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ABSTRACT  

FOR THE GOOD OF THE KIDS: THREE ESSAYS ABOUT THE ECONOMICS OF CHILD 

WELFARE  

By  

CURRAN ALEXANDRA PRETTYMAN  

August 2021 

Committee Chair: Dr. Tim Sass 

Major Department: Economics 

Millions of children in the United States come into contact with Child Protective Services 

each year and hundreds of thousands enter foster care. This dissertation uses economics, 

statistical methods, and national administrative and survey data to identify and address issues 

related to child maltreatment and evaluate potential solutions, such as extended foster care and 

mandatory reporting laws.   

Chapter 1 estimates the effect of extending foster care support and services from 18 to 21 

years old on the transition to adulthood for youth that have grown up in foster care. Over 20,000 

youth age-out of foster care each year and lose access to housing, social, and financial support. 

Subsequently, these youth face various hardships, such as homelessness, incarceration, low 

educational attainment, and unemployment. In response, over the past decade, states have 

implemented extended foster care, a program that provides access to housing, social, and 

financial support beyond 18 years old. I exploit the staggered roll-out of extended foster care to 

provide some of the earliest nationwide evidence of the causal effects of this program on the 

transition to adulthood. I find that extended foster care effectively reduces hardships and is cost 

effective.  

Chapter 2 evaluates how state legislation related to mandatory reporters impacts child 

maltreatment reporting. Child maltreatment is believed to be underreported, so mandatory 



 

 

reporting legislation may be a feasible and effective way for policymakers to approach the true 

level of maltreatment. The list of mandatory reporters varies by state and over time. I create a 

state panel of mandatory reporter job classifications, child maltreatment referrals and reports, and 

case dispositions from 2004 to 2017. Exploiting legislation changes, I find that increasing the 

number of jobs classified as mandatory reporters increases reporting by 4 percent. However, this 

increase is driven by unsubstantiated reports. 

Finally, chapter 3 documents the drastic decline in reporting during the pandemic in 

Colorado as a result of the COVID-19 pandemic, pandemic-induced school closures, and stay-at-

home order. This chapter estimates two counterfactuals to quantify the number of maltreatment 

victims that may have been missed during 2020, so that state agencies can allocate resources 

appropriately.  
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Chapter 1: Happy 18th Birthday, Now Leave: The Hardships of Aging Out of Foster Care 

1.1. Introduction  

Transitioning to adulthood can be daunting, especially for foster youth who lose access to 

housing, social, and financial support rather abruptly (Collins, 2001; Osgood et al., 2010). Over 

20,000 youth age out of foster care in the United States each year and face various hardships as 

they transition to adulthood. By the age of 21, 23 percent will have experienced homelessness, 

26 percent will have been incarcerated, and only 66 percent will have received a high school 

diploma or GED (AECF, 2019). Moreover, less than 8 percent will receive a college degree, and 

50 percent will still be unemployed by the age of 24 (National Foster Youth Institute, 2017). On 

one hand, these hardships might stem from the accumulation of adverse childhood experiences, 

such as neglect and abuse (Gypen et al., 2017). Alternatively, these hardships might stem from 

losing access to resources at a developmentally young age (Rosenberg & Abbot, 2019). This 

paper focuses on the latter and evaluates the impact of prolonged access to resources on the 

transition to adulthood for foster youth. 

Recognizing the challenges foster youth face while transitioning to adulthood and the 

subsequent costs to society, the federal Fostering Connections Act of 2008 incentivized states to 

extend foster care support and services beyond 18 years old. As a result, between January 2012 

and December 2016, 22 states implemented extended foster care (i.e. prolonged access to 

housing, social, and financial support), potentially impacting over 31,500 youth each year.1 

Extended foster care is associated with increased college enrollment and employment and 

decreased pregnancy and homelessness at age 19; however, these benefits fade by age 21 

                                                            
1 Author’s calculation based on the number of 17-year-old foster youth (from AFCARS 2011 & 2014) in 

the 22 states that implemented extended foster care and the 20 states that had extended foster care prior to 

2012. 
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(Courtney et al., 2007; Dworsky & Courtney, 2010a; Dworsky & Courtney, 2010b; Hook & 

Courtney, 2010).  

In this paper, I use a difference-in-differences design that exploits the staggered roll-out 

of extended foster care to estimate the causal effect of this program on the transition to adulthood 

for foster youth across the country. In particular, I examine the effect of extended foster care on 

young adult outcomes, such as homelessness, incarceration, educational attainment, and 

employment. I also examine heterogeneity by funding source,2 foster care placement setting, and 

individual childhood experiences to learn who benefits the most.  

I enrich the existing evidence on the effectiveness of extended foster care by providing 

some of the earliest nationwide causal estimates. Prior studies compare outcomes of foster youth 

across a handful of states without controlling for individual or state characteristics (Courtney et 

al., 2007; Dworsky & Courtney, 2010a; Dworsky & Courtney, 2010b; Hook & Courtney, 2010). 

Alternatively, I link novel individual-level survey data to rich case-level administrative data for 

two cohorts of foster youth across the country. The survey data come from the National Youth in 

Transition Database (NYTD), which contains demographic information and outcome measures 

for foster youth between the ages of 17 and 21. Cohort 1 was surveyed biennially from 2011 to 

2015 and cohort 2 was surveyed biennially from 2014 to 2018. The administrative data come 

from the Adoption and Foster Care Analysis and Reporting System (AFCARS), which contains 

detailed information about a youth’s foster care history. I also construct a state-level panel of 

economic conditions, safety net generosity, and extended foster care policy changes. Combining 

these data, I compare outcomes of youth across cohorts within the same state under different 

extended foster care policies, controlling for individual, cohort, and state characteristics. To 

                                                            
2 Some states finance extended foster care with federal reimbursements and others use state funding. 
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establish causality, I argue that the timing of these policy changes is exogenous with respect to 

individual outcomes after controlling for cohort and state trends.  

I find evidence that access to extended foster care reduces homelessness by 18 to 30 

percent, incarceration by 36 to 46 percent, and disconnectedness (neither enrolled in school nor 

working)3 by 7 to 30 percent. Additionally, youth with access to extended foster care appear to 

be making a tradeoff between educational attainment and employment. They are 21 percent more 

likely to be enrolled in school, but 15 percent less likely to be working. Furthermore, extended 

foster care primarily helps youth that lived with a foster family prior to turning 18 (as opposed to 

living in a group home) and appears to mitigate the hardships of experiencing homelessness and 

substance abuse as a minor. However, extended foster care does not overcome the lasting 

consequences of juvenile incarceration. Lastly, federally-funded extended foster care has 

stronger effects than state-funded extended foster care. This confirms the hypothesis that the 

federal program is more effective than the state programs. Understanding how the current 

program impacts foster youth differentially based on placement setting, experiences, and funding 

enables better targeting of future resources. 

More broadly, this study makes an important contribution to the transition to adulthood 

literature. While there is abundant research demonstrating that the transition to adulthood has 

become increasingly difficult over the past several decades (Danziger & Rouse, 2008; Settersten 

& Ray, 2010; Sironi & Furstenberg, 2012; Benson, 2014) and more so for vulnerable populations 

(Rapheal, 2008; Osgood et al., 2010), there is less focus on policy intervention and evaluation 

(Bloom, 2010; Lee & Morgan, 2017). I demonstrate that extended foster care provides resources 

and incentives that beneficially alter a youth’s transition to adulthood, potentially creating long-

                                                            
3 Some people may refer to this as “idle” or “NEET” (neither in employment nor education or training), 

but throughout the paper I use “disconnected.” “Disconnected” is commonly used in public policy.     
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run gains. Back-of-the-envelope calculations suggest that for every one dollar spent on extended 

foster care, there is at least a two-dollar return. This study provides enriched evidence on the 

efficacy of a federal program that impacts some of the nation’s most vulnerable youth and their 

transition to adulthood.  

1.2. Causal Effects of Foster Care 

Foster youth are more likely to drop out of high school, face unemployment and lower 

incomes, experience homelessness, commit crime, and suffer from substance abuse compared to 

their non-foster youth peers (Gypen et al., 2017). Moreover, foster youth face various hardships 

growing up, such as abuse and neglect, mobility and school instability, and enrollment in lower 

performing schools (Barrat & Berliner, 2013). There is abundant research that shows a negative 

association between foster care placement and long-run outcomes,4 but it is unclear how much 

adverse childhood experiences contribute to foster care placement and poor outcomes. This 

uncertainty confounds the causal effect of foster care. 

Estimating the causal effects of foster care faces many statistical challenges due to the 

non-random assignment of youth to foster care and lack of an appropriate control group. To deal 

with these challenges, the economic literature on child welfare often exploits the semi-random 

assignment of caseworkers when administrative data are available (Doyle, 2007; Doyle, 2008; 

Aizer & Doyle, 2015; Bald et al., 2019; Gross & Baron, 2021). The main assumption underlying 

this approach is that youth in these cases experience the same hardships and the only difference 

is foster care placement, which is quasi-randomly determined via caseworker assignment.  

Using caseworker assignment, the causal evidence on the effectiveness of foster care is 

mixed. Doyle (2007) finds that foster care in Illinois has adverse effects on child development, as 

                                                            
4 See Gypen et al. (2017) for a summary of 32 studies from 2004 to 2015.  
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measured by teen pregnancy, delinquency, and adult labor market outcomes. In contrast, Gross 

and Baron (2021) finds improved attendance and math test scores for children removed from 

allegedly abusive homes in Michigan. Bald et al. (2019) find differential effects for young boys 

and girls in Rhode Island; young girls benefit, but there is no effect for young boys. This 

approach identifies the local average treatment effect in cases where children are on the margin 

of being admitted to state custody. A key limitation of these studies is that they are unable to 

address the effects of foster care for older youth who have been in care for multiple years. 

This paper contributes to the strand of literature that focuses on estimating the impact of 

extended foster care; a program for foster youth that provides financial, social, and housing 

support beyond 18 years old. Existing research estimates the effect of extended foster care on the 

transition to adulthood by comparing outcomes of youth across states at a single point in time. 

One study finds that extended foster care is associated with delayed homelessness (Dworsky & 

Courtney, 2010a). At 19 years old, only 4.5 percent of youth with extended foster care had 

experienced homelessness versus 12.2 percent of youth without extended foster care. However, 

by 23 and 24 years old, 28.9 percent of youth with extended foster care experienced 

homelessness versus 29.9 percent of youth without. Another study finds that extended foster care 

is associated with an increase in college enrollment and completion of an additional year of 

school, but it is not associated with an increase in college graduation (Dworsky & Courtney, 

2010b). Lastly, Hook & Courtney (2010) find that extended foster care is associated with 

increased employment from 19 to 21 years old, but not from 21 to 23 years old. These studies 

use data from the Midwest Survey, a longitudinal survey that followed youth from 17/18 years 

old to 26 years old in Iowa, Wisconsin, and Illinois in the early 2000s. In these studies, the 

researchers compare the outcomes of youth in Illinois to those in Wisconsin and Iowa because 
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Illinois provided extended foster care services and assistance to emancipated youth, whereas 

Wisconsin and Iowa did not. These cross-sectional analyses do not control for state-level 

characteristics, so they potentially suffer from omitted variable bias and may be misattributing 

beneficial outcomes to extended foster care.   

A recent national-level analysis conducted by Child Trends finds that extended foster 

care is associated with better access to services that aid in the transition to adulthood and better 

adult outcomes, like employment and educational attainment (Rosenberg & Abbott, 2019). This 

study uses logistic regression models comparing youth in extended foster care to youth not in 

extended foster care. This analysis may suffer from selection bias since youth in states with 

extended foster care can choose whether or not to participate. Depending on the reasons youth 

choose to participate in extended foster care, these results may either overestimate or 

underestimate the true effect of extended foster care.  

Finally, a recent study using California administrative and survey data from 2006 to 2015 

finds that extended foster care increases college enrollment by 10 to 11 percent, extends 

employment by one and one half months for each additional year in extended foster care, and 

reduces homelessness by 28 percent for young adults (Courtney et al., 2018). The researchers 

address omitted variable bias by focusing their analysis on one state, rather than making cross-

state comparisons. Additionally, they overcome selection bias by exploiting county-level 

variation in the uptake of extended foster care. They instrument participation with county of 

residence and argue that county of residence is a good instrument because participation in 

extended foster care varies across counties and is unrelated to youths’ characteristics that may be 

associated with selection into extended care. The key concern of this study is the extent in which 

the results are generalizable to the rest of the country.  
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My analysis enriches the existing evidence of the effectiveness of extended foster care in 

three ways. First, I control for time-varying state characteristics, such as safety net generosity 

and unemployment and poverty rates and include state fixed effects to control for time-invariant 

state characteristics to reduce omitted variable bias. Second, I mitigate selection bias that comes 

from youth choosing to participate in extended foster care by estimating the intent-to-treat effect 

of the program. Lastly, I use a national dataset to obtain more generalizable estimates compared 

to prior research. 

1.3. Background on Independent Living Programs and Extended Foster Care 

A primary goal of foster care is to safely reunify children with their biological parents. 

When reunification is not possible, the next best option is adoption. Adoption subsidies targeted 

to families help children achieve permanency (Hansen & Hansen, 2006; Argys & Duncan, 2013), 

but subsidies targeted to states for older youth are less effective (Brehm, 2018). In these cases, 

youth remain in care until emancipation.  

Over 20,000 youth age out of foster care each year and are abruptly forced to become 

self-sufficient overnight. Since foster youth typically lack supportive parental figures, they have 

to learn many skills quickly and on their own, such as how to apply to college, take out loans, set 

up bank accounts and manage finances, write resumes and apply to jobs, and obtain health 

insurance. Alternatively, the average young adult can acquire these skills over various years and 

receive assistance from their parents (Swartz et al., 2011). In fact, 34 percent of youth aged 18 to 

34 still lived at home with their parents in 2015 (Vespa, 2017), and during this time, they 

received approximately 48,000 dollars5 in financial support.   

                                                            
5 This is the inflation adjusted value (2015 USD) for the original estimate of 38,000 dollars (Schoeni & 

Ross, 2004). 
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Recognizing the challenges foster youth face while transitioning to adulthood, state and 

federal agencies have implemented various programs to assist this process. In 1986, the federal 

government began allocating funds to states for Independent Living Programs (ILPs) to help 

foster youth live independently and transition to adulthood. ILPs and services vary across and 

within states and are based on need and availability of funding. Transitioning from state custody 

to an ILP is not automatic; youth learn about these programs through their caseworker, foster 

parents, probation officer, ILP coordinator, or self-discovery.  

In 1999, the John H. Chafee Foster Care Independence Program (CFCIP) was created to 

assist current and former foster youth achieve self-sufficiency. This program provides grant-

based federal funds up to 140 million dollars to states that submit plans outlining how they will 

assist foster youth transitioning to adulthood. This program provides education, employment, 

financial management, housing, and emotional and social support. CFCIP is targeted to 18 to 21 

year olds after they have aged out of state custody or 16 to 18 year olds who are or have been in 

custody. In 2002, the CFCIP was expanded to include the Education Training Voucher Program 

(ETV) which allocated 5,000 dollars per year to college-going eligible youth. Originally states 

could request up to 60 million dollars in total each year, which would assist 12,000 youth. As of 

2009, states can only request up to 45 million dollars for ETVs each year. Youth can receive 

college financial assistance for up to five years or until their 23rd birthday.6 Furthermore, under 

the CFCIP, the federal government increased accountability measures by requiring that states 

track their service uptake and outcomes for youth served. As a result, some regions created foster 

care alumni surveys to follow up with their youth, but the national accountability system was not 

                                                            
6 FC2S. Education Training Vouchers.   
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created until 2011. Due to a lack of data, it is difficult to measure the efficacy of these earlier 

programs.   

