

62

Figure 26. CalculateFx block of Interpolate module

Figure 26 present CalculateFx block which generates values multiplying thetas and ∆thetas to

update the forces of MD simulations. Theta Calculator(Hermite) block in Figure 26 performs

the multiplication of thetas and ∆thetas (Refer to Appendix). Other modules for steps in

Figure 10 are computed in host computer.

63

6.4. Results and Analysis

In this section we describe the simulation results of a FGPA-based simulator and analyze its

performance. We analyze modules of the simulator and software implementation on Protomol

2.0 [41]. Protomol 2.0 provides Simple, Particle Mesh Ewald (PME), Full Ewald and

Multigrid (MG) implementation for the MD simulation and a platform for comparing various

methods. Table III compares the performance of the FPGA-based simulator versus the

software implementation. FPGA-based simulator (second version of the model) needs 12+N

clock counts and 16+N clock counts to run steps1 and 6 in Figure 10 on the FPGA board.

Steps 2 and 4 consume (1) in Table III clock counts and it is a function of the number of grid

points at each level. Steps 2 and 3 in Figure 10 are performed on host computer and its

running time is also a function of the number of grid points at each level. Software

implementation consumes K·N·order
3
instructions to run steps1 and 6 in Figure 10. Steps 2, 3

and 4 in Figure 10 need calculation time which is a function of the number of grid points at

each level.

For a large MD system, steps 1 and 6 in Figure 10 constitute the majority of the time

required for the simulation. Therefore, we can focus our attention to these two steps, as the

time required for the other steps are negligible in comparison. Our tests were performed for a

Calcium molecule with 309 atoms and Basic Pancreatic trypsin inhibitor (BPTI) with water

that has 1101 atoms and 14281 atoms. Table IV breaks down the timing for steps 1 and 6 for

64

both the software implementation and the FPGA implementation. It compares accuracy of

software implementation versus FPGA-based simulator. The comparisons were made for

multiple experiments over varying sizes of the molecular systems.

Software implementation has been implemented in C++ and runs on Intel Core Duo

T2300/1.66 GHz processor. The FPGA-based simulator runs on Virtex IV which has clock

speed 500MHz. Both solution use MCA method and 4
th
 order Hermite interpolation with

three grid levels. The FPGA-based simulator runs 900 times faster than software

implementation to perform steps1 and 6 and about 10 to 100 times faster than software

implementation depending on simulation accuracy desired without loss of accuracy. Table V

shows the resources used to implement our proposed FPGA-based simulator. The simulator

use 24 look up tables, 24 multiplexers and 773 multipliers.

TABLE III. Comparison of performance

N = Number of atoms, order = interpolation order, Nx(i), Ny(i), Nz(i) = grid points at i
th
 level , l = level

FPGA-based simulator

FPGA (clock count) Host Computer (instruction)

Software implementation

(instruction)

Step 1 12 + N

Step 2 finetoCoase:

(1)

Correction :

Step 3

Step 4

Step 5

Step 6 16 + N

K ⋅ ⋅N order 3

K order
l

⋅ ⋅ ⋅ ⋅
−

∑ (N (i) N (i) N (i))x y z

i

3
1

K
l

⋅ ⋅ ⋅
−

∑ (N (i) N (i) N (i))x y z

i

1

(15+ N (i) N (i) N (i))x y z

i

⋅ ⋅
−

∑
l 1

K
l

⋅ ⋅ ⋅
−

∑ (N (i) N (i) N (i))x

2

y

2

z

2

i

1

K
l

⋅ ⋅ ⋅
−

∑ (N (i) N (i) N (i))x

2

y

2

z

2

i

1

K ⋅ ⋅ ⋅N (l) N (l) N (l)x

2

y

2

z

2 K ⋅ ⋅ ⋅N (l) N (l) N (l)x

2

y

2

z

2

K order
l

⋅ ⋅ ⋅ ⋅
−

∑ (N (i) N (i) N (i))x y z

i

3
1

(15+ N (i) N (i) N (i))x y z

i

⋅ ⋅
−

∑
l 1

K ⋅ ⋅ ⋅N (0) N (0) N (0)x y z
5+ ⋅ ⋅N (0) N (0) N (0)x y z

K ⋅ ⋅N order 3

65

TABLE IV. Time and accuracy results for the software implementation vs. FPGA-based

simulator (N = Number of atoms)

 Case I (N = 309) Case II (N = 1101) Case III (N = 14281)

Step1 (sec) 0.00030 0.0015 0.0210

Step6 (sec) 0.00084 0.0026 0.0353

Total (sec) 1.10e-003 4.10e-003 5.63e-002

Software

Implementa

tion
Accuracy 0.0122 0.00177 1.7382 e-04

Step1 (sec) 6.42 e-7 2.2260e-006 2.8586e-005

Step6 (sec) 6.50e-7 2.2340e-006 2.8594e-005

Total (sec) 1.2920e-006 4.4600e-006 5.7180e-005

FPGA-

based

simulator
Accuracy 0.0138 0.00183 1.6195 e-04

TABLE V. Required FPGA resources

 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Total

Look up

tables
12 12 24

Multiplexer 12 12 24

Multiplier 192 192 192 1 196 773

Previous FPGA simulators use the Direct method for Coulombic force and the calculation

time of Direct method. However our proposed MCA method requires much less calculation

time than the Direct method with improved accuracy. In addition, we provide the results of

various experiments and prove that the simulator achieves better accuracy as well as better

performance in terms of time.

66

Chapter 7

Proposed Reconfigurable Mesh Algorithms

FPGA-based simulators [15, 17, 18] lead that feasibility of exploiting Reconfigurable

models on a large scale problems such as the MD simulation. Compared to supercomputing

systems, the circuits of FPGAs can be customized to MD simulations and reuse the same

logic resources in different configuration. They accelerate MD simulations about 100 times.

But it is hard to show the scalability of FPGA-based simulator due to the lack of facilities and

usually FPGA implementations demonstrate a prototype of applications.

In this Chapter, we present another reconfigurable model, Reconfigurable Mesh (R-mesh)

to show not only efficiency but also scalability of reconfigurable model. Any MD simulation

repeatively evaluates forces until the energy reaches equilibrium. If the function for

evaluating forces requires O(N
2
) time complexity such as the Direct method, the entire time

complexity is K· O(N
2
), where K is the number of iterations and is usually a large number.

Therefore it is very important to reduce the time for evaluating forces. We are presenting the

R-mesh algorithms for the Direct method in Section 7.1 and the Multigrid method in Section

7.2. The algorithms require much less calculation time to perform MD simulations. Section

7.3 summarizes the proposed R-mesh algorithms and provides theorems for the algorithms.

