t
′, t′t, tu, ux, xy, yw3} be a cycle and all vertices on the path zww1 be stems

of T with NC(z) = {u, t}, NC(w) = {t′} and NC(w1) = V (P1) ∪ {x, y}. Let H = T ∪ C, it

is easy to check that H is a strong spanning Halin subgraph of G (See in Figure 5.8(3)).

If tw1 ∈ E(G), by Lemma 5.1.1, tz ∈ E(G). Since neither 〈x; u, z, t, w1〉 ∼= H-2 nor

〈x, u, z, t, w1, w〉 ∼= H-7, we can assume xz ∈ E(G) and xt /∈ E(G). Moreover, to avoid

〈u; x, t, t′〉 be a claw and 〈t′, u, z, t, w1〉 isomorphic to H-2, we have either tt′ in E(G) or

both xt′ and zt′ in E(G). If tt′ ∈ E(G), we can find a strong spanning Halin subgraph

as tw2 ∈ E(G). If both xt′ and zt′ in E(G), since N2(x) \ {w1} is a clique, there exists

a hamiltonian path, say P1 = w2P1w3, in it. Let C = P1 ∪ {ut, tw, wt′, tw2, w3x, xu} be a

cycle and {z, w1} be stems of T with NC(z) = (S \ {x}) ∪ {u, w} and NC(w1) = V (P1). Let

H = T ∪C, it is easy to check that H is a strong spanning Halin subgraph of G (See Figure

5.8(4)).

Case 2.2: Assume N2(x) = {w1, w2, w3}.

Claim 5.3.6. If N2(x) = {w1, w2, w3}, then the structure of 〈V2〉 can be described.

Proof. For any w ∈ N2
2 (x), |N2(w) ∩ N2(x)| ≤ 2 since G is H-9 free. Therefore, if

ww1 ∈ E(G), we can assume ww3 /∈ E(G). Since 〈w1;w3, w, z〉 is not a claw, wz ∈ E(G).

If ww1 /∈ E(G), we may assume ww2 ∈ E(G) since V2 = N2(x) ∪ N2
2 (x). The fact that
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Figure 5.8. |N2(x)| ≥ 4.

〈w;w2, w3, w1; zu〉 is not a B1,2 showing ww3 ∈ E(G). On the other hand, there exists

at most one such w since if there exists another w′ with the same property as w, then

〈u, x, w2, w3, w, w
′〉 ∼= H-6. This implies |N2(w1) ∩ N2

2 (x)| ≥ |N2
2 (x)| − 1 and also means

|N2(z) ∩ N2
2 (x)| ≥ |N2

2 (x)| − 1. Since |N2(x)| is maximum, we have |N2
2 (x)| ≤ 3, which

implies |V2| ≤ 6.

Here we may reserve w ∈ N2
2 (x) \N2(z) if it exists and w′, w′′ ∈ N2(z) ∩ N

2
2 (x) if they

exist. Since 〈u; z, w′, w1;w2w〉 is not a B1,2 and 〈w2; x, w
′, w〉 is not a claw, ww′ ∈ E(G).

Similarly, we can show that ww′′ ∈ E(G). Moreover, since neither 〈w2, w, w
′, w′′, z, u〉 nor

〈w3, w, w
′, w′′, z, u〉 isomorphic to H-3 and neither 〈x, w1, w2, w3, w

′〉 nor 〈x, w1, w2, w3, w
′′〉

isomorphic to H-9, we can assume w3w
′, w2w

′′ ∈ E(G) and w2w
′, w3w

′′ /∈ E(G). Note that

if w does not exist, we can also assume w2w
′ ∈ E(G) since {x, w1} is not a 2-cut. �

We still reserve w ∈ N2
2 (x) \N2(z) if it exists and w′, w′′ ∈ N2(z) ∩N

2
2 (x) if they exist

here and after.

Claim 5.3.7. For any t ∈ S \ {x, y, z}, if tw ∈ E(G), then either N2(t) = {w2, w
′′, w} or

N2(t) = {w3, w
′, w}.

Proof. If tw ∈ E(G), since neither 〈w;w2, w
′, t〉 nor 〈w;w3, w

′′, t〉 is a claw and neither

〈w′′, w′, z, u, t〉 ∼= H-2 nor 〈w1, w
′, w′′, z, t〉 ∼= H-9 and neither 〈w2, w3, x, u, t〉 ∼= H-2 nor

〈w1, w
′, w′′, x, t〉 ∼= H-9, we have either N2(t) = {w2, w

′′, w} or N2(t) = {w3, w
′, w}. �
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Claim 5.3.8. For any t ∈ S \ {x, y, z}, tw1 /∈ E(G).

Proof. If there exists t ∈ S \ {x, y, z} such that tw1 ∈ E(G), since 〈w;w2, w
′, t〉 is not

a claw, we can assume tw2 ∈ E(G). By Claim 5.3.7, we have N2(t) = {w1, w2, w
′′, w}, which

contradicts to the definition of x in S ′. �

Claim 5.3.9. For any t ∈ S\{x, y, z}, if tw′ ∈ E(G)(similarly as tw′′ ∈ E(G) or tw2 ∈ E(G)

or tw3 ∈ E(G)), then either N2(t) = N2(z) or N2(t) = {w3, w
′, w}.

Proof. Since neither 〈w′;w3, w
′′, t〉 nor 〈t; u, w3, w

′′〉 is a claw, we have either tw3 ∈

E(G) or tw′′ ∈ E(G). If tw′′ ∈ E(G), then zt ∈ E(G) since 〈w′, w′′, t, u, z〉 ≇ H-2. To avoid

〈w1, w
′, w′′, z, t〉 ∼= H-9, we have N2(t) = N2(z). If tw3 ∈ E(G), since 〈w2; x, w, t〉 is not a

claw, we have xt ∈ E(G). To avoid 〈x, t, w′′, w, w2〉 ∼= H-2, we have wt ∈ E(G). Therefore,

N2(t) = {w3, w
′, w}. �

Corollary 5.3.1. For any t ∈ S, either N2(t) = {w1, w2, w3} or N2(t) = {w1, w
′, w′′} or

N2(t) = {w,w′′, w2} or N2(t) = {w3, w
′, w}.

Corollary 5.3.2. For any t ∈ S, there exists at most one t′ ∈ S \ {t}, such that N2(t) =

N2(t
′).

Proof. We may assume there exists t′, t′′ ∈ S \ {t} such that N2(t) = N2(t
′) = N2(t

′′).

Since 〈V2〉 is not a clique, by Lemma 4.1.2, |N2(t) = N2(t
′) = N2(t

′′)| ≥ 3. Since G

is H-2 free, tt′, tt′′, t′t′′ ∈ E(G). This will force 〈u, t, t′, t′′, w∗〉 isomorphic to H-9, where

w∗ ∈ N2(t) = N2(t
′) = N2(t

′′). �

Now we want to find a strong spanning Halin subgraph in G by following subcases.

Subcase 1: Assume |V1| ≥ 2.

By the remark after Claim 5.3.2, we have V1 ∪ S is a clique. Let P = tPz be a

hamiltonian path in V1 ∪ S \ {x} and w3 ∈ N2(t). Set C = P ∪ {zw′, w′w′′, w′′w,ww3, w3t}

be a cycle and all vertices on the path xw2w1 be stems of T with NC(x) = V (P ) \ {z},

NC(w2) = {w3, w} and NC(w1) = {z, w′, w′′}. Let H = T ∪ C, it is easy to check that H is

a strong spanning Halin subgraph of G (See Figure 5.9(1)).
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Subcase 2: Suppose V1 = {u}.

If 〈S〉 is connected, we may assume P = x1x2 · · ·xk is a hamiltonian path in 〈S〉.

Denote by {w1, w2, w3} ∈ N2(x1), w2 ∈ N2(x2), w ∈ N2(xk) since G is H-2 free and H-

9 free. Let C = x2Pxk ∪ {xkw,ww2, w
′w′′, w′′w2, w2x2} be a cycle and {u, x1, w3, w1} be

stems of T with NC(u) = V (P ), NC(w3) = {w′, w} and NC(w1) = {w2, w
′′} (See Figure

5.9(2)). If 〈S〉 is not connected, 〈S〉 has exact two cliques, denote by S1 = {x1, x2, · · · , xk1}

and S2 = {y1, y2, · · · , yk2}. If |S2| 6= 2, let w1 ∈ N2(x1) ∩ N2(y1), w3 ∈ N2(x1), w
′ ∈

N2(xk) and w2 ∈ N2(yk2). Set P1 = x2P1xk1 and P2 = y2P1yk2 be hamiltonian paths

in S1 \ {x1} and S2 \ {y1}, respectively. Note that P2 may not exist. Set C = P1P2 ∪

{ux2, xk1w
′, w′w,ww′′, w′′w2, w2yk2, y2u} be a cycle and all vertices on the path w3x1w1y1

be stems of T with NC(w3) = {w′, w}, NC(x1) = V (P1) ∪ {u} and NC(w1) = {w2, w
′′}

and NC(y1) = V (P2) (See Figure 5.9(3)). If |S2| = 2, denote by w2 ∈ N2(y1) ∩ N2(y2),

w1 ∈ N2(y1), w3 ∈ N2(x1) and w′ ∈ N2(xk1). Let P1 = x2P1xk1 be a hamiltonian path

in S1 \ {x1}. Set C = P1 ∪ {ux2, xk1w
′, w′w,ww′′, w′′w1, w1y1, y1y2, y2u} be a cycle and all

vertices on the path x1w3w2 be stems of T with NC(x1) = V (P1) ∪ {u}, NC(x1) = {w′, w1}

and NC(w2) = {w′′, y1, y2}. Let H = T ∪ C, it is easy to check that H is a strong spanning

Halin subgraph of G (See Figure 5.9(4))

(1) (2) (3) (4)

u1

u2

x

y

z

t

w

w

w
w

w1

w1
w1

w1

w2w2

w2
w2

w3

w3

w3

w3

w′

w′

w′

w′ w′′

w′′

w′′
w′′

y1

y1
y2

y2 yk2

x1

x1x1
x2

x2x2

xk

xk1xk1

u uu

Figure 5.9. |N2(x)| = 3.

Case 2.3: Suppose N2(x) = {w1, w2}.

If |V2| = 2, then 〈V2〉 is a clique since it is connected. Thus we may assume |V2| ≥ 3.
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Claim 5.3.10. If |V2| ≥ 3 and there exists z ∈ S ′ \ {x, y} such that N2(x)∩N2(z) 6= ∅, then

there must exist at least one such z with |N2(z)| ≥ 2.

Proof. Suppose this is not true. For any z ∈ S ′ with N2(x) ∩N2(z) 6= ∅, |N2(z)| = 1.

Note that there exists exact one such z by Lemma 4.1.2. We may denote N2(x) = {w1, w2}

and N2(z) = {w1}.

Firstly, we can show that for any w ∈ V2 \ {w1, w2}, ww2 ∈ E(G) and ww1 /∈ E(G). If

there exists w ∈ V2 \ {w1, w2} such that ww1 ∈ E(G), then w1w2, xz ∈ E(G) since neither

〈w1; z, w2, w〉 nor 〈w1; x, z, w〉 is a claw. However, this in turn gives 〈u, z, x, w1, w2, w〉 ∼= H-8.

By Claim 5.3.4, we know ww2 ∈ E(G) and ww1 /∈ E(G).

Secondly, |V2| ≥ 4. Otherwise, assume V2 = {w1, w2, w}, since G is 3-connected, we

have degG(w) ≥ 3. This implies there exist t, t′ ∈ S \ {x, z} such that N2(t) = N2(t
′) = {w},

contradicts to Lemma 4.1.2.

Thus we may assume there exist w3, w4 ∈ V2 \{w2, w1} and t, t′ ∈ S \{x, y, z} such that

tw3, t
′w4 ∈ E(G). To avoid 〈w1;w2, w3, w4; t

′u〉 be a B1,2, we have t′w3 ∈ E(G). This will

force either 〈u, t′, w4, w3, w1, x〉 ∼= H-4 or 〈t′, x, w1, w3, w4〉 ∼= H-2, showing a contradiction.

�

Now we want to find a strong spanning Halin subgraph in G by following two subcases.

Case 2.3.1: Assume |V2| ≥ 3 and there exists z ∈ S ′, such that N2(x) ∩N2(z) 6= ∅.

Denote by N2(x) = {w1, w2} and N2(z) = {w1, w3}. Then,

Claim 5.3.11. If there exists z ∈ S ′ such that N2(x) = {w1, w2} and N2(z) = {w1, w3},

then V2 ⊆ {w1, w2, w3, w}.

Proof. This claim is provided by following statements.

Firstly, for any w ∈ N2
2 (x), ww1 /∈ E(G). If there exists w ∈ V2 \ {w1, w2} such that

ww1 ∈ E(G), then w1w2, xz ∈ E(G) since neither 〈w1; z, w2, w〉 nor 〈w1; x, z, w〉 is a claw.

However, this in turn gives us 〈u, z, x, w1, w2, w〉 ∼= H-8 by Claim 5.3.4.

Secondly, For any w ∈ N2
2 (x), w2w,w3w ∈ E(G). If w2w ∈ E(G), then w3w ∈ E(G)

because neither 〈u; z, w3, w1;w2w〉 is a B1,2 nor 〈w2; x, w3, w〉 is a claw. Similarly, if w3w ∈
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E(G), then w2w ∈ E(G). Since V2 = N2(x) ∪ N2
2 (x), we have w2w,w3w ∈ E(G) for any

w ∈ N2
2 (x).

Thirdly, V2 \ {w1, w2, w3} ⊆ {w}. Otherwise, for any w,w′ ∈ V2 \ {w1, w2, w3} since

〈w1, w2, w, w
′, w3〉 ≇ H-2, we have w2w3 ∈ E(G). This implies V2 \ {w1} is a clique. Since

{w2, w3} is not a minimal vertex cut, we can assume there exists t ∈ S such that tw ∈ E(G).

To avoid 〈w1;w2, w
′, w; tu〉 be a B1,2, 〈t; u, w1, w〉 be a claw and H-2 or H-4 exist in G, we

have w2, w3 ∈ N2(t), which contradicts to the maximum property of |N2(x)|. �

Now we want to find a strong spanning Halin subgraph in G by following subcases.

Subcase 1: Suppose |V1| ≥ 2.

By remark after Claim 5.3.2, we know V1∪S is a clique and let P = zP t be a hamiltonian

path in V1 ∪ (S \ {x}). Since degG(w) ≥ 3, there exists t ∈ S such that tw ∈ E(G).

If V2 = {w1, w2, w3, w}, let C = P ∪ {zw3, w3w,wt} be a cycle and all vertices on the

path xw2w1 be stems of T with NC(x) = V (P ) \ {z}, NC(w2) = {w} and NC(w1) = {z, w3}.

If V2 = {w1, w2, w3}, since degG(w2) ≥ 2, degG(w3) ≥ 2 and 〈V2〉 is not a clique, there exist

t, t′ ∈ S \ {x, y, z} such that tw2, t
′w3 ∈ E(G)(Note that we may have t = y). Let P = tP t′

be a hamiltonian path in V1 ∪ S \ {x, z}. Set C = P ∪ {tw2, w2w1, w1w3, w3t
′} be a cycle

and {x, z} be stems of T with NC(x) = V (P ) \ {t′} ∪ {w1, w2} and NC(z) = {t′, w3}. Let

H = T ∪C, it is easy to check that H is a strong spanning Halin subgraph of G (See Figure

5.10(1) and (2)).

(1) (2)

u1

u1

u2

u2

t

t
x

t′

w

y

z

z

w1

w1

w2w2

w3
w3

Figure 5.10. N2(x) = {w1, w2} and |V1| ≥ 2.
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Subcase 2: Assume that V1 = {u}.

If V2 = {w1, w2, w3}, similarly as |V1| ≥ 2, we can assume there exist t, t′ ∈ S \ {x, y, z}

such that tw2, t
′w3 ∈ E(G)(Note that we may have t = y). Since for any x ∈ S, ux ∈ E(G)

and G is claw-free and H-5 free, we have either |{xz, xt′, zt′}| = 1 and |{xz, xt, zt}| = 1

or |{xz, xt′, zt′}| = 3 and |{xz, xt, zt}| = 3. If |{xz, xt′, zt′}| = 3 and |{xz, xt, zt}| = 3,

let C = utw2w1w3t
′u be a cycle and {x, z} be stems of T with NC(x) = {u, t, w2} and

NC(z) = {w1, w3, t
′}. If |{xz, xt′, zt′}| = 1 and |{xz, xt, zt}| = 1, then xz /∈ E(G). Since

{u, w1} is not a 2 cut, we can assume xt, xt′ ∈ E(G). Moreover, since 〈u; t, z, t′〉 is not a

claw, we have tt′ ∈ E(G). Let C = tw2w1w3t
′t be a cycle and all vertices on the path xuz be

stems of T with NC(x) = {t, w2}, NC(u) = {t′} and NC(z) = {w1, w3}. Let H = T ∪ C, it

is easy to check that H is a strong spanning Halin subgraph of G (See Figure 5.11(1) and

(2)).

u

(1)

u

(2)

z

z

w1w1

w2w2

w3w3

t

t

xx

t′t′

Figure 5.11. N2(x) = {w1, w2}, |V1| = 1 and |V2| = 3.

If V2 = {w1, w2, w3, w}, we have following claims.

Claim 5.3.12. If V2 = {w1, w2, w3, w} and y exists, then there does not exist z′ ∈ S\{x, y, z}

such that N2(z) = N2(z
′) = {w1, w3}.

Proof. Otherwise, N2(x)∪N2(y)∪N2(z)∪N2(z
′) = {w1, w2, w3}, contradicts to Lemma

4.1.2. �

Therefore, we always assume z′ does not exist and y may exist.

Claim 5.3.13. If V2 = {w1, w2, w3, w}, for any t ∈ S \ {x, y, z}, tw1 /∈ E(G).
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Proof. If w2w3 /∈ E(G), then tw1 /∈ E(G) since 〈w; t, w2, w3〉 is not a claw. If w2w3 ∈

E(G), since neither 〈w1; x, w3, t〉 nor 〈w1;w2, z, t〉 is a claw, we have tx, tz ∈ E(G). This in

turn gives xz ∈ E(G) since 〈t, x, u, z, w〉 ≇ H-2. However, this will induce 〈t, u, x, z, w1〉 ∼=

H-9. �

Claim 5.3.14. If V2 = {w1, w2, w3, w} and w2w3 ∈ E(G), then there exists exact one t ∈

S \{x, y, z}, such that tw ∈ E(G). Moreover, there exists a strong spanning Halin subgraph

in G.

Proof. Since degG(w) ≥ 3, there exists t ∈ S \ {x, y, z} such that tw ∈ E(G). More-

over, since neither 〈u, z, w3, w, w2, t〉 ∼= H-4 nor 〈z, w3, w, w2, t〉 ∼= H-2 and by the maximum of

|N2(x)|, we have tw2, tw3 /∈ E(G). Therefore, there exists exact one such t because otherwise

we can find a smaller vertex cut.

If V2 = {w1, w2, w3, w} and w2w3 ∈ E(G), let C = utww3zu be a cycle and all vertices

on the path yw2w1 be stems of T with NC(y) = {u, t}, NC(w2) = {w} and NC(w1) = {z, w3}.

Let H = T ∪ C, then H is a sstrong spanning Halin subgraph of G (See Figure 5.12(1)).�

Claim 5.3.15. If V2 = {w1, w2, w3, w} and w2w3 /∈ E(G), then for any t ∈ S \ {x, y, z},

either N2(t) = {w,w2} or N2(t) = {w,w3}.

Proof. If tw ∈ E(G), since neither 〈w; t, w2, w3〉 nor 〈t; u, w2, w3〉 is a claw, we have

either tw2 or tw3 in E(G), but not both. If tw2 ∈ E(G), since 〈w2; t, w1, w〉 is not a claw, we

have tw ∈ E(G). Similarly, if tw3 ∈ E(G), then tw ∈ E(G). Thus either N2(t) = {w,w2} or

N2(t) = {w,w3}. �.

If all t1, t2 and y exist, since neither 〈w2, w1, x, y, u, t2〉 nor 〈w3, w, t1, t2, u, y〉 isomor-

phic to H-7 and neither 〈t2, u, x, y, w1, w2〉 nor 〈y, u, t1, t2, w3, w〉 isomorphic to H-8, we can

assume xt1, yt2 ∈ E(G). Moreover, since neither 〈u, t1, t2, w3, z〉 nor 〈u, x, y, w2, t3〉 iso-

morphic to H-2 and 〈t1; x, t2, z〉 is not a claw, we can assume t3y and t2z in E(G). Let

C = ut3w2w1xt1ww3zu be a cycle and {y, t2} be stems of T with NC(y) = {u, t3, w2, w1, x}

and NC(t2) = {t1, w, w3, z}. If t1, t2 exist and y does not exist, since 〈u, t1, w3, w, t2〉 ≇ H-2,



67

we have t1t2 ∈ E(G). Therefore, since 〈z, u, t1, t2, w3〉 ≇ H-2, we can assume zt1 ∈ E(G).

Let C = ut3w2wt2t1zu be a cycle and all vertices on the path xw1w3 be stems of T with

NC(x) = {u, t3}, NC(w1) = {w2} and NC(w3) = {w, t1, t2, z}. Let H = T ∪ C, it is easy to

check that H is a strong spanning Halin subgraph of G (See Figure 5.12(2) and (3)).

If either t1 or t2 exists, we may assume t2 does not exist. If y exists, since 〈u, x, y, w2, t3〉 ≇

H-2, we can assume t3y ∈ E(G). Let C = t3yw2w1zw3wt3 be a cycle and all vertices

on the path xut1 be stems of T with NC(x) = {w1, w2}, NC(u) = {x, y, z, t1, t3} and

NC(t1) = {w3, w}. If y does not exist, since t3w2 ∈ E(G), we can also find a cycle C

and a tree T in G similarly. Let H = T ∪C, it is easy to check that H is a strong spanning

Halin subgraph of G (See Figure 5.12(4)).

If neither t1 nor t2 exists, then t3 must exist since degG(w) ≥ 3. If y exists, let C =

ut3ww3zyu be a cycle and all vertices on the path w2xw1 be stems of T with NC(w2) =

{w, t3}, NC(x) = {u} and NC(w2) = {w3, z, y}. If y does not exist, since uz ∈ E(G), we

can find a cycle and a tree similarly. Let H = T ∪ C, it is easy to check that H is a strong

spanning Halin subgraph of G (See Figure 5.12(5)).
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Figure 5.12. N2(x) = {w1, w2}, |V1| = 1 and |V2| ≥ 4(1).
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Case 2.3.2: Suppose |V2| ≥ 3 and for any z ∈ S ′ with N2(x) ∩N2(z) = ∅.

By the definition of x, we have y must exist and V1 = {u}. Since V2 = N2(x)∪N2
2 (x), we

may assume there exists w3 ∈ V2 \ {w1, w2} and z ∈ S \ {x, y} such that w3w2, w3z ∈ E(G).

Then we have following claim.

Claim 5.3.16. |V2| ≤ 5 and S = {x, y, z}.

Proof. Since 〈u, y, x, w2, w3, z〉 ∼= H-4, we can assume xz ∈ E(G). Moreover, w1w3 /∈

E(G), otherwise 〈w1, w2, w3, z, y〉 ∼= H-2. Since degG(w3) ≥ 3, we can assume there exist

w4 ∈ V2 \ {w1, w2, w3} such that w3w4 ∈ E(G) by Lemma 4.1.2 and the definition of x. To

avoid 〈w3; z, w2, w4〉 be a claw and 〈w1, w4, w3, z, y〉 isomorphic to H-2, we have either w2w4

or zw4 in E(G).

If w2w4 ∈ E(G), to avoid 〈w1;w2, w4, w3; zu〉 be a B12, we have w1w4 ∈ E(G). This

implies N2(w3) ⊆ N2(w1). If zw4 ∈ E(G), since neither 〈u; z, w4, w3;w2w1〉 is a B12 nor

〈x; z, w3, w4, w2〉 ∼= H-2 nor 〈z; x, w1, w2, w3〉 ∼= H-2, we have w1w4 ∈ E(G), which also implies

N2(w3) ⊆ N2(w1). For any w ∈ V2 \ {w1, w2, w3, w4}, if ww2 ∈ E(G), then ww3 ∈ E(G)

since 〈w2; x, w3, w〉 is not a claw. Thus we have N2(w2) \ {w1} ⊆ N2(w3) ⊆ N2(w1). If

w1w ∈ E(G), then w4w ∈ E(G) since 〈w1; x, w4, w〉 is not a claw. And if ww4 ∈ E(G), then

ww1 ∈ E(G) since neither 〈w4; z, w1, w〉 nor 〈w4;w3, w1, w〉 is a claw and N2(w2) ⊆ N2(w1).

Thus N2(w1) \ {w2, w3} = N2(w4) \ {w2, w3}.

In fact, |V2\{w1, w2, w3, w4}| ≤ 1. Otherwise, by symmetric, we may assume there exist

w5, w6 ∈ V2 \{w1, w2, w3, w4} such that w1w5, w1w6 ∈ E(G). Then w5w4, w6w4 ∈ E(G) since

neither 〈w1; x, w4, w5〉 nor 〈w1; x, w4, w6〉 is a claw. This in turn gives w5w3, w6w3 ∈ E(G)

because neither 〈w3;w4, w5, w1; yu〉 nor 〈w3;w4, w6, w1; yu〉 is a B12. However, this will induce

〈w1, w5, w6, w4, w3〉 ∼= H-9 since w1w3 /∈ E(G). Thus V2 ⊆ {w1, w2, w3, w4, w5}. Note that

only w5 may not exist.

Moreover, S = {x, y, z}. Otherwise, by the definition of x, for any t ∈ S \ {x, y, z},

tw1, tw2, tw3 /∈ E(G). We also have tw4 /∈ E(G). Otherwise 〈w4; t, w1, w3〉 is a claw, which

in turn gives us w5 exists and tw5 ∈ E(G). If w2w4 ∈ E(G), since 〈w5;w4, w2, w3; zu〉 is not

a B1,2 and N2(w2) \ {w1} ⊆ N2(w3), we can assume w3w5 ∈ E(G). This forces 〈w5;w1, w3, t〉
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to be a claw. If zw4 ∈ E(G), since 〈w2;w1, w4, w5; tu〉 is not a B1,2, we have w2w5 ∈ E(G),

which implies w3w5 ∈ E(G). However, this will induce 〈w5;w1, w3, t〉 to be a claw.

Since degG(w5) ≥ 3, we may assume w3w5 ∈ E(G). If w2w4 ∈ E(G), let C =

uyw1w5w3zu be a cycle and all vertices on the path xw2w4 be stems of T with NC(x) = {u, y},

NC(w2) = {y} and NC(w4) = {w1, w5, w3}. If zw4 ∈ E(G), let C = uyw1w5w4zu be a cycle

and all vertices on the path xw2w3 be stems of T with NC(x) = {u, y}, NC(w2) = {w1} and

NC(w3) = {w5, w4, z}. Let H = T ∪C, it is easy to check that H is a strong spanning Halin

subgraph of G (See Figure 5.13(1) and (2)).
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Figure 5.13. N2(x) = {w1, w2}, |V1| = 1 and |V2| ≥ 4(2).
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Chapter 6

LONG CIRCULAR INTERVAL GRAPHS

Recall that if we let Σ be a circle and F ′
1, · · · , F

′
k ⊆ Σ be homeomorphic to the interval

[0, 1] and assume there is no three of F ′
1, · · · , F

′
k have union Σ and no two of F ′

1, · · · , F
′
k share

an end-point. Set V ⊆ Σ be finite and G be a graph with vertex set V in which, for distinct

u, v ∈ V , u, v are adjacent if and only if u, v ∈ Fi for some i. Such a graph G is called a long

circular interval graph.

In this chapter, we will prove the following proposition.

Proposition 10. If G is a 3-connected long circular interval graph, then G contains a strong

spanning Halin subgraph.

6.1 Some properties of long circular interval graphs

We still follow the definitions and notations mentioned in Section 4.1 that G is a graph

with n-vertex and S is a minimum vertex cut of G. Let G1 and G2 be the exact two

components of G \ S, and V1 = V (G1), V2 = V (G2). Subject to the minimality of |S|, we

always assume that |V1| is minimum. Moreover, if we denote by V = {u1, u2, · · · , un} be

vertex set of G and ui, ui+1 are consecutive vertices along the circle Σ for any i ∈ [1, n],

where un+1 = u1. The following lemma is giving a partition of V .

Claim 6.1.1. For i ∈ [1, 2], the vertices of Vi are consecutive along Σ.

Proof. We only show this claim is true for i = 1.

It is trivial if |V1| = 1, thus we assume |V1| ≥ 2. Suppose to the contrary, there exist

1 ≤ i, j ≤ n such that ui, uj ∈ V1 and ui+1, uj+1 /∈ V1. Since 〈V1〉 is connected, there

exists a path P from ui to uj in 〈V1〉. We may assume V (uiPuj) ⊆ {ui, ui+1, · · · , uj}, then

{ui, ui+1, · · · , uj} ⊆ S ∪ V1, which implies ui+1 ∈ S. Moreover, since N2(ui+1) 6= ∅, there
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must exist uk ∈ V2 ∩ ({u1, u2, · · · , ui−1} ∪ {uj+1, · · · , un}), such that ui+1uk ∈ E(G). by the

definition, there exists an interval contains both ui+1 and uk, which also has to contain either

uj or ui. Therefore, we get either ujuk ∈ E(G) or uiuk ∈ E(G), showing a contradiction. �

For simplicity, we denote by V1 = {ui, ui+1, · · · , uj} = {vn1 , vn1−1, · · · , v2, v1}, V2 =

{uk, uk+1, · · · , ul} = {w1, w2, · · · , wn2}, S1 = {uj+1, uj+2, · · · , uk−1} = {x1, x2, · · · , xm1} and

S2 = {ul+1, ul+2, · · · , ui−1} = {ym2, ym2−1, · · · , y1}, where un+1 = u1. Clearly, S = S1 ∪ S2.

Without loss of generality, we always assume |S1| ≥ |S2|, note that S2 may be empty.

Claim 6.1.2. 1) If S2 is empty, then S is a clique.

2) If S2 is not empty, then both 〈S1〉 and 〈S2〉 are connected. Moreover, both 〈S1〉 and 〈S2〉

are cliques if E(S1, S2) = ∅, and V1 or V2 is a clique if E(S1, S2) 6= ∅.

Proof. 1) If S2 is empty, S = S1 = {uj+1, uj+2, · · · , uk−1}. Since N2(uj+1) 6= ∅ and

uj+1uk ∈ E(G), there exists an interval contains both uj+1 and uk, which also has to contain

all vertices of S. Thus S is a clique.

2) Suppose 〈S1〉 is not connected, then there exist us, us+1 ∈ E(G) such that usus+1 /∈

E(G). Since N2(us) 6= ∅, there exists an interval contains both us and ul, which also has to

contain all vertices of V1. Therefore, E(V1, V2) 6= ∅, giving a contradiction. Similarly, we can

show 〈S2〉 is connected.

If E(S1, S2) 6= ∅, we may assume uk−1ul+1 ∈ E(G). Then there exists an interval

contains both uk−1 and ul+1, which also has to contain all vertices in V2 or V1, then V2 or V1

is a clique.

If E(S1, S2) = ∅, since N2(uj+1) 6= ∅, uj+1uk ∈ E(G). Then there exists an interval

contains all vertices between uj+1 and uk, which implies 〈S1〉 is a clique. Similarly, since

N1(ul+1) 6= ∅, ul+1ui ∈ E(G). This in turn gives that there exists an interval contains all

vertices between ul+1 and ui, thus 〈S2〉 is a clique. �

Now we divide V1 into following parts. Let V11 = N1(x1) = {v1, v2, · · · , vs1}, V12 =

N1(vs1)\V11 = {vs1+1, vs1+12, · · · , vs2}, · · · , and V1k = N1(vs(k−1)
)\∪k−1

i=1 V1i. Then V11, V12, · · · , V1k

is a partition of V1. Similarly, let V21 = N2(xm1) = {w1, w2, · · · , wt1}, V22 = N2(wt1) \ V21 =
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{wt1+1, wt1+2, · · · , wt2}, · · · , and V2l = N2(wtl−1
) \ ∪l−1

i=1V2i. Then V21, V22, · · · , V2l is a parti-

tion of V2. For convenience, we denote by V1i = {vsi−1+1, · · · , vsi} = {vi1 , vi2, · · · , visi} and

V2j = {wtj−1+1, · · · , wtj} = {wj1, wj2, · · · , wjtj
} for all i ∈ [1, k] and j ∈ [1, l]. The following

claims are clearly true by the definition of long circular interval graphs and the partition of

V1 and V2.

Claim 6.1.3. For any i ∈ [1, k] and j ∈ [1, l], we have V1i and V2j are cliques.

Proof. Since for any i ∈ [1, k− 1] and j ∈ [1, l− 1], we have x1vs1, xm1wt1 , visivi+1si+1

wjtj
wj+1tj+1

all in E(G). �

Claim 6.1.4. For any i ∈ [1, k−1] and j ∈ [1, l−1], we have |V1i| ≥ |S1|+1 and |V2j | ≥ |S1|.

Proof. If there exists i ∈ [1, k − 1] such that |V1i| ≤ |S1|, then V1i ∪ S2 is a vertex

cut with |V1i ∪ S2| ≤ |S1 ∪ S2| = |S| and |V ′
1 | = |V1 \ ∪i

j=1V1i| < |V1|, this contradicts

to assumptions that S is a minimum vertex cut and |V1| is minimum subject to S being

minimum. Similarly, if there exists j ∈ [1, l − 1] such that |V2j | < |S1|, then V2j ∪ S2 is also

a vertex cut with |V2j ∪ S2| < |S1 ∪ S2| = |S|, contradicts to the minimality of |S|. �

Claim 6.1.5. Let |S1| = m1 and p ∈ [0, m1−1], then x1+pv11+p
, visi−p

v(i+1)m1−p
, xm1−pwm1−p,

wjtj−p
w(j+1)m1−p

∈ E(G) for any i ∈ [1, k − 1] and j ∈ [1, l− 1].

Proof. We only proof that for any j ∈ [1, l − 1], wjtj−p
w(j+1)m1−p

∈ E(G). Sup-

pose to the contrary, there exists j ∈ [1, l − 1] such that wjtj−p
w(j+1)m1−p

/∈ E(G). Then

{wjtj−p+1 , wjtj−p+2, · · · , wjsj
} ∪ {w(j+1)1 , w(j+1)2 , · · · , w(j+1)m1−p−1} ∪ S2 is a vertex cut with

size p+ (m1 − p− 1) + |S2| = m1 − 1 + |S2| = |S| − 1, showing a contradiction. �

6.2 Proof of 3-connected long circular interval graphs

For simplicity, we denote by S1 = V20 = {x1, x2, · · · , xm1} = {w01, w02 , · · · , w0t0
}.

Our goal is to find a strong spanning Halin subgraph H in G. We divide this processor

into two steps. In the first step, we find the part of H in 〈V2 ∪ S1〉 and in the second step,

we find the other part of H in V1 ∪ S2 ∪ {xt}.
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Step 1: Finding a spanning subgraph H2 of H in 〈V2 ∪ S1〉

Case 1: Assume S2 = ∅.

We let Q = w0t0
w1t1

· · ·wl−1tl−1
be a path. If for any j ∈ [0, l − 1], we have |V2j | 6= 4.