More recently, the Fostering Connections Act of 2008 (FCA) incentivized states to 

implement extended foster care. In 2010, nine states implemented extended foster care under the 

FCA, in 2011, another four states were approved, and as of December 2016, 23 states operate 

under this federal policy. Additionally, from 2012 to 2016, 12 states enacted their own state-

funded extended foster care programs. Figure 1 shows the geographic and timing variation of 

extended foster care in the United States from 2012 to 2016.  

Figure 1: States that Extended Foster Care between 2012 and 2016 

Notes: This figure shows the geographic and timing variation of extended foster care in the United 

States from 2012 to 2016. In this figure, there are six different shades of gray used to identify the 

treatment and control states. No shading identifies states that had not implemented extended foster 

care as of 2016 (control 1), light shading identifies states that changed their policy between 2012 

and 2016 (treatment), and dark shading identifies states that adopted policies prior to 2012 (control 

2). There is variation within the shading level to indicate the difference between federally-funded 

and state-funded extended foster care. There are 22 states that changed their extended foster care 

polices between the years 2012 and 2016. Three states (California, Hawaii, and North Dakota) 

implemented federally-funded extended foster care. Seven states (Connecticut, Indiana, Maine, 

Michigan, Nebraska, Pennsylvania, and Wisconsin) switched from a state to federal policy. The 

remaining 12 states (Arizona, Colorado, Delaware, Florida, Georgia, Kansas, Kentucky, Missouri, 
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Mississippi, Nevada, Utah, and Virginia) implemented state-funded extended foster care. Youth 

in these states across different cohorts live under different policies. Appendix A discusses the data 

collection process, details for policy changes, a table of the effective policy dates, and a summary 

table of characteristics for states within each treatment. 
 

In this figure, there are six different shades of gray used to identify the treatment and 

control states. No shading identifies states that had not implemented extended foster care as of 

2016 (control 1), light shading identifies states that changed their policy between 2012 and 2016 

(treatment), and dark shading identifies states that adopted policies prior to 2012 (control 2). 

Additionally, there is variation within the shading level to indicate the difference between 

federally-funded and state-funded extended foster care. There are 22 states that changed their 

extended foster care polices between the years 2012 and 2016.7 Youth in these states across 

different cohorts live under different policies. I exploit this within state, cross cohort variation to 

estimate the effect of extended foster care on the transition to adulthood for foster youth.8  

1.4. Hypothesized Effects of Extended Foster Care 

Extended foster care is additional time as a non-minor dependent that helps foster youth 

between the ages 18 and 21 maintain a safety net of support while experiencing independence in 

a supervised environment. Youth in extended foster care may be living with foster families, in 

group homes, institutions, or supervised independent living settings, such as dorms, shared 

housing, and apartments. Regardless of their placement, youth in extended foster care meet with 

a caseworker monthly and receive specialized case management appropriate for their 

                                                            
7 Three states (California, Hawaii, and North Dakota) implemented federally-funded extended foster care. 

Seven states (Connecticut, Indiana, Maine, Michigan, Nebraska, Pennsylvania, and Wisconsin) switched 

from a state to federal policy. The remaining 12 states (Arizona, Colorado, Delaware, Florida, Georgia, 

Kansas, Kentucky, Missouri, Mississippi, Nevada, Utah, and Virginia) implemented state-funded 

extended foster care. 
8 Appendix A discusses the data collection process, details for policy changes, a table of the effective 

policy dates, and a summary table of characteristics for states within each treatment. 
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developmental needs. In some states, foster care maintenance payments are paid directly to the 

youth.9 In short, extended foster care provides youth with additional housing, social, and 

financial resources that should shift their budget constraint outward and ease the transition to 

adulthood.   

To be eligible for these resources, youth must either be enrolled in school, or working at 

least part-time or participating in training programs to reduce employment barriers, or have a 

documented medical condition that prevents them from working or attending school. For youth 

without a documented medical condition, these eligibility requirements increase the marginal 

benefit of attending school or working, which then incentivizes behaviors that aid in the 

transition to adulthood.   

Assuming optimal policy design, extended foster care should reduce hardships and 

smooth the transition to adulthood. As a direct effect, extended foster care should reduce 

homelessness. Reducing homelessness is important as it potentially has spillover effects on other 

outcomes of interest. For example, youth who experience homelessness between 19 and 21 years 

old are less likely to go to college or be employed (Kim & Rosenberg, 2017). Additionally, a 

former foster youth spoke about her experience transitioning to adulthood and said that she was 

aware of the importance of school and work, but without a safe place to live, she could not invest 

in these activities.10 Stable housing may allow youth to better invest time and money in their own 

human capital accumulation and labor productivity.   

                                                            
9 Foster care maintenance payments cover the cost of food, clothing, shelter, daily supervision, school 

supplies, etc. and average 1,600 dollars per month across the country. As of February 2014, 12 states 

allowed for direct payment to the youth. (JCYOI, 2014, pg.23). 
10 Eprise Armstrong discussed her experiences in the panel, “Extending foster care to 21: implications to 

providers and impact on budgets” on May 12, 2011. The video can be found online.   

https://www.youtube.com/watch?v=7G8LHRTOisg
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Alternatively, to receive housing support, youth have to meet specific eligibility 

requirements. These eligibility requirements increase the marginal benefit of school and work; 

therefore, extended foster care indirectly impacts these outcomes. However, altering one’s 

preferences over school and work may not be enough to induce these behaviors for those who are 

resource constrained. Foster youth often list “unable to pay for school” as the main reason for not 

going to college (Courtney et al., 2011). In addition to housing support, extended foster care 

provides educational aid, mentoring, career preparation, and employment skills training. 

Educational aid and employment skills training are correlated with connectedness (Rosenberg et 

al., 2020) and receiving educational aid is the strongest predictor of post-secondary education 

(Hunter, 2013). The net effect of extended foster care on college enrollment11 and employment 

should be positive (i.e. the effect on disconnectedness should be negative). Whether extended 

foster care has a larger impact on college enrollment or employment is an empirical question and 

depends on which supports are more beneficial. For example, if extended foster care provides 

financial stability for youth in college, then there may be a tradeoff between college enrollment 

and employment.  

Lastly, extended foster care should decrease the incidence of incarceration. Incarceration 

is a result of inadequate resources and/or a low opportunity cost of going to jail. As foster youth 

age out of care, they may be at an increased risk of committing crime. For example, one-in-five 

foster youth aging out of care rely on illegal ways of making money (Vaughn et al., 2008). Once 

arrested, lacking financial resources needed to make bail or afford an attorney may increase the 

likelihood of incarceration. Extended foster care offers financial resources and social support that 

can reduce criminal behavior and incarceration. Additionally, as youth acquire more human 

                                                            
11 I use the term “college enrollment” to refer to any post-secondary enrollment, so this term includes 

enrollment in community college, 4-year universities/colleges, and technical colleges.   
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capital, they make better decisions and have a higher opportunity cost of going to jail, so they are 

less likely to commit street crimes (Lochner, 2004). Similarly, employed youth have a higher 

opportunity cost of going to jail, so they should also be deterred from committing crime. 

Regardless of the youth’s decision to continue in school or work, the incidence of incarceration 

should decrease. Extended foster care has the potential to directly and indirectly reduce 

incarceration.            

Extended foster care should both directly and indirectly alter a youth’s transition to 

adulthood, but by how much is the empirical question of interest. The transition to adulthood is a 

function of both past experiences and current resources (Benson, 2014). Once youth turn 18, past 

experiences are fixed, although they can differ across youth. Alternatively, governments have the 

ability to influence current resources through ILPs, CFCIP, and extended foster care, so 

resources are a function of where the youth lives. At age 17, assume all foster youth have 

housing, social capital (i.e. case worker and/or foster parents), and financial assistance (via foster 

care maintenance payments). At age 18, there are three main scenarios. One, youth living in 

states without extended foster care lose access to these resources.12 Two, youth living in states 

with federally-funded extended foster care have continued access to all three resources until age 

21. And three, youth living in states with state-funded extended foster care may have access to 

all or some of these resources, but there is less accountability and scope.  

Since the size of the effect of extended foster care relies on where youth live, there are 

potentially heterogeneous effects by funding source. Extended foster care is hypothesized to be 

more effective in states with federally-funded extended foster care than states with state-funded 

                                                            
12 In some cases, youth can remain in their current placement setting until they graduate high school, so 

they might not lose access to these resources as abruptly. It is also possible that foster parents may let 

youth remain in care beyond 18 and maintain a relationship, but the foster care maintenance payments 

end at this age.    
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programs for two reasons. First, states with federally-funded extended foster care may have 

increased quality and quantity of resources compared to states with state-funded programs. 

Second, states with federally-funded extended foster care can plausibly support more youth 

(even if the youth do not meet eligibility requirements) than states with state-funded extended 

foster care (GAO, 2019).13 For example, eligible youth can be funded with Title IV-E funds, 

which are reimbursed by the federal government, and non-eligible youth can be funded with state 

funds, which are not reimbursed. One limitation of this paper, is that the specific mechanism 

cannot be identified.  

Finally, there may be heterogeneous effects by placement setting. Despite the general 

consensus that foster home placements provide higher quality care and better connections to 

supportive adults than group homes (Dozier et al., 2014; Lo et al., 2015), it is unclear whether 

youth who lived in foster homes prior to aging out will benefit more or less from extended foster 

care than youth who lived in group homes. Youth transitioning from a foster home to 

independence in states without extended foster care might lose access to supportive adults and 

quality care relative to youth transitioning from a group home to independence in these states. 

Alternatively, a foster family might maintain a relationship and continue caring for the youth 

aging out, in which case these youth would lose less than their peers transitioning from a group 

home. Overall, foster youth living in states with extended foster care should fare better than 

foster youth in other states without extended foster care and there may be heterogeneous effects 

by policy and placement setting. 

                                                            
13 See footnote 40 from this GAO report for an example.    
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1.5. Data  

Data for this analysis come from three main sources; the National Youth in Transition 

Database (NYTD), the Adoption and Foster Care Analysis and Reporting System (AFCARS), 

and the University of Kentucky Center for Poverty Research (UKCPR) Poverty and Inequality 

National Welfare Dataset. NYTD is a national survey that collects demographic information and 

outcome measures for the universe of foster youth aging out of care, AFCARS is a national 

dataset that contains rich descriptive information about children in foster care, and the UKCPR 

Welfare Dataset contains state-level information about the economy and safety net programs in a 

given year. I link individuals from the two most recent NYTD cohorts to their AFCARS data and 

control for time-varying state characteristics with the welfare dataset. The first cohort was 17 in 

fiscal year (FY) 2011 and the second cohort was 17 in FY 2014.    

NYTD is the first national survey to collect outcome measures for foster youth aging out 

of care.14 States identify and survey all youth in foster care at age 17 and then follow up with 

these same youth at ages 19 and 21, regardless of their foster care status. Youth answer questions 

about their educational attainment, employment status, and incidence of homelessness and 

incarceration, among other outcomes.15 NYTD also collects i) demographic information, such as 

date-of-birth, race, gender, and state, ii) report details, such as date-of-report and survey 

                                                            
14 National accountability of foster youth outcomes began in 2011 as a result of the 2008 accountability 

mandate proposed by the Administration for Children and Families. States are required to collect and 

report reliable responses every 6 months and are fined for noncompliance. States must report outcomes 

for at least 80% of youth in foster care and 60% discharged from care. These numbers were based on 

research on response rates and reviewing the Office of Management and Budget's guidance on surveys. 

States are fined up to 5% of their CFCIP funds if they do not comply and meet reporting requirements. 

For more specific details about NYTD data collection and reporting requirements, visit 

https://www.childwelfare.gov/cb/research-data-technology/reporting-systems/nytd/faq/.     
15 The college enrollment outcome is derived from the current enrollment and educational attainment 

questions. Youth that have graduated from high school and are enrolled in school are assumed to be 

enrolled in college. I use “college enrollment” loosely to include any post-educational program beyond 

high school such as 2-year, 4-year, and trade school enrollment. 

https://www.childwelfare.gov/cb/research-data-technology/reporting-systems/nytd/faq/
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participation (or reason for not participating),16 and iii) service use, such as foster care status, 

academic support, career preparation, budgeting, mentoring, health education, and financial 

assistance. In 2011 and 2014 nationwide, there were approximately 38,000 and 31,000 youth in 

foster care at age 17, respectively.17 Just under 32,000 of these youth were eligible18 to 

participate in the NYTD surveys. For the remainder of this section, I discuss the analysis sample, 

and later I discuss the differences between respondents across the different surveys and address 

potential non-response bias.   

I restrict my analysis sample to youth who participated in the survey, had foster care 

history information from AFCARS, and do not have any missing outcome measures, resulting in 

11,120 observations (or one-third of the eligible NYTD participants).19 Table 1 provides 

summary statistics for the sample of NYTD participants.20 Cohort 1 makes up 47 percent and 

cohort 2 makes up the remaining 53 percent of the analytical sample, 46 percent of the sample is 

young men, 54 percent is young women, and 42 percent of the sample is Non-Hispanic white, 30 

percent is Non-Hispanic black, and 20 percent is Hispanic. Representative of the foster care 

population, black youth are disproportionately represented compared to the general population 

(30% versus 14%). More than half of the sample (58%) have been diagnosed with a disability at 

some point in their life. Of these youth that have been diagnosed with a disability, 80 percent 

                                                            
16 Reasons for not participating include declined, incarceration, incapacitation, death, not in sample, and 

missing or unable to locate.  
17 Author’s estimate based on the number of 17-year-old foster youth in care at the start of the fiscal year 

(from AFCARS 2011 & AFCARS 2014 data). 
18 Survey eligibility is based on age, foster care status, and survey completion. Eligible youth must turn 17 

during the fiscal year, be in foster care on the day of the survey, complete the survey within 45 days of 

their 17th birthday, and answer at least one survey question.    
19 About half (n=16,320) of the eligible youth were missing demographic information and foster care 

history from AFCARS. Another 1,983 youth declined to participate in the survey and another 2,630 youth 

were missing at least one of the outcome measures.   
20 Refer to Appendix Table C1 for summary statistics with the full list of controls and Appendix Table C2 

for summary statistics by treatment.  
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were diagnosed with an emotional disorder such as ADHD, ADD, anxiety, an eating disorder, or 

a mood or personality disorder.   

Table 1: Summary Statistics for NYTD Participants 

  
For 19 Year Olds 

(N=11,120) 

For 21 Year Olds 

(N=8,416) 

 Variable Mean Std. Dev. Mean Std. Dev. 

Extended Foster Care 

Policy  

Federal EFC at 18 0.51 0.50 0.51 0.50 

State EFC at 18  0.24 0.43 0.23 0.42 

NYTD Cohort 
Cohort 1 (17 in FY2011) 0.47  0.46  

Cohort 2 (17 in FY2014) 0.53 0.50 0.54 0.50 

Demographic 

Characteristics  

Female 0.54 0.50 0.57 0.50 

Non-Hispanic White 0.42 0.49 0.41 0.49 

Non-Hispanic Black 0.30 0.46 0.30 0.46 

Non-Hispanic Other 0.08 0.27 0.08 0.28 

Hispanic 0.20 0.40 0.21 0.40 

Ever diagnosed with a 

disability 
0.58 0.49 0.58 0.49 

Experiences at 17  

Ever been homeless  0.17 0.38 0.17 0.38 

Employed at 17  0.15 0.36 0.15 0.36 

Ever been incarcerated  0.27 0.44 0.26 0.44 

Ever been referred for 

substance abuse  
0.23 0.42 0.22 0.41 

Foster Care History  

Total removals from home 

as a child 
1.39 0.66 1.39 0.67 

Total placements as a child 7.16 7.15 7.13 6.98 

Cumulative length of stay in 

foster care as a child (in 

years) 
4.43 3.65 4.44 3.64 

Age at first removal 11.72 4.76 11.72 4.72 

Age at last removal  17.28 1.98 17.27 1.99 

First Placement  

Kinship Care 0.16 0.37 0.16 0.37 

Foster home 0.49 0.50 0.50 0.50 

Group home 0.29 0.45 0.28 0.45 

Other 0.06 0.23 0.06 0.24 

Ever removed for… 

These do not add up 

to 100% because a 

child may be removed 

for multiple reasons.  

