Georgia State University

ScholarWorks @ Georgia State University

Mathematics Dissertations Department of Mathematics and Statistics

5-9-2016

Spanning Halin Subgraphs Involving Forbidden Subgraphs

Ping Yang

Follow this and additional works at: https://scholarworks.gsu.edu/math_diss

Recommended Citation

Yang, Ping, "Spanning Halin Subgraphs Involving Forbidden Subgraphs." Dissertation, Georgia State
University, 2016.

doi: https://doi.org/10.57709/8497204

This Dissertation is brought to you for free and open access by the Department of Mathematics and Statistics at
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Mathematics Dissertations by an
authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.


https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/math_diss
https://scholarworks.gsu.edu/math
https://scholarworks.gsu.edu/math_diss?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/8497204
mailto:scholarworks@gsu.edu

SPANNING HALIN SUBGRAPHS INVOLVING FORBIDDEN SUBGRAPHS

PING YANG

Under the Direction of Guantao Chen, PhD

ABSTRACT

In structural graph theory, connectivity is an important notation with a lot of appli-
cations. Tutte, in 1961, showed that a simple graph is 3-connected if and only if it can be
generated from a wheel graph by repeatedly adding edges between nonadjacent vertices and
applying vertex splitting. In 1971, Halin constructed a class of edge-minimal 3-connected
planar graphs, which are a generalization of wheel graphs and later were named “Halin
graphs” by Lovasz and Plummer. A Halin graph is obtained from a plane embedding of a

tree with no stems having degree 2 by adding a cycle through its leaves in the natural order



determined according to the embedding. Since Halin graphs were introduced, many useful
properties, such as hamiltonian, hamiltonian-connected and pancyclic, have been discovered.
Hence, it will reveal many properties of a graph if we know the graph contains a spanning
Halin subgraph. But unfortunately, until now, there is no positive result showing under
which conditions a graph contains a spanning Halin subgraph. In this thesis, we characterize
all forbidden pairs implying graphs containing spanning Halin subgraphs. Consequently, we
provide a complete proof conjecture of Chen et al. Our proofs are based on Chudnovsky
and Seymour’s decomposition theorem of claw-free graphs, which were published recently in

a series of papers.

INDEX WORDS:  Forbidden pairs, Spanning subgraph, Halin graph, Strong spanning
Halin subgraph, 3-connected graph, Claw-free, Zs-free, B o-free.
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Chapter 1

INTRODUCTION

1.1 Halin graphs

A graph is called planar if it can be embedded in the plane without edge-crossings.
Such an embedded graph is called a plane graph. A tree T is a connected acyclic graph.
Every vertex in a tree with degree 1 is called a leaf and all others are called stems of the
tree. In particular, if a graph G has a spanning tree T' with no stems of degree 2, T is
called a homeomorphically irreducible spanning tree (HIST) of G. A wheel graph is a graph
obtained from a tree with exactly one stem by adding a cycle along its leaves. A graph is
k-connected(resp. k-edge connected) if the removal of any vertex(resp. edge) set of size at
most k& — 1 results in a connected graph. In 1961, Tutte [41] showed that a simple graph is
3-connected if and only if it can be generated from a wheel graph by repeatedly adding edges
between nonadjacent vertices and applying vertex splitting. This result led in a direction
to investigate the minimal k-edge connected graphs. In 1971, Halin [36] constructed a class
of minimal 3-edge connected graphs, which was later named Halin graph by Lovész and
Plummer. A Halin graph is a plane graph H = T'U C' such that T is a HIST of H with
|T| > 4 and C' is a cycle obtained by connecting all leaves of T' following the order given by
the plane embedding. According to the definition, we can see that a Halin graph is a natural
generalization of a wheel graph.

Since the Halin graph was introduced, massive research has been done and many inter-
esting properties were obtained. In 1973, Bondy [32] showed that Halin graphs are hamiltoni-
an (there exists a spanning cycle in H). Later, Barefoot [1] pointed out that Halin graphs are
also hamiltonian connected (there exists a hamiltonian path between every pair of vertices
in H). In [34], Lovasz and Plummer illustrated that Halin graphs are 1-hamiltonian (both H

and the graph obtained from H by deleting a vertex are hamiltonian). In 1983, Cornuéjols,



Naddef and Pulleyblank [22] proved that Halin graphs are 1-edge-hamiltonian (each edge
of H belongs to a hamiltonian cycle). Later, Skupien [39] discovered that Halin graphs are
uniformly hamiltonian (each edge of H is contained in some hamiltonian cycles and avoided
by some others ) and Bondy and Lovész [4], independently, Skowroniska [38] showed that
Halin graphs are almost pancyclic (the graph H contains cycles of length from 3 to |V (H)|
with the possible exception of a single even length) and is pancyclic if the underlying tree
has no vertex of degree 3. In addition, in [22], Cornuéjols, Naddef and Pulleyblank showed
that the traveling salesman problem (TSP) on Halin graphs was solvable in polynomial time.

Since Halin graphs have many interesting properties, it is natural to ask under what
conditions a graph contains a Halin graph as a spanning subgraph. Horton, Parker and
Borie [30] showed that deciding whether a graph has a spanning Halin subgraph is NP-
complete, which indicates this is a very hard problem. Since Halin graphs are hamiltonian
and almost pancyclic, the natural candidates are sufficient conditions for graphs to be hamil-
tonian. The majority sufficient conditions for hamiltonian graphs are results: 1) Tutte [40]
showed that every 4-connected planar graph contains a hamiltonian cycle, 2) Dirac [23], in
1952, proved that a simple graph with n vertices is hamiltonian if every vertex has degree at
least %, 3) In term of forbidden subgraphs, Bedrossian [2], Faudree and Gould [25] completely
determined the forbidden pairs for 2-connected graphs containing a hamiltonian cycle.

In 1975, Lovédsz and Plummer [34] conjectured that: Every 4-connected plane triangu-
lation has a spanning Halin subgraph. Unfortunately, this conjecture was recently disproved
by Chen et al. [9]. Moreover, Chen et al. also pointed out that this conjecture does not hold
even if the graph is 5-connected, see [8]. Looking for the degree condition, Chen, Shan and
I [27] showed that: There exists ng > 0 such that for any graph G with n > ng vertices, if
the minimum degree of G is at least ”T“, then G contains a spanning Halin subgraph. In this

thesis, it is natural to consider the sufficient conditions in term of “forbidden subgraphs”.



1.2 Forbidden subgraphs

Let H be a graph. A graph H is an induced subgraph of G if there exists a set
A C V(@) such that (A) isomorphic to H. A graph G is said to be H-free if G does not
contain H as an induced subgraph. More generally, given a family of connected graphs
H ={Hy, Hs, -, Hy}, we say that a graph G is H-free if G contains no induced subgraph
isomorphic to any graph in H. In this case, we call the graphs in H forbidden subgraphs of
G. We call H a forbidden pair if H = {H;, Hy}.

The research in this area has been mainly driven by the conjecture of Matthew and
Sumner [35] that: Every 4-connected claw-free graph is hamiltonian. Although Matthew and
Sumners conjecture is still open, Kaiser and Vrana [33] showed that every 6-connected claw-
free graph is hamiltonian, and Hu, Tian and Wei [31] showed that every 8-connected claw-free
graph is hamiltonian connected. On the other hand, Brandt, Favaron and Ryjacek [6] showed
that for any positive integer k, there are infinitely many k-connected claw-free graphs which
are not pancylic. Although in their examples only one even cycle is missing, I observed
that by modifying their examples, we can construct infinitely many k-connected claw-free
graphs without a spanning Halin subgraph. So, it makes sense to investigate what pair of
graphs {Hy, Ho} such that a k-connected {H;, Hy}-free graph possesses some hamiltonian
properties.

In 1991, Bedrossian [2] completely determined all forbidden pairs for when a 2-connected
graph is hamiltonian. Later, in 1995, Faudree, Gould, Ryjicek and Schiermeyer [24] proved
that every 2-connected {Claw, Z3}-free graph of order at least 10 is hamiltonian. In [25],
Faudree and Gould also completely characterized the forbidden pairs for hamiltonicity of
2-connected graphs with large order by allowing a finite number of exceptions. In the same
paper, they also determined the forbidden pairs for the class of traceable graphs. In 2004,
Gould, Luczak and Pfender [29] got positive results about forbidden pairs for pancyclic
graphs. In 1997, Faudree and Gould [25]; in 2000, Chen and Gould [12]; and in 2002,

Broersma et al. [7] separately gave some necessary conditions in terms of forbidden pairs for



the class of graphs that are hamiltonian connected.

Let Hi and Hy be two sets of forbidden subgraphs; we write H; < H, if for every
Hy € Hy, there exists Hy € H; such that H; is an induced subgraph of Hy. Clearly, if
Hq, < Hs, then every H;-free graph is also Ha-free. A pair H of graphs is called a forbidden
pair for spanning Halin subgraph if every 3-connected H-free graph contains a spanning
Halin subgraph. The reason that we add connectivity condition is that Halin graphs are 3-
connected. In [11], Chen et al. investigated forbidden pairs for graphs containing a spanning
Halin subgraph, made the following conjecture and showed that the necessary condition

holds for graphs with large size.

Conjecture 1.2.1. Let ‘H be a pair of connected graphs. Then every 3-connected H -
free graph has a spanning Halin subgraph (of sufficiently large order) if and only if H <
{Claw, Z3} or H < {Claw, By »}.

In 2014, Chen et al. [11] showed that: Every 3-connected {Claw, Ps}-free graph has
a spanning Halin subgraph. Later, in [10], Chen et al. showed that: There exists a span-
ning Halin subgraph in 3-connected {Claw, Zs}-free graphs or 3-connected {Claw, B 1 }-free
graphs.

In a series of papers([13, 14, 15, 16, 17, 18, 19, 20]), Chudnovsky and Seymour give a
decomposition theorem for claw-free graphs. Roughly speaking, a claw-free graph is a line
graph, or a long circular interval graph, or an antiprismatic graph, or several additional
classes of graphs, or could be decomposed into some smaller graphs by a few specified
operations, named “joins”. Since their theorem is much more involved in this thesis, in the

following, we only state the theorem and will give specific definitions in Chapter 2.

Theorem 1. [17](Decomposition Theorem For Claw-Free Graphs)

Let G be a claw-free trigraph. Then either
° GG.F()U"'U.F?, or

o (G admits either a 0-join, a 1-join, a generalized 2-join, a hezx-join, a nondominating

W -join or twins.



In this thesis, we will apply decomposition theorem for claw-free graphs to show that

the sufficient condition of Conjecture 1.2.1 holds by following two theorems.
Theorem 2. Every 3-connected {Claw, Zs}-free graph has a spanning Halin subgraph.
Theorem 3. Every 3-connected {Claw, By 2}-free graph has a spanning Halin subgraph.

The specific plan for this thesis is given below. In Chapter 2, we will introduce some
definitions, notations, the decomposition theorem for claw-free trigraphs and illustrate that
some families of trigraphs mentioned in Theorem 1 are indeed some families of graphs(for
example, line trigraphs are also line graphs). In Chapter 3, we will show that every trigraph
in F; U Fy U Fy contains both Z3 and B » as induced subgraphs, every graph in F5 is not
3-connected and both Theorem 2 and Theorem 3 hold for near-antiprismatic trigraphs(Fg).
In Chapter 4, we will prove some elementary lemmas which will be used repeatedly in later
chapters and will introduce the definition of “strong spanning Halin subgraph” and point
out the relations between strong spanning Halin subgraphs and spanning Halin subgraphs.
From Chapter 5 to Chapter 7, we will show that Theorem 2 and Theorem 3 hold for line
graphs, long circular interval graphs and antiprismatic graphs. From Chapter 8 to Chapter
11, we will discuss that a graph admits a 1-join, a (generalized) 2-join, a hex join or a

nondominating W-join. In Chapter 12, we will talk about twins.



Chapter 2

PRELIMINARIES

2.1 Definitions and notations

In this thesis, we consider simple and finite graphs only. The notations and definitions
not defined here can be found in [5]. A graph G is an ordered pair (V(G), E(G)) that consists
of a set V(G) of vertices and a set F(G), disjoint from V(G), of edges, together with an
incidence function g that associates with each edge of G' an unordered pair of vertices of
G. If e is an edge and w and v are vertices such that 1¢(e) = uv, then e is said to incident u
and v, and the vertices u and v are called adjacent to each other and nonadjacent otherwise.
A graph is complete if any two vertices are adjacent. A graph is called planar if it can be
embedded in the plane without edge-crossings. Such an embedded graph is called a plane
graph. A graph G is called finite if both V(G) and E(G) are finite. A graph is simple if
there exists at most one edge between every two vertices.

Two graphs G and H are isomorphic, written G = H | if there are bijections ¢: V(G) —
V(H) and ¢: E(G) — E(H) such that 1g(e) = uv if and only if ¥g(p(e)) = ¢(u)d(v).
Given two graphs H and G, if V(H) C V(G) and E(H) C E(G), then H is called a subgraph
of G and denoted as H C G. A subgraph obtained from G by deleting edges only is called
an edge-deleted subgraph, and a subgraph obtained from G by deleting some vertices and
all their incident edges is called a wvertez-deleted subgraph. A spanning subgraph of a graph
(G is a subgraph obtained by edge deletions only. A subgraph obtained by vertex deletions
only is called an induced subgraph; in such cases, the induced subgraph is denoted by (S)
and referred to as the subgraph of G induced by S. A clique of a graph is a set of pairwise
adjacent vertices. A graph G is called a line graph of H if V(G) = E(H) and for every
distinct e, f € E(H), e and f are adjacent in G if and only if they share a common vertex

in H.



A path is a simple graph whose vertices can be arranged in a linear sequence in such a way
that two vertices are adjacent if they are consecutive in the sequence, and are nonadjacent
otherwise. Likewise, a cycle on three or more vertices is a simple graph whose vertices can
be arranged in a cyclic sequence in such a way that two vertices are adjacent if they are
consecutive in the sequence, and are nonadjacent otherwise. A hole is a cycle with at least 4
vertices. A path or cycle which contains every vertex of a graph is called a hamiltonian path
or hamiltonian cycle of the graph. A graph is traceable if it contains a hamiltonian path,
and hamiltonian if it contains a hamiltonian cycle. A graph is hamiltonian connected if any
two vertices are connected by a hamiltonian path. A simple graph on n vertices is pancyclic
if it contains at least one cycle of each length [, where 3 <[ < n.

A graph is connected if, for every partition of its vertex set into two nonempty sets
X and Y, there is an edge with one end in X and the other in Y; otherwise the graph is
called disconnected. Every graph G may be expressed uniquely (up to order) as a disjoint
union of connected graphs; these graphs are called the connected components, or simply the
components, of G. A graph is k-connected(resp. k-edge connected) if the removal of any
vertex(resp. edge) set of size at most k — 1 results in a connected graph. A verter cut in a
graph G is a subset X of V(G) such that if we delete X from G and all edges incident to
X, then (G \ X) has more than one components. In this thesis, vertex cuts of size one, two
and three are called cut vertex, 2-cut and 3-cut, respectively.

An acyclic graph is one that contains no cycles. A connected acyclic graph is called a
tree. A vertex of a tree having degree exactly one is called a leaf of and all others are called
stems. A star, denoted by (u;vy,vg, -+ ,v), is a tree with exactly one stem. The stem of
a star is also called a center. A homeomorphically irreducible tree(HIT) is a tree with no
stems having degree 2. In particular, if the homeomorphically irreducible tree is a spanning
subgraph of G, it is called a homeomorphically irreducible spanning tree (HIST) of G. A
Halin graph is a plane graph, denoted by H = T U C, such that T is a HIST of H with
|T| > 4 and C'is a cycle obtained by connecting all leaves of T following the order given by

the plane embedding. Following the definition of H, we notice that for any stem z, there



are degr(xr) many faces F, containing x and an edge on C'. We call such a face an z-face.
A spanning Halin subgraph H = T'U C of G is called a strong spanning Halin subgraph
of G if for any stem = € V(T'), there is an z-face F such that z is adjacent in G to two
end vertices x1,xs of the edge of F, on C, for any two different stems x and x*, we have
x129 # xiay if © and x* are not adjacent in 7.

Let P be a hamiltonian property (such as traceable, hamiltonian, pancyclic and so on),
and k be the least connectivity possible in a graph with property P. Thus, for example,
if P is traceability, then k& = 1, while if P is hamiltonicity, then & = 2. A set of graphs
H ={Hy, Hs, -, Hy} is called forbidden subgraphs of P if every k-connected H-free graph
has property P. In particular, we call H a forbidden pair of P it H = {H;, Ha}.

A claw, denoted by (v; uy, us, us), is a star with exactly three leaves. For three nonneg-
ative integers k, [, m, let Nj; ., be obtained from a triangle K3 by attaching three disjoint
paths with length k,l,m to three distinct vertices of K3, respectively. Commonly, Ny ;¢ is
usually denoted by Bj;, where B stands for “Bull”, and Ny is denoted by Z;. In par-
ticular, we denote Zs by (z,y, z; uvw), B2 by (u;z,y, z;0w), and Ny 11 by (z,y, z;u; v;w),

where (x,y, z) is the triangle Kj3. Please refer to the following figures for examples.

Figure 2.1. Example of some forbidden graphs

For any two subgraphs H and K of G, E(H, K) denotes the set of edges in G with one



end in H and the other in K. Let v € V(G); the degree of v in G, denoted by degg(v), is
the number of edges that are incident with v. For any u,v € V(G), the distance between u
and v in G is the number of edges in a shortest path connecting them, denoted by dist(u,v).
Similarly, dist(v, A) is the number of edges in a shortest path from v to A, where A C V(G)
and v € V(G). For any vertex sets A, B € V(G), N4(B) = {v € B|dist(v, A) = i} and we
denote N}(B) by Na(B) for simplicity.

2.2 Decomposition theorem for claw-free graphs

Because the main tool for proving Theorem 2 and Theorem 3 in this thesis is Chud-
novsky and Seymour’s decomposition theorem for claw-free graphs, in this section, we will
quote all definitions related to decomposition theorem for claw-free graphs from their paper
directly. We will also give some explanations for these definitions and convert some families
of trigraphs into graphs if necessary and possible.

In a graph, every pair of vertices is either adjacent or nonadjacent, but in a trigraph,
some pairs may be undecided. In [17], Page 1, Chudnovsky and Seymour defined a trigraph
as following. A trigraph G consists of a finite set V(G) of vertices, and a map g : V(G)* —
{1,0, —1}, satisfying:

e for all v € V(G), 0g(v,v) =0,
e for all distinct u,v € V(G), 0 (u,v) = (v, u),
e for all distinct u, v, w € V(G), at most one of 05 (u,v), Og(v,w) = 0.

Oc is called the adjacency function of G. For distinct u,v in V(G), we say that u,v are
strongly adjacent if O (u,v) = 1, strongly antiadjacent if ¢ (u,v) = —1, and semiadjacent if
Oc(u,v) = 0. We say that u,v are adjacent if they are either strongly adjacent or semiadja-
cent, and antiadjacent if they are either strongly antiadjacent or semiadjacent. If we denote
by F(G) the set of all pairs {u, v} such that u,v € V(G) are distinct and semiadjacent, then

a trigraph G is a graph if F/(G) = (). By the definition of trigraph, we can easily see that the
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set of undecided pairs F'(G) is a matching. If H is a graph and G is a trigraph, we say that
G is an H-trigraph if V(G) = V(H), and for all distinct u,v € V(H), if u, v are adjacent in
H then they are adjacent in G, and if u, v are nonadjacent in H then they are antiadjacent
in G.

Based on “trigraphs”, Chudnovsky and Seymour defined some basic classes of trigraphs
for claw-free trigraphs and also introduced some decomposition operations, named as “joins”.
Although they did not explicitly state in their paper, some families of trigraphs defined
there are indeed families of graphs. For example, every line trigraph is indeed a line graph.
Here we strictly follow and directly quote their definitions (see [17], Page 3 to 6) for easily
understanding.

Some basic classes of claw-free trigraphs:

Fo: Line trigraphs. Let H be a graph and G be a trigraph with V(G) = E(H). We

say that G is a line trigraph of H if for all distinct e, f € F(H):

e if e, f have a common end in H then they are adjacent in G, and if they have a common

end of degree at least three in H, then they are strongly adjacent in Gj
e if e, f have no common end in H then they are strongly antiadjacent in G.

We say that G € F; if GG is isomorphic to a line trigraph of some graph. It is easy to check
that any line trigraph is claw-free. The following lemma shows that a line trigraph is also a

line graph.

Lemma 2.2.1. Let H be a graph. If G is a line trigraph of a graph H in Fy, then there
exists a graph H* such that G is the line graph of H*.

Proof. Let G be a line trigraph of a graph H. For every two vertices e and f in
V(G), if e and f share a common vertex with degree at least 3 in H or e and f do not
share a common vertex, then ef is determined (strongly adjacent or strongly antiadjacent)
in E(G). Thus we assume e and f share a common vertex v with degree 2 in H. Let e = vju

and f = wvu. If ef exists in G, let H' = H; if ef does not exist in G, then split u into
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two vertices, say u; and ug, and let e = vyuy, f = vyus and denote the new graph by H'.
Then G is a line trigraph of H’ with ef is determined. If we perform this operation to all
undetermined edges of G and denote the final graph obtained from H by splitting degree 2

vertices, if necessary, as H*, then G is a line graph of H*. |

Fi: Trigraphs from the icosahedron. The icosahedron is a planar graph with twelve
vertices and each vertex has degree exactly five (See Figure 2.2(1)). For k € [0, 2], icosa(—k)
denotes the graph obtained from the icosahedron by deleting k pairwise adjacent vertices. We
say G € Fy if G is a claw-free icosa(0)-trigraph, icosa(—1)-trigraph or icosa(—2)-trigraph.

In Section 5.1 and 5.2 of paper [17], Chudnovsky and Seymour showed that every claw-
free icosa(0)-trigraph G and every claw-free icosa(-1)-trigraph G satisfies F(G) = (), and
therefore they are graphs. Every claw-free icosa(-2)-trigraph G satisfies |F(G)| < 2 and the

two undetermined edges do not exist in the corresponding icosa(-2)-graph.

1) (@)

Figure 2.2. Examples of trigraphs in J; or Fs.

F5: The trigraphs. Let G be the trigraph with vertex set {vy, - - -, v13}, with adjacency
as follows. vy ---wvgvy is a hole in G of length 6. Next, v; is adjacent to vy, vo; vg is adjacent
to vy, vs and possibly to vr; vg is adjacent to wvg, vy, Vo, U3; V19 is adjacent to wvs, vy, vs, g,
V9, V11 is adjacent to vs, V4, Vg, V1, Vg, V1g; V12 is adjacent to ve, V3, V5, Vg, Vg, V10; and V13
is adjacent to vy, ve, vy, v5, v7, vg. No other pairs are adjacent, and all adjacent pairs are

strongly adjacent except possibly for v7, vg and vg, vig. (Thus the pair v;vg may be strongly
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adjacent, semiadjacent or strongly antiadjacent; the pair vguvig is either strongly adjacent
or semiadjacent, see Figure 2.2(2)). We say H € F, if H is isomorphic to G \ X, where
X C {vr, 11, v12, 013}

F3: Long circular interval trigraphs. Let X be a circle, and let Fy,--- | Fp, C X be
homeomorphic to the interval [0, 1]. Assume that no three of Fi,--- | Fy have union X, and
no two of F,---, Fy share an end-point. Now let V' C ¥ be finite, and let G be a trigraph

with vertex set V', in which, for distinct u,v € V,

e if u,v € I} for some 7 then u, v are adjacent, and if also at least one of u, v belongs to

the interior of F; then u, v are strongly adjacent;

e if there is no ¢ such that u,v € F; then u, v are strongly antiadjacent.

Such a trigraph G is called a long circular interval trigraph. We write G € F3 if G is
a long circular interval trigraph. In particular, a graph G with vertex set V' is called a long
circular interval graph if every distinct u,v € V', u, v are adjacent if and only if there exists

1 such that u,v € Fj.

Lemma 2.2.2. Fvery long circular interval trigraph in F3 is also a long circular interval

graph.

Proof. If every edge in G is determined, then the conclusion is clearly true. Thus,
we can assume there exists an undetermined edge uv in G. By definition, there exists an
interval F; containing both u and v as end-points.

Since no two of Fj,-- -, F} share an end-point and V' is finite, if uv exists in GG, we can
find two extremal small close intervals, say [a, u] and [v, b], such that [a, u], [v,b] C L\UE_ F}.,
and for any vertices w € V' \ {u,v}, w ¢ [a,u] U [v,b]. Let F} = [a,u] U F; U [v,b], then F}
possesses the same properties as F;. If uv does not exist in GG, we can also find two extremal
small intervals [u, ¢) and (d, v] such that [u, ¢), (d,v] C F; and for any vertices w € V' \{u, v},
w ¢ [u, U [d,v]. Let F] = F; \ ([u,c) U (d,v]), then F] possesses the same properties as F;.

If we perform this operation to all undetermined edges of GG and denote the final intervals

as Iy, -+, Fy(note that we have F; = F7 if one end of F} is not a vertex of G), then FY,--- | F}
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have the same properties of Fi,---, F, and G is a long circular interval graph based on
Fl,--- F]. [

F,: Modifications of L(Kg). Let H be a graph with seven vertices vy, - - - , vz, in which
vy is adjacent to vg and to no other vertex, vg is adjacent to at least three of vy, - -+, v5, and
there is a cycle with vertices vyvy - - -wvsvy in order. Let J(H) be the graph obtained from
the line graph of H by adding one new vertex, adjacent precisely to those members of E(H)
that are not incident with vg in H (See Figure 2.3(1)). Then J(H) is a claw-free graph. Let
G be either J(H) (regarded as a trigraph), or (in the case when vy, vs both have degree
two in H), the trigraph obtained from J(H) by making the vertices vsvy, vivs € V(J(H))

semiadjacent. Let F4 be the class of all such trigraphs G.

ug vo

S

Figure 2.3. Trigraphs in F4 or Fg.

Fs: The trigraphs. Let n > 2. Construct a trigraph G as follows. Its vertex set is
the disjoint union of four sets U, V,W and {xy,--- , x5}, where |U| = |V| = |W| = n, say
U=Auy, - ,u,}, V={v, - ,u,} and W = {wy, - ,w,}. Let A C UUV UW with
|ANU|, [ANV], |[AnW]| < |[W]| — 1. Adjacency is as follows: U, V,W are strong cliques.
For 1 <1i,j <n, u;,v; are adjacent if and only if ¢ = j. And w; is strongly adjacent to u; if

and only if ¢ # 7, and wj is strongly adjacent to v; if and only if ¢ # 5 . Moreover

e u; is semiadjacent to w; for at most one value of i € [1,n], and if so then v; € A,
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e v; is semiadjacent to w; for at most one value of i € [1,n], and if so then u; € A,
e u; is semiadjacent to v; for at most one value of ¢ € [1,n], and if so then w; € A,
e no two of U\ A, V'\ A, W\ A are strongly complete to each other.

Also, 7 is strongly U UV U W-complete; x5 is strongly complete to U UV, and either
semiadjacent or strongly adjacent to xi; 3 is strongly complete to U U {xy}; x4 is strongly
complete to V U {xs, x3}; x5 is strongly adjacent to z3, x4; and all other pairs are strongly
antiadjacent. Let the trigraph just constructed be G, and let H = (V(G) \ A). Then H is
claw-free; let F5 be the class of all such trigraphs H.

Fo: Near-antiprismatic trigraphs. Let n > 2. Construct a trigraph as follows. Its
vertex set is the disjoint union of three sets U, V, W, where |U| = |V| =n + 1 and |W| = n,
say U = {uo,u1, -+ ,unt, V= {vo,v1, -+ ,v,} and W = {wy, -+ ,w,}. Adjacency is as
follows: U, V, W are strong cliques. For 0 <, <n with (¢, j) # (0,0), let u;, v; be adjacent
if and only if i = j, and for 1 < i < n and 0 < j < n let w; be adjacent to u;, v; if and
only if ¢ # j # 0; ug, vy may be semiadjacent or strongly antiadjacent. All other pairs
not mentioned so far are strongly antiadjacent. Now let A C U UV U W \ {ug, v} with
W\ A| > 2. Let all adjacent pairs be strongly adjacent except: u; is semiadjacent to v; for
at most one value of i € [1,n], and if so then w; € A (See Figure 2.3(2)).

Let the trigraph just constructed be G, and let H =(V(G) \ A). Then H is claw-free;
let Fg be the class of all such trigraphs H. We call such a trigraph H near-antiprismatic,
since making ug, vy strongly adjacent would produce an antiprismatic trigraph.

F7: Antiprismatic trigraphs. Let us say a trigraph is antiprismatic if for every
X C V(@) with | X| =4, X is not a claw and there are at least two pairs of vertices in X
that are strongly adjacent. Let F7 be the class of all antiprismatic trigraphs.

A graph G is called antiprismatic graph if for every X C V(G) with |X| =4, X is not
a claw and there are at least two pairs of vertices in X that are adjacent. It is clearly that

every antiprismatic trigraph is also an antiprismatic graph.
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Now we want to introduce some classes of graphs admit certain decomposition opera-
tions, which are named as “joins”:

0-join: Suppose that Wy, W is a partition of V(G) such that Wy, W5 are nonempty and
Wy is strongly anticomplete to Ws. We call the pair (W;, W) a 0-join in G. If a tirgraph
G admits a 0-join, then G is disconnected. Since the spanning Halin subgraph exists in a
graph with connectivity at least 3, we do not need to consider about the family of trigraphs
admit 0-join.

1-join: Suppose that Wi, Wy is a partition of V(G), and for i = 1,2 there is a subset
A; C W; such that:

o A, Wi\ A; #(fori=1,2,
e A; U A, is a strong clique, and
e W\ A; is strongly anticomplete to Wy, and W is strongly anticomplete to W \ As.

In these circumstances, we say that (W, W) is a I-join. If G admits a 1-join, all edges
between W; and W, are determined (strongly adjacent or strongly antiadjacent), and all
edges in W and W5 are not known.

Generalized 2-join: Suppose that Wy, Wy, Wy are disjoint subsets with union V(G),

and for ¢ = 1,2 there are subsets A;, B; of W, satisfying the following:

o WyUA;UA; and WyU By U By are strong cliques, and W) is strongly anticomplete to

o fori=1,2, A;NB; =0 and A; ,B; and W; \ (A; U B;) are all nonempty; and

e for all v € Wy and w € Ws, either v is strongly antiadjacent to w, or v € A; and

wE Ay, orv € By and w € Bs.

We call the triple (Wo U Wy U Ws) a generalized 2-join, and if Wy = () we call the pair (W7,
Ws) a 2-join. Note that every edge in (generalized) 2-join is either determined (strongly

adjacent or strongly antiadjacent) or not known.
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Hex-join: Let (W, W5) be a partition of V(G), such that for ¢ = 1,2 there are strong

cliques A;, B;, C; C W; with the following properties:
o Wi, W5 are both nonempty;
o for i = 1,2 the sets A; , B; , C; are pairwise disjoint and have union W;;

o if vy € Wy and vy € Wy, then vy is strongly adjacent to vs unless either v; € A; and
vy € Ag, or v1 € By and vy € By, or v; € C] and vy € Cy; and in these cases vy, vy are

strongly antiadjacent.

In these circumstances, we say that G is a hex-join of (W;) and (W5). The edges between
Wi and Wy are all determined and the edges between A;, B; and C; are not known.

Nondominating W-join: The pair (A, B) is called a homogeneous pair in G if both
A and B are strong cliques, and for every vertex v € V(G) \ (AU B), either Ny(v) = A
or Ny(v) N A = () and either Ng(v) = B or Ng(v) N B = (. Let (A, B) be a homogeneous
pair, such that Ng(A) N B # () and Ng(A) N B # B, and at least one of A, B has at least
two members. In these circumstances, we call (A, B) a W-join. The W-join is called a
nondominating W -join if there exist a vertex of G\ (AU B) has no neighbor in AU B.

Twins: We call u,v are twins if uv € E(G) and Nequ,03(v) = Nefu, (V).

In [17], Chudnovsky and Seymour introduced decomposition theorem for claw-free tri-

graphs as follows.

Theorem 1:(Decomposition Theorem For Claw-Free Trigraphs)

Let G be a claw-free trigraph. Then either

o GG.F()U"'U.F?,OI"

e (G admits either a 0-join, a 1-join, a generalized 2-join, a hex-join, a nondominating
W-join or twins.
In Chapter 3, we will show that every trigraph in F; U F, U JF, contains both Z3 and

B2 as induced subgraphs on their strongly adjacent pairs; every trigraph in F5 is not 3-

connected; and there exists a strong spanning Halin subgraph in any near-antiprismatic
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trigraph by only using strongly adjacent pairs. Since all pairs are mentioned in a trigraph
admits a 1-join, a (generalized) 2-join, a hex-join or a nondominating W-join are either
determined (strongly adjacent or strongly antiadjacent) or not known, if G is a trigraph
admits these joins, there exists a graph H such that V(G) = V(H) and for any pair {u, v},
uv is adjacent in H if and only if uv is strongly adjacent in G and wv is nonadjacent in H
if and only if uv is strongly antiadjacent in G. To find a spanning Halin subgraph in G,
we only need to find a spanning Halin subgraph in H. By Lemma 2.2.1, Lemma 2.2.2 and
the definition of antiprismatic graphs, we only need to consider graphs, instead of trigraphs,
when we are searching a spanning Halin subgraph in G if G € Fy U F3 U F; or G admits a

0-join, a 1-join, a generalized 2-join, a hex-join, a nondominating WW-join or twins.
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Chapter 3

GRAPHS IN F U F U FyUFsU F.

In this chapter, we will show that every trigraph in F; U JF, U F; contains both Z3 and
B, 2 as induced subgraphs by only using strongly adjacent pairs, every trigraph in F; is not

3-connected and every trigraph in Fg contains a strong spanning Halin subgraph.

3.1 Trigraphs in F; U F, U F, are neither Zs;-free nor B, s-free.

Proposition 1. Every trigraph in F contains both Zs and B s as induced subgraphs.

Proof. Let G be a trigraph in Fi, vq1,v12 be the two possible deleted vertices, and
U9U4, V709 be two semiadjacent edges in F'(G) if both vy; and vy are deleted. By Lemma 5.1
and 5.2 in Chudnovsky and Seymour’s paper, we know every edge, except for vevy and v;vg,
id strongly adjacent. So (v1,vq, v3; v6Usv1) is an induced Zz and (vg; vs, V19, V7; V2v1) 1S an

induced B . [

Figure 3.1. Every trigraph in F; contains both Z3 and B » as induced subgraphs.

Proposition 2. Every trigraph in Fy contains both Zs and B o as induced subgraphs.
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Proof. By the definition, it is easy to see that (vs, vy, vs; Ugv1v2) is an induced Z3 and
(vs3; V4, Vs, Us; U6U1) 1s an induced By . [ |

Proposition 3. Every trigraph in F, contains both Z3 and B 2 as induced subgraphs.

Proof. We may assume v,vg, v306 € E(H) and denote the new vertex of J(H) as v.
Then (vyvg, UgU7, V3Us; V302, U, V405) is an induced Z3 and (vivy; v1vg, VgU7, U3Vg; U3Vg, UgUs) 1S

an induced B o(See Figure 3.2). [ |

v7

@ @

Figure 3.2. Every trigraph in F, contains both Z3 and B » as induced subgraphs.

3.2 Connectivity of trigraphs in F;

Proposition 4. Every trigraph in Fs is not 3-connected.

Proof. If G is a trigraph in F5, then Ng(z5) = {x3,24}. Thus G is not 3-connected.

3.3 Near-antiprismatic trigraphs contain strong spanning Halin subgraphs

Since we will show that every antiprismatic trigraph contains a strong spanning Halin
subgraph in Chapter 7, here, by the definition of near-antiprismatic trigraphs, we can assume

uovg ¢ E(G). We will prove the following proposition in this section.
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Proposition 5. If G is a 3-connected near-antiprismatic trigraph, then G contains a strong

spanning Halin subgraph on its strongly adjacent pairs.

We want to introduce the following two claims about near-antiprismatic trigraphs before

searching a strong spanning Halin subgraph in G.
Claim 3.3.1. |[U\ A| >4 and |V \ A| > 4.

Proof. Since G is 3-connected and wow;, uovj, vow;, vou; ¢ E(G) for all w; € W,
u; € U and v; € V, we have degya(ug) > 3 and degy\a(vo) > 3. Thus |U \ A] > 4 and
[V\ Al > 4. [

Claim 3.3.2. For any w; € W\ A, |[Npna(w;)| > [U\ A =2 > 2 and |Ny\a(w;)| >
[V\Al—2>2.

Proof. Since for any w; € W\ A, it is strongly antiadjacent to at most two vertices,
up and u;, in U\ A, we have [Np\a(w;)| > |U \ A| —2 > 2. Similarly, we can show that
Nena(w)] 2 [V Al ~2> 2 .

According to Claim 3.3.1 and 3.3.2, we can find a strong spanning Halin subgraph in

G as follows.

Case 1: |[W\ 4| > 3.

We let W\ A = {wy,ws,- - ,w;} and assume u;wy, ujwa, UpWs, VWi, U;W1, VyWs, Wy €
E(G), where 4, j, k, s,t,1 € [1,n]. Since U\ (AU{w;}), V\ (AU{vs}) and W\ (AU {wy,ws})
are strong cliques, there exist strong hamiltonian paths, say P, = u;Piug, P» = 0Py
and P; = wsPsw, in them, respectively. Let W = P P3P, U {v,wy, wou;} be a strong
cycle and all vertices on the strong path wwivs be stems of T" with Ny (u;)) = V(Py),
Nw(wy) = V(P3) U{ws} and Ny (vs) = V(). Let H =T UW, since both u; and v, are
adjacent to two consecutive vertices of C* in T', u;wy, wow; € E(G) and ujw, € E(C), we

know H is a strong spanning Halin subgraph of G (See Figure 3.3(1)).

Case 2: W\ A = {wy, ws}.
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Since G is 3-connected, there must exist k& € [1,n] such that ugb, € E(G). By Claim
3.3.1 and 3.3.2, we may assume that w;ws, ujws, ujwy, vswr, vwe € E(G). Since both U\ (xU
{u;}) and V' \ {x U{v,}} are strong cliques, there exist hamiltonian strong paths P, = u; Pyuy
and P, = v, Py, in them respectively. Let W = P, P,U{vws, wou,} be a strong cycle and all
vertices on the strong path w;wivs be stems of T" with Ny (u;) = V(Py), Ny (wy) = U{ws}
and Ny (vs) = V(P2). Let H = T'U W, similar as seen as Case 1, we know H is a strong

spanning Halin subgraph of G (See Figure 3.3(2)).

Figure 3.3. GG is a 3-connected near-antiprismatic trigraph.
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Chapter 4

SOME LEMMAS

From this chapter and after, we only consider graphs. We introduce several lemmas in

this chapter, which will be used repeatedly in later chapters.

4.1 Properties of minimum vertex cut in a claw-free graph

In the remaining part of this thesis, we always assume G is a non-complete claw-free

graph and reserve S as a minimum vertex cut of G.

Lemma 4.1.1. Let G be a claw-free graph, then
1. For any x € S and any component D of G\ S, N(z) N D # ()
2. G\ S has ezxact two components, say G; and G.

Proof. The first statement holds for minimum cuts in any graph. The second one

follows the first one and that G is claw-free. [ |

Let V; = V(G;) for i € [1,2], and assume, without loss of generality, that |Vi| < [V3|. In

addition, we assume |V;| is a minimum subject to |S| being minimum.

Lemma 4.1.2. Following the above definitions of G, S and Vy, we have the following state-

ments.

1. [Ny, (z)| = 2 for each x € S if |Vi| > 2. In general, for each A C S, we have
|Nv, (A)| > |A] or Ny, (A) = Vi and [Ny, (A)] > |A| — 1 or Ny, (A) = Va.

2. Ny,(z) is a clique for each x € S, where i € [1,2].

Proof. Suppose to the contrary, there is a vertex z € S such that degy, () = 1. Let
w be the unique neighbor of v in Vj. Then, S* = (S \ {v}) U {w} is also a cut of G, and
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Vi\{w} is not adjacent to any other vertices in G\ S*. Thus G\ S* has a component smaller
than 1}, giving a contradiction.

The second conclusion is true since G is claw-free. [ |

4.2 Strong spanning Halin subgraph and spanning Halin subgraph

Let G be a graph, and z,y are two vertices of G. = and y are called twins of G if
zy € E(G) and Ng(z) = Ng(y). Twins emerge when we duplicate vertices. For any vertices
v € V(G), by duplicating a vertex v, we mean that we add a new vertex w to G and let w
be adjacent to all neighbors of v and v itself. Clearly, v and w are twins in a new graph.
If G is a claw-free graph, then duplicating any vertex of G results in a claw-free graph. A
3-connected claw-free graph is called twins-free if every pair of twins appears only in the
3-cut. Recall that a Halin graph H = T'U C' is a plane graph. Following the definition of
H, we notice that for any stem x of T, there are degr(z) many faces F, containing x and an
edge on C. We call such a face an z-face.

Let G be a graph. A spanning Halin subgraph H = T U C' of G is called a strong
spanning Halin subgraph of G if for any stem = € V(T'), there is an z-face F, such that x
is adjacent (in G) to two end vertices xy, x5 of the edge of F, on C. For any two different
stems x and z*, we have x1xy # a2} if © and z* are not adjacent in 7.

Note that the induced subgraph on all stems of T is still a tree, denoted by T". Every
leaf of 7" is adjacent to at least two consecutive vertices of V/(C) in T'. So to check whether
H is a strong spanning Halin subgraph, we only need to investigate that for every stem x of
T’, there is a z-face F, that contains an edge uv of C' such that both u and v are adjacent

to z in G.

Lemma 4.2.1. Let G be a graph and {x,y} be a pair of twins of G. If G\ {y} has a strong

spanning Halin subgraph, then G also has one.

Proof. Let H = T UC be a strong spanning Halin subgraph of G \ {y}. We will

insert y to C to form a strong spanning Halin subgraph of G by considering either x in
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V(C) or z is a stem of T'.

Case 1: Assume that z € V(CO).

Let 2t and 2~ be the successor and the processor of x on C. Set v as the stem of
T is adjacent to x. After replacing = by x,y, we insert y in C' to obtain a cycle C* =
(C\{xtz,zz”}) U{xTx, zy,yxr~} and a tree T* = T U {vy}.

We are now checking that H* = T* U C* is a strong spanning Halin subgraph of G.
For any stem w € V(T'), if w = v, then w has two neighbors z,y in G* and zy is on C*; if
w # v, then Ng(w) contains two consecutive vertices v and u™. If uut # z~z, then u, u™
are also consecutive on C*; if uu™ = zx~, then y, ™ are two consecutive neighbors of w on

C*. In any case, we are done.

Case 2: Suppose that x is a stem of T

In this case, we insert y between z1, x5 by letting C* = (C'\ {z122}) U {z1y, 22y} and
a tree T* =T U {xy}. Clearly, 1,y € Ng(x) are two consecutive vertices on C*. For each
stem z with z # x, let 21, 250 € Ng(z) be two associated neighbors of z, which are consecutive
on C. If z1z5 = 129, which implies = and z are adjacent in T, then yz € E(G) and y, x5
are two consecutive vertices associate with z on C*. If z129 # 129, then z1, 25 are still two
consecutive vertices associate with z on C*. Clearly, each stem is associated with a distinct

edge of C™*. |

In Chapter 12, we will show that if G is 3-connected {claw, Z3}-free or {claw, B 5 }-free
and admits a twins in its 3-cut, then G contains a spanning Halin subgraph. Thus, from
the next chapter on (except Chapter 12), we always assume G is twins-free and try to find

a strong spanning Halin subgraph, instead of a spanning Halin subgraph, in G.

4.3 One special case of 3-connected {claw, Z3}-free graph

In this section, we assume G is a 3-connected {claw, Zs}-free graph with |V;] > 2, and
at least one of Vi and V5 is not a clique. Then the following proposition is showing that G

contains a strong spanning Halin subgraph.
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Proposition 6. Let G be an n-vertex 3-connected {claw, Zs}-free graph with |Vi| > 2, and

at least one of Vi and Vs is not a clique, then G contains a strong spanning Halin subgraph.

Proof. Let G be a graph satisfying the condition of Proposition 6. We will find a

strong spanning Halin subgraph through the following sequence of claims.

Claim 4.3.1. For any x € S, the induced subgraph (Vo U {x}) does not contain an induced

path xwijwyws and |No(z)| > 2.

Proof: To prove the first part of the claim, suppose on the contrary that there is an
x € S and an induced path zwjwyws with wy, wy, w3 € V. Since |Vi| > 2, there are two
vertices uj, ug € Ny(x), then (uq, ug, r; wywews) is an induced Z3, a contradiction.

We now prove the second part of the claim. If there exist x € S such that |[Ny(x)| = 1,
let No(z) = {w}. By the above statement, we know V5 = {w} U NZ(z). Since G is claw-
free, No(w) \ {v} is a clique, as well as V5. This in turn implies V; is not a clique. Let
w',w” € N2(x). Since Ni(z) is a clique, V1 \ Ni(z) # 0. Let zujuz be an induced path with
uy,uz € V3. Then (w', w”, w; xujus) is an induced Z3, giving a contradiction. [ |

For any vertex x € S, since |V| > 2, we have |N;(z)| > 2. Following Claim 3.1, we have
|No(z)| > 2. So |N;(z)| > 2 for both ¢ € [1,2]. Thus V; and V, are symmetric if we only
use the property |N;(z)| > 2. We assume, without loss of generality, that V5 is not a clique.
Moreover, in the following proof, we let x be a vertex in S and Wy, Wy, --- | W) be the vertex
sets of components of (N2(z)). Let W/ = N(W;) for each i € [1,k]. Clearly W/ C Ny(z) ,

otherwise, Z3 will be found.

