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Figure 26. CalculateFx block of Interpolate module 

 

Figure 26 present CalculateFx block which generates values multiplying thetas and ∆thetas to 

update the forces of MD simulations. Theta Calculator(Hermite) block in Figure 26 performs 

the multiplication of thetas and ∆thetas (Refer to Appendix). Other modules for steps in 

Figure 10 are computed in host computer.  
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6.4. Results and Analysis 

In this section we describe the simulation results of a FGPA-based simulator and analyze its 

performance. We analyze modules of the simulator and software implementation on Protomol 

2.0 [41]. Protomol 2.0 provides Simple, Particle Mesh Ewald (PME), Full Ewald and 

Multigrid (MG) implementation for the MD simulation and a platform for comparing various 

methods. Table III compares the performance of the FPGA-based simulator versus the 

software implementation. FPGA-based simulator (second version of the model) needs 12+N 

clock counts and 16+N clock counts to run steps1 and 6 in Figure 10 on the FPGA board. 

Steps 2 and 4 consume (1) in Table III clock counts and it is a function of the number of grid 

points at each level. Steps 2 and 3 in Figure 10 are performed on host computer and its 

running time is also a function of the number of grid points at each level. Software 

implementation consumes K·N·order
3 
instructions to run steps1 and 6 in Figure 10. Steps 2, 3 

and 4 in Figure 10 need calculation time which is a function of the number of grid points at 

each level.  

For a large MD system, steps 1 and 6 in Figure 10 constitute the majority of the time 

required for the simulation. Therefore, we can focus our attention to these two steps, as the 

time required for the other steps are negligible in comparison. Our tests were performed for a 

Calcium molecule with 309 atoms and Basic Pancreatic trypsin inhibitor (BPTI) with water 

that has 1101 atoms and 14281 atoms. Table IV breaks down the timing for steps 1 and 6 for 
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both the software implementation and the FPGA implementation. It compares accuracy of 

software implementation versus FPGA-based simulator. The comparisons were made for 

multiple experiments over varying sizes of the molecular systems.  

Software implementation has been implemented in C++ and runs on Intel Core Duo 

T2300/1.66 GHz processor. The FPGA-based simulator runs on Virtex IV which has clock 

speed 500MHz. Both solution use MCA method and 4
th
 order Hermite interpolation with 

three grid levels. The FPGA-based simulator runs 900 times faster than software 

implementation to perform steps1 and 6 and about 10 to 100 times faster than software 

implementation depending on simulation accuracy desired without loss of accuracy. Table V 

shows the resources used to implement our proposed FPGA-based simulator. The simulator 

use 24 look up tables, 24 multiplexers and 773 multipliers. 

 

TABLE III. Comparison of performance 

N = Number of atoms, order = interpolation order, Nx(i), Ny(i), Nz(i)  = grid points at i
th
 level , l = level 

FPGA-based simulator  

FPGA (clock count) Host Computer (instruction) 

Software implementation 

(instruction) 

Step 1 12 + N   
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TABLE IV. Time and accuracy results for the software implementation vs. FPGA-based 

simulator  (N = Number of atoms) 

 Case I (N = 309) Case II (N = 1101) Case III (N = 14281) 

Step1 (sec) 0.00030 0.0015 0.0210 

Step6 (sec) 0.00084 0.0026 0.0353 

Total (sec) 1.10e-003 4.10e-003 5.63e-002 

Software 

Implementa

tion 
Accuracy 0.0122 0.00177 1.7382 e-04 

Step1 (sec) 6.42 e-7 2.2260e-006 2.8586e-005 

Step6 (sec) 6.50e-7 2.2340e-006 2.8594e-005 

Total (sec) 1.2920e-006 4.4600e-006 5.7180e-005 

FPGA-

based 

simulator 
Accuracy 0.0138 0.00183 1.6195 e-04 

 

TABLE V. Required FPGA resources 

 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Total 

Look up 

tables 
12     12 24 

Multiplexer  12  12   24 

Multiplier 192 192  192 1 196 773 

 

Previous FPGA simulators use the Direct method for Coulombic force and the calculation 

time of Direct method. However our proposed MCA method requires much less calculation 

time than the Direct method with improved accuracy. In addition, we provide the results of 

various experiments and prove that the simulator achieves better accuracy as well as better 

performance in terms of time. 
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Chapter 7  

Proposed Reconfigurable Mesh Algorithms  

 

FPGA-based simulators [15, 17, 18]  lead that feasibility of exploiting Reconfigurable 

models on a large scale problems such as the MD simulation. Compared to supercomputing 

systems, the circuits of FPGAs can be customized to MD simulations and reuse the same 

logic resources in different configuration. They accelerate MD simulations about 100 times. 

But it is hard to show the scalability of FPGA-based simulator due to the lack of facilities and 

usually FPGA implementations demonstrate a prototype of applications.  

In this Chapter, we present another reconfigurable model, Reconfigurable Mesh (R-mesh) 

to show not only efficiency but also scalability of reconfigurable model. Any MD simulation 

repeatively evaluates forces until the energy reaches equilibrium. If the function for 

evaluating forces requires O(N
2
) time complexity such as the Direct method, the entire time 

complexity is K· O(N
2
), where K is the number of iterations and is usually a large number. 