Abuse 0.27 0.45 0.27 0.45 

Neglect 0.56 0.50 0.56 0.50 

Parental Incarceration 0.06 0.24 0.06 0.24 

Parental Substance Abuse 0.19 0.39 0.19 0.39 

Inadequate Housing 0.10 0.30 0.10 0.30 

Child-related issue 0.32 0.47 0.31 0.46 

Outcomes 
Homelessness 0.20 0.40 0.37 0.48 

Enrolled in high school  0.29 0.45 0.06 0.24 
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For 19 Year Olds 

(N=11,120) 

For 21 Year Olds 

(N=8,416) 

 Variable Mean Std. Dev. Mean Std. Dev. 

Finished high school/GED  0.56 0.50 0.81 0.40 

Enrolled in college/post-

secondary education  
0.28 0.45 0.27 0.44 

Employed  0.38 0.49 0.56 0.50 

Incarceration 0.19 0.39 0.28 0.45 

Foster Care  0.40 0.49 0.21 0.41 

Notes: The sample is restricted to foster youth who completed the NYTD survey at 19 and/or 21 

years old and are not missing demographic information, foster care history, nor outcomes. Less 

than one percent of the observations are missing the indicator for high school graduation at age 

19. The summary statistics do not vary much when restricting the sample to the youth that are not 

missing this variable and so I report the results of the larger sample. The similarity in demographic 

characteristics and foster care history across ages 19 and 21 indicates similar youth responded to 

the survey in both years. 

On average, this sample of foster youth entered care at 12 years old and have been in care 

for a cumulative total of about 4.5 years. The most common removal reasons are neglect (56%), 

child-related issues (32%), and abuse (27%). Most youth were first placed in a foster home 

(49%), group home (29%), or kinship care (16%). The last placement settings as a minor 

included foster homes (44%), group homes (29%), kinship care (12%), and other placements 

(16%), such as supervised independent living, trial home visit, and runaway.21  

By 17 years old, 17 percent had experienced homelessness, 27 percent had been 

incarcerated, 23 percent had been referred for substance abuse, and 15 percent were employed. 

In contrast, the average adolescent has a 3 percent chance of experiencing homelessness (Bassuk 

et al., 2014) and a 0.15 percent chance of incarceration.22 By 19 years old, 56 percent of NYTD 

respondents had graduated from high school or received their GED, 28 percent enrolled in 

college or some other post-secondary education program, 38 percent were employed, 20 percent 

had been homeless in the past two years, and 19 percent had been incarcerated in the past two 

                                                            
21 A “trial home visit” is when a youth returns home under state agency supervision before reunification is 

complete. “Runaway” is designated for youth who have run away from the foster care setting.  
22 Estimate comes from the Kids Count Data Center provided by the Annie E. Casey Foundation.  

https://datacenter.kidscount.org/data/tables/42-youth-residing-in-juvenile-detention-correctional-and-or-residential-facilities#detailed/1/any/false/871,573,36,867,133,18,17,14,12,10/any/319,17599
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years. Finally, only 40 percent were in foster care at age 19, despite 75 percent having access to 

extended foster care.   

Fewer youth responded to NYTD at age 21, resulting in 8,416 observations. The 

respondents at 21 are similar to those at 19 based on demographic characteristics and foster care 

history. At 21 years old, 81 percent had graduated from high school, 27 percent were enrolled in 

college, and 56 percent were employed. Thirty-seven percent have experienced homelessness 

and 28 percent have been incarcerated by age 21. Only 20 percent were in foster care at age 21. 

This is unsurprising as many states with extended foster care end care at age 21. 

1.6. Empirical Strategy 

Participation in extended foster care is a function of youth eligibility and selection. 

Measuring participation is a function of data availability. Per the NYTD codebook, youth are 

reported as being in foster care if they are under the responsibility of a qualified agency in 

accordance with the federal definition of foster care.23 In practice, foster care status should only 

be reported “yes” for eligible, participating youth in states with federally-funded extended foster 

care programs.24 In the majority of states with federally-funded extended foster care, less than 50 

percent of the youth in care are eligible for federal reimbursement (GAO, 2019). In other words, 

foster care status in NYTD should have been reported “no” for the majority of participants. This 

practice limits the ability to observe participation for ineligible youth and across all states. 

Moreover, states with extended foster care cannot mandate participation, so youth can leave at 

                                                            
23 See 45 CFR 1355.20 for the federal definition of foster care. 
24 According to personal correspondence with the Administration for Children and Families. Some states 

misunderstood this question giving insight into their state policy. For example, Georgia and Kentucky 

reported that 20 to 30 percent of youth from the FY2011 and FY2014 NYTD cohorts were in foster care 

beyond 18 years old, despite not having a federally-funded extended foster care program during this 

period. 
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any time for any reason introducing selection bias. For these reasons, I focus on estimating the 

intent-to-treat effect of extended foster care and leave the treatment-on-treated effect for future 

research.  

To determine the effect of extended foster care on the transition to adulthood, I use a 

difference-in-differences approach and estimate a two-way fixed effects linear probability model 

with the following equation: 

𝑃𝑟𝑜𝑏(𝑦𝑖𝑎𝑠𝑐 = 1) = 𝛽0 + 𝛽1𝐹𝑒𝑑𝐸𝐹𝐶𝑖𝑎𝑠𝑐 + 𝛽2𝑆𝑡𝐸𝐹𝐶𝑖𝑎𝑠𝑐 + 𝑿𝒊𝒂𝒔𝒄𝜷 + 𝑺𝒔𝒄𝜷 + 𝛾𝑠 + 𝛾𝑐  (1.1) 

Where y is the outcome for individual i of age a in state s and cohort c. FedEFC is a 

binary indicator equaling one if federally-funded extended foster care was available in state s 

when individual i of age 19 in cohort c turned 18 years old and zero otherwise. StEFC is a binary 

indicator equaling one if state-funded extended foster care was available in state s when 

individual i of age 19 in cohort c turned 18 years old and zero otherwise. These extended foster 

care indicators are mutually exclusive, and they are derived using the effective date of the policy 

and the youth’s birthday. X is a vector of youth demographic characteristics and other 

individual-level controls, such as race, gender, experiences prior to 17 years old, reason for entry 

into foster care, length of stay, number of placements in foster care, and first placement setting, 

that are plausibly correlated with a foster youth’s transition to adulthood. S is a vector of 

observable state-level time-varying controls such as the unemployment rate, poverty rate, and 

measures of safety net program generosity. I calculate the 3-year average for each of these 

controls to most effectively summarize the economic conditions for cohort c in state s as they 

may be correlated with implementation of extended foster care and a youth’s transition to 

adulthood. State fixed effects are included to control for unobservable state time-invariant 

characteristics that may be correlated with youth outcomes, such as ILPs and the CFCIP. Finally, 
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the cohort fixed effect can also be thought of as a year fixed effect since I am using cross-

sectional data for two distinct cohorts.  

The coefficients of interest, 𝛽1 and 𝛽2, estimate the intent-to-treat effect of having 

extended foster care at 18 years old for youth within a state, controlling for state and cohort/year 

effects and individual characteristics. 𝛽1 estimates the impact of the federal policy and is 

identified off of three states. 𝛽2 estimates the impact of state policies and is identified off of 11 

states. The difference between 𝛽1 and 𝛽2 estimates the impact of changing from a state to federal 

policy, which happens in seven states. 

The validity of this difference-in-differences approach relies on the assumptions that the 

timing of the policy changes is exogenous to unobservable time-varying cohort characteristics 

and that the policy is uncorrelated with survey participation.25 Extended foster care legislation 

appears to take anywhere from two months to two years to pass, so the effective date of 

implementation in which my model is identified is arguably random, relative to cohort 

characteristics. Even if there are non-random differences in the timing of implementation, 

including the set of individual, state, and cohort controls should alleviate this concern.26 I test 

this assumption by excluding different combinations of controls and find that the estimated 

effects can be attributed to the policy and are not confounded by other factors. These results are 

discussed in more detail later as well. Second, extended foster care appears to be correlated with 

                                                            
25 Recent discussion also emphasizes the difficulty in interpreting the difference-in-differences treatment 

effect for multiple groups with multiple time periods when the timing of the policy varies (de 

Chaisemartin & D'Haultfoeuille, 2019; Goodman-Bacon, 2019; Callaway & Sant’Anna, 2020). Although 

timing of the policy varies, since there are only two time periods in this analysis, this is less of a concern.    
26 Furthermore, in Appendix B, I demonstrate that it is difficult to predict which states implement 

extended foster care, at least based on economic factors and the foster care environment.  
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survey participation. However, after addressing non-response, this correlation is not driving the 

results.27 

To quantify the policy effect, I estimate equation 1.1 for outcomes at age 21. However, 

instead of FedEFC and StEFC being binary indicators equaling one or zero, I allow them to take 

discrete values between zero and four to count the number of years federally-funded and state-

funded extended foster care has been available in state s for individual i in cohort c. This new 

variable takes into account both the youth’s age when the policy was implemented, as well as the 

youth’s age when they lose access to extended foster care services. For outcomes measured at 

age 21, exposure to extended foster care is more flexible and informative than the binary 

indicator.  

To understand who benefits the most from the extended foster care program, I interact 

extended foster care policies with placement settings and experiences prior to 17 years old 

(separately). I estimate the following equations: 

𝑃𝑟𝑜𝑏(𝑦𝑖𝑎𝑠𝑐 = 1) = 𝛿0 + 𝛿1𝐹𝑒𝑑𝐸𝐹𝐶𝑖𝑎𝑠𝑐 + ∑ 𝛿1𝑝(𝐹𝑒𝑑𝐸𝐹𝐶 𝑥 𝑝)𝑖𝑎𝑠𝑐𝑝 +

𝛿2𝑆𝑡𝐸𝐹𝐶𝑖𝑎𝑠𝑐 + ∑ 𝛿2𝑝(𝑆𝑡𝐸𝐹𝐶 𝑥 𝑝)𝑖𝑎𝑠𝑐𝑝 + 𝑿𝒊𝒂𝒔𝒄𝜹 + 𝑺𝒔𝒄𝜹 + 𝛾𝑠 + 𝛾𝑐 (1.2) 

𝑃𝑟𝑜𝑏(𝑦𝑖𝑎𝑠𝑐 = 1) = 𝛿0 + 𝛿1𝐹𝑒𝑑𝐸𝐹𝐶𝑖𝑎𝑠𝑐 + ∑ 𝛿1𝑒(𝐹𝑒𝑑𝐸𝐹𝐶 𝑥 𝑒)𝑖𝑎𝑠𝑐𝑒 +

𝛿2𝑆𝑡𝐸𝐹𝐶𝑖𝑎𝑠𝑐 + ∑ 𝛿2𝑒(𝑆𝑡𝐸𝐹𝐶 𝑥 𝑒)𝑖𝑎𝑠𝑐𝑒 + 𝑿𝒊𝒂𝒔𝒄𝜹 + 𝑺𝒔𝒄𝜹 + 𝛾𝑠 + 𝛾𝑐  (1.3) 

Where most of the variables are the same as above, and the summation terms are 

shorthand for the interaction effects.28 In equation 1.2, p indexes the last placement settings as a 

child. The three placement settings considered are foster homes, kinship care, and group homes. 

                                                            
27 See section 1.9 for a detailed discussion of non-response and techniques employed to address non-

response bias.  
28 For example, ∑ 𝛿1𝑝(𝐹𝑒𝑑𝐸𝐹𝐶 𝑥 𝑝)𝑖𝑎𝑠𝑐𝑝 = 𝛿1𝑓ℎ(𝐹𝑒𝑑𝐸𝐹𝐶 𝑥 𝑓ℎ)𝑖𝑎𝑠𝑐 + 𝛿1𝑘𝑐(𝐹𝑒𝑑𝐸𝐹𝐶 𝑥 𝑘𝑐)𝑖𝑎𝑠𝑐 +

𝛿1𝑔ℎ(𝐹𝑒𝑑𝐸𝐹𝐶 𝑥 𝑔ℎ)𝑖𝑎𝑠𝑐where fh indicates foster home, kc indicates kinship care, and gh indicates group 

home. 
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𝛿1𝑝 estimates the effect of federally-funded extended foster care for youth in placement setting p, 

and 𝛿2𝑝 estimates the effect of state-funded extended foster care for youth in placement setting p. 

In this specification, the X vector also controls for placement setting p independently of the 

interaction term because the quality of care received as a child is plausibly correlated with 

participation in extended foster care and outcomes as a young adult.  

In equation 1.3, e indexes experiences prior to 17 years old. The three experiences 

considered are incarceration, homelessness, and substance abuse referral. 𝛿1𝑒 and 𝛿2𝑒 estimate 

the effect of federally-funded and state-funded extended foster care, respectively, for youth with 

experiences e. Like in equation 1.1, the X vector also controls for experiences prior to 17 years 

old.   

1.7. Results 

I estimate equation 1.1 separately for outcomes at ages 19 and 21 to determine the impact 

of extended foster care on the transition to adulthood for foster youth across the country. Then, I 

estimate equations 1.2 and 1.3 for outcomes at age 19 to understand who primarily benefits from 

this program in the short-run. In all analyses, standard errors are clustered at the state level.29 

1.7.1. Extended Foster Care Smooths the Transition to Adulthood  

Table 2 reports results from the intent-to-treat analysis and shows that extended foster 

care reduces hardships, like homelessness, incarceration, and disconnectedness, and increases 

educational attainment and employment in the short-run. The effects are often larger and more 

precisely estimated for the federal policy relative to the state policies, confirming the notion that 

                                                            
29 Cameron & Miller (2015) and Conley and Taber (2011) caution that models may be inconsistent when 

there are few treated groups. To alleviate this concern, I also calculated standard errors using clustered 

bootstrap estimation. Results do not change and are available upon request.  
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the federal policy is more effective.30 For this reason, I focus most of the discussion on the 

federal policy here on out. Finally, impacts persist for all outcomes at age 21, except 

employment. Overall, this implies that youth continue to benefit through the three years the 

policy ought to be impacting them. 

On average, the probability of experiencing homelessness between the ages 17 and 19 

decreases by 22 percent for youth living in states that switched from no policy to federally-

funded extended foster care compared to youth living in states without extended foster care. All 

else equal, an additional year exposed to federally-funded extended foster care decreases the 

probability of ever experiencing homelessness as an adult by almost 6 percent. Similarly, the 

likelihood of being incarcerated between the ages 17 and 19 is reduced by 26 percent for youth 

living in states that switched from no policy to federally-funded extended foster care compared 

to youth living in states without extended foster care. An additional year exposed to federally-

funded extended foster care reduces incarceration by 12 percent, all else equal. Youth living in 

states that switched from no policy to federally-funded extended foster care were 16 percent less 

likely to be disconnected at age 19 than youth living in states with no policy. For each additional 

year with federally-funded extended foster care, disconnectedness is reduced by almost 10 

percent.  

In most states, federally-funded extended foster care prolongs access to social, housing, 

and financial support for three years, from age 18 to 21, so it is more policy-relevant to discuss 

the impact of full exposure, as opposed to marginal effects. There are two ways to estimate the 

full impact of the policy: assume linear effects and scale the marginal effect by three or directly 

                                                            
30 The federal policy also appears to yield more homogenous effects. I estimate two additional models, 

one that omits the state policy, and another that combines the federal and state policy, to demonstrate this 

point. In these models, for outcomes at age 19, the effect of the federal policy is often less precisely 

estimated. Results are in Appendix Table C3.   
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estimate the 3-year effect.31 These approaches imply that federally-funded extended foster care 

reduces homelessness by 18 to 30 percent, incarceration by 36 to 46 percent, and 

disconnectedness by 7 to 30 percent.  