67

7.1. Algorithms for Direct method

The Direct method uses Equation 1 to evaluate electrostatic potential and takes O(N
2
) time on

a general purpose processor where N is number of atoms in a molecular system. We develop

two versions (Algorithm 1 and Algorithm 2) of R-Mesh algorithms for the Direct method.

Algorithms 1 and Algorithm 2 are the main modules of the MD simulations. Algorithm 1

requires K·O(N) time complexity on an N processor linear mesh. In Algorithm 1, p(i) and q(i)

are local data for the position and charge of atoms. DirectComputeForce() evaluates forces

of each atom and is described in Algorithm 1-1. doOneAtomPair(i, j) in Algorithm 1-1

evaluates the potential energy between atom i and atom j. UpdateVelocity() and

UpdatePosition() updates the velocity and position of atoms and takes O(1) time.

Algorithm 1 (MD simulation with direct method)

1. Model : N processors (N is # of atoms) 1-dimensional R-Mesh

2. Input: proc(i) store p(i)={p0, p1, …, pN-1} and q(i)={q0, q1, …, qN-1}

3. Output : proc(i) store force(i)={force0, force1, … forceN-1} and updated p={p0, p1, …, pN-1} and

proc(0) store total energy in E

begin // K×O(N) (K is the number of iteration)

MDSimulation_Direct ()

while E is not changed do

DirectComputeFoce(p, q) // O(N)

UpdateVelocity(pos, force, E)

UpdatePostion(pos, force, E)

proc(i) broadcast updated position of atom i and force to all process // O(N)

 end_while

end

68

The Direct method uses Equation 1 to evaluate electrostatic potential and takes O(N
2
) time

on a general purpose processor where N is number of atoms in a molecular system. We

develop two versions (Algorithm 1 and Algorithm 2) of R-Mesh algorithms for the Direct

method. Algorithms 1 and Algorithm 2 are the main modules of the MD simulations.

Algorithm 1 requires K·O(N) time complexity on an N processor linear mesh. In Algorithm 1,

p(i) and q(i) are local data for the position and charge of atoms. DirectComputeForce()

evaluates forces of each atom and is described in Algorithm 1-1. doOneAtomPair(i, j) in

Algorithm 1-1 evaluates the potential energy between atom i and atom j. UpdateVelocity()

and UpdatePosition() updates the velocity and position of atoms and takes O(1) time.

Algorithm 1-1 (DirectComputeForce)

1. Model : N processors (N is # of atoms) 1-dimensional R-Mesh

2. Input: proc(i) store p(i)={p0, p1, …, pN-1} and q(i)={ q0, q1, …, qN-1}

3. Output : proc(i) store force(i)={f0, f1, …, fN-1} and Proc(0) store total energy in E

begin // O(N)

DirectComputeForce()

 Step 1) each proc(i)

 for j1 to N-1 do

 force(i) = force(i) + doOneAtomPair(i, j) // O(1)

 end_for

 Step 2) (i) = e(i) + Calculate_Energy(force(i)) // O(1), calculate energy for atom i

 Step 3) compute E = e(0)+e(1) + … +e(N-1) with N R-mesh // O(logN) [1]

 and proc(0) store E

end

69

Algorithm 2-1 describes DirectComputeforceII(). The module evaluates forces of each atom

with N×N processors and takes O(logN) time complexity. Step 4 in Algorithm 2-1 describes

the process that uses each row to compute force of atom i and the steps for calculating

force(i) is logN. Since each row can perform the process independently, overall time

complexity is O(logN).

Algorithm 2 (MD simulation with direct method II)

1. Model : N*N processors (N is # of atoms) 2-dimensional R-Mesh

2. Input: proc(0, j) store pj and qj and proc(i, 0) store pi and qi

3. Output : proc(0, i) store force(i) and proc(0,0) store E and proc(i, j) store new p(i,j)

begin // K×O(logN) (K is the number of iteration)

MDSimulation_Direct ()

for energy is not changed do

DirectComputeFoceII() // O(logN)

proc(i, j) run UpdateVelocity(p, force, E)

proc(i, j) run UpdatePostion(p, force, E)

 end_for

end

70

7.2. Algorithms for Multigrid method

The Multigrid method takes O(N) time on a general purpose processor, where N is the

number of atoms in a molecular system. We developed an R-Mesh algorithm for the MG

method that requires O(r)+O(logM) time complexity on an X×Y×Z 3-dimensional R-Mesh,

where r is N/M and M= X×Y×Z is the number of finest grid points applied to the MG method

for a given parameter. M is determined by three factors, size of the finest grid, molecular

system size and interpolation order. To achieve accurate simulation results, it is important to

choose appropriate values for the factors. Since molecular systems have various system size

Algorithm 2-1 (DirectComputeForceII)

1. Model : N*N processors (N is # of atoms) 2-dimensional R-Mesh

2. Input: proc(0, j) store p(j) and q(j) and proc(i, 0) store p(i) and q(i)

3. Output : proc(0, i) store force(i) and proc(0,0) store E and proc(i, j) store new p(i,j)

begin // O(logN)

DirectComputeForceII ()

Step 1) proc(0, j) send pj and qj to column bus j

 Pos_A(i, j)  pj, Q_A(i, j)  qj

Step 2) proc(i, 0) send pi and qi to row bus j

 Pos_B(i, j)  pj, Q_B(i, j)  qj

Step 3) proc(i,j) run

 temp(i, j)  doOneAtomPair(Pos_A(i, j), Pos_B(i,j), Q_A(i,j), Q_B(i,j)) // O(1)

Step 4) compute force(i) = temp(i, 0)+..+temp(i, N-1) with row bus i

 and proc(0, i) store force(i) //O(logN) [1]

Step 5) proc(0, i) store e(i) = e(i) + Calculate_Energy(force(i)) // O(1)

Step 6) compute E(i) = e(0)+..+e(N-1) with N*N R-Mesh and proc(0, 0) store E // O(1) [1]

end

71

and number of atoms, it is hard to find optimal parameter values. The value of M is usually

much smaller compared to N unless the molecular system to be simulated is very small. For

example, MG method determines finest grid points to (13, 13, 13) for a the molecular system

with N =309 atoms to achieve 0.0008 relative accuracy [18]. In this case M is 13×13×13 =

2,197. Large molecular system that has N=14,281 atoms determines finest grid points (21, 21,

21) to achieve 0.0005 relative accuracy [10]. In this case M is 21×21×21=9281 which is very

small compared to the number of atoms (14,281). As mentioned earlier, MD simulations are

usually performed for large molecules that include over 10,000 atoms. As the number of

atoms is larger, M becomes much smaller as compared to N.