Therefore it is very important to reduce the time for evaluating forces. We are presenting the 

R-mesh algorithms for the Direct method in Section 7.1 and the Multigrid method in Section 

7.2. The algorithms require much less calculation time to perform MD simulations. Section 

7.3 summarizes the proposed R-mesh algorithms and provides theorems for the algorithms.  

 



 

 

67 

7.1. Algorithms for Direct method 

The Direct method uses Equation 1 to evaluate electrostatic potential and takes O(N
2
) time on 

a general purpose processor where N is number of atoms in a molecular system. We develop 

two versions (Algorithm 1 and Algorithm 2) of R-Mesh algorithms for the Direct method. 

Algorithms 1 and Algorithm 2 are the main modules of the MD simulations. Algorithm 1 

requires K·O(N) time complexity on an N processor linear mesh. In Algorithm 1, p(i) and q(i) 

are local data for the position and charge of atoms. DirectComputeForce( ) evaluates forces 

of each atom and is described in Algorithm 1-1. doOneAtomPair(i, j) in Algorithm 1-1 

evaluates the potential energy between atom i and atom j.  UpdateVelocity() and 

UpdatePosition() updates the velocity and position of atoms and takes O(1) time. 

 

Algorithm 1 (MD simulation with direct method) 

1. Model : N processors (N is # of atoms) 1-dimensional R-Mesh 

2. Input: proc(i) store p(i)={p0, p1, …, pN-1} and q(i)={q0, q1, …, qN-1} 

3. Output : proc(i) store force(i)={force0, force1, … forceN-1} and updated p={p0, p1, …, pN-1} and 

proc(0) store total energy in E 

 

begin   // K×O(N) (K is the number of iteration) 

MDSimulation_Direct ( ) 

while E is not changed do 

DirectComputeFoce(p, q) //  O(N) 

UpdateVelocity(pos, force, E) 

UpdatePostion(pos, force, E) 

proc(i) broadcast updated position of atom i and force to all process //  O(N) 

 end_while 

end 
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The Direct method uses Equation 1 to evaluate electrostatic potential and takes O(N
2
) time 

on a general purpose processor where N is number of atoms in a molecular system. We 

develop two versions (Algorithm 1 and Algorithm 2) of R-Mesh algorithms for the Direct 

method. Algorithms 1 and Algorithm 2 are the main modules of the MD simulations. 

Algorithm 1 requires K·O(N) time complexity on an N processor linear mesh. In Algorithm 1, 

p(i) and q(i) are local data for the position and charge of atoms. DirectComputeForce( ) 

evaluates forces of each atom and is described in Algorithm 1-1. doOneAtomPair(i, j) in 

Algorithm 1-1 evaluates the potential energy between atom i and atom j.  UpdateVelocity() 

and UpdatePosition() updates the velocity and position of atoms and takes O(1) time. 

Algorithm 1-1 (DirectComputeForce) 

1. Model : N processors (N is # of atoms) 1-dimensional R-Mesh 

2. Input: proc(i) store p(i)={p0, p1, …, pN-1} and q(i)={ q0, q1, …, qN-1}  

3. Output : proc(i) store force(i)={f0, f1, …, fN-1} and Proc(0) store total energy in E 

 

begin   // O(N)  

DirectComputeForce( ) 

     Step 1) each proc(i) 

        for  j1 to N-1 do  

  force(i) = force(i) + doOneAtomPair(i, j)  // O(1) 

         end_for 

      Step 2)  (i)  = e(i)  + Calculate_Energy(force(i))  // O(1), calculate energy for atom i 

      Step 3)  compute E = e(0)+e(1) + … +e(N-1) with N R-mesh  // O(logN) [1] 

      and proc(0) store E                                              

end 
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Algorithm 2-1 describes DirectComputeforceII(). The module evaluates forces of each atom 

with N×N processors and takes O(logN) time complexity. Step 4 in Algorithm 2-1 describes 

the process that uses each row to compute force of atom i and the steps for calculating 

force(i) is logN. Since each row can perform the process independently, overall time 

complexity is O(logN).  

Algorithm 2 (MD simulation with direct method II) 

1. Model : N*N processors (N is # of atoms) 2-dimensional R-Mesh 

2. Input: proc(0, j) store pj and qj  and proc(i, 0) store pi and qi 

3. Output : proc(0, i) store force(i) and proc(0,0) store E and proc(i, j) store new p(i,j) 

 

begin   // K×O(logN) (K is the number of iteration) 

MDSimulation_Direct ( ) 

for energy is not changed do 

DirectComputeFoceII( ) //  O(logN) 

proc(i, j) run UpdateVelocity(p, force, E) 

proc(i, j) run UpdatePostion(p, force, E) 

 end_for 

end 
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7.2. Algorithms for Multigrid method 

The Multigrid method takes O(N) time on a general purpose processor, where N  is the 

number of atoms in a molecular system. We developed an R-Mesh algorithm for the MG 

method that requires O(r)+O(logM) time complexity on an X×Y×Z 3-dimensional R-Mesh, 

where r is N/M and M= X×Y×Z is the number of finest grid points applied to the MG method 

for a given parameter. M is determined by three factors, size of the finest grid, molecular 

system size and interpolation order. To achieve accurate simulation results, it is important to 

choose appropriate values for the factors. Since molecular systems have various system size 

Algorithm 2-1 (DirectComputeForceII) 