Consistent with the reduction in disconnectedness, extended foster care appears to help 

youth complete high school and enroll in college, at the expense of employment. Approximately 

three in ten foster youth are enrolled in high school at 19 years old, and they are 19 percent more 

likely to be enrolled in high school in states with federally-funded extended foster care. Each 

additional year with federally-funded extended foster care increases the probability of graduating 

high school by age 21 by 2 percent. The policy effect on high school graduation ranges from an 

increase of 4 to 6 percent. There is no statistically significant effect of having extended foster 

care available at age 18 on college enrollment for 19-year-olds, but the sign suggests increased 

enrollment, conditional on high school graduation or a GED. With each additional year exposed 

to federally-funded extended foster care, results in Table 2 suggest the probability of college 

enrollment increases by 21 percent. However, results in Appendix Table C4 suggest the marginal 

effect is driven by the first year and so the full policy effect is less clear. Finally, for 19-year-

olds, employment is 14 to 23 percent higher in states that switched from no policy to extended 

foster care compared to states that did not switch. Alternatively, at age 21, the effects on 

employment decrease by 5 percent with each additional year exposed to federally-funded 

extended foster care, or by 15 percent with full exposure to the policy.  

                                                            
31 Results from these exercises are provided in Appendix Table C4.  
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Table 2: Main Regression Results for Youth that Completed the NYTD Survey at 19 and/or 21 

 Outcomes at 19 Years Old (N=11,120) 

 

Ever been 

Homeless in 

Past Two 

Years 

Ever been 

Incarcerated in 

Past Two Years 

Disconnected  
High School 

Enrollment 

College 

Enrollment 
Employment  

Federal EFC at 

18 

-0.048* -0.053* -0.043** 0.052* 0.010 0.083*** 

(0.025) (0.029) (0.020) (0.029) (0.038) (0.028) 

State EFC at 18 
-0.015 -0.021 0.017 -0.005 -0.041 0.051*** 

(0.021) (0.016) (0.015) (0.022) (0.025) (0.018) 

Mean of Control 

Group (No EFC 

at 18) 

0.218 0.201 0.264 0.274 0.493 0.366 

Adjusted R-

Squared 
0.088 0.197 0.049 0.041 0.083 0.045 

 Outcomes at 21 Years Old (N=8,416) 

 

Ever been 

Homeless in 

Adult Life 

Ever been 

Incarcerated in 

Adult Life 

Disconnected  
High School 

Graduation 

College 

Enrollment 
Employment  

Years exposed to 

Federal EFC 

-0.026* -0.035*** -0.031** 0.014** 0.045** -0.028*** 

(0.014) (0.007) (0.013) (0.006) (0.019) (0.010) 

Years exposed to 

State EFC 

-0.030*** -0.019** -0.019 -0.012 0.014 0.009 

(0.010) (0.008) (0.012) (0.009) (0.013) (0.012) 

Mean of Control 

Group (No 

Policy Ever)  

0.444 0.295 0.321 0.798 0.214 0.561 

Adjusted R-

Squared 
0.139 0.234 0.062 0.069 0.143 0.066 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the state level are in parentheses. All regressions control for 

demographic characteristics, foster care history, experiences at 17 years old, state controls, and include cohort and state fixed effects. 

EFC stands for extended foster care. The college enrollment outcome at 19 years old is conditioned on high school graduation/GED 

and consists of 6,155 observations.  
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I further investigate whether the availability of extended foster care influences decision-

making by estimating the effect of having extended foster care at age 17. In all states, youth can 

remain in care until 18 years old regardless of a state’s extended foster care policy. Therefore, 

there should be no difference between having extended foster care at age 17 or 18, unless youth 

use this information to plan for the future. Results from this exercise are presented in Appendix 

Table C5. I find evidence that youth may rely on extended foster care policies to experiment 

living on their own. For example, youth are equally likely to experience homelessness and/or 

incarceration between the ages of 17 and 19, regardless of extended foster care availability at age 

17. This suggests that youth in states with extended foster care may try to live on their own and 

experience these hardships before deciding to return to care, whereas youth in states without 

extended foster care may experience these hardships as a result of aging out at 18.  

1.7.2. Who Benefits the Most from Extended Foster Care?  

Federally-funded extended foster care primarily benefits youth that were living in foster 

homes prior to turning 18 years old and potentially mitigates some hardships experienced as a 

foster child. The last placement setting prior to turning 18 for many youth is a foster home 

(44%), kinship care (12%), or a group home (29%). About one in five NYTD participants 

experienced homelessness and substance abuse during their childhood. Tables 3 and 4 report 

results from the specifications that interact extended foster care with placement settings 

(equation 1.2) and adverse childhood experiences (equation 1.3).  

Youth that lived in foster homes prior to aging out in states with extended foster care are 

less likely to experience homelessness between the ages of 17 and 19 and more likely to be 

employed at 19 years old. Extended foster care also increases high school enrollment among 

youth in group homes and kindship care.    
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Table 3: Interaction between Extended Foster Care Policy and Last Placement Setting as a Child 

Outcomes at 19 Years Old 

 Homelessness Incarceration Disconnected 

High School 

Enrollment 

College 

Enrollment Employment 

Fed EFC at 18 x Last 

placement as a child: 

foster home (N=2,425) 

-0.059** -0.040 -0.033 0.002 0.012 0.049* 

(0.026) (0.025) (0.031) (0.031) (0.047) (0.027) 

       

Fed EFC at 18 x Last 

placement as a child: 

group home (N=1,567) 

-0.045 -0.038 -0.007 0.062* 0.020 0.008 

(0.028) (0.027) (0.031) (0.032) (0.040) (0.025) 

       

Fed EFC at 18 x Last 

placement as a child: 

kinship care (N=802) 

-0.019 -0.022 -0.070* 0.056* -0.003 0.116** 

(0.029) (0.023) (0.036) (0.029) (0.064) (0.045) 

       

Observations 11,064 11,064 11,064 11,041 6,125 11,064 

Adjusted R-squared 0.091 0.207 0.052 0.043 0.084 0.047 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the state level are in parentheses. The number of observations in 

the interaction term is noted. All regressions control for demographic characteristics, foster care history (including last placement 

setting), experiences at 17 years old, state controls, and include cohort and state fixed effects. The abbreviation EFC is shorthand for 

extended foster care. The coefficients on the interaction between the placement setting and state EFC are statistically insignificant for 

all outcomes and so they are not reported in this table. 

 
  



29 

 

Table 4: Interaction between Extended Foster Care Policy and Experiences at 17 Years Old 

Outcomes at 19 Years Old 

 Homelessness Incarceration Disconnected 

High School 

Enrollment 

College 

Enrollment Employment 

Fed EFC at 18 x has 

been incarcerated 

(N=1,326) 

0.047** 0.029 0.086*** -0.023 -0.077* -0.033 

(0.020) (0.027) (0.020) (0.025) (0.046) (0.023) 

       

Fed EFC at 18 x has 

been homeless (N=894) 

-0.044 -0.015 -0.062** 0.021 0.008 0.013 

(0.030) (0.031) (0.026) (0.024) (0.051) (0.029) 

       

Fed EFC at 18 x has 

been referred for 

substance abuse 

(N=1,222) 

0.010 0.018 -0.055* 0.017 0.073** 0.053** 

(0.028) (0.022) (0.032) (0.025) (0.035) (0.026) 

       

Observations 11,120 11,120 11,120 11,097 6,155 11,120 

Adjusted R-squared 0.089 0.197 0.051 0.040 0.083 0.046 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the state level are in parentheses. The number of observations in 

the interaction term is noted. All regressions control for state-funded extended foster care, demographic characteristics, foster care 

history, experiences at 17 years old, state controls, and include cohort and state fixed effects. The abbreviation EFC is shorthand for 

extended foster care. 
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On average, youth living in states with federally-funded extended foster care that 

experienced homelessness as a child are less likely to be disconnected at age 19 compared to 

similar youth living in states without extended foster care. Similarly, youth living in states with 

federally-funded extended foster care referred for substance abuse are also less likely to be 

disconnected at 19 years old. Furthermore, these youth are more likely to be enrolled in college 

or employed at 19. Interestingly, extended foster care does not mitigate the hardships of 

experiencing juvenile incarceration, but instead exaggerates this hardship. One explanation might 

be that these “trouble-makers” are stigmatized and now have more eyes watching them.  

1.8. Additional Analyses 

This section discusses alternative specifications, sensitivity analyses, and their 

implications. In its entirety, this section demonstrates that the results presented in the previous 

section are robust to changes in models, controls, and samples, with the exception of omitting 

state fixed effects. Foster care environments vary considerably across states, so it is important to 

control for unobservable time-invariant differences. In addition, the need to address non-

response becomes apparent through these sensitivity analyses.      

1.8.1. Alternative Specifications 

I consider alternative approaches and models to show that my equation is correctly 

identified and specified. These results are provided in Appendix Table C6.  

First, I employ a triple differences approach which exploits individuals’ birthdays from 

the same cohort and state as the source of variation. The validity of this approach relies on the 

assumption that states did not choose effective policy dates based on an individual’s birthday. 

Overall, the triple differences estimates are slightly smaller or similar in magnitude relative to 

the estimates from the main specification, and less precise. One reason for slightly smaller 
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estimates might be that youth within the same cohort and state, that differ in age by a few 

months, may have similar experiences transitioning to adulthood, attenuating the effects to zero. 

They may have already made plans to age out before the policy went into effect or the policy 

may take time to be effective. Alternatively, loss of precision may come from lack of statistical 

power. This approach has cleaner identification but less statistical power, and so the estimates 

suffer from imprecision.  

I also consider alternative specifications by estimating equation 1.1 using probit and logit 

models. These models assume different functional forms for the explanatory variables and error 

term, but usually yield similar results to a linear probability model (Angrist & Pischke, 2009; 

Hellevik, 2009; Wooldridge, 2010). As expected, the results from these models are comparable 

to the main specification.  

1.8.2. Sensitivity Analyses 

This section discusses the findings from various sensitivity analyses. I alter the set of 

control variables, states, and observations to test the robustness of the results. Overall, results are 

robust, but the need to address non-response becomes apparent.    

1.8.2.1. Changing the set of control variables 

I consider alternative analyses by estimating equation 1.1 excluding foster care history, 

experiences at age 17, and state-level controls. Results are reported in Appendix Table C7. 

Foster care history is correlated with outcomes as an adult regardless of the policy. Excluding 

these controls (column 3) and obtaining similar results demonstrates that the estimated effects 

are in response to the policy and not confounded by one’s experiences in foster care. I exclude 

experiences at age 17 (column 4) and obtain similar results, which verifies that states did not 
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implement extended foster care based on observable cohort-specific experiences.32 If policy 

implementation was correlated with cohort-specific experiences, then removing these controls 

would have resulted in larger estimates.  

Finally, excluding state controls for safety net generosity and economic conditions 

(column 5) yields slightly smaller estimates at age 19 and slightly larger estimates at age 21, 

although neither set of results are statistically different from the main results. This observation 

implies that state controls have more explanatory power over time and are more important to 

control for to properly isolate the effect of the policy. I also estimate equation 1.1 excluding state 

fixed effects (column 6). The validity of cross state comparisons relies on the assumptions that 

the timing of the policy is random across states and that states have similar foster care 

environments. This exercise yields statistically insignificant results, suggesting that states have 

considerably different foster care climates and other unobservable time-invariant characteristics 

that need to be accounted for when trying to identify the impact of the extended foster care 

policy.  

1.8.2.2. Changing the set of states 

Next, I change the set of states in the analysis to determine if any are driving the results. 

Results are reported in Appendix Table C8. First, I restrict the sample to the 22 states that 

changed their extended foster care policy between 2012 and 2016 (column 2). This analysis 

excludes the always-taker and never-taker states. Overall, the estimated effects in this sample are 

similar in magnitude, but less precise compared to the main analysis that includes all 51 states 

(column 1). This is expected and reassuring since the identification in both models comes from 

                                                            
32 Additionally, excluding cohort fixed effects (column 7), which controls for unobservable cohort-

specific trends, yields statistically similar results.  
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within state changes. Including the non-switcher states adds to the overall model fit and 

precision, but does not affect the point estimates on extended foster care.    

Second, I exclude the seven states that went from state to federal extended foster care 

policies (column 3). Even though the main results are not statistically different from the 

estimates in this exercise, there are a few notable differences worth highlighting. First, these 

seven states appear to be dampening the effect of federal extended foster care on homelessness, 

high school enrollment, and college enrollment at age 19. Alternatively, they seem to be driving 

the effect on employment and incarceration at age 19. To explain this phenomena, recall that the 

main specification for outcomes at age 19 only estimates the effect of a specific extended foster 

care policy at 18. In the seven states that switch from state to federal policies, some youth are 

living under two different policies. For example, youth in cohort one in Connecticut had state 

extended foster care at 18, and then federal extended foster care starting at 19. In Michigan and 

Maine, federal extended foster care was implemented less than a year after state extended foster 

care.  

As a third check, I omit the 19 states with state-funded extended foster care to obtain a 

cleaner effect of federally-funded extended foster care. In this exercise, I have two control 

groups and one treatment group. One control group is the set of states with no policy. The other 

control group is the set of states that adopted federally-funded extended foster care prior to 2012 

(always-takers). The treatment group consists of the states that adopted federally-funded 

extended foster care between 2012 and 2016. The results from this exercise show the effect of 

implementing federally-funded extended foster care without being complicated by the state 

policy. Overall, results are larger for most outcomes, suggesting that the main results are 

relatively modest. Two outcomes worth noting are incarceration and employment at age 19. In 
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this exercise, they are smaller suggesting that the effect of the federal policy may be overstated 

for these two outcomes in the short-run. However, by age 21 the effect size from this exercise is 

similar to the main results, so whatever differences exist at age 19 do not persist to age 21.  

Finally, I repeatedly estimate equation 1.1 omitting one state at a time. Appendix Figures 

C1 and C2 plot the effect size and the 95 percent confidence interval for the coefficient on 

federally-funded extended foster care for each regression omitting a state. Each graph displays a 

different outcome. These results suggest that California drives some, but not all, of the precision 

of the results. About 22 percent of the NYTD respondents live in California. The next largest 

states represented are Michigan (4.6%), Texas (4.5%), and Florida (4%).    

1.8.2.3. Changing the sample size 

As a final robustness check, I consider different analysis samples by letting the sample 

size vary by outcome measure and restricting the sample to youth that participated in the survey 

at both 19 and 21 years old. These variations provide more insight into non-response and results 

are presented in Appendix Table C9.   

The first exercise, letting the sample vary by outcome measure (column 2), shows that the 

impact of extended foster care is similar whether it comes from youth who just answer a specific 

question or all questions. This exercise alleviates any concern that the construction of my sample 

may have introduced additional biases.  

The second exercise, comparing the estimates in the unrestricted sample to the restricted 

sample (columns 1 and 3) indicates that some of the impact of extended foster care is plausibly 

coming from changes in respondents between survey years. At age 19, the estimated effects are 

slightly larger in the restricted sample compared to the unrestricted sample, but at age 21 the 

opposite is true. Appendix Table C10 shows that survey drop-outs and returners, meaning they 
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participated in two out of the three surveys, appear to be similar along most characteristics, aside 

from childhood experiences such as homelessness and incarceration. Survey returners are more 

likely to have experienced these hardships. In order to observe these patterns, it must be that 

survey returners benefit more from extended foster care than survey drop-outs. 