Claim 4.3.2. W; UW/ is a clique for all i € [1,k].

(3

Proof: For any w € W/, we have N(w) O W;, otherwise there is an induced path zww;w,
with wy,wy € W, giving a contradiction to Claim 4.3.1. Then E(W;, w}) contains every
possible edge between W; and W/. Since G is claw-free, W; is a clique. Since W/ € Ny(w),

it is a clique. So W; U W/ is a clique. |
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Claim 4.3.3. If Ni(z) # Vi, then N2(z) is an independent set. Thus |Wy| = |[Wy| = -+ =
[Wi| = 1.

Proof: Since V1 \ Ny () # (), there exists an induced path xujus with uy, us € Vi. If there
exists ¢ € [1, k] such that |W;| > 2, denote wy, ws € W; and w' € W/, then (wy, wy, w'; xuus)

is a Z3, giving a contradiction. [

Claim 4.3.4. For anyy € S\ {z}, we have
1) Nao(z) = No(y) and zy € E(G) if No(y) N N3 (z) = 0.
2) Ni(z) = Wi and Ny(y) = Wy U W] if Nao(y) N Nz (x) # 0.

Proof 1) Suppose that Ny(y) N N3(z) = 0. Since V5 is not a clique, N3(z) # 0. Thus,
there exists an induced path zwjwy with wy, wy € Vo. We can show that N(y) N N(ws) # 0.
Otherwise, let w € N(y) \ N(ws). Then ywwiws, is an induced P;. This path and two
neighbors of y in V} induce a Z3, showing a contradiction. Similarly, we can prove that
N(wy) € N(y). We now claim that No(x) \ N(wse) C N(y). Otherwise, there exists a vertex
w” € N(x) \ N(y), then (wy;y, ws,w”) is a claw.

2) Suppose that Ny(y) N N3(x) # 0. Recall that N3(x) is a union of disjoint cliques
Wi, Wy, -+, Wy. We assume, without loss of generality, Na(y) W7 # 0. Let w; € WiNN(y)
and w] € N(w;) N N(x). Since No(y) is a clique, No(y) C Wy UW/. If N2(x)\ W, # 0, then
N3 (x)\W1 € Na(y)UNZ(y), which contradicts Claim 4.3.1. Thus Nj(z) = W;. We now show
that No(y) = Wi UW/. Since V5 is not a clique, there exists a vertex w’ € No(z)\ WyUW]. If
there exists a vertex w” € W{\ N(y), then there is an induced path yw;w”w’, together with
the two neighbors of y in Vi, it will induce a Z3. Thus W{| C Ny(y). For any w"” € Wi\ {w, },
since w”,y,w" € N(w}) and G is claw-free, w”y € E(G), which implies W; C Ny(y). |

Following Claim 4.3.4, S could be divided into two subsets, S; and S, such that S| =
{y € S| Na(y) = Na(z), 2y € E(G)} and Sy = {y € S[Nao(y) = Wi U Wi}

Claim 4.3.5. Both S; U Ny(z) and Sy UWy U W] are cliques.

Proof: By Claim 4.3.1, S; U Ny(x) is clearly a clique. Since V3 is not a clique, there
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exists wy € W/ and wy € Ny(x) \ {W7}. For any y;,ys € Sa, to avoid (wq;yi, Yy, we) be a
claw, y1y2 € E(G). Together with Claim 4.3.1, we have Sy, U W; U W] as a clique. [ |

Claim 4.3.6. If Sy # 0, then |[W{| > 2.

Proof: Since V3 is not a clique, No(z) \ W] is a component of G \ (S; UW/). By the
minimality of |S|, we have |S; U W]| > |S| > |[S1 U Sy|, which implies |[W]| > |Sy|. If
|W/{| =1, then |Ss| = 1, which implies Sy U W/ is a vertex cut of size 2, contradicting that
G is 3-connected. |

Since V; and V, are symmetric in this case, we can get similar properties for (V;) and
can partition S into two subsets: S| = {y € S| Ni(y) = Ni(x)} and S, = {y € S| N1(y) =
U, UU{}, where Uy = Ni(z) and U] = N(U;) N N(z).

Our goal is to find a strong spanning Halin subgraph H in G. First we want to find

the part of H in (V5 U S) by considering two cases.

Case 1: Sy = 0.
In this case, Ny(y) = Na(z) for any y € S. Since G is 3-connected, |W/| > 3. Let

w;,, w; w?’:g S Wilv ‘/2, = N2(x> \ (Ui‘g:l{wglvw,' wgg ) = {wivwév' o 7w1/t’}7 R = wgzpiwgg be

i Wiy s ia?
hamiltonian paths in (W; UW])\ {wj,} for i € [1, k] and Py = w; Pywy be a hamiltonian path
in (V5). Let S = {x1,29,--- , 2} and P’ = x3P'x; be a hamiltonian path in S\ {x,z2}. Let
Cy = RyP, - - - PP'U{zow; } be a path and the vertices on the star {z;} U(UL {w],}), where
{21} is the center, be stems of T5 with Ne(x;) = V(S) U VS and Ne(wj,) = W; U {w;,, w;,

for all i € [1,k]. Then T is a HIST of (Vo U S) and V(Cy) = {u € T | degr, (u) = 1}.

Case 2: Sy # 0.

In this case, both S;UNy(z) and Sy UW, UW] are cliques and N2(x) = Wi. We let S; =
{z1, 29, -+ x4, } and Sy = {y1,¥2, -+ , Yz, }, where we assume t; > 2 since |S| > 3. In partic-
ular, we regard y; is the same vertex as x; in Case 1. We denote W = {wy,, wo,, - - - ,w2k2},
Ny(z) = {wy,, w1y, - ,wy, } and assume wy,,wy, € W] by Claim 4.3.6. Let P’ = x9P'xy,,

P" =y, P"y1, Pr = wi,Prwy, and Py = wy, Pyws,  be hamiltonian paths in Sy \ {21}, Sz,
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Ny(z) \ {wy, } and Wy, respectively. Let Cy = P'PyP,P” be a path and {z;,wy, } be stems
of Ty, with Ne,(wy) = (V(P) \ {z2}) UV (P) UV (P,) UV (P") and N¢,(z1) = {x2}. Then
Ty is a HIST of (VLU S) and V(Cs) = {u € Tz | degp,(u) = 1}.

We now find the other part of H in (V; U {z;}) by considering three following cases.

Case 1: We assume that |V;| > 3 and it is not a clique.

If V4| > 3 and V; is not a clique, similarly as V5 is not a clique, we can also find a
HIST Ty in (V4 U {x}) and a path C goes through all leaves of T7. Moreover, we can also
guarantee C; U T} is a planar graph and z; is one stem of 77. We may denote the two

endpoints of C by u; and wus.

Case 2: We assume that |Vi| > 3 and it is a clique.
Let uy, ug, ug € Vi such that ugzy, uyzs, usz; € E(G). We denote by C7 = u1Cius as a
hamiltonian path in Vi \ {us} and 7 as a HIST of (V; U {x;}) with stem w;, which connects

to all leaves.

Case 3: We assume that |V;| < 2.

Note that Ny(z) = Vj for all z € S. Let C7 = ujus and T} be a HIST of (V; U {z1})
with stem x1, which connects to leaves {u;, us}.

Note that we can assume w22, usy; € F(G). This is clearly true if V] is clique or
Sy =0 or Sy = (. If neither Sy nor S} is empty, since x5 is an arbitrary vertex of S; and
y1 is an arbitrary vertex of Sy, we only need to show that zo € S| and y; € S). Suppose
this is not true. Then either x5, y; € 57, which implies S = 5], or x5, y; € S5, which implies
So U (S1\ {z1}) C Si. Contradicting to the assumption that S} # () and |S]| > 2.

Now we let T =T1UTy, C = C1UCyU{ujzs,usy;} and H = TUC. Then T is a HIST
of G and C is a cycle obtained by connecting all leaves of T, H is planar. Moreover, the
subgraph induced on all stems of T" is a star with center x. Furthermore, we have |S—1| > 2
or riwy, € E(G). Thus, H is a strong spanning Halin subgraph of G. We only give the
figure for Sy # () and S5 = 0 (See Figure 4.1). [ |



Figure 4.1. {claw, Z3}-free graph with |Vi| > 2 and V; or V4 is not a clique.
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Chapter 5

LINE GRAPHS

A graph G is called the line graph of H if V(G) = E(H) and two vertices in G are
adjacent if and only if the corresponding edges in H are incident. In this chapter, we will

show following two propositions.

Proposition 7. If G is a 3-connected Zs-free line graph, then G contains a strong spanning

Halin subgraph.

Proposition 8. If G is a 3-connected B o-free line graph, then G contains a strong spanning

Halin subgraph.

5.1 Characterization of line graphs

In 1970, Beineke [3] used the following lemma to give a full characterization of line

graphs.
Lemma 5.1.1. [3] The following statements are equivalent for a graph G.
1. G s a line graph of some graphs.

2. The edges of G can be partitioned into complete subgraphs in such a way that no vertex

belongs to more than two of the subgraphs.
3. None of the nine graphs in Figure 5.1 is an induced subgraph of G.

Assume that G is a graph with n-vertex and S is a minimum vertex cut of G. We still
follow the definitions and notations in Section 4.1. Let G; and G5 be the two components
of G\ S, and Vi = V(G,), Vo = V(Gs). Subject to the minimality of | S|, we always assume

that |V4| is minimum. From Lemma 5.1.1, we can easily get the following two corollaries.
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Figure 5.1. Forbidden subgraphs for line graph

Corollary 5.1.1. For any x,y € S and i € [1,2], if |N;(x) N N;(y)| > 2, then zy € E(G).

Proof. Suppose to the contrary, there exist two vertices x,y in S having two common
neighbors wy, we in V,. Since N;(z) is a clique, wyws € E(G). If N3_;(x) N N3_;(y) # 0, then
G contains an induced subgraph isomorphic to H-2. Otherwise, let u; € N3_;(x) \ N3—;(y)

~

and uy € N3_;(y) \ N3_;(x). Then either (uq, us, x,wy, ws,y) = H-3 or (uy, us, x, wy, ws, y)

H-4, showing a contradiction.

Corollary 5.1.2. If there exists x € S such that Ni(x) = Vi, then N1(y) = Vi for ally € S.

Consequently, V1 U S is a clique.

Proof. By Claim 4.1.2, |Ny(z)| > 2 for every x € S. So this corollary holds if |V;| < 2.
Thus we suppose |V;| > 3, by Claim 4.1.2 again, for any y € S, |[N1(z)NN1(y)| = | N1(y)| > 2.
By Corollary 5.1.1, zy € E(G). Let uy,uy € Ni(y). If there exists ug € V3 \ Ni(y), then
(uz, x,uy, us,y) = H-9, the contradiction implies Ni(y) = V; for all y € S\ {x}. When apply

Corollary 5.1.1 again, we get V; U S is a clique. |
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5.2 Proof of 3-connected Z;-free line graphs

Proposition 9. If G is a 3-connected Zsz-free line graph, then G contains a strong spanning

Halin subgraph.

To prove Proposition 9, we only need to consider two cases depending on whether
|Vi| > 2. By Proposition 6, we only need to consider either |Vi| > 2 and both V; and V3 are

cliques or |V;| = 1.

Case 1: |Vi| > 2.

By Proposition 6, both V; and V5 are cliques.

Claim 5.2.1. For each x € S, if |Vi| > 4 and degg,(x) > 2, then N;(x) = V; for each
iell,2].

Proof. Let uy,us € Ny(x) and wy € N3_;(x). If [V;\ Ny(x)| > 2, let uz, uy € V;\ N;(z),
then (ug,uyq,uy, ug,x,wy) = H-6. Assume |V; \ Ni(z)| = 1. Let uy,us,u3 € N;(x) and
uy € Vi \ Ny(x). Then (uy,us, ui, us, z) = H-9, showing a contradiction. [ |

We will consider the following two cases to show that there exists a strong spanning

Halin subgraph in G.

Case 1.1: |V3] # 3.
Claim 5.2.2. For any x € S, we have Ni(x) =V} or No(z) = Va.

Proof. Suppose to the contrary, there exists x € S such that Ny(x) # Vi and Ny(x) #
V. Since degg, () > 2, by Claim 5.2.1 and we assume |V3| # 3, we have |V| = 3. Since
|Va| > V4|, we have |V5| > 4. Applying Claim 5.2.1 again, |No(z)| = 1. Denote V; =
{uy, us, us}, Ni(x) = {ug,us} and No(z) = {wy}. Then (wq, ws, wy; z, us, us) is a Z3, giving

a contradiction. [ |

Claim 5.2.3. We claim that V1 U S or Vo U S is a clique.
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Proof. Suppose there exists © € S such that Vi \ Ni(z) # 0. Then No(z) = Vi by
Claim 5.2.2. Since |V5| > 4, similarly as Corollary 5.1.2, we can show that Ny(y) = V5 for
all y € S\ {z}. Thus Vo U S is a clique. [ |

By Claim 5.2.3, we may assume V; U S is a clique. Let z,y,2,2" € S, uj,us € V4,
wy, wo, wy € V4 such that uy,ws € N(y), wy € N(x), ug € N(z) and ws € No(2'). Since
Vi, S\ {z,y} and V5 \ {w} are cliques, let P, = ujPius, P, = 2P,z and P3 = w3Psws be
hamiltonian paths in them, respectively. Let C' = P, P, PsU{wsy, yu;} be a cycle and {z, w; }
be stems of T" with Ne(x) = V(P) UV (P) U{y} and N(wy) = V(P;). Let H =T UC.

Clearly, H is a strong spanning Halin subgraph of G (See Figure 5.2(1)).

Case 1.2: We assume that |V5| = 3.

If there exists x € S such that Ny(z) = Vi or No(z) = V3, then similarly as Case 1.1,
we can find a strong spanning Halin subgraph in G. Thus we can assume Ni(x) # V; and
Ny(x) # Vs for all x € S. Consequently, we have |V;| = |V5| = 3. Denote Vi = {uy, ug, us}
and Vo = {wy,wy, w3}. By Lemma 4.1.2, we know S = {x,y,z}. By symmetric, we may
assume Ni(x) = {uy,us}, Ni(y) = {uz,us}, Ni(z) = {us,ur}, Na(z) = {wy,wa}, No(y) =
{wy, w3} and Ny(z) = {wy,w3}. Let C' = zujuzzwywix be a cycle and all vertices on the
path usyws be stems of T with Ng(ug) = {uy, us, z}, Ne(y) = {w1} and Neo(ws) = {ws, z}.
Let H = T UC. Clearly, that H is a strong spanning Halin subgraph of G (See Figure
5.2(2)).

Figure 5.2. |V1| > 2, both V; and V5, are cliques.
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Case 2: |Vi| = 1.

Lemma 5.2.1. Let G be a 3-connected, claw-free graph, and let S be as a minimum vertex
cut, Vi and Vy be the two components of G\ S. If Vi = {u} is singleton and V3 is a clique,

then there exists a strong spanning Halin subgraph in G.

Proof. We will find a strong spanning Halin subgraph according to following two

cases.

Subcase 1: (S) is connected.

Chvétal and Erdos [21], in 1972 | showed that: If G is a k-connected graph with no
independent set of k + 2 vertices, then G contains a hamiltonian path. Since Vi = {u} and
N(u) > S, (S) does not contain an independent set with more than two vertices. Thus (S5)
contains a hamiltonian path, say P = 1Pz, where we denote S = {xy,xs,--- ,x;} if S is
connected.

If Vo = {w} and S = {z1,z2, 23}, let C' = uzywzsu be a cycle and {z2} be the stem
of T with Neo(z2) = {u,zy,w,z3}. If |S| > 4, let C' = z9Pxy U {zyw, wz2} be a cycle and
{u,z1} be stems of T" with No(u) = S\ {x2} and Ng(z1) = {2, w}. Let H =T UC, it is
easy to check that H is a strong spanning Halin subgraph of G.

If Vo = {wy,we} and No(x1) = {wy, we}(or No(x) = {wy,ws}), we may assume w; €
Ny(x9) and we € No(zy) by Lemma 4.1.2. Let C' = xoPxy U {xwsy, wiwe, wixe} be a cycle
and {u,z1} be stems of T" with Ng(u) = S and Ng(z1) = {wy,we}. If Vo = {wy, wy},
No(x1) = {wy} and No(z;) = {ws}, by Lemma 4.1.2 again, Ny(x;) = {w;,wy} for all
x; # x1, 1. Let C = z3Px, U {xu, uzry, rywi, w13} be a cycle and {ws, zo} be stems of T
with Ne(z2) = {x1,u} and No(ws) = (S \ {z1,22}) U{wi}. Let H =T UC, it is easy to
check that H is a strong spanning Halin subgraph of G (See Figure 5.3(1)).

If V5] > 3 and S = {1, 22, x3}, denote wy € No(x1), we € Ny(z2) and w3 € No(x3) by
Lemma 4.1.2. Let P, = wy Pows be a hamiltonian path in (Vo\{ws}). Set C' = PU{x1u, uzrs}
be a cycle and {zs,wy} be stems of T with No(z2) = {x1,u, x5} and No(wy) = V(B). If

|Va] > 3 and |S| > 4, denote w3 € Ny(x;). Let Py, = wePyws be a hamiltonian path in
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(Vo \ {w1}). Set C' = x9Px Py be a cycle and all vertices on the path uzjw; be stems of T
with No(u) = V(P) \ {x1, 22}, No(x1) = {x2} and No(w,) = V(). Let H =T UC, it is

easy to check that H is a strong spanning Halin subgraph of G (See Figure 5.3 (2)).

Subcase 2: The induced subgraph (S) is disconnected.

Since G is claw-free and S C N(u), (S) consists of exact two vertex disjoint cliques,
say S1 and Sy. We may assume S; = {1, 29, -+ , 2}, So = {y1,92, -+ ,yp} and |Sy| > |Ss|.
Moreover, since G is 3-connected, we know |Va| > 2.

If Vo = {wy,ws}, then S = {x1, 22}, So = {11} and Ny(z2) = {wy,ws}. We denote
wy € No(z1) and we € No(xs). Let C' = uzqwiyiu be a cycle and {zy, ws} be stems of T
with No(z2) = {u, 21} and Ne(we) = {y1,w1}. Let H =T UC, it is easy to check that H
is a strong spanning Halin subgraph of G.

If Vo = {wy, we, w3}, there must exist z; € S and y; € Sy such that No(z;) NV Na(y;) # 0.
We may denote wy € No(z1) N Nao(y1) and wy € No(xg). Set P = xoPx; and P = yo Plyy
be hamiltonian paths in Sy \ {z1} and Sy \ {y1}, respectively. If Sy = {1}, let C =
P U {ux;, zowy, wiws, w3y, y1u}t be a cycle and {z;,ws} be stems of T" with Ng(zy) =
V(P) U {u} and Ne(wy) = {wy,ws,y1}. If |[S2| > 2, we may assume ws € Na(ys). Let
C = PP U {uxy, zowwiws, w3y, ypu} be a cycle and all vertices on the path zjwqy; be
stems of T' with Ng(z1) = V(P) U {u}, No(wy) = {w1} and Ne(yp) = V(P') U{ws}. Let
H =T UC, it is easy to check that H is a strong spanning Halin subgraph of G.

If |Vo| > 4 and Sy = {y1}, let wy,wy € No(x). Let z1 and x9 be two vertices in Sy
and wy € No(zq)(we may take wy = wy if No(zy) C {wy,we}) and ws # wy, ws, wy in
Ns(x3). Denote by P = zPx; and Py, = w3Pyws be two hamiltonian paths in S\ {z;} and
Vo \ {wy,ws}. Let C' = PPy U {wsyy, zu,uz;} and all vertices on the path ywsw; be stems
of T" with Ne(zy) C V(P) U {u}, Ne(wy) C V(P2) \ {we} and Ne(wy) = {y1,we}. Let
H =T UC, then H is a strong spanning Halin subgraph (See Figure 5.3(3)).

If |Va| > 4, |S2| > 2 and |S7| > 3. Let wy, ws, w3, wy be four distinct vertices of Vs
such that wyxy, wewy, x3y1, ways € E(G). Set P = x9Px;, P’ = yoP'yy and Py = wyPowy
be hamiltonian paths in S \ {z1}, S2 \ {y1} and V5 \ {wy,ws}, respectively. Let C' =
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PPyP" U {ypu,ux,;} be a cycle and all vertices on the path zjwiwsy; be stems of T' with
Ne(z1) = V(P), No(wy) C V(P) \ {ws}, Ne(ws) = {ws} and Neo(y1) = V(P') U {u}. Let
H =TUC, it is easy to check that H is a strong spanning Halin subgraph of G (See Figure
5.3(4)).

If Vo] >4, 81 = {z1,22} and Sy = {y1,y2}. Similarly, denote wyxy, wows, w3y, wWays €
E(G). Since (wq, w4, ws; y1, u, T2) is not a Z3, we have either Ny(x1) N Ny(xo) # ) or Na(yi)N
Na(ya) # 0 or No(a;) N Na(y;) # 0, where i, j € [1,2].

Assume No(z;) N Na(y;) # 0, for {i,j} = {1,2}. We assume, without loss of generality,
wy € No(x1)NNo(y1). Let Py = wy Pywy be a hamiltonian path in V5 \ {w;, w3} and all vertices
on the path zywiy;ws be stems of T with Ngo(z1) = {u, x2}, No(wy) = {wa}, No(y1) = {y2}
and Ngo(w3) = V(Py) \{ws}. Let H =T UC, it is easy to check that H is a strong spanning
Halin subgraph of G (See Figure 5.3(5)).

If Ny(x1) N Na(xa) # O(or Na(yr) N Na(ya) # 0). Let ws € Na(yr) N Na(yz) and Pp =
wyPowy be a hamiltonian path in V5 \ {wy,w3}. Let P = wyysyhuzswy and C = PP
be a cycle and all vertices on the path xjwyws be stems of T" with Ng(x1) = {u,z2},
Neo(wy) = V(P) \ {ws} and Ne(ws) = {wa, y1,y2}. Let H =T UC, it is easy to check that
H is a strong spanning Halin subgraph of G' (See Figure 5.3(6)).

By Lemma 5.2.1, we only need to show that if V; = {u} and V4 is not a clique, then the
structure of (V5) can be described and there exists a strong spanning Halin subgraph in G,

we plan to show this by following two case.

Case 2.1: There exists a triangle xjxsx3x; in (S).

Lemma 5.2.2. If G is a 3-connected claw-free graph with S as a minimum vertex cut, Vi, Vs
are the exact two components of G\ S. If Vi = {u} and there exists a triangle x1x9x371 In

S, then either Vs is a clique or |Va| < 6 and the structure of Vo can be described.
Proof. We prove Lemma 5.2.2 by the following series of claims.

Claim 5.2.4. If x1xox371 is a triangle in S, then Na(x1) N No(z) N No(xs3) = 0.
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Figure 5.3. V1 = {u} and V5 is a clique.

Proof. Otherwise, let w € Ny(z1) N No(z2) N No(z3), then (u, z1, x9, x5, w) = H-9, a

contradiction. [ |

Claim 5.2.5. For any two distincti and j with 1 < i < j <3, we have |Ny(x;) N\ N2(z;)] < 1,

for any two distinct i and 7 with 1 <i < j < 3.

Proof. Otherwise, let {i,7,k} = {1,2,3} and wy,wy € Na(x;) N Na(z;). By Claim

5.2.4, wy, wy ¢ No(z), we have (xy, u, x;, x;, w1, we) = H-7, showing a contradiction. [ |

Ny (zg), where {i,7,k} ={1,2,3}.

Proof. Let wy € Ny(z;) N Na(z;). If there exists w € Nj(x;) such that wyw € E(Q),
then since (zy, u, z;, x;, wy, w) 2 H-7, by Claim 5.2.4, w € Ny(x;) U Ny(zy). Otherwise, there
must exist we € Na(x;) \ Na(z;) such that wew € E(G). To avoid (u, xy, x;; wiwow) to be a
Zs and (wa; wq, Tk, w) be a claw, by Claim 5.2.4 and 5.2.5, we have w € Na(z;) U Na(xy).

Similarly, we can show that N3(z;) C Na(x;) U No(xy,). [ |
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For this case, in the following, let R; = Na(z;) \ (N2(z;) U No(xy)) and reserve w; € R;
if R; # 0 and w;; € Na(z;) N No(x;) if No(z;) N No(x;) # 0, where {1, 7, k} = {1,2,3}.

Claim 5.2.7. If Ny(x;)NNo(x;) = 0, denote Ri13 = Ni(x;)\ (RiURsUR3) and wi3 € Riy3
such that wyw;r3 € E(G), where {i,7,k} = {1,2,3}. The following claims hold.

1) Vo = U Ry;

2) There exist i, € {1,2,3}, such that E(R;, R;) # 0;

3) E(R;,R;) # 0 for all {i,j} € {1,2,3}, |Ri| = |Ra| = |R3| =1, Ry = Rs = Rg and V3 is a
clique.

4) G contains a strong spanning Halin subgraph.

Proof. 1) Suppose to the contrary, there exists w € Vo \US_; R; such that wyw € E(G),
then (u, x9, r1; wywaw) is a Z3, showing a contradiction.

2) If E(R;,R;) = 0 for all 7,5 € {1,2,3}, since (V5) is connected, we may assume
wyws € E(G). To avoid (u, x9, z1; wiwsws) be a Zs, wiws € E(G). However, this will force
(u, T3, To; wowswy) to be a Zs.

3) By 2), we may assume wjwy € E(G), which in turn gives us wowy € E(G) since
(wy; 1, wy, ws) is not a claw. Since neither (wy, wq, wy; x1x3w3) NOr (W1, Wa, Wy; WaT3U) iS
a Zs, we can assume wows € F(G), which also implies wyws € E(G) since (wa; xa, wy, ws)
is not a claw. If there exists w| € R; \ {wi}, then to avoid (u,zs, zq; wowiw}) be a Zs,
wiwy € E(G). However, this will force (zo; 1, wy, w), we) = H-2, showing a contraction.
Thus |Ry| = 1. Similarly, we can also prove that |Ry| = |Rs| = 1.

For any w € Rs, since wows € E(G) and (we; T2, w3, w) is not a claw, wws € E(G), this
means Rs; C Rg. By the same method, we will get Ry = R5; = Rg, which illustrates V5 is a

clique. [ |

4) This is clearly true by Lemma 5.2.1.

Claim 5.2.8. If |{w12,w23,w13}| = 1, then
1) Vo = Np(z;) U Na(z;) U No(y), where {i,j, k} = {1,2,3};

2) Vo C {wy, wa, w3, wia, waz, Wi}
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Proof. 1) By symmetric, we may assume wiy exists and w3, w3 do not exist. By
Claim 5.2.6, Ni(z1) C No(z2) U No(z3) and Ni(ze) C No(x1) U No(xz). Thus we only
need to show NZ(x3) C No(z1) U Na(x3). Suppose this is not true and there exists wg €
N2Z(z3) \ (No(x1) U No(x9)) and w3 € No(x3) such that wzws € F(G). Note that wisws ¢
E(G), otherwise (z3,u, xa, x1, w2, we) = H-6, which in turn gives wiows ¢ E(G), otherwise
(ws; T3, we, wi2) is a claw. On the other hand, since |Na(x1) U Na(zg)| > 2, we can assume
wy exists. To avoid (wig, wo, Te; x3wswe) be a Z3, we have both wiws and wewg in E(G).
Because if wzws € E(G), then wowg € E(G), otherwise (ws; w3, wg, wo) is a claw; if wewg €
E(G), then wows € FE(G), otherwise (xi,u,xs; wswgws) is Z3. However, this will force
(w3, we, wa; wiaT1u) to be a Zs, showing a contradiction.

2) Firstly, we will show Ry = {ws} and wswi2 € E(G). Suppose this is not true, there
exist ws, wg € R3. Since neither (ws, x3, T9, T1, wio) nor (wg, T3, Te, T1, T12) isomorphic to H-
2, wywia, wewie ¢ E(G). Since (V3) is connected and |Na(z1) U Na(xg)| > 2, we may assume
wy exists and wows € E(G). To avoid (u, z1, x2; wewswg) be a Zs, we have wowg € E(G).
However, this will force (zs, x3, w3, we, wy) = H-2, a contradiction.

Secondly, we will show Ry = {wy}. Since (Va) is connected, we may assume wow;z €
E(G). If there exists ws € Ry \ {ws}, then wsws ¢ E(G), otherwise (x3, x2, ws, wa, ws) =
H-2. However, this will force (wa, ws, wo; wszsu) to be a Z3, showing a contraction.

Thirdly, we will show |Ry| < 1. If there exists wy, wy € Ry, to avoid (wy, wy, wis; Tor3ws)
be a Z3 and we can assume wzw; € F(G) and wsw, ¢ E(G), otherwise, (z3; 21, wy, wy, w3) =
H-2. But this will in turn give (wy, wis, w1; wszsu) is a Z3 by above three observations, we

get |R;| < 1, which implies V5 C {wy, wo, w3, wia}. [ |

Claim 5.2.9. ]f |{’LU12,'LU23,’LU13}| Z 2, then
]) ‘/2 = Ng(l’l) U Ng(!)ﬁg) U Ng(l’g).
2) If there exists i € [1,3] such that |R;| > 2, then Vy is a clique. Otherwise Vo C

{w17 W2, W3, W12, W23, U)13}.

Proof. 1) This is clearly true by Claim 5.2.6.
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2) We may assume there exist ws,wy € R3. The following three statements give us
Vo = No(x3), which implies V5 is a clique.

Firstly, we have wi3 € V5. Suppose this is not true, then wis, wo3 € Vo by assumption.
Since (w3, wy, Wes; wiar ) is NOt a Z3, we can assume wipws € F(G). However, this in turn
gives (1, wia, Wag, ws, r3) = H-2.

Secondly, we have wis ¢ Va. Otherwise, since (w3, wy, wi3; wieTou) is not a Zz, we can
assume wipws € F(G). But this gives us (u, x9, 21, wie, wy3, w3) = H-8.

Thirdly, we have Ry = () and Ry = (). We only show that R, = (). Suppose to the
contrary, there exists wy € Ry. To avoid (w3, wy, wi3; x1x2ws) be a Z3 and (wi3; ws, we, 1)
be a claw, we can assume wows € E(G). Moreover, since (wi3, wy, w3; wexsu) is not a Zs,
we have wowis € FE(G), which implies (zs, x3, w3, w3, we) = H-2, or wywy € E(G), which
implies (xo, we, wy, w3, r3) = H-2.

If |R;] <1, then by 1), we have V5 C {wq, wa, w3, wis, Waz, w13 }. [ |

From Claim 5.2.7, Claim 5.2.8 and Claim 5.2.9, we can see that Lemma 5.2.2 is true.

Lemma 5.2.3. Let G be a 3-connected Zs-free line graph with S as a minimum vertex cut
and V1, Va as the exact two components of G\ S. If Vi = {u}, |Va| < 6 and there exists a

triangle, say rixox3x1, 1n S, then there exists a strong spanning Halin subgraph in G.

Proof. We still follow notations that w; € Na(z;)\ (Na(x;)UN2(xy)) and w;; € Na(x;)N
Ny(z;), where {7, j, k} = {1,2,3}. Then, by Lemma 5.2.2, V5 C {w;, wa, w3, w12, Wa3, w13}

The following series of claims are showing this lemma is true.

Claim 5.2.10. For anyt € S\ {z1, %2, 23}, one of the following conclusions holds.
1) For anyt € S\ {x1, 22,23}, |Ns(t) N {z1, 20, x3}| # 2.

2) If Ny(t) N{x1, x9, 23} = {x1, T2, 23}, then No(t) C {wq, wq, w3}.

3) If Ns(t) N {1, 29,23} = {x;}, then No(t) = Na(x;), where i € [1,3].

4) If No(t) N {x1, 29, 23} = 0, then Ny(t) C {w, wa, ws}.

5) For any t € S, No(t) N {wy, wq, w3} # 0.
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Proof. 1) Suppose Ny(t)N{xy, xa, x5} = {1, 22}, then (u, x1, x9, x3,t) = H-9, showing
a contradiction.

2) We may assume wip € Na(t), then (u, x1, xo,t, wi2) = H-9. Since Ny(t) # (), we have
No(t) C {wq, wq, w3}

3) By symmetric, we may assume N (t)N{z1,x2, x3} = {x3}, Since neither (x3;t, x1, w3)
nor (ws;t,x1,wes) nor (r3;t, re,wy3) is a claw, we have {ws, w3, wez} C Ny(t). Moreover
twy, twsy, twiy ¢ E(G), otherwise either (wy, z1,u, x3,t) or (ws, T2, u, x3,t) or (wia, To, u, T3, 1)
isomorphic to H-2. Thus Ny(t) = Na(x3).

4) If Ny(t) N {z1, z2, 23} = 0, then w;; ¢ Nao(t), otherwise (u, x;, x5, w;j, t) = H-2, where
{i,j,k} ={1,2,3}.

5) This is easily followed by above conclusions. [ |

We may denote S; = {1,292, 23}, So = {t € S|Ns(t) N {x1, 29,23} = {x1, 29, 23}},
Sz = {t € S||Ny(t) N {1, 20,23} = 1} and Sy = {t € S|Ns(¢t) N {x1, 22,23} = 0}. Clearly
S =51USyUS3U Sy

Claim 5.2.11. By the definition of Sy, Sa, S3 and Sy, we have:
1) S1U Sy is a clique.

2) S3U Sy is a clique.

Proof. 1) This is true since otherwise ({u} U S; U Ss) contains an induced subgraph
isomorphic to H-9.

2) For any t,t' € S3U Sy, we may assume txy,t'zy ¢ E(G). Since (u;t,t', x1) is not a
claw, we have tt' € E(G). [ |

Claim 5.2.12. For any x; € Sy, we have |Ng,(z;)| < 1, where i € [1,3].

Proof. We may assume there exist ¢,¢' € Ng,(x1), then (t,t',z1) is a triangle. Let

w' € Ny(xy), then (u,t,t' z1,w') = H-9, where w' € {wq, wia, w13} by Claim 5.2.10. [ |

Claim 5.2.13. For any w; € {wi,ws, w3}, we have |Ng,(w;)] < 1, |Ng,(w;)| < 1 and

[N, (wi)] < 1.
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Proof. We only show this is true for wy. If there exist ¢, ¢’ € Sy(or there exist ¢, ¢ € Ss)
such that twq,t'w; € E(G), then (u,t,t',x1,w) = H-9. If there exist t,t' € Sy such that

twl,t’wl c E(G), then (u, t,t’,wl, ZL’1> = H-2. |
Claim 5.2.14. If all w;, wj, wji exist, then w,w;, ¢ E(G), where {i,7,k} ={1,2,3}.

Proof. Suppose to the contrary, all wy,ws, wes exist and wijwey € FE(G). Since

(was3; w1, We, x3) is NOt a claw, we have wyws € E(G), which in turn gives (wy, weq, Was, T2, 1)

H-2, showing a contradiction. |

Claim 5.2.15. If there exists t € Sy, then Sy = {t} and Ny(t) = {w;, wq, ws}. Moreover, if

there also exists t' € Sy, then {t,t' w1, wq, w3} is a clique and |Ss| < 1.

Proof. Suppose this is not true, we may assume tws € FE(G) and tw; ¢ E(G).
Note that wyws, wipws ¢ E(G) since neither (ws;t, x5, wy) nor (ws;t, s, wia) is a claw.
If wows € E(G), since (ws;ws, x3,t) is not a claw, we have tw, € E(G). Moreover, since
(we, w3, t; urqwy) is not a Zs, we have wyws € F(G), which implies (ws; w1, o, w3) is a claw,
showing a contradiction. If wews ¢ E(G), then wys or wog exists since (V5) is connected. We
may assume wig exists, then (wy, wig, wig; wstu) is a Zs, showing a contradiction. Thus we
have tw; € E(G). Similarly, we can show that twy € E(G) if wy exists. By Claim 5.2.10, we
know Ny (t) = {wy, wq, w3}, and by Claim 5.2.13, we get Sy = {t}.

If there also exists t’ € Sy, we may assume t'ws € E(G) by symmetric. Since (ws; was, t, 1)
is not a claw, we have tt’ € E(G). Moreover, since neither (ws, ws, t', x3, o) nor (wy, ws, t', x3, 1)
isomorphic to H-2, we have t'wy € E(G), which in turn gives us {¢,t', w1, we, w3} is a clique
and |S2| < 1 by Claim 5.2.13.

By Claim 5.2.13, we know |S;| <1 and |Sy| < 1. [

Claim 5.2.16. If S3 # () and there exists t' € Sy, then Ny(t') = {wy, ws, w3} and Sy = {t'}.

Proof. We may assume there exists ¢ € S3 such that txy € E(G), then Ny(t) = Na(x3).
Firstly, we want to show that t'ws € E(G). Suppose this is not true and t'w, € E(G),

>~

then neither wyws nor ¢’ in E(G). Otherwise (ws, wq, ', x1,u,t) = H-4 or (wa3, w1, t', 1, u,t)
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H-4 or (t',xy1, x3,t,u) = H-9, showing a contradiction. However, if w3 exists, then wywag ¢
E(G) by Claim 5.2.14, which in turn gives (ws3, ws, t; ut'w;) a Zs; if wiy exists, then either
(ws, t, x3; wiwig) is a Zz or (wie; wy, wq, w3) is a claw; if neither wey nor wiy exists but
wy3 exists, since (V3) is connected and neither (wi3; wq, wq, w3) nor (xq; wy, wy, w3) is a claw,
we have either wiw, € E(G) or wows € E(G), both of them will force wowi3 € E(G),
contradicts to Claim 5.2.14.

Note that tt’ ¢ E(G), otherwise (u, x3,t,t'ws) = H-9.

Secondly, we want to show that wit',wyt’ € E(G). Suppose this is not true, then
wiwe ¢ E(G). Otherwise (', u, o; wowiws3) is a Zs, which implies wqy and wy3 exist since
dega(wy) > 3 and there dose not exist t” € Sy U S3 U Sy such that t"w, € E(G) by Claim
5.2.10. Moreover, since neither (ws;t,t' wy) nor (ws;t,t',wy) nor (ws;t, t' wis) is a claw,
we have wzwy, wswy ¢ E(G), which in turn gives (wig, wq, x1;t'wst) to be a Zs, showing a
contradiction.

Thus Na(t') = {wy, we, w3} and we have Sy = {t'} by Claim 5.2.13. |

Claim 5.2.17. If S3 = S, = 0 and there exists t € Sy, then (w1, ws, ws3) is a clique and

No(t) = {wq, wa, w3}. In particular, So = {t}.

Proof. We may assume tws € F(G) by symmetric.

If both we3 and wy3 exist, since neither (xy,u,t; w3wozws) nor (s, u,t; wawizwy) is a
Zs3 and neither (xs, ws, wag, w3, t) nor (1, wy, we3, ws, t) isomorphic to H-2, we have wows,
wiws, twe, twy € E(G). Thus Ny(t) = {wy, we, w3} and (wy, wa, ws) is a clique.

If either wo3 or w3 exists, we may assume wy3 exists. Similarly, we can show that both
wows and tws in E(G). Since w3 does not exist and wywsys does not in F(G) by Claim 5.2.14,
we have wyws or wyws in E(G), which implies (w, wy, w3) is a clique since G is claw-free.
Since (z1, z3,t, w3, wr) 2 H-2, we have wit € E(G). Thus Ny(t) = {wy, we, ws}.

If neither w3 nor w3 exists, since (V5) is connected, we can assume wows € E(G) by
symmetric. If fact, we can show that there does not exist ' € Sy such that t'w; € E(G

).
Otherwise, since wyy exists, similarly as wog exists, we can show that t'ws, t'ws € E(G).
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Then ¢,# € Ng(ws), showing a contradiction. Since degg(wy) > 3, we have wjwsy or wyws
in £(G), which implies (wy, we,ws) is clique since G is claw-free. Moreover, since neither
(xo, T3, t, w3, W) NOT (X7, T3,t, W3, w1 ) isomorphic to H-2, we have both tws and tws in E(G).
Therefore, Ny(t) = {wy, we, ws}.

By Claim 5.2.13, we know Sy = {t}. [

Claim 5.2.18. If So U Sy =0 and S5 # 0, then (wy,wq, w3) is a clique.

Proof. If there exist ¢,t" € S3, we may assume txq,t'z3 € E(G) by Claim 5.2.10. Then
Ny(t) = No(xq) and No(t') = No(x3) . If neither wis nor woys exists, since (V) is connected
and (wi3; wy, wy, w3) is not a claw, we can assume wyws € F(G) by symmetric. Moreover,
to avoid (wy,t, z1; xewaws) be a Z3, (we; x9, w1, ws) or (ws;xs, wy,wy) be a claw, we have
both wywy and wyws in E(G). If wis or weg exists, we may assume wqy exists. To avoid
(ws, t', x3; Tywi2wy) be a Zz and (t'; u, wy, w3) be a claw, we have wows € F(G). Similarly
as wyz does not exist, to avoid (ws,t, x1; zowows) be a Zz, we have both wjwy and wiws in
E(G). Thus (wy, wsy, w3) is a clique since G is claw-free.

If S3 = {t}, we may assume tws € E(G) by symmetric. If neither wys nor w3 exists,
since degg(wy) > 3, we have wiws, wiws € E(G). If wis does not exist and ws3 exists, since
(t, w3, wis; T1T2we) is NOt a Zs, we have wows € E(G). Moreover, if both wys and w3 exist,
since neither (¢, w3, wi3; x1T2ws) nor (t, T3, W3; Wewiowy) is a Z3, we have wowsz and wiwsy in
E(G) or wyws in E(G). Since degg(wy) > 3, we have wyws or wyws in E(G). G is claw-free

gives us that (wy, we, ws) is a clique. [ |

Claim 5.2.19. There exists a strong spanning Halin subgraph in G.

Proof. We want to find a strong spanning Halin subgraph in G by following subcases.
Subcase 1: Suppose Sy U S3 U S, = {t}.

We may assume tws € E(G) by symmetric.

Subcase 1.1: At least one of {wa3, w3} exists.

We may assume wqg exists. If wy exists or wy exists, then let C' = uxszrwiswiswiwstu

be a cycle and all vertices on the path xowszws be stems of T' with No(xe) = {u,xs, 21},
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Ne(wez) = {wiz, wiz} and Ne(we) = {ws, wy,t} (See Figure 5.4(1)). If neither w; nor wy ex-
ists, then ¢ € SoUS3 since [Ng(t)| > 3, which implies tx3 € E(G). Let C = uxsriwiswizwstu
be a cycle and {x3, w3} be stems of T with Ng(z3) = {ws,t,u, xe, 21} and Neo(weg) =
{wig, w13}. Let H =T UC, it is easy to check that H is a strong spanning Halin subgraph
of G (See Figure 5.4(2)).

Subcase 1.2: Neither wss nor ws3 exists.

If neither wo3 nor wy3 exists, then wis must exist.

If No(t) = No(x3), let C' = zzuxriwipwitzs be a cycle and all vertices on the path zowsws
be stems of 7" with Ne(x2) = {u, 1}, No(ws) = {wy, w12} and No(ws) = {z3,t} (See Figure
5.4(3)). If No(t) = {wy, we, w3}, let C' = uzzriwpwiwstu be a cycle and {2, w3} be stems
of T with N¢(z3) = {z1,23,u} and Ng(ws) = {wy, wie, ws, t} (See Figure 5.4(4)). Let
H =T UC, it is easy to check that H is a strong spanning Halin subgraph of G.

Subcase 2. Assume |Sy U S5 U Sy| > 2.

By Claim 5.2.13 to Claim 5.2.18, we have |Ny(S2 U S3 U Sy) N {wy, wa, w3} > 2. And
we may assume there exist ¢ € Sy and t' € Sj(since other cases are similarly and much
easier), then twy, t'ws € E(G). Let C = tt'wswizwezwowiowit be a cycle and all vertices on
the path uxjxexs be stems of T with Ngo(u) = {t,t'}, No(x1) = {wr, w12}, No(z2) = {wa}
and Ng(z3) = {was, wis,ws}. Let H = T U C, it is easy to check that H is a strong
spanning Halin subgraph of G (See Figure 5.4(5)). Note that if S3 # (), we may as-
sume S3 C {t1,ts,t3} and t121,toxs, t323 € E(G). Then adding w1ty, xots, x3ts to E(T),
wity, tiwse, Wiats, tawse, wists, tsws to E(C) if they exist and deleting wiwis, wisws, wozws

from E(C'). Similarly, we can find a strong spanning Halin subgraph in G.

Case 2.2: There does not exist a triangle in (S).
Since G is claw-free and ux € E(G) for any x € S, we have a(G) < 2. Moreover,
since neither H-5 nor triangle is an induced subgraph of G, there is no induced cycle with 5

vertices in (S), which implies |S| < 4. Now we want to consider following subcases.

Case 2.2.1: Assume (S) is connected.
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Figure 5.4. Vi = {u}, V4 is not a clique and (S) contains a triangle.

We may denote by P = xyz is an induced path in (S), then we can easily get following

claims.

Proof. 1If there exists w € Ny(z) N Na(2) \ Na(y), then (w, z,y, z,u) = H-2. [ |

Claim 5.2.21. |Na(z) N Na(y) N Na(2)] < 1.