Algorithm 3 is the main module of the MD simulation and requires K·(O(r)+O(logM)) time

complexity. The main module is similar to Algorithm 1, but with a preprocessing function

(Algorithm 3.1) that distributes atoms to the nearest 64 processors. Since we are using 4th

hermite interpolation function, only 64 (4×4×4) processors correspond to the closest grid points to

atoms. The function runs based on the flag (CheckChangedGrid) that is assigned by

CheckGridPoint(). This function checks the new position and its grid point. Usually the

atoms retain their previous grid points assigned, so the calculation time of preprocessing() is

negligible over the entire simulation.

72

Algorithm 3-1 describes preprocessing() that distributes information of atoms to nearby

processors. proc(i, j, k) represents grid point (i, j, k) at level 0. calGridpoint (start+m, pstart+m)

returns grid_pos and atom start+m assigned to grid_pos to interpolate.

calThetas(grid_pos(i,j,k), pstart+m) calculates thetas and we use 4
th
 hermite interpolation

function to calculate thetas. Anterpolate() module (Algorithm 3-2-1) uses this information to

calculate Q0 (charge of finest grid). This algorithm takes O(N) time due to the N broadcasting

steps required.

Algorithm 3 (MD simulation with Multigrid method)

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of finest grid point)

2. Input: proc(i, j, k) hold store p(i,j,k)={ pstart, .. , pstart+c-1} and q(i,j,k)={ qstart, .., qstart+c-1}, which

start = i*c +j*X*c+k*X*Y*c and c = N/M

3. Output : proc(i, j, k) store force(i,j,k)={f0, f1.. fr}, p(i,j,k)={p0, p1.. ,pr} and proc(0,0,0) hold E,

r is number of atoms assigned in proc(i, j, k),

begin // K×O(1) (K is the number of iteration)

MDSimulation_Multigrid ()

while energy is not changed do

 if(CheckChangedGrid == true)

 Preprocessing() // O(N)

 End_if

 MultigridComputeForce(p(i,j,k), q(i,j,k))

proc(i, j, k) run UpdateVelocity(p(i,j,k), force(i,j,k), E)

proc(i, j, k) run UpdatePostion(p(i,j,k), force(i,j,k), E)

proc(i, j, k) set CheckChangedGrid  CheckGridpoint(p(i,j,k))

 end_while

end

73

MultigridComputeForce() described in Algorithm 3-2 evaluates the forces of each atom.

Each processor represents the grid points for the finest grid. It consists of 6 steps. Step 1 is

Anterpolate() to interpolate weights for the position of atoms and anterpolate the charge q

onto the finest grid (level 0). Step 2 is coarsening that anterpolates the grid charge from the

current level to level+1. Step 3 is computing the potential for the top grid level. Step 4 is

interpolating the grid charge from level to level-1. Step 5 is computing the energy of the top

grid level. Step 6 is interpolating the force from grid level 0.

Algorithm 3-1 (Preprocessing)

1. Model : M processors

2. Input: proc(i, j, k) hold store p(i,j,k)={ pstart, .. , pstart+c-1} and q(i,j,k)={ qstart, .., qstart+c-1}, which

start = i*c +j*X*c+k*X*Y*c and c = N/M

3. Output : proc(i, j, k) store D(i,j,k) = {d0, d1.. dr}, which dm = (index, p, q thetas, grid_pos), r is

number of atoms assigned in proc(i, j, k)

begin

Preprocessing ()

If D(i,j,k)’s grid_pos is changed // O(N)

 for m  0 to c-1 do // c = N/M

 grid_pos calGridpoint (start+m, pstart+m)

 thetas calThetas(grid_pos(i,j,k), pstart+m)

 D(i,j,k).dm = (start+m, pstart+m,, qstart+m thetas, grid_pos)

 end_for

send D(i,j,k).dm to proc(D(i,j,k).dm.grid_pos) //N broadcasting times

 else //O(1)

 keep previous D(i,j,k)

 end_if

end

74

Algorithm 3-2-1 describes Anterpolate() that anterpolates and interpolates weights for the

position of atoms and anterpolates the charge of atoms onto grid level 0. The main process of

this module is Step 1 which distributes charges of atom to grid level 0. Step 2 update

temp(i,j,k) using Cal_GridCharge(A). Cal_GridCharge(A) function performs a equation,

A.d.q×A.d.theta.X×A.d.theta.Y×A.d.theta.Z. This algorithm requires O(1) time complexity.

Since each atom is interpolated to the nearest grids that are order×order×order grid points,

broadcasting is performed on an order×order×order R-Mesh. The algorithm is designed so

that there is no overlapping and processors can broadcast data simultaneously. The actual

Algorithm 3-2 (Multigrid method for MD simulation with n atoms)

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of finest grid point)

2. Input: proc(i, j, k) hold D(i,j,k) = {d0, d1.. dr}, which dm = (index, p, q thetas, grid_pos), r is

number of atoms assigned in proc(i, j, k)

3. Output : proc(i, j, k) store force(i,j,k)={f0, f1.. fr}, p(i,j,k)={p0, p1.. ,pr} and proc(0,0,0) hold E,

r is number of atoms assigned in proc(i, j, k),

begin

MultigridComputeForce(p, q)

Step 1) Anterpolate() // O(1)

Step 2) for i  0 to Levels-1

 fineToCoarse (i) // O(1)

 correction (i) // O(Nx(i)· Ny(i)· Nz(i))

 end_for

Step 3) direct () // O(Nx(L)· Ny(L)· Nz(L))

Step 4) for i  0 to Level-1

 coarseToFine (i) // O(1)

 end_for

Step 5) energy() // O(logM)

Step 6) interpolateForce () // O(r)

end

75

number of broadcasting steps is (order-1)
4
, where order is the order of the interpolation

function. After broadcasting data, each processor updates Q0(i, j, k), which is the grid charges

at level 0.

Figure 27 shows that processor(i, j) broadcasts data to the nearest 15 processors. Figure 27

(a) shows the first broadcasting step of processor(i, j) where i%4 ==0 and j%4 == 0. Then in

the second step, the next group of nodes broadcast their data as shown in Figure 27 (b). These

nodes have indices so that i%4 ==0 and (j-1)%4 == 0. This continues for a total of (order-1)
4

steps.

(a) (b)

Figure 27. Example of broadcasting in Algorithm 3-2-1 with order = 4

(a) Proc(0, 0), Proc(0, 4), proc(4, 0) and proc(4,4) broadcast data simultaneously

(b) Proc(0, 1), proc(0, 5), proc(4, 1) and proc(4,5) broadcast data simultaneously

76

Algorithm 3-2-2 is the coarsening process. It coarsens grid charges from level to level+1

and requires O(1) time complexity. The actual number of broadcasting steps is (order-1)
3
.