1.9. Addressing Non-Response  

Non-response is a major concern with these data, as indicated from the number of 

observations dropped when constructing the analytical sample and changes in sample size from 

year-to-year. The source of non-response can be systematic or selective. One source of 

systematic non-response comes from the survey design.33 About one-fourth of the youth are 

excluded because they were not randomly selected to participate in the follow up surveys at 19 

and 21 in their state. As long as states randomized correctly, this non-response is not a threat to 

the validity of estimated effects. Another source of systematic non-response comes from youth 

losing eligibility to participate in the survey as a result of incarceration, incapacitation, or death. 

This information is available so I can assume certain outcomes, like disconnectedness and 

incarceration, in these cases. Additionally, less than 2 percent of non-response is coming from 

these cases, so I do not perceive this source of non-response as a threat to my estimated effects. 

Alternatively, selective non-response comes from eligible youth choosing not to participate in 

the survey and may bias my results. 

Non-response bias arises when the survey respondents are systematically different from 

the non-respondents leading to results that are not representative of the target population. The 

summary statistics discussed earlier indicate that NYTD participants have had different 

                                                            
33 Some states opted to follow a random sample of their Cohort for follow up surveys at ages 19 and 21. 

There were 12 “samples states” in FY2011 and 15 in FY2014.  
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experiences with the foster care system than the average foster youth. For example, NYTD 

participants on average were 12 years old when they entered foster care and averaged about one 

and one-half placements per year.34 The average foster child enters care at seven years old and 

experiences three placements per year (ACF, 2017; Casey Family Programs). Appendix Table 

C10 further suggests that NYTD participation is positively selected. Participants in all three 

surveys are less likely to have been removed for child-related issues and more likely to have 

been employed at 17 versus non-respondents. Survey drop-outs and survey returners are also 

better off than non-respondents. In general, the more surveys a youth responded to, the better off 

they appear, providing suggestive evidence for positive selection. 

Positive selection could overestimate or underestimate the effect of extended foster care, 

depending on how response rates vary by treatment. For example, if treated states have higher 

response rates and respondents are positively selected, then my analysis might overestimate the 

effect of extended foster care. I find that extended foster care is negatively correlated with non-

response (i.e. youth with extended foster care are more likely to respond) and then address this 

concern. First, I predict the likelihood of non-response using equation 1.1 where the dependent 

variable is an indicator equaling one if the youth participated in the survey and zero otherwise. 

The results of this exercise are presented in Appendix Table C11. Youth seem to be more likely 

to participate in NYTD at age 19 if they had extended foster care at age 18. Each additional year 

exposed to extended foster care also increases the likelihood of participating at 21. Failing to 

correct for non-response, may overstate the beneficial effects of extended foster care.   

I address non-response bias two ways. First, I estimate equation 1.1 using inverse survey 

participation weights at the state and individual level. This approach gives states and individuals 

                                                            
34 The number 1.5 placements per year comes from dividing the average number of placements (7) by the 

average length of stay (4.5).   
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with higher response rates less weight in the analysis since I am concerned with overstating the 

effect of extended foster care. Second, I estimate equation 1.1 using imputed outcomes and 

control for missing observations. I use mean and regression imputation techniques. Mean 

imputation assigns missing outcomes the average value of the non-missing observations. This 

technique preserves the overall mean and increases sample size. Regression imputation assigns 

missing outcomes a predicted value to preserve the relationship between covariates. In practice, I 

estimate equation 1.1 omitting the extended foster care variables, and then use the predicted 

values to impute the missing outcomes. I omit the extended foster care variables because I do not 

want to preserve the relationship between the outcomes and extended foster care, since I suspect 

this relationship is biasing my results. 

Table 5 shows that overall none of the estimates from these techniques are statistically 

different from the main results and gives a range of potential effect sizes. Additionally, for most 

outcomes, the main effects are in the middle of the range of effect sizes. Using this range of 

estimates, one may conclude that exposure to extended foster care decreases homelessness by 18 

to 35 percent, incarceration by 36 to 67 percent, and disconnectedness by 20 to 30. Even after 

correcting for non-response, extended foster care still appears to provide beneficial effects. 

Table 5: Results from Techniques that Address Non-Response 

Outcomes at 19 Years Old 

 (1) (2) (3) (4) (5) 

 
Main 

Results 

Inversely 

Weighted by 

State Survey 

Participation 

Rate 

Inversely 

Weighted by 

Individual 

Response 

Rate 

Mean 

Imputed 

Regression 

Imputed  

Outcome: Homelessness 

Fed EFC at 18  -0.048* -0.043 -0.046** -0.034* -0.030* 

 (0.025) (0.029) (0.022) (0.018) (0.018) 

Observations 11,120 11,120 11,120 15,733 15,733 

Adjusted R-squared 0.088 0.088 0.087 0.062 0.124 
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Outcome: Incarceration 

Fed EFC at 18  -0.053* -0.059* -0.046 -0.038** -0.038* 

 (0.029) (0.029) (0.028) (0.016) (0.022) 

Observations 11,120 11,120 11,120 15,733 15,733 

Adjusted R-squared 0.197 0.197 0.193 0.155 0.281 

Outcome: Disconnected 

Fed EFC at 18  -0.043** -0.046** -0.047*** -0.037** -0.047*** 

 (0.020) (0.021) (0.016) (0.014) (0.015) 

Observations 11,120 11,120 11,120 15,733 15,733 

Adjusted R-squared 0.049 0.049 0.046 0.035 0.070 

Outcome: High School Enrollment 

Fed EFC at 18  0.052* 0.049 0.054* 0.038** 0.035 

 (0.029) (0.030) (0.032) (0.018) (0.022) 

Observations 11,097 11,097 11,097 15,733 15,733 

Adjusted R-squared 0.040 0.041 0.039 0.029 0.063 

Outcome: College Enrollment 

Fed EFC at 18  0.010 0.014 0.012 0.011 0.016 

 (0.038) (0.039) (0.036) (0.037) (0.037) 

Observations 6,155 6,155 6,155 6,657 6,657 

Adjusted R-squared 0.083 0.084 0.081 0.080 0.089 

Outcome: Employment 

Fed EFC at 18  0.083*** 0.093*** 0.070*** 0.050** 0.069** 

 (0.028) (0.033) (0.023) (0.021) (0.027) 

Observations 11,120 11,120 11,120 15,733 15,733 

Adjusted R-squared 0.045 0.046 0.047 0.036 0.065 

Outcomes at 21 Years Old 

 (1) (2) (3) (4) (5) 

 
Main 

Results 

Inversely 

Weighted by 

State Survey 

Participation 

Rate 

Inversely 

Weighted by 

Individual 

Response 

Rate 

Mean 

Imputed 

Regression 

Imputed  

Outcome: Homelessness 

Years with Fed EFC -0.026* -0.029* -0.023 -0.052*** -0.055*** 

 (0.014) (0.015) (0.014) (0.007) (0.009) 

Observations 8,416 8,416 8,416 15,733 15,733 

Adjusted R-squared 0.139 0.140 0.133 0.099 0.214 

Outcome: Incarceration 

Years with Fed EFC -0.035*** -0.039*** -0.036*** -0.066*** -0.058*** 

 (0.007) (0.008) (0.006) (0.017) (0.007) 

Observations 8,416 8,416 8,416 15,733 15,733 

Adjusted R-squared 0.234 0.238 0.231 0.206 0.388 

Outcome: Disconnected 

Years with Fed EFC -0.031** -0.029** -0.033** -0.021* -0.017 

 (0.013) (0.013) (0.012) (0.011) (0.013) 

Observations 8,416 8,416 8,416 15,733 15,733 
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Adjusted R-squared 0.062 0.062 0.059 0.041 0.088 

Outcome: High School Graduation 

Years with Fed EFC 0.014** 0.014** 0.013** 0.047*** 0.049*** 

 (0.006) (0.006) (0.006) (0.014) (0.017) 

Observations 8,416 8,416 8,416 15,733 15,733 

Adjusted R-squared 0.069 0.069 0.067 0.077 0.100 

Outcome: College Enrollment 

Years with Fed EFC 0.045** 0.043** 0.045** 0.036* 0.035** 

 (0.019) (0.018) (0.018) (0.018) (0.015) 

Observations 8,416 8,416 8,416 15,733 15,733 

Adjusted R-squared 0.143 0.142 0.152 0.091 0.148 

Outcome: Employment 

Years with Fed EFC -0.028*** -0.025** -0.026** -0.007 -0.012 

 (0.010) (0.010) (0.011) (0.007) (0.011) 

Observations 8,416 8,416 8,416 15,733 15,733 

Adjusted R-squared 0.066 0.067 0.060 0.056 0.100 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the state level are in 

parentheses. All regressions control for demographic characteristics, foster care history, 

experiences at 17 years old, state controls, and include cohort and state fixed effects, unless 

otherwise noted. The abbreviation EFC is shorthand for extended foster care. The first column 

reports the main results again for easy reference, the second and third columns report estimates 

weighted by response rate at the state and individual level, respectively. The fourth and fifth 

columns report results from imputation methods. These regressions also control for missingness.    

1.10. Cost-Benefit Analysis  

Funding extended foster care programs is a worthy investment. It is estimated that 2 

percent of national child welfare expenditures (approximately 582 million dollars)35 are spent on 

services and assistance for foster youth aged 17 to 21 years old, even though they make up 10 

percent of the foster youth population (ACF, 2015; ACF, 2017). These services potentially 

provide both private and public returns, making this relatively small investment considerably 

more valuable. Cost-benefit analyses in California and Washington suggest that a dollar spent on 

extended foster care yields a return of two to five dollars (Courtney et al., 2009; Burley & Lee, 

2010; National Conference of State Legislatures, 2019), and the Annie E. Casey Foundation 

                                                            
35 Child Trends estimated that in FY2014, 2 percent of the 29.1 billion dollars national child welfare 

expenditures was spent on services and support for older youth currently or previously in foster care. For 

more information, see https://www.childtrends.org/wp-content/uploads/2017/09/Transition-Age-

Youth_United-States.pdf and Rosinsky & Connelly (2016).       

https://www.childtrends.org/wp-content/uploads/2017/09/Transition-Age-Youth_United-States.pdf
https://www.childtrends.org/wp-content/uploads/2017/09/Transition-Age-Youth_United-States.pdf
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estimates that approximately 4.1 billion dollars could be saved if foster youth graduated high 

school and experienced homelessness, incarceration, and early parenthood at similar rates to their 

non-foster youth peers (Future Savings, 2019). Extended foster care provides a potential way to 

ensure that foster youth have more similar experiences to their non-foster youth peers as they 

transition to adulthood.   

I find that a dollar spent on extended foster care maintenance payments yielded a return 

of two to four dollars for the NYTD participants in the FY2011 and FY2014 cohorts. Table 6 

provides a breakdown of these estimates and calculations. I estimate the cost of extended foster 

care for the sample of NYTD participants at age 21 using their age of exit from care and monthly 

maintenance payments obtained from the AFCARS data. I calculate the total cost for a youth in 

extended foster by multiplying the length of time beyond age 18 that they have been in care by 

the monthly maintenance payments. The median age of exit is 18 to 18.6 years, with a range 

from 18 to 22. Based on this sample, the average amount spent on extended foster care 

maintenance payments is 8,659 dollars per youth in states with a federal policy, 3,469 with a 

state policy, and 3,413 with no policy.36 In total, 51.6 million dollars were spent on extended 

foster care maintenance payments across the country.  

                                                            
36 States without an extended foster care policy still occasionally support youth who are in high school or 

have a disability which is why these states still spend money on foster care maintenance payments.  
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Table 6: Cost-Benefit Analysis 

 

I use the conservative estimates from this paper’s main results to avoid overstating the 

benefits of extended foster care. I compare the actual incidence of homelessness, incarceration, 

and high school graduation for the NYTD participants at age 21 to the counterfactual outcome of 

 No EFC State EFC Federal EFC  

Number of youth 2121 1961 4334 

Median age at exit 18.0 18.0 18.6 

Average of total foster care maintenance 

payments received as an adult  
$3,413  $3,469  $8,659  

Total amount spent on foster care maintenance payments: $51.6 million 

Number of youth ever homeless if had similar transition as non-foster youth peers: 337 

Number of youth ever homeless 887 787 1411 

Counterfactual if no policy  887 932 1628 

Difference in counterfactual versus actual 0 145 217 

Cost of being homeless for 7 days per youth: $252   

Cost avoidance: $91,177    

Number of youth ever incarcerated if had similar transition as non-foster youth peers: 5 

Number of youth ever incarcerated  654 615 1080 

Counterfactual if no policy  654 690 1366 

Difference in counterfactual versus actual 0 75 286 

Cost of being incarcerated per youth: $52,080 to $334,230  

Cost avoidance: $18.8 million to $120 million    

Number of youth that graduated high school by age 21 if had similar transition as non-foster 

youth peers: 7490 

Number of youth that graduated high 

school by age 21 
1742 1568 3560 

Counterfactual if no policy  1742 1529 3430 

Difference in actual versus counterfactual 0 39 130 

Cost of not graduating per youth: $410,659   

Cost avoidance: $69.5 million    

Benefit-cost ratio: $1.71/$1 to $3.69/$1 

Notes: The first panel presents the cost of extended foster care using the foster care maintenance 

payment amounts reported in AFCARS, and panels two through four present the amount of 

money saved using the costs of homelessness, incarceration, and not graduating high school 

from the Future Savings report produced by the Annie E. Casey Foundation. All counts of youth 

are specific to the two NYTD cohorts (FY 2011 and FY 2014), the counterfactual numbers if 

foster youth had similar experiences as their non-foster youth peers comes from probability 

estimates from the Annie E. Casey Foundation Future Savings Report, and the counterfactual 

counts of no extended foster care policy is based on the main results of this paper.  
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having no policy. All else equal, if no states implemented extended foster care during 2012 to 

2016, then 362 more youth might have experienced homelessness, 361 more youth might have 

been incarcerated, and 169 fewer youth might have graduated high school by age 21. To 

determine the monetary value of  reducing these hardships and calculate the benefits of extended 

foster care, I use the costs of homelessness, incarceration, and not graduating high school from 

the 2019 Annie E. Casey Foundation Future Savings report.37 Specific to the NYTD FY2011 and 

FY2014 cohorts, extended foster care reduced costs to society by 88.4 million to 190 million 

dollars, depending on the cost of incarceration.  

The benefits may be even larger since this calculation does not include the long-term 

benefits of reducing homelessness and incarceration at a young age.38 Additionally, this analysis 

does not monetize the benefits of being employed at age 19 or being enrolled in college at age 

21, nor does it account for nonpecuniary returns. The benefits of extended foster care outweigh 

the costs and indicate that this program is a worthy investment, with at least a two dollar return 

on investment.    

1.11. Conclusion 

To date, much of the existing research shows beneficial associations, not causal evidence, 

between extended foster care and the transition to adulthood by comparing outcomes of youth 

across a handful of states. Citing this research, states continue to adopt extended foster care 

polices. For example, between January 2017 and July 2019, seven states were approved to 

                                                            
37 The cost of homelessness is a conservative estimate that only takes into consideration the cost of a 

providing a bed, and not the cost of other services that shelters may provide. The cost of incarceration is 

based on the cost of a one-day detention placement, costs to society, and recidivism. Finally, the cost of 

not graduating high school is based on lifetime gross income and societal tax loss.    
38 Reducing youth homelessness and incarceration may prevent future episodes and other costly outcomes 

(Hodgson et al., 2013; McLaughlin et al., 2016; Barnert et al., 2017; U.S. Department of Health and 

Human Services, 2017).   
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implement federally-funded extended foster care, and currently another two are pending 

approval.39 With increased uptake of extended foster care, it is important to demonstrate that this 

program is beneficial and cost-effective.   