Proof. Otherwise, let wy,ws € Nao(x) N No(y) N No(z), then (x,y, wy, wq, z) = H-9. W

Claim 5.2.22. FEither No(y) C No(z) or No(y) C Nao(2).

Proof. For any w € Ny(y), since (y;x,z,w) is not a claw, wr € E(G) or wy €
E(G). If there exist w; € Ny(y) N Na(x) \ No(2) and we € Na(y) N Na(z) \ No(x), then
(y; u, x, w1, we, z) = H-5, giving a contradiction. Thus, either Ny(y) C No(x) or Nao(y) C
No(2). [ |

From here and after, we always assume Ny(y) € Ny(x), then we can show that Ny(x) =

Ns(y) by following claim.
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Claim 5.2.23. Ny(z) = Na(y).

Proof. Since Ny(y) # 0, we may denote wy € Na(y) C Ny(x). Suppose there exists
wy € No(z) \ Nao(y). If wy ¢ Nao(2), then (we,wq,x,y,u,z) = H-8; if w; € Ny(z), since
|Na() N Na(y) N Na(z)] = 1 and |Na(y) U Na(z)| > 2, we may assume w3 € Na(z) \ Na(y),
however this in turn gives us (ws;wsy, ws,y) is a claw or (ws, wy, ws, z,y,u) isomorphic to

H-8. |

Case 2.2.1.1: Suppose (S) is an induced path with four vertices, denote by P.

Claim 5.2.24. [If (S) is an induced path with four vertices, say P, then P = txyz and
Vo <6.

Proof. Suppose P = zyzt is an induced path in (S), then there exists w; € Ny(z) =
Na(y) \ (N2(z) N Na(t)) since [Na(z) U Na(y)| = 2, [N2(z) N Na(y) N Nz(z)| < 1 and Na(y) N
Ny(t) € Ny(z). However, this illustrates that (wy,z,y,u, z,t) = H-8. Thus S = P = tzyz.

We want to show |Va| < 6 by following five statements.

Firstly, There is at most one vertex, in No(t) \ Nao(x) U No(y) U Na(z)(or Na(z) \ No(z) U
Ny (y) U Nao(t)). Otherwise, let w,w” € No(t) \ No(z) U No(y) U Nao(2), then (w,w’, t;zyz) is
a Js.

Secondly, |No(t) N No(z)| < 1. Otherwise, let wy, ws € No(t) N No(2), then (u, z, wy, wq, t) =
H-2.

Thirdly, |N2(t) N Na(x) N Na(y)| < 1 and |Na(z) N Na(z) N Na(y)] < 1. Otherwise, let
wy, we € No(t) N Ny(z) N Na(y), then (t, x,y, wy, ws) = H-9.

Fourthly, No(t)NNa(2)NNo(y)NNa(z) = (. Otherwise, let w € Na(t)NNo(x)NNo(y)NNo(2),
then (w,t,x,u,z) = H-2.

Fifthly, |Na(x) = Na(y)| < 3. Otherwise, we may assume there exist wq, ws € No(x)\ (No()U
Ny (z)). If No(x)NNay(y)NNo(z) # 0, denote w3 € No(x)NNo(y)NN2(2), then (wq, ws, ws; zut)
is a Zs. If No(z) N Na(y) N No(z) = 0, then there exists ws € No(z) \ (No(2) U {wy, wa}),

clearly, dist(z,w3) > 2, we can also find a Z3 in G. [ |
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By Claim 5.2.24, we may denote S = P, = txyz, Nao(z) = Na(y) C {wy, we, w3},
wy € No(t)NNo(2), ws € No(t)\ No(x)UNy(y)UNo(2) and wg € No(z)\ Na(z)UNo(y)UNa(t).

Note that any vertex in {wy, we, ws, wy, w5, we} may not exist.

Claim 5.2.25. Ifws exists( orwg exists), then 3 > | Na(ws)N{wy, wa, w3} > [{wy, wa, ws}|—

1.

Proof. If No(ws) = {wy, ws, ws}, then (ws, wy, ws, ws, ) = H-9. If there exist wiws, wows
not in E(G), then either (wy, we, x;uzws) is a Zs or (z;u, wy, ws) is a claw or (z;u, wy, ws)
is a claw, showing a contradiction. [ |

Now we want to find a strong spanning Halin subgraph in GG by following two subcases.

Subcase 1: Assume [{w, woe, ws}| = 3.

We may let wowg, wwg, wows € E(G) by Claim 5.2.25, then we can also assume zws €
E(G) since (ws, w3, we, z,y) 2 H-2, which implies wsws ¢ FE(G) since (ws; z, wq, ws) is not
a claw and (y,wy, wy, w3, ws) Z H-9. Thus wyws € E(G), which implies tw; € F(G) since
(x,wq, wy, ws, t) 2 H-2. Moreover, since (y, wy, ws, ws, wy, z) 2 H-4 and (wy; t, 2, ws) is not
a claw, we have wsw, € E(G). Similarly, we can show that wyw, € E(G).

Let C' = utwjwswawgzyu be a cycle and all vertices on the path xwsws be stems of T’
with Ne(z) = {u,t}, No(wy) = {wy,ws} and Neo(ws) = {wy, we, 2, y}(Note that even if wy
or wy or wg does not exist, we can also find a cycle C or a tree T similarly). Let H =T UC,

it is easy to check that H is a strong spanning Halin subgraph of G (See Figure 5.5(1)).

Figure 5.5. Vi = {u}, V4 is not a clique and (S) is an induced P;.
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Subcase 2: We assume that [{wy, wa, ws}| = 2.

We may assume w3 does not exist. By Claim 5.2.25, we can assume wowg € FE(G).
Since (x,y, wq; wewyws) is not a Zs, we have wowy € E(G) or wswg € E(G).

If wowy € E(G), then zwy € E(G) since (wa, wy, we, z,y) 2 H-2. By symmetric ,we
can also show that wywy, wit,wiws € E(G). Let C = utwswywgzyu be a cycle and all
vertices on the path zwjwy be stems of T' with Ngo(z) = {u,t}, No(wi) = {ws,ws} and
Ne(wy) = {ws, z, y}(Note that even if wy or ws or wg does not exist, we can also find a cycle
C or a tree T similarly.) Let H = T U C, it is easy to check that H is a strong spanning
Halin subgraph of G (See Figure 5.5(2)).

If wswe € E(G), since neither (wg; ws, wa, z) is a claw nor (ws, wa, we, 2, u, t) isomorphic
to H-4, we have either wows or wez in E(G). If wyz € E(G), to avoid (u,y, z, wy, we, wy) =
H-4, we have wowy € E(G). Then we can find a strong spanning Halin subgraph in G as
above. If wows € E(G), to avoid (wq, x, y; zwews) be a Zs, we have w;z or wijwg or wiws in
E(G), but not both wywg and wyws in E(G) since (z, y, wy, wa, ws, we) 2 H-7. If w2z € E(G),
since (z;u, wy, wg) is not a claw, we have wiwg € E(G). Moreover, since (wy, 2, wg, Wy, Ws, t)
does not isomorphic to H-8, we have wjwy € E(G). Let C = utwswgw,zyu be a cycle and
all vertices on the path zwjwsy be stems of T' with No(x) = {y,u,t}, No(wy) = {ws, we}
and Ng(ws) = {wy, z}(Note that if wywg € E(G), then w1z € E(G) since (wg; 2, wy, ws) is
not a claw. If wyws € E(G), then tw, € E(G) since (ws;t, wy, we) is not a claw. Moreover,
wywy € E(Q) given by (ws, t, wy, we, wg, wy) 2 H-5. Similarly as zwy € E(G), we can find a
cycle C and a tree T in G.) Let H =T UC, it is easy to check that H is a strong spanning
Halin subgraph of G' (See Figure 5.5(3))

Case 2.2.1.2: Assume () is an induced Cy or Pij.

Claim 5.2.26. If (S) is an induced cycle with four vertices or a path with three vertices,

then |Va| < 6.

Proof. If |S| = 4, we denote by S = zyztz be the cycle with Na(x) = Na(y) and
Ny(z) = Ny(t) by Claim 5.2.23. If |S| = 3, we denote by S = zyz with Ny(x) = Na(y).
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Moreover, we reserve w € Nao(y)NNa(z) if it exists. The following two statements are showing
this lemma is true.

Firstly, for any w' € Na(z)\{w}, |[Na(w') N No(x)] > |No(z)| —1 and | No(z) \ {w}| < 2.

It is clearly true if No(y) = {w,w;}. Thus we may assume there exist wy,ws € Na(y) \
{w} and w" € Ny(z) \ {w}. Since (wq,ws,y;uzw’) is not a Zz and (z,y, wy, wq, w') 2 H-2,
we can assume wyw' € E(G) and wow’ ¢ E(G), which implies | No(w’) N Na(y)| > [Na(y)| —1
and |Na(y) \ {w}| < 2. Similarly, we can prove that |Ny(z) \ {w}| < 2.

We may denote by Ny(z) = No(y) = {wy,we, w}, Na(z) = No(t) = {w,ws,ws} and
wiwy, wows € E(G) if they exist.

Secondly, For any w' € Vi \ Na(x) U No(2), we have ww' ¢ E(G), {wy, ws, ws, wy} C
No(w') and Vo C {wq, we, ws, wy, w,w'}, which implies |Va| < 6.

Since (w; x, z, w') is not a claw, we get ww’ ¢ E(G). Moreover, Na(w")N{wy, wa, w3, wy} #
0. Otherwise, let w” € V5 \ (Na(z) U Na(z) U {w}) such that wyw”,w"w € E(G), then
(z,u,y; wiw"w') is a Z3. Thus, we may assume w'w; € E(G), which implies w'w, €
E(G) since (wq;z,wy,w') is not a claw. Furthermore, there does not exist w” € V5 \
{wy, we, w, w3, wy, w'} such that w'w” € E(G). Otherwise, either (z, u, y; wyw"w’) or (w', w”,
wy;yzt) is a Zs, which in turn gives that (V5 \ Na(S)) is an independent set. On the other
hand, since G is 3-connected, {wy, wy, w3, ws} C No(w') for all w’ € V4 \ No(S), which implies
Vo \ No(S)| < 1. Therefore, Vo C {wy, we, ws, wy, w, w'}. ]

Since any vertex in {wq,wq, w, w3, ws, w'} may not exist and |No(z) U Na(y)| > 2,
|No(2) U No(t)| > 2 and | Na(w')| > 3 if w’ exists. We may assume ws, ws exists. If |S| = 4,
let C' = uzwywow'wawtu be a cycle and all vertices on the path yzws be stems of T' with
Ny(y) = {u,z, w1}, Na(z) = {t} and No(ws) = {wq, w',wy, w}. Let H =T UC, it is easy
to check that H is a strong spanning Halin subgraph of G (See Figure 5.6(1)). If |S| = 3,
let C = uzwiw'wawzu be a cycle and all vertices on the path ywows be stems of T" with
No(y) = {u,z1}, Nao(ws) = {wy} and Ne(wsz) = {w',wy, w, z}. Let H =T UC, it is easy to

check that H is a strong spanning Halin subgraph of G (See Figure 5.6(2)).

Case 2.2.2: Assume (S) is not connected.
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Figure 5.6. Vi = {u}, V5 is not a clique and (S) is an induced C} or Ps.

Since G is claw-free and for any = € S, uz € E(G), there exist exact two components,
say S1 and Ss, in (S). Moreover, (S) does not contain an induced triangle implies |S;| < 2

and |Sy| < 2. We let S1 = {1,252} and Sy C {x3,24}. The following claims are true.
Claim 5.2.27. Ny(x;) N Na(z;) N Na(xg) = 0, where 4,5,k € [1,4].

Proof. If there exists w € Ny(z1) N Na(z2) N Na(x3), then (x3, u, x1, xo,w) = H-2. A
Claim 5.2.28. |No(z;) N No(z;)| < 1, where 1,5 € [1,4].

Proof. By symmetric, we only show that | Ny(x1)NNo(x2)| < 1and |No(z9)NNa(z3)] <

1. Suppose to the contrary, there exist wq, wy € No(x1)NNa(xs), then (wy, we, 1, T2, u, x3) =

H-6. If there exist ws, wy € Na(x2) N No(z3), then (u, xq, w3, wy, x3) = H-2.

Claim 5.2.29. N3 (z)) C No(x;) U No(z;), where {i,5} = {1,2} and k € {3,4} or {i,j} =
{3,4} and k € {1, 2}.

Proof. Suppose to the contrary, there exist w; € Ny(x3) and wy € NZ(x3). Since
(x1, T9, u; x3wiws) is not a Zz, we may assume w1z € E(G). However, this in turn gives us
(wy; g, T3, Wwe) is a claw. [ |

We may denote by w;; € No(z;) N Na(x;) and w; € No(z;) \ UjiNo(z;) if they exist,

where 7, 7 € [1,4].

Claim 5.2.30. [f Sl = {1’171'2} and SQ = {1’3,1’4}, then ‘/Q Q {wlg,wlg,w14,w23,w24,w34}

and there exists a strong spanning Halin subgraph in G.
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Proof. We prove this claim by following three statements.

If both w1y and wsy exist, then Vo C {wia, w13, Wig, Wa3, Wog, w34 }. We may suppose w;
exists, then (3, x4, u; Towipwy) is a Z3, showing a contradiction. Similarly, we can show that
woy, w3, wy all do not exist.

If either wyy or way exists, then Vo C {wqg, w3, Wiy, Wag, Way, W34 }. We may assume wio
exists and w34 does not exist. Then neither w; nor wy exists. Since | No(x1)UNg(zo)| > 2, we
may assume wi3 exists, then wy does not exists otherwise (wqg, w13, T1; uzqwy) is a Zs. If ws
exists, then wy4 does not exist. Otherwise (w12, w14, T1; ursws) is a Z3, which in turn gives
wayy exists since Ny(x4) # (0. To avoid (way, wia, Te; ursws) be a Zz and (wia; T2, w3, way) be
a claw, we have wyws € E(G). However, this force (way; za, w3, wey) to be a claw. Thus
neither ws nor wy exists. Therefore, Vo C {wia, w3, w14, Wag, Way, Wy}

If neither wis nor wsy exists, then Vo C {wis, wig, woz, woy}. Firstly, if both wy3 and
wyy exists, then w; does not exist. Otherwise, (wy, w3, wyq; T3uzs) is a Zs. Secondly, if
both w3 and wyy exist, then w; does not exist. Since (wq,x1, wi3; T3rswey) is NOt a I,
we have wizwyy € F(G), which implies (wi3; 21, 23, wq4) is a claw, or wjwyy € E(G), which
implies (way; x4, T2, wy) is a claw. Thirdly, if wy, ws, w, exist, then wiz or wyy does not
exist. Otherwise, since (x7,wq,w3; T3x4wy) is not a Zz and (wi3; 1, 3, ws) is not a claw,
we have wjwy € E(G). Moreover, since (was, ws, To; urswy) is not a Zs, we have wowy €
E(G) which implies wywy € E(G) since (wy; x4, wy, wy) is not a claw, or weswy € E(G)
which implies wezwy € F(G) since (wy; x4, waz, wq) is not a claw. If both wyws and wywy
in F(G), then (wy,wy,ws; zouzs) is a Zs. If wegw; € E(G), then (weg; e, 3, wy) is a
claw, showing a contradiction. Futhermore, V5 # {wy, wq, w3, wy}. Otherwise, since Vj is
connected, we have {wy,wq, w3, ws} is a clique, which implies (wy, wy, we; xouws) is a Zs.
Thus Vo C {wi3, wia, was, Was}

Let C = uxrqwipwizwiswsarsxsu be a cycle and all vertices on the path xowssway be
stems of T with Ne(xe) = {u, 21, w12}, No(wez) = {wis, x5} and Ne(wey) = {wig, wsg, 4}
Let H =T UC, it is easy to check that H is a strong spanning Halin subgraph of G (See
Figure 5.7(1)). [
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Figure 5.7. Vi = {u}, V5 is not a clique and () is not connected.

Claim 5.2.31. ]f Sl = {1’1,1'2} and 52 = {1'3}, then ‘/2 Q {wlg,wlg,’LUQg,wl,wg,wg},

(wy,wse, ws) is a clique and there exists a strong spanning Halin subgraph in G.

Proof. Forany w € Vo\Ny(S), wiaw, wozw, wizw ¢ E(G). Otherwise, (w; wis, 1, T2, u;
x3) isomorphic to H-3 or (was; 1,23, w) is a claw or (wi3; xe, x3,w) is a claw. Let Ry =
No(x1) \ No(we) U No(x3), Re = No(x9) \ No(z1) U No(x3) and Ry = No(x3) \ Na(x1) U Ny(z3).
We may assume Vo # Ny(x3) since it is not a clique. In fact Ry U Ry U {wi2} # 0 since
N3(x3) C Ny(z1) U No(). This lemma is true illustrated by following two statements.

Firstly, |Rs| < 1. Suppose this is not true, we may assume there exist wy, ws € Ra,
then wyy does not exist. Otherwise, wiswy, wisws ¢ E(G) since neither (xs; wy, z1, T2, u) nor
(x3; ws, 1, T2, u) isomorphic to H-4, however, this will induce (wy, ws, x3; urswi2) to be a Zs.
Thus we may assume wg € Ry, to avoid (wy, ws, x3; uriwe) be a Z3 and (u; w3, wy, ws, we; T1)
isomorphic to H-4, we may assume wgwy € E(G) and wegws ¢ E(G). But this will force
(x5, ws, wy; Wex1x2) to be a Zs, showing a contradiction.

Secondly, |Ry| < 1 and |Ry] < 1. Since dege(zs) > 3 and |R3| < 1, we may assume
w3 exists, then |Ry| < 1. Otherwise, let wg, w; € Ry, then (wg, wr, wi3; xsury) is a Zs.
Similarly, if wog exists, then |Ry| < 1, which implies |N3(S5)| < 6. Since G is 3-connected
and for any w € V5 \ No(.S), wipw, wesw, wisw ¢ E(G), we have Ry U Ry C No(w). However,
this will force (w,ws, ws; xouxs) be a Zz, where wy € Ry, ws € Ry. Therefore, V, C

{w12> Wi3, Wa3, W1, W2, ws}-
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Now we want to show that (wy, ws, ws) is a clique.

Firstly, we can observe that w,wj, ¢ E(G), since (u,xq, %o, w2, ws, x3) = H-4 and
neither (wis; wy, 21, 23) nor (wg; wy, T2, x3) is a claw. If wiy exists, we have wjws € E(G)
since (wy,wig, x1;uzws) is not a Zz. Similarly, we can show that wows € E(G). Since
(ws; wy, ws, x3) is not a claw, we have wywy € E(G). Thus {wy, ws, w3} is a clique. If wis
does not exist, since degg(wy) > 3, dege(wz) > 3, we can assume wyws in E(G) or both wyws
and wows in E(G). If both wyws and wows in E(G), then wiws in E(G) since (ws; wy, wa, x3)
is not a claw. If wyws € E(G), to avoid (x3, ws, was; wowyxq) be Zs, we have wows € E(G)
or wyws € FE(G), which also implies (wy, wsy, ws) is a clique.

Let C' = uzjwiswiwowszsu be a cycle and all vertices on the path ywsswis be stems of
T with No(z2) = {u, 1}, No(wiz) = {w, wie} and Ne(wes) = {ws, w3, x3}. Let H =TUC,

then H is a strong spanning Halin subgraph in G (See Figure 5.7(2)). [

5.3 Proof of 3-connected B, s-free line graphs

In this section, we always assume G is a 3-connected Bjs-free line graph and prove

Proposition 8 by following series of claims.
Claim 5.3.1. If |Vi| > 4, then Ni(x) =V} or No(x) =V, forallz € S.

Proof. We may assume there exists x € S, such that Ni(x) # Vi and Ny(z) # Vs.
Since |V,| > |V4| > 4, we can assume there exists w; € No(z), we € NZ(x), ui,us € Ny(x)
and uz € N7(x), such that wywq, ujuz € E(G). Since (us;uy,ug, r;wiws) is not a By,
we have ugus € F(G), which means Ny(z) € Nj(us). On the other hand, the fact that G
does not contain H-9 as an induced subgraph gives us Nqi(x) = {uy,us}. Moreover, we can
also assume N7 (z) = () according to G is H-3 free, thus |N?(z)| > 2 since |V;] > 4. Let

us, ug € N2(x), then (us, ug, uy, us, z,w;) = H-6, showing a contradition. [ |

Claim 5.3.2. If |[Vi| = 3, |Va| > 4 and Ny(x) # Vi for allx € S, then
1) There exists x € S such that |Na(x)| > 2;
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2) Vo U S is a clique;

3) There exists a strong spanning Halin subgraph in G.

Proof. We can assume (V;) is a triangle and |S| = 3. Otherwise, we can find two
vertices, say = and y, in S, such that Ni(x) = Ni(y) = {ug,us}. Let 8" = (S\ {z,y}) U
{ur,us}, V{ = Vi \ {u1,us} and Vi = Vo U {x, y}, then S’ is also a minimum vertex cut with
|V/| < |V4], contradicts to the assumption of S and V;.

Thus we denote by Ni(z) = {uy,us}, Ni(y) = {u,usz} and Ni(z) = {ug, us}.

1) Suppose this is not true. Let No(z) = {wi}, Nao(y) = {wa}, Nao(z) = {ws} and
wy € N3(2)\ {wy,ws}. Since (z;ug, uz, z; wawy,) is not a By o, xz € E(G). However, this will
induce (z;us, xr,ws) to be a claw, showing a contradiction.

Therefore, we may assume |Ny(x)| > 2 here and after.

2) Since Ny (z) # Vi and |Va| > 4, similarly as Claim 5.3.1, we can show that No(z) = V5.
Moreover, by the same method as Corollary 5.1.2, we will get Ny(z) = Na(y) = V5 for all
y € S\ {z} . Therefore, Vo, U S is a clique.

3) We may continue to denote by wy; € Na(x), we € No(y) and ws € Ny(z). Since
Vo \ {ws} is a clique, there exists a hamiltonian path, say P = w;Pws, in it. Let C' =
P U {wsz, zus, usuy, u1x, zwy } be a cycle and all vertices on the path ugyws be stems of T
with Neo(us) = {u1,u2}, No(y) = {z, 2z} and Ne(wy) = V(P). Set H =T UC, it is easy to
check that H is a strong spanning Halin subgraph of G. [ |

Remark: According to Lemma 4.1.2, Claim 5.3.1 and 5.3.2, we can assume Ny(z) =V}
for all x € S. Moveover, if |V1| > 2, then V; U S is a clique by Corollary 5.1.1. We want to

consider following cases.

Case 1: Suppose (V3) is a clique.

If V4] = 1, similarly as G is a 3-connected Z3-free line graph, we can find a strong
spanning Halin subgraph in G.

If |Vi| > 2, let S = {1, 29, -+, 24}, w1 € No(x1), wy € Na(x2) and ws € Ny(x;) by

Lemma 4.1.2. Since Vi, S1 \ {z1, 22} and V4 are cliques, there exist hamiltonian paths, say
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say P = u1 Piug, Py = x3Px; and P3 = wyP3ws, in them, respectively. Let C' = PiP,P; U
{z1u1, T1W1, T3Uz, Tyws} and {zo, wo} be stems of T" with Ng(xo) = V(P) UV (P) U {x1}
and No(we) = V(P3). Set H =T UC, it is easy to check that H is a strong spanning Halin
subgraph of G. |

Case 2: Suppose (V) is not a clique.

The following two claims are showing the structure of (V5).
Claim 5.3.3. There exist x,y € S such that No(x) N No(y) # 0.

Proof. Suppose for any z,y € S, Na(x) N Na(y) = (). Denote by w; € Na(x), wy €
Ny (y) and ws € No(z).

Firstly, we want to show that S is a cliqgue. This is true if |V;] > 2, thus we assume
|Vi| = 1. Then there is no induce path of length 3 in (S), otherwise (y;x, z,ws) is a claw.
Therefore, (S) contains exact two cliques, say S; and Sy, in it. We may assume x,y € S
and z € Sy. Since (wi;x,y,u;zw) is not a By, we have wyw € FE(G), which implies
Ny(z) € No(wp) and |Ny(z)| = 1 since G does not contain H-4 as a subgraph. Moreover,
dega(z) > 3 gives us that there exists t € Sy \ {z} such that tz € E(G), then (y;u,t, z; ww,)
is a Bj 9, showing a contradiction.

Secondly, we will prove that (Va) is a clique. Denote by R = V5 \ No(S). If R = 0,
we may assume wiwe € E(G) since (V3) is connected. To avoid (ws; 2z, u, x; wiws) be a By o
and claw exist, both wows and wyws in E(G). If there exists wy € No(x) \ {w;}, since
(wq; Wy, wa, ws; zu) is not a By and (Vs) is claw-free, we have wow,, wswy € E(G), which
implies Na(x) U Nao(y) U No(2) is a clique. Similarly, we can show that V, = Ny(S) is a
clique since S is a clique. If R # (), we may assume there exists w; € Ni(z) such that
wiwy € E(G). Since (wo;y, u, x;wiwy) is not a By o and (wy; x, wy, we) is not a claw, we get
wowy € E(G), which implies N2(x) N R C NZ(y) N R. Since S is a clique, by symmetric,
we have Ni(x) N R = N3(S) for all z € S. Moreover, N3(S) = (. Otherwise, assume there
exists ws € N3(z) such that wyws € E(G), then (ws; wy, we, wy; zu) is a By ,. Furthermore,

we can assume wiwy € E(G) since (w;wy, wy, ws3) is not a claw for any w € R. Similarly
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as R = (), we can show that Ny(S) is a clique, which implies V5 = Ny(S) U NZ(S) is also a
clique. [ |
Let S" = {x € S|there existsy € S such that No(x)NNy(y) # 0} and x € S’ be the vertex

with |No(z)| is maximum.
Claim 5.3.4. V, = Ny(z) U N2 (z)

Proof. Suppose this is not true. By Claim 5.3.3 and Lemma 4.1.2, we can assume there
exist wy, wy € No(z), wy € N2(x), wy € N3(x) and u € Ny (z) such that wyws, wsw, € E(G),
then either (u;x,ws, wy; wswy) is a By o or (u, x, wy, wa, w3, wy) isomorphic to H-2, giving a
contradiction. |

Remark: We may reserve y € '\ {2} with Na(x) = Ny(y) if it exists. Note that if
|Vi| > 2, y does not exists since G does not contain H-7 as an induced subgraph. If V; = {u},
there exists at most one such y, since G does not contain H-9 as an induced subgraph.

Now we want to find a strong spanning Halin subgraph in G by following subcases

depending on the size of Ny(x).

Case 2.1. |No(z)| > 4. Denote by {ws, w3, ws} € No(x) \ {w;}.
Claim 5.3.5. N2(z) C No(z) for any z € S\ {z,y}.

Proof. Firstly, we will show that N3(x) C Ny(z) for all z € S"\ {z,y}. For any
w € Ni(z), if ww, € F(G), then we can assume wwz ¢ E(G) since G is H-9 free. This
in turn gives us wz € E(G) since (wy; z, w3, w) is not a claw. If ww, ¢ E(G), since V, =
Ny(x)UNZ(z), we may assume wwy € E(G). To avoid (x, ws, w3, wy, w) =2 H-9, we still have
wsw ¢ E(G). Since (w; wa, w3, wr; zu) is not a By o, we have wz € E(G).

Secondly, we want to show that N2(z) C No(z) for all z € S\ S’. This is clearly
true if |NZ(x)| = 1 or S\ S’ = (. Therefore, we may assume |N3(z)| > 2 and there exist
w,w € Nj(z) and z € S\ 9’ such that tw € E(G) and tw' ¢ E(G). We may also assume
ww; € E(G), then ww; ¢ E(G) for all w; € N3(x)\ {w;}. Otherwise, G contains a H-4 or H-

2 as an induced subgraph. Since G is H-9 free, we can assume wsw’ ¢ E(G); if wyw’ € E(G),
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then (ws;wy, w',w;zu) is a Bis. If wyw' € E(G), we may assume wow’ € E(G) since
(w'; wa, w3, wy; wz) is not a By 2, then we have ww' € E(G). This forces (w;w,w’, 2) to be
a claw.

We want to find a strong spanning Halin subgraph in G by following subcases for
[Na(z)] = 4.

Subcase 1: Assume |V;| > 2.

By the remark after Claim 5.3.2, we know V; U S is a clique. Then we have y does not
exist since G is H-7 free; Ni(z) = {w} by Claim 5.3.6; and S\ {z} = {z,t} since (S) is a
clique and G is H-9 free. We denote by No(z) N Na(x) = {w;} and assume ww, € E(G)
since {x,w;} is not a minimal vertex cut. Since both Vi and Ny(x) \ {w;} are cliques, there
exist hamiltonian paths, say P, = u;Pius and P, = wePows, in them, respectively. Let
C = PP, U {zws, wow, wt, tuy, usx} be a cycle and {z,w;} be stems of T with Ng(z) =
ViU (S\{z}) U{w} and Ne(wy) = Vo \ {wy,w}. Let H =T UC, it is easy to check that
H is a strong spanning Halin subgraph of G' (See Figure 5.8(1)).

Subcase 2: Suppose that Vi = {u} and |NZ(z)| > 2.

By Claim 5.3.6 and Corollary 5.1.2, we know |S\{xz, y}| < 2. We may assume zz € E(G)
since |S| > 3 and G is H-2 free and H-6 free. If S = {x,y,2} or S = {x,zt}, since
neither {w,z} nor {wy,z} is not a 2-cut, we can assume there exists w € NZ(x) such
that wwi, wws € E(G). Similarly as Subcase 1, we can find a strong spanning Halin
subgraph in G. If S = {x,y, 2,t}, since both Ny(z) and N3(z) = Ny(z) are cliques, there
exist hamiltonian paths, say P, = w;Piwy and P, = wPw’, in them, respectively. Let
C = PP, U{yws, w't, tu, uy} be a cycle and {x, z} be stems of T with N¢(z) = V(P) U{y}
and No(z) = V(P2)U{t,u}. Let H =T UC, it is easy to check that H is a strong spanning
Halin subgraph of G (See Figure 5.8(2)).

Subcase 3: Assume V; = {u} and N3 (z) = {w}.

Since G is H-9 free, |[Na(w) N No(z)| < 2. We may assume {wi, w2} C No(w) since
Vo = Ny(z) U N(z)(Note that ww, may not exist).

If wws does not exist, then y exists since {x, w;} is not a 2-cut and S\ {z,y} C {z,t} by
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Lemma 4.1.2. Similarly as Subcase 1 and 2, we can find a strong spanning Halin subgraph
in G.

If wws exists, we have S\{z,y} C {z,¢,t'} by Lemma 4.1.2, we can assume t'wy € E(G)
if |{z,t,t'}| = 3. Since (w3, wy, w1, we; w,t) 2 H-6, we have either twy € E(G) or tw; € E(G).

If twy € E(G) and both ¢ and ¢’ exist, then tt' € E(G) by Claim 5.1.1. We may assume
zt, zwy € E(G) but zt' ¢ E(G) since (z, u, t,t', w) is neither isomorphic to H-2 nor isomorphic
to H-9 and |Ny(x,t,t')| > 3. We may also assume wqz ¢ E(G), otherwise swipe w; as ws.
Then zt € E(G) since (w; z,t,w9) is not a claw, which also implies zt' ¢ E(G). Moreover, we
have zt’ € E(G) since (u;x, z,t') is not a claw and (z,u,t, w,w, z) does not isomorphic to
H-5. Since Ny(x) \ {w} is a clique, there exists a hamiltonian path, say P, = wyPyws, in it.
Let C'= PyU{wst’, t't, tu, ux, ry, yws} be a cycle and all vertices on the path zww; be stems
of T'with N¢(z) = {u,t}, No(w) = {t'} and No(wy) = V(P) U{x,y}. Let H =T UC, it
is easy to check that H is a strong spanning Halin subgraph of G (See in Figure 5.8(3)).

If twy, € E(G), by Lemma 5.1.1, tz € E(G). Since neither (z;u, z,t,w;) = H-2 nor
(r,u, z,t,w;,w) = H-7, we can assume zz € E(G) and xt ¢ E(G). Moreover, to avoid
(ujz,t,t') be a claw and (t',u, z,t,w;) isomorphic to H-2, we have either ¢t' in E(G) or
both zt’ and zt' in E(G). If tt' € E(G), we can find a strong spanning Halin subgraph
as twy € E(G). If both xt’ and zt' in E(G), since Ny(z) \ {w1} is a clique, there exists
a hamiltonian path, say P| = wyPiws, in it. Let C' = P U {ut, tw, wt’, twsy, wzx, zu} be a
cycle and {z,w;} be stems of 7" with N¢(z) = (5'\ {z}) U{u,w} and No(w,) = V(P1). Let
H =TuUC, it is easy to check that H is a strong spanning Halin subgraph of G (See Figure
5.8(4)).

Case 2.2: Assume No(z) = {wy, wa, ws}.
Claim 5.3.6. If No(z) = {wy,wq, w3}, then the structure of (Va) can be described.

Proof. For any w € NZ(z), |[No(w) N No(z)| < 2 since G is H-9 free. Therefore, if
ww, € E(G), we can assume wws ¢ E(G). Since (wy;ws, w, 2) is not a claw, wz € E(G).

If ww; ¢ E(G), we may assume wwy; € FE(G) since Vo = Ny(z) U Ni(z). The fact that
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1) ) (3 4)

Figure 5.8. |Ny(z)| > 4.

(w; we, w3, wy; zu) is not a By showing wws € E(G). On the other hand, there exists
at most one such w since if there exists another w’ with the same property as w, then
(u, x, wy, w3, w,w') = H-6. This implies |No(w;) N Ni(z)| > |Ni(z)] — 1 and also means
|Na(2) N N3(x)| > |Ni(x)] — 1. Since |No(z)| is maximum, we have |NZ(z)| < 3, which
implies |V3| < 6.

Here we may reserve w € N3(x) \ No(2) if it exists and w’, w” € Ny(z) N Ni(z) if they
exist. Since (u;z,w', wy;wow) is not a By and (wy;z,w',w) is not a claw, ww' € E(G).
Similarly, we can show that ww” € E(G). Moreover, since neither (wq, w,w’, w", z,u) nor
(ws, w,w',w”, z,u) isomorphic to H-3 and neither (z,ws, wy, w3, w’) nor (x,wy, ws, ws, w")
isomorphic to H-9, we can assume wsw’, wow” € E(G) and wow', wsw” ¢ E(G). Note that
if w does not exist, we can also assume wow' € E(G) since {x,w,} is not a 2-cut. [ |

We still reserve w € N2(z) \ No(2) if it exists and w', w” € Ny(2) N Ni(z) if they exist

here and after.

Claim 5.3.7. For any t € S\ {z,y, 2}, if tw € E(G), then either No(t) = {wa,w”, w} or
NQ(t) = {'LUg,w/,'LU}.

Proof. Iftw € E(G), since neither (w; wq, w', t) nor (w;ws, w”,t) is a claw and neither
(" W' z,u,t) = H-2 nor (wy,w,w”, z,t) = H-9 and neither (ws,ws,z,u,t) = H-2 nor

(wy,w,w”, z,t) = H-9, we have either Ny(t) = {waq, w”, w} or No(t) = {ws, w', w}. |
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Claim 5.3.8. For any t € S\ {z,y, z}, tw, ¢ E(G).

Proof. If there exists t € S\ {z,y, z} such that tw; € E(G), since (w; wq, w',t) is not
a claw, we can assume tws € E(G). By Claim 5.3.7, we have Ny(t) = {wy, ws, w”, w}, which

contradicts to the definition of x in S’. [ |

Claim 5.3.9. Foranyt € S\{x,y, z}, iftw’ € E(G)(similarly as tw” € E(G) ortw, € E(Q)
or twg € E(G)), then either No(t) = No(z) or No(t) = {ws, w', w}.

Proof. Since neither (w'; ws,w”,t) nor (t;u,ws, w”) is a claw, we have either twz €
E(G) or tw” € E(G). If tw” € E(G), then 2zt € E(G) since (w',w",t,u,z) 2 H-2. To avoid
(wy,w',w", z,t) = H-9, we have Ny(t) = Nao(2). If tws € E(G), since (wy;x,w,t) is not a
claw, we have zt € E(G). To avoid (x,t,w”, w,wy) = H-2, we have wt € E(G). Therefore,

No(t) = {ws, w',w}. [

Corollary 5.3.1. For any t € S, either Ny(t) = {wy,wq, ws} or No(t) = {wy,w',w"} or
No(t) = {w,w” wy} or No(t) = {ws, w',w}.

Corollary 5.3.2. For any t € S, there exists at most one t' € S\ {t}, such that Ny(t) =
No(t).

Proof. We may assume there exists ¢, t” € S\ {t} such that Ny(t) = No(t') = No(t").
Since (Va) is not a clique, by Lemma 4.1.2, |Ny(t) = No(t') = No(t")] > 3. Since G
is H-2 free, tt' tt",t't" € E(G). This will force (u,t,t',t", w*) isomorphic to H-9, where
w* € No(t) = Na(t') = No(t"). [ |

Now we want to find a strong spanning Halin subgraph in G by following subcases.

Subcase 1: Assume |V;| > 2.

By the remark after Claim 5.3.2, we have V; U S is a clique. Let P = tPz be a
hamiltonian path in V; U S\ {z} and w3 € Ny(t). Set C' = P U {zw', w'w”, w"w, wws, wst}
be a cycle and all vertices on the path zwsw; be stems of T" with Ne(z) = V(P) \ {z},
Neo(we) = {ws, w} and Ne(wy) = {z,w',w"}. Let H =T UC, it is easy to check that H is

a strong spanning Halin subgraph of G (See Figure 5.9(1)).
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Subcase 2: Suppose Vi = {u}.

If (S) is connected, we may assume P = xixs---x) is a hamiltonian path in (S).
Denote by {wy,ws,ws} € Na(x1), we € Na(x3), w € No(zy) since G is H-2 free and H-
9 free. Let C' = 293Pz U {zpw, wwq, w'w”, wwy, waxs} be a cycle and {u,xq,ws, w1} be
stems of T" with N¢(u) = V(P), No(ws) = {w',w} and Ng(w;) = {ws,w"} (See Figure
5.9(2)). If (S) is not connected, (S) has exact two cliques, denote by Sy = {x1, 29, -+ , 2k, }
and Sy = {y1,Y2, Uk, }. I |Sof # 2, let w1 € No(w1) N No(y1), wy € No(z1), w' €
No(xp) and we € No(yk,). Set P = x9Pixy, and P = yPiyr, be hamiltonian paths
in 51\ {x1} and S5 \ {y1}, respectively. Note that P, may not exist. Set C' = PP, U
{uzy, T, w', w'w, ww”, wwe, woyk,, you} be a cycle and all vertices on the path wsziw;iy;
be stems of T' with Ng(ws) = {w',w}, No(z1) = V(P1) U {u} and Neg(wy) = {wq, w”}
and Ne(y1) = V(Py) (See Figure 5.9(3)). If |S3| = 2, denote by ws € No(y1) N Na(ys),
wy € No(y1), wy € No(z1) and w' € No(zg,). Let Pi = z9Pyxy, be a hamiltonian path
in S\ {z1}. Set C' = P, U {uwy, xp,w', w'w, ww”, w'wy, w1y, y1y2, y2u} be a cycle and all
vertices on the path zjwswy be stems of T with Ng(z1) = V(Py) U{u}, No(z1) = {w', w1}
and Ng(ws) = {w”,y1,y2}. Let H =T UC, it is easy to check that H is a strong spanning
Halin subgraph of G (See Figure 5.9(4))

2

Figure 5.9. |Ny(z)| = 3.

Case 2.3: Suppose No(z) = {wy, ws}.

If |Va| = 2, then (V4) is a clique since it is connected. Thus we may assume |V5| > 3.
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Claim 5.3.10. If |V4| > 3 and there exists z € S"\ {x,y} such that No(x) N No(z) # 0, then

there must exist at least one such z with |[Na(z)| > 2.

Proof. Suppose this is not true. For any z € S’ with Na(z) N No(2) # 0, [ No(2)] = 1.
Note that there exists exact one such z by Lemma 4.1.2. We may denote Ny(z) = {wy, ws}
and No(z) = {w}.

Firstly, we can show that for any w € Vo \ {w1, wa}, wwy € E(G) and ww, ¢ E(G). If
there exists w € V5 \ {wy, ws} such that ww; € E(G), then wywq,xz € E(G) since neither
(w1; 2, we, w) nor (wy; x, z,w) is a claw. However, this in turn gives (u, z, z, wy, wy, w) = H-8.
By Claim 5.3.4, we know ww, € E(G) and ww; ¢ E(G).

Secondly, |Va| > 4. Otherwise, assume Vo = {w;, wq, w}, since G is 3-connected, we
have degg(w) > 3. This implies there exist ¢,t' € S\ {x, 2z} such that Ny(t) = Na(t') = {w},
contradicts to Lemma 4.1.2.

Thus we may assume there exist ws, wy € Vo \ {wq, w1} and ¢,t" € S\ {z,y, 2z} such that
tws, t'wy € E(G). To avoid (wy;we, ws, wy;t'u) be a By o, we have t'ws € E(G). This will
force either (u,t', w4, w3, wy,z) = H-4 or (t',x,w, ws, wy) = H-2, showing a contradiction.

Now we want to find a strong spanning Halin subgraph in G by following two subcases.

Case 2.3.1: Assume |V5] > 3 and there exists z € S’, such that Ny(x) N Na(z) # 0.
Denote by Ny(z) = {wy,ws} and No(z) = {wy, ws}. Then,

Claim 5.3.11. If there exists z € S such that No(z) = {wy,wa} and Na(z) = {wi,ws},

then Vy C {wy, we, w3, w}.

Proof. This claim is provided by following statements.

Firstly, for any w € Ni(x), ww; ¢ E(G). If there exists w € V5 \ {wy, wy} such that
ww; € E(G), then wyws, zz € E(G) since neither (wq; z, we, w) nor (wq;x, z,w) is a claw.
However, this in turn gives us (u, z, z, wy, wy, w) = H-8 by Claim 5.3.4.

Secondly, For any w € Ni(z), wow,wsw € E(G). If wow € E(G), then wyw € E(G)

because neither (u; z, ws, wy; wow) is a By o nor (we; x, ws, w) is a claw. Similarly, if wsw €
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E(G), then wow € E(G). Since Vo = Nyo(z) U Ni(x), we have wow, wsw € E(G) for any
w € N2 (x).

Thirdly, V \ {wy, we, w3} C {w}. Otherwise, for any w,w’ € Va \ {wy, wq, w3} since
(w1, wa, w, W', w3) 2 H-2, we have wows € E(G). This implies V5 \ {w;} is a clique. Since
{ws, w3} is not a minimal vertex cut, we can assume there exists ¢ € S such that tw € E(G).
To avoid (wy;we, w', w;tu) be a By o, (t;u, wy,w) be a claw and H-2 or H-4 exist in G, we

have wq, w3 € Ny(t), which contradicts to the maximum property of | Na(z)|. |

Now we want to find a strong spanning Halin subgraph in G by following subcases.

Subcase 1: Suppose |Vi| > 2.

By remark after Claim 5.3.2, we know V;US is a clique and let P = zPt be a hamiltonian
path in V4 U (S'\ {z}). Since degg(w) > 3, there exists t € S such that tw € E(G).

If Vo = {wy, we, w3, w}, let C = P U {zws, wsw, wt} be a cycle and all vertices on the
path zwsw; be stems of T' with No(x) = V(P)\ {2}, No(wz) = {w} and Ne(wy) = {z, w3}.
If V4 = {wy, wq, w3}, since degg(wy) > 2, degg(ws) > 2 and (V5) is not a clique, there exist
t,t' € S\ {x,y, 2z} such that tw,, t'ws € E(G)(Note that we may have t = y). Let P = tPt’
be a hamiltonian path in V; U S\ {z,2}. Set C = P U {twy, wow;, wiws, wst'} be a cycle
and {z,z} be stems of T" with N¢(z) = V(P) \ {t'} U{wy,ws} and Ng(z) = {t',w3}. Let
H =TUC, it is easy to check that H is a strong spanning Halin subgraph of G (See Figure
5.10(1) and (2)).

Figure 5.10. No(z) = {wy,ws} and |V3| > 2.
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Subcase 2: Assume that V; = {u}.

If Vo = {wq, we, w3}, similarly as |Vi| > 2, we can assume there exist ¢, € S\ {z,y, z}
such that tws, t'ws € E(G)(Note that we may have t = y). Since for any = € S, uz € E(G)
and G is claw-free and H-5 free, we have either [{xz,zt’,zt'}| = 1 and [{zz,zt, 2t} = 1
or [{zz,zt', zt'} = 3 and |{xz,at, 2t} = 3. If |[{zz,zt',2t'} = 3 and |{xz,at, 2t} = 3,
let C' = utwywywst'u be a cycle and {x,z} be stems of T" with No(z) = {u,t, we} and
Neo(z) = {wr,ws, t'}. If {xz,at’, 2t'}| = 1 and |{zz, 2t, 2t}| = 1, then 2z ¢ E(G). Since
{u, w1} is not a 2 cut, we can assume zt,zt’ € E(G). Moreover, since (u;t, z,t') is not a
claw, we have tt’ € E(G). Let C' = twow wst’t be a cycle and all vertices on the path xuz be
stems of T" with No(z) = {t, w2}, No(u) = {t'} and Ne(z) = {wi,ws}. Let H =T UC, it
is easy to check that H is a strong spanning Halin subgraph of G' (See Figure 5.11(1) and

(2))-

Figure 5.11. Na(x) = {wy,wa}, [Vi| = 1 and |V, = 3.