Coarsening() in Algorithm 3-2-2 expands broadcasting to 64 processors similar to Algorithm

3-2-1.

Algorithm 3-2-1 (Anterpolate)

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of finest grid point)

2. Input: proc(i, j, k) hold Q0(i, j, k)=0 and hold D(i,j,k) = {d0, d1.. dr}, which dm=(index, p, q

thetas, grid_pos), r is number of atoms assigned in proc(i, j, k)

3. Output : proc(i, j,k) update Q0(i, j, k)

begin

Anterpolate () // O(1)

 Step1) proc(i, j, k) broadcast D(i, j, k,) to the nearest processors

 For rem0 to order-1 do

 For ix 0 to order-1 do

 For jx 0 to order-1

 For kx0 to order-1 do

 If (i+ix)%order==rem && (j+jx)%order==rem &&

(k+kx)%order==rem

 proc(i,j,k) broadcast D(i,j,k) to proc(i, j, k)

 ~proc(i+order, j+order, k+order) //O(1)

 end_if

 end_for

 end_for

 end_for

 Step 2) If Proc(i, j, k) received D(i,j,k),

 update temp (i,j,k) Cal_GridCharge(D(i,j,k))

 Step3) Q0(i, j, k)  Q0(i, j, k) + temp(i,j,k)

end

77

Algorithm 3-2-2-1 describes Coarsening() and Figure 28 provides the idea of the

broadcasting with a 2-dimensional R-Mesh. Figure 28 (a) shows that first broadcasting step

where i%2==0 && j%2==0. Then in the second step, the next group of nodes broadcast their

data as shown in Figure 28 (b). These nodes have indices so that i%2==0 && j%2==1.

Figure 28 (c)-(d) shows the similar processes. For example, Proc(0,0) represents other

processors((0,1), (1,0), (1,1)). Thus these processors broadcast their information to the 15

processors that are the nearest processors to proc(0,0).

Algorithm 3-2-2 (FinetoCoarse(L))

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of grid point at level L)

2. Input: proc(i, j, k) hold D(i,j,k) =(QL(i, j, k), theta) and L

3. Output : proc(i, j, k) update QL+1(i, j, k)

begin

FinetoCoarse (L) // O(1)

 Step1) proc(i, j, k) broadcast D(i, j, k,) to the nearest processors

 For ix 0 to order-1 do

 For jx 0 to order-1

 For kx0 to order-1 do

 If (i+ix)%order==0 && (j+jx)%order==0 && (k+kx)%order==0

 Coarsening(i,j,k) //O(1)

 end_if

 end_for

 end_for

 end_for

 Step2) temp(i,j,k)  Cal_GridCharge(D(i,j,k)) // QL(i, j, k)*theta.X*theta.Y*theta.Z

 Step3) QL+1(i, j, k)  Q L+1 (i,j,k) + temp(i,j,k)

 end_for

end

78

Algorithm 3-2-2-1 (Coarsening(i,j,k))

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of grid point at level L)

2. Input: proc(i, j, k) hold D(i,j,k) =(QL(i, j, k), theta)

3. Output : proc(i, j, k) update D(i, j, k)

begin

Coarsening (i,j,k) // O(1)

 if i%2==0 && j%2==0 && k%2==0

 Broadcast data(i, j, k) to proc(i/2, j/2, k/2) ~ proc(i/2+order-1, j/2+order-1, k/2+order-1)

 end_if

 If i%2==0 && j%2==0 && k%2==1

 Broadcast data(i,j,k) to proc(i/2, j/2, k/2)~proc(i/2+order-1, j/2+order-1, (k-1)/2+order-1)

 end_if

 If i%2==0 && j%2==1 && k%2==0

 Broadcast data(i,j,k) to proc(i/2, j/2, k/2)~proc(i/2+order-1, (j-1)/2+order-1, k/2+order-1)

 end_if

 If i%2==0 && j%2==1 && k%2==1

 Broadcast data(i,j,k) to proc(i/2, j/2, k/2)~proc(i/2+order-1, (j-1)/2+order-1, (k-1)/2+order-1)

 end_if

 if i%2==1 && j%2==0 && k%2==0

 Broadcast data(i, j, k) to proc(i/2, j/2, k/2) ~ proc((i-1)/2+order-1, j/2+order-1, k/2+order-1)

 end_if

 If i%2==1 && j%2==0 && k%2==1

 Broadcast data(i,j,k) to proc(i/2, j/2, k/2)~proc((i-1)/2+order-1, j/2+order-1, (k-1)/2+order-1)

 end_if

 If i%2==1 && j%2==1 && k%2==0

 Broadcast data(i,j,k) to proc(i/2, j/2, k/2)~proc((i-1)/2+order-1, (j-1)/2+order-1, k/2+order-1)

 end_if

 If i%2==1 && j%2==1 && k%2==1

 Broadcast data(i,j,k) to proc(i/2, j/2, k/2)~proc((i-1)/2+order-1, (j-1)/2+order-1, (k-1)/2+order-1)

 end_if

end

79

(a) (b)

(c) (d)

Figure 28. Example of broadcasting in Algorithm 3-2-2 with order = 4

(a) proc(0,0), proc(0,4), proc(4,0) and proc(4,4) broadcast data simultaneously

(b) proc(0,1), proc(0,5), proc(4,1) and proc(4,5) broadcast data simultaneously and use same data bus with (a)

(c) proc(1,0), proc(1,4), proc(5,0) and proc(5,4) broadcast data simultaneously and use same data bus with (a)

(d) proc(1,1), proc(1,5), proc(5,1) and proc(5,5) broadcast data simultaneously and use same data bus with (1)

Algorithm 3-2-3 is Correction(L). This module corrects grid charge(QL) after coarsening

module (Algorithm 3-2-2) and update potential(VL) at level L. The initial step generates the

matrix GCorrection(id, jd, kd). The number of loop iterations is C·ML, where ML=X×Y×Z

which is the number of grid points at level L and C is constant number. As explained above,

ML is a much smaller number than N. Thus we could consider Correction(L) requires O(1)

time complexity.