I estimate the intent-to-treat effect of extended foster care on the transition to adulthood 

and enrich the existing research by comparing youth within a state under different policy regimes 

nationwide. The intent-to-treat effect is advantageous over the treatment-on-treated effect 

because it is more policy relevant and is not biased by selection into treatment. I use a 

combination of relatively new individual-level survey data, rich administrative case-level data, 

and state-level data to reduce omitted variable and selection bias. I also provide estimates from a 

variety of different model specifications, showing that the results are invariant to specification 

changes, except in cases where we expect to observe differences.40 Additionally, I have 

established that NYTD participants are positively selected. Failure to correct for non-response 

may lead to biased estimates depending on how the response rate is correlated with the treatment. 

After employing methods to mitigate non-response bias, I still conclude that extended foster care 

benefits foster youth as they transition to adulthood. 

Extended foster care reduces homelessness, incarceration, and disconnectedness in the 

short run. Compared to access to Homebase Centers, extended foster care is twice as effective in 

reducing homelessness (Goodman et al., 2016), but relative to receiving emergency rent and 

Homebase services, extended foster care is only about half as effective (Rolston et al., 2013; 

Evans et al., 2016). Extended foster care is more effective in reducing incarceration among foster 

                                                            
39 The seven states recently approved include Colorado, Florida, Georgia, New Mexico, North Carolina, 

Ohio, and Rhode Island. Louisiana and Nevada are pending approval. 
40 For example, results are sensitive to excluding state fixed effects, so assuming states have similar foster 

care environments and other time-invariant characteristics to make comparisons across states is 

problematic. 
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youth than each of the top five policy reforms in states across the country (Schrantz et al., 2018). 

Finally, reductions in disconnectedness mean that youth are more likely to be working and/or 

attending school. This result is reassuring as many states require school and/or work 

requirements for extended foster care participation. Although, this study does not measure 

participation, it would be concerning if an outcome related to eligibility was not improved by the 

existence of extended foster care.  

Extended foster care also increases educational attainment through increased high 

school/GED completion and college enrollment. It is well known that the pecuniary and 

nonpecuniary returns to education are large for both individuals and society, even without degree 

completion.41 Interestingly, youth appear to be making a tradeoff between college enrollment and 

employment. Extended foster care availability at age 18 initially increases employment, however 

over time, youth are less likely to work. This finding taken together with college enrollment and 

disconnectedness, indicates that extended foster care may provide youth with enough resources 

so that they can attend school without the additional burden of working. 

Importantly, extended foster care appears to mitigate the consequences of common 

hardships that foster youth experience as minors, such as substance abuse and homelessness. 

Mitigating these hardships might have beneficial long-run effects that should be considered as 

states design and enact programs in the future. 

All of these beneficial effects are primarily driven by the federal program. This finding 

suggests that the federal program is more effective than the state programs, which may result 

from greater reach and increased quality and quantity of resources.42 Implementing federally-

                                                            
41 See Angrist & Krueger (1991), Ashenfelter & Krueger (1994), Oreopoulos & Salvanes (2011) and 

Oreopoulos & Petronijevic (2013) and Shapiro et al., (2014) for more information about the returns to 

education.  
42 Pinning down how much each of these mechanisms drive the results is left for future research. 
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funded extended foster care is a tangible way for states to assist foster youth through their 

transition to adulthood. 

There are two limitations of this study and recommendations for future research. First, 

the specific mechanism (i.e. housing, social, or financial support) is ignored. Extended foster 

care programs vary by state, and this analysis estimates the effect of the bundle of services and 

supports. Exploratory research reveals that most of the effect may be driven by the housing and 

social support. Interviewed foster youth often acknowledge that the program has helped them by 

providing housing and mentors to develop life skills.43 The availability of these supports is also 

consistent with the finding that extended foster care mitigates childhood hardships such as 

homelessness and substance abuse. Future research will focus on specific programs in states 

proving to be successful to better understand the most beneficial and cost-effective services.44 

Second, due to data limitations, this analysis is unable to estimate take-up rates and the 

treatment-on-treated effect. Without administrative records and correspondence with individual 

state agencies, extended foster care participation is not accurately identified. Future research will 

focus on overcoming this challenge, so that we can learn more about extended foster care 

participants. This analysis provides emerging causal evidence of the beneficial impacts of 

extended foster care nationwide and provides many directions for future research. 

  

                                                            
43 See this AJC article for an example.   
44 Some extended foster care programs to investigate include California’s AB12 and Nebraska’s Bridge to 

Independence. Existing research shows both of these programs are effective (Courtney et al., 2018; 

Sepulveda et al., 2019). Nebraska’s program offers medical care, housing assistance, and case 

management.  

https://www.ajc.com/news/state--regional-govt--politics/georgia-program-helps-transition-from-foster-care-independence/ojwzvuqa0sI4T7yAf9x24O/
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Chapter 2: Child Maltreatment Referrals and Mandatory Reporting Laws 

2.1. Introduction 

In 2017, an estimated 7.5 million children in the United States were referred to Child 

Protective Services for maltreatment, an increase of 1.7 million children (29%) from 2007 (ACF, 

2008; ACF, 2019). Child Protective Services (CPS) is the government agency in each state 

accountable for children’s well-being with the main responsibility of responding to child 

maltreatment referrals. The referral is the first step in a lengthy process to substantiation. A 

referral can be made by anyone, but is mandated for certain professions. These “mandatory 

reporter” classifications vary by state and over time. In 2004, the most common reporters were 

teachers (19%), law enforcement (18%), and social services staff (11%). In 2017, the most 

common reporters were education (20%), legal (20%), social services (12%), and medical (11%) 

personnel. After a referral is made, it is screened in or out based on state criteria. Consistent with 

the child welfare literature, I refer to referrals that are screened-out as “referrals screened-out” 

and referrals that are screened-in as “reports.” There is no additional follow-up for referrals that 

are screened-out, but reports are then investigated for child maltreatment. A caseworker visits the 

family and observes the living environment to determine a disposition. A report is substantiated 

if there is enough evidence to prove maltreatment occurred, and unsubstantiated otherwise. The 

purpose of this paper is to understand how child maltreatment reporting responds to changes in 

mandatory reporter legislation.  

Observed child maltreatment is a function of the interaction between maltreatment and 

reporting. The true nature of maltreatment is unknown and widely regarded as underreported 

(MacMillan et al., 2003; Fallon et al., 2010; GAO, 2011; National Research Council, 2014). In 
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response, there has been considerable effort trying to identify behaviors and circumstances that 

are predictive of maltreatment.  

Poor economic conditions such as unemployment, low-income, and inadequate housing 

are correlated with increases in child abuse and neglect (Weinberg, 2001; Paxson & Waldfogel, 

2002; Slack et al., 2003; Seiglie, 2004; Lindo et al., 2013; Warren & Font, 2015; Berger et al., 

2017; Lindo et al., 2018; Brown & De Cao, 2020). A randomized control trial in Delaware and 

an evaluation of the Welfare Reform Act of 1996 found that less generous welfare programs 

increase child maltreatment (Fein & Lee, 2003; Paxson & Waldfogel, 2003). Alternatively, 

safety net programs can reduce the nature of child maltreatment. Berger and colleagues (2017) 

show that an increase in income from the earned income tax credit reduces CPS’s involvement, 

Raissian & Bullinger (2017) find that increasing the minimum wage reduces child maltreatment, 

and Brown & De Cao (2020) show that states with longer durations of unemployment insurance 

had fewer maltreatment reports during the Great Recession. Additionally, more generous child 

support payments reduce the number of screened-in reports of maltreatment (Cancian et al., 

2013).  

Environmental factors, such as availability of services, substance abuse, and temperature, 

might also impact child maltreatment. Access to abortions have been found to reduce child 

maltreatment (Bitler & Zavodny, 2004; Seiglie, 2004). Substance abuse, regardless of the drug, 

impacts parental functioning and places a child at risk of maltreatment (Wells, 2009). While 

there is no evidence relating temperature to child maltreatment,45 there is emerging evidence that 

hotter temperatures increase violence (Anderson et al., 2000; Anderson, 2001; Almas et al., 

2019; Heilmann & Kahn, 2019). Lastly, family structure contributes to maltreatment. 

                                                            
45 One notable exception is Jessica Pac’s third dissertation chapter (Pac, 2019).  
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Specifically, changes in family structure to single parenting or blended families (step parents and 

siblings) is associated with abuse and neglect (National Research Council, 2014; Schneider, 

2016).   

Since the underlying causes of maltreatment have been investigated in great detail, this 

paper focuses on the second factor that determines the number of maltreatment investigations, 

reporting. Reporting is a function of social norms around reporting maltreatment and the number 

of mandatory reporters. Recently, there has been increased interest in the role mandatory 

reporters play detecting child maltreatment, especially school teachers.46 However, there is 

limited conclusive research around mandatory reporting laws and referrals. On one hand, 

universal reporting laws47 are associated with higher report rates for abuse and neglect (Krase & 

DeLong-Hamilton, 2015; Palusci et al., 2016). Alternatively, Ho et al. (2017) conclude that child 

maltreatment reporting did not differ across states with and without universal mandatory 

reporting laws in 2013. These papers make comparisons across counties and states, so their 

findings are not necessarily causal. Instead these differences may be confounded by 

demographic, economic, and cultural differences across places.  

I contribute to this body of research by investigating the effect of changing mandatory 

reporter laws over a 14-year period in the United States on child maltreatment referrals and 

reports. Specifically, I answer the following three research questions:  

1. How has mandatory reporter legislation changed over time?  

                                                            
46 Recent working papers that discuss the role of teachers in detecting child maltreatment early include 

Fitzpatrick et al. (2020) and Cabrera-Hernandez & Padilla-Romo (2020).    
47 Universal reporting laws require all persons to report suspected maltreatment regardless of their 

profession. 
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2. What is the relationship between changes in mandatory reporter legislation and child 

maltreatment referrals and reports?  

3. Do different professions have different impacts?   

Mandatory reporting laws designate professions that are required to report child abuse or 

neglect and establish the reporting process, such as who to call and what details to provide. Some 

legislation adds new job classifications to the list of mandatory reporters, whereas other 

legislation provides clarification about making a report and privileged communication or adds 

training requirements. I use changes in the list of mandatory reporters from 2004 to 2017 to 

estimate how increasing the number of professions designated as mandatory reporters impacts 

child maltreatment reporting.48  

The predicted change in maltreatment referrals and reports is theoretically ambiguous, 

but empirically testable and important. Behavioral responses from both reporters and perpetrators 

are possible explanations for long-run changes in reporting. As more people understand the 

dangers of child maltreatment, recognize it as a public concern, and better understand their and 

CPS’s role, then the quantity of referrals and reports may increase, holding the true amount of 

child maltreatment constant. Better identification of child maltreatment would be indicated by 

increased substantiation rates and is important in detecting the true nature of maltreatment. 

Alternatively, the bystander effect may explain a decrease in reporting, holding child 

maltreatment constant.49 Lastly, if increasing reporting and awareness of child maltreatment 

                                                            
48 While there are differences across states in their standards for making a report and privileged 

communication, these differences are mostly invariant over time from 2004 to 2017. Alternatively, 

training requirements have become more popular in recent years and considerable effort is needed to track 

down the changes over time for all 50 states and DC. For these reasons, I do not focus on these changes 

and leave them for future research.        
49 The bystander effect refers to the phenomenon where increasing the number of people that witness a 

crime reduces the probability of reporting. This phenomenon was first discovered by psychologists Darley 

& Latané after a woman was murdered in New York in front of dozens of neighbors (ESRC, nd). Factors 
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deters perpetrators, then we would expect to see a decline in reporting, holding the nature of 

reporting constant. Deterring perpetrators would be a beneficial impact of mandatory reporter 

legislation.  

Using a two-way fixed effects model with a state-level linear time trend, I do not find any 

evidence that the referral rate responds to changes in mandatory reporters, and I can rule out 

responses larger than 10 percent. Alternatively, I find that increasing the number of jobs listed as 

mandatory reporters increases the report rate by 4 percent. While there are more reports, most of 

the increase is driven by unsubstantiated reports. Moreover, a legislation change that increases 

the number of mandatory reporters leads to a smaller increase in reports in states with more 

mandatory reporters, relative to states with fewer mandatory reporters. 

I also investigate whether any changes in reporting can be detected in the short-run. If the 

legislation change was highly publicized, then we might expect a larger temporary shock in the 

short-run compared to the long-run. However, the direction of this shock is ambiguous. On the 

one hand, as mandatory reporters learn about their new responsibility, they may either report 

more or less, depending on the size of the bystander effect. Alternatively, perpetrators may 

change their behavior temporarily to prevent getting caught. Using an event-study design and 

difference-in-differences approach, I compare child maltreatment reporting five months before 

and after a legislation change within a state. I find suggestive evidence that reporting is overall 

unresponsive to mandatory reporter legislation changes in the short-run, and I can rule out 

increases and decreases greater than 8 percent. This is perhaps unsurprising, since in most states 

mandatory reporter legislation seems to be modified with little publicity. 

                                                            
contributing to the bystander effect have since been researched in detail (e.g. Fischer et al., 2011); 

however, no examples, to my knowledge, of the bystander effect have been reported in the child 

maltreatment literature. 
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In addition, I advance the existing research by quantifying the effect of specific 

professions added to the list of mandatory reporters. Coaches, college staff, and camp staff were 

the most commonly added professions between 2004 and 2017. Different professions are 

expected to have different impacts on reporting due to the degree of interaction with children and 

their reason for being included. Moreover, reports made by professionals have higher 

substantiation rates than reports made by nonprofessionals (Wolfe, 2012; King et al., 2013). I 

find that the majority of added professions do not significantly impact reporting. As states 

contemplate adjusting mandatory reporter laws, they may question whether more professions 

need to be listed, and if so, which ones. 

Child maltreatment reports reflect the true nature of maltreatment and impact the demand 

for child protective services. In addition, mandatory reporter laws are policy levers that states can 

enact and modify rather cheaply. For these reasons, it is important to understand how changing 

who is required to report may or may not effectively detect child maltreatment.  

2.2. Background on Mandatory Reporter Laws and Their Impact on Reporting 

Under the Child Abuse Prevention and Treatment Act, states are required to designate 

certain professionals as mandatory reporters. A mandatory reporter is someone required by law 

to report when they know or suspect child maltreatment. Some states require universal reporting, 

where all adults are considered mandatory reporters, whereas other states designate a list of 

professions as mandatory reporters. Typically, these mandatory reporters work in professions 

that interact with children regularly, such as teachers, pediatricians, and childcare providers. In 

some states with specific industries, professions such as film and photograph processors, 

computer technicians, and camp counselors are required to report.  
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Over the years, more professions have been added to the list of mandatory reporters. In 

2004, the most common professions listed as mandatory reporters across all states included 

social workers, teachers, health care workers, mental health professionals, childcare providers, 

and law enforcement officers (CWIG, 2003). On average, eight broad job categories were 

indicated as mandatory reporters, with some states indicating zero professions50 and others 

indicating as many as 15. By 2017, an average of nine job categories were indicated, with as few 

as zero and as many as 19. Common professions added during this time period include coaches, 

university staff, and camp staff.  

Currently, some states are discussing scaling back their list of mandatory reporters 

because they fear the additional unsubstantiated referrals are overburdening CPS and support is 

not being allocated effectively (i.e. to those most in need).51 While these concerns are frequently 

brought up (Melton, 2005; Mathews & Kenny, 2008; Cecka, 2015; Raz, 2017), the evidence is 

less clear. Cross country analyses find that mandatory reporting laws increase the number of 

reports (Mathews & Kenny, 2008; Donald, 2012). In Australia, mandatory reporting legislation 

increased the detection of sexual abuse (Mathews et al., 2016), and in Canada, mandatory 

reporting laws increased contact with CPS for severe and frequent maltreatment, but it is unclear 

whether this increased contact with CPS improved child wellbeing (Tonmyr et al., 2018). 