1. Model : N*N processors (N is # of atoms) 2-dimensional R-Mesh 

2. Input: proc(0, j) store p(j) and q(j)  and proc(i, 0) store p(i) and q(i) 

3. Output : proc(0, i) store force(i) and proc(0,0) store E and proc(i, j) store new p(i,j) 

 

begin   // O(logN)  

DirectComputeForceII ( ) 

Step 1) proc(0, j) send pj and qj to column bus j 

       Pos_A(i, j )  pj, Q_A(i, j)  qj 

Step 2) proc(i, 0) send pi and qi to row bus j 

        Pos_B(i, j )  pj, Q_B(i, j)  qj 

Step 3) proc(i,j) run  

        temp(i, j)  doOneAtomPair(Pos_A(i, j), Pos_B(i,j), Q_A(i,j), Q_B(i,j))  // O(1)  

Step 4) compute force(i) = temp(i, 0)+..+temp(i, N-1) with row bus i  

    and proc(0, i) store force(i)  //O(logN) [1] 

Step 5) proc(0, i)  store e(i) = e(i) + Calculate_Energy(force(i))  // O(1) 

Step 6) compute E(i) = e(0)+..+e(N-1) with N*N R-Mesh and proc(0, 0) store E // O(1) [1] 

end 
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and number of atoms, it is hard to find optimal parameter values. The value of M is usually 

much smaller compared to N unless the molecular system to be simulated is very small. For 

example, MG method determines finest grid points to (13, 13, 13) for a the molecular system 

with N =309 atoms to achieve 0.0008 relative accuracy [18]. In this case M is 13×13×13 = 

2,197. Large molecular system that has N=14,281 atoms determines finest grid points (21, 21, 

21) to achieve 0.0005 relative accuracy [10]. In this case M is 21×21×21=9281 which is very 

small compared to the number of atoms (14,281). As mentioned earlier, MD simulations are 

usually performed for large molecules that include over 10,000 atoms. As the number of 

atoms is larger, M becomes much smaller as compared to N. 

Algorithm 3 is the main module of the MD simulation and requires K·(O(r)+O(logM)) time 

complexity. The main module is similar to Algorithm 1, but with a preprocessing function 

(Algorithm 3.1) that distributes atoms to the nearest 64 processors. Since we are using 4th 

hermite interpolation function, only 64 (4×4×4) processors correspond to the closest grid points to 

atoms. The function runs based on the flag (CheckChangedGrid) that is assigned by 

CheckGridPoint( ). This function checks the new position and its grid point. Usually the 

atoms retain their previous grid points assigned, so the calculation time of preprocessing( ) is 

negligible over the entire simulation.  
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Algorithm 3-1 describes preprocessing( ) that distributes information of atoms to nearby 

processors. proc(i, j, k) represents grid point (i, j, k) at level 0. calGridpoint (start+m, pstart+m) 

returns grid_pos and atom start+m assigned to grid_pos to interpolate. 

calThetas(grid_pos(i,j,k), pstart+m) calculates thetas and we use 4
th
 hermite interpolation 

function to calculate thetas. Anterpolate( ) module (Algorithm 3-2-1) uses this information to 

calculate Q0 (charge of finest grid). This algorithm takes O(N) time due to the N broadcasting 

steps required. 

Algorithm 3 (MD simulation with Multigrid method) 

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of finest grid point) 

2. Input: proc(i, j, k) hold store p(i,j,k)={ pstart, .. , pstart+c-1} and q(i,j,k)={ qstart, .., qstart+c-1}, which 

start = i*c +j*X*c+k*X*Y*c and c = N/M 

3. Output : proc(i, j, k) store force(i,j,k)={f0, f1.. fr}, p(i,j,k)={p0, p1.. ,pr} and proc(0,0,0) hold E, 

r is number of atoms assigned in proc(i, j, k), 

 

begin   // K×O(1) (K is the number of iteration) 

MDSimulation_Multigrid ( ) 

while energy is not changed do 

        if(CheckChangedGrid == true) 

 Preprocessing( )    // O(N) 

        End_if 

  MultigridComputeForce(p(i,j,k), q(i,j,k))   

proc(i, j, k) run UpdateVelocity(p(i,j,k), force(i,j,k), E) 

proc(i, j, k) run UpdatePostion(p(i,j,k), force(i,j,k), E) 

proc(i, j, k) set CheckChangedGrid  CheckGridpoint(p(i,j,k)) 

 end_while 

end 
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MultigridComputeForce() described in Algorithm 3-2 evaluates the forces of each atom. 

Each processor represents the grid points for the finest grid. It consists of 6 steps. Step 1 is 

Anterpolate( ) to interpolate weights for the position of atoms and anterpolate the charge q 

onto the finest grid (level 0). Step 2 is coarsening that anterpolates the grid charge from the 

current level to level+1. Step 3 is computing the potential for the top grid level. Step 4 is 

interpolating the grid charge from level to level-1. Step 5 is computing the energy of the top 

grid level. Step 6 is interpolating the force from grid level 0.  