Since for any i ∈ [0, l − 1], both V2j \ {wj2, wjtj−2 , wjtj
} and V2l are cliques, there exist

hamiltonian paths, say P2j = wj1P2jwjtj−2 and P2l = wl1P2lwl2, in them, respectively. Let

P2 = w02w0t0−1w12 · · ·w(l−1)tl−1−1 and C2 = P20P21 · · ·P2tP2 and all vertices of Q be stems of

T2 with NC2(wjtj
) = V (P2j )∪{wj2 , wjsj−1} for all j ∈ [0, l−2] and NC2(w(l−1)t(l−1)

) = {w|w ∈

V2l−1 ∪ V2l}. Then T2 is a HIST of 〈V2 ∪ S1〉 and V (C2) = {w ∈ V2 ∪ S1|degT2(w) = 1}. Let

H2 = T2 ∪ C2, then H2 is planar (See Figure 6.1).

w11

w12

w1t1

w1t1−1

w1t1−2
w21

w22

w2t2

w2t2−1

w2t2−2

w31

w32

x2

x1

xm1

xm1−1

xm1−2

Figure 6.1. S2 = ∅ and |V2j | 6= 4 for all j ∈ [1, l − 1].

If there exists j ∈ [0, l − 1] such that |V2j| = 4, first we find T2 and C2 in 〈V2 ∪ S1〉 as

above, then apply Swap-Operation to the HIST (See Figure 6.2).

Swap-Operation:

1) Swapping the positions of w(j+1)1 and w(j+1)2 on the path C2.

2) Putting wj3 adjacent to wj1 and w(j+1)2 along the path C2.

3) Keeping all other vertices’ positions are the same.

After performing Swap-Operation, we get a new T2 and C2, then the new T2 is a HIST

of 〈V2∪S1〉 and V (C2) = {w ∈ V2∪S1|degT2(w) = 1}. Let H2 = T2∪C2, then H2 is planar.

Case 2: Assume S2 6= ∅.
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w24

w11
w11

w12w12

w1t1
w1t1

w1t1−1
w1t1−1

w1t1−2w1t1−2

w21
w21

w22w22

w23

w2t2

w2t2−1

w2t2−2

w3t3−1
w3t3−1

w3t3−2w3t3−2

w3t3
w3t3

w31
w31

w32w32

|V22| ≥ 5 |V22| = 4

Figure 6.2. An example of swap operation with |V22| = 4 and |V22| ≥ 5.

Since for all j ∈ [0, l − 1], both V2j \ {wjtj
} and V2t are cliques, there exist hamil-

tonian paths, say P2j = wj1P2jwjtj−1 and P2l = wl1P2lwl2 , in them, respectively. Let

C2 = P20P21 · · ·P2l and all vertices of Q be stems in T2 with NC2(wjtj
) = V (P2j} for all

j ∈ [1, l− 2] and NC2(w(l−1)t(l−1)
) = {w|w ∈ V2t−1 ∪V2t}. Then T2 is a HIST of 〈V2 ∪S1〉 and

V (C2) = {w ∈ V2 ∪ S1|degT2(w) = 1}. Let H2 = T2 ∪C2, then H2 is planar (See Figure 6.3).

w11

w1t1

w1t1−1 w21

w2t2

w2t2−1

w3t3

w31

x1

xm1

xm1−1

Figure 6.3. S2 6= ∅.

Step 2: Finding a spanning subgraph H1 of H in 〈V1 ∪ S2 ∪ {xt}〉

Case 1: Assume S2 = ∅.

If k ≥ 2 and |V1i| 6= 4 for any i ∈ [1, k − 1]. Since V11 \ {v11 , v1s1−2 , v1s1}, V1i \

{vi2 , visi−1 , visi}, for any i ∈ [2, k − 1], and V1k are cliques, there exist hamiltonian path-

s, say P11 = v12P11v1s1−1 , P1i = vi1P1ivisi−2 and P1k = vk1P1kvk2, in them, respective-

ly. Let P1 = v22v2t2−1v32 · · · v(k−1)vt(k−1)−1 and Q′ = v(k−1)sk−1
· · · v2s2v1s1v11xt. Set C1 =
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P11P1P1k · · ·P13P12 ∪ {v21v1t1−2} and all vertices of Q′ be stems of T1 with NC(v11) =

V (P11), NC(v1s1 ) = {v1s1−2}, NC(visi ) = V (P1i) ∪ {vi2 , visi−1}, for all i ∈ [2, k − 2], and

NC(v(k−1)slk−1
) = {v|v ∈ V1k ∪ V1k−1}. Then T1 is a HIST of 〈V1 ∪ {xt}〉 and V (C1) = {v ∈

V1|degT2(v) = 1}. Let H1 = T1 ∪ C1, then H1 is planar.

If k ≥ 2 and there exists i ∈ [1, k − 1] such that |V1j | = 4, then we can apply Swap-

Operation to 〈V1〉 as to 〈V2〉. Similarly, we can find a HIST T1 and a path C1 in 〈V1 ∪{xt}〉,

then H1 = T1 ∪ C1 is planar (See Figure 6.4).

v11

v12

v1s1

v1s1−1

v1s1−2v21

v22

v23

v2s2−1

v31

v32

v41

v42

v3s3

v3s3−2

v24
xm1

Figure 6.4. S2 = ∅, k = 4 and |V12| = 4 and |V13| 6= 4.

If k = 1, which means N1(x1) = V11 = V1 is a clique and |V1| ≥ 3. Then there exists

a hamiltonian path, say C1 = v12C1v1n, in 〈V1 \ {v11}〉. Let {v11 , xt} be stems of T1 with

NC1(v11) = {v|v ∈ V1 \ {v11}}. Then T1 is a HIST of 〈V1 ∪ {xt}〉 and V (C1) = {v ∈

T1|degT2(v) = 1}. Let H1 = T1 ∪ C1, then H1 is planar.

If k = 1 and V1 = {v11 , v12}(or V1 = {v11}). By Claim 4.1.2, N1(xi) = {v1, v2} for all

xi ∈ S1. Let C1 = v11v12 and v11xt, v12xt ∈ E(T1). Then T1 is a HIST of 〈V1 ∪ {xt}〉 and

V (C1) = {v ∈ V1|degT2(v) = 1}. Let H1 = T1 ∪ C1, then H1 is planar.

Case 2: Suppose that S2 6= ∅. Note that vn1, vn1−1 ∈ N1(y) for all y ∈ S2.

Case 2.1: Assume that k ≥ 2.

Case 2.1.1: Assume that |V11| ≥ 4.

If |V1k| ≥ 2, since V11 \ {v11 , v1s1}, V1i \ {visi}, for all i ∈ [2, k], and S2 are cliques,

there exist hamiltonian paths, say P11 = v12P11v1s1−1 , P1i = vi1P1ivisi−1 and P ′ = y1P
′ym2 ,
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in them, respectively. Set C1 = P11P12 · · ·P1sP
′. Let Q′ = vkskv(k−1)sk−1

· · · v1s1v11xt and

all vertices of Q′ be stems of T1 with NC1(v11) = V (P11) \ {v1s1−1}, NC(v1s1 ) = {v1s1−1},

NC(visi ) = V (P1i), for all i ∈ [2, k − 1], NC(vksk ) = {v|v ∈ V1k ∪ S2}. Then T1 is a HIST

of 〈V1 ∪ S2 ∪ {xt}〉 and V (C1) = {v ∈ V1 ∪ S2|degT2(v) = 1}. Let H1 = T1 ∪ C1, then H1 is

planar (See Figure 6.5).

v11

v12

v1s1

v1s1−1v21

v2s2

v2s2−1
v31v3s3−1

v3s3−1

y1

xm1

ym2

Figure 6.5. S2 = ∅ and k = 3.

If |V1k| = 1, then v(k−1)sk−1
y, vksky ∈ E(G) for all y ∈ S2 and vkskv(k−1)s(k−1)−1

∈ E(G)

since |S1| ≥ 2. Similarly as above, we can define P11, P12, · · · , P1(k−1) and P ′. Let P1k =

v(k−1)s(k−1)−1vksky1 and C1 = P11P12 · · ·P1sP
′. Set Q′ = v(k−1)sk−1

v(k−2)sk−2
· · · v1s1v11xt be

stems of T1 with NC1(v11) = V (P11)\{v1s1−1}, NC(v1s1 ) = {v1s1−1}, NC(visi ) = V (P1i) for all

i ∈ [2, k−2] and NC(v(k−1)sk−1
) = V (P1k−1)∪S2∪{vksk}. Then T1 is a HIST of 〈V1∪S2∪{xt}〉

and V (C1) = {v ∈ V1 ∪ S2|degT2(v) = 1}. Let H1 = T1 ∪ C1, then H1 is planar.

Case 2.1.2: Suppose that |V11| = 3.

If |V12| ≥ 3, we delete the edge v2t2v21 from E(T ) and add the edge v1t1v21 to E(T ).

Similarly as Case 2.1.1, we will find a HIST T1 and a path C1 in 〈V1 ∪ S2 ∪ {xt}〉.

If |V12| = 2, then V11 = {v11 , v12 , v13 , v21, v22}. From Claim 4.1.2, we know v22y, v21y ∈

E(G) for all y ∈ S2 and v12xt ∈ E(G). In additional, v12v21 , v13v22 ∈ E(G). Let C1 =

v11v13v22∪P
′ and Q′ = v21v12xt be paths and all vertices of Q′ be stems of T1 with NC1(v12) =

{v11 , v13} and NC1(v21) = {v22} ∪ {y|y ∈ S2}. Then T1 is a HIST of 〈V1 ∪ S2 ∪ {xt}〉 and

V (C1) = {v ∈ V1 ∪ S2|degT2(v) = 1}. Let H1 = T1 ∪ C1, then H1 is planar.
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If |V12| = 1, then V11 = {v11 , v12 , v13 , v21}. Since |S1| ≥ 2 and V1 is minimum subject to

S being minimum, we have v21v11 , v21v12 , v21v13 ∈ E(G), which implies V1 is a clique. Let

C1 = {v12v21} ∪ P
′ and {v13 , v11 , xt} be stems of T1 with NC1(v11) = {v12} and NC1(v13) =

{v21}∪{y|y ∈ S2}. Then T1 is a HIST of 〈V1∪S2∪{xt}〉 and V (C1) = {v ∈ V1∪S2|degT2(v) =

1}. Let H1 = T1 ∪ C1, then H1 is planar.

Case 2.2: Suppose that k = 1, which means N1(x1) = V11 = V1 is a clique. We still let

P ′ = y1P
′ym

If |V1| ≥ 4, let P1 = v2P1vn1−1 be a hamiltonian path in 〈V1 \ {v1, vn1}〉 and C1 = P1P
′.

Set {vn1, v1, xt} be stems of T1 with NC1(vn1) = {vn1−1} ∪ V (P ′) and NC1(v11) = {v|v ∈

V (P1)\{vn1−1}}. Then T1 is a HIST of 〈V1∪S2∪{xt}〉 and V (C1) = {v ∈ V1∪S2|degT2(v) =

1}. Let H1 = T1 ∪ C1, then H1 is planar.

If |V1| = 3(similarly as |V1| = 2). Let C1 = {v11v13} ∪ P ′ and {v12 , xt} be stems

of T1 with NC1(v12) = {v11 , v13} ∪ V (P ′). Then T1 is a HIST of 〈V1 ∪ S2 ∪ {xt}〉 and

V (C1) = {v ∈ V1 ∪ S2|degT2(v) = 1}. Let H1 = T1 ∪ C1, then H1 is planar.

Thus, let T = T1∪T2, C = C1∪C2 and H = T ∪C, then H is a strong spanning Halin

subgraph in G.

If |V1| = 1, denote by V1 = {v}. Since N2(y) 6= ∅, we have wn2y ∈ E(G) for all

y ∈ S2. Moreover |N2(ym2)| ≥ m2 subject to S being minimum. Let vxt ∈ E(G) and

C = C2P
′ ∪ y1vx1, add vxt to E(T2) and add wn2(or wn2−1 if |V2l| = 1) to the stem set of

T2. Then T = T2 is a HIST of G with NC(wn2) = {y|y ∈ S2} ∪ {wn2−1}. Let H = T ∪ C,

then H is a strong spanning Halin subgraph in G.

We now let T = T1 ∪ T2 and C = C1 ∪C2(note that T1 = ∅ and C1 = ∅ when |V1| = 1).

Set H = T ∪ C, then H is a strong spanning Halin subgraph in G.
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Chapter 7

ANTIPRISMATIC GRAPHS

Recall that a graph is called antiprismatic graph if for every vertex set X ⊆ V (G) with

|X| = 4, X is not a claw and there are at least two pairs of vertices in X that are adjacent.

It is easy to check that every antiprismatics graph is N -free. In 1981, Duffus [28] showed

that every connected {claw,N}-free graph contains a hamiltonian path, thus we have the

following claim.

Claim 7.0.1. Every connected antiprismatic graph contains a hamiltonian path.

We will still follow definitions and notations mentioned in Section 4.1 that G is a graph

with n-vertex and S is a minimum vertex cut of G. G1 and G2 are the exact two components

of G \ S. V1 = V (G1) and V2 = V (G2). Subject to the minimality of |S|, we always assume

that |V1| is minimum. In this chapter, we will show the following proposition.

Proposition 11. If G is a 3-connected antiprismatic graph, then G contains a strong span-

ning Halin subgraph.

7.1 Proof of 3-connected antiprismatic graphs

The proof of Proposition 11 will be divided into two parts depends on whether there

exists a vertex x in S such that N1(x) = V1 or N2(x) = V2.

Part 1: There exists a vertex x in S such that N1(x) 6= V1 and N2(x) 6= V2.

We may reserve the notation x for this vertex and assume v1 /∈ N1(x) and w1 /∈ N2(x).

Claim 7.1.1. If N1(x) 6= V1 and N2(x) 6= V2, then |N1(x)| = |V1|−1 and |N2(x)| = |V2|−1.

Proof. Suppose to the contrary, there exists x ∈ S, v1, v2 ∈ V1 and w ∈ V2, such that

xv1, xv2, xw /∈ E(G). Let X = {v1, v2, x, w}, we have |E(X)| = 1, which contradicts to the

fact that G is an antiprismatic graph. �
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Thus, we denote by N1(x) = V1 \ {v1} and N2(x) = V2 \ {w1}.

Claim 7.1.2. If there exists a vertex x ∈ S such that N1(x) 6= V1 and N2(x) 6= V2, then

1) |V1| ≥ 3;

2) Both V1 and V2 are cliques;

3) For any y ∈ S \ {x}, if xy /∈ E(G), then both yv1 and yw1 are in E(G); if xy ∈ E(G),

then at least one of {yv1, yw1} is in E(G).

Proof. 1) This is true following by Lemma 4.1.2.

2) We only show that V1 is a clique. By Lemma 4.1.2, V1 \ {v1} is a clique. For any

v ∈ V1 \ {v1}, we have v1v ∈ E(G). Otherwise, let X = 〈x, v1, v, w1〉, then |E(X)| = 1,

showing a contraction.

3) Let X = {x, y, v1, w1}, since xv1, xw1, v1w1 /∈ E(G) and |E(X)| ≥ 2, we can easily

get this conclusion. �

In the remaining part of this subsection, we let S1 = {y ∈ S|yv1 ∈ E(G)} and S2 =

V2 \ (S1 ∪ {x}).

Claim 7.1.3. If S2 6= ∅, then |V1| ≥ 4.

Proof. Since |V1| is minimum subject to |S| is minimum and v1 /∈ N1(S2 ∪ {x}), we

have |N1(S2 ∪ {x})| ≥ |S2 ∪ {x}| + 1 ≥ 2 + 1 = 3. Thus |V1| ≥ |N1(S2 ∪ {x}) ∪ {v1}| ≥

|N1(S2 ∪ {x})| + 1 ≥ 3 + 1 = 4. �

Claim 7.1.4. For any y ∈ S2, xy, yw1 ∈ E(G).

Proof. Let X = {v1, x, y, w1}. Since |E(X)| ≥ 2 and v1x, w1x, v1w1, yv1 /∈ E(G), we

have xy, yw1 ∈ E(G). �

Now we want to find a strong spanning Halin subgraph in G by following cases accord-

ing to whether S1 or S2 is empty.

Case 1: Suppose S2 6= ∅.
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Case 1.1: Assume S1 = ∅.

Denote by S2 = {y1, y2, · · · , yt}. For any v2, v3, v4 ∈ V1 and w2, w3 ∈ V2, since both

V1 \ {v2} and V2 \ {w1} are cliques, there exist hamiltonian paths P1 = v3P1v4 and P2 =

w2P2w3 in them, respectively.

If 〈S2〉 is connected, we can find a hamiltonian path P3 = y2P3yt in 〈S2 \{y1}〉 by Claim

7.0.1. Let C = P1P3P2 ∪ {xv4, xw2} be a cycle and all vertices on the path v2y1w1 be stems

of T with NC(v2) = V (P1), NC(y1) = {x} and NC(w1) = V (P2) ∪ V (P3). Let H = T ∪C, it

is easy to check that H is a strong spanning Halin subgraph of G (See Figure 7.1(1)).

If 〈S2〉 is not connected, since yw1 ∈ E(G) for any y ∈ S2, there exist exactly two

cliques in S2. We denote them by S21 = {y1, y2, · · · , yt} and S22 = {z1, z2 · · · , zt′} and

always assume |S21| ≥ |S22|. Let P3 = y1P3yt−1 and P4 = xz1P4zt′ be hamiltonian paths in

S21 \ {yt} and S22 ∪ {x} respectively.

If |S21| ≥ 2, denote by v2 ∈ N1(yt), v3 ∈ N1(yt−1), w2 ∈ N2(y1) and w3 ∈ N2(zt′).

Set C = P1P3P2P4 be a cycle and all vertices on the path v2ytw1 be stems of T with

NC(v2) = V (P1), NC(yt) = {x} and NC(w1) = V (P2) ∪ V (P3) ∪ V (P4). Let H = T ∪ C, it

is easy to check that H is a strong spanning Halin subgraph of G (See Figure 7.1(2)).

If S21 = {y} and S22 = {z}, denote by v3 ∈ N1(y), v4 ∈ N1(z), w1 ∈ N2(y), w2 ∈ N2(x)

and w3 ∈ N2(z). Let P2 = w1P2w3 be a hamiltonian path in 〈V2 \ {w2}〉 respectively. Set

C = P1P2 ∪{v3y, yw1, w3z, zv4} be a cycle and the stems of T be vertices on the path v2xw2

with NC(v2) = V (P1), NC(x) = {y, z} and NC(w2) = V (P2). Let H = T ∪ C, it is easy to

check that H is a strong spanning Halin subgraph of G (See Figure 7.1(3)).

Case 1.2: Suppose S1 6= ∅.

Denote by S1 = {y1, y2, · · · , yt}, S2 = {z1, z2, · · · , zt′}, v2, v4 ∈ N1(z1), v3 ∈ N1(y1),

w2 ∈ N2(yt) and w3 ∈ N2(zt′) by Lemma 4.1.2. Since for any v1, v2, v3, v4 ∈ V1 and

w1, w2, w3 ∈ V2, both V1 \ {v1, v2} and V2 \ {w1} are cliques, there exist hamiltonian paths

P1 = v3P1v4 and P2 = w2P4w4, in them, respectively.

If there exists a vertex, say z1, in S2 such that both 〈S1〉 and 〈S2 \ z1〉 are connected,

we can assume P3 = y1P3yt and P4 = z2P4zt′ are hamiltonian paths in 〈S1〉 and 〈S2 \ z1〉,



81

(1) (2) (3)

v1
v1

v1

v2

v2

v2

v4

v4

v4

w1

w1

w1

w2

w2
w2

w3
w3

w3

x
x

x
y

z

yt−1

zt′

y1

y1

y2

yt

yt

z1

v3
v3

v3

Figure 7.1. S1 = ∅ and S2 6= ∅.

respectively. Let C = P1P3P2P4∪{v4x, xz2} be a cycle and all vertices on the path v1v2z1w1

be stems of T with NC(v1) = {v3} ∪ V (P3), NC(v2) = V (P1) \ {v3}, NC(z1) = {x} and

NC(w1) = V (P2) ∪ V (P4). Let H = T ∪ C, it is easy to check that H is a strong spanning

Halin subgraph of G (See Figure 7.2(1)).

If for any zi ∈ S2, 〈S2 \ {zi}〉 is disconnected. Then there exist exactly two cliques in

〈S2 \ zi〉. We denote them by S21 and S22 and assume P41 = z1P41zj and P42 = zkP42zt′

are hamiltonian paths in them respectively. Since v1z /∈ E(G) for any z ∈ S2, |N2(z)| ≥

|V2| − 1. We may assume w4 ∈ N2(zj) ∩ N2(zk) since |V2| ≥ |V1| ≥ 4. Replace P4 by

P41 ∪ {zjw4, w4zk} ∪ P42 in the cycle C, similarly as 〈S2 \ zi〉 is connected, we can find a

strong spanning Halin subgraph in G.

If S1 is disconnected, we denote by S11 and S12 the exactly two cliques of S1. If there

exist yi ∈ S11 and yj ∈ S12 such that N1(yi)∩N1(yj) \ {y1} 6= ∅, let v4 ∈ N1(yi)∩N1(yj) and

P31 = y1P31yi, P32 = ylP32yt be hamiltonian paths in S11 and S12, respectively. Then replace

P3 by P31 ∪ {ykv4, v4yj} ∪ P32, similarly as S1 is connected, we can find a strong spanning

Halin subgraph in G.

If S1 is disconnected and N1(yi)∩N1(yj) \ {y1} = ∅ for any yi ∈ S11 and yj ∈ S12. Since

|V1| ≥ 4, we may assume |N1(yj)| ≤ |V1|−2 for any yj ∈ S12. Therefore, N2(yj) = V2. Denote

by v3 ∈ N1(yi), w2 ∈ N2(yi), w3 ∈ N2(yt), w4 ∈ N2(zj)∩N2(zk) and w5 ∈ N2(zt′∩N2(yj)). Let

P2 = w2P2w3, P31 = y1P31yi, P32 = yjP32yt, P41 = xz2P41zj ,P42 = zkP42zt′ be hamiltonian
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paths in 〈V2 \ {w1, w4, w5}〉, 〈S11〉, 〈S12〉, 〈S21 ∪ {x}〉 and 〈S22〉, respectively. Let C =

P1P31P2P32P42P41 ∪ {y1w5, w5zt′ , zkw4, w4zj , z2x, xv4} be a cycle and all vertices on the path

v1v2z1w1 be stems of T with NC(v1) = V (P31)∪ {v3}, NC(v2) = V (P1) \ {v3}, NC(z1) = {x}

and NC(w1) = V (P2) ∪ V (P32) ∪ V (P41) ∪ V (P42) ∪ {w4, w5}. Let H = T ∪ C, it is easy to

check that H is a strong spanning Halin subgraph of G (See Figure 7.2(2)).
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Figure 7.2. S1 6= ∅ and S2 6= ∅.

Case 2: Suppose S2 = ∅.

Claim 7.1.5. For any y ∈ S1, xy ∈ E(G) or yw1 ∈ E(G).

Proof. Let X = {x, y, v1, w1}. Since xv1, w1v1, xw1 /∈ E(G) and v1x ∈ E(G), we have

xy ∈ E(G) or yw1 ∈ E(G). �

Case 2.1: Assume 〈S1〉 is connected.

Denote by S1 = {y1, y2, · · · , yt} and P3 = y1P3yt the hamiltonian path in 〈S1〉 according

to Claim 7.0.1.

If xy1 ∈ E(G), denote by v3 ∈ N1(yt), w2 ∈ N2(y1), w3 ∈ N2(x) and w4 ∈ N2(y2)(we

may have w4 = w1). Let P1 = v2P1v3 and P2 = w3P2w4 be hamiltonian paths in V1\{v1} and

V2 \ {w2}, respectively. Set C = P1P3P2 ∪ {v2x, xw3} be a cycle and all vertices on the path
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v1y1w2 be stems of T with NC(v1) = V (P1) ∪ V (P3), NC(y1) = {x} and NC(w2) = V (P2).

Let H = T ∪ C, it is easy to check that H is a strong spanning Halin subgraph of G (See

Figure 7.3(1)).

If xy1 /∈ E(G), then y1w1 ∈ E(G). If |S1| ≥ 3, denote by v4 ∈ N1(yt), w2 ∈ N2(x),

w3 ∈ N2(y2). Let P1 = v3P1v4 and P2 = w2P2w3 be hamiltonian paths in V1 \ {v1, v2} and

V2 \ {w1}, respectively. Set C = P1P3P2 ∪ {v3x, xw2} be a cycle and all vertices on the

path v2v1y1w2 be stems of T with NC(v2) = {v3, x}, NC(v1) = V (P1) ∪ (V (P3) \ {y1, y2}),

NC(y1) = {y2} and NC(w1) = V (P2). Let H = T ∪ C, it is easy to check that H is a strong

spanning Halin subgraph of G (See Figure 7.3(2)).

If |S \ {x}| = 2, we can assume v2 ∈ N1(y1) since |N1(y1)| ≥ 2. Denote by w2 ∈ N2(x)

and w3 ∈ N2(y2). Let C = P1P2∪{v3x, xw2, w3y2, y2v1} be a cycle and all vertices on the path

v2y1w1 be stems of T be with NC(v2) = V (P1) ∪ {x}, NC(y1) = {y2} and NC(w1) = V (P2).

Let H = T ∪ C, it is easy to check that H is a strong spanning Halin subgraph of G (See

Figure 7.3(3)).

Case 2.2: Assume 〈S1〉 is not connected.

Let S11 = {y1, y2, · · · , yt} and S12 = {z1, z2, · · · , zt′} be the exact two cliques in 〈S1〉

with |S11| ≥ |S12|.

If |S11| ≥ 2, let X = {y1, yt, z1, x}. Since |E(X)| ≥ 2, we have y1x ∈ E(G) or ytx ∈ E(G)

or zx ∈ E(G). We may assume ytx ∈ E(G). Denote by w2 ∈ N2(y1), w1 ∈ N2(y2),

w4 ∈ N2(zt′) and v3 ∈ N1(z1). Since V1 \ {v1, v2}, V2 \ {w2}, S11 \ {y1} and S12 are cliques,

there exist hamiltonian paths, say P1 = v4P1v3, P2 = w1P2w4, P3 = y2P3yt and P4 = z1P4zt′ ,

in them respectively. Let C = P1P3P2P4 ∪ {v4x, xyt} be a cycle and all vertices on the path

v2v1y1w2 be stems of T with NC(v2) = V (P1) ∪ {x}, NC(v1) = V (P4), NC(y1) = V (P3) and

NC(w2) = V (P2). Let H = T ∪ C, it is easy to check that H is a strong spanning Halin

subgraph of G (See Figure 7.3(4)).

If S11 = {y1} and S12 = {z1}. We may assume v2 ∈ N1(y1) since |N1(y1)| ≥ 2. Denote by

w1 ∈ N2(y1), w2 ∈ N2(x) and w3 ∈ N2(z1). Let P1 = v1P1v3 and P2 = w2P2w3 be hamiltonian

paths in V1\{v2} and V2\{w2}, respectively. Let C = P1P2∪{v3x, xw2, w3z1, z1v1} be a cycle



84

and all vertices on the path v2y1w1 be stems of T with NC(v2) = V (P1)∪{x}, NC(y1) = {v1},

NC(w1) = {z1} ∪ V (P2). Let H = T ∪ C, it is easy to check that H is a strong spanning

Halin subgraph of G (See Figure 7.3(5)).
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Figure 7.3. S1 6= ∅ and S2 = ∅.

Part 2: For any vertex x in S, N1(x) = V1 or N2(x) = V2.

We may denote by S1 = {x ∈ S|N1(x) = V1} and S2 = S \ S1.

If S1 6= ∅ and S2 6= ∅, then both V1 and V2 are cliques. Using the same method as

Case 1.2 with regrading v1 and v2 as the same vertex, we can find a strong spanning Halin

subgraph in G. Thus, we may assume S2 = ∅. Since we can apply the same procedure for

S1 = ∅. Then V1 is a clique. We want to show following claims before we searching a strong

spanning Halin subgraph in G.

Claim 7.1.6. For any w ∈ V2, |N2(w)| ≥ |V2| − 2. This in turn gives that there exists at

most one other vertex in V2 not adjacent to w.
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Proof. Suppose this is not true, there exist w,w′, w′′ ∈ V2, such that ww′, ww′′ /∈

E(G). Let v ∈ V1 and X = {v, w, w′, w′′}, then |E(X)| ≤ 1, showing a contradiction. �

By Claim 7.1.6, we let V2 = {w1, w2, · · · , wn2}, such that w2k+2 is the only possible

vertex that not adjacent to w2k+1.

Claim 7.1.7. If there exists k ∈ [1, ⌊n2

2
⌋ − 1] such that w2k+1w2k+2 /∈ E(G), then for any

x ∈ S1, either xw2k+1 ∈ E(G) or xw2k+2 ∈ E(G).

Proof. For any x ∈ S1, if both xw2k+1 and xw2k+2 are in E(G), then 〈x;w2k+1, w2k+2, v〉

is a claw. If neither xw2k+1 nor xw2k+2 is in E(G), then |E(〈v, x, w2k+1, w2k+2〉)| = 1, showing

a contradiction. �

According to the result given by Shepherd [37]: If G is a 3-connected {claw,N}-free

graph then G is hamiltonian-connected. We can easily get following corollary.

Corollary 7.1.1. For any vertex set Y ⊆ V2, if |Y | ≥ 5, then 〈Y 〉 is hamiltonian connected.

Proof. For any vertex set Y ⊆ V2, if |Y | ≥ 5, then δ(Y ) ≥ 3, which implies 〈Y 〉 is

3-connected, so it is hamiltonian connected. �

We want to find a strong spanning Halin subgraph in G as follows depends on whether

〈S1〉 is connected.

Case 1: Assume 〈S1〉 is connected.

Denote by S1 = {x1, x2, · · · , xt}. We assume P3 = x3P3xt is a hamiltonian path in 〈S1〉

by Claim 7.0.1 and P1 = v2P1v3 is a hamiltonian path in 〈V1 \ {v1}〉 if 〈V1 \ {v1}〉 is not

empty.

Case 1.1: Suppose |S1| ≥ 4.

Denote by w1 ∈ N2(x1) and w3 ∈ N2(x2). Note that we may have w3 = w2.

If w1w2 ∈ E(G), we let w5 ∈ N2(xt), where w5 6= w3 by Lemma 4.1.2 and we may have

w5 = w2. By Claim 7.1.6 and Corollary 7.1.1, there exists a hamiltonian path P2 = w3P2w5

in 〈V2 \ {w1}〉. Set C = P1P3P2∪{w3x2, x2v2} be a cycle and all vertices on the path v1x1w1
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be stems of T with NC(v1) = V (P1) ∪ V (P3), NC(x1) = {x2} and NC(w1) = V (P2). Let

H = T ∪C, it is easy to check that H is a strong spanning Halin subgraph of G (See Figure

7.4(1)).

If w1w2 /∈ E(G) and w2xt ∈ E(G). Let P2 = w3P2w4 be a hamiltonian path in 〈V2 \

{w1, w5, w2}〉 and C = P1P3P2 ∪ {v2x2, w3x2, w4w2, w2xt} be a cycle. The stems of T are all

vertices on the path v1x1w1w5 with NC(v1) = V (P1) ∪ V (P3), NC(x1) = {x2}, NC(w1) =

V (P2) and NC(w5) = {w4, w2}(If |V2| = 5, swiping w4 and w5). Let H = T ∪C, it is easy to

check that H is a strong spanning Halin subgraph of G (See Figure 7.4(2)).

If w1w2 /∈ E(G) and w2xt /∈ E(G). We may denote by w5xt ∈ E(G) by Lemma

4.1.2. Let P2 = w2P2w5 be a hamiltonian path in 〈V2 \ {w1, w6, w3}〉 and C = P1P3P2 ∪

{v2x2, x2w3, w3w2} be a cycle. Set the stems of T be all vertices on the path v1x1w1w6 with

NC(v1) = V (P1)∪V (P2), NC(x1) = {x2}, NC(w1) = V (P2)\{w2} and NC(w6) = {w3, w2}(if

|V2| = 5, replacing w6 by w4, adding edges {w1w3, w4w5} to E(C) and deleting edge {w1w5})

from E(G). Let H = T ∪C, it is easy to check that H is a strong spanning Halin subgraph

of G (See Figure 7.4(3)).

Case 1.2: Suppose |S1| = 3.

Let P1 = v1P1v2 and P3 = x1x2x3 be hamiltonian paths in 〈V1〉 and 〈S1〉, respectively.

Denote by w2x2 ∈ E(G).

If w1w2 ∈ E(G), denote by w1x1, w3x3 ∈ E(G). Set P2 = w1P2w3 be a hamiltonian

path in V2 \ {w2}. Let C = P1P2 ∪ {v1x1, x1w1, v2x3, x3w3} be a cycle and {x2, w2} be stems

of T with NC(x2) = V (P1)∪ {x1, x3} and NC(w2) = V (P − 2). Let H = T ∪C, it is easy to

check that H is a strong spanning Halin subgraph of G (See Figure 7.4(4)).

If w1w2 /∈ E(G), we may assume x1w5, x3w3 ∈ E(G) by Lemma 4.1.2. Let P2 = w5P2w1

be a hamiltonian path in V2\{w2, w6, w3} and C = P1P2∪{v1x1, x1w5, w1w3, w3x3, x3v2} be a

cycle. Set the stems of T be all vertices on the path x2w2w6 with NC(x2) = V (P1)∪{x1, x3},

NC(w2) = V (P2) \ {w1} and NC(w6) = {w1, w3}. Let H = T ∪C, it is easy to check that H

is a strong spanning Halin subgraph of G (See Figure 7.4(5)).

Case 2: Suppose 〈S1〉 is disconnected.
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Figure 7.4. 〈S1〉 is connected.

Since 〈S1〉 is disconnected and xv ∈ E(G) for any x ∈ S1 and v ∈ V1, there exist exactly

two cliques in 〈S1〉. We denote them by S11 = {x1, x2, · · · , xt}, S12 = {y1, y2, · · · , yt′} and

always assume |S11| ≥ |S12|. Let P1 = v1P1v2 be a hamiltonian path in 〈V1〉.

Case 2.1: There exist xi ∈ S11 and yj ∈ S12 such that N2(xi) ∩N2(yj) 6= ∅. We may assume

w1 ∈ N2(x1) ∩N2(y1).

If |S12| 6= 2 and w1w2 ∈ E(G), we denote by w2 ∈ N2(xt) and w3 ∈ N2(yt′). Since

S11\{x1}, S2\{y1} and V2\{w1} are cliques, there exist hamiltonian paths, say P3 = x2P3xt,

P4 = y2P4yt′ and P2 = w2P2w3, in them, respectively. Let C = P1P3P2P4 be a cycle and the

stems of T be all vertices on the path x1w1y1 with NC(x1) = V (P1)∪V (P3), NC(y1) = V (P4)

and NC(w1) = V (P2)(If S12 = {y1}, set P4 = y1). Let H = T ∪C, it is easy to check that H

is a strong spanning Halin subgraph of G (See Figure 7.5(1)).