If Vo = {wy, we, w3, w}, we have following claims.

Claim 5.3.12. If V5 = {wy, we, w3, w} andy exists, then there does not exist 2 € S\{z,y, z}
such that No(z) = No(2') = {wy, ws}.

Proof. Otherwise, No(2)UN2(y)UN2(2)UNo(2') = {wy, wa, w3}, contradicts to Lemma
4.1.2. |

Therefore, we always assume 2z’ does not exist and y may exist.

Claim 5.3.13. If Vo = {wy, wq, w3, w}, for any t € S\ {z,y, z}, tw, ¢ E(G).
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Proof. If wows ¢ E(G), then tw, ¢ E(G) since (w;t, we, ws) is not a claw. If wows €
E(G), since neither (wy;x,ws, t) nor (wy;ws, 2,t) is a claw, we have tx,tz € E(G). This in
turn gives xz € FE(G) since (t,z,u, z,w) 2 H-2. However, this will induce (¢, u,z, z, w;) =

H-9. |

Claim 5.3.14. If Vi = {wy, we, w3, w} and wows € E(G), then there exists exact one t €

S\{z,y, z}, such that tw € E(G). Moreover, there exists a strong spanning Halin subgraph
n G.

Proof. Since degs(w) > 3, there exists ¢t € S\ {x,y, z} such that tw € E(G). More-
over, since neither (u, z, ws, w, wsy, t) = H-4 nor (z, w3, w, we, t) = H-2 and by the maximum of
| No(z)|, we have tws, tws ¢ E(G). Therefore, there exists exact one such ¢ because otherwise
we can find a smaller vertex cut.

If Vo = {wy, we, w3, w} and wows € E(G), let C = utwwszu be a cycle and all vertices
on the path ywyw; be stems of T with No(y) = {u,t}, No(wy) = {w} and Ne(wy) = {z, w3}.
Let H=TUC, then H is a sstrong spanning Halin subgraph of G (See Figure 5.12(1)).1

Claim 5.3.15. If Vo = {wy, we, w3, w} and wews ¢ E(G), then for any t € S\ {z,y, 2},
either No(t) = {w,wa} or Na(t) = {w, ws}.

Proof. If tw € E(G), since neither (w;t, wq,ws) nor (t;u,ws, w3) is a claw, we have
either twy or tws in E(G), but not both. If twy € E(G), since (ws;t, wy, w) is not a claw, we
have tw € F(G). Similarly, if tws € E(G), then tw € E(G). Thus either Ny(t) = {w,ws} or
No(t) = {w,ws}. m

If all ¢1,t and y exist, since neither (ws, wy,x,y,u,ts) nor (ws, w,ty,ts, u,y) isomor-
phic to H-7 and neither (t9, u, x,y, wy, we) nor (y, u, ty, ts, ws, w) isomorphic to H-8, we can
assume xtq,yty € E(G). Moreover, since neither (u,ty,ts,ws,z) nor (u,x,y,ws,t3) iso-
morphic to H-2 and (t1;x,t,2) is not a claw, we can assume t3y and tyz in E(G). Let
C = utzwow xtywwszu be a cycle and {y, ta} be stems of T" with Ne(y) = {u, t3, we, wy, x}

and N (to) = {t1,w,ws, z}. If t1, 15 exist and y does not exist, since (u, t1, ws, w, to) 2 H-2,
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we have tity € E(G). Therefore, since (z,u,t1,ts,ws) 2 H-2, we can assume zt; € E(G).
Let C' = utzwowtatizu be a cycle and all vertices on the path xw,ws be stems of T" with
Neo(x) = {u,ts3}, No(wy) = {ws} and Ne(ws) = {w, tq,t9,2}. Let H =T UC, it is easy to
check that H is a strong spanning Halin subgraph of G (See Figure 5.12(2) and (3)).

If either ¢; or t5 exists, we may assume t, does not exist. If y exists, since (u, z,y, wo, t3) &
H-2, we can assume t3y € F(G). Let C' = tzywowizwswts be a cycle and all vertices
on the path zut; be stems of T" with No(x) = {wy,we}, Ne(u) = {z,y, 211,13} and
Ne(ty) = {ws,w}. If y does not exist, since tzwy € E(G), we can also find a cycle C
and a tree T" in G similarly. Let H = T'U (), it is easy to check that H is a strong spanning
Halin subgraph of G' (See Figure 5.12(4)).

If neither t; nor ¢y exists, then ¢3 must exist since degg(w) > 3. If y exists, let C' =
utswwszyu be a cycle and all vertices on the path wexw; be stems of T" with Ng(ws) =
{w,t3}, No(z) = {u} and No(ws) = {ws, z,y}. If y does not exist, since uz € E(G), we
can find a cycle and a tree similarly. Let H =T U (), it is easy to check that H is a strong

spanning Halin subgraph of G (See Figure 5.12(5)).

4 ®)

Figure 5.12. No(x) = {wq,wq}, |Vi| = 1 and V3| > 4(1).
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Case 2.3.2: Suppose |Va| > 3 and for any z € S’ with Ny(x) N Na(z) = 0.
By the definition of x, we have y must exist and V; = {u}. Since Vo = Ny(z)UNZ(zx), we
may assume there exists w3 € V5 \ {wy, we} and z € S\ {z,y} such that wzws, w3z € E(G).

Then we have following claim.
Claim 5.3.16. |V5| <5 and S = {x,y, z}.

Proof. Since (u,y,x, wy, ws, 2) = H-4, we can assume xz € E(G). Moreover, wijws ¢
E(G), otherwise (wi,ws,ws, z,y) = H-2. Since degs(ws) > 3, we can assume there exist
wy € Vo \ {wy, we, w3} such that wyw, € E(G) by Lemma 4.1.2 and the definition of z. To
avoid (ws; z, wy, wy) be a claw and (wy, wy, w3, z,y) isomorphic to H-2, we have either wqwy
or zwy in E(G).

If wowy € E(G), to avoid (wy; ws, wy, ws; zu) be a By, we have wywy € E(G). This
implies No(ws) C No(wq). If zwy € E(G), since neither (u;z, w4, w3; wowy) is a Byg nor
(x; 2, w3, g, we) = H-2 nor (z; x, wy, wy, w3) = H-2, we have wyw, € E(G), which also implies
Ny(ws) € No(wy). For any w € Vo \ {wi, ws, w3, ws}, if wwy € E(G), then wws € E(G)
since (wo;z, w3, w) is not a claw. Thus we have Ny(wy) \ {w1} € No(wz) € No(wy). If
wiw € E(G), then wyw € E(Q) since (wy; x, wy, w) is not a claw. And if ww, € E(G), then
ww, € E(G) since neither (wy; z,wy, w) nor (wg; ws, wy, w) is a claw and Ny(wq) C Nao(wy).
Thus No(wq) \ {wa, w3} = No(wy) \ {we, ws}.

In fact, |Vo\ {wy, wa, w3, wys}| < 1. Otherwise, by symmetric, we may assume there exist
ws, we € Vo \ {wy, we, ws, wy} such that wyjws, wiws € E(G). Then wswy, wewy € E(G) since
neither (wq;z, wy, ws) nor (wy;z,wy, we) is a claw. This in turn gives wsws, wews € E(G)
because neither (ws; wy, ws, wy; yu) nor (ws; wya, we, wy; yu) is a Byy. However, this will induce
(wy, ws, we, wy, wg) = H-9 since wyws ¢ E(G). Thus Va C {w, wy, w3, wy, ws}. Note that
only ws may not exist.

Moreover, S = {x,y, z}. Otherwise, by the definition of z, for any t € S\ {z,y, 2},
twy, twe, twy ¢ E(G). We also have twy ¢ E(G). Otherwise (wy;t,wy,ws) is a claw, which
in turn gives us w; exists and tws € E(G). If wow, € E(G), since (ws; wy, wa, ws; zu) is not

a By o and No(ws) \ {w1} € Nay(ws), we can assume wsws; € E(G). This forces (ws; wy, ws, t)
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to be a claw. If zw, € E(G), since (wq; w1, wy, ws; tu) is not a By o, we have wows € E(G),
which implies wsws € E(G). However, this will induce (ws; wy, ws, t) to be a claw.

Since dega(ws) > 3, we may assume wsws € E(G). If wowy, € E(G), let C =
uywywswszu be a cycle and all vertices on the path xwywy be stems of T' with N¢(z) = {u, y},
Ne(ws) = {y} and Ne(wy) = {wy, ws, w3}. If 2wy € E(G), let C' = uywiwswyzu be a cycle
and all vertices on the path xwsws be stems of T with No(x) = {u,y}, No(ws) = {w;} and
Neo(ws) = {ws, wy, 2}. Let H =TUC, it is easy to check that H is a strong spanning Halin
subgraph of G (See Figure 5.13(1) and (2)).

1) @

Figure 5.13. No(z) = {wy,wa}, |Vi| =1 and |V5| > 4(2).
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Chapter 6

LONG CIRCULAR INTERVAL GRAPHS

Recall that if we let ¥ be a circle and Fj, - - -, F} C 3 be homeomorphic to the interval
[0, 1] and assume there is no three of FY, - - -, F} have union 3 and no two of FY, - - -, F} share
an end-point. Set V' C ¥ be finite and G be a graph with vertex set V' in which, for distinct
u,v € V, u,v are adjacent if and only if u,v € F; for some i. Such a graph G is called a long
circular interval graph.

In this chapter, we will prove the following proposition.

Proposition 10. If G is a 3-connected long circular interval graph, then G contains a strong

spanning Halin subgraph.

6.1 Some properties of long circular interval graphs

We still follow the definitions and notations mentioned in Section 4.1 that G is a graph
with n-vertex and S is a minimum vertex cut of G. Let G; and G5 be the exact two
components of G\ S, and V; = V(G;), Vo = V(G2). Subject to the minimality of |S|, we
always assume that |V}| is minimum. Moreover, if we denote by V' = {uy,us, - ,u,} be
vertex set of G and wu;,u;1 are consecutive vertices along the circle ¥ for any i € [1,n],

where u,,1 = u;. The following lemma is giving a partition of V.
Claim 6.1.1. For i € [1,2], the vertices of V; are consecutive along ¥.

Proof. We only show this claim is true for ¢ = 1.

It is trivial if |V3]| = 1, thus we assume |V;| > 2. Suppose to the contrary, there exist
1 < 4,5 < n such that w;,u; € Vi and w1, ujr; ¢ V4. Since (V) is connected, there
exists a path P from w; to u; in (V;). We may assume V (u;Pu;) C {uw;, wit1,--- ,u;}, then

{wi, wigr, - ,u;} € S UV, which implies u;11 € S. Moreover, since Na(u;y1) # 0, there
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must exist u, € Vo N ({ug, ug, -+, uim1} U{wjrr, -+, un}), such that u;u, € E(G). by the
definition, there exists an interval contains both u;,, and u, which also has to contain either

u; or u;. Therefore, we get either u;uy, € E(G) or wsu, € E(G), showing a contradiction. W

For simplicity, we denote by Vi = {w;, wiy1, -+ ,u;} = {vny, U1, , 02,01}, Vo =
{ukauk-i-b e ,Ul} = {w1>w2a e >wn2}a Sl = {uj+1>uj+2> e auk—l} = {$1>$2a T >$m1} and
So = {1, Wig2, - s Uim1} = {Ymagy Yma—1, -+ s Y1}, Where U, = uy. Clearly, S = S; U Ss.

Without loss of generality, we always assume |Si| > |Ss|, note that S, may be empty.

Claim 6.1.2. 1) If Sy is empty, then S is a clique.
2) If Sy is not empty, then both (S1) and (Ss) are connected. Moreover, both (S1) and (S5)
are cliques if E(S1,S2) =0, and Vi or Vy is a clique if E(Sy,S2) # 0.

Proof. 1) If Sy is empty, S = S1 = {uji1,Uji2, -+ ,up—1}. Since Na(uj1q1) # 0 and
ujug € E(G), there exists an interval contains both u;4; and uy, which also has to contain
all vertices of S. Thus S is a clique.

2) Suppose (S7) is not connected, then there exist us, us11 € E(G) such that usus 1 ¢
E(G). Since Ny(us) # (), there exists an interval contains both wu, and w;, which also has to
contain all vertices of V. Therefore, E(V1,V,) # (), giving a contradiction. Similarly, we can
show (S5) is connected.

If E(S1,S:) # (0, we may assume uy_1u;p1 € F(G). Then there exists an interval
contains both u;_; and ;. 1, which also has to contain all vertices in V5 or Vi, then V5 or V;
is a clique.

If E(Sy,S2) = 0, since No(uji1) # 0, ujrqur € E(G). Then there exists an interval
contains all vertices between w;y; and uy, which implies (S;) is a clique. Similarly, since
Ni(up1) # 0, wipqu; € E(G). This in turn gives that there exists an interval contains all

vertices between w1 and wu;, thus (Ss) is a clique. [ |

Now we divide V; into following parts. Let Vi3 = Ni(x1) = {vi,v9,- - ,vs}, Via =
Nl(vsl)\‘/il = {Usl-i-la Vs1+125 *° 7'U82}> T and ‘/lk = Nl(US(k,l))\Ui?z_ll‘/li' Then ‘/lla ‘/127 e 7‘/1]6

is a partition of V. Similarly, let Vo = No(2y,,) = {wr,wa, -+ ,wy, }, Vag = No(wy,) \ Vo3 =



72

{wy, 41, Wi, 49, Wey ), -+, and Viy = No(wy, ) \ UZiVa;. Then Vo, Vay, - -+, Vi is a parti-
tion of V5. For convenience, we denote by Vi; = {vs, 41, -+ ,vs, } = {vi,, Vip, - - ,visl_} and
Vaj = A{wy,_y41, - wy b = {wy,, wyy, -+ wy, }oforall i € [1 k] and j € [1,1]. The following
claims are clearly true by the definition of long circular interval graphs and the partition of

Vi and V5.
Claim 6.1.3. For any i € [1,k] and j € [1,1], we have Vy; and Va; are cliques.

Proof. Since for any i € [1,k— 1] and j € [1,] — 1], we have z1vg,, Ty, Wy, , Uiy, Vit s,

Wy, Wi, all in E(G). [
Claim 6.1.4. Foranyi € [1,k—1] and j € [1,1—1], we have |Vy;| > |S1|+1 and |Va;| > |Si].

Proof. If there exists i € [1,k — 1] such that |V3;] < |Sy], then Vi; U Sy is a vertex
cut with [Vy; U Sy| < [Sy U Sy| = [S] and |V/| = |[Vi \ Ui, Vi;| < |Vi], this contradicts
to assumptions that S is a minimum vertex cut and |V;| is minimum subject to S being
minimum. Similarly, if there exists j € [1,1 — 1] such that |V5;| < |S;|, then V5; U S; is also

a vertex cut with |Va; U Sa| < |S1 U Sa| = | S|, contradicts to the minimality of |S|. [

Claim 6.1.5. Let |Sl‘ =m cmdp S [O, mq —1], then I‘H_pUller, /Uisz-fpv(i"rl)mlfp? Ty —pWmq—p;

W), W41, - € E(G) for anyi € [1,k—1] and j € [1,1 —1].

Proof. We only proof that for any j € [1,l — 1], wj, _, w(i1y,,_, € E(G). Sup-
pose to the contrary, there exists j € [1,I — 1] such that W,y W4+ —p ¢ E(G). Then
(W), pirs Wie, s Wi, F UAWG41) W15, -+ W), 0 ) U S2 1S a vertex cut with

size p4+ (mp —p—1) 4+ |Ss| =my — 1+ |S3| = |5] — 1, showing a contradiction. [ |
p+( p—1)+| g

6.2 Proof of 3-connected long circular interval graphs

For simplicity, we denote by S; = Voo = {x1, T2, , Ty, } = {wo,, wo,, - - ,woto}.

Our goal is to find a strong spanning Halin subgraph H in G. We divide this processor
into two steps. In the first step, we find the part of H in (V5 U S;) and in the second step,
we find the other part of H in V3 U Sy U {x,}.
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Step 1: Finding a spanning subgraph H; of H in (V5 U S;)

Case 1: Assume S, = ().

We let @ = wo, w1, -~ w1,  be a path. If for any j € (0,1 — 1], we have |Va;| # 4.
Since for any i € [0,1 — 1], both Vj; \ {wjz,wjtjfz,wjtj} and Vo are cliques, there exist
hamiltonian paths, say Ps; = wj1P2jwjtj72 and Py = wy, Pyw,, in them, respectively. Let
P, = W0, Woy, 3 Wiy *** W(i—1),, | and Cy = Py Py - - - Py Py and all vertices of () be stems of
T, with Ney (wj),,) =V (Py,) U{wj,, wj,,, } for all j € [0,1—2] and Ne, (w(l—l)t(zq)) = {wlw €
Vo1 U Vo }. Then Ty is a HIST of (V5 U S;) and V(Cy) = {w € V4, U Sy|degr, (w) = 1}. Let
Hy, =T, Uy, then H, is planar (See Figure 6.1).

wa
1 Tmq—2W1g Wi o W2y t2—2

Figure 6.1. Sy =0 and |Va;| # 4 for all j € [1,1 —1].

If there exists j € [0,] — 1] such that |V5;| = 4, first we find 75 and C5 in (Vo U S5) as

above, then apply Swap-Operation to the HIST (See Figure 6.2).

Swap-Operation:
1) Swapping the positions of w(;11), and w(j11), on the path Cs.
2) Putting wj, adjacent to w;, and w41y, along the path Cs.
3) Keeping all other vertices’ positions are the same.
After performing Swap-Operation, we get a new Ty and Cy, then the new T3 is a HIST
of (VoUSy) and V(Cy) = {w € Vo U Si|degr, (w) = 1}. Let Hy = T, UCy, then Hs is planar.

Case 2: Assume Sy # ().
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Wiy Wiy

w, w.
Wig Wig—g W2o 32 Btg—2

w1y w1t1—1w21 w2t2—1 w3y w3t371 w1q w11,171w21 wag w3y w3t3—1

[Vaa| =5 [Vaz| =4

Figure 6.2. An example of swap operation with |Vas| = 4 and |[Va| > 5.

Since for all j € [0, — 1], both Vj; \ {wjtj} and Vo, are cliques, there exist hamil-
tonian paths, say P; = wijgjwjtrl and Py = wj, Pyw,, in them, respectively. Let
Cy = PygPsy -+ Py and all vertices of @) be stems in Ty with Ng¢, (wjtj) = V(P;} for all
J € [1,1=2] and Ne¢, (wg—1) ) = {w|w € Voy_1 UVy}. Then Ty is a HIST of (Vo U S;) and

V(Cy) = {w € Vo U Si|degr, (w) = 1}. Let Hy = T5 U Cy, then Hy is planar (See Figure 6.3).

tu-1)

Ty

Figure 6.3. Sy # (.

Step 2: Finding a spanning subgraph H; of H in (V; U S, U {z;})

Case 1: Assume Sy = ().

If £ > 2 and |Vi;| # 4 for any i € [I,k — 1]. Since Viy \ {vi,,v1, 5,01, }5 Vie \
{viy, vi, v, }, for any @ € [2,k — 1], and Vi, are cliques, there exist hamiltonian path-
s, say Pii = v, Pnv,,, Pu = v, Puyvi,, and Piy = vg, PigUk,, In them, respective-

/
ly Let P1 = 1)221)%271@32 "'U(k—l)vt(k,l)—l and Q = VU(k—-1) "'U282U181U111’t. Set Cl =

Sk—1
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PP Py P3Py U {vglvltrQ} and all vertices of @' be stems of 77 with Ng(vy,) =
V(Pu), Ne(vi,) = {v1,, o} Ne(v,) = V(Py) UA{vi,, v, }, forall i € 2,k — 2], and
Slk—1> = {v|v € Vi UVix_1}. Then Tj is a HIST of (V; U {x;}) and V(C}) = {v €
Vildegr,(v) = 1}. Let Hy = T1 U C4, then H; is planar.

Ne(vg-1)

If £ > 2 and there exists ¢ € [1,k — 1] such that |V};| = 4, then we can apply Swap-
Operation to (Vi) as to (V5). Similarly, we can find a HIST 73 and a path Cy in (V} U{z:}),
then H; = T; U C} is planar (See Figure 6.4).

vaq

v,

3s3—2 Y31 v2g

Figure 6.4. Sy =0, k =4 and |Vi5| =4 and |Vi3] # 4.

If £ =1, which means Ni(z1) = Vi3 = Vj is a clique and |Vj| > 3. Then there exists
a hamiltonian path, say C} = v1,C1v1,, in (V4 \ {v1,}). Let {vi,,2;} be stems of T} with
Ney(v1,) = {vlv € Vi \ {v1,}}. Then T is a HIST of (V; U {x;}) and V(Cy) = {v €
Ti|degr,(v) = 1}. Let Hy = T} U C, then H; is planar.

If k=1and V; = {vy,,v,}(or Vi = {vy,}). By Claim 4.1.2, Ny(x;) = {vy, vy} for all
x; € S;. Let C7 = vy vy, and vy, x4, v1,2y € E(Ty). Then T3 is a HIST of (Vi U {z;}) and
V(Cy) = {v € Vi|degr,(v) = 1}. Let H; = T, U C}, then H; is planar.

Case 2: Suppose that Sy # (). Note that v,,,v,, 1 € Ni(y) for all y € S,.
Case 2.1: Assume that k > 2.

Case 2.1.1: Assume that |V3;] > 4.
If [Vig| > 2, since Viy \ {v1,,v1,, }, Vii \ {wi,, }, for all i € [2,k], and Sy are cliques,

there exist hamiltonian paths, say Py = vy, Piyvr,, ,, Pu = v, Prvi,,, and P = y1P'ypm,,
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in them, respectively. Set C; = PPy P P'. Let Q) = Uk, V(k—1) - v1, U1, and

Skp_1 ' s

all vertices of @' be stems of Ty with Ng, (vi,) = V(Pu) \ {v1,, ,}, Ne(vr,,) = {vi,, 1}
Ne(vi,) = V(Py), for all i € [2,k — 1], Ne(vr,, ) = {v|v € Vix U Sp}. Then Tj is a HIST
of (ViU Sy U{z}) and V(Cy) = {v € V1 U Syldegr,(v) = 1}. Let Hy = Ty U Cy, then Hj is
planar (See Figure 6.5).

Figure 6.5. Sy =) and k = 3.

If [Vig| = 1, then vg1), Y, vp, ¥ € E(G) for all y € S; and Uks, Vk=1)s_yy -1 € E(G)
since || > 2. Similarly as above, we can define Py, Pig, ---, Pi—1) and P'. Let Py, =
U(k—l)s(k71)71vksky1 and Cy = P Pig--- PP Set Q) = U(k—1)s,  V(k—2)s,_, """ V1, VL1 Tt be

stems of T1 with Ncl (’011) = V(PH) \ {’015171}, NC(UISI) = {’015171}, Nc(’UZ'Si) = V(Pll) for all
i € [2,k—2] and No(vg-1),, ) = V(Prig-1)US2U{vg,, }. Then Ty is a HIST of (V1US,U{,})
and V(Cy) = {v € V1 U Sy|degr,(v) = 1}. Let H; = T} U C4, then H; is planar.

Case 2.1.2: Suppose that |Vi;]| = 3.

If [Via| > 3, we delete the edge vy, vy, from E(T) and add the edge vy, va, to E(T).
Similarly as Case 2.1.1, we will find a HIST 7} and a path C; in (V; U Sy U {z,}).

If |Via| = 2, then Vi; = {v1,, v1,, V14, Vo, V2, }. From Claim 4.1.2, we know vs,y, ve,y €
E(G) for all y € S and vy,x; € E(G). In additional, vy,vq,, 01,09, € E(G). Let Cy =
v1, V1,02, UP" and Q' = vy, 1,24 be paths and all vertices of Q' be stems of T} with N¢, (v1,) =
{v1,,v1,} and Ng, (ve,) = {ve,} U{yly € S2}. Then T is a HIST of (V}, U Sy U {z:}) and
V(Cy) = {v € V1 U Sy|degr,(v) = 1}. Let Hy = Ty U CYy, then H, is planar.
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If |Vio| = 1, then Vi; = {vy,, v1,, U1y, U9, }. Since |S1]| > 2 and V; is minimum subject to
S being minimum, we have vy, vq,, V9, v1,, V2,01, € E(G), which implies V; is a clique. Let
Cy = {v1,v9, } U P and {uvy,, v1,, 2} be stems of Ty with N¢, (vy,) = {v1,} and N¢, (vy,) =
{va, YU{yly € Sa}. Then T} is a HIST of (VUS,U{z;}) and V(Cy) = {v € V1USs|degr, (v) =
1}. Let Hy =T U (4, then H; is planar.

Case 2.2: Suppose that & = 1, which means Ni(z;) = Vi; = V] is a clique. We still let
P =y Py,

If |Vi| > 4, let P, = v Piv,,_1 be a hamiltonian path in (V} \ {v1,v,,}) and C} = P, P'".
Set {vn,,v1, 2} be stems of T7 with Ng, (vy,) = {vn,—1} U V(P’) and Ng, (vy,) = {v|v €
V(Pi)\{vn,—1}}. Then T is a HIST of (V;US;U{z:}) and V(C}) = {v € ViU Sy|degr, (v) =
1}. Let Hy =Ty U C4, then H; is planar.

If V4| = 3(similarly as [Vi]| = 2). Let C; = {v,v1,} U P" and {vy,, 2} be stems
of Ty with N¢,(v1,) = {vi,,v1,} U V(P'). Then T; is a HIST of (V4 U Sy U {x;}) and
V(Cy) = {v € V1 U Sy|degr,(v) = 1}. Let Hy = Ty U CYy, then H; is planar.

Thus, let T'=T\UT5, C =CyUCy; and H =T UC, then H is a strong spanning Halin
subgraph in G.

If |[Vi] = 1, denote by Vi = {v}. Since Na(y) # 0, we have w,,y € E(G) for all
y € Sy. Moreover |No(ym,)| > mso subject to S being minimum. Let vz, € E(G) and
C = CyP' U yyvxy, add vz, to E(T,) and add w,, (or w,,_; if |[Vy| = 1) to the stem set of
Ty. Then T' = Ty is a HIST of G with Ne(wy,) = {yly € So} U{wp,—1}. Let H =T UC,
then H is a strong spanning Halin subgraph in G.

We now let T'= T, UTy and C' = C; U Cy(note that Ty = () and C; = () when |V;| = 1).

Set H =T UC, then H is a strong spanning Halin subgraph in G.
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Chapter 7

ANTIPRISMATIC GRAPHS

Recall that a graph is called antiprismatic graph if for every vertex set X C V(G) with
| X| =4, X is not a claw and there are at least two pairs of vertices in X that are adjacent.
It is easy to check that every antiprismatics graph is N-free. In 1981, Duffus [28] showed
that every connected {claw, N }-free graph contains a hamiltonian path, thus we have the

following claim.
Claim 7.0.1. Every connected antiprismatic graph contains a hamiltonian path.

We will still follow definitions and notations mentioned in Section 4.1 that G is a graph

with n-vertex and S is a minimum vertex cut of G. GG and G5 are the exact two components
of G\ S. Vi =V(G1) and V, = V(Gs). Subject to the minimality of |S|, we always assume

that |V3| is minimum. In this chapter, we will show the following proposition.

Proposition 11. If G is a 3-connected antiprismatic graph, then G contains a strong span-

ning Halin subgraph.

7.1 Proof of 3-connected antiprismatic graphs

The proof of Proposition 11 will be divided into two parts depends on whether there

exists a vertex x in S such that Ny(z) =V} or Ny(z) = Vs,

Part 1: There exists a vertex x in S such that Ny(z) # V; and Ny(z) # V.

We may reserve the notation x for this vertex and assume v; ¢ Ny(z) and wy ¢ Ny(x).
Claim 7.1.1. If Ni(z) # Vi and Ny(x) # Vs, then |Ni(z)| = |Vi| — 1 and |Na(x)| = |Va| — 1.

Proof. Suppose to the contrary, there exists z € S, vy,v9 € V; and w € V3, such that
xvy, zvg, zw ¢ E(G). Let X = {vy, v, x,w}, we have |E(X)| = 1, which contradicts to the

fact that GG is an antiprismatic graph. [ |
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Thus, we denote by Ni(z) = Vi \ {v1} and No(x) = Vo \ {w; }.

Claim 7.1.2. If there ezists a vertex x € S such that Ni(x) # Vi and Na(x) # Vs, then

1) [Vi| = 3;

2) Both Vi and Vy are cliques;

3) For anyy € S\ {z}, if vy ¢ E(G), then both yv, and yw;, are in E(G); if vy € E(G),

then at least one of {yvy,yw,} is in E(G).

Proof. 1) This is true following by Lemma 4.1.2.

2) We only show that Vj is a clique. By Lemma 4.1.2, V} \ {v1} is a clique. For any
v € Vi \ {v1}, we have viv € E(G). Otherwise, let X = (x,v,v,w), then |[E(X)| = 1,
showing a contraction.

3) Let X = {x,y,v,w}, since zvy, zwi,viw; ¢ E(G) and |E(X)| > 2, we can easily

get this conclusion. [ |
In the remaining part of this subsection, we let S = {y € S|lyv; € E(G)} and S, =
V2 \ (51U A{z}).

Claim 7.1.3. If Sy # 0, then |V3| > 4.

Proof. Since |V}| is minimum subject to |.S| is minimum and v; ¢ Ni(Ss U {z}), we
have |N1(So U {a})| > |SeU{z}|+1>2+1=3. Thus |Vi| > |[N1(So U {z}) U{v1}| >

Claim 7.1.4. For any y € Sa, xy,yw; € E(G).

Proof. Let X = {vy,z,y,w1}. Since |E(X)| > 2 and vz, wiz, vywy, yv; € E(G), we
have zy, yw, € E(Q). |

Now we want to find a strong spanning Halin subgraph in G by following cases accord-

ing to whether S; or S, is empty.

Case 1: Suppose Sy # (0.
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Case 1.1: Assume S; = 0.

Denote by Sy = {y1,y2,- -,y }. For any vy, v3,v4 € V; and wy, w3 € V3, since both
Vi \ {v2} and V5 \ {w;} are cliques, there exist hamiltonian paths P, = v3Pjvy and Py =
wy Pyws in them, respectively.

If (Ss) is connected, we can find a hamiltonian path P; = yo Py, in (Se\ {y1}) by Claim
7.0.1. Let C' = Py P3P, U {zvy, zws} be a cycle and all vertices on the path vey;w; be stems
of T with Ne(ve) = V(P1), Ne(y1) = {z} and No(wy) =V (P) UV (P;). Let H=TUC, it
is easy to check that H is a strong spanning Halin subgraph of G (See Figure 7.1(1)).

If (Ss) is not connected, since yw; € E(G) for any y € S, there exist exactly two
cliques in S;. We denote them by So1 = {y1,v2, - ,y:} and Sop = {z1,22---, 2} and
always assume |Sg1| > [Sao|. Let P3 = y1 Psy,—1 and Py = w21 Pyzy be hamiltonian paths in
So1 \ {y¢} and Sae U {x} respectively.

If |S21| > 2, denote by vy € Ni(y;), v3 € Ni(y4—1), we € Na(yp) and wsg € Na(zy).
Set C' = PyP;P,P; be a cycle and all vertices on the path vsy,w; be stems of T with
Ne(vy) = V(Py), No(y) = {x} and Neg(wy) = V(P) UV (P) UV (Py). Let H=TUC, it
is easy to check that H is a strong spanning Halin subgraph of G (See Figure 7.1(2)).

If So1 = {y} and Sy, = {2z}, denote by v3 € Ni(y), vs € Ni(2), w1 € Na(y), we € No(z)
and ws € Ny(z). Let P, = w;Pyws be a hamiltonian path in (V5 \ {wy}) respectively. Set
C = PP, U{vzy, ywy, w3z, zvs } be a cycle and the stems of T" be vertices on the path vexws
with No(ve) = V(P1), Ne(x) = {y, 2z} and No(wq) = V(P2). Let H =T UC, it is easy to

check that H is a strong spanning Halin subgraph of G (See Figure 7.1(3)).

Case 1.2: Suppose S; # 0.

Denote by S1 = {y1,y2, -, yt}, S2 = {21,209, , 20}, va,va € Ni(21), v3 € Ni(y1),
wy € Ny(y,) and wz € Ny(zy) by Lemma 4.1.2. Since for any vy, vs,v3,v4 € Vi and
wy, wy, w3 € Vo, both Vi \ {v1, v} and Vo \ {w;} are cliques, there exist hamiltonian paths
P, = v3Pivy and P, = wyPywy, in them, respectively.

If there exists a vertex, say z1, in Se such that both (S7) and (S5 \ z1) are connected,

we can assume Py = y;P3y, and Py = 23 P2y are hamiltonian paths in (S;) and (S; \ 21),
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Figure 7.1. S; = () and Sy # 0.

respectively. Let C' = Py P3Py PyU{v sz, x25} be a cycle and all vertices on the path vjvgzw,
be stems of T' with Ng(vi) = {vs} UV (P;), No(v2) = V(P1) \ {vs}, Ne(z1) = {z} and
Ne(wy) = V(P) UV (Py). Let H=TUC, it is easy to check that H is a strong spanning
Halin subgraph of G (See Figure 7.2(1)).

If for any z; € Sz, (Se \ {2}) is disconnected. Then there exist exactly two cliques in
(52 \ zi). We denote them by Sy and Sy and assume Py = 21 Pyz; and Py = 2, Pjozy
are hamiltonian paths in them respectively. Since v1z ¢ E(G) for any z € Sy, |No(2)| >
Vo] — 1. We may assume wy € Na(z;) N No(zg) since |Va| > [Vi| > 4. Replace Py by
Py U {zjwy,waz} U Py in the cycle C, similarly as (53 \ 2;) is connected, we can find a
strong spanning Halin subgraph in G.

If S; is disconnected, we denote by Si; and Sio the exactly two cliques of S;. If there
exist y; € S1y and y; € Sio such that Ny (y;) N Ni(y;) \ {v1} # 0, let vy € Ny(y;) N Ny(y;) and
P31 = y1 P31y;, P3s = y; P32y, be hamiltonian paths in S;; and Sis, respectively. Then replace
Ps by Ps; U {y,vs, v4y;} U Psa, similarly as S; is connected, we can find a strong spanning
Halin subgraph in G.

If Sy is disconnected and N (y;) VN1 (y;) \ {v1} = 0 for any y; € Si; and y; € S12. Since
|Vi| > 4, we may assume |N;(y;)| < [Vi|—2 for any y; € Sia. Therefore, Ny(y;) = V2. Denote
by vs € N1(y;), wa € Na(y;), ws € Na(yt), wa € No(2;)NN2(21,) and ws € No(2vNN2(y;)). Let

Py = wyPows, P31 = y1 Pa1ys, Psy = y; Psoyy, Pi = v22Py12j,Pyo = 2, Pjozy be hamiltonian
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paths in (V5 \ {wy,ws,ws}), (S11), (Si2), (So1 U {z}) and (Ss2), respectively. Let C' =
Py P31 Py P3y Pyo Py U {y1ws, ws 2y, 2w, Wa2;, 2%, x04 } be a cycle and all vertices on the path
v1v9z1wy be stems of T' with Ne(vy) = V(Ps1) U{vs}, No(v2) = V(P) \ {vs}, Ne(z1) = {x}
and Ne(wy) = V(P) UV (Ps) UV (Py) UV (Pyg) U{wy, ws}. Let H=TUC, it is easy to

check that H is a strong spanning Halin subgraph of G (See Figure 7.2(2)).

@ @) ®

Figure 7.2. S; # () and Sy # 0.

Case 2: Suppose Sy = 0.
Claim 7.1.5. For any y € S1, zy € E(G) or yw;, € E(G).

Proof. Let X = {z,y,v;,w}. Since zvy, w vy, 2wy ¢ E(G) and viz € E(G), we have
zy € E(G) or yw, € E(G). |

Case 2.1: Assume (S;) is connected.

Denote by S1 = {y1, 42, - -, y: } and P = y; P3y; the hamiltonian path in (S;) according
to Claim 7.0.1.

If zy, € E(G), denote by vs € Ni(y;), we € Na(y1), ws € No(z) and wy € No(y2)(we
may have wy = wy). Let Py = vy Pyvg and Py = w3 Pyw, be hamiltonian paths in V;\ {v;} and

Vo \ {wo}, respectively. Set C'= Py P3P, U {vyx, zws} be a cycle and all vertices on the path
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v1y1we be stems of T' with Ne(vy) = V(P) UV(Ps), No(y1) = {z} and Ne(wy) = V(FP).
Let H =T UC, it is easy to check that H is a strong spanning Halin subgraph of G (See
Figure 7.3(1)).

If zy; ¢ E(G), then yyw, € E(G). If |Si| > 3, denote by vy € Ny(y:), wa € Na(x),
w3 € No(y2). Let P; = v3Pyvy and Py = wePyws be hamiltonian paths in V4 \ {vy,v2} and
Vo \ {w1}, respectively. Set C' = Py P3P, U {vsz, zwy} be a cycle and all vertices on the
path vyv1y1wy be stems of T with No(ve) = {vs, 2}, Ne(vy) = V(P) U (V(Ps) \ {y1,42}),
Ne(yr) = {y2} and Neo(wy) = V(). Let H =T UC, it is easy to check that H is a strong
spanning Halin subgraph of G (See Figure 7.3(2)).

If |S\ {z}| =2, we can assume vy € Ny(y1) since |Ni(y1)| > 2. Denote by wy € Na(z)
and w3 € Ny(yo). Let C' = Py PyU{vsz, xwsy, wsys, yov1 } be a cycle and all vertices on the path
voyywy be stems of T be with Ng(ve) = V(Py) U {x}, No(y1) = {y2} and Neo(wy) = V(P).
Let H =T UC, it is easy to check that H is a strong spanning Halin subgraph of G (See
Figure 7.3(3)).

Case 2.2: Assume (S) is not connected.

Let S11 = {y1,y2, -,y } and S12 = {z1, 22, -+, 2¢} be the exact two cliques in (S;)
with |S11] > [Shal-

If |[S11| > 2,1et X = {y1, v, 21, x}. Since |E(X)| > 2, we have yyz € E(G) or y,x € E(G)
or zr € F(G). We may assume y,x € E(G). Denote by wy € No(yi), wi € Na(ya),
wy € No(zp) and v3 € Ny(z1). Since Vi \ {vy, 09}, Vo \ {we}, S11\ {1} and Sis are cliques,
there exist hamiltonian paths, say P, = v4Pivs, Py = wiPowy, Ps = yo Pyy, and Py = 21 Pyzy,
in them respectively. Let C' = P, P3P, Py U {vyx, 2y, } be a cycle and all vertices on the path
VU1 wo be stems of T" with Ne(ve) = V(P1) U{z}, Ne(vi) = V(Py), No(y1) = V(P3) and
Neo(we) = V(P2). Let H =T UC, it is easy to check that H is a strong spanning Halin
subgraph of G (See Figure 7.3(4)).

If S11 = {y1} and S12 = {#1}. We may assume vy € N;(y;) since [N1(y1)| > 2. Denote by
wy € No(y1), wy € Na(x) and ws € No(z1). Let Py = vy Pyvg and Py = wy Pyws be hamiltonian

paths in V3 \{vo} and Vo \ {ws}, respectively. Let C' = Py PU{vsx, zws, w321, 2101 } be a cycle
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and all vertices on the path voy;w; be stems of T" with Ne(ve) = V(P )U{z}, No(y1) = {v1},
Ne(wy) = {1} UV (PR,). Let H =T UC, it is easy to check that H is a strong spanning
Halin subgraph of G (See Figure 7.3(5)).

Figure 7.3. S; # () and Sy = 0.

Part 2: For any vertex z in S, Ny(z) = V) or Ny(x) = V5.

We may denote by ) = {z € S|Ni(x) =Vi} and Sy = S\ 5.

If S; # 0 and Sy # ), then both Vi and V5 are cliques. Using the same method as
Case 1.2 with regrading v; and v, as the same vertex, we can find a strong spanning Halin
subgraph in G. Thus, we may assume Sy = (). Since we can apply the same procedure for
S1 = (. Then V; is a clique. We want to show following claims before we searching a strong

spanning Halin subgraph in G.

Claim 7.1.6. For any w € Va, |No(w)| > |Va| — 2. This in turn gives that there ewists at

most one other vertex in Vy not adjacent to w.



85

Proof. Suppose this is not true, there exist w,w’,w” € V3, such that ww', ww” ¢
E(G). Let v e Vj and X = {v,w,w’,w"}, then |E(X)| < 1, showing a contradiction. |
By Claim 7.1.6, we let V5 = {wy,ws, - ,wy,}, such that wy, o is the only possible

vertex that not adjacent to wop,q.

Claim 7.1.7. If there exists k € [1, 2] — 1] such that wor1wory2 & E(G), then for any

x € 81, either xwyyq € E(G) or zworie € E(G).

Proof. Forany xz € Sy, if both zwog 11 and zwog 12 are in E(G), then (z; w1, Wag o, V)
is a claw. If neither zwog, 1 nor TWok 2 is in E(G), then |E((v, x, w1, Wokt2))| = 1, showing
a contradiction. [ ]

According to the result given by Shepherd [37]: If G is a 3-connected {claw, N }-free

graph then G is hamiltonian-connected. We can easily get following corollary.
Corollary 7.1.1. For any vertex set Y C Va, if |Y| > 5, then (Y) is hamiltonian connected.

Proof. For any vertex set Y C V5, if |[Y| > 5, then §(Y) > 3, which implies (V) is
3-connected, so it is hamiltonian connected. [ |

We want to find a strong spanning Halin subgraph in G as follows depends on whether

(S1) is connected.

Case 1: Assume (S) is connected.
Denote by S; = {x1, 29, -+, 2;}. We assume P3 = x3P3x; is a hamiltonian path in (S)
by Claim 7.0.1 and P, = vy Pyv3 is a hamiltonian path in (Vi \ {v1}) if (Vi \ {v1}) is not

empty.

Case 1.1: Suppose |S;| > 4.

Denote by wy € Ny(z1) and w3 € Na(xs2). Note that we may have ws = ws.

If wywy € E(G), we let ws € Ny(xy), where ws # ws by Lemma 4.1.2 and we may have
ws = wy. By Claim 7.1.6 and Corollary 7.1.1, there exists a hamiltonian path P, = wsPws

in (Vo \{w}). Set C' = Py P3Py U{wsxs,xov2} be a cycle and all vertices on the path v;xjw;
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be stems of T with N¢(vy) = V(P) UV(P3), No(z1) = {22} and No(wy) = V(P,). Let
H =TUC, it is easy to check that H is a strong spanning Halin subgraph of G (See Figure
7.4(1)).

If wywy ¢ E(G) and wex, € E(G). Let Py = w3Pyw, be a hamiltonian path in (V5 \
{wy, w5, wy}) and C' = Py P3Py U {vas, w3xs, wyws, wox, } be a cycle. The stems of T" are all
vertices on the path vyziwyws with No(vy) = V(P1) U V(Ps), Ne(x1) = {22}, No(wy) =
V(P2) and Neo(ws) = {wa, we}(If |V2| = 5, swiping wy and ws). Let H = T'UC, it is easy to
check that H is a strong spanning Halin subgraph of G (See Figure 7.4(2)).

If wyws ¢ E(G) and wyxry ¢ E(G). We may denote by wsx; € E(G) by Lemma
4.1.2. Let P, = wyPows be a hamiltonian path in (V5 \ {wy,ws, ws}) and C = Py P3Py U
{vaa, Tows, wswy } be a cycle. Set the stems of T" be all vertices on the path vzwwgs with
Ne(vy) = V(P)UV(P,), No(z1) = {2}, No(wy) = V(Py) \ {ws} and Ne(wg) = {ws, wy }(if
|Va| = 5, replacing wg by wy, adding edges {wyws, wyws} to E(C') and deleting edge {wjws})
from E(G). Let H =TUC, it is easy to check that H is a strong spanning Halin subgraph
of G (See Figure 7.4(3)).

Case 1.2: Suppose |S;| = 3.

Let P, = v1 Pyvy and P; = x1x9x3 be hamiltonian paths in (V) and (S;), respectively.
Denote by wezy € E(G).

If wywy € E(G), denote by wixy, wsxrs € E(G). Set P, = wiPows be a hamiltonian
path in Vo \ {ws}. Let C = PPy U{v 21, 13wy, 923, z3ws} be a cycle and {xs, ws} be stems
of T with Ng(xe) = V(Py) U{xy, 23} and No(wse) = V(P —2). Let H =T UC, it is easy to
check that H is a strong spanning Halin subgraph of G (See Figure 7.4(4)).

If wywy ¢ E(G), we may assume zyws, x3ws € E(G) by Lemma 4.1.2. Let Py = wsPyw;
be a hamiltonian path in Vo \{ws, wg, w3} and C' = Py PaU{v 21, 21ws, wiws, wsrs, 302} be a
cycle. Set the stems of T" be all vertices on the path xewowe with Ne(xo) = V(Py)U{x1, 23},
Neo(we) = V(P2) \ {wy} and Ne(ws) = {wy,ws}. Let H =T UC, it is easy to check that H

is a strong spanning Halin subgraph of G (See Figure 7.4(5)).

Case 2: Suppose (S) is disconnected.
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Figure 7.4. (S;) is connected.

Since (S7) is disconnected and zv € E(G) for any « € Sy and v € V, there exist exactly
two cliques in (S7). We denote them by Si1 = {1, 29, -+, 2}, S12 = {y1,42, -+ ,yp} and

always assume |S11| > |S12|. Let Py = v1 Pivy be a hamiltonian path in (V7).