80

Algorithm 3-2-4 describes Step 3 in Algorithm 3-1. The module computes the potential for

the top level. The module updates VL, which is the potential of the top grid with grid charge

and GDirect matrix. It generates the GDirext matrix in the initial step. The number of

iterations for the loop in the module is C·Mt, where Mt=Xt×Yt×Zt ,which is the number of grid

Algorithm 3-2-3 (Correction(L))

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of grid point at level L)

2. Input: proc(i, j, k) hold data =(QL(i, j, k), theta) and L, GCorrDim and GCorrection

3. Output : proc(i, j, k) update VL(i, j, k)

begin

Correction (L)

 Each proc(i, j, k)

hi_l = min(i+GCorrDim.X, X);

so_l = -GCorrDim.X+1 – min(i-GCorrDim.X+1, 0)

lo_l = max(i-GCorrDim.X+1, 0)

hi_m = min(j+GcorrDim.Y, Y);

so_m = -GCorrDim.Y+1 – min(j-GCorrDim.Y+1, 0)

lo_m = max(j-GCorrDim.Y+1, 0)

 hi_n = min(k+GCorrDim.Z, Z);

so_n = -GCorrDim.Z+1 – min(k-GCorrDim.Z+1, 0)

lo_n = max(k-GCorrDim.Z+1, 0)

for llo_l, l2 so_l to l < hi_l do

 l0 l, id abs(l2)

for mlo_m, m2 so_m to m < hi_m do

 m0 m, jd abs(m2)

for nlo_n, n2 so_n to n < hi_n do

 n0 n, kd abs(n2)

 temp = temp + QL(l0, m0, n0) * GCorrection(id, jd, kd)

 end_for

 end_for

end_for

VL(i, j, k) = VL(i, j, k)+ temp*scale

end

81

points at the top level and C is a constant number. Since the size of grids at the top level is the

biggest among the grids levels, Mt is very small and the module requires O(1) time

complexity.

Algorithm 3-2-5 computes the energy of the top grid level and appears as step 5 in

Algorithm 3-1. Each processor calculates e(i,j,k) by grid charge (Q0)×potential (V0) and the

values are added to E. E is stored by processor(0,0,0). This module requires O(logM) time

complexity, where M is M=X×Y×Z is the number of finest grid.

Algorithm 3-2-4 (Direct(L))

1. Model : N processors (X×Y×Z R-Mesh, N=X×Y×Z is # of grid point at top level)

2. Input: proc(i, j, k) hold data =(QL(i, j, k), VL(i, j, k), GDriect(i, j, k))

3. Output : proc(i, j, k) update VL(i, j, k)

begin

Direct (L) // O(Nx(L)· Ny(L)· Nz(L)) i.e) Nx(i)·Ny(i)·Nz(i) = grid points at ith level

 Each proc(i, j, k)

for li to l < X do

i0abs(i-l)

for m j to m < Y do

 j0 abs(j-m)

for nk+1 to n < Z do

 k0 abs(k-n)

 temp = temp + QL(l, m, n) * GDirect(i0, j0, k0)

 VL(l, m, n) = VL(l, m, n)+ QL(i, j, k)*GDirect(0,0,0)

 end_for

 n=0

 end_for

 m0

end_for

VL (i, j, k) = VL (i, j, k) + QL(i, j, k)*GDirect(0,0,0) + temp

end

82

Algorithm 3-2-6 interpolates grid charges from level to level-1. This algorithm updates

Vlevel-1, which is the potential at level-1 with thetas. The preprocessing module (Algorithm 3-

1) generates thetas and the X, Y and Z field in thetas are an array with size order. Ratio and

order are constant numbers and Ratio represents the ratio between Level L and L-1. This

algorithm requires O(1) time complexity.

Algorithm 3-2-5 (Energy)

1. Model : N processors (X×Y×Z R-Mesh, M=X×Y×Z is # of finest grid)

2. Input: proc(i, j, k) hold Q0(i, j, k) and V0(i, j, k)

3. Output : proc(0, 0, 0) hold E (total energy)

begin

Energy() // O(logM)

 Each proc(i, j, k)

 e(i, j, k) = Q0(i, j, k) * V0(i, j, k)

compute force(i) = temp(i, 0)+..+temp(i, M-1) with row bus i and proc(0, i) store force(i).

 add e(i, j, k) of processors with M processor into E of proc(0,0,0) //O(logM)

end

83

Algorithm 3-2-7 performs interpolating forces from grid level 0 for each atom. Its inputs

are provided by preprocessing() (Refer to Algorithm 3-1). dTheta is ∆theta and it has the X,

Y and Z arrays like theta in Algorithm 3-2-7. Each processor stores the forces of the finest

grid point (i, j, k). This algorithm requires O(r) time complexity, r is N/M and M= X×Y×Z is

the number of finest grid points applied to Multigrid method at a given parameter.

Algorithm 3-2-6 (CoarseToFine(L))

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of grid point at L)

2. Input: proc(i, j, k) hold Vlevel(i, j, k) and theta ={X, Y, Z}

3. Output : proc(i, j, k) update Vlevel-1(i, j, k)

begin

CoarseToFine(L) // O(1)

 Each proc(i, j, k)

 Step 1) calculate temp using coarsened Vlevel and thetas

 i1i/Ratio, j1j/Ratio, k1k/Ratio

 for i00 to order-1 do

 i2 i1+i0

 for j00 to order-1 do

 j2 j1+j0

 for k00 to order-1 do

 k2 k1+k0

 temp=temp+ Vlevel(i2,j2,k2)*theta.X[i0]*theta.Y[j0]* theta.Z[k0]

 end_for

 end_for

 end_for

 Step2) Vlevel-1(i, j, k) = Vlevel-1(i, j, k) + temp

end

84

7.3. Results and Analysis

As explained Section 3.2.1, Cray XT3 and Blue Gene/L are only able to scale to up to a few

thousands nodes due to the communication overheads [2, 7]. With this limitation, it is not

possible to provide accommodating computing speed for biology activity with current

Algorithm 3-2-7 (InterpolateForce)

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of finest grid point)

2. Input: proc(i, j, k) hold V0(i, j, k) Data = {d0, d1.. dr}, which d = (index, p, q, theta, dtTheta,

grid_pos) and r is number of atoms assigned in proc(i, j, k)

3. Output : proc(i, j, k) store force(i,j,k)={f0, f1.. fr}

begin

InterpolateForce() // O(r)

 Each proc(i, j, k)

 For m0 to r

 Step 1) calculate temp to update force(i,j,k)

 For i0 0 to order do

For j0 0 to order do

 For k0 0 to order do

 Term = V0(i0+i, 0+j,k0+k)

 fx = fx + Term* dTheta.X[i]*Theta.Y[j]*Theta.Z[k]

 fy = fy + Term*Theta.X[i]*dTheta.Y[j]*Theta.Z[k]

 fz = fz + Term*Theta.X[i]*Theta.Y[j]*dTheta.Z[k]

 end_for

 end_for

 end_for

 Step 2) qData(m).q

 Step 3) force(i.j.k).fm += Vector3D(fx*q*HXr, fy*q*HYr, fz*q*HZr);

end_for

end

85

computing power. The communication overhead limits the performance and scaling on

microprocessors and massively-parallel systems [45].