If |S12| 6= 2 and w1w2 /∈ V2, we denote by w5 ∈ N2(xt) and w3 ∈ N2(yt′). We may

also let P2 = w5P2w3, P3 = x2P3xt and P4 = y2P4yt′ be hamiltonian paths in V2 \ {w1, w6},

S11 \ {x1} and S12 \ {y1}, respectively. Set C = P1P3P4P2 be a cycle and all vertices of star

〈w1; x1, y1, w6〉 be stems of T with NC(x1) = V (P1)∪V (P3), NC(y1) = V (P4), NC(w1) = {w5}
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and NC(w6) = V (P2) \ {w5}(If S12 = {y1}, set P4 = y1). Let H = T ∪ C, it is easy to check

that H is a strong spanning Halin subgraph of G (See Figure 7.5(2)).

If S12 = {y1, y2} and there exists xi ∈ S11 such that N2(xi) ∩ N2(y1) ∩ N2(y2) 6= ∅.

Let w1 ∈ N2(x1) ∩N2(y1) ∩ N2(y2) and set {x1, w1} be stems of T with w1y1, w1y2 ∈ E(T ).

Similarly as |S12| 6= 2, we can find a strong spanning Halin subgraph in G.

If S12 = {y1, y2} and for any xi ∈ S11, N2(xi) ∩ N2(y1) ∩ N2(y2) = ∅. We may assume

w1 ∈ N2(x1) ∩ N2(y1), then w2 ∈ N2(y2). Let w3 ∈ N2(y1) and w5 ∈ N2(xt) by Claim 7.1.7.

Since S11 \ {x1} is a clique, there exists a hamiltonian path P3 = x2P3xt in it. And we may

denote by P2 = w5P2w2 a hamiltonian path in 〈V2 \ {w1, w3}〉 by Claim 7.1.6 and Corollary

7.1.1. Let C = P1P3P2 ∪ {w2y2, y2v2} be a cycle and all vertices on the path x1w1y1w3 be

stems of T with NC(x1) = V (P1) ∪ V (P3), NC(w1) = V (P2) \ {w2, w6}, NC(y1) = {y2} and

NC(w3) = {w2, w6}. Let H = T ∪ C, it is easy to check that H is a strong spanning Halin

subgraph of G (See Figure 7.5(3)).

Case 2.2: For any xi ∈ S11 and yj ∈ S12, N2(xi) ∩N2(yj) = ∅.

If V2 is a clique and |V1| ≥ 2 or |S| ≥ 4. Denote by w1 ∈ N2(x1), w2 ∈ N2(xt) and

w3 ∈ N2(y1). Let P1 = v2P1v3, P2 = w2P2w3, P3 = x2P3xt and P4 = y1P4yt′ be hamiltonian

paths in V1 \ {v1}, S11 \ {x1}, S12 and V2 \ {w1}, respectively. Set C = P1P3P2P4 be a cycle

and all vertices on the path v1x1w1 be stems of T with NC(v1) = V (P1)∪V (P3\{xt})∪V (P4),

NC(x1) = {xt} and NC(w1) = V (P2). Let H = T ∪ C, it is easy to check that H is a strong

spanning Halin subgraph of G.

If V2 is a clique, |V1| = 1 and |S| = 3. Denote by w1 ∈ N2(x1), w2 ∈ N2(y1) and

w3 ∈ N2(x2). Let P2 = w3P4w4 be a hamiltonian path in V2 \ {w1, w2}. Set C = P2 ∪

{v1x2, x2w3, w4y1, y1v1} be a cycle and all vertices on the path x1w1w2 be stems of T with

NC(x1) = {v1, x2}, NC(w1) = V2 \ {w1, w2, w4} and NC(w2) = {w4}. Let H = T ∪ C, it is

easy to check that H is a strong spanning Halin subgraph of G.

If V2 is not a clique, there exists a pair of vertices, say {w1, w2}, in V2 such that

xiw1, yjw2 ∈ E(G) for all xi ∈ S11 and yj ∈ S12 by Claim 7.1.7. We denote by w3 ∈ N2(yt′)

and w5 ∈ N2(xt). Since 〈S11 \ {x1}〉 and 〈S12〉 are cliques, there exist hamiltonian paths
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P3 = x2P3xt and P4 = y1P4yt in them, respectively. We can also let P2 = w5P2w3 be a hamil-

tonian path in 〈V2 \ {w1, w4, w2}〉 by Claim 7.1.6 and Corollary 7.1.1. Let C = P1P3P2P4 be

a cycle and all vertices on the path x1w1w4w2 be stems of T with NC(x1) = V (P1) ∪ V (P3),

NC(w1) = V (P2) \ {w3, w6}, NC(w4) = {w6} and NC(w2) = {w3} ∪ V (P4). Let H = T ∪ C,

it is easy to check that H is a strong spanning Halin subgraph of G (See Figure 7.5(4)).
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Figure 7.5. 〈S1〉 is not connected.



90

Chapter 8

1-JOIN

Recall that if we suppose W1, W2 is a partition of V (G), and for i ∈ [1, 2] there is a

subset Ai ⊆Wi such that:

• Ai, Wi \ Ai 6= ∅ for i ∈ [1, 2],

• A1 ∪A2 is a clique, and

• E(W1 \A1,W2) = ∅, and E(W1,W2 \ A2) = ∅.

In these circumstances, we say that (W1, W2) is a 1-join.

Let Ai = {uij ∈ W1|dist(uij , B1) = i} and Bi = {wij ∈ W2|dist(wi,j, A1) = i}, then

W1 = A1 ∪ A2 ∪ · · · ∪At and W2 = B1 ∪ B2 · · ·Bs, where t = max{dist(u,B1)|u ∈ W1} and

s = max{dist(w,A1)|u ∈ W2}. In particular, we assume ui1ui+11 , wj1wj+11 ∈ E(G) for all

i ∈ [1, t− 1] and j ∈ [1, s− 1]. Since G is a 3-connected finite graph, the following claim is

clearly true.

Claim 8.0.8. |Ai| ≥ 3 and |Bj| ≥ 3 for all i ∈ [1, t− 1] and j ∈ [1, s− 1].

In this chapter, we will show following two propositions.

Proposition 12. If G is a 3-connected {claw, Z3}-free graph admits 1-join, then there is a

strong spanning Halin subgraph in G.

Proposition 13. If G is a 3-connected {claw,B1,2}-free graph admits 1-join, then there

exists a strong spanning Halin subgraph in G.

8.1 Proof of 3-connected {claw, Z3}-free graphs admit 1-joins

We want to show the following claim first.
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Claim 8.1.1. 1) For any u1i ∈ A1, NA2(u1i) is a clique.

2) W1 ⊆ A1∪A2∪A3. In particular, if there exists w11 ∈ B1, such that |NB2(w11)| ≥ 2, then

W1 = A1 ∪ A2.

Proof. 1) If there exist u2i , u2j ∈ NA2(u1i) such that u2iu2j /∈ E(G), then 〈u1i ;w11, u2i, u2j〉

is a claw, showing a contradiction.

2) Suppose to the contrary, A4 6= ∅, then 〈w1i, w1j , u11; u21u31u41〉 is a Z3, showing

a contradiction. Thus W1 ⊆ A1 ∪ A2 ∪ A3. If there exists w21 , w22 ∈ B2 such that

w21w11 , w22w11 ∈ E(G), then w21w22 ∈ E(G) since G is claw-free. This in turn gives A3 = ∅.

Otherwise, 〈w21 , w22, w11 ; u11u21u31〉 is a Z3. �

Since E(A1, A3) = ∅, E(B1, B3) = ∅, E(A1, B2) = ∅ and E(A2, B1) = ∅, we know

A2, A1, B1 are vertex cut. By Proposition 6, we only need to find a strong spanning Halin

subgraph in G by following three cases depends on A3 = ∅ or not.

Case 1: Assume that A3 6= ∅, then W1 = A1 ∪ A2 ∪A3.

By Proposition 6 and symmetric, we may assume A1 is the minimum vertex cut and

both V1 = A2 ∪A3 and V2 = W2 = B1 ∪B2 are cliques.

Claim 8.1.2. If W1 = A1 ∪ A2 ∪A3, then

1) |B1| ≥ |A1| ≥ 3 and |A2| > |A1| ≥ 3.

2) |A3| = |B2| = 1.

Proof. 1) This is true since G is 3-connected and |V1| is minimum subjects to A1 is a

minimal vertex cut.

2) Suppose this is not true. If |A3| ≥ 2, then 〈u31 , u32, u21; u11w11w21〉 is a Z3. If |B2| ≥ 2,

then 〈w21 , w22, w11 ; u11u21u31〉 is a Z3. �

Now we want to find a strong spanning Halin subgraph in G for this case as follows.

Since G is 3-connected, we may assume u11u21, u12u22, u13u23 ∈ E(G). Moreover, since

A3 ∪ A2 \ {u21}, A1 \ {u11, u12} and B2 ∪ B1 \ {w11} are cliques, there exist hamiltonian

paths, say P1 = u22P1u23, P2 = u13P2u14 and P3 = w12P3w13, in them, respectively. Let
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C = P1P2P3∪{u23u13, u14w13, w12u12, u12u22} be a cycle and all vertices on the path u21u11w11

be stems with NC(u21) = A3∪A2\{u21}, NC(u11) = A1\{u11} and NC(w11) = B2∪B1\{w11}.

Let H = T ∪ C, it is easy to check that H is a strong spanning Halin subgraph of G (See

Figure 8.1 as an example).

w11

w12

w13 w14

w21

w22

u11

u12

u13u14

u21

u22

u23u24

u31

u32

Figure 8.1. W1 = A1 ∪ A2 ∪A3.

Case 2: Assume that A3 = ∅ and B3 6= ∅.

Similarly as A3 6= ∅, we can show that B1 is a minimum vertex cut and both A1 ∪ A2

and B2 ∪ B3 are cliques, then we can find a strong spanning Halin subgraph in G as Case

1 similarly.

Case 3: Assume that A3 = ∅ and B3 = ∅, then W1 = A1 ∪ A2 and W2 = B1 ∪ B2.

Since E(A2, B1) = ∅ and E(A1, B2) = ∅, by symmetric, we can assume A1 is a minimum

vertex cut.

If |A2| ≥ 2, Proposition 6, we can assume B1 ∪ B2 is a clique. Similarly as Case 1, we

can find a strong spanning Halin subgraph in G.

If |A2| = 1, let T1, T2, · · · , Tm be maximal connected components in B2, then we have

following conclusions.

Claim 8.1.3. 1) If there exists Ti with |Ti| ≥ 3, then for any w ∈ NB1(Ti) and i ∈ [1, m],

|NTi
(w)| ≥ |Ti| − 1.

2) For any w21, w22 ∈ B2, if NB1(w21) ∩NB1(w22) 6= ∅, then there exists i ∈ [1, m] such that

w21, w22 ∈ Ti and for any j ∈ [1, i− 1] ∪ [i + 1, m], Tj ∪NB1(Tj) is a clique.

3) If there exists i ∈ [1, m] such that |Ti| ≥ 3, then Tj ∪NB1(Tj) is a clique for all j 6= i and
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j ∈ [1, m].

4) For any i ∈ [1, m], if Ti = {wi1 , wi2}, then |NB1(wi1)| ≥ 2 and |NB1(wi2)| ≥ 2.

Proof. 1) Suppose this is not true, there exists w21, w22, w23 ∈ Ti and w11 ∈ B1 such

that w21w11 ∈ E(G) and w22w11 , w23w11 /∈ E(G). Then neither w21w22w23 is an induced

path, otherwise 〈u11 , u12, w11;w21w22w23〉 is a Z3, nor w22w21w23 is an induced path, otherwise

〈w21;w22, w23, w11〉 is a claw, nor w22w21w23 is a triangle, otherwise 〈w23w22w21;w11u11u21〉 is

a Z3, showing a contradiction. Thus |NTi
(w11)∩{w21, w22 , w23}| ≥ 2. Since 〈Ti〉 is connected,

|NTi
(w11)| ≥ |Ti| − 1.

2) We may assume w11 ∈ NB1(w21) ∩NB1(w22). Since 〈w11; u11 , w21, w22〉 is not a claw,

we have w21w22 ∈ E(G), which implies there exists i ∈ [1, m] such that w21 , w22 ∈ Ti. For any

j ∈ [1, i− 1]∪ [i+ 1, m], if |Tj| = 1, then clearly Tj ∪NB1(Tj) is a clique since B1 is a clique.

If there exist w23 , w24 ∈ Tj , we may let w12 ∈ NB1(w23). Since 〈w21 , w22, w11;w12w23w24〉 is

not a Z3, we have w12w24 ∈ E(G). Since 〈Tj〉 is connected, we have Tj ∪NB1(Tj) is a clique.

3) This is clearly true by 1) and 2).

4) This is true since G is 3-connected. �

Now we want to find a strong spanning Halin subgraph in G by following two subcases.

Case 3.1 There exist wi1 , wi2 ∈ Ti such that NB1(wi1) ∩NB1(wi2) 6= ∅.

By Claim 8.1.3, Tj ∪NB1(Tj) is a clique for all j ∈ [1, i− 1]∪ [i+ 1, m], and |NTi
(w)| ≥

|Ti| − 1 for any w ∈ NB1(Ti).

Denote by Ti = {wi1 , wi2, · · · , witi
} and w1

i , w
2
i , w

3
i ∈ NB1(Ti) since G is 3-connected.

We may assume |T1| ≥ 3 and w2
1w1j ∈ E(G) for all j ∈ [1, t1 − 1] and w1t1−1w1t1

∈

E(G). Since T1 \ {w1t1
, w1t1−1} and Tj are cliques, there exist hamiltonian paths, say

P31 = w11P31w1t1−2 and P3j = wj1P3jwjtj
, in them, respectively, where j ∈ [2, m]. Let

B′
1 = B1 \ (∪m

i=1{w
1
i , w

2
i , w

3
i }) = {w1, w2, · · · , ws}, then there exists a hamiltonian path, say

P4 = w1P4w
s, in it. There also exists a hamiltonian paths P = u13Pu14 in A1 \ {u11, u12}

since A1 \ {u11, u12} is a clique. Let C = P31 · · ·P3mP4P ∪ (∪m
i=1{w

1
iwi1 , witi

w3
i , w

3
iw

1
i+1}) ∪

{w1t1−2w1t1
, w3

mw
1, ws

1u12 , u12u21 , u21u13, u14w
1
1} be a cycle and the vertex set ∪m

i=1{w
2
i } ∪
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{w1t1−1 , u11} be stems of T with NC(u11) = (A1 \ {u11}) ∪ {u21} ∪ B
′
1, NC(w2

1) = {w1
1, w

3
1},

NC(w1t1−1) = T1 \ {w1t1−1} and NC(w2
i ) = Ti ∪ {w1

i , w
3
i }, i ∈ [2, m]. Let H = T ∪ C, it is

easy to check that H is a strong spanning Halin subgraph of G (See Figure 8.2(1) as an

example).

Case 3.2: For any wi1, wi2 ∈ Ti, NB1(wi1) ∩ NB1(wi2) = ∅. Then Ti ⊆ {wi−1, wi2} and

|NB1(wi1)| ≥ 2, |NB1(wi2)| ≥ 2 for all i ∈ [1, m].

We may assume Ti = {wi1, wi2} for all i ∈ [1, l] and Tj = {wj} for all j ∈ [l + 1, m].

Let w1
i1
, w2

i1
∈ NB1(wi1), w

1
i2
, w2

i2
∈ NB1(wi2) for i ∈ [1, l] and w1

i , w
2
i , w

3
i ∈ NB1(wi) for

j ∈ [l+1, m], B′
1 = B1\((∪l

i=1{w
1
i1
, w2

i1
, w1

i2
, w2

i2
})∪(∪m

j=l+1{w
1
j , w

2
j , w

3
j})) = {w1, w2, · · · , ws}.

Since A1 \ {u11, u12} and B′
1 are cliques, there exist hamiltonian paths, say P = u13Pu14

and P4 = w1P4w
s, in them, respectively. Let C = ∪l

i=1{w
1
i1
wi1, wi1wi2, wi2w

2
i2
, w2

i2
w1

(i+1)1
} ∪

{w2
l2
w1

(l+1)1
, w3

mw
1, wsu12 , u12u21, u21u13, u14w

1
11
} ∪ (∪m

j=l+1{w
1
jwj , wjw

3
j , w

3
jw

1
j+1} ∪ P4P be a

cycle with all vertices on the star (∪l
i=1{w

2
i1
, w1

i2
}) ∪ (∪m

j=l+1{w
2
j}) ∪ {u11} be stems of T ,

where u11 is the center, with NC(u11) = (A1 \ {u11}) ∪ {u21} ∪ B′
1, NC(w2

i1
) = {w1

i1
, wi1},

NC(w1
i2

) = {w2
i2
, wi2}, i ∈ [1, l] and NC(w2

j ) = {w1
j , w

3
j , wj}, where j ∈ [l + 1, m]. Let

H = T ∪C, it is easy to check that H is a strong spanning Halin subgraph of G (See Figure

8.2(2) as an example).

w3

(1) (2)

w11

w11

w12

w1t1−1

w1t1−2

w1t1

w1
1

w2
1

w3
1

w1
2

w2
2

w3
2

w1 w1

ws
ws

w1
3

w2
3

w3
3

w1
11

w2
11

w1
12

w2
12

u11 u11

u12
u12

u13 u13

u14 u14

u21 u21

Figure 8.2. W1 = A1 ∪A2 and W2 = B1 ∪ B2.
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8.2 Proof of 3-connected {claw,B1,2}-free graphs admit 1-joins

Claim 8.2.1. Let k = min{i|i ∈ [1, t]} such that Ak ∪ Ak+1 is not a clique, then k = 1.

Proof. We may assume this is not true and k = 2, then A1∪A2 is a clique and A2∪A3

is not. We can also assume u31u22 /∈ E(G), then 〈u31; u21, u22, u11 ;w11w21〉 is a B1,2, showing

a contradiction. �

Claim 8.2.2. If A1 ∪ A2 is not a clique, then

1) W1 = A1 ∪ A2;

2) W2 = B1 ∪ B2;

3) Let T1, T2, · · · , Tm be maximal connected components in B2, then Ti ∪NB1(Ti) is a clique

for all i ∈ [1, m].

Proof. We may assume u12u21 /∈ E(G).

1) If A3 6= ∅, then 〈w21 ;w11, u12 , u11; u21u31〉 is a B1,2, showing a contradiction.

2) If B3 6= ∅, then 〈u21 ; u11, u12, w11 ;w21w31〉 is a B1,2, giving a contradiction.

3) This is clearly true if |Ti| = 1 since B1 is a clique. If there exist w21 , w22 ∈ Ti and w11 ∈

NB1(Ti) such that w11w21 , w21w22 ∈ E(G) but w11w22 /∈ E(G), then 〈u21; u11, u12 , w11;w21w22〉

is a B1,2. Since Ti is connected, we have Ti∪NB1(Ti) is a clique. �Let k′ = min{j|j ∈ [1, s]}

such that Bj ∪ Bj+1 is not a clique, similarly as Claim 8.2.1 and 8.2.1, we get

Corollary 8.2.1. If B1 ∪B2 is not a clique, then

1) k′ = 1;

2) W2 = B1 ∪ B2;

3) W1 = A1 ∪ A2;

4) Let R1, R2, · · · , Rm′ be maximal connected components in A2, then Ri∪NA1(Ri) is a clique

for all i ∈ [1, m′].

Claim 8.2.3. If A1∪A2 is a clique but B1∪B2 is not a clique, let T1, T2, · · · , Tk be maximal

connected components in B2, then Ti is a clique for all i ∈ [1, k].
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Proof. This is clearly true if |Ti| ≤ 2, thus we can assume |Ti| ≥ 3. Since Ti is

connected, we assume w22w21w23 is an induced path in Ti and let w11 ∈ NB1(w21). Since

〈w21 ;w22, w23, w11〉 is not a claw, w11w22 ∈ E(G). Moreover, since 〈w23;w21 , w22, w11; u11u21〉

is not a B1,2, w11w23 ∈ E(G). But this forces 〈w11 ; u11, w22, w23〉 to be a claw, showing a

contradiction. �

We want to find a strong spanning Halin subgraph in G by following three cases.

Case 1: Both A1 ∪ A2 and B1 ∪ B2 are cliques.

If both A1∪A2 and B1∪B2 are cliques, then Ai ∪Ai+1 and Bj ∪Bj+1 are cliques for all

i ∈ [1, t− 1] and j ∈ [1, s− 1]. Let P1i = ui3P1iui4 , P2j = wj3P2jwj4 be hamiltonian paths in

Ai \ {ui1, ui2} and Bj \ {wj1, wj2}, where i ∈ [1, t− 1] and j ∈ [1, s− 1] and P1t = ut3P1tut2 ,

P2s = ws3P2sws2 be hamiltonian paths in At and Bs. Let C = P1tP1t−1 · · ·P11P21 · · ·P2s ∪

∪t−1
i=1{ui4u(i+1)3 , ui2u(i+1)2} ∪ ∪s−1

j=1{wi4w(i+1)3 , wi2w(i+1)2} ∪ {u13w13, u12w12} be a cycle and

all vertices on the path u(t−1)1u(t−2)1 · · ·u21u11w11w21 · · ·w(t−2)1w(t−1)1 be stems of T with

NC(ui1) = Ai \ {ui1}, i ∈ [1, t − 2], NC(wj1) = Bj \ {wj1}, j ∈ [1, s − 2], NC(ut−11) =

At−1 ∪ At \ {u(t−1)1
} and NC(w(s−1)1) = Bs−1 ∪Bs \ {w(s−1)1}. Let H = T ∪ C, it is easy to

check that H is a strong spanning Halin subgraph of G (See Figure 8.3 as an example).
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w3
2 w4
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w2
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w1
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w2
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w3
1

w3
3 w4
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4

w3
4

w3
1

w4
1

Figure 8.3. Both A1 ∪A2 and B1 ∪B2 are cliques.

Case 2: Neither A1 ∪ A2 nor B1 ∪B2 is a clique.

By Claim 8.2.1 and 8.2.3, we know W1 = A1∪A2 and W2 = B1∪B2. Let R1, R2, · · · , Rm′

be maximal connected components in A2 and T1, T2, · · · , Tm be maximal connected com-

ponents in B2, then both Ri ∪ NA1(Ri) and Tj ∪ NB1(Tj) are cliques. Let ui1, ui2, ui3 ∈
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NA1(Ri), wj1, wj2, wj3 ∈ NB1(Tj), A
′
1 = A1 \ ∪m′

i=1{ui1, ui2, ui3} = {u1, · · · , ut} and B′
1 =

B1 \ ∪m
i=1{wj1, wj2, wj3} = {w1, · · · , ws}. Since Ri ∪ {ui2, ui3} and Ti ∪ {wj2, wj3}, A′

1 and

B′
1 are cliques, there exists P1i = ui2P1iui3 , P2j = wj2P2jwj3, P1 = u1P1u

t and P2 =

w1P2w
s are hamiltonian paths in them, respectively. Since A1 ∪ B1 is a clique, let C =

P1i · · ·P1m′
P1P2P2m · · ·P22P21 be a cycle and all vertices on the star {u11, u12, · · · , u1m′

, w11 , · · · ,

w1m}, where u11 is the center, be stems of T with NC(ui1) = Ri ∪ {ui2, ui3}, i ∈ [2, m′],

NC(wj1) = Tj∪{wj2, wj3}, j ∈ [1, m] and NC(u11) = R1∪{u12, u13}∪A
′
1∪B

′
1. Let H = T ∪C,

it is easy to check that H is a strong spanning Halin subgraph of G (See Figure 8.4 as an

example).
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Figure 8.4. Neither A1 ∪A2 nor B1 ∪ B2 is cliques.

Case 3: Either A1∪A2 or B1∪B2 is a clique. We may assume A1∪A2 is a clique and B1∪B2

is not.

By Corollary 8.2.1 and Claim 8.2.3, we know W1 = A1 ∪ A2 and W2 = B1 ∪ B2.

Let Ti = {wi1 , wi2, · · · , witi
} be maximal connected components in B2, w

1
i ∈ NB1(wi1),

w2
i ∈ NB1(wi2), w

3
i ∈ NB1(witi

) if |Ti| ≥ 3 and {w1
i1
, w2

i1
} ∈ NB1(wi1), {w

1
i2
, w2

i2
} ∈ NB1(wi2)

if Ti = {wi1, wi2}. Note that we may have w2
i1

= w1
i2

if NB1(wi1) ∩ NB1(wi2) 6= ∅. Assume

|Ti| 6= 2 for all i ∈ [1, l] and |Tj | = 2 for all j ∈ [l+ 1, m]. Let B′
1 = B1 \ (∪l

i=1{w
1
i , w

2
i , w

3
i } ∪

(∪m
j=l+1{w

1
j1
, w2

j1
, w1

j2
, w2

j2
})) = {w1, w2, · · · , ws}. Since A1 ∪A2 ∪ {u11}, Ti \ {wi1}(i ∈ [1, l]),
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and B′
1 are cliques, there exist hamiltonian paths P1 = u12P1u13, P2i = wi2P2iwiti

and

P3 = w1P3w
s, in them, respectively. Since A1 ∪ B1 is a clique, let C = P1P21P22 · · ·P2lP3

be a cycle and all vertices (∪l
i=1{w

1
i , wi1}) ∪ (∪m

j=l+1{w
2
j1
, w1

j2
}) ∪ {u11} be stems of T with

NC(u11) = A2 ∪ (A1 \ {u11}) ∪ B′
1, NC(w′

i) = {w2
i , w

3
i }, NC(wi1) = Ti \ {wi1}, i ∈ [1, l],

NC(w2
j1

) = {w1
j1
, wi1} and NC(w1

j2
) = {w2

j2
, wj2} for all j ∈ [l + 1, m]. Let H = T ∪ C, it

is easy to check that H is a strong spanning Halin subgraph of G (See Figure 8.5 as an

example).
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Figure 8.5. Either A1 ∪A2 or B1 ∪ B2 is cliques.
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Chapter 9

GENERALIZED 2-JOIN AND 2-JOIN

Recall that if we suppose that W0, W1, W2 are disjoint subsets with union V (G), and

for i = 1, 2 there are subsets Ai, Bi of Wi satisfying the following:

• W0 ∪A1 ∪A2 and W0 ∪B1 ∪B2 are cliques, and E(W0,Wi \ (Ai ∪Bi)) = ∅ for i = 1, 2;

• for i = 1, 2, Ai ∩Bi = ∅ and Ai ,Bi and Wi \ (Ai ∪Bi) are all nonempty; and

• for all v ∈ W1 and w ∈ W2, either v is nonadjacent to w, or v ∈ A1 and w ∈ A2, or

v ∈ B1 and w ∈ B2.

We call the triple (W0 ∪W1 ∪W2) a generalized 2-join, and if W0 = ∅ we call the pair (W1,

W2) a 2-join.

Denote by A1 = {v11 , v12 , · · · , v1t1}, B1 = {v21 , v22 , · · · , v2t2}, D1 = W1 \ (A1 ∪ B1) =

D11∪D12∪· · ·∪D1k1
= {v31 , v32 , · · · , v3t3}, A2 = {w11 , w12, · · · , w1s1

}, B2 = {w21, w22 , · · · , w2s2
},

D2 = W2\(A2∪B2) = D21∪D22∪· · ·∪D2k2
= {w31 , w32, · · · , w3s3

} and W0 = {u1, u2, · · · , uk},

where Dij are maximal connected components of Di, i ∈ [1, 2] and j ∈ [1, k1] ∪ [1, k2]. Since

G is 3-connected and Di 6= ∅, we have |Ai ∪Bi| ≥ 3 for i ∈ [1, 2]. Without loss of generality,

we always assume |A1| ≥ |B1|, thus |A1| ≥ 2. We have the following claim.

Claim 9.0.4. 1) For any v ∈ Ai ∪Bi, NDi
(v) is a clique, where i ∈ [1, 2].

2) If there exist v1k ∈ Ai and v2l ∈ Bi such that v1kv2l ∈ E(G), then NDi
(v1k) = NDi

(v2l) for

i ∈ [1, 2].

Proof. 1) We may assume there exists v11 ∈ A1 and v31 , v32 ∈ ND1(v11) such that

v31v32 /∈ E(G), then 〈v11 ; v31 , v32 , w11〉 is a claw, showing a contradiction.

2) We may assume there exist v1k ∈ A1 and v2l ∈ B1. For any v ∈ ND1(v1k), s-

ince 〈v1k ; v, v2l, w11〉 is not a claw, vv2l ∈ E(G). Similarly, for any v ∈ ND1(v2l), since

〈v2l; v, v1k , w21〉 is not a claw, vv1k ∈ E(G). Therefore, ND1(v1k) = ND1(v2l). �



100

In this chapter, we will show the following four propositions.

Proposition 14. If G is a 3-connected {claw, Z3}-free graph admits a generalized 2-join,

then G contains a strong spanning Halin subgraph.

Proposition 15. If G is a 3-connected {claw, Z3}-free graph admits a 2-join, then G con-

tains a strong spanning Halin subgraph.

Proposition 16. If G is a 3-connected {claw,B1,2}-free graph admits a generalized 2-join,

then G contains a strong spanning Halin subgraph.

Proposition 17. If G is a 3-connected {claw,B1,2}-free graph admits a 2-join, then G

contains a strong spanning Halin subgraph.

9.1 Proof of 3-connected {claw, Z3}-free graphs admit generalized 2-joins

Before we prove Proposition 14, we give following claim first.

Claim 9.1.1. 1) For any v ∈ Di and i ∈ [1, 2], dist(v, A1 ∪ B1) = 1.

2) If NG(Dij )\Di ⊆ Ai(or Bi), then NG(Dij)∪Dij is a clique, where i ∈ [1, 2] and j ∈ [1, ki].

3) If there exists v ∈ A1(similarly as v ∈ B1 or v ∈ A2 or v ∈ B2) such that |ND1(v)| ≥ 2,

then ND2(B2) = ∅.

Proof. 1) Suppose to the contrary, there exist v ∈ B1 and v′, v′′ ∈ D1 such that

vv′, v′v′′ ∈ E(G) and vv′′ /∈ E(G), then |A2| = 1. Otherwise 〈w11 , w12, u1; vv
′v′′〉 is a Z3,

which implies |B2| ≥ 2 and ND2(B2) 6= ∅ since G is 3-connected and D2 6= ∅. Since

〈w11 , v11, u1; vv
′v′′〉 is not a Z3, if w21w31 ∈ E(G),, then we have vv11 ∈ E(G) which implies

v′v11 ∈ E(G); or v′v11 ∈ E(G) which implies v′′v11 ∈ E(G) since 〈w21, w22 , u1; v11v
′v′′〉 is not

a Z3; or v′′v11 ∈ E(G) which implies v′v11 ∈ E(G) since 〈w21, w22 , u1; v11v
′′v′〉 is not a Z3.

Thus we can assume v′′v11 , v
′v11 ∈ E(G) but vv11 /∈ E(G) since 〈v11 ; v

′′, v, w11〉 is not a claw.

However, this will force 〈v′′, v′, v11 ; u1w21w31〉 to be a Z3, giving a contradiction.

2) Since Dij is connected, by 1), we know Dij ∪{v} is a clique for any v ∈ NG(Dij)∩Ai.

Since Ai is a clique, NG(Dij ) ∪Dij is a clique, where i ∈ [1, 2] and j ∈ [1, ki].
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3) Suppose there exist v31 , v32 ∈ ND1(v11) and w21w31 ∈ E(G), then 〈v31, v32 , v11 ; u1w21w31〉

is a Z3, showing a contradiction. �

Now we want to find a strong spanning Halin subgraph in G by following cases.

Case 1: Assume E(A1, B1) = ∅ and E(A2, B2) = ∅.

Claim 9.1.2. If E(A1, B1) = ∅ and E(A2, B2) = ∅, then

1) NDi
(Ai) ∩NDi

(Bi) = ∅ for i = 1, 2.

2) If there exists v ∈ A1such that |ND1(v)| ≥ 2, then ND1(B1) = ∅.

3) Ni(Dij) ∪Dij is a clique.

4) |Ni(Dij)| ≥ 3 and |W0| ≥ 3.

Proof. 1) We only show that ND2(A2)∩ND2(B2) = ∅. Suppose this is not true, there

exists w31 ∈ ND2(w11) ∩ND2(w21), then 〈v11 , v12 , w11;w31w21v21〉 is a Z3.

2) Suppose this is not true, there exist v31 , v32 ∈ ND1(v11) and v33 ∈ ND1(v21), then

〈v31 , v32 , v11 ; u1v21v33〉 is a Z3.

3) This is clearly true by 1) and Claim 9.1.1 2).

4) This is true since G is 3-connected. �

Let D1j = {v11j , v
2
1j
, · · · , v

mj

1j
} ⊆ D1, D2j = {w1

1j
, w2

1j
, · · · , w

nj

1j
} ⊆ D2, v

1
j , v

2
j , v

3
j ∈

N1(D1j), w
1
j , w

2
j , w

3
j ∈ N2(D2j ) for j ∈ [1, k1] ∪ [1, k2], and A′

1 = A1 \ ∪k1
j=1{v

1
j , v

2
j , v

3
j} =

{v′11 , v
′
12
, · · · , v′1l1

}, B′
1 = B1\∪

k1
j=1{v

1
j , v

2
j , v

3
j} = {v′21 , v

′
22
, · · · , v′2l2

}, A′
2 = A2\∪

k2
j=1{w

1
j , w

2
j , w

3
j}

= {w′
11
, w′

12
, · · · , w′

1l1
}, B′

2 = B2 \ ∪k2
j=1{w

1
j , w

2
j , w

3
j} = {w′

21
, w′

22
, · · · , w′

2l2
}. Since D1j ∪

{v1j , v
3
j}, D2j ∪ {w1

j , w
3
j}, A′

i, B
′
i and W0 \ {u1, u2} are cliques, there exist hamiltonian path-

s, say P1j = v1jP1jv
3
j , P2j = w1

jP2jw
3
j , P3 = v′11P3v

′
1l1

, P4 = v′21P4v
′
2l2

, P5 = w′
11
P5w

′
1l1

,

P6 = w′
21P6w

′
2l2

and P7 = u3P7uk, in them, respectively, where i ∈ [1, 2] and j ∈ [1, k1] ∪

[1, k2]. Let C = P11 · · ·P1k1
P3P4P7P5P6P2k2

· · ·P21 be a cycle and all vertices on the star

〈u1; v
2
1, · · · , v

2
k1
, w2

1, · · ·w
2
k2
〉, where u1 is the center, be stems of T with NC(u1) = A′

1 ∪B
′
1 ∪

W0 \ {u1}, NC(v2j ) = D1j ∪ {v1j , v
3
j} and NC(w2

j ) = D2j ∪ {w1
j , w

3
j}, where j ∈ [1, k1] ∪ [1, k2].

Let H = T ∪ C, it is easy to check that H is a strong spanning Halin subgraph of G (See

Figure 9.1 (1) and (2) as examples).
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Figure 9.1. E(A1, B1) = ∅ and E(A2, B2) = ∅

Case 2: Suppose E(A1, B1) 6= ∅ or E(A2, B2) 6= ∅.

We may assume v11v21 ∈ E(G) and want to consider following two subcases depending

on the neighborhood of ND2(A2) and ND2(B2) are empty or not.

Claim 9.1.3. If ND2(A2) = ∅ and ND2(B2) 6= ∅(similarly as ND2(B2) = ∅ and ND2(A2) 6=

∅), then

1) |A2| = 1.

2) For any v1i ∈ A1, |ND1(v1i)| ≤ 1.

3) For any v2i ∈ B1, if E(v2i , A1) 6= ∅, then {v2i} ∪ A1 is a clique.

4) We may assume E(v2j , A1) 6= ∅ for all j ∈ [1, l], where l ≤ t2, then |ND1(A1∪{v21 , · · · , v2l})|

≤ 1.