Algorithm 3-1 (Preprocessing) 

1. Model : M processors  

2. Input: proc(i, j, k) hold store p(i,j,k)={ pstart, .. , pstart+c-1} and q(i,j,k)={ qstart, .., qstart+c-1}, which 

start = i*c +j*X*c+k*X*Y*c and c = N/M  

3. Output : proc(i, j, k) store D(i,j,k) = {d0, d1.. dr}, which dm = (index, p, q thetas, grid_pos), r is 

number of atoms assigned in proc(i, j, k) 

 

begin    

Preprocessing ( ) 

If D(i,j,k)’s grid_pos is changed   //  O(N) 

  for  m  0 to c-1 do   // c = N/M 

   grid_pos calGridpoint (start+m, pstart+m ) 

       thetas calThetas(grid_pos(i,j,k), pstart+m ) 

   D(i,j,k).dm = (start+m, pstart+m,, qstart+m thetas, grid_pos)  

  end_for    

send D(i,j,k).dm to proc(D(i,j,k).dm.grid_pos) //N broadcasting times 

 else      //O(1) 

  keep previous D(i,j,k) 

 end_if 

end 
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Algorithm 3-2-1 describes Anterpolate( ) that anterpolates and interpolates weights for the 

position of atoms and anterpolates the charge of atoms onto grid level 0. The main process of 

this module is Step 1 which distributes charges of atom to grid level 0. Step 2 update 

temp(i,j,k) using Cal_GridCharge(A). Cal_GridCharge(A) function performs a equation, 

A.d.q×A.d.theta.X×A.d.theta.Y×A.d.theta.Z. This algorithm requires O(1) time complexity. 

Since each atom is interpolated to the nearest grids that are order×order×order grid points, 

broadcasting is performed on an order×order×order R-Mesh. The algorithm is designed so 

that there is no overlapping and processors can broadcast data simultaneously. The actual 

Algorithm 3-2 (Multigrid method for MD simulation with n atoms) 

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of finest grid point ) 

2. Input: proc(i, j, k) hold D(i,j,k) = {d0, d1.. dr}, which dm = (index, p, q thetas, grid_pos), r is 

number of atoms assigned in proc(i, j, k) 

3. Output : proc(i, j, k) store force(i,j,k)={f0, f1.. fr}, p(i,j,k)={p0, p1.. ,pr} and proc(0,0,0) hold E, 

r is number of atoms assigned in proc(i, j, k),  

  

begin    

MultigridComputeForce(p, q) 

Step 1) Anterpolate( )        // O(1) 

Step 2) for i   0 to Levels-1    

       fineToCoarse ( i)    // O(1)               

       correction ( i)     // O( Nx(i)· Ny(i)· Nz(i))   

             end_for 

Step 3) direct ( )     // O( Nx(L)· Ny(L)· Nz(L))   

Step 4) for i  0 to Level-1           

          coarseToFine (i)   // O(1)    

             end_for 

Step 5) energy(  )                // O(logM) 

Step 6) interpolateForce (   )       // O(r) 

end 
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number of broadcasting steps is (order-1)
4
, where order is the order of the interpolation 

function. After broadcasting data, each processor updates Q0(i, j, k), which is the grid charges 

at level 0.  

Figure 27 shows that processor(i, j) broadcasts data to the nearest 15 processors. Figure 27 

(a) shows the first broadcasting step of processor(i, j) where i%4 ==0 and j%4 == 0. Then in 

the second step, the next group of nodes broadcast their data as shown in Figure 27 (b). These 

nodes have indices so that i%4 ==0 and (j-1)%4 == 0. This continues for a total of (order-1)
4
 

steps. 

 

      

(a)                                             (b) 

Figure 27. Example of broadcasting in Algorithm 3-2-1 with order = 4 

(a) Proc(0, 0), Proc(0, 4), proc(4, 0) and proc(4,4) broadcast data simultaneously 

(b) Proc(0, 1), proc(0, 5), proc(4, 1) and proc(4,5) broadcast data simultaneously 
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Algorithm 3-2-2 is the coarsening process. It coarsens grid charges from level to level+1 

and requires O(1) time complexity. The actual number of broadcasting steps is (order-1)
3
. 

Coarsening( ) in Algorithm 3-2-2 expands broadcasting to 64 processors similar to Algorithm 

3-2-1. 

Algorithm 3-2-1 (Anterpolate) 

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of finest grid point ) 

2. Input: proc(i, j, k) hold Q0(i, j, k)=0 and hold D(i,j,k) = {d0, d1.. dr}, which dm=(index, p, q 

thetas, grid_pos), r is number of atoms assigned in proc(i, j, k) 

3. Output : proc(i, j,k) update Q0(i, j, k)  

 

begin    

Anterpolate ( )  // O(1) 

 Step1) proc(i, j, k) broadcast D(i, j, k,) to the nearest processors  

                        For rem0 to order-1 do 

                    For ix 0 to order-1 do 

                        For jx 0 to order-1 

           For kx0 to order-1 do 

                If (i+ix)%order==rem && (j+jx)%order==rem && 

(k+kx)%order==rem 

                   proc(i,j,k) broadcast D(i,j,k) to proc(i, j, k) 

      ~proc(i+order, j+order, k+order)  //O(1) 

   end_if 

     end_for 

                       end_for 

                                  end_for 

  Step 2) If Proc(i, j, k) received D(i,j,k),  

   update temp (i,j,k) Cal_GridCharge(D(i,j,k)) 

         Step3) Q0(i, j, k)   Q0(i, j, k)  + temp(i,j,k) 

end 
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Algorithm 3-2-2-1 describes Coarsening( ) and Figure 28 provides the idea of the 

broadcasting with a 2-dimensional R-Mesh. Figure 28 (a) shows that first broadcasting step 

where i%2==0 && j%2==0. Then in the second step, the next group of nodes broadcast their 

data as shown in Figure 28 (b). These nodes have indices so that i%2==0 && j%2==1. 