Case 2.1: There exist x; € S1; and y; € Sy such that No(z;) N No(y;) # 0. We may assume
wy € No(z1) N No(y1)-

If |S12] # 2 and wyws € E(G), we denote by ws € No(xy) and ws € Ny(yy). Since
S\ {z1}, S2\{y1} and V5 \ {w;} are cliques, there exist hamiltonian paths, say Py = x5 Psxy,
Py = ys Pyyy and Py = wyo Pyws, in them, respectively. Let C' = P P3P, Py be a cycle and the
stems of T" be all vertices on the path zyw;y; with Ne(x1) = V(P)UV(Ps), No(y1) = V(Py)
and No(wq) = V(P)(If S12 = {y1}, set Py =vy;). Let H =T UC, it is easy to check that H
is a strong spanning Halin subgraph of G (See Figure 7.5(1)).

If |S12] # 2 and wyws ¢ Vi, we denote by ws € No(x;) and ws € No(yy). We may
also let Py = wsPyws, Py = x9Pyxy and Py = yo Pyyy be hamiltonian paths in V5 \ {wq, wg},
S11 \ {z1} and Si2 \ {1}, respectively. Set C'= P, P3P, P, be a cycle and all vertices of star
(w13 x1, Y1, we) be stems of T with Ne(z1) = V(P1)UV (F3), Ne(y1) = V(FPy), Ne(wi) = {ws}
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and Neo(wg) = V(Py) \ {ws}(If Sio = {y1}, set Py =y;). Let H =T UC, it is easy to check
that H is a strong spanning Halin subgraph of G (See Figure 7.5(2)).

If S12 = {y1,92} and there exists z; € Sy; such that No(z;) N Na(y1) N No(yz) # 0.
Let wy € Na(x1) N No(y1) N Na(yz) and set {1, w;} be stems of T with wyyq, w1y, € E(T).
Similarly as |Si2| # 2, we can find a strong spanning Halin subgraph in G.

If S12 = {y1,92} and for any x; € S11, Na(x;) N No(y1) N Na(y2) = . We may assume
wy € Na(x1) N No(y1), then wy € No(ys). Let w3 € Na(yp) and ws € No(zy) by Claim 7.1.7.
Since S1; \ {z1} is a clique, there exists a hamiltonian path Py = xy P3x; in it. And we may
denote by P, = wsPowy a hamiltonian path in (V5 \ {wy, ws}) by Claim 7.1.6 and Corollary
7.1.1. Let C = Py P3Py, U {ways,y2v2} be a cycle and all vertices on the path zwyws be
stems of T with Ng(z1) = V(P) UV(Ps), No(wy) = V(P,) \ {ws, ws}, No(y1) = {y2} and
Ne(ws) = {wq,wg}. Let H =T UC, it is easy to check that H is a strong spanning Halin
subgraph of G (See Figure 7.5(3)).

Case 2.2: For any z; € Si; and y; € Sia, No(z;) N Na(y;) = 0.

If V4 is a clique and |Vi| > 2 or |S| > 4. Denote by w; € No(x1), we € No(z;) and
w3 € Na(yp). Let Py = vaPivg, Py = woPyws, Py = x9P3x; and Py = y; Pyyy be hamiltonian
paths in Vi \ {v1}, S11 \ {1}, S12 and V5 \ {w;}, respectively. Set C' = P, P3P, P, be a cycle
and all vertices on the path v;xw; be stems of T' with N¢(v1) = V(P)UV (Ps\{z:}) UV (Py),
Ne(z1) = {x;} and Neo(wy) = V(P,). Let H =T UC, it is easy to check that H is a strong
spanning Halin subgraph of G.

If V5 is a clique, |Vi| = 1 and |S| = 3. Denote by w; € Ny(x1), we € No(y;) and
w3 € Ny(xy). Let P, = wsPywy be a hamiltonian path in V5 \ {wy,we}. Set C = P, U
{v122, w3, wyy1, y1v1} be a cycle and all vertices on the path xzj;w;ws be stems of T' with
Neo(z1) = {v1, 22}, No(wy) = Vo \ {wr, we, ws} and Ne(we) = {ws}. Let H =T UC, it is
easy to check that H is a strong spanning Halin subgraph of G.

If V5 is not a clique, there exists a pair of vertices, say {wi,ws}, in Vo such that
zwy, y;we € E(G) for all z; € S1; and y; € Stz by Claim 7.1.7. We denote by w3 € Na(y)

and ws € No(xy). Since (Si1 \ {x1}) and (Si2) are cliques, there exist hamiltonian paths
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P3 = x9P3xy and Py = y; Py, in them, respectively. We can also let P, = wsPyws be a hamil-
tonian path in (V5 \ {wy, w4, wy}) by Claim 7.1.6 and Corollary 7.1.1. Let C' = P, P3P, P, be
a cycle and all vertices on the path zjwiwswy be stems of T with Ne(x1) = V(P) UV(Ps),
Ne(wr) = V(P) \ {ws, we}, No(ws) = {we} and No(ws) = {ws} UV(Py). Let H =T UC,

it is easy to check that H is a strong spanning Halin subgraph of G (See Figure 7.5(4)).

s W4

(3) 4

Figure 7.5. (S;) is not connected.
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Chapter 8

1-JOIN

Recall that if we suppose Wy, W, is a partition of V(G), and for i € [1,2] there is a
subset A; C W, such that:

o A, WZ\AZ#@fOl"ZG[l,Q],
e A UA; is a clique, and
® E(Wl\Al,Wg) :(b, and E(Wl,Wg\Ag) :(b

In these circumstances, we say that (W5, Ws) is a 1-join.

Let A; = {u;, € Wildist(u;;, B1) = i} and B; = {w;, € Wa|dist(w;;, Ay) = i}, then
Wy =AUAU---UA;, and Wy = By U By -+ - By, where t = max{dist(u, By)|u € Wi} and
s = max{dist(w, A;)|u € W5}. In particular, we assume w; u;1,,w;, wj11, € E(G) for all
i€[l,t—1] and j € [1,s — 1]. Since G is a 3-connected finite graph, the following claim is

clearly true.
Claim 8.0.8. |A;| > 3 and |B;| > 3 for alli e [1,t —1] and j € [1,s —1].
In this chapter, we will show following two propositions.

Proposition 12. If G is a 3-connected {claw, Zs}-free graph admits 1-join, then there is a

strong spanning Halin subgraph in G.

Proposition 13. If G is a 3-connected {claw, By 2}-free graph admits 1-join, then there

exists a strong spanning Halin subgraph in G.

8.1 Proof of 3-connected {claw, Z;}-free graphs admit 1-joins

We want to show the following claim first.
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Claim 8.1.1. 1) For any uy, € Ay, Na,(u1,) is a clique.
2) Wi C AyUAyU Az, In particular, if there ezists wy, € By, such that |Np,(wq,)| > 2, then
Wy = A U As.

Proof. 1) If there exist uy,, uz; € Na,(u1,) such that up uy, ¢ E(G), then (uy,; w1, , ug,, us;)
is a claw, showing a contradiction.

2) Suppose to the contrary, Ay # ), then (wy,,wy;,u,; Uz us ug,) is a Zs, showing
a contradiction. Thus W; C A; U Ay U Az. If there exists wsy,,ws, € By such that
wa, w1, , Wa,wr, € E(G), then we, wsy, € E(G) since G is claw-free. This in turn gives Az = (.
Otherwise, (wa,, wa,, Wy, ; U1, Uz, us, ) is & Zs. |

Since E(Ay,A3) = 0, E(By,Bs) = (), E(A;,Bs) = 0 and E(Ay, By) = (), we know
As, Ay, By are vertex cut. By Proposition 6, we only need to find a strong spanning Halin

subgraph in G by following three cases depends on Az = ) or not.

Case 1: Assume that Az # (), then W, = A; U Ay U As.
By Proposition 6 and symmetric, we may assume A; is the minimum vertex cut and

both Vi = Ay U A3 and Vo, = Wy = By U By are cliques.

Claim 8.1.2. ]f Wl = Al U Ag UAg, then

Proof. 1) This is true since G is 3-connected and |V;] is minimum subjects to A4, is a
minimal vertex cut.

2) Suppose this is not true. If |Az| > 2, then (ug,, us,, us,; u1, wy, we, ) isa Z3. If | By| > 2,
then (ws,, we,, w1, ; Uy, Us, ug, ) is a Zs. [

Now we want to find a strong spanning Halin subgraph in G for this case as follows.

Since G is 3-connected, we may assume ui1uUs;, Uialag, Uizt € E(G). Moreover, since
A3 U Ay \ {uar}, Ay \ {ui1,u12} and By U By \ {wy1} are cliques, there exist hamiltonian

paths, say P1 = U22P1UQ3, P2 = U13P2U14 and P3 = w12P3w13, in them, respectively. Let
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C= P1P2P3U{U23U13, U14W13, W12U12, U12u22} be a CYCIG and all vertices on the path U1 U1 W11
be stems Wlth Nc(UQl) = AgUAQ\{Ugl}, Nc(ull) = Al\{ull} and Nc(’wll) = BQUBl\{wll}.
Let H =T UC, it is easy to check that H is a strong spanning Halin subgraph of G (See

Figure 8.1 as an example).

Figure 8.1. Wl = Al U A2 U Ag.

Case 2: Assume that Az = () and Bs # 0.
Similarly as A3 # (), we can show that B; is a minimum vertex cut and both A; U A,
and By U Bg are cliques, then we can find a strong spanning Halin subgraph in G as Case

1 similarly.

Case 3: Assume that A3 = () and B; = 0, then W; = A, U Ay and Wy = B, U Bs.

Since F(Ay, B;) = 0 and E(Ay, By) = 0, by symmetric, we can assume A; is a minimum
vertex cut.

If |Ay| > 2, Proposition 6, we can assume B; U Bs is a clique. Similarly as Case 1, we
can find a strong spanning Halin subgraph in G.

If |[Ay] =1, let Ty, T5, -+, T,, be maximal connected components in By, then we have

following conclusions.

Claim 8.1.3. 1) If there exists T; with |T;| > 3, then for any w € Ng,(T;) and i € [1,m],
Na(w)] > |7 - 1.

2) For any way,Wey € By, if Np,(wa1) N Np, (waez) # 0, then there exists i € [1,m] such that
War, Wey € T; and for any j € [1,i — 1 Ui + 1,m], T; U Np, (1) is a clique.

3) If there exists i € [1,m] such that |T;| > 3, then T; U Ng, (1)) is a clique for all j # i and
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J € [1l,m].
4) For any i € [1,m], if T; = {w;,,w;, }, then |Np, (w;,)| > 2 and |Ng, (w;,)| > 2.

Proof. 1) Suppose this is not true, there exists woq, woz, wo3 € T; and wy, € By such
that woywy, € E(G) and wewi,, weswi, ¢ E(G). Then neither wowaegwss is an induced
path, otherwise (uy,, u1,, w1, ; WoWaowss) is a Z3, NOT wogwyywas is an induced path, otherwise
(Wa; Waz, Wz, w1, ) is & claw, NOTr woswsyiwog is a triangle, otherwise (wozwogway; Wy, us, us, ) is
a Zs, showing a contradiction. Thus | N7, (w1, ) N{wa,, wa,, we, }| > 2. Since (T;) is connected,
| N, (wy,)| = |Tif - 1.

2) We may assume wy, € Np, (wg1) N Np, (wee). Since (wy,;uy,, war, waey) is not a claw,
we have wo wey € E(G), which implies there exists ¢ € [1, m] such that wy,, wy, € T;. For any
jel,i—1Uli+1,m], if |T;| = 1, then clearly T; U Np, (1}) is a clique since B is a clique.
If there exist wsq,, ws, € Tj, we may let wy, € Np, (wa,). Since (wa,, Wy, W1, ; W1, We,wo,) is
not a Zs, we have wy,wq, € E(G). Since (1}) is connected, we have T; U Np, (T;) is a clique.

3) This is clearly true by 1) and 2).

4) This is true since G is 3-connected. n

Now we want to find a strong spanning Halin subgraph in G by following two subcases.

Case 3.1 There exist w;,, w;, € T; such that Ng, (w;,) N N, (w;,) # 0.

By Claim 8.1.3, T; U Np, (1) is a clique for all j € [1,i —1]U[i + 1, m], and |Nr,(w)| >
|T;| — 1 for any w € Np, (T).

Denote by T; = {ws,, wiy,--- ,w;, } and wi, wi, w} € Np,(T;) since G is 3-connected.
We may assume [T1] > 3 and wiw,;, € E(G) for all j € [1,t; — 1] and wy, _,wy, €
E(G). Since Ty \ {wy, ,wy, _,} and T} are cliques, there exist hamiltonian paths, say
P3, = wy, Pwy, , and P3; = wj Pywj, , in them, respectively, where j € [2,m]. Let
B, = B\ (U™ {w}, w? wi}) = {w',w? -+ w*}, then there exists a hamiltonian path, say
Py = w'Pyw?®, in it. There also exists a hamiltonian paths P = uy, Puy, in Ay \ {u1,,u1,}
since Ay \ {u1,,u1,} is a clique. Let C' = Ps, --- Py PyP U (U2 {w/w;,, w;, w}, wiw], }) U

3,1 1 2
{wi, ,wi,,, wyw', Wi, ui,us,, Uz, Uiz, urgwy } be a cycle and the vertex set U {wi} U
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{wltrl,un} be stems of T" with Nc(uu) = (Al \ {uu}) U {u21} U Bi, Nc(w%) = {w%,wi”},
Ne(ws, ) = Ty \ {wn,,_,} and Ne(w}) = T; U{w],wi}, i € [2,m]. Let H=TUC, it is
easy to check that H is a strong spanning Halin subgraph of G (See Figure 8.2(1) as an

example).

Case 3.2: For any wy,,w;, € T;, Np,(w;) N Ng,(w;,) = 0. Then T; C {w;_1,w;,} and
|Np, (w;,)| > 2, |Np, (w;,)| > 2 for all i € [1,m].
We may assume T; = {w;,,w;,} for all i € [1,{] and T; = {w;} for all j € [l +1,m].

Let w} w;, € Np,(w;,) for i € [1,]] and w},wi,w} € Np,(w;) for

wi21 € NB1(wi1) w227

Z17
j € [l+1am]a Bi = Bl\((uizl{wipwzpwzpw )U( ;n:l+1{wj1'>wj2'aw]3'})) = {w1>w2a e ’,ws}.

Since A; \ {u1,,u1,} and B are cliques, there exist hamiltonian paths, say P = wuy,Puy,

and P; = w!' Pyw*®, in them, respectively. Let C' = Ul_ {w] w;,, i w;,, ws,wd, w? w(liJrl Hu
{Wh W1y, W0 W,y Uiy Uy s g, Uy, ur,wi, b U (UL {wjwy, wjw?, whoj 3 U PP be a
cycle with all vertices on the star (U_,{w?,w},}) U (U™, {w?}) U {u1,} be stems of T,
where uy, is the center, with Ne(uy,) = (Ay \ {u1,}) U{ug, } U By, Ne(w?) = {w] ,w;},
Ne(wy,) = {w,,wy,}, i € [1,1] and Ne(w?) = {wj,w},w;}, where j € [l + 1,m]. Let
H =TUC, it is easy to check that H is a strong spanning Halin subgraph of G (See Figure

8.2(2) as an example).

Figure 8.2. Wl = Al U A2
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8.2 Proof of 3-connected {claw, B, »}-free graphs admit 1-joins

Claim 8.2.1. Let k = min{i|i € [1,t]} such that Ap U Agiq is not a clique, then k = 1.

Proof. We may assume this is not true and k = 2, then A; U A5 is a clique and Ay U Aj
is not. We can also assume us, ug, ¢ E(G), then (us,;ug,, ug,, u1,; wi,ws,) is a By 2, showing

a contradiction. [ |

Claim 8.2.2. If A, U Ay is not a clique, then

1) Wp = Ay U Ay;

2) Wy = By U By;

3) Let Ty, Ty, -+ - ,T,, be mazimal connected components in By, then T; U Ng, (1T;) is a clique

for all i € [1,m)].

Proof. We may assume uj,us, ¢ E(G).

1) If Az # 0, then (wa,; w1, u1,, w1, ; Uz, us, ) is a By o, showing a contradiction.

2) If By # 0, then (ug,; uy,, u1,, wi,; we, w3, ) is a By o, giving a contradiction.

3) This is clearly true if |T;| = 1 since By is a clique. If there exist we, , wq, € T; and wy, €
Np, (T;) such that wy, ws,, wa, we, € E(G) but wy,wy, ¢ E(G), then (ug,; u1,, u1,, wi,; Wa, wa,)

is a By . Since T; is connected, we have T; U Np, (T;) is a clique. BLet k' = min{j|j € [1, s]}

such that B; U Bj, is not a clique, similarly as Claim 8.2.1 and 8.2.1, we get

Corollary 8.2.1. If By U By is not a clique, then

1)k =1;
2) W2 == Bl UBQ,’
3) W1 :Al UAQ,'

4) Let Ry, Ry, -+ -, Ry be mazimal connected components in Ay, then R;UN 4, (R;) is a clique

for all i € [1,m/].

Claim 8.2.3. If A{UAs is a clique but B;U By is not a clique, let Ty, T, - -+, T}, be mazimal

connected components in Bay, then T; is a clique for alli € [1,k].
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Proof. This is clearly true if |T;] < 2, thus we can assume |7;| > 3. Since T; is
connected, we assume ws,wsy, wo, is an induced path in 7; and let wy, € Np, (wy,). Since
(Wa, ; Way,, Wa,, wy,) is not a claw, wy, wy, € E(G). Moreover, since (wa,; wa, , Wa,, Wi, ; Uy, Uz, )
is not a Bya, wi,we, € E(G). But this forces (wy,;ui,, wa,, we,) to be a claw, showing a

contradiction. [}

We want to find a strong spanning Halin subgraph in G by following three cases.

Case 1: Both A; U Ay and B; U By are cliques.

If both A; U A, and By U B, are cliques, then A; UA;+; and B; U B;; are cliques for all
ic[l,t—1]and j € [1,s—1]. Let P, = us, Prw,, Po, = wj, Po;w;, be hamiltonian paths in
A\ {uwiy, ui, b and B; \ {wj,, wj, }, where i € [1,¢t — 1] and j € [1,s5 — 1] and P, = w, Py, uy,,

Py, = wy, Py, ws, be hamiltonian paths in A; and B;. Let C' = P, Py, |-+ P, Po, -+ P5, U

S S

Uiz { iy U(ig1ys Win i)y b U U2 {ws, Wity Wiy w(it), } U {uaswis, uppwin} be a cycle and
all vertices on the path wg_1), ug—g), - - U2, Uy, W1, Wo, - - - W—2), W—1), be stems of T" with
No(u) = A\ {un}, i € [Lt — 2], No(wy,) = By \ {uy}, j € [Ls — 2}, Nofuy,) =
A1 U A\ {ug-y, } and Ne(ws—1y,) = Bso1 U By \ {w(s—1), }. Let H =T UC, it is easy to

check that H is a strong spanning Halin subgraph of G (See Figure 8.3 as an example).

Figure 8.3. Both A; U Ay and B; U By are cliques.

Case 2: Neither A; U As nor B; U By is a clique.
By Claim 8.2.1 and 8.2.3, we know W; = AjUA; and Wy = B1UBs. Let Ry, Ry, -+, Ry
be maximal connected components in A, and 17,75, -- ,7T,, be maximal connected com-

ponents in B, then both R; U Ny, (R;) and T; U Np, (1;) are cliques. Let w;,, u;,, u;y €
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Na, (Ry), wj,,wj,, wi, € Np (T3), Ay = Ay \ U sy, wiy, wig } = {ul, -+ ut} and B =
By \ U™ {w;,, wyy, wi, b = {wh, -+ Jw'}. Since R; U {usy, u;} and T; U {wj,, w;, }, A} and
B are cliques, there exists Py, = u;,P,u,, P, = w;,Pywj,, P = u'Pu' and P, =
w! Pyw?® are hamiltonian paths in them, respectively. Since A; U B; is a clique, let C =
PP PIPP, - P, P beacycle and all vertices on the star {ug,,ugy, - UL, Wy,
wy,, }, where uy, is the center, be stems of T with Ng(uy,) = R U {uiy, ui}, @ € [2,m],
Ne(w;,) = T;0{w,,,w;,}, j € [1,m] and No(uq,) = RiU{u1,, u1, JUATUB]. Let H = TUC,
it is easy to check that H is a strong spanning Halin subgraph of G (See Figure 8.4 as an

example).

Figure 8.4. Neither A; U Ay nor By U By is cliques.

Case 3: Either A UA; or B;UBs is a clique. We may assume A; U A, is a clique and By U By
is not.

By Corollary 8.2.1 and Claim 8.2.3, we know W; = A; U Ay and Wy = B; U Bs.
Let T; = {wi,, ws,, -+ ,w;, } be maximal connected components in By, w; € Np, (w;),
w} € Np,(wi,), w] € Np,(w;, ) if |T;] > 3 and {w;,,w} } € Np, (w;,), {wj,,w}} € Np,(w;,)
if T; = {w;,, w;,}. Note that we may have w? = w} if Ng, (w;) N Np, (w;,) # 0. Assume
IT;] # 2 for all i € [1,1] and |T;| = 2 for all j € [[+ 1,m]. Let By = By \ (U'_ {w}, w? wi} U

(U {w),, w3, w), w3 b)) = {w', w?, - -+ w}. Since Ay U AU {uy, }, Ti \ {wi, }(i € [1,1]),
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and B! are cliques, there exist hamiltonian paths P, = uioPiuyg, P, = wiQPgiwitZ_ and
P3 = w!P3w®, in them, respectively. Since A; U By is a clique, let C' = PPy Py, -+ Py, Py
be a cycle and all vertices (Ul_,{w},w;, }) U (UM, {w? , w},}) U{u, } be stems of T" with
Ne(uy,) = Az U (Ar\ {ug, }) U By, Ne(wp) = {w} wl}, Ne(w,) = Ti\ {w;,}, i € [L,1],
Ne(w3) = {wj,,w;, } and Ne(wj,) = {w3,,w;,} for all j € [[4+1,m]. Let H = T UC, it
is easy to check that H is a strong spanning Halin subgraph of G (See Figure 8.5 as an

example).

Figure 8.5. Either A; U Ay or By U Bs is cliques.
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Chapter 9

GENERALIZED 2-JOIN AND 2-JOIN

Recall that if we suppose that Wy, Wi, Wy are disjoint subsets with union V(G), and

for i = 1,2 there are subsets A;, B; of W, satisfying the following:
e WoUA;UA,; and Wy U By U By are cliques, and E(Wy, W, \ (A; U B;)) =0 for i = 1, 2;
e fori=1,2, ;N B; =0 and A; ,B; and W; \ (A; U B;) are all nonempty; and

o for all v € W; and w € W, either v is nonadjacent to w, or v € A; and w € As, or

'UEBlaIld'LUEBQ.

We call the triple (Wo U Wy U Ws) a generalized 2-join, and if Wy = () we call the pair (W7,
W3) a 2-join.

Denote by Ay = {vi,,v1,, -+ ,v1,, }, Bi = {va,, 02, , v, }, D1 = W1\ (A1 UBy) =
Dy,UD,U---UDy, = {3,035, , 03, b, Ao = {wiy, iy, wiy, }, By = {wa,, way, -+ way, }
Dy = Wa\(AsUBs) = Dy UDs,U- - -UDy, = {ws,, ws,, - -+ ,wa,, } and Wo = {ug, ug, - -+, ug},
where D;; are maximal connected components of Dy, i € [1,2] and j € [1, k1] U [1, k). Since
G is 3-connected and D; # (), we have |A; U B;| > 3 for i € [1,2]. Without loss of generality,

we always assume |A;| > |By|, thus |A;] > 2. We have the following claim.

Claim 9.0.4. 1) For any v € A; U B;, Np,(v) is a clique, where i € [1,2].
2) If there exist vy, € A; and vy, € B; such that vy, v, € E(G), then Np,(v1,) = Np,(vy,) for
iell,2].

Proof. 1) We may assume there exists vy, € A; and vs,,v3, € Np,(vy,) such that
v3,v3, ¢ F(G), then (vq,;vs,,v3,,wy,) is a claw, showing a contradiction.

2) We may assume there exist vy, € A; and vy, € By. For any v € Np,(v1,), s
ince (vy,;v,ve,wy,) is not a claw, vvy, € E(G). Similarly, for any v € Np,(vy,), since

(v9,;v,v1,, we,) is not a claw, vvy, € E(G). Therefore, Np, (v1,) = Np, (v9,). [
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In this chapter, we will show the following four propositions.

Proposition 14. If G is a 3-connected {claw, Z3}-free graph admits a generalized 2-join,

then G contains a strong spanning Halin subgraph.

Proposition 15. If G is a 3-connected {claw, Z3}-free graph admits a 2-join, then G con-

tains a strong spanning Halin subgraph.

Proposition 16. If G is a 3-connected {claw, By 2}-free graph admits a generalized 2-join,

then G contains a strong spanning Halin subgraph.

Proposition 17. If G is a 3-connected {claw, By 2}-free graph admits a 2-join, then G

contains a strong spanning Halin subgraph.

9.1 Proof of 3-connected {claw, Z;}-free graphs admit generalized 2-joins

Before we prove Proposition 14, we give following claim first.

Claim 9.1.1. 1) For anyv € D; and i € [1,2], dist(v, A U By) = 1.
2) If Na(Dy;)\ D; € A;(or B;), then Na(D;;)UD;; is a clique, wherei € [1,2] and j € [1, k;].

3) If there exists v € Ay (similarly as v € By or v € Ay or v € By) such that |Np, (v)| > 2,
then NDz(Bg) = @

Proof. 1) Suppose to the contrary, there exist v € By and v',v” € D; such that
v’ 0" € E(G) and vv” ¢ E(G), then |Ay| = 1. Otherwise (wy,, wi,, ug; vv'v”) is a Zs,
which implies |By| > 2 and Np,(By) # 0 since G is 3-connected and Dy # (). Since
(w1, ,v1,, up;vU'V") is not a Zs, if wo, w3, € E(G),, then we have vvy, € E(G) which implies
v'vy, € E(G); or v'vy, € E(G) which implies v"vy, € E(G) since (wa,, wa,, u1;v1,v'v"”) is not
a Zs; or v"vy, € E(G) which implies v'vy, € E(G) since (wa,, wa,, uy; vy, v"v’) is not a Zs.
Thus we can assume v"vy,,v'vy, € E(G) but vvy, ¢ E(G) since (vq,;v", v, wy,) is not a claw.
However, this will force (v, v, v1,; ujwe, w3, ) to be a Zs, giving a contradiction.

2) Since D;, is connected, by 1), we know D;; U{v} is a clique for any v € Ng(D;;) N A;.

Since 4; is a clique, Ng(Dy,) U D;; is a clique, where i € [1,2] and j € [1, k;].

)
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3) Suppose there exist v, , v3, € Np, (v1,) and we, w3, € E(G), then (vs,, v3,, v1,; ugwe, w3, )

is a Z3, showing a contradiction. [ |

Now we want to find a strong spanning Halin subgraph in G by following cases.

Case 1: Assume E(A;, By) = 0 and E(As, By) = 0.

Claim 9.1.2. If E(Ay, By) =0 and E(As, By) =0, then

1) Np,(Ai)) N Np,(B;) =0 fori=1,2.

2) If there exists v € Aysuch that |Np,(v)| > 2, then Np,(By) = 0.
8) Ni(Dy;) U Dy, is a clique.

4) INi(D;;)| > 3 and |Wy| > 3.

Proof. 1) We only show that Np,(A2) N Np,(Bz) = (). Suppose this is not true, there
exists ws, € Np,(wy,) N Np,(ws,), then (vq,,v1,, w,; ws, we, va,) is & Zs.

2) Suppose this is not true, there exist vs,,vs, € Np,(v1,) and vs, € Np,(v2,), then
(v3,, U3y, V1,; U1V2, V3, ) 1S & Z3.

3) This is clearly true by 1) and Claim 9.1.1 2).

4) This is true since G is 3-connected. n
Let Dy, = {v%j,vi,,-~- ,vf}j} C Dy, Dy, = {w%j,w%},,-~- w?} C Dy, vj, 0,0} €
Ni(Dy,), wj, w3, w} € Ny(Dy,) for j € [1,ki] U [1,ko], and A} = Ay \ U L {vj, vf, 08} =
{Uipviy T avill}> Bi = Bl\U;ﬁ: {'U 'U 'U3} = {1)21 'U22a T >'Uélz}a A/2 = A2\Uj2:1{wjawj>w?}
= {wi,,wy,, - ,w’ll }, By = By '\ Ujil{wj,wj,w;’} = {wy, w5, - - ,w§l2}. Since Dy, U

{v} v;, ]} Dy, U {w w3} Al Bl and Wy \ {uy,us} are cliques, there exist hamiltonian path-
s, say P, = vi P v}, Py, = wiPyw}, Py = U11P3U1l P, = v§1P4v§l2, B = w’11P5w’1£1,
Ps = wy, Fewy, and Pr = ugPruy, in them, respectively, where i € [1,2] and j € [1,k] U
[1,ks]. Let C = Py, -- Py PsPyPrPs PP, -+ Py, be a cycle and all vertices on the star
(ug;vf, -+, vp,wi,---wyp,), where uy is the center, be stems of T" with Ne(uy) = A7 U B U

Wo\ {u1}, Ne(vi) = Dy, U{vj,v3} and No(w?) = Do, U{w;j, wi}, where j € [1, k1] U[L, ko).

]’]

Let H =T UC, it is easy to check that H is a strong spanning Halin subgraph of G (See

Figure 9.1 (1) and (2) as examples).
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Figure 9.1. E(Ay, By) =0 and E(Ay, By) =10

Case 2: Suppose E(A;, By) # () or E(As, Bs) # 0.
We may assume vq,v5, € E(G) and want to consider following two subcases depending

on the neighborhood of Np,(As) and Np,(Bs) are empty or not.

Claim 9.1.3. If Np,(A42) = 0 and Np,(By) # 0 (similarly as Np,(B2) = (0 and Np,(Ay) #
0), then

1) |As| = 1.

2) For any vy, € Ay, |Np,(vy,)] < 1.

3) For any vy, € By, if E(vy,, A1) # 0, then {vy,} U Ay is a clique.

4) We may assume E(vy,, Ay) # 0 for all j € [1,1], wherel < to, then |Np, (A1U{va,, - -+, v2,})]
<1

5) For any vy, € By \ {vy,, -+, vy}, |Np,(vo;)| < 1. Therefore, Dy is an independent set.

6) If Np,(Ay) # 0, then Dy is an independent set.

Proof. We may assume w3, wq, € E(G). Since Np,(Ay) = 0, by Claim 9.0.4, we have
wy,we, ¢ E(G) for any wy, € As.

1) If there exist wy,, w1, € Ay, then (wy,, wy,, v1,; Ve, wo, w3, ) is a Z3, showing a contra-
diction.

2) This is clear true by the last conclusion of Claim 9.1.1.

3) For any vy, € By, we may assume there exists vy,,v1, € A; such that vy,ve, € E(G)
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and v1,v9;, ¢ E(G), then (wy,, vy, v1,; v, we,ws, ) is a Z3, showing a contradiction. Therefore,
{ve, } U Ay is a clique.

4) This is clearly true by 2), 3) and Claim 9.1.1 2).

5) If there exist v,v" € Np, (v,), where j € [l + 1,5], then vv’ € E(G) by Claim 9.0.4.
Moreover, vvy,, v'vy,, vy, V"2, ¢ E(G) forall vy, € A;. Otherwise, since (wy,, vy, , v1,; Vv, wa, )
is not a Z3, we can assume vvy, € E(G) we have wy,we, € E(G) or vy, € E(G). If vuy, €
E(G), then (v, v, v;vpwo,ws,) is a Zs. If wi,wy, € E(G), since (v, v, wi,; wa, va,0")
is not a Zs, we have v'vy, € E(G) or v'vy, € E(G), which implies vvy,,v've, € E(G) and

vuy,v'vy, € E(G), showing a contradiction.

6) This is clearly true by Claim 9.1.1 1) and 3). |

We denote by Dy = {vs,, v, ,vs, }, v}, 07,0} € Nayup, (vs,) for all vs, € Dy, A} =
Al\( {Uza Z2’ vy ):{Uilavip”'avlkl}aBlzBl\( {'Uz? 227 Uy ):{Uépvéz"”?z}ék?};
Dy = {ws,, w3y, - -+ ,ws,, }, wi, wi,w} € Np,(ws,) forallwg, € Dy, By = B\ (U2 {w], w}, w}})
= {wy,, w5, , - - ,wgkg}. Since A}, By, By and Wy \ {u;} are cliques, there exist hamiltonian

paths, say P = v{lPlvikl, P, = véngvékQ, Py = wéngwékS and Py = usPyuy, in them,
respectively.
We only need to find a strong spanning Halin subgraph in G for the case Np, (A;) # 0,

since the other case is similar but a little bit easier.

If [Wo| > 2 (similarly as E(Ag, Bo) # 0). Let C = UL, P, U (UL {vlvs,, vs,08}) U

Uil 1.3 3 01 2 1 3,3
( {Uz Uz—i—l}u{vlk V1, Ut1U217 U2k w2k ) w21wt27 WU, U2W1, , W1, V14 }) ( j:l{wi W3, , W3, W;, Wy

1 2 002 2 2 2 :
w;,1}) be a cycle and all vertices on the star (uy;v7, v, -+, v5,wi, -+, wy,), where u; is the

center, be stems of T with N¢(ui) = A} U AL U B, U ByU (W \ {u1}), No(v?) = {vs,, v}, v}

and No(w?) = {ws,, w},wi}. Let H=TUC, it is easy to check that H is a strong spanning
Halin subgraph of G (See Figure 9.2 (1) as an example).

If Wy = {u1} and E(As, By) = 0, since G is 3-connected, we can assume there exist

Vg, V2, € By such that {vy,v0,} U Ay is a clique. Let C' = {v,vs,,v3,Va,, V2,03, v} U},

/ / / 3 1 t1 1 tz 1 3
U2k2 w2k3 ) Ug, Wy, , WUy, U1W1,, W1, Vg, } U (Ui:2{vi U3, U3, Uy }) ( i:l{wi Ws;, W3, W; }) be a Cyde

and all vertices on the star (vy,,v1,, 07,07, wi, w;,), where vy, is the center, be stems of T
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with NC(U21> = Bi U {ul} U Bév NC(Uh) = (Al U {Ull}) U {w117U31}7 NC<UZ2) = {Uilvv?vv&}
and Ng(w?) = {w}, w}, w3, }, where i € [1,k] U [1,ko]. Let H =T UC, it is easy to check

that H is a strong spanning Halin subgraph of G (See Figure 9.2 (2) as an example).

Ultl

’
@ W2y

Figure 9.2. E(Ay, By) # 0 and Np,(A42) =0

Claim 9.1.4. If Np,(As) # 0 and Np,(Bs) # 0, then

1) For any vy, € By (similarly as vy, € A1), if E(vy,, A1) # 0, then |Na, (vq,)| > |A1] — 1.

2) Let A} = {v1, € A1|E(v1,, B1) # 0} C Ay and B} = {ve, € B1|E(vy,;, A1) # 0} C By, then
[ A1l = [As] = 1 and [Bi| = |By| - 1.

3) |Di| = 1.

4) Dy is an independent set.

5) If Np,(As) N Np,(Bz2) # 0 or E(As, By) # 0, then |Dy| = 1.

Proof. Since Np,(Bs) # 0, we assume wq, w3, € E(G).
1) Suppose vy,v2, € E(G). For any vy, v1; € Ay \ vy, since (vy,, v1,,v1,; Vo, wa, w3, ) is

not a Zs, we have v1,vy, € E(G) or vy,vy, € E(G). Thus [Ny, (vy,)| > |Ar] — 1.

2) This is clearly true by 1) and the symmetric of Ay and Bs.

3) Denote by vy, € Ay \ A}, vy, € By \ By if they exist. Since {vy, , vy, } is not 2-cut,
Np,(v1,,) U Np,(va,,) € Np, (A7 U By). By Claim 9.1.1 3) and the fact that Np,(Az) # 0
and Np,(By) # 0, |Dy| = 1.

4) This is clearly true by 9.1.1 1) and 3).
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5) Since Np, (A1) # 0, by Claim 9.1.1 3), we have |Np,(ws,)| < 1 for all wy, € By. If
there exist ws, € Dy such that ws, € Np,(As) N Np,(Bz), then No(ws,) C Ay U By by Claim
9.1.1 1). We may assume wy,, wy,, ws, € No(ws,). Since (wy,, wi,, ws,; W, Va,v3,) is not a L,
we have wq,wy, € E(G) or wy,wy, € E(G), which implies E(Ay, By) # (. Similarly as 3),
we can show that |Dy| = 1. [ |

If Np,(Ay) N Np,(Bsy) # ((similar as E(Ay, Bs) # 0)), we may assume w3, € Np,(wy,)N
Np,(wa,) N Np,(ws,) and vs, € Np,(vy,) N Np, (v1,) N Np,(v2,). Since A \ {vy, }, B1, As,
By \ {wy, } and Wy \ {u1} are cliques, there exist hamiltonian paths, say P = vy, Pivy,
Py = vy, Pyvg,, Py = wy, Pawn, , Py = wa, Pyva,, and Ps = usPsuy in them, respectively. Let
C = Py P,P;PyPs be a cycle and all vertices on the path v, ujwsy, be stems with No(vq,) =
{vs,,v1,}, Ne(ur) = (A1 \{v1,, v1, ) UB1U(Wo\ {u1 })UAU(By\ {wa,, wa, }) and Ne(wy,) =
{ws,,ws, }. Let H =T UC, it is easy to check that H is a strong spanning Halin subgraph
of G (See Figure 9.3 (1) as an example).

If Np,(A2) N Dy(Bs) =0, E(Az, B) = 0 and [Wy| > 2, similarly as Np,(Az) = 0, we
can find a strong spanning Halin subgraph in G.

If Np,(As) N Dy(By) =0, E(As, By) =0 and |[W,| = 1. Since G is 3-connected, we can
assume vy, vy, v1,V2, € E(G). Since Ay \ {vy, }, B1 \ {va, }, 45 = Ay \ (U2 {w}, w? w?}) and
By = By \ (U2 {w, w}, w}}) are cliques, there exist hamiltonian paths, say Pi = vy, Pyvy,
Py = vy, Pyvy, , P3 = w’lngw’lkl and P, = w§1P4w§k2, in them, respectively. Let C' =
U2 {w]ws,, ws,wd wiw],  Yo{wiw] wy, U1, Uy Wy, W3 WY, W, V2, V2,035 U3, U1y, ULy, wiu
UL E(P;) be a cycle and all vertices on the tree {vi,,ve,;w}, w?, -+ wi®} be stems of T
with No(vi,) = (A \ {vi, }) UAY, Ne(vs,) = Bi\ {vs, }U{vs, }U B3, No(wi) = {w;, w}, ws,},
where i € [1,s3]. Let H =T UC, then H is a spanning Halin subgraph of G (See Figure 9.3

(2) as an example).

9.2 Proof of 3-connected {claw, Z;}-free graphs admit 2-joins

In this section, we assume Wy = (), which implies G contains a 2-join.

Since G is 3-connected and Zs-free, it is easy to check that E(A1, By) # 0 or E(As, Bs) #
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Figure 9.3. E(Al, Bl) 7A @, ND2(A2) 7A @ and ND2(B2> # @

(. In this section, we always assume E(A, By) # 0, Ay = {wy, € As|E(wy,, Be) # 0} =
{wll,w12, s ,wkl} Q A2 and Bé = {UJQZ. - BQ|E('LU2“A2) 7A @} - {w21,w22, e ,wng} Q AQ,
where k; < s; and ko < s9. In particular, we always assume wq,ws, € E(G). Then we want

to consider following two cases.

Case 1: Assume E(A;, By) = 0.
Claim 9.2.1. ]fE(Al,Bl) = @, then NDl(Bl) = @

Proof. Suppose this is not true, then the following three observations giving a con-
tradiction.

Observation 1: If there exists vs, € Np,(B1), then [Ny, (vs;)| > |A;1| — 1. Suppose this
is not true, for any vs;, € Np,(B1), there exists vy,, v, € Ay such that vy, vs;, v1,v3, & E(G)
and vy, v3; € E(G), then (vi,, v1,,wy,; wa, vz, v3;) is a Z3, showing a contradiction.

Thus, we may assume there exists vs, € Dy such that vs,ve, € F(G) and let {vy,,v1,,- -,
v1, , C© Na, (v3,).

Observation 2: If there exists v, € Np,(B1) such that [Ny, (vs;)| > 2, then,

1) Np,(Bz2) =0 and |Ay \ Ab| > 3;
2) |Ba| = 1;

3) |B1| =1 and;

4) [Np, (B1)| =1



107

We may assume there exist vs, € Np,(By) and vy,, vy, € Ay, such that vy, vs,,v1,v3, €
E(G).

1) If there exists wo, € By and w3, € Dy such that ws, we, € E(G), then (vy,, v1,, v3,; Vg, wo,
ws,) is a Z3. Thus Np,(B2) = 0, which implies Np,(A}) = @ by Claim 9.0.4. Since G is
3-connected and Dy # (), we have |Ay \ Ay| > 3.

2) If there exist ws,,wy, € Ba, then (wa,, ws,, vg,;v3,v1,w1,, ) is a Z3, where wy €
Ay \ AL

3) Suppose this is not true, there exist vy ,v0, € By. We can also assume there exists
w3, € Np,(w,, ), then (vy,,va,, wy,; w1, w1, ws,) is a Z3, showing a contradiction. Thus,

= {va }-

4) If there exist v3,,v3, € Np,(vy,), then (vs,, vs,, va,; wo, w1, w1, ) is a Z3, showing a
contradiction.

Observation 3: If for any vs, € Np,(B1), |Na, (v3,)| = 1, then
1) [Be| =
2) Ay U By is a clique;

4) |B;| =1, and;

)
) A
3) |Np,(As U Bs)| =1 and Dy = Np,(As U By);
)
5) [Np, (B1)| = 1.

By Observation 1, we can see that A; = {vy,,v1,} and always assume vs,v1, € E(G)
and v, v1, ¢ E(G).

1) If there exist wy,, we, € Bay, then (wsy,, wa,, va,; v3,v1,v1,) 1S & Zs.

2) If there exists wy, € Ag, such that wy,wy, ¢ E(G), then (wy,, v1,,v1,; 3,02, w9,) is a
Z3.

3) If there exist ws,, ws, € Np,(AsU Bs), then Ay U By U {ws,, ws,} is a clique by Claim
9.0.4. However, this will force (ws,, ws,, ws,; v2,v3,v1,) to be a Zs. Thus |Np, (AU Bs)| = 1.
Since G is 3-connected, Np,(Ay U By) is not a cut vertex, we get Dy = Np,(Ay U By).

4) We may assume there exists v, € By. If vg,v3, ¢ E(G), then (wy,, v1,, v1,; U3, V2,Va,)

is a Zs; if vy,v3, € E(G), then (vq,, va,, v3,; 01, w1, w3, ) is a Z3, showing a contradiction. Thus
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Bl = {Ugl}.
5) If there exist vs,,v3, € Np, (vy,), since (vs,, vs,, Vg, ; We, w1, V1,) iS not a Zz, we have

v3,v1, € E(G). However, this will force (vq,,vs,,vs,; v, w1, ws,) to be a Z3, showing a

contradiction.
From Observation 2 and 3, we can see that |Bi| = |Np,(B1)| = |Bz| = 1, which means
| Ng(v2,)| = 2, contradicts to the fact that G is 3-connected. Thus Np, (B;) = 0. [ |

Since G is 3-connected, Np,(By) = 0 and E(A;, B1) = (), we have |By| > 3. The

following claim gives us the structure of G.

Claim 9.2.2. 1) |By| = 1;

2) Both By = B} and A, U By U Np,(Ay U By) are cliques. In particular, |AL| > 3;
3) Both Dy and Dy \ (Np,(As \ A})) are independent sets;

4) If Do\ Np,(As U By) # 0, then it is an independent set.

Proof. We may denote vs,v1, € E(G) since Dy # 0.

1) If there exist v, ,ve, € By, then (vq,, va,, wa,; w1, v1,v3,) is a Zs.

2) If there exists wy, € By \ By, then (v, wy,, wa,; w1, v1,v3,) is a Zz. Thus {wy, } U By
is a clique. Similarly, we can show that A} U By is a clique. By Claim 9.0.4, we have
AL U By U Np, (A, U By) is a clique. Since G is 3-connected, we have |A}| > 3.

3) Suppose to the contrary, there exist vs,,v3, € D; such that vs,v3, € E(G). S-
ince (wy,, ws,, Ww1,;v1,03,V3,) 1S not a Zz, we have vs,vq, € E(G). This in turn gives that
(Vs,, Vs, V1,; W1, Wa, V2, ) is a Z3. Therefore, D is an independent set. Similarly, we can show
that Dy \ (Np,(As \ A})) is also an independent set if it is not empty.