In the United States, the evidence is mixed. A presentation at the American Economic 

Association in 2020 found preliminary evidence that the first laws of mandatory reporters in the 

1960s and 70s52 led to increased awareness of child abuse and reductions in child mortality for 

children under one years old (Arteaga & Barone, 2020). These reductions become apparent 4 to 

                                                            
50 States that do not indicate certain professions have a universal reporting law, in which all people are 

required to report regardless of their profession.   
51 For example, Idaho passed a bill in February 2020 to eliminate some mandatory reporting requirements.  
52 These first mandatory reporter laws listed doctors to prevent “Battered Child Syndrome.”  

https://www.idahostatejournal.com/news/local/idaho-bill-would-eliminate-some-mandatory-reporting-requirements-for-child/article_c69ba2c5-3fae-5e63-8a83-9ef9fe745406.html
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5 years after the policy was enacted. In a county-level study, universal reporting laws are 

associated with higher report rates for abuse, and clergy reporting requirements are associated 

with increased total reports, although not all are substantiated (Palusci et al., 2016). In a state-

level study, universal reporting laws are associated with higher report rates for neglect (Krase & 

DeLong-Hamilton, 2015). Alternatively, Ho et al. (2017) conclude that child maltreatment 

reporting did not differ across states with and without universal mandatory reporting laws. 

Overall, the research around mandatory reporting laws and referrals is scant, and few 

explanations for differences are given.      

In this paper, I discuss potential mechanisms and explain their implications. Behavioral 

responses from both reporters and perpetrators are possible explanations for long-run changes in 

reporting. Specifically, there is a knowledge effect, bystander effect, and deterrent effect. Child 

maltreatment is underreported for a variety of reasons including a lack of understanding what 

constitutes maltreatment and fear that steps following the report will make the situation worse 

(National Research Council, 2014). As more people understand the dangers of child 

maltreatment, recognize it as a public concern, and better understand their and CPS’s role, then 

the quantity of reports may increase, holding the true amount of child maltreatment constant. 

This situation describes the knowledge effect and explains how reporting might increase in 

response to a mandatory reporter legislation change. 

The bystander effect refers to the phenomenon where increasing the number of people 

that witness a crime reduces the probability of reporting. Two primary factors that contribute to 

this phenomenon are the diffusion of responsibility (Darley & Latané, 1968) and not 

understanding the environment (Darley & Latané, 1970). Moreover, the bystander effect is 

reduced in emergency situations, when perpetrators are present, and when the costs of 
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intervening are physical, and not financial or opportunity costs (Fisher et al., 2011; Panchanathan 

et al., 2013). Child maltreatment reporting may be especially prone to the bystander effect for 

three reasons. First, in states with relatively more mandatory reporters, requiring more people to 

report allows mandatory reporters to diffuse their responsibility of reporting more easily. In fact, 

some mandatory reporters already report passing on the responsibility to their supervisors 

(McTavish et al., 2017). Second, there is evidence that mandatory reporters do not understand 

the reporting environment. For example, seasoned mandatory reporters indicate needing better 

training to identify and report maltreatment (McTavish et al., 2017). Lastly, child maltreatment 

incidences have the opposite characteristics of the situations in which the bystander effect is 

mitigated. They are generally not emergencies and learned about after the fact when the child is 

away from the perpetrator, and mandatory reporters face non-physical costs to intervene. The 

bystander effect might be one explanation for a decline in reporting.  

The deterrent effect might be another explanation for a decline in reporting. An increase 

in mandatory reporters and awareness of child maltreatment may deter perpetrators. In this 

situation, we would expect to see a decline in reporting, holding the nature of reporting constant. 

Disentangling the bystander effect from the deterrent effect is difficult; however, the decline in 

reports from these two mechanisms have very different policy implications. The bystander effect 

implies children may be going unreported and the deterrent effect implies fewer children are 

being maltreated. One way to disentangle the deterrent effect from the bystander effect is by 

examining how substantiated and unsubstantiated reports respond. For example, a decrease in 

substantiated reports, or victims, relative to unsubstantiated reports, holding constant the 

investigation process, would indicate less maltreatment. Deterring perpetrators would be a 
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beneficial impact of the mandatory reporter legislation, whereas the bystander effect would be an 

unintended consequence.  

In the short-run there might be a publicity effect, or a temporary shock in reporting, if the 

legislation change was highly publicized. However, the direction of this shock is ambiguous. On 

the one hand, as mandatory reporters learn about their new responsibility, there may either be 

more or less reports, depending on the size of the mechanical effect, the bystander effect, and the 

deterrent effect. The mechanical effect is the effect of increasing the number of people required 

to report maltreatment, holding constant reporter and perpetrator behavior. For example, as more 

people are required to report, the quantity of reports may simply increase as a result of children 

interacting with more mandatory reporters, assuming these people know of their new 

responsibilities. Alternatively, mandatory reporters may diffuse their responsibility to report. The 

bystander effect relies on the assumption that mandatory reporters know there are other people 

required to report maltreatment. Lastly, perpetrators may change their behavior temporarily to 

prevent getting caught. If legislation changes are not well publicized, then we would not expect 

to see evidence of the publicity effect.  

2.3. Data  

I create a state panel of mandatory reporter legislation, child maltreatment referrals and 

reports,53 case dispositions, demographic characteristics, and economic conditions from 2004 to 

2017. I start in 2004 because this is the first year in which all but two states report child 

                                                            
53 See Appendix Figure D1 and D2 for the average report rate by state and year, respectively.  
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maltreatment data to the National Data Archive on Child Abuse and Neglect (NDACAN).54 I end 

in 2017 because this is the most recent year of updated data available.55   

The mandatory reporter job classifications for each state come from changes in 

mandatory reporting laws.56 I construct the first state-level panel of mandatory reporter 

legislation changes from 2004 to 2017.57 Table 7 summarizes these changes over time.58 From 

2004 to 2017, 27 states have updated their list of mandatory reporters at least once. One-third, 9 

states, have only made one change, whereas the remaining 18 states have made two to six 

changes. Each change adds anywhere from one to four more broad categories of professions to 

the list of mandatory reporters. During this time period, only one state, Virginia, removed a 

profession, clergy, from the list in 2007, so overall a change in legislation represents an increase 

in mandatory reporters.   

  

                                                            
54 Maryland and Michigan are missing one year of child maltreatment data in 2006 and 2007, 

respectively. Oregon and North Dakota are missing multiple years of child maltreatment data. North 

Dakota started reporting child maltreatment data in 2010 and Oregon started reporting in 2011.  
55 As states resubmit their records, NDACAN provides updated versions of data.  
56 I am very grateful to the Child Welfare Information Gateway librarians, especially John Vogel and 

Sara-Jane Ziaya, for sending me the archived documents on mandatory reporting laws. Dates are verified 

with the NCSL and Westlaw databases. 
57 Mathematica publicly released the SCAN Policies Database April 2021, which provides differences in 

state policies for one year, 2019. Per email correspondence with the database team, state policies in 2021 

will be released in 2022. While this will be a valuable resource in tracking policy changes over time, it is 

limited to changes starting after 2019, whereas the panel I constructed starts in 2004.       
58 A more detailed table with effective and enacted dates and added professions is available upon request. 

https://www.scanpoliciesdatabase.com/
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Table 7: Mandatory Reporter Law Changes in Each State from 2004 to 2017 

State 

Number of 

Mandatory 

Reporter 

Changes 

Number of 

Professions in 

2004 

Number of 

Professions in 

2017 

Number of 

Added 

Professions 

Arizona 0 6 6 0 

Connecticut 0 14 14 0 

Florida 0 8 8 0 

Hawaii 0 9 9 0 

Idaho 0 7 7 0 

Indiana 0 2 2 0 

Iowa 0 10 10 0 

Kentucky 0 8 8 0 

Maryland 0 4 4 0 

Massachusetts 0 13 13 0 

Michigan 0 9 9 0 

Minnesota 0 8 8 0 

Mississippi 0 8 8 0 

Missouri 0 11 11 0 

Montana 0 9 9 0 

Nebraska 0 3 3 0 

New Hampshire 0 8 8 0 

New Jersey 0 0 0 0 

New Mexico 0 6 6 0 

North Carolina 0 0 0 0 

Rhode Island 0 1 1 0 

Texas 0 5 5 0 

Utah 0 1 1 0 

Wyoming 0 0 0 0 

Alabama 1 8 9 1 

Alaska 1 10 11 1 

Delaware 1 4 5 1 

North Dakota 1 9 10 1 

Oklahoma 1 3 4 1 

Oregon 1 12 15 3 

Pennsylvania 1 9 13 4 

South Carolina 1 14 15 1 

Tennessee 1 8 9 1 

Arkansas 2 12 14 2 

California 2 15 19 4 

Georgia 2 7 11 4 

Kansas* 2 9 9 0 

Maine 2 14 15 1 

South Dakota 2 10 12 2 
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State 

Number of 

Mandatory 

Reporter 

Changes 

Number of 

Professions in 

2004 

Number of 

Professions in 

2017 

Number of 

Added 

Professions 

Washington 2 8 10 2 

West Virginia 2 9 12 3 

Illinois 3 14 19 5 

Louisiana 3 11 15 4 

New York 3 11 13 2 

Ohio 3 10 11 1 

Wisconsin 3 10 12 2 

Colorado 4 9 14 5 

DC 4 7 10 3 

Nevada* 4 13 13 0 

Vermont 4 10 11 1 

Virginia 6 9 13 4 

Notes: The table is organized by number of changes and then alphabetical order. The number of 

changes is determined from reading state legislation provided by the Westlaw database. Number 

of professions in 2004 and 2017 is the number of broad job categories listed in the state statutes 

provided by the CWIG in 2003 and 2015, respectively. A value of zero indicates that no broad job 

categories are listed, i.e. the state has a universal mandatory reporting law and requires all persons 

to report. The number of added professions is the difference between the 2017 and 2004. In states 

with no change, there are no added professions. A detailed state panel of effective and enacted 
dates and professions added from 2002 to 2020 is available upon request.   

* Both Kansas and Nevada have multiple mandatory reporter legislation changes, but report an 

unchanged number of professions because the professions added to the list do not fall under the 

general categories considered in this analysis.  

 

The child maltreatment data come from National Child Abuse and Neglect Data System 

(NCANDS) housed by NDACAN. I use both the agency and child files. The NCANDS agency 

file contains the number of referrals screened-out in a state during a specific year. One drawback 

of using just the agency file is that it only includes referrals, which are volatile from year to year 

as a result of changes that are not always related to mandatory reporting legislation.59 

Alternatively, the NCANDS child file contains detailed information about a report of 

maltreatment and the child characteristics. Reports are recorded during the fiscal year in which 

                                                            
59 For example, in 2010 Alabama’s screened-out referrals dropped by almost 100 percent as a result of 

correcting an error from previous years (ACF, 2011). In Arkansas, the number of referrals screened-out 

increased as a result of changing child maltreatment statutes and staff training (ACF, 2014).  
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the disposition was decided, but I restructure this data to obtain the number of reports, unique 

children, and victims in a given month, year, and state. The average time to disposition is 56 

days, so this structure does not drastically change the results.    

Finally, state characteristics and economic conditions, which are included as controls in 

robustness specifications, come from the Annie E. Casey foundation KidsCount data book and 

the University of Kentucky Center for Poverty Research welfare dataset.    

2.4. Empirical Strategy  

I first analyze trends in reporting using annual state-level data. I use a linear time trends 

model with fixed effects to estimate how changes in child maltreatment referrals and reports 

correspond to changes in mandatory reporters from 2004 to 2017. The main regression equation 

is: 

𝑌𝑠𝑦 = 𝛽0 + 𝛽1𝑀𝑅𝑠𝑦 + 𝛾𝑠 + 𝛾𝑦 + 𝛾𝑠 ∗ 𝑦𝑒𝑎𝑟 + 𝜀𝑠𝑦     (2.1) 

Where 𝑌𝑠𝑦 is the child maltreatment rate, per 100,000 children for state s in year y. The 

four specific rates are total referrals, screened-out referrals, reports (i.e. screened-in referrals), 

and children investigated. Effects on screened-out referrals and reports are included to determine 

the composition of total referrals. 𝑀𝑅𝑠𝑦 is a discrete variable that tracks changes in mandatory 

reporters. State fixed effects, 𝛾𝑠, allow for within state comparisons to avoid confounding the 

impact of changes in mandatory reporters with state differences in culture and other policies. 

Year fixed effects, 𝛾𝑦, are included to capture any time shocks that may impact the entire country 

similarly, such as the Great Recession. Lastly, state-specific linear time trends, 𝛾𝑠 ∗ 𝑦𝑒𝑎𝑟, are 
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imposed to capture the trends in child maltreatment over time within a state.60 The error term is 

𝜀𝑠𝑦.   

𝛽1estimates the effect of changing mandatory reporter legislation on child maltreatment 

referrals and reports within a state. The validity of this approach relies on the assumption that 

states did not change their mandatory reporter legislation concurrently with other child welfare 

legislation that affects referrals and reports. For example, changing the intake process or what 

constitutes abuse and neglect might bias the results. Delaware and Pennsylvania are two 

examples of states that enacted a comprehensive package of child welfare reforms to better 

protect children in response to high profile incidences (ACF, 2012; ACF, 2018), but the majority 

of states did not change mandatory reporting and other child welfare legislation concurrently. 

Such incidences are uncommon but should be kept in mind when interpreting results.     

In addition to an annual analysis, I construct a state-level panel of monthly observations. 

One advantage of this approach is that more observations can lead to more statistical power. In 

addition, the timing of treatment is more precise. On the other hand, monthly report rates are 

more volatile than annual report rates. Figure 2 shows how child maltreatment reports fluctuate 

across months.61 For this reason, the monthly analysis includes a year-by-month fixed effect, in 

place of the year fixed effect, in equation 2.1.    

                                                            
60 As a robustness check, I include state characteristics, such as racial, age, educational, and family 

structure composition, and economic conditions, such as the poverty and unemployment rate. Results are 

similar. Some of these variables will impact the underlying behavior of child maltreatment. Controlling 

for these variables assumes that the underlying nature of child maltreatment is constant, whereas 

excluding these allows the nature of child maltreatment to adjust to the mandatory reporter legislation.  
61 See Appendix Figure D2 for the average report rate by year.  
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Figure 2: Average Report Rate by Month 

 

Notes: The report rate is calculated per 100,000 children. In practice, the number of reports 

screened-in is divided by the number of children and then multiplied by 100,000. The average is 

taken across all states and years and is weighted by the state population. This figure masks within 

state and across year variation.    

Figure 3: Average Report Rate by Number of Changes in Mandatory Reporter Legislation 

 

Notes: The report rate is calculated per 100,000 children. In practice, the number of reports 

screened-in is divided by the number of children and then multiplied by 100,000. The average is 

taken across all states and years and is weighted by the state population. This figure masks within 

state and across year variation.    
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Figure 4: Average Report Rate by Number of Jobs Listed as Mandatory Reporters 

 

Notes: The report rate is calculated per 100,000 children. In practice, the number of reports 

screened-in is divided by the number of children and then multiplied by 100,000. The average is 

taken across all states and years and is weighted by the state population. This figure masks within 

state and across year variation.    