Figure 28 (c)-(d) shows the similar processes. For example, Proc(0,0) represents other 

processors((0,1), (1,0), (1,1)). Thus these processors broadcast their information to the 15 

processors that are the nearest processors to proc(0,0).  

Algorithm 3-2-2 (FinetoCoarse(L)) 

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of grid point at level L ) 

2. Input: proc(i, j, k) hold D(i,j,k) =(QL(i, j, k), theta) and L 

3. Output : proc(i, j, k) update QL+1(i, j, k)  

 

begin    

FinetoCoarse (L) // O(1) 

       Step1) proc(i, j, k) broadcast D(i, j, k,) to the nearest processors  

     For ix 0 to order-1 do 

         For jx 0 to order-1 

  For kx0 to order-1 do 

        If (i+ix)%order==0 && (j+jx)%order==0 && (k+kx)%order==0 

            Coarsening(i,j,k) //O(1) 

          end_if 

  end_for 

         end_for 

                  end_for 

         Step2) temp(i,j,k)  Cal_GridCharge(D(i,j,k)) // QL(i, j, k)*theta.X*theta.Y*theta.Z 

         Step3) QL+1(i, j, k)  Q L+1 (i,j,k) + temp(i,j,k) 

        end_for 

end 
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Algorithm 3-2-2-1 (Coarsening(i,j,k)) 

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of grid point at level L ) 

2. Input: proc(i, j, k) hold D(i,j,k) =(QL(i, j, k), theta) 

3. Output : proc(i, j, k) update D(i, j, k)  

 

begin    

Coarsening (i,j,k) // O(1) 

         if i%2==0 && j%2==0 && k%2==0   

 Broadcast data(i, j, k) to proc(i/2, j/2, k/2) ~ proc(i/2+order-1, j/2+order-1, k/2+order-1) 

        end_if 

        If i%2==0 && j%2==0 && k%2==1   

 Broadcast data(i,j,k) to proc(i/2, j/2, k/2)~proc(i/2+order-1, j/2+order-1, (k-1)/2+order-1) 

        end_if 

        If i%2==0 && j%2==1 && k%2==0   

 Broadcast data(i,j,k) to proc(i/2, j/2, k/2)~proc(i/2+order-1, (j-1)/2+order-1, k/2+order-1) 

        end_if 

        If i%2==0 && j%2==1 && k%2==1   

 Broadcast data(i,j,k) to proc(i/2, j/2, k/2)~proc(i/2+order-1, (j-1)/2+order-1, (k-1)/2+order-1) 

        end_if 

        if i%2==1 && j%2==0 && k%2==0   

 Broadcast data(i, j, k) to proc(i/2, j/2, k/2) ~ proc((i-1)/2+order-1, j/2+order-1, k/2+order-1) 

        end_if 

        If i%2==1 && j%2==0 && k%2==1   

 Broadcast data(i,j,k) to proc(i/2, j/2, k/2)~proc((i-1)/2+order-1, j/2+order-1, (k-1)/2+order-1) 

        end_if 

        If i%2==1 && j%2==1 && k%2==0   

 Broadcast data(i,j,k) to proc(i/2, j/2, k/2)~proc((i-1)/2+order-1, (j-1)/2+order-1, k/2+order-1) 

        end_if 

        If i%2==1 && j%2==1 && k%2==1   

 Broadcast data(i,j,k) to proc(i/2, j/2, k/2)~proc((i-1)/2+order-1, (j-1)/2+order-1, (k-1)/2+order-1) 

        end_if 

end 
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(a)                (b) 

 

                     
(c)      (d) 

Figure 28. Example of broadcasting in Algorithm 3-2-2 with order = 4 

(a) proc(0,0), proc(0,4), proc(4,0) and proc(4,4) broadcast data simultaneously 

(b) proc(0,1), proc(0,5), proc(4,1) and proc(4,5) broadcast data simultaneously and use same data bus with (a) 

(c) proc(1,0), proc(1,4), proc(5,0) and proc(5,4) broadcast data simultaneously and use same data bus with (a) 

(d) proc(1,1), proc(1,5), proc(5,1) and proc(5,5) broadcast data simultaneously and use same data bus with (1) 

 

Algorithm 3-2-3 is Correction(L). This module corrects grid charge(QL) after coarsening 

module (Algorithm 3-2-2) and update potential(VL) at level L. The initial step generates the 

matrix GCorrection(id, jd, kd). The number of loop iterations is C·ML, where ML=X×Y×Z 

which is the number of grid points at level L and C is constant number. As explained above, 

ML is a much smaller number than N. Thus we could consider Correction(L) requires O(1) 

time complexity.     
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Algorithm 3-2-4 describes Step 3 in Algorithm 3-1. The module computes the potential for 

the top level. The module updates VL, which is the potential of the top grid with grid charge 

and GDirect matrix. It generates the GDirext matrix in the initial step. The number of 

iterations for the loop in the module is C·Mt, where Mt=Xt×Yt×Zt ,which is the number of grid 

Algorithm 3-2-3 (Correction(L)) 

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of grid point at level L ) 