4) Let Np,(A3UBs) = {ws3,, ws,, - w3, } and Np,(A\A3) = {ws, ;w3 ., w3}
If there exists w3, € Dy \ Np,(Az U By), then ws,ws, ¢ E(G) for any i € [[; + 1,13]. Other-
wise (wg,, Wa,, w1,; W1, Wa,w3;) is a Z3, where wy,wy,, € E(G). Thus we may let ws, w3, ,, €
E(G). 1f there exists ws;ws,_,, in E(G), where ws; € Dy \ (Np, (A2 U By) U {ws, ,,)}, since
(U1, V1y, w1y W3, w3, ws;) is not a Zs, we have ws,w;; € E(G). However, this will force
(w3, w3, ,,, W3,; W1,v1,v3,) to be a Z3, giving a contraction. Thus Dy \ Np, (A2 U By) is an

independent set. n
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Now we denote by Dy = {uvs,,vs,, -~ ,vs,}, {v3,v3,v5} C Ny, (vs,) for all i €
[1,t3], AT = Al\U 1{1)3»“32 Usz} = {'Ulpvlgf" ’U1t1}> D21 = {ws,, ws,, - >7~U3l1} =
Np,(A3U B3), Do, = {ws, w3, w3, } = Np,(A2 \ A3), Dy, = Dy \ Np, (A2 U By) =
{ws s wa, b {ws,, wi , w3} C Na,(ws,) for all i € [l +1,s,], A) =

(D} = {wiﬁ Y 7w1t1}> D/ D21 \Uz l2+1{w32 w3 ,'LU3 } Since A A/2/> Déla B2 \ {w21aw22}

(w1i> =

and (A5 \ {wi,, w1, }) U{ws, } are cliques, there exists hamiltonian paths, say P = vy, Pivy,

P, = wingwit , Py = wy, Pawy,, and Py = wy, Pyws,, in them, respectively. Let C' =
3,3 3,3 4 /
{Us U3;, U3, V3,5 U3, U3, +1}U( i= z+1{w3 Ws;, W3, Ws; , W3, Ws, +1})U(Ui:1Pi)U{w22'U21’ U2, W2y, w121)31}

2

2
Bip417 ,'LU3$2 ) w22> be

be a cycle and all vertices on the tree (vgl,wll;vgl, e ,vgj,wgb,w
stems of T with Ne(v3)) = {v3,, 03, vs,}, 1 € [1,t3], No(wi,) = {wy,, w3 ,ws,}, j € [L+1, 9],
Ne(wy,) = (A5 \ {w1, }) U Ds,, Ne(ws,) = (B2 \ {wa,}) U{vy, }. Let H =T UC, it is easy

to check that H is a strong spanning Halin subgraph of G (See Figure 9.4 as an example).

Figure 9.4. E(Ay, By) = 0.

Case 2: Suppose that E(Ay, By) # 0.

Denote by A} = {v1, € Ai|E(vi,, B1) # 0} = {v1,,v1,, -+ 01, } C Ay and By = {vy, €
Bi|E(v,, A1) # 0} = {v,, 025, -+ ,vg } C By, where [} <t and I < ¢5. In particular, we
always assume vy, vy, € E(G).

We want to find a strong spanning Halin subgraph in GG by following two subcases.
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Case 2.1: Assume Np,(Bs) # 0.

Proof. Suppose this is not true, there exist wy, € By \ B} and w3, € D, such that
Wa,, W3, S E(G), then <’011,U12,w11; w21w252w31> is a Zg. [ |

We let wq, w3, € E(G), where wy, € By and ws, € Ds.

Claim 9.2.4. 1) For any ve, € B}, we have |[Na, (ve,)| > |A1|—1, which implies | A1\ Aj| < 1.
2) Np,(By) # 0 and [Ay \ Ay] < 1.

Proof. 1) For any vy, € B, if there exist vy, € A} and vy,,v;, € Ay \ A} such
that vy,v9, € E(G) and vy, v9,, 01,09, ¢ E(G), then (v, , vy, v1,;09,wa,ws,) is a Z3. Thus
[Ny (02,)] > |4y — 1, which implies |4, \ 4] < 1.

2) If Np,(By) = 0, by Claim 9.0.4, Np, (A}) = 0. Since |A; \ A}| <1, D; # 0 and G is

3-connected, we can assume vy, vy, _, € By \ By, then (vy, , vy, 021501, w1,ws,) is a Zs.

t2

Similarly as 1), we can also get |As \ A5 < 1. [
Claim 9.2.5. D, = Np.(A; U B;), where i € [1,2].

Proof. We only show this is true for ¢ = 2. Since Np,(B]) # 0, by Claim 9.2.4, we
can assume there exists v3, € Np, (v1,) N Np, (v2,). If there exist w; € Ay U By, w; € Np,(w;)
and wy, € Np,(w;) \ (A2 U By), then either (vy,, vs,, vo,; wswjwy) or (vy,, vs,, V1,; Ww;wg) is

a Z3, showing a contradiction. |

Claim 9.2.6. If there exists i € [1,2], such that A; U B; is a clique, then both D; and

AL U B ,UDs_; are cliques.

Proof. We only show this is true for ¢ = 1. If A; U By is a clique, then A; U By U D,
is a clique by Claim 9.0.4 and 9.2.5. Moreover, |B, \ By| < 1. Otherwise, let wsy;, wy, €
By \ By, then (wy;,wy, , ws,;wi,v1,v3,) is a Zs. Thus [(A \ A5) U (B2 \ By)| < 2. Fur-
thermore, we can show that if Np,(Ay \ A}) # 0, then Np,(Ay \ A,) € Np, (A, U BY).

Otherwise, assume there exist wsz, € Do, wy, € Ay \ A and wy, € By \ By such that
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wy, w3y, wp,, w3, € B(G). Since G is 3-connected, there exists w3, € Dy such that w3, ws, €
E(G). Since (w3, , ws,, w1, ;v1,V2,wy,) is not a Z3, we have wz,ws, € E(G), this will force
(w1, , w3, W3,; W, V2, v3,) to be a Z3, showing a contradiction. Thus Dy = Np, (A5 U By).
Since Np, (B1) # 0, similarly as Claim 9.2.4, we can show that | N, (ws, )| > |As| — 1 for all
wy, € BY or [Np,(wq,)| > |Ba| — 1 for all wy, € A}. By Claim 9.0.4, we know A} U B}, U D,

is also a clique. |

Now we want to find a strong spanning Halin subgraph in G by following three subcases.

Subcase 1: Assume |Ay| # 2. Since (A; \ {v1,}) U By U Dy, (A2 \ {wy,, ws,, }) U Dy and
By \ {wo, } are cliques, there exist hamiltonian paths, say P, = v, Pv1,, P» = wy, Pyws,
and P3 = wy, Pswy,, in them, respectively. Let C' = Py P,P3 U {vl2w151,w181w12} be a cycle
and all vertices on the path vy, wy,wy, be stems of T with No(vy,) = V(P), Ne(wy,) =
V(P) U{wy, } and No(ws,) = V(F3).

Subcase 2: Assume |By| = 2 and |Ay| # 1, since both (A; \ {vy,}) U By U D; and
(A2 \ {w1,, w1, }) U Dy are cliques, there exist hamiltonian paths, say Py = vy, Pyv1, and
Py = wy, Pyws, in them, respectively. Let C'= PP, U {vi,wy, , w1, w1, Ws,Wa,, Wa, v, | be
a cycle and all vertices on the path vy, wy, wse, be stems with Ng(vy,) = V(P1), No(wy,) =
(V(A2) \ {w1, }) U {ws,, } and Ne(ws,) = V(D2) U {ws, }.

Subcase 3: Assume |By| = 2 and |Ay| = 1. Since G is 3-connected, |Bi| > 2 Since
(A1 \ {v,}) U Dy, By \ {vg,} and (By \ {ws,}) U Dy are cliques, there exist hamiltonian
paths, say P, = v1,Pivs,, Py = v9,Povy, and P3 = wq, Psws,, in them, respectively. Let
C = P PP U {v,wy,, wy,ws, } be a cycle and all vertices on the path vy, ve, ws, be stems
with Neo(vy,) = V(P) U{wy, }, No(ve,) = V(P,) and N (ws,) = V(Dg) U {ws, }.

Let H =TUC, then H is a spanning Halin subgraph of G (See Figure 9.5 as examples).

If neither A; U By nor A; U By is a clique, since Np,(Bs \ Bj) = ), by Claim 9.2.3, we
have Np,(Az2) # (). Moreover, we have Np,(B1) # ) by Claim 9.2.4. Thus we only need to
consider A; \ A} # 0.

Claim 9.2.7. If A} \ A} = {v1,, }, we have following conclusions.
1) AU By U Np, (A} U BY}) is a clique;
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Figure 9.5. E(Al, Bl) 7A (Z) and NDQ(BQ) # @

2) Np,(B2) € Np,(wy,) for all wi, € As. In particular, Np,(B2) = Np,(ws;) = {w} for all
wy; € By,

3) Np,(Ay) = {w}, which means Dy = {w};

4) If A5 U By is not a clique, then Dy = {v}.

Proof. 1) Since vy, € A; \ A, by Claim 9.2.4, Ny, (vy;) = A] for all v, € B). This
in turn gives A} U B} is a clique. By Claim 9.0.4 and Claim 9.2.5, we get A} U B{ U Dy is
also a clique.

2) Since Np,(B; \ Bj) # 0, if there exists w € Np,(wy;) for some wy, € Bj, then
ww,, € E(G) for all wy, € Ng,(wy,). If there exists wy, € Ay \ Na,(ws,), then to avoid
(w1, v1,,, U1y Ve, o, w) be Zz, we have wwy, € E(G). Therefore, Np,(Bs) € No(wy,) for
all wy, € Ay, which means Np,(ws,) = Np,(ws;) for all wy,,wy; € By. For any wy, € B,
| Np,(ws,)
Thus Np,(B2)| = |Np,(ws,)
Np,(Bz) = {w}.

3) It is clearly true if Ay = Ay by Claim 9.0.4. If there exists w;, € Ay \ A and

= 1. Otherwise, let {w,w'} C Np,(wy,), then (w,w’, wy;vq,v1,v1, ) is a Z3.

=1 for all wy, € By since Np,(Bs \ Bj) # (). We may assume

w' € Dy \ {w} such that w'w,, € E(G), then ww' € E(G) and (w',wy, ,w;wy,, vy, ,v) is a
Zs, where v € Np, (vs,) since Np,(By) # 0 by Claim 9.2.4. This implies Dy = {w} since
Np,(As U By) = {w} and G is 3-connected.

4) If | Ay \ AY| = 1, similarly as 3), we can show that D; = {v}. Otherwise Ay = Aj. If

AaUB;, is not a clique, we can assume wy, wa,, ¢ E(G), then |Np, (vy,)| < 1forallv;, € A—1,
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otherwise, let v,v" € Np, (v1,), then (v,v',v1,; w1, wz,ws,,) is a Zz. This in turn gives that
|Np, (A7 U B})| < 1. Since Np,(Ay) # (), we have |B; \ B;| < 1. Because G is 3-connected,
(A1 \ A} U (B \ B)) is not a vertex cut, by Claim 9.2.5, we get D; = {w}. |

Similarly as Np,(Bs) # 0, we can find a strong spanning Halin subgraph in G.

Case 2.2: Suppose Np,(By) = 0.

We will use following claim to describe the structure of G.

Claim 9.2.8. If Np,(By) =0, then

1) A2\ Ay| = 3;

2) |Bi| =1, Np,(B1) = 0;

3) |Ba| = 1;

4) 1AL = 2 and [Ay| > 2;

5) For any vy, € A; \ A}, we have [Np,(v1,)| <1, where i € [1,2];

6) For any v' € D; and vy; € A; \ A}, we have dist(v',vy;) <2, wherei € [1,2];

7) For any connected component D;; C D;, we have |D;;| < 2, where i € [1,2] and j €
(1, k1] U1, kol;

8) For any vs, € D;, we have |[Na,(vs,)| > 2, where i € [1,2].

Proof. 1) Since Np,(B;) = 0, by Claim 9.0.4, Np,(A},) = 0. Thus |4y \ Ay > 3
because of G is 3-connected and Dy # ). We can always assume wy, ,wi, , € Az \ Ay,
wi,wy, € E(G) and wy, w3, € E(G).

2) If there exist vy,,v9, € By, then (v, va,, w,; wy, w1, ws,) is a Zz. If there exists
v3, € Np,(vz,), then (wy, w1, ,, w1 ;w02 v3) is a Z.

3) Since Np,(B1) = 0, similarly as 2), we can show that |Bs| = 1.

4) Since G is 3-connected, degi(ve,) > 3 and degg(wq,) > 3. This in turn gives |A}| > 2
and |AL| > 2.

5) We only show this is true for i = 1. If there exist v, € A; \ A} and v,v" € Np, (vy,),
then v’ € E(G) since (vy,; wy,,v,v') is not a claw. Which in turn gives (v,v’, vy, ; v1, v2, wo,)

is a Z3, showing a contradiction.
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6) If there exist v' € D; and vi, € A; \ Aj, such that dist(v',vy;) = 3. We may assume
v'v" 0", v € E(G), then (wy,, wy,, v1,;v0"0') is a Zs.

7) If there exist v,v’,v"” € D;,, we may assume vv’,v'v” € E(G), then there does not
exist v, € A; \ A} such that v, v € E(G). Otherwise, either (v';vy,,v,0") is a claw or
(", v,v"; v wy;w) is a Zs, where wy; € Az_; and w € Np,_,(wy;). Moreover, there does not
exist vy, € A; \ Aj such that v;,v € E(G)(or vy, v" € E(G)). Otherwise (v",v',v; vy, wy,w)
or (wy,,ws,,v1,;vv'v") is a Z3, showing a contradiction.

8) This is true if D;; = {vs, } since G is 3-connected. If Dy, = {vs, , vs, }, since Ny, (vs, )N
Na,(vs,) =0 and G is 3-connected, we have | Ny, (vs, )| > 2 and | Ny, (vs,)| > 2. |

We may denote by D;, = {vs,} for i € [1,11], Dy, = {vs; ,v3, } for j € [l1 +1, k1], Dy, =
{ws,} fori € [1,1y], Do, = {ws, ,ws, } for j € [lo+1, ko], Na, (vs,) = {vf, v}, 0]}, Na, (vs;,) =

{ Us1» ]1} NA1(U332) {Ujg’ 32} NA2(w3):{wi>w2 3} NAz(wi’ql) = {'LUJI, j1}7NA2(w3j2) =

{wj,, w3}, Af = (A L\ (U {ol 02, 0 )UU;Cl L vy, 5L v, v b = {o -vitl} and A} =
(A2\( = 1{w7,7 3}) ( j= [1+1{wj17wjzl7w]127wj22 ) = {w/h, e 'witl}' In particular, ’UL’UQUUJL

wy, € E(G).

Since AY, Aj are cliques, there exists hamiltonian paths, say P, = vy, Plvit and Py =
wy, Pyw}, , in them, respectively. Let C' = UL {vtus,, vs,03, vdul,  JU(UE L dvj s, vy, 02 U
UL {whws,, wy,wd, wiw},  yU (US 2w ws,  wsy wE U PPy U{0) vy, , 09w, , w,wh, } be a
cycle with all vertices on the tree (v7, wi; v3, - - vf 4, v(l1+1) LU L Vg, Wy W, w(l1+1)2,

,wi, ,wp,. ) be stems of T with Ne(v7) = {v}, v}, vs, } for i € [2,1], No(v,) = {v],, vs, },
Ne(vj,) = {vj,,vs, } for j € [l + 1, k1], No(w?) = {wj, w},ws,} for i € [2,1y], No(w}) =
{wj,,ws; }, No(wj,) = {wj,,ws, } for j € [ly+1, ko], No(v7) = {v], v}, vs, } UAT U {vy, } and
Ne(w?) = {wi, w, ws, } UAyU{wy, }. Let H=TUC, then H is a spanning Halin subgraph

of G (See Figure 9.6 as examples).

9.3 Proof of 3-connected {claw, B, »}-free graphs admit generalized 2-joins

In this subsection, we always assume G is a 3-connected {claw, By 2 }-free graph admits a

generalized 2-join. Since G is connected and Dy # (), we assume Np, (Bsy) # () because we can
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Figure 9.6. E(A;, By) # 0 and Np,(By) =0

similarly find a strong spanning Halin subgraph in G if Np,(As) # 0. Let wq, w3, € E(G),

then we have following claims.
Claim 9.3.1. If Np, (A1) # 0, then both A; U Dy and By U Dy are cliques.

Proof. We may assume there exists vs, € D; such that vs,v1, € E(G). For any

V1,

7

€ A; \ {vy,}, since (vs,;vi,,v1,, u1;we,ws,) is not a Bya, we have v vy, € E(G).
Thus Np, (A1) U A; is a clique. Moreover, for any vy, € By and v, € Np,(A;), s-
ince (ws,;wa,,va,,ur;v1,vs,) is not a Byo and (vi,;vs,,wi,,vs;) is not a claw, we have
v3,v2; € E(G). Therefore, Np,(A;) C Np, (vy;) for any vy, € By. Similarly, we can show
that Np,(B2) C Np,(Ay), which implies Np,(A42) # 0 and Np,(B;) € Np,(A;).This in
turn gives Np, (B1) = Np, (A1) and Np,(Bs) = Np,(As). Furthermore, there does not exist
v3; € Dy and vy, € By, such that dist(vs,,vs,) = 2. Otherwise, assume vs,v3, € E(G), then
(ws,;wa,, Uy, vy, v3,v3;) is a Bio. Since G is connected, we have D; = Np,(B;), which in

turn gives us both A; U Dy and By U D; are cliques. [

Corollary 9.3.1. Both Ay U Dy and By U Dy are cliques.

Claim 9.3.2. If Np,(A;) =0, then

1) Np,(As) =0 and Np,(B}) =0, where i € [1,2];

2) For any component Dy, of D;, we have D;; U Npapi(D;;) is a clique, where i € [1,2];
8) |Np,(Dy,)| > 3 fori € [1,2], and if [Wy| < 3, then |A] U Ay > 3 — [Wy.
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Proof. 1) If Np, (A1) =0, then Np,(B) # 0 since Dy # 0. Similarly as Claim 9.3.1,
we know Np,(As) = (). By Claim 9.0.4, we know Np,(B}) =0 for i € [1,2].

2) We only prove for i = 1. This is clearly true if |Dy,| = 1. If [Dy,| > 2, we may
assume there exist vs,,v3, € Dy, and vy, € By \ Bj, such that vs,vs,,v3,v5, € E(G) and
v3,vp; & E(G), then (ws,;wy,, u1,vs,;v3,03,) is a By, showing a contradiction. Therefore,
D, U N, (Dy,) is a clique for any component D;; of D.

3) This is true since G is 3-connected. [}

Based on Claim 9.3.1 and 9.3.2, we can find a strong spanning Halin subgraph in G as
follows.

If Np,(A1) # 0, since Dy U (A \ {v1,}), B1, Wo \ {1}, A and Dy U By \ {we, } are
cliques, there exist hamiltonian paths, say P, = vlthlvgl, P, = 021P21)2t2, Py = us Pyuy,
Py = wy, Pywn, and Ps = w3, Psws, , in them, respectively. Let C' = PiP,P3;P,P5 be a
cycle and all vertices on the path vy, ujws, be stems of T" with Ng(vy,) = Dy U {vy,},
Ne(ur) = (A \{v1,, v, HUB U(Wo\ {u1 })UAU(Bs\ {ws,, we, }) and Ne(wy, ) = {we, }UDs.

If Np, (A1) = 0, we denote by Dy, = {vs,, vs,, -+, vs, }, Vg, 05,05, € Np\p(Dy,), Do, =
{ws,, w3y, ,ws, } and wy, w3, wi, € Npy py(Dy,) for all Dy, € Dy and Dy, € D, Let B =
B\ U2 1{vs,, 03,03 }—{1)21,~-~,U§k2}andB”—B2\U ws, wy w3} = {wy,, -, 232}
Since Ay, Ag, By, By and D;, U Np,\p/(D;;) are cliques for all j € [1,k] U [1,ky] and

€ [1,2], there exist hamiltonian paths, say Py = vy, Pyvy, , Py = wy, Powy, , Ps = véngvékz,
Py = wy Pawy , Ps; = vy, Ps,v3, and Py, = wj, Ps,w3, in them, respectively.

If |Wo| > 3, let Pr = uzPru; be a hamiltonian path in Wy \ {u1,us} and C =
PiPyP3PyPs, - -+ P, Fe, - P, U{ 1, Ug, uga,, Wi, Uy, uzwe, } be a cycle. If Wy = {uy, us}, we
can assume wy,wy, € E(G) and let C = PPy P3Py Ps, - -+ Ps, Fe, -+ P, U{v1,u2, usv2, } be a
cycle. Set all vertices on the star (uy;v3,, - - ~U§k1 w3, ~w§k2> be stems of T with N (u1) =
Ay U Ay UBY U BJ U{us}, Ne(v3) = V(Ps,) and Ne(w3) = V(Fg,) for i € [1, k] U [1, ko).

I Wy ={u1} and E(Ay, By) # 0, E(As, By) # 0, we can similarly find a strong spanning
Halin subgraph in G as [Wy| = 2, If Wy = {u1} and E(Ay, By) = B(or E(Ay, By) = 0),

we can assume vy, v5 ,v1,Vy, € E(G). Let C = v, Pro, PaPsPyPs, - Py, P, -+ P, U
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: ;. 2 2 2 2
{w1,u2, ugws, } be a cycle and all vertices on the star (vy ;vy,,v3,, - - Uy, W -w2k2>, where

vy, is the center, be stems of T' with N¢(vy,) = By U By U {u1}, Ne(vi,) = Ay U Ay,
Ne(v3) = V(Ps,) and Ne(w3,) = V(Ps,) for i € [1, k] U [1, ko). Let H = TUC, it is easy to

check that H is a strong spanning Halin subgraph of G (See Figure 9.7 as examples).

U2  ut

vltl

Figure 9.7. G admits a generalized 2-join

9.4 Proof of 3-connected {claw, B, »}-free graphs admit 2-joins

In this section, we assume G is a 3-connected {claw, By »}-free graph and Wy = () which

means G' admits a 2-join. We will consider following two cases.

Case 1: E(Al, Bl) = @ and E(AQ,BQ) = @
Since G is 3-connected and D; # () for i € [1,2], we can assume Np, (A1) # 0, Np,(Az) #
0 and Np,(B2) # 0. Note that if Np,(A2) = Da, then Np,(As) N Na(By) # (). We have

following claims.
Claim 9.4.1. Both Np, (A1) U Ay and Np,(Ay) U Ay are cliques.

Proof. We only prove that Np, (A;) U A; is a clique. If |A;| = 1, then Np, (A1) U A,
is a clique since G is claw-free. If |A;| > 2, we may assume there exists v3, € Dy, w' €
By U Dy such that vs, vy, w3, wy,, w3, w’ € E(G) and wy,w’ ¢ E(G). Since for any vy, € Ay,
(V3,5 01,, v1,, w1, ; w3, w') is not a By o, we have vg, vy, € E(G), which implies Ny, (vs,) = A;.

Therefore, Np,(A;) U A; is a clique. |
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Corollary 9.4.1. If Np,(B1) # 0, then both Np,(B1) U By and Np,(By) U By are cliques.

Claim 9.4.2. [f there exists w € D;\ Np,(A;) such that dist(w, A;) = 2, then Np,(A;) U{w}
is a clique. In particular, if we denote D! = {w|dist(w, A;) = j}, then D] UD?Jrl is a clique

for all possible j, where 1 =1, 2.

Proof. We only prove this is true for ¢ = 2. This is clearly true if |Np,(As)| = 1.
If |[Np,(A2)| > 2 and there exist w € D3, ws,, w3, € Np,(Az) such that ws,w € E(G) and
ws,w ¢ E(G), then (w;ws,, ws,, wy,;v1,vs,) is a By, showing a contradiction. Therefore,
DU D2 is a clique. Similarly, we can show that D U D™ is also a clique for all possible
. m

We denote by D? = {v},02,--- 0%} and D} = {w},w?,--- ,w"} for all possible j.
y L 7o Y5 J 2 J J J

Claim 9.4.3. Let i € [1,2] and k be the smallest integer such that Np,(B;) N DF # 0, then
foriell,2]

1) DF*' = ¢ and D; = UE_ DJ;

2) D¥ U Np.(D¥) is a clique;

3) If Np, ,(Bs—) # 0, then Np,(Df) = Bi;

4) If Np, .(Bs_;) = 0, then |Ng,(DF)| >3, |A;| >3, |D!| >3, |As_;| >3 and |D}_;| > 3
for all j € [1,s] UL, s3_; — 1], where s; = max{j|dist(w,A;) = j,w € D;} and s3—; =

max{j\dzst(w,Ag_Z) =j,w € Dg_i}.

Proof. We only prove this is true for 7 = 2 and denote by DY = Ay, D;' = A; and
wiwsy, € E(Q).

1) If DIt £ ), since (wi;ws,, w}i_j,wi,,) is not a claw, we have w}, wa, € E(G).
However, this will force (vo,;ws,, w)_ q, wp; wi_wj_y) to be a Byy. If there exists w €
D; \ (Uf_, D7) such that wws, € E(G), where wy, ¢ Np,(D5), then (w;ws,, va,, wa, ; wiwp_;)
is a Bj 9, showing a contradiction.

2) For any wi € D5\{w}}, since (w}_,;wi |, wi, w};wa, ve, ) is not a By o, wo, wi € E(G).

Therefore, D5 U {ws,} is a clique. Similarly, we can show D4 U Np,(D%) is also a clique.
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3) If Np, (By) # 0,let v3,v5, € E(G). For any wy, € By\{wy, }, since (vs,; va,, wa,, wa,; wy,
wj_,) is not a By 2, we have wiw,, € E(G), which in turn gives us Np,(Df) = B; is a clique.

4) This is clearly true since G is 3-connected. n

Claim 9.4.4. There are at most two sets in S, S := {Ay, A, By, B} U (Uf;lDi)U(Ujing),
with size 1. Moreover, if there indeed exist two sets with size 1, then they are adjacent to

each other.

Proof. This is clearly true since G is 3-connected. |

Now we want to find a strong spanning Halin subgraph in G as follows.

If Np,(By) # 0, we may assume Np,(B;) N DY # @, Np,(By) N D5 # ¢ and By,
By are the only two possible sets with size 1. We denote by D} = A;, DY = A,. S-
ince |D!| > 2 and D \ {w}} are cliques for i € [1,2] and j € [0,k] U [0,ky]. There

exist hamiltonian paths, say P, = w?Pijwfi, in them, respectively. Denote by P; =
vy, P3ve, and Py = wsq, Pywy, are the two hamiltonian paths in B; and B, respective-
ly. Let C' = Pl,c PP Py - -P2k2 PyP; be a cycle and all vertices on the path

Vg, Vg, _q -+ - iU wy, - - wy, be stems of T with Ne(v)) = V(Py,) for i € [0,k — 1], Ne(wj) =
V(Py,) for j € [0,ky — 1], Ne(vy,) = V(Py,,) UV(P3) and No(wy,) = V(P ) UV (Py).

If Np,(B;)) = 0, we denote by }Np, (D) = {ws,,--- ,wy,, and By \ Npg,(D5?) =
{way, 1y s wa,, }, DY = Ay and Dy = Ay, Since |D?| > 3 and D’ \ {v},v?} are cliques for
i €[1,2] and j € [0, 1] U [0, ko], there exists hamiltonian paths, say P;, = v3P; v/, in them,
respectively. Moreover, there also exist a hamiltonian path, say P = ws, P3ws, in By U (Bsg\
{ws, }) since | Np,(D4?)| > 3 and BiUB, is aclique. Let C' = Py, Py, _, -+ Py, P, Py, -+ Py, P3U
Ul o2, I HUuu{wiw?,  }}) U{vdw?, we,w}?} be a cycle and all vertices on the path

1 .
s1

V(P _,)UV(P,,) No(wj) = V(Py,) for j € [0, ky] and No(wy) = By U (By \ {ws, }).

vy, - ViUWy - - - Wy, wa, be stems of T' with Ne(vf) = V(Py,) for i € [0,s1 — 2], No(vy, ) =

Let H =TUC, then H is a spanning Halin subgraph of G (See Figure 9.8 as examples).

Case 2: Assume F (A, By) # () or E(Ay, By) # 0.
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w2t2

Figure 9.8. E(Ay, B)) =0 and E(A,, By) =0

Claim 9.4.5. There exists i € [1,2] such that E(A;, B;) # 0 and Np,(A;) N Np,(B;) # 0.

Proof. We may assume E(Ay, Bs) # 0. If Np,(As) N Np,(Bs) = 0, we can assume
there exist wq, € By \ By and ws, € Dy such that we,ws, € E(G) by Claim 9.0.4. For any
vy, € Ay and vy, € By, since (ws,; wy,, Vo, Wo,; w1, vy,) is not a By o, we have vy, vy, € E(G).

This implies A; U By is a clique and Np, (A1) N Np, (B;) # 0 by Claim 9.0.4 again. |

Claim 9.4.6. If there exists i € [1,2] such that E(A;, B;) # 0 and Np,(A;) N Np.(B;) # 0,
then

1) Both A3_; U D3_; and Bs_; U Ds_; are cliques;

2) Both A; U D; and B; U D; are cliques.

Proof. We may assume wy,we, € E(G) and ws, € Np,(wy,) N Np, (wy,).

1) For any v, € Ay, vg, € By and vs; € Np, (vy,), since (vg,;wy,, ws,, wy,;v1,v3,) is not
a B, v3,vy, € E(G). Which implies Np, (A1) = Np,(B1) = Np, (v1,) = Np, (va,) since vy,
and vy, are arbitrary. If there exists v € Dy \ (Np, (A1) U Np,(B;)) and v € Np, (A;) such
that v'v € E(G), then either (v;v',v1,,v9,) is a claw or (v'; v, vy,, vo,, wo,w') is By 2, showing
a contradiction. Thus A; U Dy and By U D, are cliques.

2) If E(Ay, By) # 0, similarly as 1), we can show that both Ay U Dy and By U Dy are
cliques. Thus we assume E(A;, By) =0

Firstly, we have Np,(As U By) = Np, (A, U Bj). Otherwise, we assume there exists
w3, € Np,(Ay U By) \ Np,(A5 U By) and wy,, € By \ By such that wsz,wy,, € E(G). Then
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(w3, ; wa,, , Wa,, Vg,; U3, v1,) is & Bip. Secondly, for any ws, € Np,(B; U Aj), we have both
{ws, }UNp,(As) and {ws, } UNp,(Bs) are cliques. Otherwise, let w3, € Np, (ws, )N Np, (w1, ),
then for any wy, € Ay \ {wy, }, we have (wy,; w,, ws,, wa,; v2,vs,) is a By ». Similarly, we can
show that for any wy, € By \ {ws, }, (wa;;wa,, w3, w1,;v1,v3,) is a Bya. Therefore both
Ay U Np,(As) and Np,(As) U By are cliques since wg, is arbitrary. Thirdly, Dy = Np,(As).
Otherwise, if there exists w’ € Dy \ Np,(As) such that ws,w" € E(G), where ws, € Np,(As),
then (w'; ws,, wy,, wo,;ve,v3,) is a By o. Thus, both Ay U Dy and By U Dy are cliques. [

Now we want to find a strong spanning Halin subgraph in G as follows.

If | Bo| > 2(or | By| > 2), since both D1U(A1\{v1, }), DoU(As\{wy, }) and BiU(Bo\{wo, })
are cliques, there exist hamiltonian paths, say P, = vs, Piv1,, P» = w3, Powy, and Py =
W, P3vy,, in them, respectively. Let C' = PP, P5; be a cycle and all vertices on the path
vy, Wi, Wy, be stems of T" with N¢(vy,) = V(P1), No(wy,) = V(P,) and Ngo(ws,) = V(Ps).

If By = {vy,} and By = {ws,}, since Dy U (A; \ {vy,}) and Dy U (As \ {wy,}) are
cliques, there exist hamiltonian paths, say P, = vs, Piv1, and P, = ws, Powy,, in them,
respectively. Let C' = Py Py U {ws, wa, , Wy, v9,, U2,v3, } be a cycle and {vy,,w;,} be stems of
T with No(v1,) = V(P1) U{ve, } and Neo(wy,) = V(P) U {wy, }.

Let H =T UC, it is easy to check that H is a strong spanning Halin subgraph of G

(See Figure 9.9 as examples).

v, way

Figure 9.9. E(Ay, By) # 0
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Chapter 10

HEX JOIN

Recall that if we let (Wy, Wa) be a partition of V(G), such that for i € [1,2] there are

cliques A;, B;, C; C W; with the following properties:
e Wi, W5 are both nonempty;
o for i = 1,2 the sets A; , B; , C; are pairwise disjoint and have union W;;

o if v; € Wy and vy € Ws, then vy is adjacent to vy unless either v; € A; and vy € A, or

v1 € By and v € By, or v; € C] and vy € (Cs; and in these cases vy, vy are nonadjacent.

In these circumstances we say that G is a hex-join of (W) and (W5).

In this chapter, we will show the following proposition.

Proposition 18. If G is a 3-connected claw-free graph and admits a hex-join, then G con-

tains a strong spanning Halin subgraph.

10.1 Proof of 3-connected claw-free graphs admit hex-joins

For snnphmty, we denote by D1 = Al, D2 = BQ, D3 = Cl, D4 = AQ, D5 = Bl, DG = C2
and D; = {vy,, vy, - ,viti} for i € [1,6]. By the definition of hex join, we know D; U D, is
a clique and E(D;, D;y3) = 0, where D; ¢ = D; for i € [1,6]. We want to consider following

two cases.

Case 1: Assume that D; # () for all i € [1,6].

Case 1.1: There exist at least four consecutive sets in {D;, Ds, -, Dg} such that |D;| > 2,
where ¢ € [1, 6].
We may assume |D;| > 2 for i € {2,3,4,5}. Since Dy, D; \{v;, }, 7 € {2,3,4,5}, and Ds

are cliques, there exist hamiltonian paths, say Py = vy, Pivy, , P = vi, Py, , @ € [2,3,4, 5],
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and Fs = vg, Pﬁv%, in them, respectively. Let C' = PP, --- P be a cycle and all vertices
on the path v, v3,v4,v5, be stems of T with No(vy,) = V(P) UV (P), No(vs,) = V(Ps),
Ne(vy,) = V(Py) and Ne(vs,) = V(Ps) UV (Bs). Let H =T UC, it is easy to check that H

is a strong spanning Halin subgraph of G (See Figure 10.1 (1) as an example.)

Case 1.2: There exists ¢ € [1,6] such that |D;| = |D;;2| = 1 and the other four sets with at
least two vertices.

We may assume |D;| = |Ds| = 1. Since Dy U Dj is not a 2-cut and E(Ds, D5) = 0,
we can assume vy, vy, € E(G). Since D; \ {v;,}, i € {2,4,5}, and Dy are cliques, there
exist hamiltonian paths, say P, = vizPZ-v,-ti and Py = vﬁngthG, in them, respectively. Let
C = PyPyPs PsU{vy,va,, V2,, V3,5 U3, Vs, Vg vy, } be a cycle and all vertices on the path vg, vy, vs5,
be stems with N¢(ve, ) = V(P2) U{v,,vs,}, No(vy,) = V(Py) and Ne(vs,) = V(Ps) UV (Fp).
Let H =T UC, it is easy to check that H is a strong spanning Halin subgraph of G (See

Figure 10.1 (2) as an example.)

Case 1.3: There exists i € [1,6] such that |D;| = |D;;3| = 1 and the other four sets with at
least two vertices.

We may assume |Dq| = |Dy| = 1. Since Dy U Dy is not a 2-cut, then E(Dy U D3, D5 U
Dg) # 0. By symmetric, we may assume vs,v5, € E(G). Since D; \ {v;, }, i € {2,3,5}, and
Dg are cliques, there exist hamiltonian paths, say P = v;, Piv;, and Fs = vg, Pgvg,, in them,
respectively. Let C' = PoP3PsPs U {v1,v2,, U3,,V4,, V1, Vs,, V6, U1, } be a cycle and all vertices
on the path vyv3,v5, be stems of T with Ng(ve,) = V(Py) U {v1, }, Neo(vs,) = V(Ps) U{vy, }
and Ne(vs,) = V(Ps) UV(Ps). Let H = T UC, it is easy to check that H is a strong

spanning Halin subgraph of G (See Figure 10.1 (3) as an example.)

Case 1.4: There exists i € [1,6] such that |D;| = |D;;1| = |Dis2| = 1 and the other three
sets with at least two vertices.

We may assume |D;| = |Dq| = |D3| = 1. Since Dy U Dj is not a 2-cut and E(Ds, D5) =
f, we may assume vy,v4, € E(G). Since D; \ {v;}, ¢ € {4,5,6}, are cliques, there

exist hamiltonian paths, say P; = v;, Fv;, in them, respectively. Let ¢ = PP U
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{v1,v2,, v2,V3,, U3,V4,, V6, V1, } De a cycle and all vertices on the path vy, vs,v5, be stems of
T with Nc(v41) = V(P4) U {’Ugl,l)gl}, Nc(U51) = V(P5) and NC(Uﬁl) = V(PG) U {’Ull}. Let
H =TUC, it is easy to check that H is a strong spanning Halin subgraph of G (See Figure

10.1 (4) as an example.)

Case 1.5: There exists ¢ € [1,6] such that |D;| = |D;y1| = |Diys| = 1(or |D;| = |Diy1| =
|D;y4] = 1) and the other three sets with at least two vertices.

We may assume |Dq| = |Ds| = |Dy| = 1. Since neither Dy U Dy nor Dy U Dy is a 2-cut
and F(Ds, D5) = E(Ds, Dg) = (), we may assume vs,v5, € E(G) or {vg,vs,, 01,03, } C E(G).
If v3,v5, € E(G), we can find a strong spanning Halin subgraph in G similarly as Case
1.2, If {vq,v6,,v1,v3, } € E(G). Since D; \ {v;, }, i € {5,6} and Dj are cliques, there exist
hamiltonian paths, say P, = vizPiviti and P; = 031P3v3t3, in them, respectively. Let C' =
PsPs U{v1,v3,, 03, V4, , V4,55, Us,. Uy, Vs, U1, ; be a cycle and all vertices on the path v, vs, vs,
be stems of T with Ne(ve,) = V(Ps)U{vy, }, No(vs,) = V(Ps)U{vy, } and Ne(ve,) = V(Fp).
Let H =T UC, it is easy to check that H is a strong spanning Halin subgraph of G (See

Figure 10.1 (5) as an example.)

Case 1.6: There exists i € [1,6] such that |D;| = |D;i2| = |Dita| = 1 and the other three
sets with at least two vertices.

We may assume |D;| = |Ds| = |Ds| = 1. Since neither D; U D3 nor D3 U D5 nor Dy U D
is a 2-cut and E(D;, D;y3) = 0 for i € {1,2,3}, we may assume vg,v9, € F(G) and vg, vy, €
E(G). Since D; \ {v;,}, i € {2,4,6}, are cliques, there exist hamiltonian paths, say P, =
i, Pyvi, in them, respectively. Let C' = Py Py PsU{v1,v2,, Va,, U3, , U3, Vay, Vs, Vs, 5 Us, Uy Vg, v, }
be a cycle and all vertices on the path vs, vy, v, be stems of T" with Ng(vy,) = V(P) U
{v1,,v3, }, Ne(vy,) = V(Py)U{vs, } and Ne(vs,) = V(Bs). Let H =TUC, it is easy to check

that H is a strong spanning Halin subgraph of G (See Figure 10.1 (6) as an example.)

Case 1.7: There exists i € [1, 6] such that |D;| = |D;11] = |Dit2| = |Dit3| = 1 and the other

two sets with at least two vertices.
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V3,
®)

Figure 10.1. G admits hex join and there are less than three sets with size 1.

We may assume |D;| = |Dy| = |Ds| = |D4| = 1. Since D; U Dy is not a 2-cut and
E(Dy, Ds) = E(D3, Dg) = ), we may assume vq,v6, € F(G). Moreover, since Dy U Dy is not
a 2-cut, we have vs,v5, € E(G) or vy,v3, € E(Q).

If vy, v5, € E(G), since Dj \ {vs, } and Dg \ {vg, } are cliques, there exist hamilto-
nian paths, say P; = v52P5v5t5 and Py = v62P6v6t6, in them, respectively. Let C' =
PsPs U {v1,va,, V2,03, U3, V4, , V1, Us,, Us, VU, Vs, U1, } be a cycle and {vs,,ve, } be stems of T
with No(vs,) = V(Ps) U {vs,,vg, } and Ne(ve,) = V(FPs) U{v1,,v2,}. Let H =T UC, it is
easy to check that H is a strong spanning Halin subgraph of G (See Figure 10.2 (1) as an
example.)

If vy,v3, € E(G), since D5 \ {vs,} and Dg \ {vs,} are cliques, there exist hamiltonian
paths, say P5s = v52P5v5t5 and Py = v61P6v6t6, in them, respectively. Let C' = PsFP; U
{6, V2, , V2, V3, , V3, V4, , Va4, Us,, U5, Vs, } De a cycle and all vertices on the path vy, vs,v5, be
stems of 1" with Ne(vy,) = {va,,v3, }, Ne(ve,) = V(Fs) and Ne(vs,) = V(FP5) U {vg, }. Let
H =TUC, it is easy to check that H is a strong spanning Halin subgraph of G (See Figure

10.2 (2) as an example.)

Case 1.8: There exists i € [1,6] such that |D;| = |D;y1]| = |Dit2| = |Dita| = 1 and the other
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two sets with at least two vertices.

We may assume |D;| = |Dy| = |D3| = |Ds| = 1. Since D; U Dj is not a 2-cut and
E(Ds, Ds) = ), we may assume v, vy, € E(G). Moreover, since {vy,,vs, } is not a 2-cut, we
have vy,v6, € E(G) or vy,v3, € E(G).

If vy,v6, € E(G), since Dy \ {vy,} and Dg \ {vs,} are cliques, there exist hamilto-
nian paths, say Py = vy, Pyvy,, and Fs = wve, Fsvg,,, in them, respectively. Let C' =
PyPs U {v1,va,, V2,03, U3, Vs, , Vs, Us, , Us, Uy, Vs, U1, De a cycle and {va,,ve, } be stems of T
with Ne(vy,) = V(Py) U {vy,, vs,,vs, } and Ne(ve,) = V(Fs) U{vy,}. Let H =T UC, it is
easy to check that H is a strong spanning Halin subgraph of G (See Figure 10.2 (3) as an
example.)

If vy,v3, € E(G), since Dy U Dj is not a 2-cut, we may assume vg,v9, € E(G). Since
Dy \ {vs, } and Dg \ {vg, } are cliques, there exist hamiltonian paths, say P, = v4, Pyvy,, and
Ps = v6, Psv6,,, in them, respectively. Let C' = P, P U {vs, 1,, V1,03, U3, Vay, Vay, Vs, Us, U, |
be a cycle and all vertices on the path vg, va,v4, be stems of T' with N¢(vg, ) = V(Fs) U{vy, },
Ne(va,) = {3, } and Ne(vy,) = V(Py) U{vs, }. Let H =T UC, it is easy to check that H is

a strong spanning Halin subgraph of G (See Figure 10.2 (4) as an example.)

Case 1.9: There exists i € [1,6] such that |D;| = |D;11] = |Dits| = |Dita| = 1 and the other
two sets with at least two vertices.

We may assume |D;| = |Dy| = |Dy| = |Ds| = 1. Since Dy U Dj is not a 2-cut and
E(D;,D;3) = 0 for all i € {1,2,3}, we may assume vy,v3, € E(G). Moreover, since
{v1,,v4, } is DOt & 2-cut, we have vy, v, € E(G) or vz, vs, € E(G).

If vo,v6, € E(G), since D3 \ {vs,} and Dg \ {vs, } are cliques, there exist hamiltonian
paths, say P3 = v32P3113t3 and Py = v62P6v6t6, in them, respectively. Let C' = P3P U
{V6,V2,, V2, V3, , V3, Vay, Vay Vs, , Us, Vg, | De a cycle and all vertices on the path vz, v1,v6, be
stems of T" with N¢(vs,) = V(Ps) U {vy, }, Neo(v1,) = {ve,} and Ne(ve,) = V(Fs) U {vs, }.
Let H =T UC, it is easy to check that H is a strong spanning Halin subgraph of G (See
Figure 10.2 (5) as an example.)

If v3,v5, € E(G), since {vy,,vs, } is not a 2-cut, we may assume vg,v4, € E(G). Similarly
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as vy, v, € F(G), we can choose {vs,,vy,,v6, } as stems of T and find a strong spanning

Halin subgraph in G.

Case 1.10: There exists ¢ € [1,6] such that |D;| = |D;41]| = |Diya| = |Diys| = |Dival = 1 and
the other set with at least two vertices.

We may assume |D;| = |Dy| = |D3| = |D4| = |Ds| = 1. Since Dy U Dj is not a 2-cut
and E(D;, D;y3) = 0 for all i € {1,2,3}, we may assume vg,vo, € E(G). Moreover, since
{va,,vs, } is not a 2-cut, we have vy, v3, € E(G). Furthermore, since {vs,, vs, } is not 2-cut,we
have vy,v6, € E(G) or vy, v9, € E(G).

If vy,v6, € E(G), since Dg \ {vg, } is a clique, there exist a hamiltonian path Ps =
6, Psvg,, in it. Let C' = Ps U {vg,01,, V1,03, U3,V4y, V1, Vs, , Us, Vs, } be a cycle and {vy,, v, }
be stems of 7" with N (vq,) = {v1,, v3, } and Ne(ve,) = V(Ps) U {v4,,v5,}. Let H=TUC,
it is easy to check that H is a strong spanning Halin subgraph of G (See Figure 10.2 (6) as
an example.)

If vy, v9, € E(G), we only need to remove the edge vy, v6, from E(T') and add the edge

v9, v, to E(T), then we can find a strong spanning Halin subgraph in G similarly.

See V6o
V5,

5
W vay,

v,
v3q © 41

Figure 10.2. G admits hex join and three are four sets with size 1.