We support the feasibility of reconfigurable models by providing theoretical theorems with

R-Mesh algorithm for MD simulation. Our results for the two versions of Direct method

require O(N) time complexity with an N linear R-Mesh and O(logN) time complexity with an

N×N 2-demensional R-Mesh. We are able to improve upon the results for the Multigrid

method. While we also are able to achieve O(r)+O(logM) time complexity, the number of

processors required are much less. The R-Mesh algorithm requires M=X×Y×Z processors

corresponding to the number of finest grid points, rather than N processors corresponding to

the number of atoms in the system. For most systems M is much smaller than N, thus

reducing the size of the simulating machine. This improvement is due to the natural mapping

of the layout of the MD system in a grid pattern to the three-dimensional structure of the R-

Mesh.

Theorem 1 Molecular Dynamics simulation of a molecular system with N atoms can be

performed in K·O(N) time on an N processor linear R-Mesh, when the simulation exploits the

Direct method to evaluate electrostatic potential. K is the number of iterations to reach

equilibrium. (Algorithm 1)

86

Theorem 2 Molecular Dynamics simulation of a molecular system with N atoms can be

performed in K·O(logN) time on an N×N 2-dimensional R-Mesh, when the simulation

exploits the Direct method to evaluate electrostatic potential. K is the number of iterations to

reach equilibrium. (Algorithm 2)

Theorem 3 Molecular Dynamics simulation of a molecular system with N atoms can be

performed in K·(O(r)+O(logM)) time on an X×Y×Z 3-dimensional R-Mesh, when the

simulation exploits the Multigrid method to evaluate electrostatic potential. X, Y and Z are

the number of finest grid points applied to Multigrid method at given parameter. K is the

number of iterations to reach equilibrium. (Algorithm 3)

87

Chapter 8

Future work

In this section, we suggest three possible directions for future work. The first future work is

to design Pipelined Reconfigurable Mesh (PR-Mesh) Algorithms for the MD simulation.

Second direction performs MD simulations for non-structured molecular system. Third

direction is to improve our proposed FPGA-based simulator in parallel manner.

8.1. PR-Mesh Algorithm for MD Simulation

Many researchers have proposed several reconfigurable models employing optical buses.

The optical signal transmission possesses two advantageous properties: unidirectional

propagation and predictable propagation delay per unit length. These two properties allow

synchronized concurrent access to an optical bus, creating a pipeline of message. Therefore,

the models based on optical bus can be very efficient for parallel computation due to the high

bandwidth that comes with pipelining messages [1].

The Pipelined Reconfigurable Mesh (PR-Mesh) is one of the optical reconfigurable models

studies in the literature. It is a k-dimensional mesh of processors in which each processor has

2k ports [28]. A two-dimensional PR-Mesh is an R×C mesh of processors in which each

processor has four ports. The ports connect to eight segments of buses using directional

88

couplers [27] as shown in Figure 29. We will extend our work with 2-dimensional PR-mesh

to parallelize the proposed system. We expect it will increase the performance of proposed

system highly.

Figure 29. PR-mesh processor connections [27]

8.2. Molecular Dynamics Simulation for Non-structured Molecular System

We would continue our research to another direction that performs MD simulations for non-

structured molecular system. Current methods for the MD simulation focus on a structured

molecular system. However, many molecular systems are non-structured. If we consider non-

structured feature to perform MD simulations, it will achieve more accuracy corresponding to

89

the actual structure. In this study, we will grid the system by computing Convex Hull and

Triangulation algorithms and apply Multigrid method. Many graph algorithms such as

Convex Hull and triangulation algorithm, will be exploited to evaluate MD for non-structured

molecular system and are computational intensive. Sung-Ryul Kim et al. [46] proposed an

O(logN loglogN) time R-Mesh algorithm for the Simple Polygon Visibility Problem. Simple

Polygon Visibility Problem is given a simple polygon P with N vertices and a point z in the

interior of the polygon finds all the boundary points of P that are visible from z. We could

design R-mesh algorithms to grid unstructured molecular systems and perform MD

simulations on those molecular systems with reasonable calculation time.

8.3. Parallelizing our proposed FPGA-based MD simulator

We proposed FPGA-based MD simulator that is customized for the Multigrid method. We

can improve the simulator by parallelizing the time consuming tasks. The Molecular

Dynamics (MD) simulation can suffer from an imbalance in load characteristic that varies at

run time[47]. Due to the dynamics of particle interaction and motion during MD simulation,

the task of load balancing is a non-trivial task. Potential load imbalances can significantly

impart an accelerator architecture’s resource utilization efficiency, especially when

considering implementations based on custom architectures. Phillips et a.l [47] proposed

architecture supporting dynamic load balancing on an FPGA for a MD algorithm.

90

Chapter 9

Conclusion

In the field of biology, Molecular Dynamics (MD) simulations are used continuously to study

biological activities. Since the MD simulation is a large scale problem and multiscale in

length and time, many approaches have been proposed to meet the speed required. In this

dissertation, we have proposed two research directions. For the MD simulation we develop an

efficient algorithm, Multi-level Charge Assignment (MCA) method [10] that achieves faster

and accurate simulations and we also utilize Reconfigurable models to perform the MD

simulation. Our MCA method is an O(N) Multigrid (MG) method for accurate and efficient

calculation of the electrostatic forces. The MCA method gives consistent accuracy and

reduces errors even if the distribution of particle is not balanced. We demonstrate Multigrid

charge assignment scheme and back interpolation scheme which adjusts the grid charge on

LDM. Using the MCA method, the MD simulation is more accurate while still requiring

similar calculation time to current methods.

We support the idea that exploits Reconfigurable models to perform large scale problems

such as the MD simulation. The first reconfigurable model we utilized for the MD simulation

is the FPGA. We design the architecture of an FPGA-based MD simulator and the simulator

employs the MCA method. The simulator is especially suitable for large scale molecules that

require a considerable amount of calculation time using a software solution [18]. Using

91

FPGAs, we achieve speed-up the simulation with a factor 10 to 100 compared to a software

implementation on Protomol without loss of accuracy [19]. We also expect more speed up if

we parallelize the modules of the proposed simulator, but this would require more space and

cost.