5) For any v2j ∈ B1 \ {v21 , · · · , v2l}, |ND1(v2j )| ≤ 1. Therefore, D1 is an independent set.

6) If ND1(A1) 6= ∅, then D2 is an independent set.

Proof. We may assume w31w21 ∈ E(G). Since ND2(A2) = ∅, by Claim 9.0.4, we have

w1iw21 /∈ E(G) for any w1i ∈ A2.

1) If there exist w11 , w12 ∈ A1, then 〈w11, w12 , v11 ; v21w21w31〉 is a Z3, showing a contra-

diction.

2) This is clear true by the last conclusion of Claim 9.1.1.

3) For any v2i ∈ B1, we may assume there exists v11 , v12 ∈ A1 such that v11v2i ∈ E(G)



103

and v12v2i /∈ E(G), then 〈w11 , v12, v11 ; v21w2iw31〉 is a Z3, showing a contradiction. Therefore,

{v21} ∪ A1 is a clique.

4) This is clearly true by 2), 3) and Claim 9.1.1 2).

5) If there exist v, v′ ∈ ND1(v2j ), where j ∈ [l + 1, t2], then vv′ ∈ E(G) by Claim 9.0.4.

Moreover, vv1i, v
′v1i , vv21 , v

′v21 /∈ E(G) for all v1i ∈ A1. Otherwise, since 〈w11 , v1k , v1i ; vv2jw21〉

is not a Z3, we can assume vv1i ∈ E(G) we have w11w21 ∈ E(G) or vv1k ∈ E(G). If vv1k ∈

E(G), then 〈v1k , v1i , v; v2iw21w31〉 is a Z3. If w11w21 ∈ E(G), since 〈v1k , v1i, w11 ;w21v2jv
′〉

is not a Z3, we have v′v1i ∈ E(G) or v′v1k ∈ E(G), which implies vv21 , v
′v21 ∈ E(G) and

vv1iv
′v1i ∈ E(G), showing a contradiction.

6) This is clearly true by Claim 9.1.1 1) and 3). �

We denote by D1 = {v31 , v32 , · · · , v3t3}, v1i , v
2
i , v

3
i ∈ NA1∪B1(v3i) for all v3i ∈ D1, A

′
1 =

A1\(∪t3
i=1{v

1
i , v

2
i , v

3
i }) = {v′11 , v

′
11 , · · · , v

′
1k1

}, B′
1 = B1\(∪t3

i=1{v
1
i , v

2
i , v

3
i }) = {v′21 , v

′
22 , · · · , v

′
2k2

};

D2 = {w31, w32 , · · · , w3s3
}, w1

i , w
2
i , w

3
i ∈ NB2(w3i) for all w3i ∈ D2, B

′
2 = B2\(∪s3

i=1{w
1
i , w

2
i , w

3
i })

= {w′
21
, w′

22
, · · · , w′

2k3
}. Since A′

1, B
′
1, B

′
2 and W0 \ {u1} are cliques, there exist hamiltonian

paths, say P1 = v′11P1v
′
1k1

, P2 = v′21P2v
′
2k2

, P3 = w′
21P3w

′
2k3

and P4 = u2P4uk, in them,

respectively.

We only need to find a strong spanning Halin subgraph in G for the case ND1(A1) 6= ∅,

since the other case is similar but a little bit easier.

If |W0| ≥ 2 (similarly as E(A2, B2) 6= ∅). Let C = ∪4
i=1Pi ∪ (∪t1

i=1{v
1
i v3i , v3iv

3
i }) ∪

(∪t1−1
i=2 {v3i v

1
i+1}∪{v

′
1k1
v11, v

3
t1
v′21 , v

′
2k2
w′

2k3
, w′

21w
3
t2
, w1

1uk, u2w11, w11v11})∪(∪t2
j=1{w

1
iw3i, w3iw

3
i , w

3
i

w1
i+1}) be a cycle and all vertices on the star 〈u1; v

2
1, v

2
2, · · · , v

2
t1
, w2

1, · · · , w
2
t2
〉, where u1 is the

center, be stems of T with NC(u1) = A′
1 ∪A

′
2 ∪B

′
1 ∪B

′
2 ∪ (W0 \ {u1}), NC(v2i ) = {v3i, v

1
i , v

3
i }

and NC(w2
i ) = {w3i, w

1
i , w

3
i }. Let H = T ∪C, it is easy to check that H is a strong spanning

Halin subgraph of G (See Figure 9.2 (1) as an example).

If W0 = {u1} and E(A2, B2) = ∅, since G is 3-connected, we can assume there exist

v21 , v22 ∈ B1 such that {v21 , v22} ∪ A1 is a clique. Let C = {v12v31 , v31v22 , v22v
1
2 , v

3
t1
v′21 ,

v′2k2
w′

2k3
, v′21w

3
t2
, w1

1u1, u1w11 , w11v1t1}∪ (∪t1
i=2{v

1
i v3i , v3iv

3
i })∪ (∪t2

i=1{w
1
iw3i, w3iw

3
i }) be a cycle

and all vertices on the star 〈v21 , v11, v
2
1, v

2
t1
, w2

1, w
2
t2
〉, where v21 is the center, be stems of T ,



104

with NC(v21) = B′
1 ∪ {u1} ∪ B

′
2, NC(v11) = (A1 ∪ {v11}) ∪ {w11, v31}, NC(v2i ) = {v1i , v

3
i , v3i}

and NC(w2
i ) = {w1

i , w
3
i , w3i}, where i ∈ [1, k1] ∪ [1, k2]. Let H = T ∪ C, it is easy to check

that H is a strong spanning Halin subgraph of G (See Figure 9.2 (2) as an example).
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Figure 9.2. E(A1, B1) 6= ∅ and ND2(A2) = ∅

Claim 9.1.4. If ND2(A2) 6= ∅ and ND2(B2) 6= ∅, then

1) For any v2i ∈ B1(similarly as v1i ∈ A1), if E(v2i , A1) 6= ∅, then |NA1(v2i)| ≥ |A1| − 1.

2) Let A′
1 = {v1i ∈ A1|E(v1i , B1) 6= ∅} ⊆ A1 and B′

1 = {v2i ∈ B1|E(v2i , A1) 6= ∅} ⊆ B1, then

|A′
1| ≥ |A1| − 1 and |B′

1| ≥ |B1| − 1.

3) |D1| = 1.

4) D2 is an independent set.

5) If ND2(A2) ∩ND2(B2) 6= ∅ or E(A2, B2) 6= ∅, then |D2| = 1.

Proof. Since ND2(B2) 6= ∅, we assume w21w31 ∈ E(G).

1) Suppose v11v2i ∈ E(G). For any v1i , v1j ∈ A1 \ v11 , since 〈v1i , v1j , v11 ; v2iw21w31〉 is

not a Z3, we have v1iv2i ∈ E(G) or v1jv2i ∈ E(G). Thus |NA1(v2i)| ≥ |A1| − 1.

2) This is clearly true by 1) and the symmetric of A2 and B2.

3) Denote by v1t1 ∈ A1 \ A
′
1, v2t2 ∈ B1 \ B

′
1 if they exist. Since {v1t1 , v2t2} is not 2-cut,

ND1(v1t1 ) ∪ ND1(v2t2 ) ⊆ ND1(A
′
1 ∪ B′

1). By Claim 9.1.1 3) and the fact that ND2(A2) 6= ∅

and ND2(B2) 6= ∅, |D1| = 1.

4) This is clearly true by 9.1.1 1) and 3).
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5) Since ND1(A1) 6= ∅, by Claim 9.1.1 3), we have |ND2(w2i)| ≤ 1 for all w2i ∈ B2. If

there exist w3i ∈ D2 such that w3i ∈ ND2(A2) ∩ND2(B2), then N2(w3i) ⊆ A2 ∪B2 by Claim

9.1.1 1). We may assume w11 , w12, w21 ∈ N2(w3i). Since 〈w11 , w12, w3i;w21v21v31〉 is not a Z3,

we have w11w21 ∈ E(G) or w12w21 ∈ E(G), which implies E(A2, B2) 6= ∅. Similarly as 3),

we can show that |D2| = 1. �

If ND2(A2)∩ND2(B2) 6= ∅(similar as E(A2, B2) 6= ∅), we may assume w31 ∈ ND2(w11)∩

ND2(w21) ∩ ND2(w22) and v31 ∈ ND1(v11) ∩ ND1(v12) ∩ ND1(v21). Since A1 \ {v11}, B1, A2,

B2 \ {w21} and W0 \ {u1} are cliques, there exist hamiltonian paths, say P1 = v12P1v1t1 ,

P2 = v21P2v2t2 , P3 = w11P3w1s1
, P4 = w22P4v2s2 and P5 = u2P5uk in them, respectively. Let

C = P1P2P3P4P5 be a cycle and all vertices on the path v11u1w21 be stems with NC(v11) =

{v31 , v12}, NC(u1) = (A1\{v11 , v12})∪B1∪(W0\{u1})∪A2∪(B2\{w21 , w22}) and NC(w21) =

{w22 , w31}. Let H = T ∪C, it is easy to check that H is a strong spanning Halin subgraph

of G (See Figure 9.3 (1) as an example).

If ND2(A2) ∩ D2(B2) = ∅, E(A2, B2) = ∅ and |W0| ≥ 2, similarly as ND2(A2) = ∅, we

can find a strong spanning Halin subgraph in G.

If ND2(A2) ∩D2(B2) = ∅, E(A2, B2) = ∅ and |W0| = 1. Since G is 3-connected, we can

assume v11v21 , v12v22 ∈ E(G). Since A1 \ {v11}, B1 \ {v21}, A′
2 = A2 \ (∪s3

i=1{w
1
i , w

2
i , w

3
i }) and

B′
2 = B2 \ (∪s3

i=1{w
1
i , w

2
i , w

3
i }) are cliques, there exist hamiltonian paths, say P1 = v12P1v1t1 ,

P2 = v22P2v2t2 , P3 = w′
11
P3w

′
1k1

and P4 = w′
21
P4w

′
2k2

, in them, respectively. Let C =

∪s3
i=1{w

1
iw3i , w3iw

3
i , w

3
iw

1
i+1}∪{w

3
kw

′
11, w

′
1k1
u1, u1w

1
k+1, w

3
s3
w′

21 , w
′
2k2
v2t2 , v22v31 , v31v12 , v1t1w

1
1}∪

∪4
i=1E(Pi) be a cycle and all vertices on the tree {v11 , v21 ;w

1
i , w

2
i , · · · , w

s3
i } be stems of T

with NC(v11) = (A1 \{v11})∪A′
2, NC(v21) = B1 \{v21}∪{v31}∪B

′
2, NC(w2

i ) = {w1
i , w

3
i , w3i},

where i ∈ [1, s3]. Let H = T ∪C, then H is a spanning Halin subgraph of G (See Figure 9.3

(2) as an example).

9.2 Proof of 3-connected {claw, Z3}-free graphs admit 2-joins

In this section, we assume W0 = ∅, which implies G contains a 2-join.

Since G is 3-connected and Z3-free, it is easy to check that E(A1, B1) 6= ∅ or E(A2, B2) 6=
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Figure 9.3. E(A1, B1) 6= ∅, ND2(A2) 6= ∅ and ND2(B2) 6= ∅

∅. In this section, we always assume E(A2, B2) 6= ∅, A′
2 = {w1i ∈ A2|E(w1i, B2) 6= ∅} =

{w11 , w12, · · · , wk1} ⊆ A2 and B′
2 = {w2i ∈ B2|E(w2i, A2) 6= ∅} = {w21 , w22, · · · , w2k2

} ⊆ A2,

where k1 ≤ s1 and k2 ≤ s2. In particular, we always assume w11w21 ∈ E(G). Then we want

to consider following two cases.

Case 1: Assume E(A1, B1) = ∅.

Claim 9.2.1. If E(A1, B1) = ∅, then ND1(B1) = ∅.

Proof. Suppose this is not true, then the following three observations giving a con-

tradiction.

Observation 1: If there exists v3j ∈ ND1(B1), then |NA1(v3j )| ≥ |A1| − 1. Suppose this

is not true, for any v3j ∈ ND1(B1), there exists v11 , v12 ∈ A1 such that v11v3j , v12v3j /∈ E(G)

and v21v3j ∈ E(G), then 〈v11 , v12 , w11 ;w21v21v3j〉 is a Z3, showing a contradiction.

Thus, we may assume there exists v31 ∈ D1 such that v31v21 ∈ E(G) and let {v11 , v12 , · · · ,

v1t1−1} ⊆ NA1(v31).

Observation 2: If there exists v3j ∈ ND1(B1) such that |NA1(v3j )| ≥ 2, then,

1) ND2(B2) = ∅ and |A2 \ A
′
2| ≥ 3;

2) |B2| = 1;

3) |B1| = 1 and;

4) |ND1(B1)| = 1.



107

We may assume there exist v31 ∈ ND1(B1) and v11 , v12 ∈ A1, such that v11v31 , v12v31 ∈

E(G).

1) If there exists w21 ∈ B2 and w31 ∈ D2 such that w31w21 ∈ E(G), then 〈v11 , v12, v31 ; v21w21

w31〉 is a Z3. Thus ND2(B2) = ∅, which implies ND2(A
′
2) = ∅ by Claim 9.0.4. Since G is

3-connected and D2 6= ∅, we have |A2 \ A
′
2| ≥ 3.

2) If there exist w21 , w22 ∈ B2, then 〈w21, w22 , v21 ; v31v11w1s1
〉 is a Z3, where w1s1

∈

A2 \ A
′
2.

3) Suppose this is not true, there exist v21 , v22 ∈ B1. We can also assume there exists

w31 ∈ ND2(w1s1
), then 〈v21 , v22 , w21 ;w11w1s1

w31〉 is a Z3, showing a contradiction. Thus,

B1 = {v21}.

4) If there exist v31 , v32 ∈ ND1(v21), then 〈v31 , v32 , v21 ;w21w11w1s1
〉 is a Z3, showing a

contradiction.

Observation 3: If for any v3j ∈ ND1(B1), |NA1(v3j )| = 1, then

1) |B2| = 1;

2) A2 ∪B2 is a clique;

3) |ND2(A2 ∪ B2)| = 1 and D2 = ND2(A2 ∪ B2);

4) |B1| = 1, and;

5) |ND1(B1)| = 1.

By Observation 1, we can see that A1 = {v11 , v12} and always assume v31v11 ∈ E(G)

and v31v12 /∈ E(G).

1) If there exist w21 , w22 ∈ B2, then 〈w21 , w22, v21 ; v31v11v12〉 is a Z3.

2) If there exists w1i ∈ A2, such that w1iw21 /∈ E(G), then 〈w1i, v12 , v11 ; v31v21w21〉 is a

Z3.

3) If there exist w31, w32 ∈ ND2(A2∪B2), then A2∪B2∪{w31 , w32} is a clique by Claim

9.0.4. However, this will force 〈w31, w32 , w21; v21v31v11〉 to be a Z3. Thus |ND2(A2∪B2)| = 1.

Since G is 3-connected, ND2(A2 ∪ B2) is not a cut vertex, we get D2 = ND2(A2 ∪ B2).

4) We may assume there exists v22 ∈ B1. If v22v31 /∈ E(G), then 〈w11, v12 , v11 ; v31v21v22〉

is a Z3; if v22v31 ∈ E(G), then 〈v21 , v22 , v31 ; v11w11w31〉 is a Z3, showing a contradiction. Thus
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B1 = {v21}.

5) If there exist v31 , v32 ∈ ND1(v21), since 〈v32 , v31 , v21 ;w21w11v12〉 is not a Z3, we have

v32v12 ∈ E(G). However, this will force 〈v21 , v31, v32 ; v12w11w31〉 to be a Z3, showing a

contradiction.

From Observation 2 and 3, we can see that |B1| = |ND1(B1)| = |B2| = 1, which means

|NG(v21)| = 2, contradicts to the fact that G is 3-connected. Thus ND1(B1) = ∅. �

Since G is 3-connected, ND1(B1) = ∅ and E(A1, B1) = ∅, we have |B2| ≥ 3. The

following claim gives us the structure of G.

Claim 9.2.2. 1) |B1| = 1;

2) Both B2 = B′
2 and A′

2 ∪ B2 ∪ND2(A
′
2 ∪ B2) are cliques. In particular, |A′

2| ≥ 3;

3) Both D1 and D2 \ (ND2(A2 \ A
′
2)) are independent sets;

4) If D2 \ND2(A2 ∪B2) 6= ∅, then it is an independent set.

Proof. We may denote v31v11 ∈ E(G) since D1 6= ∅.

1) If there exist v21 , v22 ∈ B1, then 〈v21 , v22 , w21 ;w11v11v31〉 is a Z3.

2) If there exists w2j ∈ B2 \B
′
2, then 〈v21 , w2j , w21 ;w11v11v31〉 is a Z3. Thus {w11} ∪B2

is a clique. Similarly, we can show that A′
2 ∪ B2 is a clique. By Claim 9.0.4, we have

A′
2 ∪B2 ∪ND2(A

′
2 ∪B2) is a clique. Since G is 3-connected, we have |A′

2| ≥ 3.

3) Suppose to the contrary, there exist v31 , v32 ∈ D1 such that v31v32 ∈ E(G). S-

ince 〈w21 , w22, w11; v11v31v32〉 is not a Z3, we have v32v11 ∈ E(G). This in turn gives that

〈v31 , v32 , v11 ;w11w21v21〉 is a Z3. Therefore, D1 is an independent set. Similarly, we can show

that D2 \ (ND2(A2 \ A
′
2)) is also an independent set if it is not empty.

4) LetND2(A
′
2∪B2) = {w31 , w32, · · · , w3l1

} andND2(A2\A
′
2) = {w3l1+1

, w3l1+2
, · · · , w3l2

}.

If there exists w3j ∈ D2 \ND2(A2 ∪ B2), then w3jw3i /∈ E(G) for any i ∈ [l1 + 1, l2]. Other-

wise 〈w21 , w22, w11 ;w1s1
w3iw3j〉 is a Z3, where w3iw1s1

∈ E(G). Thus we may let w31w3l2+1
∈

E(G). If there exists w3jw3l2+1
in E(G), where w3j ∈ D2 \ (ND2(A2 ∪ B2) ∪ {w3l2+1

)}, since

〈v11 , v12 , w11;w31w3l2+1
w3j〉 is not a Z3, we have w31w3j ∈ E(G). However, this will force

〈w3j , w3l2+1
, w31 ;w11v11v31〉 to be a Z3, giving a contraction. Thus D2 \ ND2(A2 ∪ B2) is an

independent set. �
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Now we denote by D1 = {v31 , v32 , · · · , v3t3}, {v13i, v
2
3i
, v33i} ⊆ NA1(v3i) for all i ∈

[1, t3], A
′′
1 = A1 \ ∪t3

i=1{v
1
3i
, v23i, v

3
3i
} = {v′11 , v

′
12
, · · · , v′1t1}, D′

21
= {w31 , w32, · · · , w3l1

} =

ND2(A
′
2 ∪B

′
2), D22 = {w3l1+1

, w3l1+2
, · · · , w3l2

} = ND2(A2 \A
′
2), D

′
23 = D2 \ND2(A2 ∪B2) =

{w3l2+1
, · · · , w3s2

}, {w3i, w
2
3i
, w3

3i
} ⊆ NA2(w3i) for all i ∈ [l1 + 1, s2], A

′′
2 = {w1i|ND2(w1i) =

∅} = {w′
11
, · · · , w′

1t1
}, D′

21
= D21 \ ∪

s2
i=l2+1{w

1
3i
, w2

3i
, w3

3i
}. Since A′′

1, A′′
2, D

′
21

, B2 \ {w21 , w22}

and (A′
2 \ {w11, w13})∪{w21} are cliques, there exists hamiltonian paths, say P1 = v′11P1v

′
1t1

,

P2 = w′
11
P2w

′
1t1

, P3 = w23P3w2s2
and P4 = w21P4w12, in them, respectively. Let C =

∪t3
i=1{v

1
3i
v3i, v3iv

3
3i
, v33iv

1
3i+1

}∪(∪s2
i=l+1{w

1
3i
w3i, w3iw

3
3i
, w3

3i
w1

3i+1
})∪(∪4

i=1Pi)∪{w22v21 , v21w21, w12v
′
31}

be a cycle and all vertices on the tree 〈v231 , w11; v
2
31
, · · · , vt331, w

2
3l2
, w2

3l2+1
, · · · , w2

3s2
, w22〉 be

stems of T with NC(v23i) = {v13i , v
3
3i
, v3i}, i ∈ [1, t3], NC(w2

3j
) = {w1

3j
, w3

3j
, w3j}, j ∈ [l1+1, s2],

NC(w11) = (A′
2 \ {w11}) ∪D′

23 , NC(w22) = (B2 \ {w22}) ∪ {v21}. Let H = T ∪ C, it is easy

to check that H is a strong spanning Halin subgraph of G (See Figure 9.4 as an example).

w′
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w′

1k2

w3
3l2

w2
3l2

w1
3l2

w3l2

w13

w3
3s3

w2
3s3

w1
3s3

w3s3

w3l2
+1

w′

31

w21

w22

w23
w2s2

v21

v31

v1
31

v2
31

v3
31

v32
v1
32

v3
32

v′

11

v′

1k1

w′

3k3

w11

w12

Figure 9.4. E(A1, B1) = ∅.

Case 2: Suppose that E(A1, B1) 6= ∅.

Denote by A′
1 = {v1i ∈ A1|E(v1i , B1) 6= ∅} = {v11 , v12 , · · · , v1l1} ⊆ A1 and B′

1 = {v2i ∈

B1|E(v2i, A1) 6= ∅} = {v21 , v22 , · · · , v2l2} ⊆ B1, where l1 ≤ t1 and l2 ≤ t2. In particular, we

always assume v11v21 ∈ E(G).

We want to find a strong spanning Halin subgraph in G by following two subcases.
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Case 2.1: Assume ND2(B2) 6= ∅.

Claim 9.2.3. ND2(B2 \B
′
2) = ∅.

Proof. Suppose this is not true, there exist w2s2
∈ B2 \ B

′
2 and w31 ∈ D2 such that

w2s2
w31 ∈ E(G), then 〈v11 , v12 , w11 ;w21w2s2

w31〉 is a Z3. �

We let w21w31 ∈ E(G), where w21 ∈ B′
2 and w31 ∈ D2.

Claim 9.2.4. 1) For any v2i ∈ B′
1, we have |NA1(v2i)| ≥ |A1|−1, which implies |A1\A

′
1| ≤ 1.

2) ND1(B
′
1) 6= ∅ and |A2 \ A

′
2| ≤ 1.

Proof. 1) For any v2i ∈ B′
1, if there exist v11 ∈ A′

1 and v1k , v1l ∈ A1 \ A′
1 such

that v11v2i ∈ E(G) and v1kv2i , v1lv2i /∈ E(G), then 〈v1k , v1l, v11 ; v2iw21w31〉 is a Z3. Thus

|NA1(v2i)| ≥ |A1| − 1, which implies |A1 \ A
′
1| ≤ 1.

2) If ND1(B
′
1) = ∅, by Claim 9.0.4, ND1(A

′
1) = ∅. Since |A1 \ A

′
1| ≤ 1, D1 6= ∅ and G is

3-connected, we can assume v2t2 , v2t2−1 ∈ B2 \ B
′
2, then 〈v2t2 , v2t2−1 , v21; v11w11w31〉 is a Z3.

Similarly as 1), we can also get |A2 \ A
′
2| ≤ 1. �

Claim 9.2.5. Di = NDi
(Ai ∪Bi), where i ∈ [1, 2].

Proof. We only show this is true for i = 2. Since ND1(B
′
1) 6= ∅, by Claim 9.2.4, we

can assume there exists v31 ∈ ND1(v11)∩ND1(v21). If there exist wi ∈ A2∪B2, wj ∈ ND2(wi)

and wk ∈ ND2(wj) \ (A2 ∪ B2), then either 〈v11 , v31, v21 ;wiwjwk〉 or 〈v21 , v31 , v11 ;wiwjwk〉 is

a Z3, showing a contradiction. �

Claim 9.2.6. If there exists i ∈ [1, 2], such that Ai ∪ Bi is a clique, then both Di and

A′
3−i ∪B

′
3−i ∪D3−i are cliques.

Proof. We only show this is true for i = 1. If A1 ∪ B1 is a clique, then A1 ∪ B1 ∪D1

is a clique by Claim 9.0.4 and 9.2.5. Moreover, |B2 \ B
′
2| ≤ 1. Otherwise, let w2j , w2k ∈

B2 \ B
′
2, then 〈w2j , w2k , w21 ;w11v11v31〉 is a Z3. Thus |(A2 \ A

′
2) ∪ (B2 \ B

′
2)| ≤ 2. Fur-

thermore, we can show that if ND2(A2 \ A
′
2) 6= ∅, then ND2(A2 \ A′

2) ⊆ ND2(A
′
2 ∪ B′

2).

Otherwise, assume there exist w31 ∈ D2, w1s1
∈ A2 \ A

′
2 and w2s2

∈ B2 \ B
′
2 such that
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w1s1
w31 , w2s2

w31 ∈ E(G). Since G is 3-connected, there exists w32 ∈ D2 such that w31w32 ∈

E(G). Since 〈w31, w32 , w1s1
; v11v21w21〉 is not a Z3, we have w32w21 ∈ E(G), this will force

〈w1s1
, w31, w32 ;w21v21v31〉 to be a Z3, showing a contradiction. Thus D2 = ND2(A

′
2 ∪ B′

2).

Since ND1(B1) 6= ∅, similarly as Claim 9.2.4, we can show that |NA2(w2k)| ≥ |A2| − 1 for all

w2k ∈ B′
2 or |NB2(w1k)| ≥ |B2| − 1 for all w1k ∈ A′

2. By Claim 9.0.4, we know A′
2 ∪ B

′
2 ∪D2

is also a clique. �

Now we want to find a strong spanning Halin subgraph in G by following three subcases.

Subcase 1: Assume |A2| 6= 2. Since (A1 \ {v11}) ∪B1 ∪D1, (A2 \ {w11 , w1s1
}) ∪D2 and

B2 \ {w21} are cliques, there exist hamiltonian paths, say P1 = v21P1v12 , P2 = w12P2w31

and P3 = w22P3w23 , in them, respectively. Let C = P1P2P3 ∪ {v12w1s1
, w1s1

w12} be a cycle

and all vertices on the path v11w11w21 be stems of T with NC(v11) = V (P1), NC(w11) =

V (P2) ∪ {w1s1
} and NC(w21) = V (P3).

Subcase 2: Assume |B2| = 2 and |A2| 6= 1, since both (A1 \ {v11}) ∪ B1 ∪ D1 and

(A2 \ {w11 , w1s1
}) ∪ D2 are cliques, there exist hamiltonian paths, say P1 = v21P1v12 and

P2 = w12P2w31 in them, respectively. Let C = P1P2 ∪ {v12w1s1
, w1s1

w12 , w31w22 , w22v21} be

a cycle and all vertices on the path v11w11w21 be stems with NC(v11) = V (P1), NC(w11) =

(V (A2) \ {w11}) ∪ {w1s1
} and NC(w21) = V (D2) ∪ {w22}.

Subcase 3: Assume |B2| = 2 and |A2| = 1. Since G is 3-connected, |B1| ≥ 2 Since

(A1 \ {v11}) ∪ D1, B1 \ {v21} and (B2 \ {w21}) ∪ D2 are cliques, there exist hamiltonian

paths, say P1 = v12P1v31 , P2 = v22P2v23 and P3 = w22P3w31 , in them, respectively. Let

C = P1P2P3 ∪ {v12w11, w11w31} be a cycle and all vertices on the path v11v21w21 be stems

with NC(v11) = V (P1) ∪ {w11}, NC(v21) = V (P2) and NC(w21) = V (D2) ∪ {w22}.

Let H = T ∪C, then H is a spanning Halin subgraph of G (See Figure 9.5 as examples).

If neither A1 ∪ B1 nor A2 ∪ B2 is a clique, since ND2(B2 \ B
′
2) = ∅, by Claim 9.2.3, we

have ND2(A2) 6= ∅. Moreover, we have ND1(B1) 6= ∅ by Claim 9.2.4. Thus we only need to

consider A1 \ A
′
1 6= ∅.

Claim 9.2.7. If A1 \ A
′
1 = {v1t1}, we have following conclusions.

1) A′
1 ∪ B

′
1 ∪ND1(A

′
1 ∪ B

′
1) is a clique;
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(1) (2) (3)

v11

v11v11

v12
v12v12

w11

w11w11

w12w12

w21
w21w21

w23

w31

w31w31

w22
w22

w22

v21

v21v21
v22

v23

v31
v31v31

w3k3

w1s1w1s1

Figure 9.5. E(A1, B1) 6= ∅ and ND2(B2) 6= ∅.

2) ND2(B2) ⊆ ND2(w1i) for all w1i ∈ A2. In particular, ND2(B2) = ND2(w2j) = {w} for all

w2j ∈ B′
2;

3) ND2(A2) = {w}, which means D2 = {w};

4) If A2 ∪B2 is not a clique, then D1 = {v}.

Proof. 1) Since v1t1 ∈ A1 \ A
′
1, by Claim 9.2.4, NA1(v2j ) = A′

1 for all v2j ∈ B′
1. This

in turn gives A′
1 ∪ B

′
1 is a clique. By Claim 9.0.4 and Claim 9.2.5, we get A′

1 ∪ B
′
1 ∪ D1 is

also a clique.

2) Since ND2(B2 \ B
′
2) 6= ∅, if there exists w ∈ ND2(w2j ) for some w2j ∈ B′

2, then

ww1i ∈ E(G) for all w1i ∈ NA2(w2j ). If there exists w1k ∈ A2 \ NA2(w2j ), then to avoid

〈w1k , v1t1 , v11 ; v21 , w2j , w〉 be Z3, we have ww1i ∈ E(G). Therefore, ND2(B2) ⊆ N2(w1i) for

all w1i ∈ A2, which means ND2(w2i) = ND2(w2j) for all w2i , w2j ∈ B′
2. For any w2i ∈ B2,

|ND2(w2i)| = 1. Otherwise, let {w,w′} ⊆ ND2(w2i), then 〈w,w′, w2i; v21v11v1t1 〉 is a Z3.

Thus ND2(B2)| = |ND2(w2i)| = 1 for all w2i ∈ B2 since ND2(B2 \ B
′
2) 6= ∅. We may assume

ND2(B2) = {w}.

3) It is clearly true if A2 = A′
2 by Claim 9.0.4. If there exists w1s1

∈ A2 \ A
′
2 and

w′ ∈ D2 \ {w} such that w′w1s1
∈ E(G), then ww′ ∈ E(G) and 〈w′, w1s1

, w;w21, v21 , v〉 is a

Z3, where v ∈ ND1(v21) since ND1(B1) 6= ∅ by Claim 9.2.4. This implies D2 = {w} since

ND2(A2 ∪ B2) = {w} and G is 3-connected.

4) If |A2 \ A
′
2| = 1, similarly as 3), we can show that D1 = {v}. Otherwise A2 = A′

2. If

A2∪B2 is not a clique, we can assume w11w2s2
/∈ E(G), then |ND1(v1i)| ≤ 1 for all v1i ∈ A−1,
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otherwise, let v, v′ ∈ ND1(v1i), then 〈v, v′, v11 ;w11w21w2s2
〉 is a Z3. This in turn gives that

|ND1(A
′
1 ∪ B

′
1)| ≤ 1. Since ND2(A2) 6= ∅, we have |B1 \ B1| ≤ 1. Because G is 3-connected,

(A1 \ A
′
1) ∪ (B1 \B

′
1) is not a vertex cut, by Claim 9.2.5, we get D1 = {w}. �

Similarly as ND2(B2) 6= ∅, we can find a strong spanning Halin subgraph in G.

Case 2.2: Suppose ND2(B2) = ∅.

We will use following claim to describe the structure of G.

Claim 9.2.8. If ND2(B2) = ∅, then

1) |A2 \ A
′
2| ≥ 3;

2) |B1| = 1, ND1(B1) = ∅;

3) |B2| = 1;

4) |A′
1| ≥ 2 and |A′

2| ≥ 2;

5) For any v1j ∈ Ai \ A
′
i, we have |NDi

(v1j )| ≤ 1, where i ∈ [1, 2];

6) For any v′ ∈ Di and v1j ∈ Ai \ A
′
i, we have dist(v′, v1j ) ≤ 2, where i ∈ [1, 2];

7) For any connected component Dij ⊆ Di, we have |Dij | ≤ 2 , where i ∈ [1, 2] and j ∈

[1, k1] ∪ [1, k2];

8) For any v3i ∈ Di, we have |NAi
(v3i)| ≥ 2, where i ∈ [1, 2].

Proof. 1) Since ND2(B2) = ∅, by Claim 9.0.4, ND2(A
′
2) = ∅. Thus |A2 \ A

′
2| ≥ 3

because of G is 3-connected and D2 6= ∅. We can always assume w1s1
, w1s1−1 ∈ A2 \ A

′
2,

w11w21 ∈ E(G) and w1s1
w31 ∈ E(G).

2) If there exist v21 , v22 ∈ B1, then 〈v21 , v22 , w21;w11w1s1
w31〉 is a Z3. If there exists

v31 ∈ ND1(v21), then 〈w1s1
, w1s1−1, w11 ;w21v21v31〉 is a Z3.

3) Since ND1(B1) = ∅, similarly as 2), we can show that |B2| = 1.

4) Since G is 3-connected, degG(v21) ≥ 3 and degG(w21) ≥ 3. This in turn gives |A′
1| ≥ 2

and |A′
2| ≥ 2.

5) We only show this is true for i = 1. If there exist v1j ∈ A1 \A
′
1 and v, v′ ∈ ND1(v1j ),

then vv′ ∈ E(G) since 〈v1j ;w11, v, v
′〉 is not a claw. Which in turn gives 〈v, v′, v1j ; v11v21w21〉

is a Z3, showing a contradiction.
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6) If there exist v′ ∈ Di and v1j ∈ Ai \ A
′
i, such that dist(v′, v1j ) = 3. We may assume

v′v′′, v′′v, vvi ∈ E(G), then 〈w11 , w12, v1j ; vv
′′v′〉 is a Z3.

7) If there exist v, v′, v′′ ∈ Dij , we may assume vv′, v′v′′ ∈ E(G), then there does not

exist v1k ∈ Ai \ A
′
i such that v1kv

′ ∈ E(G). Otherwise, either 〈v′; v1k , v, v
′′〉 is a claw or

〈v′′, v, v′; v1kw1jw〉 is a Z3, where w1j ∈ A3−i and w ∈ ND3−i
(w1j ). Moreover, there does not

exist v1k ∈ Ai \ A
′
i such that v1kv ∈ E(G)(or v1kv

′′ ∈ E(G)). Otherwise 〈v′′, v′, v; v1kw1jw〉

or 〈w1j , w1i, v1k ; vv′v′′〉 is a Z3, showing a contradiction.