Case 2: There exist some 7 € [1,6] such that D; = (.
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Since neither W nor W, is empty, there exists at least one set in W;, i € [1,2], is

nonempty. Moreover, because E(D;, D;y3) = ) for i € {1,2,3}, it is easy to check that G

contains a strong spanning Halin subgraph if at least three sets of {D;, Dy, -+, Dg} are
empty. Thus we assume only one or two sets of {Dy, Dy, - -+, Dg} are empty.
Case 2.1: There exists exactly one set in {Dy, Dy, - -+, Dg} is empty. By symmetric, we may

assume Dg = () and |Dy| > | Dy|.
Note that if |Dy| > 2, then E(Do, Dy) # 0 since there is no twins in G. If |Dy| = 1,

then we can assume vy, v3,,v3,,vs, € E(G).

Case 2.1.1: Assume that (D, UDs) is 2-connected. We denote by vy, vs,, v1,v5, € E(G). Since
(D1 \ {v1,}) U (D2 \ {vo,}), D3 and (D5 \ {vs,}) U Dy are cliques, there exist hamiltonian
paths, P, = U12P1U2t2, P = ’U31P3U3t3 and P, = vy, Pyvs,, in them, respectively. Let C' =
P, P3Py U {us,v1,} be a cycle and all vertices on the path vy, vy,v5, be stems of T" with
Ne(vg,) = (V(Py) \ {v1,}) UV (Ps), Neo(vy,) = {v1,} and Ne(vs,) = V(Py). Let H=TUC,
it is easy to check that H is a strong spanning Halin subgraph of G (See Figure 10.3 (1) as

an example).

Case 2.1.2: Assume that (D; U Djs) is l-connected, we denote by vy, us, € E(G). If
E(Dy,Dy) # 0, we assume vy, vy, € FE(Ds, D). Since Dy U (Dy \ {v2,}), D3 and D5 U
(D4 \ {v4, }) are cliques, there exist hamiltonian paths, say P = vi, Pivy,,, P3 = v, Pavs,,
and Py = vy, Pyvs,, in them, respectively. Let C' = Py P3P, be a cycle and {vy,,v4,} be
stems of T" with Ng(vy,) = V(P) UV(P3) and Ng(vs,) = V(F2), where vy, v3, € E(G) if
Dy = {wvy, } since G is 3-connected. Let H = T'UC, it is easy to check that H is a strong
spanning Halin subgraph of G (See Figure 10.3 (2) as an example).

If E(Dy, Dy) = 0, since there is no twins in G, we get |Dy| = |D4| = 1. Moreover,
because G is 3-connected, we can assume v1,vs,, V3,05, € F(G). Since Dy, Dj \ {vs,} and
D5\ {vs,} are cliques, there exist hamiltonian paths, say Py = vy, Pyvy,, Ps = v3, Psvs,, and
Py = vs, Pyvs,_, in them, respectively. Let C' = PiP3Py U U{v1,v3,,v3,,Vay, Vs, Vs, , U5, V1, f

be a cycle and all vertices on the path vy, vs,v5, be stems of T" with Ng(vy,) = V(Py),
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Ne(vs,) = V(Ps) and Ne(vs,) = V(Py,) U{vy, }. Let H =T UC, it is easy to check that H

is a strong spanning Halin subgraph of G (See Figure 10.3 (3) as an example).

Case 2.1.3: Suppose that (D; U Ds) is disconnected. We may assume FE(Dsy, D) # 0,
otherwise G admits 1-join, we can find a strong spanning Halin subgraph in G as Chapter
7.

If D,UDy is 2-connected, we denote by ve, v4,, V2,04, € E(G). Since D1U(D2\{va,, v2,}),
D3z and D5U (Dy\ {vs,,v4,}) are cliques, there exist hamiltonian paths, Py = vy, Pivy, , Ps =
v3, Pyvs,, and Py = vy, Pyvs,, in them, respectively. Let C' = PyP3Py U {vs,v4,, Va,V2,, V2,01, }
be a cycle and {vs,, vy, } be stems of T" with N¢(vy,) = V(P) UV (P3) U{vs, } and Ng(vy,) =
V(P2) U{vy,}, where vi,v3, € E(G) if [Dy| = 2 since G is 3-connected. Let H =T UC, it
is easy to check that H is a strong spanning Halin subgraph of G (See Figure 10.3 (4) as
an example).

If Dy U Dy is 1-connected, then |Dy| < 2, |Dy| < 2 since there is no twins in G and
|Ds| > 2, E(Dy, D3) # 0, E(Ds, D5) # () since G is 3-connected. Thus, we may denote by
U9, Vg, V1,03, , V3,05, € E(G). Since Dy, D3 and D5 are cliques, there exist hamiltonian paths,
P, = vy, Pivy,, P3 = v, Psvs, and Py, = ’U51P2'U5t5, in them, respectively. We may assume
v1,v3,, € E(G) if [Dy] = 1 since G is 3-connected. Let C' = P P3Py U {vs, V4, , VayV2,, V2,01, }
be a cycle and {vq,, vy, } be stems of T" with N (ve,) = V(P1) U (V(Pe) \ {v2,}) UV (P5) and
Ne(vg,) = (V(Py) \ {vg, }) UV (P5). Let H =T UC, it is easy to check that H is a strong

spanning Halin subgraph of G (See Figure 10.3 (5) as an example).

Case 2.2: There exist exactly two sets in { Dy, Da, -+, Dg} are empty. We will find a strong

spanning Halin subgraph in G by following subcases.

Case 2.2.1: The two empty sets are consecutive.

We may assume Dy = Dg = (). Since E(D;,D4) = () and G is 3-connected, we know
|Dy U D3| > 3. We may assume |Ds| > |Dsl, then |Dy| > 2. Since Dy U (Dy \ {v2,, v2,})
and Dy U (D3 \ {vs,,v3,}) are cliques, there exist hamiltonian paths, say Pi = vy, Pivy,, and

Py = vy, Pyvs,, in them, respectively. Let C'= Py U {v1,v9,, V2,v3,, V3,04, } be a cycle and
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Figure 10.3. G admits hex join and there exists exactly one set is empty.

{va,,v3, } be stems of T" with N¢(vy,) = V(P1) U {vg,} and Ng(vs,) = V(P,) U {vs,}, where
vy, s, € E(G) if | D3| = 2. Let H =T UC, it is easy to check that H is a strong spanning

Halin subgraph of G (See Figure 10.4 (1) as an example).

Case 2.2.2: There exists ¢ € {1,2,3} such that D; = D;y3 = 0.

We may assume D3 = Dg = (). Since E(D1, Dy) = E(D3, D5) = () and G is 3-connected,
we may assume vy, vs, € F(D1, Ds) and {vy, vy, 09,04, } € E(Ds, Dy). Since Dy U (D3 \ {vg, })
and D5 U (D4 \ {v4,}) are cliques, there exist hamiltonian paths, say P, = v, Pive, and
P, = vy, Pyus,, in them, respectively. Let C' = PP, U {vs,v1,} be a cycle and {vq,,v3,} be
stems of T" with N¢(vy,) = V(Py) and N¢(vy,) = V(). Let H =T UC, it is easy to check

that H is a strong spanning Halin subgraph of G (See Figure 10.4 (2) as an example).

Case 2.2.3: There exists ¢ € [1,6] such that D; = D; 5 = 0.

By symmetric, we may assume Dy = Dg = () and | D1| > |Ds|. Since G contains no twins
and E(Dy, Ds) = ), we have Dy = {vy, }, which implies |Dy| > 2 since G is 3-connected. If
|Ds| < 2, we can find a strong spanning Halin subgraph in G easily. Therefore, we assume
|D5| > 3. We may also assume vs, vy, , Us,U1,, V5,03, € E(G) and there exists v € D1U(D5\vs,)
such that v3,v € E(G) since G is 3-connected, where v3, = v3

if [Dy] = 1.

1
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If E(D1, D3) # 0, we let vs,v1, € E(G) if |D1| > 3 and vs,v1, € E(G) if |Dy| = 2. Since
Dy \ {v1,}, D3 and Dj; \ {vs,} are cliques, there exist hamiltonian paths, say P, = vy, Pivy,,
Py = v3,Pyvs, and Py = vs, Pyvs,, in them, respectively. Let C' = Py P,P; be a cycle and
all vertices on the path vy v1,v5, be stems of T" with Ng(vq,) = (D; \ {v1,,v1,}) U Ds,
Ne(vy,) = {v1,} and Ng(vs,) = Ds \ {vs,}. Let H =T UC, it is easy to check that H is a
strong spanning Halin subgraph of G (See Figure 10.4 (3) as an example).

If E(Dy,Ds) = 0, then |Ds| > 4 since D, D3 contains no twins. Moreover, if there
exist vs;, € Ds, v1; € Dy and v3, € D3 such that vy,vs,,vs3,v5, € E(G) but vy,v3, ¢ E(G),
then Np,(vi;) U Np;(vs,) = Ds since (vs;;v1;,vs3,,vs5,) is not a claw for any vs, € Ds \ {vs, }.
Therefore, we assume vs,vs, € FE(G). Since Dy \ {vi,}, D3\ {vs, } and D5 \ {vs,,vs,} are
cliques, there exist hamiltonian paths, say P, = vy, Proy, , Py = U3, Psvs, and P; = vs, Pyvs,,
in them, respectively. Let C' = PPsP, U {vy,, ’U21,U21’U3t3,U32’U54,U51'U11} be a cycle and all
vertices on the path vy,vs,v3, be stems of T" with Ng(ve,) = V(P1), Ne(vs,) = {vs, },
Ne(vs,) = V(P3) \ {vs,} and Ne(vs,) = V(Py) U{vg, }. Let H =T UC, it is easy to check

that H is a strong spanning Halin subgraph of G (See Figure 10.4 (4) as an example).

Figure 10.4. G admits hex join and there exist exactly two sets are empty.
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Chapter 11

NONDOMINATING W-JOIN

For a vertex a and a set B C V(G) \ {a} we say that a is complete to B or B-complete
if a is adjacent to every vertex in B; and that a is anticomplete to B or B-anticomplete
if a has no neighbor in B. For two disjoint subsets A and B of V(G) we say that A
is complete(respectively anticomplete) to B, if every vertex in A is complete(respectively
anticomplete) to B. Recall that if (A, B) are a homogeneous pair, such that A is neither
complete nor anticomplete to B, and at least one of A, B has at least two members. In
these circumstances, we call (A4, B) a W-join. A homogeneous pair (A, B) is nondominating
if some vertex of G\ (AU B) has no neighbor in AU B.

If G admits W-join, let (A, B) be the homogeneous pair always with |A| > |B|, D,
be the set of vertices that A-complete and B-anticomplete, Dy be the set of vertices that
both A-complete and B-complete, D3 vertices that A-anticomplete and B-complete, D,
be the set of vertices that both A-anticomplete and B-anticomplete. We denote by A =
{wiy, wiy, - >wlk1}a B = {ws,, wa,, - ,wsz}, Dy = {v1,,v15, -+ >'U1t1}a Dy = {vy,, 025, -,
Vg, }, Dy = {v3,,03,,- -+, vs,, }, Do = {vay, 0, , 04, }, Dy = {v1, € D1|Np,(v1,) # 0} and
D} = {vs, € D3|Np,(vs;) # 0}. Since A is neither complete nor anticomplete to B, we

always assume wy,wq, € F(G) and wy,wy, ¢ E(G). Thus, we have the following claim.

Claim 11.0.1. 1) Both Dy and D5 are cliques;
2) E(DQ, D4) = @,’
8) If there exists vy, € Dy and vs; € D3 such that vy,vs, € E(G), then Np,(vi,) = Np,(vs,).

Proof. 1) Suppose to the contrary, there exist vy,, vy, € E(G) such that vy, vy, ¢ E(G),
then (wy,; vy, v1,, ws, ) is a claw, showing a contradiction. Thus D; is a clique. Similarly, we
can show that Dj is also a clique.

2) Suppose there exist vy, € Dyand vy, € D such that vy,vs; € E(G), then (vy,; vy, w1, wo,)
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is a claw, giving a contradiction.
3) Suppose this is not true. If there exists vy, € Np,(v1,)\Np,(vs,), then (vy,; vy, , v3;, wy,)
is a claw. If there exists vy, € Np,(vs;) \ Np,(v1,), then (vs;; vy, v1,,w2,) is a claw, showing

a contradiction. [ |

In this chapter, we will show the following two propositions.

Proposition 19. If G is a 3-connected {claw, Zs}-free graph contains no twins and admits

a nondominating W -join, then G contains a strong spanning Halin subgraph.

Proposition 20. If G is a 3-connected {claw, By 2 }-free graph contains no twins and admits

a nondominating W -join, then G contains a strong spanning Halin subgraph.

11.1 Proof of 3-connected {claw, Z3}-free graphs admit nondominating W -joins

Before we prove Proposition 19, we want to show following claims first.
Claim 11.1.1. For all vs, € D3, |Np,(vs,)| < 1.

Proof. Suppose to the contrary, there exist vs, € D3 and vy,,v4, € D, such that
Vg, V3, Vg,U3, € E(G), then (vy,, v4,, v3,; wo, wi,wy, ) is a Zs, giving a contradiction. [
Now we want to find a strong spanning Halin subgraph in G by following three cases

depending on whether D; or D3 is empty.

Case 1: Suppose D; # () and D3 # ().
Claim 11.1.2. If Dy # 0 and D3 # 0, then E(Ds, D,) # 0.

Proof. Suppose this is not true, E(Ds3, Dy) = (. Since E(Dy,D,;) = 0 and G is
3-connected, we have |Dj| > 3. We always assume that vy,vy, € E(G) and know that
E(D},Ds) = 0 by Claim 11.1.1. For any wy, € A, either Ng(wy,) = 0 or Ng(wy,) = B.
Otherwise, assume there exist ws;,w, € B such that wy,wy, € E(G) and wi,w,, ¢ E(G),
then (vs,,wy,, we,;w1,v1,v4,) is a Zz. This in turn gives us [A| = 2 and |B| < 2 since A

contains no twins and |A| > |B).
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If Dy = 0, then |Ds| = 1, otherwise (vs,,vs,,ws,;w1,01,0s,) is a Z3. This implies
|B| = 2 since degg(ws,) > 3. Moreover, D, is an independent set. Otherwise, we may
assume vy,v4, € F(G), then either (wa,, wa,, w1,;v1,04,04,) Or (V4,, Vay, V1,5 W1,We, V3, ) 1S &
Zs. Since G is 3-connected, we may assume vy,,v1,,v1, € Np,(v4,), then vy, v1,,v1, are
twins, showing a contradiction.

If Dy # (), we claim that D U D, is a clique. Since for any vy, € Dy and vy, € D1\ {vy, },
to avoid (vi,,v1,,wy,; vo,wa,v3,) be a Z3, we have vy,v1, € E(G) or vp,v1;, € E(G) or vs v, €
E(G) or v3, v, € E(G). In fact, we can assume vy,v3, € E(G) or vy, v1, € E(G), otherwise,
either (vi,,v1,,v1;;V2,W2,3,) is & Z3 or (vi,,v1,, V1,5 V3,Wo, Va,) IS & Zz or (vi,;v1,,Va,,V3,)
is a claw, where vy, € D|. If vy,v3, € E(G), for any vy, € D] and v4, € Np,(vy,), since
(V3y, Way, Vo, W1, V1, Vs, ) Is Ot & Zg and (vy,; vs,, Vg, , w1, ) is not a claw, we have vy, v, € E(G).
This implies {vq,} U D] is a clique. If there exists vy, € Dy \ Dj, to avoid (vy,;v1,,Vs,, Vs, )
be a claw, we have vy,v5, € E(G), which implies D; U Dy is a clique. If vy, v5, € E(G) but
v9,v3, & E(G), for any vy, € Dy \ D, since (vy,;v1,,vs,,04,) is not a claw, we have vq,vq, €
E(G). For any vy, € Di, since (vq,;v1,,04,,02,) is not a claw, we all get vy, vy, € E(G).
Moreover, (vy,,v1,,V1,;V9,Wa,vs,) is not a Z3 implies vy, v9, € E(G). Thus, D; U Dy is a
clique.

Since G is Zs-free, we have |Np,(vy,)| < 1 for all v;, € D; and there does not exist
any triangle in Dy. However, this will force there exists a pair of twins in D}, showing a
contradiction.

From above statements, we get E(Ds, Dy) # (. [

Therefore, from here and after, we always assume v3, vy, € E(G) for this case.

Claim 11.1.3. If E(Ds, Dy) # 0, we have following conclusions.
1) For any vy, € Dy, if E(vy,, D3) # 0, then {vy,} U Dy is a clique. Which implies Dy = D]
and Dy is connected;

2) If Dy # 0, then |Dy| =1 and if Dy = (), then |Dy| < 2.

Proof. 1) Suppose there exist vy, € Dy and v3; € D3 such that vy,v3;, € E(G). Since
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for any vy, € Dy, (i, w1,, w1,; W, v3,vy,) is not a Z3 and (vs,; vy, v1,, we,) is not a claw, we
have vy,v;, € E(G). Since G is claw-free and 3-connected, we have D, is connected.

2) Suppose this is not true. If Dy # 0, by 1), we may assume there exist vy, €
Dy \ {v4,} such that vy,vy, € E(G). Since (wi,, v, , Wa,;vs,v4,v4,) is nOt a Zs, we have
v9,v3, € F(G), but this will force (wy,, w1,, v, ; v3,v4,74,) to be a Zs, giving a contradiction.
If Dy =0, since G is 3-connected, we may assume there exist vy,, vs, € Dy \ {v4, } such that
dist(va,, D) = 1, dist(vs,, D1) = 1 and vg,v3,, 04,03, ¢ E(G). Then vy, v4,v4, is a triangle
since (v, ; V4,, Vas, v3,) is not a claw. However, this will force (vy,, vay, V4,5 v3,we, w1,) to be a

Z3, showing a contradiction. [ |

We begin to search a strong spanning Halin subgraph in G by following subcases

depending on whether D is empty.

Case 1.1: Assume that Dy = ().

Claim 11.1.4. If |Ds| = 2, then

1) For any wy, € A, either Ng(wy,) = 0 or Np(wy,) = B, which implies |A| = 2 and |B| < 2;
2) E(Dy, D3) # 0;

3) |Dj| > 2.

Proof. Since G is 3-connected, by Claim 11.1.2 and Claim 11.1.3, we may assume
there exists vy, € Dy such that vy, vy, v4,v1, € E(G).

1) If there exist w1, € A and wy;, wy, € B such that wi,w,y, € E(G) and wi,w,, ¢ E(G),
then (vy,, vy, v1,; Wy, W, wy, ) is a Zs, showing a contradiction. Since neither A nor B contains
twins and |A| > |B|, we have |A| =2 and |B]| < 2.

2) Suppose to the contrary, E(D;, D3) = (). Since E(Dy, D3) # 0, then either there
exists a vertex in D4 has degree 2 or D; contains a twins.

3) If D} = {ws,}, then {vs,,wy,} is a 2-cut, giving a contrary. [

By Claim 11.1.4, we may assume v1,0y,, U1,V4,, V1504,, V1,03, € F(G). Since both (D; \
{v1,,v1,}) U A and (D3 \ {vs,}) U B are cliques, there exist hamiltonian paths, say P, =

v1, Prwn,, Py = wy, Pyvs,, in them, respectively. Let C' = PPy U {vg,v1,, 03,04, } be a cycle
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and all vertices on the path vy,v1,v3, be stems of T with N (v1,) = (D1 \{v1,, v1, })U{v4,, 4, },
Ne(vy,) = A and Ne(vs,) = BU (D3 \ {vs,}). Let H =T UC, it is easy to check that H is

a strong spanning Halin subgraph of G (See Figure 11.1 (1) as an example).

w1y w2y

Figure 11.1. Dy # 0, D3 # () and Dy = ().

Claim 11.1.5. If |Ds| = 1, then

1) E(Dy, D) # 0;

2) D3 U Dy is a clique;

3) If |Ds| = 1, then |B| > 2 and E(A\ {wy,}, B\ {wy, }) # 0.

Proof. 1) Since G is 3-connected and FE(Ds, D) # 0, we assume vs,v4, € E(G),
then {vy4,} U Dy is a clique. Since vy, and vy, are not twins, we have E(vy,, Dj) # 0 or
E(v1,, D%) # 0 by Claim 11.0.1. Thus E(Dj, D}) # 0.

We may always assume vy,v3, € E(G), where vy, € D] and v3, € Dj.

2) This is clearly true if |Ds| = 1. If |D3| > 2, assume there exists v, € D3 \ {vs, }
and vy, € Dy such that vs,vy, ¢ E(G). Since (ws,, vs,, Us,; s, V1,1, ) is not a Z3, we have
v1,v3, € E(G), then vy, and vy, are twins, showing a contradiction.

3) If |B] = 1, since A does not contain any twins, we have |A| = 2. If |D3| = 1,
then degg(wq,) = 2, showing a contradiction. Thus |B| > 2. Since neither {vs,,wy,} nor

{vs,,ws, } is a 2-cut, we have E(A\ {w,}, B\ {ws,}) # 0. [ |

If ‘Dg‘ = 1, let W1, W2, c E(G) Since both (Dl \ {Ull}) U (A \ {w12}) and B \ {w21}

are cliques, there exist hamiltonian paths, say P, = v, PLwy, and P, = wa, Pyws, , in them,
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respectively. Let C'= P1P, U {wa, v3,,v3,04,,04,01,} be a cycle and all vertices on the path
v, wi,wy, be stems of T with Ng(vy,) = (D1 \ {v1,}) U {vy, }, Ne(wy,) = A\ {wy,} and
Neo(we,) = (B \ {wq, }) U{vs,}. Let H = T'UC, it is easy to check that H is a strong
spanning Halin subgraph of G (See Figure 11.1 (2) as an example).

If | D3| > 2, we also let v,v3, € E(G). Since both (D7 \ {vy,})UA and (D3 \ {vs,}) UB
are cliques, there exist hamiltonian path, say P, = v, Piwy, and Py = wy, Povs,, in them,
respectively. Let C' = Py Py U {vs,v4,,v4,v1,} be a cycle and {vy,,vs, } be stems of T" with
Ne(vy,) = V(P) U{vy, } and Ne(vs,) = V(P). Let H =T UC, it is easy to check that H

is a strong spanning Halin subgraph of G (See Figure 11.1 (3) as an example).
Case 1.2: Assume Dy # (), then |D,| = 1.

Case 1.2.1: Assume that D5\ D} # ((similarly as D; \ D} # 0).

Claim 11.1.6. If D3\ D} # 0, then 1) D} U D} is a clique.
2) D5U Dy or DU Dy is a clique.

Proof. We may assume v, € D3\ Dj.

1) For any vy, € D} and v3; € D3, since (wy,, v3,, vs;; V4, V1,1, ) is not a Zz, we have
v,v3, € E(G), which implies D} U D3 is a clique.

2) We may assume v1,,v1, € Np,(vy,) by Claim 11.1.3. For any vs, € Dy and vs, €
D3 \ D3, since (v1,,v1,, w1,; Vo, w2, v3;) is not a Zs, we have vy, v3, € E(G) or vp,v1, € E(G)
or vy, vy, € E(G).

If vy,v3, € E(G), for any vs, € Dj, since (wi,, w1, v,; U3;v3,0s,) is not a Zs, we have
vo,v3, € E(G). For any vy, € Dy \ {vy,}, since (vs,;vy,,v,,vq,) is not a claw, we get
v9,V9, € E(G). Thus D} U D is a clique.

If vy, v3;, ¢ E(G), we may assume vy, vy, € E(G) by symmetric. For any vy, € D\ {vy, },
since (vy,,v1,, V1, ; Vo, Wa,V3,) is N0t a Zs, vg,v1; € E(G). For any vy, € D \ {vy,}, since

(v1,; v4,, V2, V2,) 1S NOt a claw, we have vo,v9, € E(G). Thus D} U Ds is a clique. [ ]

We may always assume D] U Ds is a clique.
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If | Dj| > 2, we denote by vy,, v1,, v3,, 3, € Ng(vs,). Since (Dy \ {vy,}) U A, Do\ {vs, }
and B U Dj are cliques, there exists hamiltonian paths, say P, = vy, Piwy,, P» = 09, Pyvy,,
and P; = way, Pyvs,, in them, respectively. Let C' = Py Py Py U {vs,v4,,v4,0v1,} be a cycle and
{v1,,v3, } be stems of T with Ne(vy,) = V(P) UV (P) U {uvy, } and Ne(vs,) = V(Ps). Let
H =TUC, it is easy to check that H is a strong spanning Halin subgraph of G (See Figure
11.2 (1) as an example).

If |Di| =1 and |B| > 2, we denote by vy,,v1,,v3, € Ng(vs,). Since Dy \ {vy, }, (A\
{w1, })UDy and (B\{ws, })UDj3 are cliques, there exist hamiltonian paths, say Py = vi, Py, ,
Py = wy, Pyvy, and Py = wy, P3v3,, in them, respectively. Let C'= PPy Py U {v3,v4,, 04,01, }
be a cycle and all vertices on the path vy, wy,ws, be stems of T with N¢(vy,) = V(P1)U{vy, },
Ne(wy,) = V(P) and Ngo(wsy,) = V(Ps). Let H = T U C, it is easy to check that H is a
strong spanning Halin subgraph of G (See Figure 11.2(2) as an example).

If D} = {vs,} and | B| = 1. Since {ws,, v3, } is not a 2-cut, we have E(D3\ D}, Dy) # () or
E(D3\ D}, Dy) # 0. If E(D3\ D}, Dy) # (), we may assume vz,ve, € E(G). Since Dy \ {v1, },
(A\ {w1,}) U Dy and D3 are cliques, there exist hamiltonian paths, say P, = vy, Pywy,,
Py = vy, Pyvy,, and P3 = v3, P3v3,, in them, respectively. Let C = PyPaPs U {v3,v4,, V4,01,
be a cycle and all vertices on the path vy, wy,ws, be stems of T with N¢(vy,) = V(P1)U{vy, },
Ne(wy,) = V(Py) and No(wq,) = V(P3). Let H = TUC, it is easy to check that H is a strong
spanning Halin subgraph of G' (See Figure 11.2(3) as an example). If E(D3 \ Dj, D) # 0,
we may assume vs,vy, € E(G), where vy, € Dy \ Dj. Since Dy \ {vy,} , AU Dy and
BU(D3\{vs, }) are cliques, there exists hamiltonian paths, say P, = v1, Pyvy, , P2 = wy, Pavy,,
and P3 = wsq, P3vus,, in them, respectively. Let C' = P, P P5; be a cycle and all vertices on
the path vy, vg,v3, be stems of T" with Ng(vy,) = V(P) U V(FP2), Neo(vy,) = {v1,} and
Ne(vs,) = V(Ps). Let H =T UC, it is easy to check that H is a strong spanning Halin

subgraph of G (See Figure 11.2(4) as an example).

Case 1.2.2: Suppose D3 = D} and Dy = Dj.
If |D3s U B| > 3, since Dy \ {vy, }, (A\ {wy,})U Dy and (B \ {wy,}) U D3 are cliques,

there exist hamiltonian paths, say P, = v, Proy, , Po = wi, Pavy, and P3 = ws, P3vs,,
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Figure 11.2. D3\ D} # () and Dy # 0.

in them, respectively. Let C' = PyPoPs U {v4,v1,,v4,v3 } be a cycle and all vertices on
the path vy, wy,wy, be stems of T' with Ne(vy,) = V(P1) U{vy, }, Ne(wy,) = V(P,) and
Ne(ws,) = V(Ps). Let H=TUC, it is easy to check that H is a strong spanning Halin
subgraph of G (See Figure 11.3(1) as an example).

If Dy = {vs,}, B = {wy, } and E(Ds, D3) # 0, we may assume vq,v3, € E(G). Since Dy \
{v1, } and (A\{wy, })UD,\{vy, } are cliques, there exist hamiltonian paths, say P, = vy, Pivy,
and Py, = wy, Pyvs,, in them, respectively. Let C' = Py Py U {vy,v1,, V4, 03,, U3, Wa, , Wo, Vg, } be
a cycle and all vertices on the path vy, wy,ve, be stems of T" with No(vy,) = V(P1) U {vy, },
Ne(wy,) = V(Py) and Neo(ws,) = {vs,, we, }. Let H =T UC, it is easy to check that H is a
strong spanning Halin subgraph of G (See Figure 11.3(2) as an example).

If Dy = {vs,}, B = {wy, } and E(Dy, D) # 0, we may assume vy, v, € E(G). Since Dy \
{v1, } and (A\{w1, })UD;\{vy, } are cliques, there exist hamiltonian paths, say Pi = v1, Pyvy,,
and Py = wy, Pyvs,, in them, respectively. Set C' = P} Py U{vy,v1,, V4,03, , U3, W2, , Wa, Vo, } be a
cycle and {vy,, wy, } be stems of T with N¢(vy,) = V(P1) U{v4,,vs, } and No(wy,) = V(Pa).

Let H =T UC, it is easy to check that H is a strong spanning Halin subgraph of G (See
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Figure 11.3(3) as an example).

Figure 11.3. Dy = D}, D3 = D} and Dy # ().

Case 2: Suppose D; = () and D3 # 0.

Claim 11.1.7. If Dy =0 and D3 # 0, then 1) |Ds| > 3;
2) There does not exist vs, € D3 and vy, € Dy such that dist(vs,,vy;) > 2, which implies D,
s an independent set;

3) |Dy| > 2.

Proof. 1) This is clearly true since E(Ds, Ds) = () and G is 3-connected.

2) Suppose to the contrary, there exist vs, € D3 and vy, , vy, € Dy such that vs, vy, , V4,04, €
E(G) and vs, vy, ¢ E(G), then either (w1, Vo, , W, ; V3,04, Vs, ) OF (W1, W1,, Vo, ; V3, Vg, Vg, ) 1S &
Z3, giving a contradiction. By Claim 11.1.1, D, is an independent set.

3) Since D, is an independent set and G is 3-connected, for any vy, € Dy, there exist at
least three vertices, say v3 ,v3,v5 in Np,(vs,). Since vy ,v3 ,v3 are not twins, [Dy| > 2. W

1,2 .3 "n__ 121 1,2 .31
Denote by vs ,v3,,v35. € Np,(vy,) for every vy, € Dy and Dy = D3 \ UL {v3,, 03,05 } =

/ / / : 2 1 .
{vh V4, - ’U3tg}' In particular, we may assume v, v3 ,v2,v5, € E(G). Since both A U
(D3 \ {v9,}) and D§ U B are cliques, there exist hamiltonian paths, say P, = wy,Piva,

_ ;o : _ ta—1yg 1 3 3.1
and Py = wy, Pyvy , in them, respectively. Let C' = PyPy U (UL {v3,vs,, 04,03, 05,035, }) U
{vd vy, v, V3 U3 VL wa wi,, va,vi } be acycle and all vertices on the path vy, v2 v2 - - - v2
3ty Vdey s Ve, U3y, 5 U3, V3> W2, W1y, U2, U3, Y 1% 21U3, U3, 3ty

be stems of T with Ng(vy,) = V(P1), Ne(v3,) = V(P2) U {v3,, 03 ,vq,} and Ne(v3) =
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{vi,v3 vy} foralli e [2,ty). Let H=TUC, it is easy to check that H is a strong spanning

Halin subgraph of G' (See Figure 11.4(1) as an example).

Case 3: Assume D; # () and D5 = ().
Claim 11.1.8. We have Dy is an independent set or D1 U Dy is a clique.

Proof. We may assume D, is not an independent set, i.e. there exist vy,,v4, € Dy
such that vy, vy, € E(G). For any vy, € Dy and vy, € Dy, if v1; € Np,(vy,) \ Np,(vs,)(or
v, € Np,(vs,) \ Np, (v4,)), since (wy,, va,, w1,; V1,04, 04,) is not a Zs, we have vy,vy, € E(G);
if v1, € Np, (v4,) N Np, (v4, ), since (vy,, Va,, V1,5 W1, V2,2, ) is N0t a Z3, we have v1 v, € E(G).
Thus D} U D is a clique. If Dy \ D} # 0, we may assume there exists vy, € D; \ (Np, (v4,) U
Np, (vs,)). Since (vi,;v4,,v2,,v1,) is not a claw, we have vy, vy, € E(G). Therefore D1 U D
is a clique. |

If D, U D, is a clique and D3 = (), then G admits a 1-join. Similarly as Chapter 8, we
can find a strong spanning Halin subgraph in G.

If Dy is an independent set, since G is 3-connected, we may denote by {v{ , v, vi} €
Np, (vy,) for every vy, € Dy and D} = Dy \ Np,(Dy) = {vy,, vy, ,vit,l}. In particu-
lar, vj vy, € E(G) and v} vy, € E(G) since Np,(vs,) does not contain twins. Since both
DU A and (D; \ {vs,}) U B are cliques, there exist hamiltonian paths, say P, = v}, Piwy,
and Py = wy, Pyvy,, in them, respectively. Let C' = PiPy U (U v vy, vg,08 0 0f, 1) U
{vf,, 04, 02, V7, V7, 01, Wi,way, v2,07, } e acycle and all vertices on the path vy, vy, vy, -+ vy,
be stems of T with Ng(v,) = V(P), Ne(vi,) = V(Py) U {vg,, 07,07} and Ne(vf) =
{vg,, 07,0} } for all i € [2,t]. Let H =TUC, it is easy to check that H is a strong spanning

Halin subgraph of G' (See Figure 11.4(2) as an example).

11.2 Proof of 3-connected {claw, B; s }-free graphs admit nondominating W-joins

Before we prove Proposition 20, we want to show the following claim first.
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Figure 11.4. Either Dy or D3 is empty.

Claim 11.2.1. 1) For any component D). of Dy, D}y U Np, (D)) is a clique;
2) For any vertex vy, € Dy, if Np,(vs,) # 0, then {vy,} U D3 is a clique. In particular, if
E(vy;, D1) # 0, then {vy,} U D3 is a clique.

Proof. We may assume there exists vy, € Dy and vi; € Dy such that vy v1;, € E(G),
then there does not exist vy, € D, such that dist(mi,vlj) > 2. Otherwise, assume vy,v4, €
E(G), then (wsy,; wy,, w1,,v1,;v4,vs,) is a By o, showing a contradiction. Since G is claw-free
and D, is a clique, we have D} U Np, (Dj.) is a clique.

2) If there exist vy, € Dy and v3;, € D3 such that vyvs, € E(G), then for any vs, €
D3\ {vs, }, we have vy,vs, € E(G) since (vy,; vs;, V3, , wa, ; wi,w1,) is not a By, which implies
{vs,} U D3 is a clique. In particular, if there exists v;, € D; such that vyv,, € E(G), then
for any vs, € D3, we have vy,vs, € E(G) since (vy,; vy, Wi,, Wiy; W2, v3,) is not Byo. Which
in turn gives {vy,} U D3 is a clique. [ |

Now we want to find a strong spanning Halin subgraph in G' depends on whether D,

or D3 is empty.
Case 1: Suppose D; # () and D5 = ().
Claim 11.2.2. If Dy # 0 and D3 = (), then D, is an independent set.

Proof. Suppose this is not true. Let D} be a maximal component of D, with |D} | >
2, then D} UNp, (D}, ) is a clique by Claim 11.2.1. This implies all vertices in D are twins.
[
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Similarly as G is Zs-free with D; # () and D3 = ) in last subsection, we can find a

strong spanning Halin subgraph in G.

Case 2: Assume that Dy = () and D5 # ().
Since G does not contain any twins, by Claim 11.2.1, |D4| = 1 and Dy U D3 is 2-
connected. We may assume v3, v, , V3,09, € E(G). Similarly as G is Zs-free with D; = () and

D3 # () in last subsection, we can find a strong spanning Halin subgraph in G.
Case 3: Assume that Dy # () and D3 # ().

Case 3.1: Assume that F (D, D,) = 0. Similarly as D; = (), we have Dy = {vy,}, |D2| > 2

and Dy U Dj is 2-connected. Moreover, we have the following claim.

Claim 11.2.3. If E(Dy, D) = 0, then
1) E(Dy, D3) = 0;

2) D1 U Dy is a clique;

3) |Di| = 1.

Proof. By Claim 11.2.1, we know {vy, } U D3 is a clique.

1) If there exist vy, € Dy and v3; € D3 such that vy,v3, € E(G), then (vs;;v4,, vy, wa,)
is a claw, giving a contradiction.

2) Suppose to the contrary, there exist vy, € D; and vy, € D, such that vi,vy, ¢
E(G). Since (vi,;wi,, vy, Wa,;v3,0y,) is not a By for any v, € Ds, we have vy,v3, €
E(G). However, this will force (vy,; vs, , wa,, v2,; w1, v1,) to be a By o, showing a contradiction.
Therefore, D; U D5 is a clique.

3) Since D; does not contain any twins, we have |D;| = 1. [

Since Dy U Dj is 2-connected, we may assume vy, v3,, V9,03, € E(G). Let Py = vy, Pywy,
and P = wsy, Pyvs, be hamiltonian paths in Dy U AU (Dy \ {vg,}) and B U (D3 \ {vs, }),
respectively. Set C' = Py Py U {v3,04,, Vg, U3,, U3,V2, } be a cycle and {wvy,, v, } be stems of T
with No(ve,) = V(Py) and Ng(vs,) = V(Py) U{vg, }. Then H =T UC and H is a strong

spanning Halin subgraph of G (See Figure 11.5 (1) as an example).
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Case 3.2: Suppose that E(Dy, Dy) # 0. We may assume vy,v4, € E(G).
Claim 11.2.4. [f E(Dl, D4) % @, then D4 = {’041}.

Proof. By Claim 11.2.1, {v4,} U D3 is a clique. Since G is 3-connected, if |Dy| > 2,
we may assume there exists vy, € Dy \ {vy, } such that Np,up,(vs,) # 0, then {vy, } UDj3 is a
clique. Since (v3,;v4,, V4,, Wo, ) is N0t a claw, we have vy, vy, € F(G). Moreover, since neither
(Wa,; V3, Vay, Way 3 U1, W1, ) 1S & Byg nor (vg,; vay, v1,,ws,) is a claw, we have vy,vy, € E(G),

which implies vy, and vy, are twins, showing a contradiction. [ |

Claim 11.2.5. If {vy, } U Dy is not a clique, then for any wy, € A, either Ng(wy,) = 0 or
Ng(wy,) = B, which implies |A| =2 and |B| < 2.

Proof. Suppose there exist vy,, vy, € Dy such that vy,vy, € E(G) and vy, vg, & E(G).
For any wy, € A, if there exists wy;, wy, € B such that w,wy; € E(G) and wi,w,, ¢ E(G),
then (vy,;v1,, 1, , w3 We,wy, ) is a Byo. Thus either Np(wy,) = @ or Ng(wy,) = B. Which
implies |A| = 2 and |B| < 2 since neither A nor B contains twins. [

If Dy = 0, since degg(vy,) > 3 and G does not contain any twins, E(Dj, D) # 0.
Moreover, if |D}| = 1, since neither {vy,,ws,} nor {vy,,wq, } is a 2-cut, we have E(A\
{w,}, B\ {wa, }) # 0; if |D4| = 1, since neither {vs,, w1, } nor {vy,, ws, } is a 2-cut, we also
have E(A\ {w1,}, B\ {ws, }) # (0. Thus, similarly as G is Z3-free with Dy = () and |Dy| = 1,
we can find a strong spanning Halin subgraph in G.

If Dy # 0 and Np,(vs,) = D1, i.e D} = Dy and Dj = Ds, similarly as G is Z3 free, we
can find a strong spanning Halin subgraph in G.

If Dy # 0 and Np,(vy,) # Dy, by Claim 11.2.5, we have |B| < 2. If |B| = 2, we may
assume |Dj| > 2 since deg(vy,) > 3. Since (D; \ {v1,}) U (A \ {w1,}), D2 U (B \ {wy,})
and Ds are cliques, there exist hamiltonian paths, say P, = vy, Piwy,, Po = vy, Pows, and
Py = vy, Pyvs, , in them, respectively. Let C' = PPy U {v1,v4,, 04,03, } be a cycle and
all vertices on the path vy, wy,ws, be stems of T" with Ne(vy,) = (D1 \ {v1,}) U {vy, },
Neo(wy,) = A\ {wy,} and Ne(ws,) = (B \ {wq, }) UDs U Ds. Let H =T UC, it is easy to

check that H is a strong spanning Halin subgraph of G (See Figure 11.5 (2) as an example).
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If |B| = 1, since {vy,, w1, } is not a 2-cut, we can assume vy, v3, € F(G) or vy,v3, € E(G).
If vo,v3, € F(G), similarly as |B| = 2, we can find a strong spanning Halin subgraph in
G. If v1,v3, € E(G) and D3 = {vs,}, since (Dy \ {v1,}) U (A \ {wy,}) and D, are cliques,
there exist hamiltonian paths, say P, = vy, Piwy, and P = v21P21)2t2, in them, respectively.
Let C' = Py Py U {vy,v1,,04,03,, V3, Ws, , W, Vo, } be a cycle and {vy,,wy,} be stems of T" with
Ne(vy,) = (D1 \{v1, }) U{wvg,, v3, } and Neo(wq,) = (A\{w, })UDsU{wy, }. Let H=TUC,
it is easy to check that H is a strong spanning Halin subgraph of G (See Figure 11.5(3)
as an example). If v;,v3, € E(G) and |Ds| > 2, since Dy \ {vy,}, (A \ {wy,}) U Dy and
D3\ {v3, } are cliques, there exist hamiltonian paths, say P, = vy, Prvy, , Py = wy, Pyvy, and
Py = w3, P3vs, , in them, respectively. Let C' = Py PPy U {vg,w,, wy,v3,, , V3,04, Va; V1, } be a
cycle and all vertices on the path vs, v, w1y, be stems of T' with N¢(vs,) = (D3 \{vs, })U{wo, },
Ne(vy,) = (D1 \{v1, }) U{vy, } and Ne(wy,) = (A\{w1,})UDs. Let H=TUC, it is easy to

check that H is a strong spanning Halin subgraph of G (See Figure 11.5 (4) as an example).

w1y wi, w2,y
2)

v3, U3ig

Wiy Wi,y w2y

Wiy wiy w2,
(©] @)

Figure 11.5. G admits a nondominating W-join.
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Chapter 12

TWINS

Recall that we call u,v are twins if Ney(u,o3(v) = Nevfuey(v). Let A, B be disjoint
subsets of V(G). By Section 4.2, we can always assume that G contains twins only in its
3-cut. We will still follow definitions and notations mentioned in Section 4.1 that G is a
graph with n-vertex and S is a minimum vertex cut of G. Let GG; and G4 are the exact
two components of G \ S, and V} = V(Gy), Vo = V(G3). Subject to the minimality of
|S|, we always assume that |Vi| is minimum. In particular, we denote by S = {z,y, 2} is a
3-cut of G with x and y are twins. By the definition of twins, we have N;(z) = N;(y) and
Ny(x) = Na(y). In particular, |[Ni(x)| > min{2, |Vi|} and |No(z)| > min{2,|V5|} by Lemma
4.1.2. Let Ni(z) = {v;|dist(vi,,x) = i} = {viy, -, v, }, Ny(x) = {wy|dist(w;;, x) =
it = {wy, - ,wi, b, ko= mar{dist(v,x)[v € Vi}, ks = max{dist(w,z)lw € Va} and
Vi V(it1),, Wi, W(11), € E(G) for all possible i and j.

In this chapter, we will prove following two propositions.

Proposition 21. If G is a 3-connected {claw, Z3}-free graph admits a pair of twins in its

3-cut. Then G contains a spanning Halin subgraph.

Proposition 22. If G is a 3-connected {claw, By 2, N }-free graph admits a pair of twins in

its 3-cut. Then G contains a spanning Halin subgraph.

12.1 Proof of 3-connected {claw, Z3}-free graphs admit twins

In Section 4.3, we have been proved that if G is a 3-connected {claw, Zs}-free graph
with |V1| > 2 and at least one of V] or V5 is not a clique, then G contains a spanning Halin
subgraph. Thus, in the following we always assume |V;| > 2 and both V; and V;, are cliques
or |[Vi| =1.
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If |V1] > 2 and both V; and V; are cliques, by Claim 4.1.2, we denote by v, v3 € Ni(y),
wy,wy € Na(y), ve € Ni(2) and we € No(2)(Note that we may have vy = v3 or ws = ws.)
If yz € E(G) and |V, > 3, since both V; \ {v;} and V2 \ {w,} are cliques, there exist
hamiltonian paths, say P, = voPyv3 and P, = wePows, in them, respectively. Let C' =
Py Py U{vsz, xws, wyz, zva} be a cycle and all vertices on the path v;yw; be stems of T with
Ne(v1) =V (P) U{z}, No(y) = {z} and Ne(wy) = V(P).

If yz € E(G) and |V3] = 2. Let C' = xvvpzwowya be a cycle and {y} be the stem of T’
with Neo(y) = {z,v1, v9, 2, wa, w1 }

If yz ¢ E(G) and |V3| > 3, we assume wy € Ny(z)(Note that we may have w; = wy). If
|Vi| > 3, since both Vi \ {v1} and V5 \ {wy, ws} are cliques, there exist hamiltonian paths, say
P, = v Pivg and Py = wyPews, in them, respectively. Let C' = Py P, U {v3x, zws, wez, 209}
be a cycle and all vertices on the path viywi;w, be stems of T' with Ng(vy) = V(P),
Ne(y) = {z}, No(wy) = {w3} and Ne(wy) = (V(R) \ {ws}) U {z}. If |[Vi| = 2, Let
C = P, U {vix, zws, wyz, zvs} be a cycle and all vertices on the path yw,w, be stems of T
with Neo(y) = {v1,ve, 2}, No(wy) = {ws} and No(wy) = (V(P) \ {ws}) U{z}.