2. Input: proc(i, j, k) hold data =(QL(i, j, k), theta) and L, GCorrDim and GCorrection 

3. Output : proc(i, j, k) update VL(i, j, k)  

 

begin    

Correction (L)  

     Each proc(i, j, k)   

hi_l = min(i+GCorrDim.X, X); 

so_l = -GCorrDim.X+1 – min(i-GCorrDim.X+1, 0)  

lo_l = max(i-GCorrDim.X+1, 0) 

hi_m = min(j+GcorrDim.Y, Y); 

so_m = -GCorrDim.Y+1 – min(j-GCorrDim.Y+1, 0) 

lo_m = max(j-GCorrDim.Y+1, 0) 

    hi_n = min(k+GCorrDim.Z, Z); 

so_n = -GCorrDim.Z+1 – min(k-GCorrDim.Z+1, 0) 

lo_n = max(k-GCorrDim.Z+1, 0) 

for llo_l, l2 so_l to l < hi_l do 

  l0 l, id abs(l2) 

for mlo_m, m2 so_m to m < hi_m do 

   m0 m, jd abs(m2) 

for nlo_n, n2 so_n to n < hi_n do 

    n0 n, kd abs(n2) 

    temp = temp + QL(l0, m0, n0) * GCorrection(id, jd, kd) 

   end_for 

  end_for 

end_for 

VL(i, j, k) = VL(i, j, k)+ temp*scale 

end 
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points at the top level and C is a constant number. Since the size of grids at the top level is the 

biggest among the grids levels, Mt is very small and the module requires O(1) time 

complexity.  

  

Algorithm 3-2-5 computes the energy of the top grid level and appears as step 5 in 

Algorithm 3-1. Each processor calculates e(i,j,k) by grid charge (Q0)×potential (V0) and the 

values are added to E. E is stored by processor(0,0,0). This module requires O(logM) time 

complexity, where M is M=X×Y×Z is the number of finest grid. 

Algorithm 3-2-4 (Direct(L)) 

1. Model : N processors (X×Y×Z R-Mesh, N=X×Y×Z is # of grid point at top level ) 

2. Input: proc(i, j, k) hold data =(QL(i, j, k), VL(i, j, k), GDriect(i, j, k) ) 

3. Output : proc(i, j, k) update VL(i, j, k)  

 

begin    

Direct (L)  // O( Nx(L)· Ny(L)· Nz(L))  i.e) Nx(i)·Ny(i)·Nz(i)  = grid points at ith level 

     Each proc(i, j, k)   

for li  to l < X do 

i0abs(i-l) 

for m j to m < Y do 

   j0 abs(j-m) 

for nk+1 to n < Z do 

    k0 abs(k-n) 

    temp = temp + QL(l, m, n) * GDirect(i0, j0, k0) 

    VL(l, m, n) = VL(l, m, n)+ QL(i, j, k)*GDirect(0,0,0) 

   end_for 

   n=0 

  end_for 

  m0 

end_for 

VL (i, j, k) = VL (i, j, k) + QL(i, j, k)*GDirect(0,0,0) + temp 

end 
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Algorithm 3-2-6 interpolates grid charges from level to level-1. This algorithm updates 

Vlevel-1, which is the potential at level-1 with thetas. The preprocessing module (Algorithm 3-

1) generates thetas and the X, Y and Z field in thetas are an array with size order. Ratio and 

order are constant numbers and Ratio represents the ratio between Level L and L-1. This 

algorithm requires O(1) time complexity. 

 

 

 

Algorithm 3-2-5 (Energy) 

1. Model : N processors (X×Y×Z R-Mesh, M=X×Y×Z is # of finest grid ) 

2. Input: proc(i, j, k) hold Q0(i, j, k) and V0(i, j, k) 

3. Output : proc(0, 0, 0) hold E (total energy)  

 

begin    

Energy( )  // O(logM) 

     Each proc(i, j, k)   

 e(i, j, k) = Q0(i, j, k) * V0(i, j, k) 

 

compute force(i) = temp(i, 0)+..+temp(i, M-1) with row bus i and proc(0, i) store force(i). 

 add e(i, j, k) of processors with M processor into E of proc(0,0,0)     //O(logM)   

end 
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Algorithm 3-2-7 performs interpolating forces from grid level 0 for each atom. Its inputs 

are provided by preprocessing( ) (Refer to Algorithm 3-1). dTheta is ∆theta and it has the X, 

Y and Z arrays like theta in Algorithm 3-2-7. Each processor stores the forces of the finest 

grid point (i, j, k). This algorithm requires O(r) time complexity, r is N/M and M= X×Y×Z is 

the number of finest grid points applied to Multigrid method at a given parameter. 