8) This is true if Dij = {v3i} since G is 3-connected. If Dij = {v3k , v3l}, since NAi
(v3k)∩

NAi
(v3l) = ∅ and G is 3-connected, we have |NAi

(v3k)| ≥ 2 and |NAi
(v3l)| ≥ 2. �

We may denote by Dij = {v3i} for i ∈ [1, l1], D1j = {v3j1 , v3j2} for j ∈ [l1 + 1, k1], D2i =

{w3i} for i ∈ [1, l2], D2j = {w3j1
, w3j2

} for j ∈ [l2+1, k2], NA1(v3i) = {v1i , v
2
i , v

3
i }, NA1(v3j1 ) =

{v1j1, v
2
j1
}, NA1(v3j2 ) = {v1j2, v

2
j2
}, NA2(w3i) = {w1

i , w
2
i , w

3
i }, NA2(w3j1

) = {w1
j1
, w2

j1
}, NA2(w3j2

) =

{w1
j2
, w2

j2
}, A′′

1 = (A1 \ (∪l1
i=1{v

1
i , v

2
i , v

3
i }) ∪ ∪k1

j=l1+1{v
1
j1
, v2j1, v

1
j2
, v2j2} = {v′11 , · · · v

′
1t1

} and A′′
2 =

(A2\(∪l1
i=1{w

1
i , w

2
i , w

3
i })∪(∪k1

j=l1+1{w
1
j1
, w2

j1
, w1

j2
, w2

j2
}) = {w′

11
, · · ·w′

1t1
}. In particular, v′11v21 , w

′
11

w21 ∈ E(G).

Since A′′
1, A′′

2 are cliques, there exists hamiltonian paths, say P1 = v′11P1v
′
1t1

and P2 =

w′
11
P2w

′
1t2

, in them, respectively. Let C = ∪l1
i=1{v

1
i v3i , v3iv

3
i , v

3
i v

1
i+1}∪(∪k1

j=l+1{v
1
j1
v3j1 , v3j2v

2
j2
}∪

∪l1
i=1{w

1
iw3i , w3iw

3
i , w

3
iw

1
i+1}∪ (∪k2

j=l+1{w
1
j1
w3j1

, w3j2
w2

j2
}∪P1P2∪{v′11v21 , v21w21 , w21w

′
11} be a

cycle with all vertices on the tree 〈v21, w
2
1; v

2
2, · · · v

2
l1+1, v

1
(l1+1)2

, · · · , v1t11 , v
2
t12
, w2

2, · · ·w
2
l1+1, w

1
(l1+1)2

,

· · · , w1
t21
, w2

t22
〉 be stems of T with NC(v2i ) = {v1i , v

3
i , v3i} for i ∈ [2, l1], NC(v2j1) = {v1j1 , v3j1},

NC(v1j2) = {v1j2, v3j2} for j ∈ [l1 + 1, k1], NC(w2
i ) = {w1

i , w
3
i , w3i} for i ∈ [2, l2], NC(w2

j1
) =

{w1
j1
, w3j1

}, NC(w1
j2

) = {w1
j2
, w3j2

} for j ∈ [l2 + 1, k2], NC(v21) = {v11, v
3
1, v31}∪A

′′
1 ∪{v21} and

NC(w2
1) = {w1

1, w
3
1, w31}∪A

′′
2 ∪{w21}. Let H = T ∪C, then H is a spanning Halin subgraph

of G (See Figure 9.6 as examples).

9.3 Proof of 3-connected {claw,B1,2}-free graphs admit generalized 2-joins

In this subsection, we always assume G is a 3-connected {claw,B1,2}-free graph admits a

generalized 2-join. Since G is connected and D2 6= ∅, we assume ND2(B2) 6= ∅ because we can
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Figure 9.6. E(A1, B1) 6= ∅ and ND2(B2) = ∅

similarly find a strong spanning Halin subgraph in G if ND2(A2) 6= ∅. Let w21w31 ∈ E(G),

then we have following claims.

Claim 9.3.1. If ND1(A1) 6= ∅, then both A1 ∪D1 and B1 ∪D1 are cliques.

Proof. We may assume there exists v31 ∈ D1 such that v31v11 ∈ E(G). For any

v1i ∈ A1 \ {v11}, since 〈v31 ; v11 , v1i , u1;w21w31〉 is not a B1,2, we have v31v1i ∈ E(G).

Thus ND1(A1) ∪ A1 is a clique. Moreover, for any v2j ∈ B1 and v3k ∈ ND1(A1), s-

ince 〈w31;w21, v2j , u1; v11v3k〉 is not a B1,2 and 〈v11 ; v3k , w11, v2j〉 is not a claw, we have

v3kv2j ∈ E(G). Therefore, ND1(A1) ⊆ ND1(v2j ) for any v2j ∈ B2. Similarly, we can show

that ND2(B2) ⊆ ND2(A2), which implies ND2(A2) 6= ∅ and ND1(B1) ⊆ ND1(A1).This in

turn gives ND1(B1) = ND1(A1) and ND2(B2) = ND2(A2). Furthermore, there does not exist

v3j ∈ D1 and v2i ∈ B1, such that dist(v3j , v2i) = 2. Otherwise, assume v3jv31 ∈ E(G), then

〈w31 ;w21, u1, v2i; v31v3j〉 is a B1,2. Since G is connected, we have D1 = ND1(B1), which in

turn gives us both A1 ∪D1 and B1 ∪D1 are cliques. �

Corollary 9.3.1. Both A2 ∪D2 and B2 ∪D2 are cliques.

Claim 9.3.2. If ND1(A1) = ∅, then

1) ND2(A2) = ∅ and NDi
(B′

i) = ∅, where i ∈ [1, 2];

2) For any component Dij of Di, we have Dij ∪NBi\B′

i
(Dij) is a clique, where i ∈ [1, 2];

3) |NBi
(Dij )| ≥ 3 for i ∈ [1, 2], and if |W0| < 3, then |A′

1 ∪ A
′
2| ≥ 3 − |W0|.
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Proof. 1) If ND1(A1) = ∅, then ND1(B1) 6= ∅ since D1 6= ∅. Similarly as Claim 9.3.1,

we know ND2(A2) = ∅. By Claim 9.0.4, we know NDi
(B′

i) = ∅ for i ∈ [1, 2].

2) We only prove for i = 1. This is clearly true if |D1j | = 1. If |D1j | ≥ 2, we may

assume there exist v32 , v31 ∈ D1j and v2i ∈ B1 \ B
′
1, such that v32v31 , v31v2i ∈ E(G) and

v32v2i /∈ E(G), then 〈w31;w21 , u1, v2i; v31v3j〉 is a B1,2, showing a contradiction. Therefore,

D1j ∪NB1(D1j ) is a clique for any component D1j of D1.

3) This is true since G is 3-connected. �.

Based on Claim 9.3.1 and 9.3.2, we can find a strong spanning Halin subgraph in G as

follows.

If ND1(A1) 6= ∅, since D1 ∪ (A1 \ {v11}), B1, W0 \ {u1}, A2 and D2 ∪ B2 \ {w21} are

cliques, there exist hamiltonian paths, say P1 = v1t1P1v31 , P2 = v21P2v2t2 , P3 = u2P3ut,

P4 = w11P4w1s1
and P5 = w31P5w2s2

, in them, respectively. Let C = P1P2P3P4P5 be a

cycle and all vertices on the path v11u1w21 be stems of T with NC(v11) = D1 ∪ {v12},

NC(u1) = (A1\{v11 , v12})∪B1∪(W0\{u1})∪A2∪(B2\{w21, w22}) and NC(w21) = {w22}∪D2.

IfND1(A1) = ∅, we denote byD1i = {v31 , v32 , · · · , v3ti}, v12i , v
2
2i
, v32i ∈ NB1\B′

1
(D1i), D2i =

{w31 , w32, · · · , w3ti
} and w1

2i
, w2

2i
, w3

2i
∈ NB2\B′

2
(D2i) for all D1i ∈ D1 and D2i ∈ D2. Let B′′

1 =

B1 \∪
k1
i=1{v

1
2i
, v22i , v

3
2i
} = {v′21 , · · · , v

′
2k2

} and B′′
2 = B2 \∪

k2
i=1{w

1
2i
, w2

2i
, w3

2i
} = {w′

21
, · · · , w′

2s2
}.

Since A1, A2, B
′′
1 , B′′

2 and Dij ∪ NBi\B′

i
(Dij) are cliques for all j ∈ [1, k1] ∪ [1, k2] and

i ∈ [1, 2], there exist hamiltonian paths, say P1 = v11P1v1t1 , P2 = w11P2w1s1
, P3 = v′21P3v

′
2k2

,

P4 = w′
21P4w

′
2s2

, P5i = v12iP5iv
3
2i

and P6i = w1
2i
P6iw

3
2i

, in them, respectively.

If |W0| ≥ 3, let P7 = u3P7ut be a hamiltonian path in W0 \ {u1, u2} and C =

P1P2P3P4P51 · · ·P5k1
P61 · · ·P6k2

∪{v11u2, u2v21 , w11ut, u3w21} be a cycle. If W0 = {u1, u2}, we

can assume w11w21 ∈ E(G) and let C = P1P2P3P4P51 · · ·P5k1
P61 · · ·P6k2

∪{v11u2, u2v21} be a

cycle. Set all vertices on the star 〈u1; v
2
21
, · · · v22k1

, w2
21
, · · ·w2

2k2
〉 be stems of T with NC(u1) =

A1 ∪A2 ∪ B
′′
1 ∪ B

′′
2 ∪ {u2}, NC(v22i) = V (P5i) and NC(w2

2i
) = V (P6i) for i ∈ [1, k1] ∪ [1, k2].

If W0 = {u1} and E(A1, B1) 6= ∅, E(A2, B2) 6= ∅, we can similarly find a strong spanning

Halin subgraph in G as |W0| = 2, If W0 = {u1} and E(A2, B2) = ∅(or E(A1, B1) = ∅),

we can assume v11v
′
21 , v12v

′
22 ∈ E(G). Let C = v12P1v1t1P2P3P4P51 · · ·P5k1

P61 · · ·P6k2
∪
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{w11u2, u2w21} be a cycle and all vertices on the star 〈v′21 ; v11, v
2
21
, · · · v22k1

, w2
21
, · · ·w2

2k2
〉, where

v′21 is the center, be stems of T with NC(v′21) = B′′
1 ∪ B′′

2 ∪ {u1}, NC(v11) = A1 ∪ A2,

NC(v22i) = V (P5i) and NC(w2
2i

) = V (P6i) for i ∈ [1, k1]∪ [1, k2]. Let H = T ∪C, it is easy to

check that H is a strong spanning Halin subgraph of G (See Figure 9.7 as examples).
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Figure 9.7. G admits a generalized 2-join

9.4 Proof of 3-connected {claw,B1,2}-free graphs admit 2-joins

In this section, we assume G is a 3-connected {claw,B1,2}-free graph and W0 = ∅ which

means G admits a 2-join. We will consider following two cases.

Case 1: E(A1, B1) = ∅ and E(A2, B2) = ∅.

Since G is 3-connected and Di 6= ∅ for i ∈ [1, 2], we can assume ND1(A1) 6= ∅, ND2(A2) 6=

∅ and ND2(B2) 6= ∅. Note that if ND2(A2) = D2, then ND2(A2) ∩ N2(B2) 6= ∅. We have

following claims.

Claim 9.4.1. Both ND1(A1) ∪ A1 and ND2(A2) ∪A2 are cliques.

Proof. We only prove that ND1(A1) ∪ A1 is a clique. If |A1| = 1, then ND1(A1) ∪ A1

is a clique since G is claw-free. If |A1| ≥ 2, we may assume there exists v31 ∈ D1, w
′ ∈

B2 ∪D2 such that v31v11 , w31w11 , w31w
′ ∈ E(G) and w11w

′ /∈ E(G). Since for any v1i ∈ A1,

〈v31 ; v11 , v1i, w11 ;w31w
′〉 is not a B1,2, we have v31v1i ∈ E(G), which implies NA1(v31) = A1.

Therefore, ND1(A1) ∪ A1 is a clique. �
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Corollary 9.4.1. If ND1(B1) 6= ∅, then both ND1(B1) ∪B1 and ND2(B2) ∪ B2 are cliques.

Claim 9.4.2. If there exists w ∈ Di \NDi
(Ai) such that dist(w,Ai) = 2, then NDi

(Ai)∪{w}

is a clique. In particular, if we denote Dj
i = {w|dist(w,Ai) = j}, then Dj

i ∪D
j+1
i is a clique

for all possible j, where i = 1, 2.

Proof. We only prove this is true for i = 2. This is clearly true if |ND2(A2)| = 1.

If |ND2(A2)| ≥ 2 and there exist w ∈ D2
2, w3i , w3j ∈ ND2(A2) such that w3iw ∈ E(G) and

w3jw /∈ E(G), then 〈w;w3i, w3j , w11 ; v11v31〉 is a B1,2, showing a contradiction. Therefore,

D1
2 ∪ D

2
2 is a clique. Similarly, we can show that Dj

2 ∪ D
j+1
2 is also a clique for all possible

j. �

We denote by Dj
1 = {v1j , v

2
j , · · · , v

tj
j } and Dj

2 = {w1
j , w

2
j , · · · , w

tj
j } for all possible j.

Claim 9.4.3. Let i ∈ [1, 2] and k be the smallest integer such that NDi
(Bi) ∩D

k
i 6= ∅, then

for i ∈ [1, 2]

1) Dk+1
i = ∅ and Di = ∪k

j=1D
j
i ;

2) Dk
i ∪NBi

(Dk
i ) is a clique;

3) If ND3−i
(B3−i) 6= ∅, then NBi

(Dk
i ) = Bi;

4) If ND3−i
(B3−i) = ∅, then |NBi

(Dk
i )| ≥ 3, |Ai| ≥ 3, |Dj

i | ≥ 3, |A3−i| ≥ 3 and |Dj
3−i| ≥ 3

for all j ∈ [1, si] ∪ [1, s3−i − 1], where si = max{j|dist(w,Ai) = j, w ∈ Di} and s3−i =

max{j|dist(w,A3−i) = j, w ∈ D3−i}.

Proof. We only prove this is true for i = 2 and denote by D0
2 = A2, D

−1
2 = A1 and

w1
kw21 ∈ E(G).

1) If Dk+1
i 6= ∅, since 〈w1

k;w21 , w
1
k−1, w

1
k+1〉 is not a claw, we have w1

k+1w21 ∈ E(G).

However, this will force 〈v21;w21 , w
1
k+1, w

1
k;w

1
k−1w

1
k−2〉 to be a B1,2. If there exists w ∈

Di \ (∪k
j=1D

j
i ) such that ww2j ∈ E(G), where w2j /∈ NB2(D

k
2), then 〈w;w2j , v21 , w21 ;w

1
kw

1
k−1〉

is a B1,2, showing a contradiction.

2) For any wi
k ∈ Dk

2\{w
1
k}, since 〈w1

k−2;w
1
k−1, w

i
k, w

1
k;w21v21〉 is not a B1,2, w21w

i
k ∈ E(G).

Therefore, Dk
2 ∪ {w21} is a clique. Similarly, we can show Dk

2 ∪NB2(D
k
2) is also a clique.
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3) IfND1(B1) 6= ∅, let v31v21 ∈ E(G). For any w2j ∈ B2\{w21}, since 〈v31 ; v21 , w2j , w21 ;w
1
k

w1
k−1〉 is not a B1,2, we have w1

kw2j ∈ E(G), which in turn gives us NBi
(Dk

i ) = Bi is a clique.

4) This is clearly true since G is 3-connected. �

Claim 9.4.4. There are at most two sets in S, S := {A1, A2, B1, B2}∪ (∪s1
i=1D

i
1)∪ (∪s2

j=1D
j
2),

with size 1. Moreover, if there indeed exist two sets with size 1, then they are adjacent to

each other.

Proof. This is clearly true since G is 3-connected. �

Now we want to find a strong spanning Halin subgraph in G as follows.

If ND1(B1) 6= ∅, we may assume ND1(B1) ∩ Dk1
1 6= ∅, ND2(B2) ∩ Dk2

2 6= ∅ and B1,

B2 are the only two possible sets with size 1. We denote by D0
1 = A1, D

0
2 = A2. S-

ince |Dj
i | ≥ 2 and Dj

i \ {w1
i } are cliques for i ∈ [1, 2] and j ∈ [0, k1] ∪ [0, k2]. There

exist hamiltonian paths, say Pij = w2
iPijw

ti
i , in them, respectively. Denote by P3 =

v21P3v22 and P4 = w21P4w22 are the two hamiltonian paths in B1 and B2, respective-

ly. Let C = P1k1
P1k1−1

· · ·P11P10P20 · · ·P2k2
P4P3 be a cycle and all vertices on the path

v1k1v
1
k1−1 · · · v

1
1v11w11 · · ·w

1
k2

be stems of T with NC(v1i ) = V (P1i) for i ∈ [0, k1−1], NC(w1
j ) =

V (P2j) for j ∈ [0, k2 − 1], NC(v1k1) = V (P1k1
) ∪ V (P3) and NC(w1

k2
) = V (P2k2

) ∪ V (P4).

If ND1(B1) = ∅, we denote by }NB2(D
k2
2 ) = {w21, · · · , w2l2

and B2 \ NB2(D
k2
2 ) =

{w2l2+1
, · · · , w2t2

}, D0
1 = A1 and D0

2 = A2. Since |Dj
i | ≥ 3 and Dj

i \ {v
1
i , v

2
i } are cliques for

i ∈ [1, 2] and j ∈ [0, s1] ∪ [0, k2], there exists hamiltonian paths, say Pij = v3i Pijv
ti
i , in them,

respectively. Moreover, there also exist a hamiltonian path, say P3 = w22P3w23 in B1∪ (B2 \

{w21}) since |NB2(D
k2
2 )| ≥ 3 andB1∪B2 is a clique. Let C = P1t1

P1t1−1 · · ·P11P10P20 · · ·P2k2
P3∪

({∪t1−1
i=0 {v2i v

2
i+1}})∪({∪k2

i=0{w
2
iw

2
i+1}})∪{v20w

2
0, w22w

2
k} be a cycle and all vertices on the path

v1s1 · · · v
1
1v

1
0w

1
0 · · ·w

1
k2
w21 be stems of T with NC(v1i ) = V (P1i) for i ∈ [0, s1 − 2], NC(v1s1−1) =

V (P1s1−1) ∪ V (P1s1
) NC(w1

j ) = V (P2j) for j ∈ [0, k2] and NC(w1
2) = B1 ∪ (B2 \ {w21}).

Let H = T ∪C, then H is a spanning Halin subgraph of G (See Figure 9.8 as examples).

Case 2: Assume E(A1, B1) 6= ∅ or E(A2, B2) 6= ∅.
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Figure 9.8. E(A1, B1) = ∅ and E(A2, B2) = ∅

Claim 9.4.5. There exists i ∈ [1, 2] such that E(Ai, Bi) 6= ∅ and NDi
(Ai) ∩NDi

(Bi) 6= ∅.

Proof. We may assume E(A2, B2) 6= ∅. If ND2(A2) ∩ ND2(B2) = ∅, we can assume

there exist w2i ∈ B2 \ B
′
2 and w31 ∈ D2 such that w2iw31 ∈ E(G) by Claim 9.0.4. For any

v1k ∈ A1 and v2j ∈ B1, since 〈w31 ;w2i, v2j , w21;w11v1k〉 is not a B1,2, we have v1kv2j ∈ E(G).

This implies A1 ∪B1 is a clique and ND1(A1) ∩ND1(B1) 6= ∅ by Claim 9.0.4 again. �

Claim 9.4.6. If there exists i ∈ [1, 2] such that E(Ai, Bi) 6= ∅ and NDi
(Ai) ∩ NDi

(Bi) 6= ∅,

then

1) Both A3−i ∪D3−i and B3−i ∪D3−i are cliques;

2) Both Ai ∪Di and Bi ∪Di are cliques.

Proof. We may assume w11w21 ∈ E(G) and w31 ∈ ND2(w11) ∩ND2(w21).

1) For any v1t ∈ A1, v2s ∈ B1 and v3j ∈ ND1(v1t), since 〈v2s ;w21, w31 , w11; v1tv3j〉 is not

a B1,2, v3jv2s ∈ E(G). Which implies ND1(A1) = ND1(B1) = ND1(v1t) = ND1(v2s) since v1t

and v2s are arbitrary. If there exists v′ ∈ D1 \ (ND1(A1) ∪ND1(B1)) and v ∈ ND1(A1) such

that v′v ∈ E(G), then either 〈v; v′, v1t , v2s〉 is a claw or 〈v′; v, v11 , v21 , w21w
′〉 is B1,2, showing

a contradiction. Thus A1 ∪D1 and B1 ∪D1 are cliques.

2) If E(A1, B1) 6= ∅, similarly as 1), we can show that both A2 ∪ D2 and B2 ∪ D2 are

cliques. Thus we assume E(A1, B1) = ∅

Firstly, we have ND2(A2 ∪ B2) = ND2(A
′
2 ∪ B′

2). Otherwise, we assume there exists

w31 ∈ ND2(A2 ∪ B2) \ ND2(A
′
2 ∪ B′

2) and w2s2
∈ B2 \ B

′
2 such that w31w2s2

∈ E(G). Then
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〈w31 ;w2s2
, w21 , v21 ; v31v11〉 is a B1,2. Secondly, for any w31 ∈ ND2(B

′
2 ∪ A′

2), we have both

{w31}∪ND2(A2) and {w31}∪ND2(B2) are cliques. Otherwise, let w31 ∈ ND2(w21)∩ND2(w11),

then for any w1i ∈ A2 \ {w11}, we have 〈w1i ;w11, w31 , w21; v21v31〉 is a B1,2. Similarly, we can

show that for any w2j ∈ B2 \ {w21}, 〈w2j ;w21, w31 , w11; v11v31〉 is a B1,2. Therefore both

A2 ∪ ND2(A2) and ND2(A2) ∪ B2 are cliques since w31 is arbitrary. Thirdly, D2 = ND2(A2).

Otherwise, if there exists w′ ∈ D2 \ND2(A2) such that w31w
′ ∈ E(G), where w31 ∈ ND2(A2),

then 〈w′;w31, w11 , w21; v21v31〉 is a B1,2. Thus, both A2 ∪D2 and B2 ∪D2 are cliques. �

Now we want to find a strong spanning Halin subgraph in G as follows.

If |B2| ≥ 2(or |B1| ≥ 2), since bothD1∪(A1\{v11}), D2∪(A2\{w11}) andB1∪(B2\{w21})

are cliques, there exist hamiltonian paths, say P1 = v31P1v12 , P2 = w31P2w12 and P3 =

w22P3v21 , in them, respectively. Let C = P1P2P3 be a cycle and all vertices on the path

v11w11w21 be stems of T with NC(v11) = V (P1), NC(w11) = V (P2) and NC(w21) = V (P3).

If B1 = {v21} and B2 = {w21}, since D1 ∪ (A1 \ {v11}) and D2 ∪ (A2 \ {w11}) are

cliques, there exist hamiltonian paths, say P1 = v31P1v12 and P2 = w31P2w12 , in them,

respectively. Let C = P1P2 ∪ {w31w21 , w21v21 , v21v31} be a cycle and {v11 , w11} be stems of

T with NC(v11) = V (P1) ∪ {v21} and NC(w11) = V (P2) ∪ {w21}.

Let H = T ∪ C, it is easy to check that H is a strong spanning Halin subgraph of G

(See Figure 9.9 as examples).
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Figure 9.9. E(A2, B2) 6= ∅
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Chapter 10

HEX JOIN

Recall that if we let (W1, W2) be a partition of V (G), such that for i ∈ [1, 2] there are

cliques Ai, Bi, Ci ⊆Wi with the following properties:

• W1, W2 are both nonempty;

• for i = 1, 2 the sets Ai , Bi , Ci are pairwise disjoint and have union Wi;

• if v1 ∈ W1 and v2 ∈ W2, then v1 is adjacent to v2 unless either v1 ∈ A1 and v2 ∈ A2, or

v1 ∈ B1 and v2 ∈ B2, or v1 ∈ C1 and v2 ∈ C2; and in these cases v1, v2 are nonadjacent.

In these circumstances we say that G is a hex-join of 〈W1〉 and 〈W2〉.

In this chapter, we will show the following proposition.

Proposition 18. If G is a 3-connected claw-free graph and admits a hex-join, then G con-

tains a strong spanning Halin subgraph.

10.1 Proof of 3-connected claw-free graphs admit hex-joins

For simplicity, we denote by D1 = A1, D2 = B2, D3 = C1, D4 = A2, D5 = B1, D6 = C2

and Di = {vi1 , vi2 , · · · , viti} for i ∈ [1, 6]. By the definition of hex join, we know Di ∪Di+1 is

a clique and E(Di, Di+3) = ∅, where Di+6 = Di for i ∈ [1, 6]. We want to consider following

two cases.

Case 1: Assume that Di 6= ∅ for all i ∈ [1, 6].

Case 1.1: There exist at least four consecutive sets in {D1, D2, · · · , D6} such that |Di| ≥ 2,

where i ∈ [1, 6].

We may assume |Di| ≥ 2 for i ∈ {2, 3, 4, 5}. Since D1, Di \{vi1}, i ∈ {2, 3, 4, 5}, and D6

are cliques, there exist hamiltonian paths, say P1 = v11P1v1t1 , Pi = vi2Piviti , i ∈ [2, 3, 4, 5],
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and P6 = v61P6v6t6 , in them, respectively. Let C = P1P2 · · ·P6 be a cycle and all vertices

on the path v21v31v41v51 be stems of T with NC(v21) = V (P1) ∪ V (P2), NC(v31) = V (P3),

NC(v41) = V (P4) and NC(v51) = V (P5) ∪ V (P6). Let H = T ∪ C, it is easy to check that H

is a strong spanning Halin subgraph of G (See Figure 10.1 (1) as an example.)

Case 1.2: There exists i ∈ [1, 6] such that |Di| = |Di+2| = 1 and the other four sets with at

least two vertices.

We may assume |D1| = |D3| = 1. Since D1 ∪ D3 is not a 2-cut and E(D2, D5) = ∅,

we can assume v21v41 ∈ E(G). Since Di \ {vi1}, i ∈ {2, 4, 5}, and D6 are cliques, there

exist hamiltonian paths, say Pi = vi2Pivitiand P6 = v61P6v6t6 , in them, respectively. Let

C = P2P4P5P6∪{v11v22 , v2t2v31 , v31v42 , v6t6v11} be a cycle and all vertices on the path v21v41v51

be stems with NC(v21) = V (P2)∪{v11 , v31}, NC(v41) = V (P4) and NC(v51) = V (P5)∪V (P6).

Let H = T ∪ C, it is easy to check that H is a strong spanning Halin subgraph of G (See

Figure 10.1 (2) as an example.)

Case 1.3: There exists i ∈ [1, 6] such that |Di| = |Di+3| = 1 and the other four sets with at

least two vertices.

We may assume |D1| = |D4| = 1. Since D1 ∪D4 is not a 2-cut, then E(D2 ∪D3, D5 ∪

D6) 6= ∅. By symmetric, we may assume v31v51 ∈ E(G). Since Di \ {vi1}, i ∈ {2, 3, 5}, and

D6 are cliques, there exist hamiltonian paths, say Pi = vi2Piviti and P6 = v61P6v6t6 , in them,

respectively. Let C = P2P3P5P6 ∪ {v11v22 , v3t3v41 , v41v52 , v6t6v11} be a cycle and all vertices

on the path v21v31v51 be stems of T with NC(v21) = V (P2)∪ {v11}, NC(v31) = V (P3)∪ {v41}

and NC(v51) = V (P5) ∪ V (P6). Let H = T ∪ C, it is easy to check that H is a strong

spanning Halin subgraph of G (See Figure 10.1 (3) as an example.)

Case 1.4: There exists i ∈ [1, 6] such that |Di| = |Di+1| = |Di+2| = 1 and the other three

sets with at least two vertices.

We may assume |D1| = |D2| = |D3| = 1. Since D1 ∪D3 is not a 2-cut and E(D2, D5) =

∅, we may assume v21v41 ∈ E(G). Since Di \ {vi1}, i ∈ {4, 5, 6}, are cliques, there

exist hamiltonian paths, say Pi = vi2Piviti in them, respectively. Let C = P4P5P6 ∪
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{v11v21 , v21v31 , v31v42 , v6t6v11} be a cycle and all vertices on the path v41v51v61 be stems of

T with NC(v41) = V (P4) ∪ {v21 , v31}, NC(v51) = V (P5) and NC(v61) = V (P6) ∪ {v11}. Let

H = T ∪C, it is easy to check that H is a strong spanning Halin subgraph of G (See Figure

10.1 (4) as an example.)

Case 1.5: There exists i ∈ [1, 6] such that |Di| = |Di+1| = |Di+3| = 1(or |Di| = |Di+1| =

|Di+4| = 1) and the other three sets with at least two vertices.

We may assume |D1| = |D2| = |D4| = 1. Since neither D1 ∪D4 nor D2 ∪D4 is a 2-cut

and E(D2, D5) = E(D3, D6) = ∅, we may assume v31v51 ∈ E(G) or {v21v61 , v11v31} ⊆ E(G).

If v31v51 ∈ E(G), we can find a strong spanning Halin subgraph in G similarly as Case

1.2. If {v21v61 , v11v31} ⊆ E(G). Since Di \ {vi1}, i ∈ {5, 6} and D3 are cliques, there exist

hamiltonian paths, say Pi = vi2Piviti and P3 = v31P3v3t3 , in them, respectively. Let C =

P5P6∪{v11v31 , v3t3v41 , v41v52 , v5t5v62 , v6t6v11} be a cycle and all vertices on the path v21v51v61

be stems of T with NC(v21) = V (P3)∪{v11}, NC(v51) = V (P5)∪{v41} and NC(v61) = V (P6).

Let H = T ∪ C, it is easy to check that H is a strong spanning Halin subgraph of G (See

Figure 10.1 (5) as an example.)

Case 1.6: There exists i ∈ [1, 6] such that |Di| = |Di+2| = |Di+4| = 1 and the other three

sets with at least two vertices.

We may assume |D1| = |D3| = |D5| = 1. Since neither D1∪D3 nor D3∪D5 nor D1∪D5

is a 2-cut and E(Di, Di+3) = ∅ for i ∈ {1, 2, 3}, we may assume v61v21 ∈ E(G) and v61v41 ∈

E(G). Since Di \ {vi1}, i ∈ {2, 4, 6}, are cliques, there exist hamiltonian paths, say Pi =

vi2Piviti in them, respectively. Let C = P2P4P6∪{v11v22 , v2t2v31 , v31v42 , v4t4v51 , v51v62 , v6t6v11}

be a cycle and all vertices on the path v21v41v61 be stems of T with NC(v21) = V (P2) ∪

{v11 , v31}, NC(v41) = V (P4)∪{v51} and NC(v61) = V (P6). Let H = T ∪C, it is easy to check

that H is a strong spanning Halin subgraph of G (See Figure 10.1 (6) as an example.)

Case 1.7: There exists i ∈ [1, 6] such that |Di| = |Di+1| = |Di+2| = |Di+3| = 1 and the other

two sets with at least two vertices.
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Figure 10.1. G admits hex join and there are less than three sets with size 1.

We may assume |D1| = |D2| = |D3| = |D4| = 1. Since D1 ∪ D4 is not a 2-cut and

E(D2, D5) = E(D3, D6) = ∅, we may assume v21v61 ∈ E(G). Moreover, since D2 ∪D4 is not

a 2-cut, we have v31v51 ∈ E(G) or v11v31 ∈ E(G).

If v31v51 ∈ E(G), since D5 \ {v51} and D6 \ {v61} are cliques, there exist hamilto-

nian paths, say P5 = v52P5v5t5 and P6 = v62P6v6t6 , in them, respectively. Let C =

P5P6 ∪ {v11v21 , v21v31 , v31v41 , v41v52 , v5t5v62 , v6t6v11} be a cycle and {v51 , v61} be stems of T

with NC(v51) = V (P5) ∪ {v31 , v41} and NC(v61) = V (P6) ∪ {v11 , v21}. Let H = T ∪ C, it is

easy to check that H is a strong spanning Halin subgraph of G (See Figure 10.2 (1) as an

example.)

If v11v31 ∈ E(G), since D5 \ {v51} and D6 \ {v62} are cliques, there exist hamiltonian

paths, say P5 = v52P5v5t5 and P6 = v61P6v6t6 , in them, respectively. Let C = P5P6 ∪

{v61v21 , v21v31 , v31v41 , v41v52 , v5t5v6t6} be a cycle and all vertices on the path v11v62v51 be

stems of T with NC(v11) = {v21 , v31}, NC(v62) = V (P6) and NC(v51) = V (P5) ∪ {v41}. Let

H = T ∪C, it is easy to check that H is a strong spanning Halin subgraph of G (See Figure

10.2 (2) as an example.)

Case 1.8: There exists i ∈ [1, 6] such that |Di| = |Di+1| = |Di+2| = |Di+4| = 1 and the other
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two sets with at least two vertices.

We may assume |D1| = |D2| = |D3| = |D5| = 1. Since D1 ∪ D3 is not a 2-cut and

E(D2, D5) = ∅, we may assume v21v41 ∈ E(G). Moreover, since {v21 , v51} is not a 2-cut, we

have v41v61 ∈ E(G) or v11v31 ∈ E(G).

If v41v61 ∈ E(G), since D4 \ {v41} and D6 \ {v61} are cliques, there exist hamilto-

nian paths, say P4 = v42P4v4t4 and P6 = v62P6v6t6 , in them, respectively. Let C =

P4P6 ∪ {v11v21 , v21v31 , v31v42 , v4t4v51 , v51v62 , v6t6v11} be a cycle and {v41 , v61} be stems of T

with NC(v41) = V (P4) ∪ {v21 , v31 , v51} and NC(v61) = V (P6) ∪ {v11}. Let H = T ∪ C, it is

easy to check that H is a strong spanning Halin subgraph of G (See Figure 10.2 (3) as an

example.)

If v11v31 ∈ E(G), since D1 ∪ D5 is not a 2-cut, we may assume v61v21 ∈ E(G). Since

D4 \ {v41} and D6 \ {v61} are cliques, there exist hamiltonian paths, say P4 = v42P4v4t4 and

P6 = v62P6v6t6 , in them, respectively. Let C = P4P6 ∪ {v6t6v11 , v11v31 , v31v42 , v4t4v51 , v51v62}

be a cycle and all vertices on the path v61v21v41 be stems of T with NC(v61) = V (P6)∪{v11},

NC(v21) = {v31} and NC(v41) = V (P4)∪ {v51}. Let H = T ∪C, it is easy to check that H is

a strong spanning Halin subgraph of G (See Figure 10.2 (4) as an example.)

Case 1.9: There exists i ∈ [1, 6] such that |Di| = |Di+1| = |Di+3| = |Di+4| = 1 and the other

two sets with at least two vertices.

We may assume |D1| = |D2| = |D4| = |D5| = 1. Since D2 ∪ D5 is not a 2-cut and

E(Di, Di+3) = ∅ for all i ∈ {1, 2, 3}, we may assume v11v31 ∈ E(G). Moreover, since

{v11 , v41} is not a 2-cut, we have v21v62 ∈ E(G) or v31v51 ∈ E(G).

If v21v61 ∈ E(G), since D3 \ {v31} and D6 \ {v61} are cliques, there exist hamiltonian

paths, say P3 = v32P3v3t3 and P6 = v62P6v6t6 , in them, respectively. Let C = P3P6 ∪

{v62v21 , v21v32 , v3t3v41 , v41v51 , v51v6t6} be a cycle and all vertices on the path v31v11v61 be

stems of T with NC(v31) = V (P3) ∪ {v41}, NC(v11) = {v21} and NC(v61) = V (P6) ∪ {v51}.

Let H = T ∪ C, it is easy to check that H is a strong spanning Halin subgraph of G (See

Figure 10.2 (5) as an example.)