If y2 ¢ E(G) and |V, = 2, then |V}| = 2. Since dege(z) > 3, we may assume V, =
{wy,ws} C Ny(z) and V; C Ny(z). Let C' = vyvazwyzv; be a cycle and all vertices {y, wo}
be stems of T" with No(y) = {v1, ve, x}, and Ne(ws) = {wo, z}.

Let H =T UC(C, it is easy to check that H is a spanning Halin subgraph of G.

Therefore, in this section, from here and after, we always assume V; = {v}.

Claim 12.1.1. 1) we have Ni(x) = 0, which implies Vo C Na(z) U N3(z) U N3 (z);
2) If N3(z) # 0, then Nj(x) is an independent set.

Proof. 1) Suppose there exists wy, € Nj(z), then (x,y, wy,; we, w3, wy,) is a Z3, giving
a contradiction.
2) If there exist w3, , w3, € N3(x) such that ws,ws, € F(G), then either {x,y, w1, ; wa, w3, w3, )

or (ws,, ws,, Wy, ; w1, Tv) is a Z3, showing a contradiction. |

Let C1,Co, - -+ ,Cy be all components of N3(z). Then following claims are true.
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Claim 12.1.2. Let wq,we,wy, be a path, may be not induced, in (C;). For any wy, € Nao(C;)N
NQ(z); Zf N2(w1i) N {w2s7w2t’ ka} 7& ®; then |N2(wlz) N {w25>w2t’ w2k}| Z 2.

Proof. If wy,wy, € E(G)(or wy,we, € E(G)), since neither (z,y, wq,; we, wo,wy, ) nOT
(wa,, Wy, , wa,; wy,xv) is a Zs, we have wy,we, € E(G) or wy,wy, € E(G).

If wy,we, € E(G), since neither (ws,; wy,, we, , ws,) is a claw nor (ws,, wa, , wa,; wy,zv) is
a Zsz, we have wy,wy, € E(G) or wy,wy, € E(G).

Thus |No(wy,) N {ws,, we,, wy, }| > 2. [ |

Claim 12.1.3. If C; U (No(C;) N No(z)) is not a clique, then for any wy, € Na(C;) N Na(x),

|No(wy,) NC;| > |C;| — 1, which implies either C; is a clique or (C;) is losing exact one edge.

Proof. This is clearly true if |C;| < 2. If |C;| > 3, for any w;, € No(C;), by Claim
12.1.2, we know |Ny(wy,) NC;| > 2. We may let uy, ug € No(wq,) NC;, by Claim 12.1.2 again,
we know C; \ Na(wy,) is an independent set. If there exists uj,u, € C; \ Na(wy,), we can
assume there also exist wi,, w1, € No(C;) such that wy,ul, wy, uy, uguy, ugusy € E(G). By
Claim 12.1.2 one more time, since ujusu; is a path, we have wy, us € E(G). Moreover, since
uguqu} is a path, we have wy, u; € E(G) or wy u} € E(G), which implies wjujub or ujusul,
is a path. But this implies , |Nay(wy,) N {uy, v}, uy}| = 1 and [No(wy,) N {ug, uf, ubt] = 1,
contradicts to Claim 12.1.2. Thus |Ny(wy,) NC;| > |C;| — 1 for all wy, € No(C;) N Na(z). This

in turn gives either C; is a clique or (C;) is losing exactly one edge since G is claw-free. W

Claim 12.1.4. If there exist wo,, wq, € C; for some i such that Na(wsy, )N No(ws, )Ny (x) # 0,
then for any j # i, C; U (N2(Cj) N Na(z)) are cliques. In particular, if C; U (N2(C;) N Na(x))

is not a clique, then |C;| = 1.

Proof. We may assume there exist w;, € No(wy,) N Na(ws,) N Na(z), we; € C; and
wy, € No(C;) such that wy wy, € E(G). If there exists wy, € C; such that wow,, € E(G)
and wy,wy, ¢ E(G), then (ws,, ws,, w1,; w1, wa,wy,) is a Z3, showing a contradiction. Thus
C; U (N2(C;j) N Ny(x)) is a clique for any j # . In particular, if C; U (N2(C;) N Na(x)) is not

a clique, we have |C;| = 1. [



149

Claim 12.1.5. For any w € N3(x), if No(w) N C; # 0, then
1) Na(w) C C;;

2) G| > 2;

3) Na(w) U (No(C;) N No(z)) is a clique;

4) C: U (No(Ci) N No(x)) is a clique;

5)|Cj| =1 for all j # i, which implies No(N3(x)) C C;.

Proof. We may assume there exist wy, € C; and wy, € Ny(z) such that wy,w,,, we,w €
E(G).

1) If there exists wy; € C; such that wy,w € E(G) for some j # i, then (x, y, w1,; wa, wwy,)
is a Z3, showing a contradiction. Thus Ny(w) C C;.

2) Since G is 3-connected, Nj(x) is an independent set and wz may be in E(G), |C;] > 2.

3) Suppose this is not true, there exist wy, € Na(w) N C;, wy; € Na(C;) N No(z) and
wy; € C; such that wy,wo, ¢ E(G) and wi,wy; € E(G). We may also assume there exists
wo,w € E(G), since (x,y, wy,; wo,wwy,) is not a Zs, we have wy,wy, € E(G), which force
(wa,, w, wa; w1, yv) to be a Zs. If wy,w ¢ E(G), let Q = wa,wy, - - - wo,w be the shortest path
from wy, to w in C;U{w}, then (@, y, wy,; wo,wa,wy,) is a Z3, where wy;, wy, , wy, are the first
three vertices of Q). Thus No(w) U (No(C;) N Na(z)) is a clique.

4) If there exist wq, € C; \ Na(w) and wy, € Na(C;) N Na(x) such that we wy, ¢ E(G).
Since (C;) is connected, we may assume there exists wy, € Ny(w) N C; such that we, wo, €
E(G), then (wy,;ws, , wy,,w) is a claw.

5) Since |C;| > 2 and C; U (No(C;) N No(z)) is a clique, by Claim 12.1.4, we know
C; U (N3(C;j) N Ny(x)) is also a clique for all j # 4. If there exist two distinct vertices
wy, , Wy, in C;, we may denote by wy, € No(ws,) N No(z), we, € Nao(w) and wy, € Nay(w),
then (ws, , we,, wy,; wy,we,w) is a Zs, showing a contradiction. Since G is 3-connected and

claw-free, we have No(N3(z)) C C;. |

Claim 12.1.6. If there exists wy, € C; such that zwy, € E(G), then
1) NQ(Z) ﬂCJ = (Z) and NQ(Z) N (Ng(cj) N NQ(.Z’)) = (Z) fOT allj §£ i,’
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2) [f |N2(ZL’) \NQ(U}QZ)‘ > 2, then w2z € E(G) fOT all w1, € NQ(w2i> ﬂNg(x) and rz € E(G),
3) If N3(x) # C;, then |C;| = 1 for all j # 1.

Proof. 1) We may assume there exist wy, € C; and wy, € No(C;) such that ws, z, wy,wy, €
E(G). If there exist wy; € C; such that wy;2 € E(G), then (z;v,wy;, wy,) is a claw. If there
exists w1, € No(C;) N Na(z) such that wi,z € E(G), then (z;v, w1, wy,) is a claw. Thus, we
have Ny(2) NC; = 0 and No(z) N (N2(Cj) N Na(x)) = 0 for all j # i.

2) We may assume there exist wy,,wy, € Na(z) \ Na(ws,). For any wy, € No(ws,) N
Ny(z), since (wq,,wy,, wy,;we,zv) is not a Zs, we have zw,, € FE(G). Moreover, since
(w1, , wy,, x;vzws,) is not a Z3, we get xz € E(G).

3) Suppose this is not true, there exist wy,, wy, € C; and wy, € No(z) such that wy,we, €
E(G). If there also exists w1, € No(wa,) N Na(ws, )N Na(z), then either (wy,, wa,, w1, ; wy,wo, 2)
or (wa,, wa,, wy,; wy,zv) is a Zg. If Ny(wa,) NNa(ws,) N No(x) = (), we may assume there exists
wy, € No(z) such that wy wy, € E(G) and wy,we, ¢ E(G), then (z,ws,, wy,; wy,, wo,, ws,) is

a Z3, showing a contradiction. [ |

Claim 12.1.7. If there exists w € N3(z) such that wz € E(G), then
1) wy,z € E(G) for any ws, € Na(w) NC;;
2) |No(C;) N No(z)| > |No(z)| — 1. In particular, C; = N2(x);

9) Nj(x) = {w}.

Proof. For simplicity, we assume No(w) NC; # 0. Since G is claw-free, we have
No(z) N No(z) = 0.

1) By Claim 12.1.5, |C;| > 2 and C;U(N5(C1)NNo(x)) is a clique. Moreover, | No(Cy)| > 2
since G is 3 connected. We denote by wy,, wy, € Na(Cy). Then, for any wy, € Ny(w) N Cy,
since (wy,, wy,, we,; wzv) is not a Zs, we have wy, z € E(G).

2) By Claim 12.1.6 3), we know |Ny(z) \ No(wy,)| < 1 for any ws, € Ny(w) N Cy, which
implies |No(C1) N Na(z)| > |No(x)| — 1. Moreover, N3(z) = C; since G is 3-connected.

3) Suppose this is not true, there exist w’ € Ny(x) \ {w} and wy, € C; such that

wy,w' € E(G). Then wy,w',wo,w ¢ E(G) since Nj(z) is an independent set, which in



151

turn gives zwo;, ¢ E(G) since (2;v,ws,,w) is not a claw. However, this will force either

(7, y,v; 2wp,wo;) or (T,V, 2;wa,wa,w') to be a Zs. [

Claim 12.1.8. If Ny(z) N N3(z) = 0, No(2) N N3 () = 0 and there exist w,,, wy, € N3 (z)
such that Na(ws,) N Na(wa,) N No(x) # 0, then No(x) = No(z). In particular, vz € E(G) if
N3 () £ 0.

Proof. If there exists wy, € Ny(wy,) N Na(wg,) N No(z) such that zw;, € E(G), then
for any wi;, € Nao(z) \ (Nao(wg,) N Na(wy,)), since (wi,; 2, wa,, wy,) is not a claw, we have
zwy, € E(G). If there exists wy; € Na(w) \ (Na(ws,) N Na(wy,)) such that 2w, € E(G), then
for any wy, € Na(ws,) N Na(ws,) N Na(x), since (ws,, wa;, w1,;wi,2v) is not a Z3, we have
2wy, € E(G). Since Ny(2) N N3 (z) = 0 and No(2) N N2(z) = 0, thus we get No(z) = No(2).
In particular, if N3(z) # 0, then zz € F(G) because G is claw-free. [ |

Now we want to find a spanning Halin subgraph in GG by following cases.
Case 1. Assume that N3(z) # 0.

Case 1.1: Assume that N3 (z) N Ny(z) # 0.

By Claim 12.1.7, we know N3(z) = {w}, Ni(x) = Ci, |Na2(C1) N No(z)| > |No(z)| —
1 and {w,z} U (Na(w) N Cy) is a clique. Since G is 3-connected, we can assume there
exist wy,, Wa,, W, € N3(x) and wy,, w1, € No(x) such that wy,ws,, wi,wa, , we,w, wo,w €
E(G). Since both Ny(z) \ {wy,} and N3i(z) \ {wy, } are cliques, there exist hamiltonian
paths, say P, = w12P1w181 and P, = w22P2w282, in them, respectively. Let C' = PP, U
{20, vy, yw, , wi,we, , wa,w, w2} be a cycle and all vertices on the path zw,,wy, be stems of
T with No(x) = {v,y}, No(wy,) = V(P1) and Ne(wq,) = V(Py) U{w,z}. Let H=TUC,

then H is a spanning Halin subgraph of G (See Figure 12.1 (1) as an example).

Case 1.2: Suppose that N3 (z) N Ny(2) = 0 and N3 (z) N Na(z) # 0.

We may assume there exists w € Nj(z) and No(w) NCy # 0. Since G is 3-connected
and wz ¢ E(G), we have |[Ny(w) N Cy| > 3 and |Na(Cy) N No(x)| > 2. By Claim 12.1.6 3),
we get No(2) NCy # 0.
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Claim 12.1.9. There must exist wy, € Na(w) such that we,z € E(G) and zz,yz € E(G).

Proof. Suppose this is not true. Since N(z) N Cy # (), there must exist wy, € Cy \
Ny(w) such that wy 2z € E(G). Then for any wy, € No(w) N Cy, either (z,y,v; zwy,ws,) or
(7,0, 23w, wy,w) is a Z3, showing a contraction. Let wy, € C; such that wwsy,, ws, 2z € E(G).
Since (z,y, v; zwq,w) is not a Zz and x,y are twins, we have both zz and yz in £(G). W

Denote by N3 (x) = {ws,,ws,, - U)3SS} {w3Z w3 ,w3 } C Ny(ws,)NCy, C\No(N3(x)) =
{wy,, wy, -+ wy, Y, {wi,wi } € Na(Cr) N Na(x), €5 = {ws, } for all j # 4, {w},w?,w?}
Na(ws;) N Na(x) and Na(z) \ (Uﬁzz{wipwiawy} U {wlla wll}) = {wy,,wh,, >7~U1t1}~

By Claim 12.1.3, either C; is a clique or (Cy) is losing exactly one edge. Since both

N

No () \ (U 2{w1 ,w1 W }U {wi ,w? }}) and Cy \ No(Nj(z)) are cliques, there exist hamil-

tonian paths, say P, = w} 1P1w1t and P, = w} 1P2’LU2 , in them, respectively. Let C' = P, P,U

ussT! 3 .3 1 3 3,1
(8 {w3 ws;, W3, Wg,, W3, W3, H})U{w?,s W, ka wll,w11w12}U(U {wljw2j>w2jw1jaw1jw1j+1})
o2 o2 2.,.2
U{wlkwh, wltly, yv, vz, zwy } be a cycle and all vertices on the tree {z; wi , wi,, - LW W3

,wi, } be stems of T with Ne(z) = V(P1) U {v,y,2}, Ne(wi,) = V(P) U {wi,},
Neo(w?)) = {wi,, wi,wy,} for all i € [2,k] and Ne(w3)) = {ws,, w3, wy,} for all j € [1, s3].
Let H = T'UC, then H is a spanning Halin subgraph of G (See Figure 12.1 (2) as an

example).

Case 1.3: Suppose that N3 (z) N Na(2) = 0, Ni(z) N Na(z) = 0 and No(z) N Na(2) # 0.

We may assume there exists w € N3(z) such that No(w) N Cy # (. By Claim 12.1.5,
|C1| > 3 and Ny(N3(x)) C C;. By Claim 12.1.8, Ny(x) = Ny(z) and xz € E(G). Similarly as
Case 1.2, we delete the edge zw} form E(T) and add the edge wi w} to E(T), also delete

3

the edge zwj, form E(C) and add edges w3 w} ,w} z to E(C), we can find a spanning Halin

subgraph in G (See Figure 12.1 (1) as an example).

Case 2: Assume that N3 (x) = () and N3 (x) # 0.
If C; U Ny(C;) is a clique for all possible i, we can find a spanning Halin subgraph
in G similarly as Case 1.2 and 1.3. Thus we assume C; U No(C;) is not a clique, then,

clearly, |C;| > 2. We denote by C; = {wj, ,w5,, - - ,wékl}. By Claim 12.1.3, we there exists
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Figure 12.1. N3 (z) # 0.

wy, € Ny(Cy) such that w,w), € E(G) and wy,wy ¢ E(G). Then we have following two

subcases to be considered.

Case 2.1: Assume that NZ(z) N Ny(z) # 0.

Claim 12.1.10. If N3(x) N Ny(z) # 0, then

1) No(2) N Cy # 0;

2) If Cy \ No(z) # 0, then |No(z) \ No(C)| <1 and vz € E(G);
3) N2(z) = C;.

Proof. 1) This is clear true by Claim 12.1.6 3).

Thus we always assume zwy, € E(G).

2) Suppose this is not true, there exists wy, € C1 \ {wy, } such that wj z ¢ E(G) and
why wy € E(G). If there exist wy,, w1, € Na(z) \ Nao(Cr), then (wi,, wi,, z; 2wy wy,) is a Zs.
If vz ¢ E(G), then (x,y,v; zwy, w, ) is a Z3, showing a contradiction.

3) If [Na(x) \ N2(Cy)| = 1, then clearly C; = 0 for all j # i. If [Ny(x) \ No(Cy)| > 2,
then C; C Ny(z). Since neither (wy, ,ws,, 2; vrwy,;) nor (wh , wh,, z; Twi,;wy,) is a Z3, where

wy, € C; and wy, € Ny(x) N Na(w,, ), we have C; = 0. Thus N3 (z) = C;. [ |

We denote by Ny(x) = {wy,,ws,, - ,wy,}. In particular, assume wy,wy, € Na(Cy).
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If C; C Ny(z), then C; is a clique. Since G is 3-connected, we assume wy, wh , wy,wy, €
E(G). Since Ny(x)\{wy, } and C; \ {wy, } are cliques, there exist hamiltonian paths, say P, =
wy, Pywy, and Py = wgngwgkl, in them, respectively. Let C' = Py P,U{yw;,, wy,w5,, wéklz, 20,
vy} be a cycle and all vertices on the path zwy,wj be stems of T with N¢(z) = {y, v},
Ng(wy,) = V(P1) and No(wy,) = V(P) U {z}. If [No(z) \ Nao(C1)| < 1, by Claim 12.1.3,
we assume wy,w € E(G) for all w € C; \ {wékl} and wélz,wlgwékl,wlgwékl € E(G). S-
ince both Ny(z) \ {w,,w,} and C; \ {wékl} are cliques, there exist hamiltonian path-
s, say P, = wy,Piwy, and Py = wéngwékrl, in them, respectively. Let C = PP, U
{zv,vy, ywlt,wlgwékl,wékl w’lkrl,wélz} be a cycle and all vertices on the path zw;,wy, be
stems of 7" with Ne(x) = {z,v}, Ne(w},) = V(FP,) and Ng(w),) = V(P) U {y,w%l}. Let
H = T UC, then H is a spanning Halin subgraph of G (See Figure 12.2 (1) and (2) as

examples).

Case 2.2: Suppose NZ(x) N Ny(z) = 0.

Since G is 3-connected, |N2(C;)| > 3 for all possible i. We want to consider following
two subcases.

Subcase 1: There exist wy,, ws, € C; such that Ny(ws,) N No(ws,) N No(z) # (.

We may assume i = 1, then |[Na(wy,)NCy| > |C1|—1 for all wy, € No(Cy) by Claim 12.1.3,
C; U No(C;) is a clique for all j # 4, by Claim 12.1.4, and Ny(x) = Nz(z) by Claim 12.1.8.
Since G is 3-connected, we may assume |[C;| > 3 since other cases are similar and much
easier. We assume w{ w}, ¢ E(G). Let C; = {w), w3, -+, wi}, {wi, wi w}} C No(C)
for all possible 4, wi w} ,wi w3 ,wi w3 € E(G) and Dy = No(z) \ ({U{w] ,wi, wi}) =
{wy,, wh,, -+, wy, . Since Ci1\{w3,}, C;, for all possible j # i, and D; are cliques, there exist
hamiltonian paths, say P = wy, Piw3,, Pj = wy Pjw3 and P’ = wj, P'w},, in them, respec-
tively. Let C'= PP, --- P P'U(UL {w] wy,, w3 w?, wiwi, })U{w] wi,wiy, yv,vz, 2w}, }
be a cycle and all vertices on the tree {z;w? ,w?,, -+, w} ;w3 } be stems of T with N¢(z) =
{z,y,v}U Dy, No(wi,) = {w;,,wi }, No(wi,) = {wi,,wi } UC; for all j # i and No(ws,) =
Ci\ {w3 }. Let H=TUC, then H is a spanning Halin subgraph of G (See Figure 12.2 (3)

as an example).
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Subcase 2: For any ws,, we, € C;, we have No(ws,) N3 (wa,) N No(z) = 0.

If No(z) N Ny(x) N No(N2(z)) = 0, by Claim 12.1.8. Let |C;] < 2 and we denote
C; = {w},wi}, {wi ,wi,} € No(wi) N No(z), {wh ,wh,} € Nao(wh) N Ny(z) for all i with
ICi] = 2 and C; = {wi}, {w},wi, w,} C Ny(wj) for all i with |C;] = 1. Denote by
ICi| = 2 for i € [1,ky] and |C;| = 1 for @ € [ky + 1,k] for simplicity. We also denote
by D1 = Na(x) \ (Ui {wh,, wi,, wh,, wh,}) U (UL, o {wi,, wi,, wi}) = {wi,,wy,, - wy )
Assume wy z € E(G) if vz € E(G) and wy z,w},z € E(G) if 2z ¢ E(G) since G is
3-connected. We only find a spanning Halin subgraph in G for zz ¢ FE(G) since the
other case is similarly and easier. Since D; \ {wj ,wi,} is a clique, there exists a hamil-
tonian path P, = wi Pw; in it. Let C = P; U (U {w} wi, wiw}, wiwi ,wi wi'}) U
(UF o {wh wh, wiwd | wl wi ) U {whlwf ! wb wl  wl, 2, zv, vz} be a cycle and all vertices
on the star {z;wl,wi w? wi, - wi,wh witt .- Jwk}, where x is the center, be
stems of T' with Ne(z) = (Dy\{w],, wi, }U{v, 2}, Ne(wi,) = {w],, wi}, Ne(wh ) = {wh,, wi}
for all i € [1, k1], No(wi,) = {w},,wi,, wi} for i € [ky + 1,k] and Ne(wi,) = {z,wi,} (See
Figure 12.2 (4) as an example). If Ny(2) N No(z) N No(Nz(z)) # 0, since G is claw-free, we
have zz € E(G). Similarly as Na(z) N No(z) N No(Ni(z)) = 0, we delete the stem {w] }
from V(T'), delete edges w wi,,w},z from E(T) but add edges xz,zw}, to E(T); and also
delete the edge w wy, from E(C) and add edges w}, wy,, wy,wy, to E(C).

Let H =T UC, then H is a spanning Halin subgraph of GG

Case 3: Suppose that N2(x) = N3(z)) = 0, i.e. Vo = No(x)

Similarly as line graph, we can find a spanning Halin subgraph in G.

12.2 Proof of 3-connected {claw, B, ;}-free graphs admit twins

Since, in 2015, Furuya and Tsuchiya [26] showed that: If G is a 3-connected {Claw, By 2} -
free graph but not N-free, then G contains a spanning Halin subgraph , in this section, we
assume every graph is also N-free. To prove Proposition 22, we want to consider following

two cases.
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Figure 12.2. Nj(x) = 0 and N3 (x) # 0.

Case 1: For any two vertices vy, v1,, in Ni(z) and any two vertices wy,, w, in No(z), we

have NI(U15> = Nl(vlt) and Ng(wli) = Ng(wlj).

Claim 12.2.1. If for any two wvertices vy,,v1,, in Ni(x) and any two vertices wy,,wy, in
Ny(z), we have Ni(vi,) = Ni(vi,) and Ny(wy,) = No(wy,), then

1) N/ (z) U N/ (z) is a clique for all j € [1,ky — 1] U [1,ky — 1] and i € [1,2];

2) If there exists v; € Ni(x)(similarly as w;, € Nj(x)) such that v;z € E(G), then either
Ni(2) € NV 7H@)UN] () or Ny(2) € N (2)UN{ ™ (z). In particular, if N7T ()N Ny (2) = 0,

then |NJ(z)| > 3.

Proof. we only shoe that this is true for ¢ = 1. Since Nj(v1,) = Ni(vq,) for all
v1,,v1, € Ni(z), we have Ni(z) U Ni(z) is a clique. If there exists vo, € NZ(x) such
that vo,v3, € E(G), then (vs,;va,,va,,v1,; Twy,) is & Byo. Thus Ni(z) U N} (x) is a clique.
Similarly, we can show that N (z) U N{™(z) is a clique for all possible j.

2) This is clearly true since G is claw-free and 3-connected. [

Let t; = min{j|N/(z) N N}(z) # 0} for i € [1,2].
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Case 1.1: Suppose that 2z ¢ E(G).

Claim 12.2.2. Suppose vz ¢ E(G),

1) If NPt (z) # 0, then Ni*(z) C Ny(2);

2) If N{**2(x) # 0, then N{***(x) N Ni(2) = 0;
3) Vi = U2 (x).

Proof. 1) For any v, 1), € Ni'T!(2), since (v, V(e +1):» Ut —1)1, 2) 18 N0t a claw, we
have v, 11y,2 € E(G). Thus N[**'(z) C Ny(z).

2) This is clearly true by Claim 12.2.1 2).

3) If there exists v/ € Vi \ (U?:fo(x)), we may assume v'vy, 49, € F(G), then

(W' 2,V(11),, Vit +1)13 Vit 42, V') 18 @ By 2, showing a contradiction. [ |

Claim 12.2.3. If 2z ¢ E(G) and NI**?(x) # 0, then
1) tl = t2 = 1,'
2) Ny(x) C No(z), N2(z) C No(z) and N3(z) = 0.

Proof. For simplicity, we denote by y = vy, = wy, .

1) If t1 > 2, then (U, 42)5 V(t141)15 25 Vit Vit -1 V(e —2), ) 18 @ By if to > 2, then
(Ut £2)13 Vitr+1)15 V)1 s 23 Wite), W(ta—1),) 1S @ By o, giving a contradiction. Thus ¢, = t, = 1.

2) Suppose to the contrary, wy, 2z € E(G). For any wy, € No(z)\{w1, }, since (v, 1+2),; Vit 41): 5
V), 23 W1, wy,) is not a By, we have wy,z € E(G). Thus No(r) C Ni(z). For any
wy, € Nao(x), since zz ¢ E(G) and (wq,;y, z,ws,) is not a claw, we have wy,z € E(G).
This implies N3(z) C Na(z). If there exists ws, € Nj(z), since N3(z) N Nao(z) = 0, we
have (Vi 12),; V(ty+1)15 Ut )1 2 W2, w3,) 18 a Byo. This in turn gives NJ(z) = 0, showing a

contradiction. [}

Claim 12.2.4. If 2z ¢ E(G) and N{**?(x) =0, then

1)ty < 2. In particular, if t; = 2, then to = 1; if t; = 1, then ty < 2;
2) If ty = 2, then Ni(z) C No(z), Ni(x) C No(2) and Nj(x) = 0;

3) Ifty = 1, then Ny(z) = 0.
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Proof. For simplicity, we always assume w,) 2z € E(G).

1) Suppose t1 > 3, then (wg,) ;2 Ve +1),5 Vi), s Vit —1), Vit ~2),) 18 @ Bia, showing a
contradiction. If ¢, = 2 and t; > 2, then (w,) ;2,vs,,v2,;v1,7) is a Byp. If t; = 1 and
ty > 3, then (w,), ; 2, Va,, v1,; Twy,) is a By, showing a contradiction.

2) If there exists wq, € N3 (z)\{ws, }, then (x;vy,, va,, z; wo,wy,) is a By 2. Thus N3 (z) C
Ny(z). For any ws, € N3(x), since (wa,; w1, , 2, ws,) is not a claw, we have ws,z € F(G). Thus
N3(x) C No(2). If there exists wy, € Ni(x), then (wy,;ws,, wa,, 2;v1,y) is a By o, showing a
contradiction. Therefore, we get Ny (z) = 0.

3) If t, = 1, by Claim 12.2.1 2), we know N3 (z)NNo(z) = (). If there exists wy, € Ny (),

then (wy,; ws,, we,, z;v1,y) is a By o, showing a contradiction. |

We only want to find a spanning Halin subgraph in G for following two cases since
other cases are similar and much easier.

Subcase 1: Suppose N{(x) # () and ¢, = 1.

By Claim 12.2.1, we know | NZ(z)| > 3 and by Claim 12.2.4, we know Vo = Ny(z)UNZ(x).
Since (NZ(z) \ {vo, }) U N (z), Ni(z) \ {v1,} and (No(z) \ {wy,}) U Ni(z) are cliques, there
exist hamiltonian paths, say P, = vy, Piva,, Py = vy,Pvy, and Ps = wy, Psw,,, in them,
respectively. Let C' = P PyP3 U {vy,, zws,, we, 2, 209, } be a cycle and all vertices on the
path v, v1, ywy, be stems of T' with N¢(ve,) = V(P1), Neo(vy,) =V (Py) U{z}, No(y) = {z}
and No(wq,) = V(Ps). Let H = T UC, it is easy to check that H is a spanning Halin
subgraph of G (See Figure 11.5 (1) as an example).

Subcase 2: Assume that N3 (z) = () and ¢, = 2.

By Claim 12.2.4, we know Vo = Ny(z) U NZ(z) U N3(z). Since (Ny(z) \ {v1,}) U NZ(z),
Ny(z) \ {wy,} and (NZ(x) \ {ws, }) U N3 (z) are cliques, there exist hamiltonian paths, say
Py, = vy, Pyvy,, Po = wy, Pywy, and P = wq, Psws,, in them, respectively. Let C = Py P,P3 U
{v1,2, Twy,, ws, z, zv9, } be a cycle and all vertices on the path vy, yw;,wy, be stems of T'
with Neo(vy,) = V(P) U{z}, Ne(y) = {2z}, Ne(wy,) = V(P,) and No(ws,) = V(P3). Let
H =TUC, it is easy to check that H is a spanning Halin subgraph of G (See Figure 11.5

(1) as an example).
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Figure 12.3. Nl(vls) = Nl(Ult), Ng(wli) = N2(w1j) and zz ¢ E(G)

Case 1.2: Assume that zz € F(G).
Claim 12.2.5. Ifzz € E(G), thent, =1 orty = 1.

Proof. Suppose to the contrary, Ni(x) N Ni(z) = 0 and Ny(z) N No(z) = (). Then

(y;v1,,w1,, 2) is a claw, giving a contradiction. [

For this case, from here and after,we always assume ¢t; = 1, which means Ny (z)NN;(z) #

Claim 12.2.6. Ifty > 2, then

1) N3 (z) N Ny(z) = 0;

2) Ny (z) € Ni(2);

3) If N3(x) # 0, then ty = 2 and Vy = No(x) U N2(z);

4) If N} (z) =0, then either ty = 3 and Vo = Ut N3 (z) or t; = 2 and Va = US_ | Nj().

Proof. We may always assume w,) z € E(G).

1) If there exists vy, € N7 (z) N Ni(z), then (z;vs,,y, we,), ) 1s a claw.

2) For any w(,41), € Na>™'(x) N Na(2), since (Wiry),; Wity t1);, Wita—1)1, 2) IS 10t a claw,
we have w,11),2 € E(G). Thus N3>*'(z) C Ny(2).

We assume w, 11y, 2 € E(G).

3) If to > 3, then (vy,;v1,, 2, y; w1, we,) is a By o, showing a contradiction. For any
wsy, € N3(z), since (wo,;wi,,ws,, z) is not a claw, we have ws,z € E(G), which implies

N3(z) C No(z). However, this will force (wy,;ws,,ws,, 2;v1,v9,) to be a By, showing a

contradiction. Thus V5 = Ny(z) U NZ(x).
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4) Suppose to the contrary, to > 4, then (wy,;y, v1,, z; Wy, w3, ) is a Byo. If t5 = 3, then
N3(z) = 0, otherwise (ws,; wy,, ws,, z;yws,) is a Byo. If t5 = 2, then Nj(x) = 0, otherwise

(wy,; w3, , wa,, 2;v1,;wy,) is an induced N. [ |

Claim 12.2.7. Ifty =1, then
1) N (x) N Ny(2) =0 or Ni(z) N No(z) = 0;

2) If N3(z) N No(2) # 0 and NE(z) # 0, then Vo = No(z) U N3 (z);
8) If N3(x) N No(z) # 0 and Ni(x) =0, then Vo = No(z) U N3(z) U N3 (x);
4) If N2(z) N No(2) = 0, then |N/ ()| >3 forall j € [1,ky — 1 U [1,ky — 1] andi € [1,2] .

Proof. 1) Suppose there exist vy, € NZ(z) N Ni(z2) and wy, € NZ(x) N Ny(z), then
(2;v9,, ws,,y) is a claw, showing a contradiction. Thus NZ(z)NNy(z) = 0 or N3 (x)NNy(z) =
0.

By symmetric, we may always assume N7(x) N Ny(z) = 0.

2) We may assume there exists wy, € N3(x) such that wy,z ¢ E(G). If N3(z) # 0, then
(ws,; way , Wy, , 23 V1, Ve, ) is @ By o for any ws, € N3(z), giving a contradiction.

3) Suppose Ny (x) # (), then for any wy, € Ny(x), (v1,; 2, w1, wa,; w3, vs,) is a By a.

4) This is true since G is 3-connected. |

Now we want to find a spanning Halin subgraph in G by following subcases.

Subcase 1: Assume that ¢, > 2 and V; = Ny(x).

By Claim 12.2.6 4), we know V, = U;ZrllNg(x). Since V4, NJ(z)\ {wy, } for j € [1,t5 —
1] and N2(x) U N2 (2) are cliques, there exist hamiltonian paths, say P’ = v, P'vy,,
P; = wj, Pyw;, and Py, = w,), Pr,w,+1),, in them, respectively. Let C = PP P, .- P, U
{v,2, vw1,, Wi, 11), 2, 201, } be a cycle and all vertices on the path yw;, - - - w,), be stems of
T with Ne(y) = V(P')U{z, 2}, No(wy,) = V() for i € [1,t, — 1] and Ne(wg,),) = V(P,).
Let H =T UC, it is easy to check that H is a spanning Halin subgraph of G (See Figure
11.5 (1) as an example).

Subcase 2: Suppose that to > 2 and V; = Ny(x) U NZ(z).

By Claim 12.2.6 3), we know V, = Ny(x) U N3(z). Since (Vi \ {v1,}) UV and (Na(z) \
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{wy,}) U N2(x) are cliques, there exist hamiltonian paths, say P, = vy, Pivy, and P =
wy, Pywy,, in them, respectively. Let C' = PPy U {vy,z, zwy,, ws, 2, zv1, } be a cycle and all
vertices on the path vy, yw;, be stems of 7" with No(vy,) = V(P1), No(y) = {z,z} and
Neo(wy,) =V (P,). Let H=TUC, it is easy to check that H is a spanning Halin subgraph
of G (See Figure 11.5 (2) as an example).

Subcase 3: Suppose that ty = 1, N3(x) N Na(2) # 0 and Vi = Ny(z) U NE(z).

Similarly as subcase 2, we can find a spanning Halin subgraph in G.

Subcase 4: Suppose that to = 1, N2(z) N No(z) # 0 and V; = Ny(z).

We may assume Nj(z) # (), then by Claim 12.2.7, V5 C No(x) U Ni(z) U N3(x).
Since Vi, No(x) \ {wy,} and (N3(z) \ {ws,}) U N3(x) are cliques, there exist hamiltonian
paths, say P’ = vy, P'vy,, P, = w,Piwy, and Py = ws, Pyws,, in them, respectively. Let
C = P'P P, U{v,x,zwy,, we,z, zv1, } be a cycle and all vertices on the path ywi,wse, be
stems of 7" with Ne(y) = V(P') U {z, 2z}, No(wy,) = V(Pr) and Ne(ws,) = V(P). Let
H =TUC, it is easy to check that H is a spanning Halin subgraph of G (See Figure 11.5
(1) as an example).

Subcase 5: Suppose that to = 1 and NZ(x) N Ny(z) = 0.

Since Ni(x) \ {vi,,vs,} for all i € [1,ky — 2], (NP~ (2) \ {Vk-1),}) U N (), Nj(x)\
{ws,,w,} for all j € [1,ky — 2] and (NP2~} (z) \ {wy-1), ) U N{2(z) are cliques, there
exist hamiltonian paths P, = v;, P, v;,, Plkrl = vkalkrlvle, Py, = wj, Poywy,, P2k2—1 =
wk2_12P1k171wk2_13, in them respectively. Let C' = Plkﬁl PPy ~P2k271U{vl4x, TW1,, V1,72,
wy,z} U (Uf;;2(vi2'l}(i+1)2) U U(Ufif(wjzw(jﬂ)z) be a cycle and all vertices on the path
V(ky—1), * " V1, YW1, - W(ky—1), be stems of T with Ne(viy) = V(Py,) for all i € [1,k — 1],
Ne(y) = {z, 2z} and Ne(wj,) = V(Py,) for all j € [1,ky —1]. Let H = T UC, it is easy to

check that H is a spanning Halin subgraph of G (See Figure 11.5 (1) as an example).

Case 2: There exist v1,,v1, € Ni(z) or wy,,wy; € No(x) such that Ni(vi,) # Ni(vy;) or
Na(wy,) # Na(wy;).
By symmetric, we always assume there exists wy, € Ni(x) such that wy,wq, ¢ E(G)

and wy,wy, € E(G).
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Figure 12.4. Ny(vi,) = Ni(v1,), No(wy,) = No(wy,) and zz € E(G).

Claim 12.2.8. If there exists wy, € N2(x) such that wi,ws, ¢ E(G) and wy,we, € E(G),
then

1) Ni(z) = Vi

2) N2(x) is a clique;

3) Vo = Na(z) U N3 ().

Proof. 1) Suppose this is not true, there exist vo, € V3 \ Ni(x) and vy, € Ny(z) such
that va,v1, € E(G), then (wo,; wy,, wy,, T;v1,v9,) is By a.

2) We may assume there exists wy, € N2(z) such that wi,we, € F(G) and wq,wy, ¢
E(G), then (vy,;x, wy,, wi,; we,; ws,) is an induced N, giving a contradiction.

3) If there exists ws, € N3(x), then wo, w3, ¢ F(G). Otherwise (v1,;x, wy,, wy,; wa, ws, )
is a Bjy. Thus we may assume there exist wo, € N(z) \ {wsq, } such that wq,ws, € E(G),
then wy, w1, € E(G) for all wy, € Ny(z). Otherwise, assume there exist wy,, wy; € No(x) such
that wy,wy, € E(G) and wi,wo, ¢ E(G), then (vy,; 2, w1, wy,; wyws,) is a Byy. However,
this will force (ws,; ws,, wo,, wq,; xvy,) to be a By o, giving a contradiction. |

If N2(x) = 0, then Vi = Ny(x) and V5 = No(x). We can find a spanning Halin subgraph
in G as G is {claw, Z3}-free. Thus we assume NZ(x) # ().
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Case 2.1: Assume that zz ¢ F(G).
Claim 12.2.9. Ifzz ¢ E(G), then Vi C N;y(2).

Proof. This is clear true if |Vj| = 1 since Nyi(z) # 0. Thus we assume there exist
v1,, 01, € Vi such that vy, 2 € E(G) and v,z ¢ E(G). Since (ws,;wy,, wy,,y;v1,2) is not a
B 5 and neither (wy,;y, 2, wy,) nor (z;vy,, ws, , wy,) is a claw, we have either wy,z € E(G) or
wy, z € E(G). If wy,z € E(G), then (vy,;y, w,, w1,; z;we, ) is an induced N; if wq, 2 € E(G),
then either (vy,;y, wy,, wy,;we, 2) Or (wW1,; Wy, We, 2;V1,V1,) is & By 2, showing a contradiction.
|

In the following, we always assume | N3 (z)| > 3 since the other case is similar and much
easier.

If [Vi|] > 2 and wy,z € E(G), we may assume wq,Ws,, W1,Wwe, € E(G) since G is
3-connected. Note that we may have w;, = wy,. Since Vi \ {v1,}, Nao(z) \ {wy,} and
NZ(x) \ {ws,} are cliques, there exist hamiltonian paths, say Py = vy, Pivy,, P» = wy, Pywy,
and P = wy, P3wy,, in them, respectively. Let C' = P PyP; U {vy,x, xwy,, wo, 2, 201, } be a
cycle and all vertices on the path vy, ywy,ws, be stems of T" with Ng(vq,) = V(P1) U {z},
Ne(y) = {x}, No(wy,) = V(P,) and Neo(ws,) = V(P3). Let H =T UC, it is easy to check
that H is a spanning Halin subgraph of G (See Figure 12.5(1) as an example).

If V1] > 2 and wy,z € E(G), we may assume wy, W, , W1, Wa,, Wi,Wa, € F(G) since G is
3-connected(Note that wy, # wy,). Since Vi \ {vy, }, No(z) \ {w1,, w1, } and NZ(z)\ {ws, } are
cliques, there exist hamiltonian paths, say P, = v1, Piv1,, Po = w1, Powy, and Py = wsq, Psws,,
in them, respectively. Let C' = P, P,P; U {v,x, xwy,, we,wn,, w1,2, 201, } be a cycle and all
vertices on the path vy, ywi,wy, be stems of T" with Ne(vy,) = V(P) U{z}, No(y) = {z},
Neo(wy,) = V(Py) U{vy, } and Ne(ws,) = V(P3). Let H=TUC, it is easy to check that H
is a spanning Halin subgraph of G (See Figure 12.5(2) as an example).

If |Vi] = 1, since degg(z) > 3, we have [Ny(2)| > 2. If |Na(2) N N3(z)| > 2, we may
assume wo, 2,Ws,z € F(G) and wi,wy, € E(G). Since Ny(z) \ {w,} and NZ(z) \ {ws, }

are cliques, there exist hamiltonian paths, say P, = wy, Pywy, and P = wa, Pyws,, in them,
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respectively. Let C' = Py Py U {vy, 2z, zws,, wa, 2, zv1, } be a cycle and all vertices on the path
ywy, we, be stems of T with No(y) = {z,v1, }, No(wy,) = V(Py) and Ne(we,) = V(Py)U{z}.
Let H =T UC, it is easy to check that H is a spanning Halin subgraph of G (See Figure
12.5(3) as an example).

If [Vi] = 1 and |Na(2) N No(z)] = 1, |Na(2) N Ni(z)] = 1, we may assume wy, 2, wy, 2 €
E(G) since G is claw-free. We denote by wq,ws,, wi,we, € E(G) since G is 3-connected(Note
that we may have wy, = wi,). Since Ny(z) \ {wy,,wy,} and N3(x) \ {ws,} are cliques, there
exist hamiltonian paths, say P, = wy, Piw;, and P = ws, Pyws,, in them, respectively. Let
C = PPy U {vy,x,zwy,,wy, z, zv1, } be a cycle and all vertices on the path ywi,wi,wsy, be
stems of T" with No(y) = {x,v1, }, Ne(wy,) = {2}, No(wy,) = V(P1) and No(we,) = V (Pe).
Let H =T UC, it is easy to check that H is a spanning Halin subgraph of G (See Figure
12.5(4) as an example).

If [Vi] = 1 and Ny(z) N N3(z) = 0, which implies |No(2) N No(z)| > 2. We may
assume wy, Wa, , W1, Wa,, Wi,We, € F(G) since G is 3-connected and wy,z, w1,z € E(G). Then
Ny(wy,) N Nz(z) = 0 and No(wy,) N Ni(z) = 0 since G is claw-free and zz ¢ E(G).
Because Ny(x) \ {wy,, wi,, wy,, wi,} and N3(x)\ {ws,} are cliques, there exist hamiltonian
paths, say P, = wy,Piwy, and P, = wsy, Pows,, in them, respectively. Let C = PP, U
{v1, @, xwyy, wo,we,, Wi, W15, Wi, 2, 201, } be a cycle and all vertices on the path yw,wi, wo,
be stems of T' with Ne(y) = {z, vy, }, No(wy,) = {z,wi,}, Ne(wy,) = V(P) U {wy,} and
Neo(wq,) =V (P,). Let H=TUC, it is easy to check that H is a spanning Halin subgraph

of G (See Figure 12.5(5) as an example).

Case 2.2: Assume that xz € E(G). Then yz € E(G) since x and y are twins.

If Ny(z) N N3(x) # 0, we denote by vy, 2, wa, 2, Wi,Wa,, Wi,we, € E(G) since G is 3-
connected(Note that we may have wy, = wy,). Since V;U{z}, No(x)\{w1,} and NZ(x)\{ws,}
are cliques, there exist hamiltonian paths, say P’ = vy, P'z, P, = wy, Pw, and Py =
way, Pyws,, in them, respectively. Let C' = P'P; Py U {wsy,z, zv1,} be a cycle and all vertices
on the path ywi,wse, be stems of T with Ne(y) = V(P') U {z}, Ne(wy,) = V(P1) and
Ne(we,) =V (Py). Let H=TUC, it is easy to check that H is a spanning Halin subgraph
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Figure 12.5. No(wy,) # Na(wy,) and zz ¢ E(G).

of G (See Figure 12.6(1) as an example).

If No(z) N Ni(z) = 0, then Ny(z) N Na(x) # 0 since Ny(z) # . We denote by
V1, 2, Wy, Z, Wi, W, , W1, Wa,, Wi,We, € E(G) since G is 3-connected. Since Vi U {z}, Na(x) \
{w1,,wy, } and N2(x)\{ws,} are cliques, there exist hamiltonian paths, say P’ = vy, P'x, P; =
wy, Piwy, and Py = wy, Pyws,, in them, respectively. Let C' = PPy Py U {wy,wy,,ws,2, 201, }
be a cycle and all vertices on the path ywi,ws, be stems of T" with N¢(y) = V(P') U {z},
Neo(wy,) =V (P) U{wy, } and No(we,) = V(P,). Let H =T UC, it is easy to check that H

is a spanning Halin subgraph of G' (See Figure 12.6(2) as an example).

Figure 12.6. No(wy,) # No(ws,) and zz € E(G).
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