The second reconfigurable model we utilized for the MD simulation is a Reconfigurable

Mesh (R-mesh). We develop R-Mesh algorithms for two MD simulation methods, Direct

method and MG method. Direct method requires O(N
2
) time complexity for evaluating

electrostatic forces and provides accurate results if executed sequentially. We develop two

versions of R-Mesh algorithms that implement the Direct method. Our first version requires

O(N) time complexity with an N processor linear R-Mesh (Theorem 1) and the second

version requires O(logN) with an N×N 2-dimensional R-Mesh (Theorem 2). We also develop

an R-Mesh algorithm that implements the MG method to evaluate electrostatic forces. The

MG method requires O(N) calculation time at a given accuracy for a sequential

implementation. However, our R-Mesh algorithm requires O(r)+O(logM) time complexity

with an X×Y×Z 3-dimensional R-Mesh (Theorem 3). This algorithm requires M processors,

where M is the number of finest grid points (M = X×Y×Z). Since M is usually a much smaller

number compared to N, this algorithm provides very fast simulation time with a small

number of processors. In conclusion, Reconfigurable Models provide not only an efficient but

also a scalable method for MD simulation. Our R-Mesh algorithm implementing the MG

92

method with O(r)+O(logM) time complexity demonstrates that the R-Mesh is a feasible

choice for developing the MG method for MD simulations and likely other large scale

biological problems.

As future work, we will design algorithms to utilize other reconfigurable model, Pipelined

Reconfigurable Mesh (PR-Mesh) to run the MD simulation. This will simulate our proposed

method widely used in reconfigurable computing. In addition, we are studying another

direction that considers MD simulations for non-structured molecular system. By considering

non-structured molecular system, we can expect more accurate simulation results.

93

Publications

1. Cho, E., A.G. Bourgeois, and J.A. Fernández-Zepeda, Examining the feasibility of

 Reconfigurable Models for Molecular Dynamics Simulation, in International

 Conference on Algorithms and Architectures. 2008: Cyprus.

2. Cho, E. and Anu G. Bourgeois, Efficient and accurate FPGA-based simulator for

 Molecular Dynamics, Reconfigurable Architectures Workshop(RAW), 2008

3. Cho, E. and A. G. Bourgeois, Examining the Feasibility of Reconfigurable Models for

 Molecular Dynamics Simulation, Parallel Computing, 2008-under review

4. Cho, E., A.G. Bourgeois, and F. Tan, An FPGA Design to Achieve Fast and Accurate

 Results for Molecular Dynamics Simulations. LECTURE NOTES IN COMPUTER

 SCIENCE, 2007. 4742: p. 256.

5. Cho, E. and Anu G. Bourgeois, Efficient Molecular Dynamics (MD) simulation on Field

 Programmable Gate Array (FPGA)s with MultiGrid method, International Conference

 on Research in Computational Molecular Biology(RECOMB), 2007

6. Cho, E. and A. G. Bourgeois, Efficient Molecular Dynamics Simulation on

 Reconfigurable Models with MultiGrid Method, IEEE transactions on NanoBioScience,

 2007

7. Cho, E. and A.G. Bourgeois, Multi-level charge assignment for accurate and efficient

 Molecular Dynamics(MD) simulation. in Proceeding of 13th AI, Simulation and

 Planning in High Autonomy Systems (AIS), 2006.

8. Cho, E. and K. Lee, Security Policy Management Using Role-Based Access Control in

 CORBA, Information Science Society, 1998, Vol 25.

9. Shin, H. and E. Cho, et al. Search System for Document of Buddha on Internet, Korea

 Information Processing Society, 1998, Vol 25.

10. XML for beginners, 2001, Kanam Publisher, Korea

94

Bibliography

1. Vaidyanathan, R. and J.L. Trahan, Dynamic Reconfiguration: Architectures and

Algorithms. 2003: Plenum Pub Corp.

2. Alam, S.R., J.S. Vetter, and P.K. Agarwal, Performance characterization of molecular

dynamics techniques for biomolecular simulations. Proceedings of the eleventh ACM

SIGPLAN symposium on Principles and practice of parallel programming, 2006: p.

59-68.

3. Rapaport, D.C., The Art of Molecular Dynamics Simulation. 2004: Cambridge

University Press.

4. Sagui, C. and T.A. Darden, MOLECULAR DYNAMICS SIMULATIONS OF

BIOMOLECULES: Long-Range Electrostatic Effects. Annual Review of Biophysics

and Biomolecular Structure, 1999. 28(1): p. 155-179.

5. Sagui, C. and T. Darden, Multigrid methods for classical molecular dynamics

simulations of biomolecules. The Journal of Chemical Physics, 2001. 114: p. 6578.

6. Izaguirre, J.A., S.S. Hampton, and T. Matthey, Parallel multigrid summation for the

N-body problem. Journal of Parallel and Distributed Computing, 2005. 65(8): p. 949-

962.

7. Alam, S.R. and P.K. Agarwal, On the Path to Enable Multi-scale Biomolecular

Simulations on PetaFLOPS Supercomputer with Multi-core Processors. Sixth IEEE

International Workshop on High Performance Computational Biology (HiCOMB),

2007.

8. Toukmaji, A.Y. and J.A. Board, Ewald summation techniques in perspective: a survey.

Computer Physics Communications, 1996. 95(2-3): p. 73-92.

9. Skeel, R.D., I. Tezcan, and D.J. Hardy, Multiple grid methods for classical molecular

dynamics. Journal of Computational Chemistry, 2002. 23(6): p. 673-684.

10. Cho, E. and A.G. Bourgeois. Multi-level charge assignment for accurate and efficient

Molecular Dynamics(MD) simulation. in International Modeling and Simulation

Multiconference. 2007. Buenos Aires, Argentina.

11. Agarwal, P.K. and S.R. Alam, Biomolecular simulations on petascale: promises and

challenges. Journal of Physics: Conference Series, 2006. 46(1): p. 327-333.

12. Komeiji, Y., et al., A high performance system for molecular dynamics simulation of

biomolecules using a special-purpose computer. Pac Symp Biocomput, 1996. 472: p.

87.

13. Komeiji, Y., et al., Fast and accurate molecular dynamics simulation of a protein

using a special-purpose computer. Journal of Computational Chemistry, 1997. 18(12):

95

p. 1546-1563.

14. Toyoda, S., et al., Development of MD Engine: High-speed accelerator with parallel

processor design for molecular dynamics simulations. Journal of Computational

Chemistry, 1999. 20(2): p. 185-199.

15. Azizi, N., et al., Reconfigurable molecular dynamics simulator. Field-Programmable

Custom Computing Machines, 2004. FCCM 2004. 12th Annual IEEE Symposium on,

2004: p. 197-206.

16. The Transmogrifier-3a Rapid Prototyping System. [cited; Available from:

http://www.eecg.utoronto.ca/~tm3/.