If v31v51 ∈ E(G), since {v11 , v51} is not a 2-cut, we may assume v61v41 ∈ E(G). Similarly
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as v21v61 ∈ E(G), we can choose {v31 , v41 , v61} as stems of T and find a strong spanning

Halin subgraph in G.

Case 1.10: There exists i ∈ [1, 6] such that |Di| = |Di+1| = |Di+2| = |Di+3| = |Di+4| = 1 and

the other set with at least two vertices.

We may assume |D1| = |D2| = |D3| = |D4| = |D5| = 1. Since D1 ∪ D5 is not a 2-cut

and E(Di, Di+3) = ∅ for all i ∈ {1, 2, 3}, we may assume v61v21 ∈ E(G). Moreover, since

{v21 , v51} is not a 2-cut, we have v11v31 ∈ E(G). Furthermore, since {v31 , v51} is not 2-cut,we

have v41v61 ∈ E(G) or v41v21 ∈ E(G).

If v41v61 ∈ E(G), since D6 \ {v61} is a clique, there exist a hamiltonian path P6 =

v62P6v6t6 in it. Let C = P6 ∪ {v62v11 , v11v31 , v31v41 , v41v51 , v51v6t6} be a cycle and {v21 , v61}

be stems of T with NC(v21) = {v11 , v31} and NC(v61) = V (P6) ∪ {v41 , v51}. Let H = T ∪ C,

it is easy to check that H is a strong spanning Halin subgraph of G (See Figure 10.2 (6) as

an example.)

If v41v21 ∈ E(G), we only need to remove the edge v41v61 from E(T ) and add the edge

v21v41 to E(T ), then we can find a strong spanning Halin subgraph in G similarly.
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Figure 10.2. G admits hex join and three are four sets with size 1.

Case 2: There exist some i ∈ [1, 6] such that Di = ∅.
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Since neither W1 nor W2 is empty, there exists at least one set in Wi, i ∈ [1, 2], is

nonempty. Moreover, because E(Di, Di+3) = ∅ for i ∈ {1, 2, 3}, it is easy to check that G

contains a strong spanning Halin subgraph if at least three sets of {D1, D2, · · · , D6} are

empty. Thus we assume only one or two sets of {D1, D2, · · · , D6} are empty.

Case 2.1: There exists exactly one set in {D1, D2, · · · , D6} is empty. By symmetric, we may

assume D6 = ∅ and |D2| ≥ |D4|.

Note that if |D2| ≥ 2, then E(D2, D4) 6= ∅ since there is no twins in G. If |D2| = 1,

then we can assume v1t1v31 , v3t3v51 ∈ E(G).

Case 2.1.1: Assume that 〈D1∪D5〉 is 2-connected. We denote by v11v51 , v12v52 ∈ E(G). Since

(D1 \ {v11}) ∪ (D2 \ {v21}), D3 and (D5 \ {v51}) ∪ D4 are cliques, there exist hamiltonian

paths, P1 = v12P1v2t2 , P3 = v31P3v3t3 and P2 = v41P2v52 , in them, respectively. Let C =

P1P3P2 ∪ {v52v12} be a cycle and all vertices on the path v21v11v51 be stems of T with

NC(v21) = (V (P1) \ {v12})∪ V (P3), NC(v11) = {v12} and NC(v51) = V (P4). Let H = T ∪C,

it is easy to check that H is a strong spanning Halin subgraph of G (See Figure 10.3 (1) as

an example).

Case 2.1.2: Assume that 〈D1 ∪ D5〉 is 1-connected, we denote by v11v51 ∈ E(G). If

E(D2, D4) 6= ∅, we assume v21v41 ∈ E(D2, D4). Since D1 ∪ (D2 \ {v21}), D3 and D5 ∪

(D4 \ {v41}) are cliques, there exist hamiltonian paths, say P1 = v11P1v2t2 , P3 = v31P3v3t3

and P2 = v42P2v51 , in them, respectively. Let C = P1P3P2 be a cycle and {v21 , v41} be

stems of T with NC(v21) = V (P1) ∪ V (P3) and NC(v41) = V (P2), where v1t1v31 ∈ E(G) if

D2 = {v21} since G is 3-connected. Let H = T ∪ C, it is easy to check that H is a strong

spanning Halin subgraph of G (See Figure 10.3 (2) as an example).

If E(D2, D4) = ∅, since there is no twins in G, we get |D2| = |D4| = 1. Moreover,

because G is 3-connected, we can assume v12v31 , v32v52 ∈ E(G). Since D1, D3 \ {v32} and

D5 \ {v52} are cliques, there exist hamiltonian paths, say P1 = v11P1v12 , P3 = v31P3v3t3 and

P2 = v51P2v5t5 , in them, respectively. Let C = P1P3P2 ∪ ∪{v12v31 , v3t3v41 , v41v5t5 , v51v11}

be a cycle and all vertices on the path v21v32v52 be stems of T with NC(v21) = V (P1),
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NC(v32) = V (P3) and NC(v52) = V (P21) ∪ {v41}. Let H = T ∪C, it is easy to check that H

is a strong spanning Halin subgraph of G (See Figure 10.3 (3) as an example).

Case 2.1.3: Suppose that 〈D1 ∪ D5〉 is disconnected. We may assume E(D2, D4) 6= ∅,

otherwise G admits 1-join, we can find a strong spanning Halin subgraph in G as Chapter

7.

If D2∪D4 is 2-connected, we denote by v21v41 , v22v42 ∈ E(G). Since D1∪(D2\{v21 , v22}),

D3 and D5∪ (D4 \{v41 , v42}) are cliques, there exist hamiltonian paths, P1 = v11P1v2t2 , P3 =

v31P3v3t3 and P2 = v43P2v51 , in them, respectively. Let C = P1P3P2 ∪ {v51v42 , v42v22 , v22v11}

be a cycle and {v21 , v41} be stems of T with NC(v21) = V (P1)∪V (P3)∪{v22} and NC(v41) =

V (P2) ∪ {v42}, where v11v3t3 ∈ E(G) if |D2| = 2 since G is 3-connected. Let H = T ∪ C, it

is easy to check that H is a strong spanning Halin subgraph of G (See Figure 10.3 (4) as

an example).

If D2 ∪ D4 is 1-connected, then |D2| ≤ 2, |D4| ≤ 2 since there is no twins in G and

|D3| ≥ 2, E(D1, D3) 6= ∅, E(D3, D5) 6= ∅ since G is 3-connected. Thus, we may denote by

v21v41 , v11v31 , v32v51 ∈ E(G). Since D1, D3 and D5 are cliques, there exist hamiltonian paths,

P1 = v11P1v12 , P3 = v31P3v32 and P2 = v51P2v5t5 , in them, respectively. We may assume

v12v3t3 ∈ E(G) if |D2| = 1 since G is 3-connected. Let C = P1P3P2 ∪ {v5t5v42 , v42v22 , v22v12}

be a cycle and {v21 , v41} be stems of T with NC(v21) = V (P1)∪ (V (P2) \ {v21})∪ V (P3) and

NC(v21) = (V (P4) \ {v41}) ∪ V (P5). Let H = T ∪ C, it is easy to check that H is a strong

spanning Halin subgraph of G (See Figure 10.3 (5) as an example).

Case 2.2: There exist exactly two sets in {D1, D2, · · · , D6} are empty. We will find a strong

spanning Halin subgraph in G by following subcases.

Case 2.2.1: The two empty sets are consecutive.

We may assume D5 = D6 = ∅. Since E(D1, D4) = ∅ and G is 3-connected, we know

|D2 ∪ D3| ≥ 3. We may assume |D2| ≥ |D3|, then |D2| ≥ 2. Since D1 ∪ (D2 \ {v21 , v22})

and D4 ∪ (D3 \ {v31 , v32}) are cliques, there exist hamiltonian paths, say P1 = v11P1v2t2 and

P2 = v41P2v3t3 , in them, respectively. Let C = P1P2 ∪ {v11v22 , v22v32 , v32v41} be a cycle and
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Figure 10.3. G admits hex join and there exists exactly one set is empty.

{v21 , v31} be stems of T with NC(v21) = V (P1) ∪ {v22} and NC(v31) = V (P2) ∪ {v32}, where

v2t2v4t4 ∈ E(G) if |D3| = 2. Let H = T ∪ C, it is easy to check that H is a strong spanning

Halin subgraph of G (See Figure 10.4 (1) as an example).

Case 2.2.2: There exists i ∈ {1, 2, 3} such that Di = Di+3 = ∅.

We may assume D3 = D6 = ∅. Since E(D1, D4) = E(D2, D5) = ∅ and G is 3-connected,

we may assume v11v51 ∈ E(D1, D5) and {v21v41 , v22v42} ∈ E(D2, D4). Since D1∪ (D2 \{v21})

and D5 ∪ (D4 \ {v41}) are cliques, there exist hamiltonian paths, say P1 = v11P1v22 and

P2 = v42P2v51 , in them, respectively. Let C = P1P2 ∪ {v51v11} be a cycle and {v21 , v31} be

stems of T with NC(v21) = V (P1) and NC(v41) = V (P2). Let H = T ∪C, it is easy to check

that H is a strong spanning Halin subgraph of G (See Figure 10.4 (2) as an example).

Case 2.2.3: There exists i ∈ [1, 6] such that Di = Di+2 = ∅.

By symmetric, we may assume D4 = D6 = ∅ and |D1| ≥ |D3|. Since G contains no twins

and E(D2, D5) = ∅, we have D2 = {v21}, which implies |D2| ≥ 2 since G is 3-connected. If

|D5| ≤ 2, we can find a strong spanning Halin subgraph in G easily. Therefore, we assume

|D5| ≥ 3. We may also assume v51v11 , v52v12 , v53v31 ∈ E(G) and there exists v ∈ D1∪(D5\v53)

such that v32v ∈ E(G) since G is 3-connected, where v32 = v31 if |D3| = 1.
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If E(D1, D3) 6= ∅, we let v32v13 ∈ E(G) if |D1| ≥ 3 and v32v12 ∈ E(G) if |D1| = 2. Since

D1 \ {v12}, D3 and D5 \ {v52} are cliques, there exist hamiltonian paths, say P1 = v11P1v13 ,

P2 = v32P2v31 and P3 = v51P3v53 , in them, respectively. Let C = P1P2P3 be a cycle and

all vertices on the path v21v12v52 be stems of T with NC(v21) = (D1 \ {v11 , v12}) ∪ D3,

NC(v12) = {v11} and NC(v52) = D5 \ {v52}. Let H = T ∪ C, it is easy to check that H is a

strong spanning Halin subgraph of G (See Figure 10.4 (3) as an example).

If E(D1, D3) = ∅, then |D5| ≥ 4 since D1, D3 contains no twins. Moreover, if there

exist v5i ∈ D5, v1j ∈ D1 and v3k ∈ D3 such that v1jv5i, v3kv5i ∈ E(G) but v1jv3k /∈ E(G),

then ND5(v1j ) ∪ND5(v3k) = D5 since 〈v5i ; v1j , v3k , v5t〉 is not a claw for any v5t ∈ D5 \ {v51}.

Therefore, we assume v32v54 ∈ E(G). Since D1 \ {v12}, D3 \ {v31} and D5 \ {v52 , v53} are

cliques, there exist hamiltonian paths, say P1 = v11P1v1t1 , P2 = v3t3P3v32 and P3 = v51P3v54 ,

in them, respectively. Let C = P1P3P2 ∪ {v1t1v21 , v21v3t3 , v32v54 , v51v11} be a cycle and all

vertices on the path v12v52v31 be stems of T with NC(v21) = V (P1), NC(v52) = {v51},

NC(v53) = V (P3) \ {v51} and NC(v31) = V (P2) ∪ {v21}. Let H = T ∪ C, it is easy to check

that H is a strong spanning Halin subgraph of G (See Figure 10.4 (4) as an example).

(1)

v13

(2)

(3) (4)

v11
v11

v11v11

v12
v12

v1t1

v1t1

v1t1

v21
v21

v21

v21

v22

v22

v2t2

v31v31

v31

v32

v32

v32

v3t3

v3t3

v41

v41

v42v4t4

v51

v51v51

v52
v52 v53

v53

v54

v5t5

Figure 10.4. G admits hex join and there exist exactly two sets are empty.
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Chapter 11

NONDOMINATING W -JOIN

For a vertex a and a set B ⊆ V (G) \ {a} we say that a is complete to B or B-complete

if a is adjacent to every vertex in B; and that a is anticomplete to B or B-anticomplete

if a has no neighbor in B. For two disjoint subsets A and B of V (G) we say that A

is complete(respectively anticomplete) to B, if every vertex in A is complete(respectively

anticomplete) to B. Recall that if (A,B) are a homogeneous pair, such that A is neither

complete nor anticomplete to B, and at least one of A,B has at least two members. In

these circumstances, we call (A,B) a W -join. A homogeneous pair (A,B) is nondominating

if some vertex of G \ (A ∪B) has no neighbor in A ∪ B.

If G admits W -join, let (A,B) be the homogeneous pair always with |A| ≥ |B|, D1

be the set of vertices that A-complete and B-anticomplete, D2 be the set of vertices that

both A-complete and B-complete, D3 vertices that A-anticomplete and B-complete, D4

be the set of vertices that both A-anticomplete and B-anticomplete. We denote by A =

{w11 , w12, · · · , w1k1
}, B = {w21, w22 , · · · , w2k2

}, D1 = {v11 , v12 , · · · , v1t1}, D2 = {v21 , v22 , · · · ,

v2t2}, D3 = {v31 , v32 , · · · , v3t3}, D4 = {v41 , v42 , · · · , v4t4}, D′
1 = {v1i ∈ D1|ND4(v1i) 6= ∅} and

D′
3 = {v3i ∈ D3|ND4(v3i) 6= ∅}. Since A is neither complete nor anticomplete to B, we

always assume w12w21 ∈ E(G) and w11w21 /∈ E(G). Thus, we have the following claim.

Claim 11.0.1. 1) Both D1 and D3 are cliques;

2) E(D2, D4) = ∅;

3) If there exists v1i ∈ D1 and v3j ∈ D3 such that v1iv3j ∈ E(G), then ND4(v1i) = ND4(v3j ).

Proof. 1) Suppose to the contrary, there exist v11 , v12 ∈ E(G) such that v11v12 /∈ E(G),

then 〈w12; v11 , v12 , w21〉 is a claw, showing a contradiction. Thus D1 is a clique. Similarly, we

can show that D3 is also a clique.

2) Suppose there exist v4i ∈ D4 and v2j ∈ D2 such that v4iv2j ∈ E(G), then 〈v2j ; v4i , w11, w21〉
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is a claw, giving a contradiction.

3) Suppose this is not true. If there exists v4k ∈ ND4(v1i)\ND4(v3j ), then 〈v1i ; v4k , v3j , w11〉

is a claw. If there exists v4t ∈ ND4(v3j ) \ND4(v1i), then 〈v3i ; v4t , v1i , w21〉 is a claw, showing

a contradiction. �

In this chapter, we will show the following two propositions.

Proposition 19. If G is a 3-connected {claw, Z3}-free graph contains no twins and admits

a nondominating W -join, then G contains a strong spanning Halin subgraph.

Proposition 20. If G is a 3-connected {claw,B1,2}-free graph contains no twins and admits

a nondominating W -join, then G contains a strong spanning Halin subgraph.

11.1 Proof of 3-connected {claw, Z3}-free graphs admit nondominating W -joins

Before we prove Proposition 19, we want to show following claims first.

Claim 11.1.1. For all v3i ∈ D3, |ND4(v3i)| ≤ 1.

Proof. Suppose to the contrary, there exist v3i ∈ D3 and v41 , v42 ∈ D4 such that

v41v3i , v42v3i ∈ E(G), then 〈v41 , v42 , v3i ;w21w12w11〉 is a Z3, giving a contradiction. �

Now we want to find a strong spanning Halin subgraph in G by following three cases

depending on whether D1 or D3 is empty.

Case 1: Suppose D1 6= ∅ and D3 6= ∅.

Claim 11.1.2. If D1 6= ∅ and D3 6= ∅, then E(D3, D4) 6= ∅.

Proof. Suppose this is not true, E(D3, D4) = ∅. Since E(D2, D4) = ∅ and G is

3-connected, we have |D′
1| ≥ 3. We always assume that v11v41 ∈ E(G) and know that

E(D′
1, D3) = ∅ by Claim 11.1.1. For any w1i ∈ A, either NB(w1i) = ∅ or NB(w1i) = B.

Otherwise, assume there exist w2j , w2k ∈ B such that w1iw2j ∈ E(G) and w1iw2k /∈ E(G),

then 〈v31 , w2k , w2j ;w1iv11v41〉 is a Z3. This in turn gives us |A| = 2 and |B| ≤ 2 since A

contains no twins and |A| ≥ |B|.
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If D2 = ∅, then |D3| = 1, otherwise 〈v31 , v32 , w21;w12v11v41〉 is a Z3. This implies

|B| = 2 since degG(w21) ≥ 3. Moreover, D4 is an independent set. Otherwise, we may

assume v41v42 ∈ E(G), then either 〈w22 , w21, w12 ; v11v41v42〉 or 〈v41 , v42, v11 ;w12w21v31〉 is a

Z3. Since G is 3-connected, we may assume v11 , v12 , v13 ∈ ND4(v41), then v11 , v12 , v13 are

twins, showing a contradiction.

If D2 6= ∅, we claim that D1∪D2 is a clique. Since for any v2i ∈ D2 and v1j ∈ D1\{v11},

to avoid 〈v11 , v1j , w11 ; v2iw21v31〉 be a Z3, we have v2iv11 ∈ E(G) or v2iv1j ∈ E(G) or v31v2i ∈

E(G) or v31v1j ∈ E(G). In fact, we can assume v2iv31 ∈ E(G) or v2iv11 ∈ E(G), otherwise,

either 〈v11 , v13 , v1j ; v2iw21v31〉 is a Z3 or 〈v13 , v11 , v1j ; v31w21v2i〉 is a Z3 or 〈v1j ; v11 , v2i , v3i〉

is a claw, where v13 ∈ D′
1. If v2iv31 ∈ E(G), for any v1k ∈ D′

1 and v4k ∈ ND4(v1k), since

〈v31 , w21, v2i ;w11v1kv4k〉 is not a Z3 and 〈v1k ; v31 , v4k , w11〉 is not a claw, we have v1kv2i ∈ E(G).

This implies {v2i} ∪ D
′
1 is a clique. If there exists v1t ∈ D1 \ D

′
1, to avoid 〈v1k ; v1t , v2i , v4k〉

be a claw, we have v1tv2i ∈ E(G), which implies D1 ∪ D2 is a clique. If v11v2i ∈ E(G) but

v2iv31 /∈ E(G), for any v1t ∈ D1 \D
′
1, since 〈v11 ; v1t , v2i , v41〉 is not a claw, we have v1tv2i ∈

E(G). For any v1k ∈ D′
1, since 〈v11 ; v1k , v41 , v2i〉 is not a claw, we all get v1kv41 ∈ E(G).

Moreover, 〈v41 , v1k , v11 ; v2iw21v31〉 is not a Z3 implies v1kv2i ∈ E(G). Thus, D1 ∪ D2 is a

clique.

Since G is Z3-free, we have |ND4(v1i)| ≤ 1 for all v1i ∈ D1 and there does not exist

any triangle in D4. However, this will force there exists a pair of twins in D′
1, showing a

contradiction.

From above statements, we get E(D3, D4) 6= ∅. �

Therefore, from here and after, we always assume v31v41 ∈ E(G) for this case.

Claim 11.1.3. If E(D3, D4) 6= ∅, we have following conclusions.

1) For any v4i ∈ D4, if E(v4i , D3) 6= ∅, then {v4i} ∪D1 is a clique. Which implies D1 = D′
1

and D4 is connected;

2) If D2 6= ∅, then |D4| = 1 and if D2 = ∅, then |D4| ≤ 2.

Proof. 1) Suppose there exist v4i ∈ D4 and v3j ∈ D3 such that v4iv3j ∈ E(G). Since
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for any v1k ∈ D1, 〈v1k , w11, w12 ;w21v3jv4i〉 is not a Z3 and 〈v3j ; v4i, v1k , w21〉 is not a claw, we

have v4iv1k ∈ E(G). Since G is claw-free and 3-connected, we have D4 is connected.

2) Suppose this is not true. If D2 6= ∅, by 1), we may assume there exist v42 ∈

D4 \ {v41} such that v42v41 ∈ E(G). Since 〈w12 , v21 , w21; v31v41v42〉 is not a Z3, we have

v21v31 ∈ E(G), but this will force 〈w11 , w12, v21 ; v31v41v42〉 to be a Z3, giving a contradiction.

If D2 = ∅, since G is 3-connected, we may assume there exist v42 , v43 ∈ D4 \ {v41} such that

dist(v42 , D1) = 1, dist(v43 , D1) = 1 and v42v31 , v43v31 /∈ E(G). Then v41v42v43 is a triangle

since 〈v41 ; v42 , v43 , v31〉 is not a claw. However, this will force 〈v43 , v42, v41 ; v31w21w12〉 to be a

Z3, showing a contradiction. �

We begin to search a strong spanning Halin subgraph in G by following subcases

depending on whether D2 is empty.

Case 1.1: Assume that D2 = ∅.

Claim 11.1.4. If |D4| = 2, then

1) For any w1i ∈ A, either NB(w1i) = ∅ or NB(w1i) = B, which implies |A| = 2 and |B| ≤ 2;

2) E(D1, D3) 6= ∅;

3) |D′
3| ≥ 2.

Proof. Since G is 3-connected, by Claim 11.1.2 and Claim 11.1.3, we may assume

there exists v11 ∈ D1 such that v41v11 , v42v11 ∈ E(G).

1) If there exist w1i ∈ A and w2j , w2k ∈ B such that w1iw2j ∈ E(G) and w1iw2k /∈ E(G),

then 〈v41 , v42 , v11 ;w1iw2jw2k〉 is a Z3, showing a contradiction. Since neither A nor B contains

twins and |A| ≥ |B|, we have |A| = 2 and |B| ≤ 2.

2) Suppose to the contrary, E(D1, D3) = ∅. Since E(D4, D3) 6= ∅, then either there

exists a vertex in D4 has degree 2 or D1 contains a twins.

3) If D′
3 = {v31}, then {v31 , w12} is a 2-cut, giving a contrary. �

By Claim 11.1.4, we may assume v12v41 , v12v42 , v13v42 , v11v32 ∈ E(G). Since both (D1 \

{v11 , v12}) ∪ A and (D3 \ {v32}) ∪ B are cliques, there exist hamiltonian paths, say P1 =

v13P1w12, P2 = w21P2v31 , in them, respectively. Let C = P1P2 ∪ {v42v13 , v31v41} be a cycle
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and all vertices on the path v12v11v32 be stems of T with NC(v12) = (D1\{v11 , v12})∪{v41, v42},

NC(v11) = A and NC(v32) = B ∪ (D3 \ {v32}). Let H = T ∪ C, it is easy to check that H is

a strong spanning Halin subgraph of G (See Figure 11.1 (1) as an example).

(1) (2) (3)

v11v11
v11

v12

v12

v12

v1t1

v31

v31

v31

v32

v32

v41
v41v41v42

w11

w12

w12

w12

w21

w21

w21

w22

w2k2

v13

Figure 11.1. D1 6= ∅, D3 6= ∅ and D2 = ∅.

Claim 11.1.5. If |D4| = 1, then

1) E(D′
1, D

′
3) 6= ∅;

2) D3 ∪D4 is a clique;

3) If |D3| = 1, then |B| ≥ 2 and E(A \ {w12}, B \ {w21}) 6= ∅.

Proof. 1) Since G is 3-connected and E(D3, D4) 6= ∅, we assume v31v41 ∈ E(G),

then {v41} ∪ D1 is a clique. Since v11 and v12 are not twins, we have E(v11 , D
′
3) 6= ∅ or

E(v12 , D
′
3) 6= ∅ by Claim 11.0.1. Thus E(D′

1, D
′
3) 6= ∅.

We may always assume v11v31 ∈ E(G), where v11 ∈ D′
1 and v31 ∈ D′

3.

2) This is clearly true if |D3| = 1. If |D3| ≥ 2, assume there exists v32 ∈ D3 \ {v31}

and v41 ∈ D4 such that v32v41 /∈ E(G). Since 〈w21, v32 , v31 ; v41v12w11〉 is not a Z3, we have

v12v31 ∈ E(G), then v11 and v12 are twins, showing a contradiction.

3) If |B| = 1, since A does not contain any twins, we have |A| = 2. If |D3| = 1,

then degG(w21) = 2, showing a contradiction. Thus |B| ≥ 2. Since neither {v31 , w12} nor

{v31 , w21} is a 2-cut, we have E(A \ {w12}, B \ {w21}) 6= ∅. �

If |D3| = 1, let w11w22 ∈ E(G). Since both (D1 \ {v11}) ∪ (A \ {w12}) and B \ {w21}

are cliques, there exist hamiltonian paths, say P1 = v12P1w11 and P2 = w22P2w2k2
, in them,
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respectively. Let C = P1P2 ∪ {w2k2
v31 , v31v41 , v41v12} be a cycle and all vertices on the path

v11w12w21 be stems of T with NC(v11) = (D1 \ {v11}) ∪ {v41}, NC(w12) = A \ {w12} and

NC(w21) = (B \ {w21}) ∪ {v31}. Let H = T ∪ C, it is easy to check that H is a strong

spanning Halin subgraph of G (See Figure 11.1 (2) as an example).

If |D3| ≥ 2, we also let v11v31 ∈ E(G). Since both (D1 \ {v11})∪A and (D3 \ {v31})∪B

are cliques, there exist hamiltonian path, say P1 = v12P1w12 and P2 = w21P2v32 , in them,

respectively. Let C = P1P2 ∪ {v32v41 , v41v12} be a cycle and {v11 , v31} be stems of T with

NC(v11) = V (P1) ∪ {v41} and NC(v31) = V (P2). Let H = T ∪ C, it is easy to check that H

is a strong spanning Halin subgraph of G (See Figure 11.1 (3) as an example).

Case 1.2: Assume D2 6= ∅, then |D4| = 1.

Case 1.2.1: Assume that D3 \D
′
3 6= ∅(similarly as D1 \D

′
1 6= ∅).

Claim 11.1.6. If D3 \D
′
3 6= ∅, then 1) D′

1 ∪D
′
3 is a clique.

2) D′
3 ∪D2 or D′

1 ∪D2 is a clique.

Proof. We may assume v32 ∈ D3 \D
′
3.

1) For any v1i ∈ D′
1 and v3j ∈ D′

3, since 〈w21 , v32, v3j ; v41v1iw11〉 is not a Z3, we have

v1iv3j ∈ E(G), which implies D′
1 ∪D

′
3 is a clique.

2) We may assume v11 , v12 ∈ ND1(v41) by Claim 11.1.3. For any v2i ∈ D2 and v3j ∈

D3 \D
′
3, since 〈v12 , v11 , w12 ; v2iw21v3j〉 is not a Z3, we have v2iv3j ∈ E(G) or v2iv12 ∈ E(G)

or v2iv11 ∈ E(G).

If v2iv3j ∈ E(G), for any v3k ∈ D′
3, since 〈w11 , w12, v2i ; v3jv3kv41〉 is not a Z3, we have

v2iv3k ∈ E(G). For any v2t ∈ D2 \ {v2i}, since 〈v31 ; v2i, v2t , v41〉 is not a claw, we get

v2iv2t ∈ E(G). Thus D′
3 ∪D2 is a clique.

If v2iv3j /∈ E(G), we may assume v11v2i ∈ E(G) by symmetric. For any v1j ∈ D′
1 \{v11},

since 〈v41, v1j , v11 ; v2iw21v32〉 is not a Z3, v2iv1j ∈ E(G). For any v2t ∈ D2 \ {v2i}, since

〈v11 ; v41 , v2i, v2t〉 is not a claw, we have v2iv2t ∈ E(G). Thus D′
1 ∪D2 is a clique. �

We may always assume D′
1 ∪D2 is a clique.
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If |D′
3| ≥ 2, we denote by v11 , v12 , v31, v32 ∈ NG(v41). Since (D1 \ {v11}) ∪ A, D2 \ {v31}

and B ∪ D3 are cliques, there exists hamiltonian paths, say P1 = v12P1w12 , P2 = v21P2v2t2

and P3 = w21P3v32 , in them, respectively. Let C = P1P2P3 ∪ {v32v41 , v41v12} be a cycle and

{v11 , v31} be stems of T with NC(v11) = V (P1) ∪ V (P2) ∪ {v41} and NC(v31) = V (P3). Let

H = T ∪C, it is easy to check that H is a strong spanning Halin subgraph of G (See Figure

11.2 (1) as an example).

If |D′
3| = 1 and |B| ≥ 2, we denote by v11 , v12 , v31 ∈ NG(v41). Since D1 \ {v11}, (A \

{w12})∪D2 and (B\{w21})∪D3 are cliques, there exist hamiltonian paths, say P1 = v12P1v1t1 ,

P2 = w11P2v2t2 and P3 = w22P3v31 , in them, respectively. Let C = P1P2P3 ∪ {v31v41 , v41v12}

be a cycle and all vertices on the path v11w12w21 be stems of T with NC(v11) = V (P1)∪{v41},

NC(w12) = V (P2) and NC(w21) = V (P3). Let H = T ∪ C, it is easy to check that H is a

strong spanning Halin subgraph of G (See Figure 11.2(2) as an example).

If D′
3 = {v31} and |B| = 1. Since {w21 , v31} is not a 2-cut, we have E(D3\D

′
3, D2) 6= ∅ or

E(D3 \D
′
3, D1) 6= ∅. If E(D3 \D

′
3, D2) 6= ∅, we may assume v32v21 ∈ E(G). Since D1 \{v11},

(A \ {w12}) ∪ D2 and D3 are cliques, there exist hamiltonian paths, say P1 = v12P1w12 ,

P2 = v21P2v2t2 and P3 = v32P3v31 , in them, respectively. Let C = P1P2P3 ∪ {v31v41 , v41v12}

be a cycle and all vertices on the path v11w12w21 be stems of T with NC(v11) = V (P1)∪{v41},

NC(w12) = V (P2) and NC(w21) = V (P3). Let H = T∪C, it is easy to check that H is a strong

spanning Halin subgraph of G (See Figure 11.2(3) as an example). If E(D3 \D
′
3, D1) 6= ∅,

we may assume v32v1t1 ∈ E(G), where v1t1 ∈ D1 \ D
′
1. Since D1 \ {v11} , A ∪ D2 and

B∪(D3\{v31}) are cliques, there exists hamiltonian paths, say P1 = v12P1v1t1 , P2 = w11P2v2t2

and P3 = w21P3v32 , in them, respectively. Let C = P1P2P3 be a cycle and all vertices on

the path v11v41v31 be stems of T with NC(v11) = V (P1) ∪ V (P2), NC(v41) = {v12} and

NC(v31) = V (P3). Let H = T ∪ C, it is easy to check that H is a strong spanning Halin

subgraph of G (See Figure 11.2(4) as an example).

Case 1.2.2: Suppose D3 = D′
3 and D1 = D′

1.

If |D3 ∪ B| ≥ 3, since D1 \ {v11}, (A \ {w12}) ∪ D2 and (B \ {w21}) ∪ D3 are cliques,

there exist hamiltonian paths, say P1 = v12P1v1t1 , P2 = w11P2v21 and P3 = w22P3v31 ,



139

(1)
(2)

(3) (4)

v11

v11

v11
v11

v12v12

v12

v12

v1t1

v1t1

v1t1

v1t1

v21

v21

v21

v21

v2t2
v2t2

v2t2
v2t2

v31

v31

v31

v31

v32
v32

v32

v32

v41
v41

v41v41

w11
w11

w11

w11

w12w12

w12w12

w21w21

w21w21

w22

Figure 11.2. D3 \D
′
3 6= ∅ and D2 6= ∅.

in them, respectively. Let C = P1P2P3 ∪ {v41v12 , v41v31} be a cycle and all vertices on

the path v11w12w21 be stems of T with NC(v11) = V (P1) ∪ {v41}, NC(w12) = V (P2) and

NC(w21) = V (P3). Let H = T ∪ C, it is easy to check that H is a strong spanning Halin

subgraph of G (See Figure 11.3(1) as an example).

If D3 = {v31}, B = {w21} and E(D2, D3) 6= ∅, we may assume v21v31 ∈ E(G). Since D1\

{v11} and (A\{w12})∪D2\{v21} are cliques, there exist hamiltonian paths, say P1 = v12P1v1t1

and P2 = w11P2v22 , in them, respectively. Let C = P1P2 ∪ {v41v12 , v41v31 , v31w21 , w21v22} be

a cycle and all vertices on the path v11w12v21 be stems of T with NC(v11) = V (P1) ∪ {v41},

NC(w12) = V (P2) and NC(w21) = {v31 , w21}. Let H = T ∪C, it is easy to check that H is a

strong spanning Halin subgraph of G (See Figure 11.3(2) as an example).

If D3 = {v31}, B = {w21} and E(D1, D3) 6= ∅, we may assume v11v31 ∈ E(G). Since D1\

{v11} and (A\{w12})∪D2\{v21} are cliques, there exist hamiltonian paths, say P1 = v12P1v1t1

and P2 = w11P2v21 , in them, respectively. Set C = P1P2∪{v41v12 , v41v31 , v31w21 , w21v21} be a

cycle and {v11 , w12} be stems of T with NC(v11) = V (P1)∪ {v41 , v31} and NC(w12) = V (P2).

Let H = T ∪ C, it is easy to check that H is a strong spanning Halin subgraph of G (See
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Figure 11.3(3) as an example).

(1) (2) (3)

v11
v11v11 v12

v12v12

v1t1
v1t1

v1t1

v21
v21v21v22

v22
v2t2

v31
v31

v31

v32

v41
v41v41

w11
w11

w11
w12

w12
w12

w21w21
w21

w22

Figure 11.3. D1 = D′
1, D3 = D′

3 and D2 6= ∅.

Case 2: Suppose D1 = ∅ and D3 6= ∅.

Claim 11.1.7. If D1 = ∅ and D3 6= ∅, then 1) |D3| ≥ 3;

2) There does not exist v3i ∈ D3 and v4j ∈ D4 such that dist(v3i , v4j ) ≥ 2, which implies D4

is an independent set;

3) |D2| ≥ 2.

Proof. 1) This is clearly true since E(D2, D4) = ∅ and G is 3-connected.

2) Suppose to the contrary, there exist v31 ∈ D3 and v41 , v42 ∈ D4 such that v31v41 , v41v42 ∈

E(G) and v31v42 /∈ E(G), then either 〈w12, v21 , w21 ; v31v41v42〉 or 〈w11, w12 , v21; v31v41v42〉 is a

Z3, giving a contradiction. By Claim 11.1.1, D4 is an independent set.

3) Since D4 is an independent set and G is 3-connected, for any v4i ∈ D4, there exist at

least three vertices, say v13i , v
2
3i
, v33i in ND3(v4i). Since v13i , v

2
3i
, v33i are not twins, |D2| ≥ 2. �

Denote by v13i , v
2
3i
, v33i ∈ ND3(v4i) for every v4i ∈ D4 and D′′

3 = D3 \ ∪
t4
i=1{v

1
3i
, v23i , v

3
3i
} =

{v′31 , v
′
32
, · · · , v′3t′3

}. In particular, we may assume v21v
2
31
, v22v

1
31

∈ E(G). Since both A ∪

(D2 \ {v21}) and D′′
3 ∪ B are cliques, there exist hamiltonian paths, say P1 = w12P1v22

and P2 = w21P2v
′
31

, in them, respectively. Let C = P1P2 ∪ (∪t4−1
i=1 {v13iv4i , v4iv

3
3i
, v33iv

1
3i+1

}) ∪

{v13t4v4t4 , v4t4v
3
3t4
, v33t4v

′
31
, w21w12 , v22v

1
31
} be a cycle and all vertices on the path v21v

2
31
v232 · · · v

2
3t4

be stems of T with NC(v21) = V (P1), NC(v231) = V (P2) ∪ {v131 , v
3
31 , v41} and NC(v23i) =
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{v13i , v
3
3i
, v4i} for all i ∈ [2, t4]. Let H = T ∪C, it is easy to check that H is a strong spanning

Halin subgraph of G (See Figure 11.4(1) as an example).