 

 

Algorithm 3-2-6 (CoarseToFine(L)) 

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of grid point at L ) 

2. Input: proc(i, j, k) hold Vlevel(i, j, k) and theta ={X, Y, Z} 

3. Output : proc(i, j, k) update Vlevel-1(i, j, k) 

 

begin    

CoarseToFine(L)  // O(1) 

     Each proc(i, j, k)   

 Step 1) calculate temp using coarsened Vlevel and thetas 

      i1i/Ratio, j1j/Ratio, k1k/Ratio 

       for i00 to order-1 do 

  i2 i1+i0 

  for j00 to order-1 do 

   j2 j1+j0 

   for k00 to order-1 do 

    k2 k1+k0 

    temp=temp+ Vlevel(i2,j2,k2)*theta.X[i0]*theta.Y[j0]* theta.Z[k0] 

   end_for 

  end_for 

 end_for 

 Step2) Vlevel-1(i, j, k) = Vlevel-1(i, j, k) + temp  

end 
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7.3. Results and Analysis 

As explained Section 3.2.1, Cray XT3 and Blue Gene/L are only able to scale to up to a few 

thousands nodes due to the communication overheads [2, 7]. With this limitation, it is not 

possible to provide accommodating computing speed for biology activity with current 

Algorithm 3-2-7 (InterpolateForce) 

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of finest grid point ) 

2. Input: proc(i, j, k) hold V0(i, j, k) Data = {d0, d1.. dr}, which d = (index, p, q, theta, dtTheta, 

grid_pos) and r is number of atoms assigned in proc(i, j, k) 

3. Output : proc(i, j, k) store force(i,j,k)={f0, f1.. fr} 

 

begin    

InterpolateForce( )  // O(r) 

     Each proc(i, j, k)     

 For m0 to r 

  Step 1) calculate temp to update force(i,j,k)  

       For i0 0 to order do 

For j0 0 to order do 

    For k0 0 to order do 

     Term = V0(i0+i, 0+j,k0+k) 

     fx = fx + Term* dTheta.X[i]*Theta.Y[j]*Theta.Z[k] 

     fy = fy + Term*Theta.X[i]*dTheta.Y[j]*Theta.Z[k] 

     fz = fz + Term*Theta.X[i]*Theta.Y[j]*dTheta.Z[k] 

    end_for 

   end_for 

        end_for  

 

  Step 2) qData(m).q 

  Step 3) force(i.j.k).fm += Vector3D(fx*q*HXr, fy*q*HYr, fz*q*HZr); 

end_for 

end 
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computing power. The communication overhead limits the performance and scaling on 

microprocessors and massively-parallel systems [45].  

We support the feasibility of reconfigurable models by providing theoretical theorems with 

R-Mesh algorithm for MD simulation. Our results for the two versions of Direct method 

require O(N) time complexity with an N linear R-Mesh and O(logN) time complexity with an 

N×N 2-demensional R-Mesh. We are able to improve upon the results for the Multigrid 

method. While we also are able to achieve O(r)+O(logM) time complexity, the number of 

processors required are much less. The R-Mesh algorithm requires M=X×Y×Z processors 

corresponding to the number of finest grid points, rather than N processors corresponding to 

the number of atoms in the system. For most systems M is much smaller than N, thus 

reducing the size of the simulating machine. This improvement is due to the natural mapping 

of the layout of the MD system in a grid pattern to the three-dimensional structure of the R-

Mesh. 

 

Theorem 1 Molecular Dynamics simulation of a molecular system with N atoms can be 

performed in K·O(N) time on an N processor linear R-Mesh, when the simulation exploits the 

Direct method to evaluate electrostatic potential. K is the number of iterations to reach 

equilibrium.  (Algorithm 1) 
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Theorem 2 Molecular Dynamics simulation of a molecular system with N atoms can be 

performed in K·O(logN) time on an N×N 2-dimensional R-Mesh, when the simulation 

exploits the Direct method to evaluate electrostatic potential. K is the number of iterations to 

reach equilibrium.  (Algorithm 2) 

 

Theorem 3 Molecular Dynamics simulation of a molecular system with N atoms can be 

performed in K·(O(r)+O(logM)) time on an X×Y×Z 3-dimensional R-Mesh, when the 

simulation exploits the Multigrid method to evaluate electrostatic potential. X, Y and Z are 

the number of finest grid points applied to Multigrid method at given parameter. K is the 

number of iterations to reach equilibrium. (Algorithm 3) 
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Chapter 8  

Future work 

 

In this section, we suggest three possible directions for future work. The first future work is 

to design Pipelined Reconfigurable Mesh (PR-Mesh) Algorithms for the MD simulation. 

Second direction performs MD simulations for non-structured molecular system. Third 

direction is to improve our proposed FPGA-based simulator in parallel manner.  

 

8.1. PR-Mesh Algorithm for MD Simulation 

Many researchers have proposed several reconfigurable models employing optical buses.  

The optical signal transmission possesses two advantageous properties: unidirectional 

propagation and predictable propagation delay per unit length. These two properties allow 

synchronized concurrent access to an optical bus, creating a pipeline of message. Therefore, 

the models based on optical bus can be very efficient for parallel computation due to the high 

bandwidth that comes with pipelining messages [1].  

The Pipelined Reconfigurable Mesh (PR-Mesh) is one of the optical reconfigurable models 

studies in the literature. It is a k-dimensional mesh of processors in which each processor has 

2k ports [28]. A two-dimensional PR-Mesh is an R×C mesh of processors in which each 

processor has four ports. The ports connect to eight segments of buses using directional 
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couplers [27] as shown in Figure 29. We will extend our work with 2-dimensional PR-mesh 

to parallelize the proposed system. We expect it will increase the performance of proposed 

system highly. 