17. Gu, Y., T. VanCourt, and M.C. Herbordt, Accelerating molecular dynamics

simulations with configurable circuits. Computers and Digital Techniques, IEE

Proceedings-, 2006. 153(3): p. 189-195.

18. Cho, E., A.G. Bourgeois, and F. Tan, An FPGA Design to Achieve Fast and Accurate

Results for Molecular Dynamics Simulations. LECTURE NOTES IN COMPUTER

SCIENCE, 2007. 4742: p. 256.

19. Cho, E., A.G. Bourgeois, and J.A. Fernández-Zepeda, Efficient and accurate FPGA-

based simulator for Molecular Dynamics, in 15th Reconfigurable Architectures

Workshop (RAW). 2008: Maimi.

20. Cho, E., A.G. Bourgeois, and J.A. Fernández-Zepeda, Examining the feasibility of

Reconfigurable Models for Molecular Dynamics Simulation, in International

Conference on Algorithms and Architectures. 2008: Cyprus.

21. Nakano, K., A Bibliography of Published Papers on Dynamically Reconfigurable

Architectures. Parallel Processing Letters, 1995. 5(1): p. 111-124.

22. Li, H., et al., Reconfigurable SIMD massively parallel computers. Proceedings of the

IEEE, 1991. 79(4): p. 429-443.

23. Miller, R., et al., Parallel computations on reconfigurable meshes. Computers, IEEE

Transactions on, 1993. 42(6): p. 678-692.

24. Fernandez-Zepeda, J.A., R. Vaidyanathan, and J.L. Trahan, Scaling simulation of the

fusing-restricted reconfigurable mesh. Parallel and Distributed Systems, IEEE

Transactions on, 1998. 9(9): p. 861-871.

25. Ben-Asher, Y., et al., The Power of Reconfiguration. Journal of Parallel and

Distributed Computing, 1991. 13(2): p. 139-153.

26. Bourgeois, A.G. and J.L. Trahan때, Fault tolerant algorithms for a linear array with a

reconfigurable pipelined bus system. Parallel Algorithms and Applications, 2003.

18(3): p. 139-153.

27. Bourgeois, A.G. and J.L. Trahan, Relating two-dimensional reconfigurable meshes

with opticallypipelined buses. Parallel and Distributed Processing Symposium, 2000.

96

IPDPS 2000. Proceedings. 14th International, 2000: p. 747-752.

28. Trahan, J.L., A.G. Bourgeois, and R. Vaidyanathan, Tighter and Broader Complexity

Results for Reconfigurable Models. Parallel Processing Letters, 1998. 8(3): p. 271-282.

29. Miller, R., et al., Meshes with reconfigurable buses. Proceedings of the fifth MIT

conference on Advanced research in VLSI table of contents, 1988: p. 163-178.

30. Jenq, J.F. and S. Sahni, Reconfigurable mesh algorithms for image shrinking,

expanding, clustering, and template matching. Parallel Processing Symposium, 1991.

Proceedings., Fifth International: p. 208-215.

31. Sato, N. and J.M. Jezequel, Implementing and Evaluating an Efficient Dynamic Load-

Balancer for Distributed Molecular Dynamics Simulation. Proceedings ofthe 2000

International Workshops on Parallel Processing.

32. Xilink. DSP Design Flows in FPGA. 2003 [cited.

33. Tanurhan, Y., DSP Design Flows in FPGAs. 2006.

34. Goslin, G.R., A Guide to Using Field Programmable Gate Arrays (FPGAs) for

Application-Specific Digital Signal Processing Performance. Xilinx Inc, 1995.

35. Rankin, W.T. and J.A. Board Jr, A portable distributed implementation of the parallel

multipoletree algorithm. High Performance Distributed Computing, 1995.,

Proceedings of the Fourth IEEE International Symposium on, 1995: p. 17-22.

36. Beckers, J.V.L., C.P. Lowe, and S.W. De Leeuw, An Iterative PPPM Method for

Simulating Coulombic Systems on Distributed Memory Parallel Computers.

Molecular Simulation, 1998. 20(6): p. 369-383.

37. York, D. and W. Yang, The fast Fourier Poisson method for calculating Ewald sums.

The Journal of Chemical Physics, 1994. 101: p. 3298.

38. Briggs, E.L., D.J. Sullivan, and J. Bernholc, Real-space multigrid-based approach to

large-scale electronic structure calculations. Physical Review B, 1996. 54(20): p.

14362-14375.

39. Banerjee, S. and J.A. Board Jr, Multigrid Methods for Molecular Dynamics. J Comput

Chem, 2005. 26: p. 957-967.

40. Fitch, B.G., et al., Blue Matter, an application framework for molecular simulation on

Blue Gene. Journal of Parallel and Distributed Computing, 2003. 63(7-8): p. 759-773.

41. Matthey, T., et al., ProtoMol, an object-oriented framework for prototyping novel

algorithms for molecular dynamics. ACM Transactions on Mathematical Software,

2004. 30(3): p. 237-265.

42. Amisaki, T., et al., Error evaluation in the design of a special-purpose processor that

calculates nonbonded forces in molecular dynamics simulations. Journal of

Computational Chemistry, 1995. 16(9): p. 1120-1130.

43. Allen, M.P. and D. J, Computer Simulation of Liquids. 1989: Oxford University Press.

44. Spiegel, J.V.d.S. VHDL Tutorial. 2006 [cited; University of Pennsylvania,

97

Department of Electrical and Systems Engineering]. Available from:

http://www.seas.upenn.edu/~ese201/vhdl/vhdl_primer.html#_Toc526061341.

45. Crowley, M., et al., Adventures in Improving the Scaling and Accuracy of a Parallel

Molecular Dynamics Program. The Journal of Supercomputing, 1997. 11(3): p. 255-

278.

46. Kim, S.R., K. Park, and Y.K. Cho, An O (log N log log N) time RMESH algorithm for

the simple polygonvisibility problem. Parallel Architectures, Algorithms and Networks,

1994.(ISPAN) International Symposium on, 1994: p. 151-158.

47. Phillips, J., et al., A Reconfigurable Load Balancing Architecture for Molecular

Dynamics. Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE

International, 2007: p. 1-6.

98

Appendix

Modules of our proposed FPGA-based Simulator

ThetaCalculator block in anterpolate module in figure 16

99

thetaZs4 block in anterpolate module in figure 20

100

Particle to Grid block in anterpolate module in figure 16

thetaX2 block in anterpolate module in figure 21

101

Particle to Grid block in coarseToFine module

Theta Calculator block in coarseToFine module

102

thetaZs4 block in Theta Calculator block

103

Theta Calculator block in calculateFx block of InterpolateForce module

104

calculateFy block in InterpolateForce module

105

calculateFz block in InterpolateForce module