Case 3: Assume D1 6= ∅ and D3 = ∅.

Claim 11.1.8. We have D4 is an independent set or D1 ∪D2 is a clique.

Proof. We may assume D4 is not an independent set, i.e. there exist v41 , v42 ∈ D4

such that v41v42 ∈ E(G). For any v2i ∈ D2 and v1j ∈ D1, if v1j ∈ ND1(v41) \ ND1(v42)(or

v1j ∈ ND1(v42) \ND1(v41)), since 〈w21 , v2i, w12 ; v1jv41v42〉 is not a Z3, we have v1jv2i ∈ E(G);

if v1j ∈ ND1(v42)∩ND1(v41), since 〈v41 , v42 , v1j ;w11v2iw21〉 is not a Z3, we have v1jv2i ∈ E(G).

Thus D′
1 ∪D2 is a clique. If D1 \D

′
1 6= ∅, we may assume there exists v1k ∈ D1 \ (ND1(v41)∪

ND1(v42)). Since 〈v1j ; v41, v2i , v1k〉 is not a claw, we have v1kv2i ∈ E(G). Therefore D1 ∪D2

is a clique. �

If D1 ∪D2 is a clique and D3 = ∅, then G admits a 1-join. Similarly as Chapter 8, we

can find a strong spanning Halin subgraph in G.

If D4 is an independent set, since G is 3-connected, we may denote by {v11i , v
2
1i
, v31i} ∈

ND1(v4i) for every v4i ∈ D4 and D′
1 = D1 \ ND1(D4) = {v′11 , v

′
12 , · · · , v

′
1t′

1

}. In particu-

lar, v111v21 ∈ E(G) and v211v22 ∈ E(G) since ND1(v41) does not contain twins. Since both

D′
1 ∪ A and (D2 \ {v21}) ∪ B are cliques, there exist hamiltonian paths, say P1 = v′11P1w12

and P2 = w21P2v22 , in them, respectively. Let C = P1P2 ∪ (∪t4−1
i=1 {v21iv4i , v4iv

3
1i
, v31iv

2
1i+1

}) ∪

{v21t4v4t4 , v4t4v
3
1t4
, v31t4v

′
11
, w12w21 , v22v

2
11
} be a cycle and all vertices on the path v21v

1
11
v112 · · · v

1
1t4

be stems of T with NC(v21) = V (P2), NC(v111) = V (P1) ∪ {v41 , v
2
11 , v

3
11} and NC(v11i) =

{v4i , v
2
1i
, v31i} for all i ∈ [2, t4]. Let H = T ∪C, it is easy to check that H is a strong spanning

Halin subgraph of G (See Figure 11.4(2) as an example).

11.2 Proof of 3-connected {claw,B1,2}-free graphs admit nondominating W -joins

Before we prove Proposition 20, we want to show the following claim first.
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(1)
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Figure 11.4. Either D1 or D3 is empty.

Claim 11.2.1. 1) For any component D′
4i

of D4, D
′
4i
∪ND1(D

′
4i

) is a clique;

2) For any vertex v4i ∈ D4, if ND3(v4i) 6= ∅, then {v4i} ∪ D3 is a clique. In particular, if

E(v4i , D1) 6= ∅, then {v4i} ∪D3 is a clique.

Proof. We may assume there exists v4k ∈ D4 and v1j ∈ D1 such that v4kv1j ∈ E(G),

then there does not exist v4i ∈ D4 such that dist(v4i , v1j ) ≥ 2. Otherwise, assume v4iv4k ∈

E(G), then 〈w21 ;w12, w11 , v1j ; v4kv4i〉 is a B1,2, showing a contradiction. Since G is claw-free

and D1 is a clique, we have D′
4i
∪ND1(D

′
4i

) is a clique.

2) If there exist v4i ∈ D4 and v3j ∈ D3 such that v4iv3j ∈ E(G), then for any v3k ∈

D3 \ {v3j}, we have v4iv3k ∈ E(G) since 〈v4i ; v3j , v3k , w21 ;w12w11〉 is not a B1,2, which implies

{v4i} ∪ D3 is a clique. In particular, if there exists v1j ∈ D1 such that v4iv1j ∈ E(G), then

for any v3k ∈ D3, we have v4iv3k ∈ E(G) since 〈v4i ; v1j , w11, w12 ;w21v3k〉 is not B1,2. Which

in turn gives {v4i} ∪D3 is a clique. �

Now we want to find a strong spanning Halin subgraph in G depends on whether D1

or D3 is empty.

Case 1: Suppose D1 6= ∅ and D3 = ∅.

Claim 11.2.2. If D1 6= ∅ and D3 = ∅, then D4 is an independent set.

Proof. Suppose this is not true. Let D′
41 be a maximal component of D4 with |D′

41 | ≥

2, then D′
41
∪ND1(D

′
41

) is a clique by Claim 11.2.1. This implies all vertices in D′
41

are twins.

�
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Similarly as G is Z3-free with D1 6= ∅ and D3 = ∅ in last subsection, we can find a

strong spanning Halin subgraph in G.

Case 2: Assume that D1 = ∅ and D3 6= ∅.

Since G does not contain any twins, by Claim 11.2.1, |D4| = 1 and D2 ∪ D3 is 2-

connected. We may assume v31v21 , v32v22 ∈ E(G). Similarly as G is Z3-free with D1 = ∅ and

D3 6= ∅ in last subsection, we can find a strong spanning Halin subgraph in G.

Case 3: Assume that D1 6= ∅ and D3 6= ∅.

Case 3.1: Assume that E(D1, D4) = ∅. Similarly as D1 = ∅, we have D4 = {v41}, |D2| ≥ 2

and D2 ∪D3 is 2-connected. Moreover, we have the following claim.

Claim 11.2.3. If E(D1, D4) = ∅, then

1) E(D1, D3) = ∅;

2) D1 ∪D2 is a clique;

3) |D1| = 1.

Proof. By Claim 11.2.1, we know {v41} ∪D3 is a clique.

1) If there exist v1i ∈ D1 and v3j ∈ D3 such that v1iv3j ∈ E(G), then 〈v3j ; v41 , v1i , w21〉

is a claw, giving a contradiction.

2) Suppose to the contrary, there exist v1i ∈ D1 and v2j ∈ D2 such that v1iv2j /∈

E(G). Since 〈v1i;w12 , v2j , w21; v3kv41〉 is not a B1,2 for any v3k ∈ D3, we have v2jv3k ∈

E(G). However, this will force 〈v41 ; v3k , w21, v2j ;w11v1i〉 to be a B1,2, showing a contradiction.

Therefore, D1 ∪D2 is a clique.

3) Since D1 does not contain any twins, we have |D1| = 1. �

Since D2 ∪D3 is 2-connected, we may assume v21v31 , v22v32 ∈ E(G). Let P1 = v22P1w12

and P2 = w21P2v33 be hamiltonian paths in D1 ∪ A ∪ (D2 \ {v21}) and B ∪ (D3 \ {v31}),

respectively. Set C = P1P2 ∪ {v33v41 , v41v32 , v32v22} be a cycle and {v21 , v31} be stems of T

with NC(v21) = V (P1) and NC(v31) = V (P2) ∪ {v41}. Then H = T ∪ C and H is a strong

spanning Halin subgraph of G (See Figure 11.5 (1) as an example).
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Case 3.2: Suppose that E(D1, D4) 6= ∅. We may assume v11v41 ∈ E(G).

Claim 11.2.4. If E(D1, D4) 6= ∅, then D4 = {v41}.

Proof. By Claim 11.2.1, {v41} ∪ D3 is a clique. Since G is 3-connected, if |D4| ≥ 2,

we may assume there exists v42 ∈ D4 \ {v41} such that ND1∪D3(v42) 6= ∅, then {v42}∪D3 is a

clique. Since 〈v31 ; v41 , v42 , w21〉 is not a claw, we have v41v42 ∈ E(G). Moreover, since neither

〈w21 ; v31, v42 , w21 ; v11w11〉 is a B1,2 nor 〈v21 ; v42 , v11 , w21〉 is a claw, we have v11v42 ∈ E(G),

which implies v41 and v42 are twins, showing a contradiction. �

Claim 11.2.5. If {v41} ∪ D1 is not a clique, then for any w1i ∈ A, either NB(w1i) = ∅ or

NB(w1i) = B, which implies |A| = 2 and |B| ≤ 2.

Proof. Suppose there exist v11 , v1t1 ∈ D1 such that v11v41 ∈ E(G) and v1t1v41 /∈ E(G).

For any w1i ∈ A, if there exists w2j , w2k ∈ B such that w1iw2j ∈ E(G) and w1iw2k /∈ E(G),

then 〈v41 ; v11 , v1t1 , w1i;w2jw2k〉 is a B1,2. Thus either NB(w1i) = ∅ or NB(w1i) = B. Which

implies |A| = 2 and |B| ≤ 2 since neither A nor B contains twins. �

If D2 = ∅, since degG(v41) ≥ 3 and G does not contain any twins, E(D′
1, D

′
3) 6= ∅.

Moreover, if |D′
1| = 1, since neither {v11 , w12} nor {v11 , w21} is a 2-cut, we have E(A \

{w12}, B \ {w21}) 6= ∅; if |D′
3| = 1, since neither {v31 , w12} nor {v11 , w21} is a 2-cut, we also

have E(A \ {w12}, B \ {w21}) 6= ∅. Thus, similarly as G is Z3-free with D2 = ∅ and |D4| = 1,

we can find a strong spanning Halin subgraph in G.

If D2 6= ∅ and ND1(v41) = D1, i.e D′
1 = D1 and D′

3 = D3, similarly as G is Z3 free, we

can find a strong spanning Halin subgraph in G.

If D2 6= ∅ and ND1(v41) 6= D1, by Claim 11.2.5, we have |B| ≤ 2. If |B| = 2, we may

assume |D′
1| ≥ 2 since deg(v41) ≥ 3. Since (D1 \ {v11}) ∪ (A \ {w12}), D2 ∪ (B \ {w21})

and D3 are cliques, there exist hamiltonian paths, say P1 = v12P1w11 , P2 = v21P2w22 and

P3 = v31P3v3t3 , in them, respectively. Let C = P1P2P3 ∪ {v12v41 , v41v31} be a cycle and

all vertices on the path v11w12w21 be stems of T with NC(v11) = (D1 \ {v11}) ∪ {v41},

NC(w12) = A \ {w12} and NC(w21) = (B \ {w21}) ∪D2 ∪D3. Let H = T ∪ C, it is easy to

check that H is a strong spanning Halin subgraph of G (See Figure 11.5 (2) as an example).
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If |B| = 1, since {v41 , w12} is not a 2-cut, we can assume v21v31 ∈ E(G) or v11v31 ∈ E(G).

If v21v31 ∈ E(G), similarly as |B| = 2, we can find a strong spanning Halin subgraph in

G. If v11v31 ∈ E(G) and D3 = {v31}, since (D1 \ {v11}) ∪ (A \ {w12}) and D2 are cliques,

there exist hamiltonian paths, say P1 = v12P1w11 and P2 = v21P2v2t2 , in them, respectively.

Let C = P1P2 ∪ {v41v12 , v41v31 , v31w21 , w21v21} be a cycle and {v11 , w12} be stems of T with

NC(v11) = (D1 \{v11})∪{v41 , v31} and NC(w12) = (A\{w12})∪D2∪{w21}. Let H = T ∪C,

it is easy to check that H is a strong spanning Halin subgraph of G (See Figure 11.5(3)

as an example). If v11v31 ∈ E(G) and |D3| ≥ 2, since D1 \ {v11}, (A \ {w12}) ∪ D2 and

D3 \ {v31} are cliques, there exist hamiltonian paths, say P1 = v12P1v1t1 , P2 = w11P2v21 and

P3 = v32P3v3t3 , in them, respectively. Let C = P1P2P3 ∪ {v21w21, w21v3t3 , v32v41 , v41v12} be a

cycle and all vertices on the path v31v11w12 be stems of T with NC(v31) = (D3\{v31})∪{w21},

NC(v11) = (D1 \{v11})∪{v41} and NC(w12) = (A\{w12})∪D2. Let H = T ∪C, it is easy to

check that H is a strong spanning Halin subgraph of G (See Figure 11.5 (4) as an example).
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v22

v2t2v2t2
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v41

v41
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Figure 11.5. G admits a nondominating W-join.
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Chapter 12

TWINS

Recall that we call u, v are twins if NG\{u,v}(u) = NG\{u,v}(v). Let A,B be disjoint

subsets of V (G). By Section 4.2, we can always assume that G contains twins only in its

3-cut. We will still follow definitions and notations mentioned in Section 4.1 that G is a

graph with n-vertex and S is a minimum vertex cut of G. Let G1 and G2 are the exact

two components of G \ S, and V1 = V (G1), V2 = V (G2). Subject to the minimality of

|S|, we always assume that |V1| is minimum. In particular, we denote by S = {x, y, z} is a

3-cut of G with x and y are twins. By the definition of twins, we have N1(x) = N1(y) and

N2(x) = N2(y). In particular, |N1(x)| ≥ min{2, |V1|} and |N2(x)| ≥ min{2, |V2|} by Lemma

4.1.2. Let N i
1(x) = {vij |dist(vij , x) = i} = {vi1, · · · , visi}, N i

2(x) = {wij |dist(wij , x) =

i} = {wi1, · · · , wisi
}, k1 = max{dist(v, x)|v ∈ V1}, k2 = max{dist(w, x)|w ∈ V2} and

vi1v(i+1)1
, wj1w(j+1)1

∈ E(G) for all possible i and j.

In this chapter, we will prove following two propositions.

Proposition 21. If G is a 3-connected {claw, Z3}-free graph admits a pair of twins in its

3-cut. Then G contains a spanning Halin subgraph.

Proposition 22. If G is a 3-connected {claw,B1,2, N}-free graph admits a pair of twins in

its 3-cut. Then G contains a spanning Halin subgraph.

12.1 Proof of 3-connected {claw, Z3}-free graphs admit twins

In Section 4.3, we have been proved that if G is a 3-connected {claw, Z3}-free graph

with |V1| ≥ 2 and at least one of V1 or V2 is not a clique, then G contains a spanning Halin

subgraph. Thus, in the following we always assume |V1| ≥ 2 and both V1 and V2 are cliques

or |V1| = 1.
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If |V1| ≥ 2 and both V1 and V2 are cliques, by Claim 4.1.2, we denote by v1, v3 ∈ N1(y),

w1, w3 ∈ N2(y), v2 ∈ N1(z) and w2 ∈ N2(z)(Note that we may have v2 = v3 or w2 = w3.)

If yz ∈ E(G) and |V2| ≥ 3, since both V1 \ {v1} and V2 \ {w1} are cliques, there exist

hamiltonian paths, say P1 = v2P1v3 and P2 = w2P2w3, in them, respectively. Let C =

P1P2 ∪ {v3x, xw3, w2z, zv2} be a cycle and all vertices on the path v1yw1 be stems of T with

NC(v1) = V (P1) ∪ {x}, NC(y) = {z} and NC(w1) = V (P2).

If yz ∈ E(G) and |V2| = 2. Let C = xv1v2zw2w1x be a cycle and {y} be the stem of T

with NC(y) = {x, v1, v2, z, w2, w1}

If yz /∈ E(G) and |V2| ≥ 3, we assume w4 ∈ N2(z)(Note that we may have w1 = w4). If

|V1| ≥ 3, since both V1 \{v1} and V2\{w1, w4} are cliques, there exist hamiltonian paths, say

P1 = v2P1v3 and P2 = w2P2w3, in them, respectively. Let C = P1P2 ∪ {v3x, xw3, w2z, zv2}

be a cycle and all vertices on the path v1yw1w4 be stems of T with NC(v1) = V (P1),

NC(y) = {x}, NC(w1) = {w3} and NC(w4) = (V (P2) \ {w3}) ∪ {z}. If |V1| = 2, Let

C = P2 ∪ {v1x, xw3, w2z, zv2} be a cycle and all vertices on the path yw1w4 be stems of T

with NC(y) = {v1, v2, x}, NC(w1) = {w3} and NC(w4) = (V (P2) \ {w3}) ∪ {z}.

If yz /∈ E(G) and |V2| = 2, then |V1| = 2. Since degG(z) ≥ 3, we may assume V2 =

{w1, w2} ⊆ N2(z) and V1 ⊆ N1(z). Let C = v1v2xw1zv1 be a cycle and all vertices {y, w2}

be stems of T with NC(y) = {v1, v2, x}, and NC(w2) = {w2, z}.

Let H = T ∪ C, it is easy to check that H is a spanning Halin subgraph of G.

Therefore, in this section, from here and after, we always assume V1 = {v}.

Claim 12.1.1. 1) we have N4
2 (x) = ∅, which implies V2 ⊆ N2(x) ∪N2

2 (x) ∪N3
2 (x);

2) If N3
2 (x) 6= ∅, then N3

2 (x) is an independent set.

Proof. 1) Suppose there exists w41 ∈ N4
2 (x), then 〈x, y, w11;w21w31w41〉 is a Z3, giving

a contradiction.

2) If there exist w31 , w32 ∈ N3
2 (x) such that w31w32 ∈ E(G), then either 〈x, y, w11;w21w31w32〉

or 〈w31 , w32, w21 ;w11xv〉 is a Z3, showing a contradiction. �

Let C1, C2, · · · , Ck be all components of N2
2 (x). Then following claims are true.
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Claim 12.1.2. Let w2sw2tw2k be a path, may be not induced, in 〈Ci〉. For any w1i ∈ N2(Ci)∩

N2(x), if N2(w1i) ∩ {w2s, w2t , w2k} 6= ∅, then |N2(w1i) ∩ {w2s , w2t , w2k}| ≥ 2.

Proof. If w1iw2s ∈ E(G)(or w1iw2k ∈ E(G)), since neither 〈x, y, w1i;w2sw2tw2k〉 nor

〈w2t , w2k , w2s;w1ixv〉 is a Z3, we have w1iw2k ∈ E(G) or w1iw2t ∈ E(G).

If w1iw2t ∈ E(G), since neither 〈w2t ;w1i, w2k , w2s〉 is a claw nor 〈w2s, w2k , w2t ;w1ixv〉 is

a Z3, we have w1iw2k ∈ E(G) or w1iw2s ∈ E(G).

Thus |N2(w1i) ∩ {w2s, w2t , w2k}| ≥ 2. �

Claim 12.1.3. If Ci ∪ (N2(Ci) ∩ N2(x)) is not a clique, then for any w1i ∈ N2(Ci) ∩N2(x),

|N2(w1i) ∩ Ci| ≥ |Ci| − 1, which implies either Ci is a clique or 〈Ci〉 is losing exact one edge.

Proof. This is clearly true if |Ci| ≤ 2. If |Ci| ≥ 3, for any w1i ∈ N2(Ci), by Claim

12.1.2, we know |N2(w1i)∩Ci| ≥ 2. We may let u1, u2 ∈ N2(w1i)∩Ci, by Claim 12.1.2 again,

we know Ci \ N2(w1i) is an independent set. If there exists u′1, u
′
2 ∈ Ci \ N2(w1i), we can

assume there also exist w1j , w1k ∈ N2(Ci) such that w1ju
′
1, w1ku

′
2, u1u

′
1, u2u

′
2 ∈ E(G). By

Claim 12.1.2 one more time, since u′2u2u1 is a path, we have w1ku2 ∈ E(G). Moreover, since

u2u1u
′
1 is a path, we have w1ku1 ∈ E(G) or w1ku

′
1 ∈ E(G), which implies u′1u1u

′
2 or u′1u2u

′
2

is a path. But this implies , |N2(w1i) ∩ {u1, u
′
1, u

′
2}| = 1 and |N2(w1i) ∩ {u2, u

′
1, u

′
2}| = 1,

contradicts to Claim 12.1.2. Thus |N2(w1i)∩Ci| ≥ |Ci| − 1 for all w1i ∈ N2(Ci)∩N2(x). This

in turn gives either Ci is a clique or 〈Ci〉 is losing exactly one edge since G is claw-free. �

Claim 12.1.4. If there exist w2s , w2t ∈ Ci for some i such that N2(w2s)∩N2(w2t)∩N2(x) 6= ∅,

then for any j 6= i, Cj ∪ (N2(Cj) ∩N2(x)) are cliques. In particular, if Ci ∪ (N2(Ci) ∩N2(x))

is not a clique, then |Cj | = 1.

Proof. We may assume there exist w1i ∈ N2(w2s) ∩ N2(w2t) ∩ N2(x), w2j ∈ Cj and

w1j ∈ N2(Cj) such that w1jw2j ∈ E(G). If there exists w2l ∈ Cj such that w2lw2j ∈ E(G)

and w1jw2l /∈ E(G), then 〈w2s, w2t , w1i;w1jw2jw2l〉 is a Z3, showing a contradiction. Thus

Cj ∪ (N2(Cj) ∩N2(x)) is a clique for any j 6= i. In particular, if Ci ∪ (N2(Ci) ∩N2(x)) is not

a clique, we have |Cj | = 1. �
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Claim 12.1.5. For any w ∈ N3
2 (x), if N2(w) ∩ Ci 6= ∅, then

1) N2(w) ⊆ Ci;

2) |Ci| ≥ 2;

3) N2(w) ∪ (N2(Ci) ∩N2(x)) is a clique;

4) Ci ∪ (N2(Ci) ∩N2(x)) is a clique;

5) |Cj| = 1 for all j 6= i, which implies N2(N
3
2 (x)) ⊆ Ci.

Proof. We may assume there exist w2i ∈ Ci and w1i ∈ N2(x) such that w1iw2i, w2iw ∈

E(G).

1) If there exists w2j ∈ Cj such that w2jw ∈ E(G) for some j 6= i, then 〈x, y, w1i;w2iww2j〉

is a Z3, showing a contradiction. Thus N2(w) ⊆ Ci.

2) Since G is 3-connected, N3
2 (x) is an independent set and wz may be in E(G), |Ci| ≥ 2.

3) Suppose this is not true, there exist w2i ∈ N2(w) ∩ Ci, w1j ∈ N2(Ci) ∩ N2(x) and

w2j ∈ Ci such that w1jw2i /∈ E(G) and w1jw2j ∈ E(G). We may also assume there exists

w2jw ∈ E(G), since 〈x, y, w1i;w2jww2i〉 is not a Z3, we have w2iw2j ∈ E(G), which force

〈w2i, w, w2j ;w1jyv〉 to be a Z3. If w2jw /∈ E(G), let Q = w2jw2s · · ·w2iw be the shortest path

from w2j to w in Ci∪{w}, then 〈x, y, w1j ;w2jw2sw2k〉 is a Z3, where w2j , w2s, w2k are the first

three vertices of Q. Thus N2(w) ∪ (N2(Ci) ∩N2(x)) is a clique.

4) If there exist w2k ∈ Ci \N2(w) and w1s ∈ N2(Ci) ∩ N2(x) such that w2kw1s /∈ E(G).

Since 〈Ci〉 is connected, we may assume there exists w2i ∈ N2(w) ∩ Ci such that w2kw2i ∈

E(G), then 〈w2i;w2k , w1s, w〉 is a claw.

5) Since |Ci| ≥ 2 and Ci ∪ (N2(Ci) ∩ N2(x)) is a clique, by Claim 12.1.4, we know

Cj ∪ (N2(Cj) ∩ N2(x)) is also a clique for all j 6= i. If there exist two distinct vertices

w2k , w2l in Cj , we may denote by w1k ∈ N2(w2k) ∩ N2(x), w2i ∈ N2(w) and w1k ∈ N2(w),

then 〈w2k , w2l, w1k ;w1iw2iw〉 is a Z3, showing a contradiction. Since G is 3-connected and

claw-free, we have N2(N
3
2 (x)) ⊆ Ci. �

Claim 12.1.6. If there exists w2i ∈ Ci such that zw2i ∈ E(G), then

1) N2(z) ∩ Cj = ∅ and N2(z) ∩ (N2(Cj) ∩N2(x)) = ∅ for all j 6= i;
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2) If |N2(x) \N2(w2i)| ≥ 2, then w1iz ∈ E(G) for all w1i ∈ N2(w2i)∩N2(x) and xz ∈ E(G);

3) If N2
2 (x) 6= Ci, then |Cj | = 1 for all j 6= i.

Proof. 1) We may assume there exist w2i ∈ Ci and w1i ∈ N2(Ci) such that w2iz, w2iw1i ∈

E(G). If there exist w2j ∈ Cj such that w2jz ∈ E(G), then 〈z; v, w2j , w2i〉 is a claw. If there

exists w1j ∈ N2(Cj) ∩N2(x) such that w1jz ∈ E(G), then 〈z; v, w1j , w2i〉 is a claw. Thus, we

have N2(z) ∩ Cj = ∅ and N2(z) ∩ (N2(Cj) ∩N2(x)) = ∅ for all j 6= i.

2) We may assume there exist w1k , w1l ∈ N2(x) \ N2(w2i). For any w1i ∈ N2(w2i) ∩

N2(x), since 〈w1k , w1l, w1i;w2izv〉 is not a Z3, we have zw1i ∈ E(G). Moreover, since

〈w1k , w1l, x; vzw2i〉 is not a Z3, we get xz ∈ E(G).

3) Suppose this is not true, there exist w2s, w2t ∈ Cj and w1i ∈ N2(x) such that w1iw2i ∈

E(G). If there also exists w1j ∈ N2(w2s)∩N2(w2t)∩N2(x), then either 〈w2s , w2t, w1j ;w1iw2iz〉

or 〈w2s, w2t , w1j ;w1izv〉 is a Z3. If N2(w2s)∩N2(w2t)∩N2(x) = ∅, we may assume there exists

w1s ∈ N2(x) such that w1sw2s ∈ E(G) and w1sw2t /∈ E(G), then 〈z, w2i, w1i;w1s , w2s, w2t〉 is

a Z3, showing a contradiction. �

Claim 12.1.7. If there exists w ∈ N3
2 (x) such that wz ∈ E(G), then

1) w2iz ∈ E(G) for any w2i ∈ N2(w) ∩ Ci;

2) |N2(Ci) ∩N2(x)| ≥ |N2(x)| − 1. In particular, Ci = N2
2 (x);

3) N3
2 (x) = {w}.

Proof. For simplicity, we assume N2(w) ∩ C1 6= ∅. Since G is claw-free, we have

N2(z) ∩N2(x) = ∅.

1) By Claim 12.1.5, |C1| ≥ 2 and C1∪(N2(C1)∩N2(x)) is a clique. Moreover, |N2(C1)| ≥ 2

since G is 3 connected. We denote by w11 , w12 ∈ N2(C1). Then, for any w2i ∈ N2(w) ∩ C1,

since 〈w11 , w12, w2i;wzv〉 is not a Z3, we have w2iz ∈ E(G).

2) By Claim 12.1.6 3), we know |N2(x) \N2(w2i)| ≤ 1 for any w2i ∈ N2(w) ∩ C1, which

implies |N2(C1) ∩N2(x)| ≥ |N2(x)| − 1. Moreover, N2
2 (x) = C1 since G is 3-connected.

3) Suppose this is not true, there exist w′ ∈ N3
2 (x) \ {w} and w2j ∈ C1 such that

w2jw
′ ∈ E(G). Then w2iw

′, w2jw /∈ E(G) since N3
2 (x) is an independent set, which in



151

turn gives zw2j /∈ E(G) since 〈z; v, w2j , w〉 is not a claw. However, this will force either

〈x, y, v; zw2iw2j〉 or 〈x, v, z;w2iw2jw
′〉 to be a Z3. �

Claim 12.1.8. If N2(z) ∩ N
3
2 (x) = ∅, N2(z) ∩ N

2
2 (x) = ∅ and there exist w2i, w2j ∈ N2

2 (x)

such that N2(w2i) ∩ N2(w2j ) ∩N2(x) 6= ∅, then N2(x) = N2(z). In particular, xz ∈ E(G) if

N2
2 (x) 6= ∅.

Proof. If there exists w1i ∈ N2(w2i) ∩ N2(w2j ) ∩ N2(x) such that zw1i ∈ E(G), then

for any w1j ∈ N2(x) \ (N2(w2i) ∩ N2(w2j )), since 〈w1i ; z, w2i, w1j〉 is not a claw, we have

zw1j ∈ E(G). If there exists w1j ∈ N2(x) \ (N2(w2i)∩N2(w2j )) such that zw1j ∈ E(G), then

for any w1i ∈ N2(w2i) ∩ N2(w2j ) ∩ N2(x), since 〈w2i, w2j , w1i;w1jzv〉 is not a Z3, we have

zw1i ∈ E(G). Since N2(z) ∩N
3
2 (x) = ∅ and N2(z) ∩N

2
2 (x) = ∅, thus we get N2(x) = N2(z).

In particular, if N2
2 (x) 6= ∅, then xz ∈ E(G) because G is claw-free. �

Now we want to find a spanning Halin subgraph in G by following cases.

Case 1. Assume that N3
2 (x) 6= ∅.

Case 1.1: Assume that N3
2 (x) ∩N2(z) 6= ∅.

By Claim 12.1.7, we know N3
2 (x) = {w}, N2

2 (x) = C1, |N2(C1) ∩ N2(x)| ≥ |N2(x)| −

1 and {w, z} ∪ (N2(w) ∩ C1) is a clique. Since G is 3-connected, we can assume there

exist w21, w22 , w2s2
∈ N2

2 (x) and w11 , w12 ∈ N2(x) such that w11w21 , w12w2s2
, w21w,w22w ∈

E(G). Since both N2(x) \ {w11} and N2
2 (x) \ {w21} are cliques, there exist hamiltonian

paths, say P1 = w12P1w1s1
and P2 = w22P2w2s2

, in them, respectively. Let C = P1P2 ∪

{zv, vy, yw1s1
, w12w2s2

, w22w,wz} be a cycle and all vertices on the path xw11w21 be stems of

T with NC(x) = {v, y}, NC(w11) = V (P1) and NC(w21) = V (P2) ∪ {w, z}. Let H = T ∪ C,

then H is a spanning Halin subgraph of G (See Figure 12.1 (1) as an example).

Case 1.2: Suppose that N3
2 (x) ∩N2(z) = ∅ and N2

2 (x) ∩N2(z) 6= ∅.

We may assume there exists w ∈ N3
2 (x) and N2(w) ∩ C1 6= ∅. Since G is 3-connected

and wz /∈ E(G), we have |N2(w) ∩ C1| ≥ 3 and |N2(C1) ∩ N2(x)| ≥ 2. By Claim 12.1.6 3),

we get N2(z) ∩ C1 6= ∅.
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Claim 12.1.9. There must exist w2i ∈ N2(w) such that w2iz ∈ E(G) and xz, yz ∈ E(G).

Proof. Suppose this is not true. Since N2(z) ∩ C1 6= ∅, there must exist w2j ∈ C1 \

N2(w) such that w2jz ∈ E(G). Then for any w2i ∈ N2(w) ∩ C1, either 〈x, y, v; zw2jw2i〉 or

〈x, v, z;w2jw2iw〉 is a Z3, showing a contraction. Let w21 ∈ C1 such that ww21, w21z ∈ E(G).

Since 〈x, y, v; zw21w〉 is not a Z3 and x, y are twins, we have both xz and yz in E(G). �

Denote by N3
2 (x) = {w31, w32 , · · · , w3s3

}, {w1
3i
, w2

3i
, w3

3i
} ⊆ N2(w3i)∩C1, C1\N2(N

3
2 (x)) =

{w′
21
, w′

22
· · · , w′

2k2
}, {w1

11
, w2

11
} ⊆ N2(C1)∩N2(x), Cj = {w2j} for all j 6= i, {w1

1j
, w2

1j
, w3

1j
} ⊆

N2(w2j) ∩N2(x) and N2(x) \ (∪k
j=2{w

1
1j
, w2

1j
, w3

1j
} ∪ {w1

11, w
2
11}) = {w′

11, w
′
12 , · · · , w

′
1t1

}.

By Claim 12.1.3, either C1 is a clique or 〈C1〉 is losing exactly one edge. Since both

N2(x) \ (∪k
j=2{w

1
1j
, w2

1j
, w3

1j
}∪{w1

11
, w2

11
}}) and C1 \N2(N

3
2 (x)) are cliques, there exist hamil-

tonian paths, say P1 = w′
11P1w

′
1t1

and P2 = w′
21P2w

′
2k2

, in them, respectively. Let C = P1P2∪

(∪s3−1
i=1 {w1

3i
w3i , w3iw

3
3i
, w3

3i
w1

3i+1
})∪{w3

3s3
w′

21
, w′

2k2
w1

11
, w1

11
w1

12
}∪(∪k−1

j=2{w
1
1j
w2j , w2jw

3
1j
, w3

1j
w1

1j+1
})

∪{w3
1k
w′

11
, w′

1t1
y, yv, vz, zw1

31
} be a cycle and all vertices on the tree {x;w2

11
, w2

12
, · · · , w2

1k
;w2

31
,

· · · , w2
3s3

} be stems of T with NC(x) = V (P1) ∪ {v, y, z}, NC(w2
11

) = V (P1) ∪ {w1
11
},

NC(w2
1i

) = {w1
1i
, w3

1i
, w2i} for all i ∈ [2, k] and NC(w2

3j
) = {w1

3j
, w3

3j
, w3j} for all j ∈ [1, s3].

Let H = T ∪ C, then H is a spanning Halin subgraph of G (See Figure 12.1 (2) as an

example).

Case 1.3: Suppose that N3
2 (x) ∩N2(z) = ∅, N2

2 (x) ∩N2(z) = ∅ and N2(x) ∩N2(z) 6= ∅.

We may assume there exists w ∈ N3
2 (x) such that N2(w) ∩ C1 6= ∅. By Claim 12.1.5,

|C1| ≥ 3 and N2(N
3
2 (x)) ⊆ C1. By Claim 12.1.8, N2(x) = N2(z) and xz ∈ E(G). Similarly as

Case 1.2, we delete the edge xw3
11

form E(T ) and add the edge w2
11
w3

11
to E(T ), also delete

the edge zw1
31 form E(C) and add edges w1

31w
3
11 , w

3
11z to E(C), we can find a spanning Halin

subgraph in G (See Figure 12.1 (1) as an example).

Case 2: Assume that N3
2 (x) = ∅ and N2

2 (x) 6= ∅.

If Ci ∪ N2(Ci) is a clique for all possible i, we can find a spanning Halin subgraph

in G similarly as Case 1.2 and 1.3. Thus we assume C1 ∪ N2(C1) is not a clique, then,

clearly, |C1| ≥ 2. We denote by C1 = {w′
21
, w′

22
, · · · , w′

2k1
}. By Claim 12.1.3, we there exists
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Figure 12.1. N3
2 (x) 6= ∅.

w12 ∈ N2(C1) such that w12w
′
22

∈ E(G) and w12w
′
21
/∈ E(G). Then we have following two

subcases to be considered.