 

 

Figure 29. PR-mesh processor connections [27] 

  

8.2. Molecular Dynamics Simulation for Non-structured Molecular System 

We would continue our research to another direction that performs MD simulations for non-

structured molecular system. Current methods for the MD simulation focus on a structured 

molecular system. However, many molecular systems are non-structured. If we consider non-

structured feature to perform MD simulations, it will achieve more accuracy corresponding to 
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the actual structure. In this study, we will grid the system by computing Convex Hull and 

Triangulation algorithms and apply Multigrid method. Many graph algorithms such as 

Convex Hull and triangulation algorithm, will be exploited to evaluate MD for non-structured 

molecular system and are computational intensive. Sung-Ryul Kim et al. [46] proposed an 

O(logN loglogN) time R-Mesh algorithm for the Simple Polygon Visibility Problem. Simple 

Polygon Visibility Problem is given a simple polygon P with N vertices and a point z in the 

interior of the polygon finds all the boundary points of P that are visible from z. We could 

design R-mesh algorithms to grid unstructured molecular systems and perform MD 

simulations on those molecular systems with reasonable calculation time. 

 

8.3. Parallelizing our proposed FPGA-based MD simulator 

We proposed FPGA-based MD simulator that is customized for the Multigrid method. We 

can improve the simulator by parallelizing the time consuming tasks. The Molecular 

Dynamics (MD) simulation can suffer from an imbalance in load characteristic that varies at 

run time[47]. Due to the dynamics of particle interaction and motion during MD simulation, 

the task of load balancing is a non-trivial task. Potential load imbalances can significantly 

impart an accelerator architecture’s resource utilization efficiency, especially when 

considering implementations based on custom architectures. Phillips et a.l [47] proposed 

architecture supporting dynamic load balancing on an FPGA for a MD algorithm.   
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Chapter 9  

Conclusion 

In the field of biology, Molecular Dynamics (MD) simulations are used continuously to study 

biological activities. Since the MD simulation is a large scale problem and multiscale in 

length and time, many approaches have been proposed to meet the speed required. In this 

dissertation, we have proposed two research directions. For the MD simulation we develop an 

efficient algorithm, Multi-level Charge Assignment (MCA) method [10] that achieves faster 

and accurate simulations and we also utilize Reconfigurable models to perform the MD 

simulation. Our MCA method is an O(N) Multigrid (MG) method for accurate and efficient 

calculation of the electrostatic forces. The MCA method gives consistent accuracy and 

reduces errors even if the distribution of particle is not balanced. We demonstrate Multigrid 

charge assignment scheme and back interpolation scheme which adjusts the grid charge on 

LDM. Using the MCA method, the MD simulation is more accurate while still requiring 

similar calculation time to current methods. 

We support the idea that exploits Reconfigurable models to perform large scale problems 

such as the MD simulation. The first reconfigurable model we utilized for the MD simulation 

is the FPGA. We design the architecture of an FPGA-based MD simulator and the simulator 

employs the MCA method. The simulator is especially suitable for large scale molecules that 

require a considerable amount of calculation time using a software solution [18]. Using 
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FPGAs, we achieve speed-up the simulation with a factor 10 to 100 compared to a software 

implementation on Protomol without loss of accuracy [19]. We also expect more speed up if 

we parallelize the modules of the proposed simulator, but this would require more space and 

cost.  

The second reconfigurable model we utilized for the MD simulation is a Reconfigurable 

Mesh (R-mesh). We develop R-Mesh algorithms for two MD simulation methods, Direct 

method and MG method. Direct method requires O(N
2
) time complexity for evaluating 

electrostatic forces and provides accurate results if executed sequentially. We develop two 

versions of R-Mesh algorithms that implement the Direct method. Our first version requires 

O(N) time complexity with an N processor linear R-Mesh (Theorem 1) and the second 

version requires O(logN) with an N×N 2-dimensional R-Mesh (Theorem 2). We also develop 

an R-Mesh algorithm that implements the MG method to evaluate electrostatic forces. The 

MG method requires O(N) calculation time at a given accuracy for a sequential 

implementation. However, our R-Mesh algorithm requires O(r)+O(logM) time complexity 

with an X×Y×Z 3-dimensional R-Mesh (Theorem 3). This algorithm requires M processors, 

where M is the number of finest grid points (M = X×Y×Z). Since M is usually a much smaller 

number compared to N, this algorithm provides very fast simulation time with a small 

number of processors. In conclusion, Reconfigurable Models provide not only an efficient but 

also a scalable method for MD simulation. Our R-Mesh algorithm implementing the MG 
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method with O(r)+O(logM) time complexity demonstrates that the R-Mesh is a feasible 

choice for developing the MG method for MD simulations and likely other large scale 

biological problems.  

As future work, we will design algorithms to utilize other reconfigurable model, Pipelined 

Reconfigurable Mesh (PR-Mesh) to run the MD simulation. This will simulate our proposed 

method widely used in reconfigurable computing. In addition, we are studying another 

direction that considers MD simulations for non-structured molecular system. By considering 

non-structured molecular system, we can expect more accurate simulation results. 
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Appendix  

Modules of our proposed FPGA-based Simulator  

 

 

ThetaCalculator block in anterpolate module in figure 16 
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thetaZs4 block in anterpolate module in figure 20 
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Particle to Grid block in anterpolate module in figure 16 

 

 

thetaX2 block in anterpolate module in figure 21 
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Particle to Grid block in coarseToFine module 

 

Theta Calculator block in coarseToFine module 
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thetaZs4 block in Theta Calculator block 
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Theta Calculator block in calculateFx block of InterpolateForce module 
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calculateFy block in InterpolateForce module 
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calculateFz block in InterpolateForce module 

 