Case 2.1: Assume that N2
2 (x) ∩N2(z) 6= ∅.

Claim 12.1.10. If N2
2 (x) ∩N2(z) 6= ∅, then

1) N2(z) ∩ C1 6= ∅;

2) If C1 \N2(z) 6= ∅, then |N2(x) \N2(C1)| ≤ 1 and xz ∈ E(G);

3) N2
2 (x) = C1.

Proof. 1) This is clear true by Claim 12.1.6 3).

Thus we always assume zw′
21 ∈ E(G).

2) Suppose this is not true, there exists w2i ∈ C1 \ {w′
21
} such that w′

2i
z /∈ E(G) and

w′
2i
w′

21
∈ E(G). If there exist w12 , w13 ∈ N2(x) \N2(C1), then 〈w12 , w13, x; zw′

21
w′

2i
〉 is a Z3.

If xz /∈ E(G), then 〈x, y, v; zw′
21w

′
2i
〉 is a Z3, showing a contradiction.

3) If |N2(x) \ N2(C1)| = 1, then clearly Cj = ∅ for all j 6= i. If |N2(x) \ N2(C1)| ≥ 2,

then C1 ⊆ N2(z). Since neither 〈w′
21
, w′

22
, z; vxw1j〉 nor 〈w′

21
, w′

22
, z; xw1jw2j〉 is a Z3, where

w2j ∈ Cj and w1j ∈ N2(x) ∩N2(w2j ), we have Cj = ∅. Thus N2
2 (x) = C1. �

We denote by N2(x) = {w11 , w12, · · · , w1t}. In particular, assume w11w12 ∈ N2(C1).
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If C1 ⊆ N2(z), then C1 is a clique. Since G is 3-connected, we assume w11w
′
21
, w′

12
w′

22
∈

E(G). Since N2(x)\{w11} and C1\{w
′
21
} are cliques, there exist hamiltonian paths, say P1 =

w12P1w1t and P2 = w′
22P2w

′
2k1

, in them, respectively. Let C = P1P2∪{yw1t, w12w
′
22, w

′
2k1
z, zv,

vy} be a cycle and all vertices on the path xw11w
′
21

be stems of T with NC(x) = {y, v},

NC(w11) = V (P1) and NC(w′
21

) = V (P2) ∪ {z}. If |N2(x) \ N2(C1)| ≤ 1, by Claim 12.1.3,

we assume w11w ∈ E(G) for all w ∈ C1 \ {w′
2k1

} and w′
21z, w12w

′
2k1
, w13w

′
2k1

∈ E(G). S-

ince both N2(x) \ {w11 , w12} and C1 \ {w′
2k1

} are cliques, there exist hamiltonian path-

s, say P1 = w13P1w1t and P2 = w′
21P2w

′
2k1−1

, in them, respectively. Let C = P1P2 ∪

{zv, vy, yw1t, w13w
′
2k1
, w′

2k1
w′

1k1−1
, w′

21
z} be a cycle and all vertices on the path xw11w12 be

stems of T with NC(x) = {z, v}, NC(w′
11

) = V (P2) and NC(w′
12

) = V (P1) ∪ {y, w2′
k1
}. Let

H = T ∪ C, then H is a spanning Halin subgraph of G (See Figure 12.2 (1) and (2) as

examples).

Case 2.2: Suppose N2
2 (x) ∩N2(z) = ∅.

Since G is 3-connected, |N2(Ci)| ≥ 3 for all possible i. We want to consider following

two subcases.

Subcase 1: There exist w2s, w2t ∈ Ci such that N2(w2s) ∩N2(w2t) ∩N2(x) 6= ∅.

We may assume i = 1, then |N2(w
1
1i

)∩C1| ≥ |C1|−1 for all w1i ∈ N2(C1) by Claim 12.1.3,

Cj ∪ N2(Cj) is a clique for all j 6= i, by Claim 12.1.4, and N2(x) = N2(z) by Claim 12.1.8.

Since G is 3-connected, we may assume |C1| ≥ 3 since other cases are similar and much

easier. We assume w1
11
w1

22
/∈ E(G). Let Ci = {w1

2i
, w2

2i
, · · · , wti

2i
}, {w1

1i
, w2

1i
, w3

1i
} ⊆ N2(Ci)

for all possible i, w1
11w

1
21, w

2
11w

3
21 , w

3
11w

2
21 ∈ E(G) and D1 = N2(x) \ ({∪k

i=1{w
1
1i
, w2

1i
, w3

1i
}) =

{w′
11
, w′

12
, · · · , w′

1l
}. Since C1 \{w

3
21
}, Cj , for all possible j 6= i, and D1 are cliques, there exist

hamiltonian paths, say P1 = w1
21P1w

2
21 , Pj = w1

2j
Pjw

2
2j

and P ′ = w′
11P

′w′
1l

, in them, respec-

tively. Let C = P1P2 · · ·PkP
′∪ (∪k

i=1{w
1
1i
w1

2i
, w1

2i
w3

1i
, w3

1i
w1

1i+1
})∪{w3

1k
w′

11
, w′

1l
y, yv, vz, zw1

11
}

be a cycle and all vertices on the tree {x;w2
11
, w2

12
, · · · , w2

1k
;w3

21
} be stems of T with NC(x) =

{z, y, v}∪D1, NC(w1
12) = {w1

11 , w
3
11}, NC(w2

1j
) = {w1

1j
, w3

1j
} ∪ Cj for all j 6= i and NC(w3

21) =

C1 \ {w
3
21
}. Let H = T ∪ C, then H is a spanning Halin subgraph of G (See Figure 12.2 (3)

as an example).
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Subcase 2: For any w2s , w2t ∈ Ci, we have N2(w2s) ∩
1
2 (w2s) ∩N2(x) = ∅.

If N2(z) ∩ N2(x) ∩ N2(N
2
2 (x)) = ∅, by Claim 12.1.8. Let |Ci| ≤ 2 and we denote

Ci = {wi
1, w

i
2}, {wi

11 , w
i
12} ⊆ N2(w

i
1) ∩ N2(x), {wi

21 , w
i
22} ⊆ N2(w

i
2) ∩ N2(x) for all i with

|Ci| = 2 and Ci = {wi
1}, {wi

11
, wi

12
, wi

13
} ⊆ N2(w

i
1) for all i with |Ci| = 1. Denote by

|Ci| = 2 for i ∈ [1, k1] and |Ci| = 1 for i ∈ [k1 + 1, k] for simplicity. We also denote

by D1 = N2(x) \ (∪k1
i=1{w

i
11 , w

i
12, w

i
21 , w

i
22}) ∪ (∪k

i=k1+1{w
i
11 , w

i
12, w

i
13}) = {w′

11, w
′
12 , · · · , w

′
1l
}.

Assume w′
11
z ∈ E(G) if xz ∈ E(G) and w′

11
z, w′

12
z ∈ E(G) if xz /∈ E(G) since G is

3-connected. We only find a spanning Halin subgraph in G for xz /∈ E(G) since the

other case is similarly and easier. Since D1 \ {w′
11
, w′

12
} is a clique, there exists a hamil-

tonian path P1 = w′
13
P1w

′
1l

in it. Let C = P1 ∪ (∪k1
i=1{w

i
11
wi

1, w
i
1w

i
2, w

i
2w

i
22
, wi

22
wi+1

11 }) ∪

(∪k
k1+1{w

i
11w

i
1, w

i
1w

i
13, w

i
13w

i+1
11 })∪{wk1

22w
k1+1
11 , wk

13w
′
11 , w

′
11z, zv, vx} be a cycle and all vertices

on the star {x;w1
12
, w1

21
, w2

12
, w2

21
, · · · , wk1

12
, wk1

21
, wk1+1

12
, · · · , wk

12
}, where x is the center, be

stems of T with NC(x) = (D1\{w
′
11, w

′
12}∪{v, x}, NC(wi

12) = {wi
11, w

i
1}, NC(wi

21) = {wi
22, w

i
1}

for all i ∈ [1, k1], NC(wi
12

) = {wi
11
, wi

13
, wi

1} for i ∈ [k1 + 1, k] and NC(w′
12

) = {z, w′
11
} (See

Figure 12.2 (4) as an example). If N2(z) ∩ N2(x) ∩ N2(N
2
2 (x)) 6= ∅, since G is claw-free, we

have xz ∈ E(G). Similarly as N2(z) ∩ N2(x) ∩ N2(N
2
2 (x)) = ∅, we delete the stem {w′

12}

from V (T ), delete edges w′
11
w′

12
, w′

12
z from E(T ) but add edges xz, xw′

11
to E(T ); and also

delete the edge w′
11
w′

1l
from E(C) and add edges w′

11
w′

12
, w′

12
w′

13
to E(C).

Let H = T ∪ C, then H is a spanning Halin subgraph of G

Case 3: Suppose that N2
2 (x) = N3

2 (x)) = ∅, i.e. V2 = N2(x)

Similarly as line graph, we can find a spanning Halin subgraph in G.

12.2 Proof of 3-connected {claw,B1,2}-free graphs admit twins

Since, in 2015, Furuya and Tsuchiya [26] showed that: If G is a 3-connected {Claw,B1,2}-

free graph but not N-free, then G contains a spanning Halin subgraph , in this section, we

assume every graph is also N -free. To prove Proposition 22, we want to consider following

two cases.
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Figure 12.2. N3
2 (x) = ∅ and N2

2 (x) 6= ∅.

Case 1: For any two vertices v1s , v1t , in N1(x) and any two vertices w1i, w1j in N2(x), we

have N1(v1s) = N1(v1t) and N2(w1i) = N2(w1j ).

Claim 12.2.1. If for any two vertices v1s , v1t, in N1(x) and any two vertices w1i , w1j in

N2(x), we have N1(v1s) = N1(v1t) and N2(w1i) = N2(w1j), then

1) N j
i (x) ∪N j+1

i (x) is a clique for all j ∈ [1, k1 − 1] ∪ [1, k2 − 1] and i ∈ [1, 2];

2) If there exists vj ∈ N j
1 (x)(similarly as wj1 ∈ N j

2 (x)) such that vjz ∈ E(G), then either

N1(z) ⊆ N j−1
1 (x)∪N j

1 (x) or N1(z) ⊆ N j
1 (x)∪N j+1

1 (x). In particular, if N j+1
1 (x)∩N1(z) = ∅,

then |N j
1(x)| ≥ 3.

Proof. we only shoe that this is true for i = 1. Since N1(v1s) = N1(v1t) for all

v1s , v1t ∈ N1(x), we have N1(x) ∪ N2
1 (x) is a clique. If there exists v22 ∈ N2

1 (x) such

that v22v31 /∈ E(G), then 〈v31 ; v21 , v22 , v11 ; xw11〉 is a B1,2. Thus N2
1 (x) ∪ N3

1 (x) is a clique.

Similarly, we can show that N j
1 (x) ∪N j+1

1 (x) is a clique for all possible j.

2) This is clearly true since G is claw-free and 3-connected. �

Let ti = min{j|N j
i (x) ∩N1

i (z) 6= ∅} for i ∈ [1, 2].
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Case 1.1: Suppose that xz /∈ E(G).

Claim 12.2.2. Suppose xz /∈ E(G),

1) If N t1+1
1 (x) 6= ∅, then N t1+1

1 (x) ⊆ N1(z);

2) If N t1+2
1 (x) 6= ∅, then N t1+2

1 (x) ∩N1(z) = ∅;

3) V1 = ∪t1+2
j=1 N

j
1 (x).

Proof. 1) For any v(t1+1)i ∈ N t1+1
1 (x), since 〈v(t1)1 ; v(t1+1)i , v(t1−1)1 , z〉 is not a claw, we

have v(t1+1)iz ∈ E(G). Thus N t1+1
1 (x) ⊆ N1(z).

2) This is clearly true by Claim 12.2.1 2).

3) If there exists v′ ∈ V1 \ (∪t1+2
j=1 N

j
1 (x)), we may assume v′v(t1+2)1 ∈ E(G), then

〈w′; z, v(t1)1 , v(t1+1)1 ; v(t1+2)1v
′〉 is a B1,2, showing a contradiction. �

Claim 12.2.3. If xz /∈ E(G) and N t1+2
1 (x) 6= ∅, then

1) t1 = t2 = 1;

2) N2(x) ⊆ N2(z), N
2
2 (x) ⊆ N2(z) and N3

2 (x) = ∅.

Proof. For simplicity, we denote by y = v01 = w01.

1) If t1 ≥ 2, then 〈v(t1+2)1 ; v(t1+1)1 , z, v(t1)1 ; v(t1−1)1v(t1−2)1〉 is a B1,2; if t2 ≥ 2, then

〈v(t1+2)1 ; v(t1+1)1 , v(t1)1 , z;w(t2)1w(t2−1)1〉 is a B1,2, giving a contradiction. Thus t1 = t2 = 1.

2) Suppose to the contrary, w11z ∈ E(G). For any w1i ∈ N2(x)\{w11}, since 〈v(t1+2)1 ; v(t1+1)1 ,

v(t1)1 , z;w11w1i〉 is not a B1,2, we have w1iz ∈ E(G). Thus N2(x) ⊆ N2(z). For any

w2i ∈ N2(x), since xz /∈ E(G) and 〈w11; y, z, w2i〉 is not a claw, we have w1iz ∈ E(G).

This implies N2
2 (x) ⊆ N2(z). If there exists w3i ∈ N3

2 (x), since N3
2 (x) ∩ N2(z) = ∅, we

have 〈v(t1+2)1 ; v(t1+1)1 , v(t1)1 , z;w21w3i〉 is a B1,2. This in turn gives N3
2 (x) = ∅, showing a

contradiction. �

Claim 12.2.4. If xz /∈ E(G) and N t1+2
1 (x) = ∅, then

1) t1 ≤ 2. In particular, if t1 = 2, then t2 = 1; if t1 = 1, then t2 ≤ 2;

2) If t2 = 2, then N2
2 (x) ⊆ N2(z), N

3
2 (x) ⊆ N2(z) and N4

2 (x) = ∅;

3) If t2 = 1, then N4
2 (x) = ∅.
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Proof. For simplicity, we always assume w(t2)1
z ∈ E(G).

1) Suppose t1 ≥ 3, then 〈w(t2)1
; z, v(t1+1)1

, v(t1)1; v(t1−1)1
v(t1−2)1

〉 is a B1,2, showing a

contradiction. If t1 = 2 and t2 ≥ 2, then 〈w(t2)1
; z, v31 , v21 ; v11x〉 is a B1,2. If t1 = 1 and

t2 ≥ 3, then 〈w(t2)1
; z, v21 , v11 ; xw11〉 is a B1,2, showing a contradiction.

2) If there exists w2i ∈ N2
2 (x)\{w21}, then 〈x; v11 , v21 , z;w21w2i〉 is a B1,2. Thus N2

2 (x) ⊆

N2(z). For any w3i ∈ N3
2 (x), since 〈w21;w11 , z, w3i〉 is not a claw, we have w3iz ∈ E(G). Thus

N3
2 (x) ⊆ N2(z). If there exists w4i ∈ N4

2 (x), then 〈w4i ;w31, w21 , z; v11y〉 is a B1,2, showing a

contradiction. Therefore, we get N4
2 (x) = ∅.

3) If t2 = 1, by Claim 12.2.1 2), we know N3
2 (x)∩N2(z) = ∅. If there exists w4i ∈ N4

2 (x),

then 〈w4i;w31 , w21, z; v11y〉 is a B1,2, showing a contradiction. �

We only want to find a spanning Halin subgraph in G for following two cases since

other cases are similar and much easier.

Subcase 1: Suppose N3
1 (x) 6= ∅ and t2 = 1.

By Claim 12.2.1, we know |N2
1 (x)| ≥ 3 and by Claim 12.2.4, we know V2 = N2(x)∪N2

2 (x).

Since (N2
1 (x) \ {v21}) ∪N3

1 (x), N1(x) \ {v11} and (N2(x) \ {w11}) ∪N2
2 (x) are cliques, there

exist hamiltonian paths, say P1 = v22P1v23 , P2 = v12P2v13 and P3 = w12P3w21 , in them,

respectively. Let C = P1P2P3 ∪ {v13x, xw12 , w21z, zv22} be a cycle and all vertices on the

path v21v11yw11 be stems of T with NC(v21) = V (P1), NC(v11) = V (P2) ∪ {z}, NC(y) = {x}

and NC(w11) = V (P3). Let H = T ∪ C, it is easy to check that H is a spanning Halin

subgraph of G (See Figure 11.5 (1) as an example).

Subcase 2: Assume that N3
1 (x) = ∅ and t2 = 2.

By Claim 12.2.4, we know V2 = N2(x) ∪N2
2 (x) ∪N3

2 (x). Since (N1(x) \ {v11})∪N2
1 (x),

N2(x) \ {w11} and (N2
2 (x) \ {w21}) ∪ N3

2 (x) are cliques, there exist hamiltonian paths, say

P1 = v21P1v12 , P2 = w12P2w13 and P3 = w22P3w31 , in them, respectively. Let C = P1P2P3 ∪

{v12x, xw12 , w31z, zv21} be a cycle and all vertices on the path v11yw11w21 be stems of T

with NC(v11) = V (P1) ∪ {z}, NC(y) = {x}, NC(w11) = V (P2) and NC(w21) = V (P3). Let

H = T ∪ C, it is easy to check that H is a spanning Halin subgraph of G (See Figure 11.5

(1) as an example).
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Figure 12.3. N1(v1s) = N1(v1t), N2(w1i) = N2(w1j ) and xz /∈ E(G).

Case 1.2: Assume that xz ∈ E(G).

Claim 12.2.5. If xz ∈ E(G), then t1 = 1 or t2 = 1.

Proof. Suppose to the contrary, N1(x) ∩ N1(z) = ∅ and N2(x) ∩ N2(z) = ∅. Then

〈y; v11, w11, z〉 is a claw, giving a contradiction. �

For this case, from here and after,we always assume t1 = 1, which means N1(x)∩N1(z) 6=

∅.

Claim 12.2.6. If t2 ≥ 2, then

1) N2
1 (x) ∩N1(z) = ∅;

2) N t2+1
2 (x) ⊆ N1(z);

3) If N2
1 (x) 6= ∅, then t2 = 2 and V2 = N2(x) ∪N2

2 (x);

4) If N2
1 (x) = ∅, then either t2 = 3 and V2 = ∪4

j=1N
j
2 (x) or t2 = 2 and V2 = ∪3

j=1N
j
2 (x).

Proof. We may always assume w(t2)1
z ∈ E(G).

1) If there exists v2i ∈ N2
1 (x) ∩N1(z), then 〈z; v2i , y, w(t2)1〉 is a claw.

2) For any w(t2+1)i ∈ N t2+1
2 (x) ∩ N2(z), since 〈w(t2)1 ;w(t2+1)i , w(t2−1)1 , z〉 is not a claw,

we have w(t2+1)iz ∈ E(G). Thus N t2+1
2 (x) ⊆ N1(z).

We assume w(t2+1)1
z ∈ E(G).

3) If t2 ≥ 3, then 〈v21 ; v11 , z, y;w11w21〉 is a B1,2, showing a contradiction. For any

w3i ∈ N3
2 (x), since 〈w21;w11 , w3i, z〉 is not a claw, we have w3iz ∈ E(G), which implies

N3
2 (x) ⊆ N2(z). However, this will force 〈w11;w21 , w31, z; v11v21〉 to be a B1,2, showing a

contradiction. Thus V2 = N2(x) ∪N2
2 (x).
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4) Suppose to the contrary, t2 ≥ 4, then 〈w11; y, v11, z;w41w31〉 is a B1,2. If t2 = 3, then

N5
2 (x) = ∅, otherwise 〈w51;w41 , w31, z; yw11〉 is a B1,2. If t2 = 2, then N4

2 (x) = ∅, otherwise

〈w41 ;w31, w21, z; v11 ;w11〉 is an induced N . �

Claim 12.2.7. If t2 = 1, then

1) N2
1 (x) ∩N1(z) = ∅ or N2

2 (x) ∩N2(z) = ∅;

2) If N2
2 (x) ∩N2(z) 6= ∅ and N2

1 (x) 6= ∅, then V2 = N2(x) ∪N2
2 (x);

3) If N2
2 (x) ∩N2(z) 6= ∅ and N2

1 (x) = ∅, then V2 = N2(x) ∪N2
2 (x) ∪N3

2 (x);

4) If N2
2 (x) ∩N2(z) = ∅, then |N j

i (x)| ≥ 3 for all j ∈ [1, k1 − 1] ∪ [1, k2 − 1] and i ∈ [1, 2] .

Proof. 1) Suppose there exist v2i ∈ N2
1 (x) ∩ N1(z) and w2i ∈ N2

2 (x) ∩ N2(z), then

〈z; v2i , w2i, y〉 is a claw, showing a contradiction. Thus N2
1 (x)∩N1(z) = ∅ or N2

2 (x)∩N2(z) =

∅.

By symmetric, we may always assume N2
1 (x) ∩N1(z) = ∅.

2) We may assume there exists w21 ∈ N2
2 (x) such that w21z /∈ E(G). If N3

2 (x) 6= ∅, then

〈w3i;w21 , w11, z; v11v21〉 is a B1,2 for any w3i ∈ N3
2 (x), giving a contradiction.

3) Suppose N4
2 (x) 6= ∅, then for any w4i ∈ N4

2 (x), 〈v11 ; z, w11 , w21;w31v41〉 is a B1,2.

4) This is true since G is 3-connected. �

Now we want to find a spanning Halin subgraph in G by following subcases.

Subcase 1: Assume that t2 ≥ 2 and V1 = N1(x).

By Claim 12.2.6 4), we know V2 = ∪t2+1
j=1 N

j
2 (x). Since V1, N

j
2 (x) \ {w1j} for j ∈ [1, t2 −

1] and N t2
2 (x) ∪ N t2+1

2 (x) are cliques, there exist hamiltonian paths, say P ′ = v11P
′v12 ,

Pj = wj2Pjwj3 and Pt2 = w(t2)2
Pt2w(t2+1)1

, in them, respectively. Let C = P ′P1P2 · · ·Pt2 ∪

{v12x, xw12 , w(t2+1)1
z, zv11} be a cycle and all vertices on the path yw11 · · ·w(t2)1

be stems of

T with NC(y) = V (P ′)∪{x, z}, NC(wi1) = V (Pi) for i ∈ [1, t2− 1] and NC(w(t2)1
) = V (Pt2).

Let H = T ∪ C, it is easy to check that H is a spanning Halin subgraph of G (See Figure

11.5 (1) as an example).

Subcase 2: Suppose that t2 ≥ 2 and V1 = N1(x) ∪N2
1 (x).

By Claim 12.2.6 3), we know V2 = N2(x) ∪N2
2 (x). Since (V1 \ {v11}) ∪ V2 and (N2(x) \
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{w11}) ∪ N2
2 (x) are cliques, there exist hamiltonian paths, say P1 = v12P1v13 and P2 =

w12P2w13 , in them, respectively. Let C = P1P2 ∪ {v12x, xw12 , w21z, zv13} be a cycle and all

vertices on the path v11yw11 be stems of T with NC(v11) = V (P1), NC(y) = {x, z} and

NC(w11) = V (P2). Let H = T ∪C, it is easy to check that H is a spanning Halin subgraph

of G (See Figure 11.5 (2) as an example).

Subcase 3: Suppose that t2 = 1, N2
2 (x) ∩N2(z) 6= ∅ and V1 = N1(x) ∪N2

1 (x).

Similarly as subcase 2, we can find a spanning Halin subgraph in G.

Subcase 4: Suppose that t2 = 1, N2
2 (x) ∩N2(z) 6= ∅ and V1 = N1(x).

We may assume N3
2 (x) 6= ∅, then by Claim 12.2.7, V2 ⊆ N2(x) ∪ N2

2 (x) ∪ N3
2 (x).

Since V1, N2(x) \ {w11} and (N2
2 (x) \ {w21}) ∪ N3

2 (x) are cliques, there exist hamiltonian

paths, say P ′ = v11P
′v12 , P1 = w12P1w13 and P2 = w22P2w23 , in them, respectively. Let

C = P ′P1P2 ∪ {v12x, xw12 , w23z, zv11} be a cycle and all vertices on the path yw11w21 be

stems of T with NC(y) = V (P ′) ∪ {x, z}, NC(w11) = V (P1) and NC(w21) = V (P2). Let

H = T ∪ C, it is easy to check that H is a spanning Halin subgraph of G (See Figure 11.5

(1) as an example).

Subcase 5: Suppose that t2 = 1 and N2
2 (x) ∩N2(z) = ∅.

Since N i
1(x) \ {vi1 , vi2} for all i ∈ [1, k1 − 2], (Nk1−1

1 (x) \ {v(k1−1)1
}) ∪ Nk1

1 (x), N j
2 (x) \

{wi1, wi2} for all j ∈ [1, k2 − 2] and (Nk2−1
1 (x) \ {w(k2−1)1

}) ∪ Nk2
1 (x) are cliques, there

exist hamiltonian paths P1i = vi3P1ivi4 , P1k1−1
= vk12P1k1−1

vk13 , P2j = wj3P2jwj4, P2k2−1
=

wk2−12P1k1−1
wk2−13, in them respectively. Let C = P1k1−1

· · ·P1P2 · · ·P2k2−1
∪{v14x, xw14 , v12z,

w12z} ∪ (∪k1−2
i=1 (vi2v(i+1)2

) ∪ ∪(∪k2−2
j=1 (wj2w(j+1)2

) be a cycle and all vertices on the path

v(k1−1)1
· · · v11yw11 · · ·w(k2−1)1 be stems of T with NC(vi1) = V (P1i) for all i ∈ [1, k1 − 1],

NC(y) = {x, z} and NC(wj1) = V (P2j ) for all j ∈ [1, k2 − 1]. Let H = T ∪ C, it is easy to

check that H is a spanning Halin subgraph of G (See Figure 11.5 (1) as an example).

Case 2: There exist v1i , v1j ∈ N1(x) or w1i , w1j ∈ N2(x) such that N1(v1i) 6= N1(v1j ) or

N2(w1i) 6= N2(w1j).

By symmetric, we always assume there exists w21 ∈ N2
2 (x) such that w11w21 /∈ E(G)

and w12w21 ∈ E(G).
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Figure 12.4. N1(v1s) = N1(v1t), N2(w1i) = N2(w1j ) and xz ∈ E(G).

Claim 12.2.8. If there exists w21 ∈ N2
2 (x) such that w11w21 /∈ E(G) and w12w21 ∈ E(G),

then

1) N1(x) = V1;

2) N2
2 (x) is a clique;

3) V2 = N2(x) ∪N2
2 (x).

Proof. 1) Suppose this is not true, there exist v21 ∈ V1 \N1(x) and v11 ∈ N1(x) such

that v21v11 ∈ E(G), then 〈w21 ;w11, w12 , x; v11v21〉 is B1,2.

2) We may assume there exists w22 ∈ N2
2 (x) such that w12w22 ∈ E(G) and w21w22 /∈

E(G), then 〈v11 ; x, w11, w12 ;w21;w22〉 is an induced N , giving a contradiction.

3) If there exists w3i ∈ N3
2 (x), then w21w3i /∈ E(G). Otherwise 〈v11 ; x, w12 , w11;w21w3i〉

is a B1,2. Thus we may assume there exist w2i ∈ N2
2 (x) \ {w21} such that w2iw3i ∈ E(G),

then w2iw1i ∈ E(G) for all w1i ∈ N2(x). Otherwise, assume there exist w1i, w1j ∈ N2(x) such

that w1iw2i ∈ E(G) and w1jw2i /∈ E(G), then 〈v11 ; x, w1j , w1i;w2iw3i〉 is a B1,2. However,

this will force 〈w3i;w2i , w21, w11 ; xv11〉 to be a B1,2, giving a contradiction. �

If N2
2 (x) = ∅, then V1 = N1(x) and V2 = N2(x). We can find a spanning Halin subgraph

in G as G is {claw, Z3}-free. Thus we assume N2
2 (x) 6= ∅.
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Case 2.1: Assume that xz /∈ E(G).

Claim 12.2.9. If xz /∈ E(G), then V1 ⊆ N1(z).

Proof. This is clear true if |V1| = 1 since N1(z) 6= ∅. Thus we assume there exist

v11 , v12 ∈ V1 such that v11z ∈ E(G) and v12z /∈ E(G). Since 〈w21;w11 , w12, y; v11z〉 is not a

B1,2 and neither 〈w11 ; y, z, w21〉 nor 〈z; v11 , w21 , w12〉 is a claw, we have either w12z ∈ E(G) or

w21z ∈ E(G). If w12z ∈ E(G), then 〈v12 ; y, w11, w12 ; z;w21〉 is an induced N ; if w21z ∈ E(G),

then either 〈v12 ; y, w12, w11;w21z〉 or 〈w12;w11w21z; v11v12〉 is a B1,2, showing a contradiction.

�

In the following, we always assume |N2
2 (x)| ≥ 3 since the other case is similar and much

easier.

If |V1| ≥ 2 and w21z ∈ E(G), we may assume w12w22 , w13w23 ∈ E(G) since G is

3-connected. Note that we may have w11 = w13. Since V1 \ {v11}, N2(x) \ {w12} and

N2
2 (x) \ {w22} are cliques, there exist hamiltonian paths, say P1 = v12P1v13 , P2 = w11P2w13

and P3 = w21P3w23, in them, respectively. Let C = P1P2P3 ∪ {v13x, xw11 , w21z, zv12} be a

cycle and all vertices on the path v11yw12w22 be stems of T with NC(v11) = V (P1) ∪ {z},

NC(y) = {x}, NC(w12) = V (P2) and NC(w22) = V (P3). Let H = T ∪ C, it is easy to check

that H is a spanning Halin subgraph of G (See Figure 12.5(1) as an example).

If |V1| ≥ 2 and w12z ∈ E(G), we may assume w11w21 , w12w22, w13w23 ∈ E(G) since G is

3-connected(Note that w11 6= w13). Since V1 \{v11}, N2(x)\{w11 , w12} and N2
2 (x)\{w21} are

cliques, there exist hamiltonian paths, say P1 = v12P1v13 , P2 = w13P2w14 and P3 = w22P3w23 ,

in them, respectively. Let C = P1P2P3 ∪ {v13x, xw14 , w22w12 , w12z, zv12} be a cycle and all

vertices on the path v11yw11w21 be stems of T with NC(v11) = V (P1) ∪ {z}, NC(y) = {x},

NC(w12) = V (P2) ∪ {v12} and NC(w21) = V (P3). Let H = T ∪C, it is easy to check that H

is a spanning Halin subgraph of G (See Figure 12.5(2) as an example).

If |V1| = 1, since degG(z) ≥ 3, we have |N2(z)| ≥ 2. If |N2(z) ∩ N2
2 (x)| ≥ 2, we may

assume w21z, w22z ∈ E(G) and w13w23 ∈ E(G). Since N2(x) \ {w11} and N2
2 (x) \ {w21}

are cliques, there exist hamiltonian paths, say P1 = w12P1w13 and P2 = w22P2w23 , in them,
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respectively. Let C = P1P2 ∪ {v11x, xw12 , w22z, zv11} be a cycle and all vertices on the path

yw11w21 be stems of T with NC(y) = {x, v11}, NC(w11) = V (P1) and NC(w21) = V (P2)∪{z}.

Let H = T ∪ C, it is easy to check that H is a spanning Halin subgraph of G (See Figure

12.5(3) as an example).

If |V1| = 1 and |N2(z) ∩N2(x)| = 1, |N2(z) ∩ N
2
2 (x)| = 1, we may assume w11z, w21z ∈

E(G) since G is claw-free. We denote by w12w22 , w13w23 ∈ E(G) since G is 3-connected(Note

that we may have w11 = w12). Since N2(x) \ {w11, w12} and N2
2 (x) \ {w22} are cliques, there

exist hamiltonian paths, say P1 = w13P1w14 and P2 = w21P2w23 , in them, respectively. Let

C = P1P2 ∪ {v11x, xw14 , w21z, zv11} be a cycle and all vertices on the path yw11w12w22 be

stems of T with NC(y) = {x, v11}, NC(w11) = {z}, NC(w12) = V (P1) and NC(w22) = V (P2).

Let H = T ∪ C, it is easy to check that H is a spanning Halin subgraph of G (See Figure

12.5(4) as an example).

If |V1| = 1 and N2(z) ∩ N2
2 (x) = ∅, which implies |N2(z) ∩ N2(x)| ≥ 2. We may

assume w11w21 , w12w22 , w13w23 ∈ E(G) since G is 3-connected and w14z, w15z ∈ E(G). Then

N2(w14) ∩ N2
2 (x) = ∅ and N2(w15) ∩ N2

2 (x) = ∅ since G is claw-free and xz /∈ E(G).

Because N2(x) \ {w11 , w13 , w14, w15} and N2
2 (x) \ {w21} are cliques, there exist hamiltonian

paths, say P1 = w12P1w16 and P2 = w22P2w23, in them, respectively. Let C = P1P2 ∪

{v11x, xw16 , w23w13 , w13w15 , w15z, zv11} be a cycle and all vertices on the path yw14w11w21

be stems of T with NC(y) = {x, v11}, NC(w14) = {z, w15}, NC(w11) = V (P1) ∪ {w13} and

NC(w21) = V (P2). Let H = T ∪C, it is easy to check that H is a spanning Halin subgraph

of G (See Figure 12.5(5) as an example).

Case 2.2: Assume that xz ∈ E(G). Then yz ∈ E(G) since x and y are twins.

If N2(z) ∩ N2
2 (x) 6= ∅, we denote by v11z, w21z, w12w22, w13w23 ∈ E(G) since G is 3-

connected(Note that we may have w11 = w13). Since V1∪{x}, N2(x)\{w12} and N2
2 (x)\{w22}

are cliques, there exist hamiltonian paths, say P ′ = v11P
′x, P1 = w11P1w13 and P2 =

w21P2w23 , in them, respectively. Let C = P ′P1P2 ∪ {w21z, zv11} be a cycle and all vertices

on the path yw12w22 be stems of T with NC(y) = V (P ′) ∪ {z}, NC(w12) = V (P1) and

NC(w22) = V (P2). Let H = T ∪C, it is easy to check that H is a spanning Halin subgraph
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Figure 12.5. N2(w11) 6= N2(w12) and xz /∈ E(G).

of G (See Figure 12.6(1) as an example).

If N2(z) ∩ N2
2 (x) = ∅, then N2(z) ∩ N2(x) 6= ∅ since N2(z) 6= ∅. We denote by

v11z, w11z, w11w21, w12w22 , w13w23 ∈ E(G) since G is 3-connected. Since V1 ∪ {x}, N2(x) \

{w12 , w11} and N2
2 (x)\{w22} are cliques, there exist hamiltonian paths, say P ′ = v11P

′x, P1 =

w14P1w13 and P2 = w21P2w23, in them, respectively. Let C = P ′P1P2 ∪ {w21w11, w11z, zv11}

be a cycle and all vertices on the path yw12w22 be stems of T with NC(y) = V (P ′) ∪ {z},

NC(w12) = V (P1)∪ {w11} and NC(w22) = V (P2). Let H = T ∪C, it is easy to check that H

is a spanning Halin subgraph of G (See Figure 12.6(2) as an example).
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Figure 12.6. N2(w11) 6= N2(w12) and xz ∈ E(G).
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[38] M. Skowrońska. The pancyclicity of Halin graphs and their exterior contractions. In

Cycles in graphs (Burnaby, B.C., 1982), volume 115 of North-Holland Math. Stud.,

pages 179–194. North-Holland, Amsterdam, 1985.
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