 

There may also be differential effects by the number of changes and amount of 

mandatory reporters. Figure 3 plots the average number of reports by change in mandatory 

reporter legislation, and Figure 4 plots the average number of reports by number of jobs listed as 

mandatory reporters.62 Both of these figures suggest there are non-linear effects, and the 

interaction between legislation changes and number of mandatory reports is complex. For 

example, a legislation change in states with a relatively low number of reporters may have a 

different impact than a legislation change in states with a relatively high number of reporters. I 

estimate the following equation to quantify this interaction effect:  

                                                            
62 These averages are weighted by the population size.  
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𝑌𝑠𝑚𝑦 = 𝛿0 + 𝛿1𝑐ℎ𝑎𝑛𝑔𝑒𝑀𝑅𝑠𝑚𝑦 + 𝛿2𝑡𝑜𝑡𝑎𝑙𝑀𝑅𝑠𝑚𝑦 +

𝛿3(𝑐ℎ𝑎𝑛𝑔𝑒𝑀𝑅𝑠𝑚𝑦𝑋 𝑡𝑜𝑡𝑎𝑙𝑀𝑅𝑠𝑚𝑦) + 𝛾𝑠 + 𝛾𝑚𝑦 + 𝛾𝑠 ∗ 𝑦𝑒𝑎𝑟 + 𝜀𝑠𝑚𝑦     (2.2) 

Where 𝑌𝑠𝑚𝑦 is the report rate in state s for month m of year y, changeMR indicates the 

number of legislation changes, totalMR indicates the number of broad job categories classified as 

mandatory reporters, and 𝛾𝑠, 𝛾𝑚𝑦, 𝛾𝑠 ∗ 𝑦𝑒𝑎𝑟 are the same as equation 2.1. 𝛿1 estimates the effect 

when a state changes it mandatory reporter legislation, 𝛿2 estimates the effect when a state adds 

another job to the list of mandatory reporters, and 𝛿3 estimates the effect of a policy change for 

states with more mandatory reporters, relative to states with fewer mandatory reporters.  

Next, to investigate the sensitivity of reporting in the short-run, I use an event study 

design, similar to Leslie & Wilson (2020). I investigate the effect five months before and after 

the legislation change, centering around the month in which the change occurred. Since monthly 

report rates are volatile, I include a control period to make comparisons in the same month 

before and after the legislation change. The regression equation is: 

𝑌𝑠𝑚𝑦 = ∑ 𝛽𝜏[1(𝑀𝑜𝑛𝑡ℎ𝑠𝑚𝑦 = 𝜏) ∗ 𝑇𝑟𝑒𝑎𝑡𝑚𝑦] +
5
𝜏=−5 ∑ 𝛳𝜏1(𝑀𝑜𝑛𝑡ℎ𝑠𝑚𝑦 = 𝜏) +

5
𝜏=−5 𝛼𝑇𝑟𝑒𝑎𝑡𝑚𝑦 +

 𝛾𝑠 + 𝛾𝑚 + 𝛾𝑦 + 𝜀𝑠𝑚𝑦     (2.3) 

The outcomes are the report rate, substantiation rate, and victim rate (per 100,000 

children) in state s for month m in year y. The indicator function 1(𝑀𝑜𝑛𝑡ℎ = 𝜏), for all τ ϵ {-

5,5}, takes a value of one if the month is within the five months before or after the effective date 

of the mandatory reporter change. 𝑇𝑟𝑒𝑎𝑡 is a binary variable that equals one in the five-month 

period both before and after the legislation change in the period the change occurred, and zero in 

the five-month period both before and after the legislation change one year earlier, i.e. the 

control period. I also control for state differences, monthly trends, and annual changes. As a 

result, 𝛽𝜏 estimates the effect for each of the five months before and after the legislation change 
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within a state relative to the previous period. A valid design will not have pre-trends, that is 𝛽−5 

through 𝛽−1 will not differ from zero.  

To quantify the five-month average effects, I also estimate a difference-in-differences 

model. This approach estimates the short-run impact of changing mandatory reporters, relative to 

the same time period in the earlier year. This approach is validated by the lack of pre-trends from 

the event study.        

2.5. Results 

2.5.1. Annual Results 

Table 8 reports the results from equation 2.1 for the annual analysis. There are 589 state-

by- year observations.63 The first panel reports the effect of an additional change in mandatory 

reporter legislation and the second panel reports the effect of an additional job category added to 

the list of mandatory reporters. Column 1 reports the results for the total referral rate, per 

100,000 children. The coefficient on the change in mandatory reporter legislation is -102.2 and 

the coefficient on the change in mandatory reporters is -107.1. Neither effect size is statistically 

different from zero; however, I can rule out large effects and conclude that total referrals do not 

increase or decrease by more than 10 percent in response to changes in mandatory reporter 

legislation. One potential explanation of this result is that changes in referrals screened-out and 

referrals screened-in (reports) might move in opposite directions. In other words, mandatory 

reporter laws might change the composition of total referrals.   

  

                                                            
63 New York, North Carolina, and Pennsylvania are excluded because they do not have data for these 

outcomes. 
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Table 8: Regression Results from Annual Analysis 

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the state-level are in 

parentheses. Each column is a unique outcome. In the first panel, the independent variable is the 

number of changes in the mandatory reporter legislation, and in the second panel, the independent 

variable is the number of jobs listed as mandatory reporters. The mean of the dependent variable 

is weighted by the population average. Regressions include state fixed effects, year fixed effects, 

and a state-specific linear time trend. New York, North Carolina, and Pennsylvania are excluded 

because they do not have data for these outcomes. 

   

Column 2 reports the results for screened-out referrals and column 3 reports the results 

for screened-in referrals (reports). Regardless of the independent variable, change in legislation 

or number of jobs, the coefficients on referrals screened-out are negative, and the coefficients on 

reports are positive. However, none of these coefficients are statistically significant. Lastly, I 

investigate whether the number of children investigated for maltreatment responds to mandatory 

reporter legislation (column 4). While the coefficients are positive, they are indistinguishable 

from zero.    

 (1) (2) (3) (4) 

 Total referrals 

(per 100,000 

children) 

Referrals 

screened out 

(per 100,000 

children) 

Reports (per 

100,000 

children) 

Number of 

children 

investigated (per 

100,000 children) 

Panel 1     

Number of 

mandatory reporter 

policy changes 

-102.2 -238.3 136.1 228.7 

(147.6) (244.6) (178.9) (300.5) 

     

Mean of dep. var. 4,419 1,821 2,598 4,364 

Observations 589 589 589 589 

Adjusted R2 0.769 0.684 0.547 0.547 

Panel 2      

Number of jobs 

listed as mandatory 

reporters 

-107.1 -236.4 129.3 217.3 

(182.4) (173.4) (116.3) (195.3) 

     

Mean of dep. var. 4,419 1,821 2,598 4,364 

Observations 589 589 589 589 

Adjusted R2 0.770 0.689 0.553 0.553 
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The imprecise estimates from the annual analysis persist even when I separately add a 

quadratic time trend and state controls for demographic composition and economic conditions. 

They also persist when I construct a balanced sample of the 26 states that appear in the data all 

years from 2004 to 2017.64 Two reasons for these imprecise estimates may be lack of power or 

vague timing of legislation changes. For example, a legislation change in January probably has a 

different impact on reporting the following year compared to a legislation change in November. 

To address these concerns, I use the NCANDS child file and estimate the monthly effect.  

2.5.2. Monthly Results 

Table 9 reports the results of the monthly analysis. Although there are more than 12 times 

the number of observations and more precisely defined treatment periods compared to the annual 

analysis, the effect of changes in mandatory reporter legislation on reporting is similar. The 

effect size on the number of reports (column 1) is marginally significant. All else equal, a change 

in mandatory reporting legislation is associated with an increase of 12.9 reports per 100,000 

children (or 5.5 percent). Similarly, adding a job to the list of mandatory reporters increases the 

report rate by 9.34 reports per 100,000 children (or 4 percent). This impact is driven by an 

increase in unsubstantiated reports, and not substantiated reports. All else equal, a change in 

mandatory reporting legislation leads to a 6 percent increase in the unsubstantiated report rate 

(column 3). The remaining results, substantiated rate (column 2), children investigated (column 

4), and victim rate (column 5) are statistically insignificant. However, I can rule out effects sizes 

larger than 16 percent. In other words, changes in mandatory reporting legislation will not impact 

                                                            
64 These results are available upon request.  
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substantiation rates by more than 16 percent. These results persist when state-level controls are 

added and different combinations of fixed effects are included.65 

Following the recent difference-in-differences discussion, treatment effects likely differ 

over time and by intensity (de Chaisemartin & D'Haultfoeuille, 2019; Goodman-Bacon, 2019; 

Callaway & Sant’Anna, 2020). One way to understand how the impact may differ by time and 

intensity is to estimate the group-time average treatment effect (Callaway & Sant’Anna, 2020). 

Similar to Callaway and Sant’Anna (2020), I estimate differential effects by treatment group. In 

this setup, states are grouped by the number of mandatory legislation changes they experienced 

from 2004 to 2017. There are nine states with one legislation change, eight with two changes, 

five with three changes, four with four changes, and one with six changes.66 The overall average 

effect should be the weighted average of the group effects. The results from this exercise are 

provided in Appendix Table D1. The key takeaway from this exercise is that the states with one, 

four, and six changes are driving the results, depending on the outcome. In other words, there are 

differential, non-linear effects by the number of policy changes. This result, in combination with 

Figures 3 and 4, motivates estimating the interaction effect between the policy change and 

number of mandatory reporters. The differences in the number of mandatory reporters across 

states may be able to explain some of the differential effects by policy change.      

                                                            
65 Alternatively, the results are statistically significant with at least 95 percent confidence when standard 

errors are clustered at the month-by-state level and year-by-state level. It is good practice to be 

conservative and avoid bias by using bigger, more aggregated clusters (Cameron & Miller, 2015), so I 

only report results clustered at the state-level. Results are available upon request.   
66 Refer to Table 7 for the list of states in each group.  
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Table 9: Regression Results from Monthly Analysis 

 

 (1) (2) (3) (4) (5) 

 Reports 

(per 

100,000 

children) 

Substantiated 

reports (per 

100,000 

children) 

Unsubstantiated 

reports (per 

100,000 

children) 

Number of 

children 

investigated 

(per 100,000 

children) 

Number of 

victims (per 

100,000 

children) 

Panel 1      

Number of 

mandatory 

reporter policy 

changes 

12.90* 1.86 11.03* 28.76 2.76 

(7.41) (2.36) (5.71) (19.06) (4.26) 

      

Mean of dep. 

var. 
234.3 55.0 179.3 427.7 86.1 

Observations 8,422 8,422 8,422 8,422 8,422 

Adjusted R2 0.598 0.431 0.660 0.529 0.416 

Panel 2      

Number of 

jobs listed as 

mandatory 

reporters 

9.34* 1.35 7.99* 18.67 1.13 

(5.23) (1.88) (4.27) (13.72) (3.13) 

      

Mean of dep. 

var. 
234.3 55.0 179.3 427.7 86.1 

Observations 8,422 8,422 8,422 8,422 8,422 

Adjusted R2 0.598 0.431 0.660 0.528 0.415 

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the state-level are 

in parentheses. Each column is a unique outcome. In the first panel, the independent variable is 

the number of changes in the mandatory reporter legislation, and in the second panel, the 

independent variable is the number of jobs listed as mandatory reporters. The mean of the 

dependent variable is weighted by the population average. Regressions include state fixed 

effects, year-by-month fixed effects, and a state-specific linear time trend. Results are similar to 

including year and month fixed effects, instead of the year-by-month fixed effect. They are also 

invariant to including the following set of state-level time-varying controls: racial composition, 

age composition, education composition, living situation, poverty variables (teen birth rate, 

households without a vehicle, poverty rate, food insecurity), unemployment rate, safety net 

generosity (TANF & SNAP), governor political affiliation, income per capita, and minimum 

wage. These two sets of results are available upon request.   
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2.5.2.1. Interaction effects 

Table 10 reports the results from estimating equation 2.2. All else equal, both a change in 

mandatory reporter legislation and an increase in the number of jobs classified as mandatory 

reporters leads to an increase in the report rate. States with relatively more mandatory reporters 

experienced a smaller increase in reporting. This effect comes from fewer unsubstantiated 

reports and not substantiated ones. To further investigate differential effects, I estimate the short-

run effects up to five months after the first policy change.67 

Table 10: Interaction Effect between Policy Changes and Number of Jobs Listed as 

Mandatory Reporters 

 (1) (2) (3) (4) (5) 

 Reports (per 

100,000 

children) 

Substantiated 

reports (per 

100,000 

children) 

Unsubstantiated 

reports (per 

100,000 

children) 

Number of 

children 

investigated 

(per 

100,000 

children) 

Number of 

victims (per 

100,000 

children) 

Policy changes 

46.47*** 2.182 44.29*** 109.7** 13.89 

(16.44) (8.598) (13.21) (42.59) (11.78) 

     

Jobs  10.99** 0.946 10.04*** 21.30* 1.276 

(4.333) (2.022) (3.509) (11.86) (3.281) 

      

Policy changes x 

Jobs 

-3.534*** -0.0933 -3.441*** -8.147*** -1.004 

(1.175) (0.630) (0.982) (3.033) (0.853) 

Mean of dep. 

var.  
234.3 55.0 179.3 427.7 86.1 

Observations 8,422 8,422 8,422 8,422 8,422 

Adjusted R2 0.604 0.431 0.667 0.536 0.417 
Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the state-level are in 

parentheses. Each column is a unique outcome. The coefficient for “Policy changes” is the effect when a 

state changes it mandatory reporter legislation, the coefficient for “Jobs” is the effect when a state adds 

another job to the list of mandatory reporters, and the coefficient on the interaction term, “Policy changes 

x Jobs,” is the effect of a policy change for states with more mandatory reporters, relative to states with 

fewer mandatory reporters. The mean of the dependent variable is weighted by the population average. 

Regressions include state fixed effects, year-by-month fixed effects, and a state-specific linear time trend.  

                                                            
67 Callaway & Sant’Anna (2020), de Chaisemartin & D'Haultfoeuille (2019) and Goodman-Bacon (2019) 

provide additional ways to disentangle timing and heterogeneous treatment effects. Future work hopes to 

continue to incorporate their techniques.   
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2.5.2.2. Short-run effects    

The results for the short-run analysis, estimating equation 2.3, are given by the event 

study figures and the difference-in-differences table. The event study analysis, Figure 5, 

confirms that there were no pre-trends five months prior to the change in legislation. After the 

change, there does not seem to be a statistically significant impact either. 

The difference-in-differences results are reported in Table 11. On average, over the five 

months after the mandatory reporter legislation change, there are no statistically significant 

differences in the report rates relative to the same time period in the prior year.68 Although the 

effect sizes are imprecisely estimated, I can rule out effect sizes greater than 8 percent. In other 

words, changes in mandatory reporter legislation will not increase or decrease child maltreatment 

reporting by more than 8 percent in the short-run. 

To check the sensitivity of this short-run analysis, I estimate this effect for policy changes 

that occurred between 2012 and 2014. Most of these policy changes added university staff, camp 

staff, and athletic coaches. The results of this sensitivity analysis are provided in Appendix Table 

D2, and are similar to the results from Table 11.         

                                                            
68 See Appendix Figure D3 to see these trends graphically in a handful of states after the first legislation 

change. Appendix Figure D3 further supports this finding.   
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Figure 5: Event-Study Analysis for First Legislation Change 

 

Notes: This figure plots the coefficients from equation 2.2 where the outcome is the report rate per 

100,000 children (top) or substantiated report rate per 100,000 children (bottom) at the state-by-

month level. Each coefficient five months before and after the mandatory reporter legislation 

change is plotted with its 95 percent confidence interval. These values represent the change in the 

treatment year, relative to the prior year (control year). State, year, and month fixed effects are 

included.     
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Table 11: Short-Run Effects of the First Legislation Change 

 (1) (2) (3) (4) (5) 

 Reports (per 

100,000 

children) 

Substantiated 

reports (per 

100,000 

children) 

Unsubstantiated 

reports (per 

100,000 

children) 

Number of 

children 

investigated 

(per 

100,000 

children) 

Number of 

victims (per 

100,000 

children) 

Post -14.73* -4.185** -10.55* -31.29 -6.619** 

(7.490) (1.810) (6.162) (18.61) (3.135) 

     

Treatment  -22.18** -3.662 -18.52** -45.50** -4.994 

(8.786) (2.364) (8.008) (19.20) (3.882) 

      

Post x Treatment 0.184 1.101 -0.916 3.689 2.644 

(5.065) (0.982) (5.111) (12.53) (1.983) 

Mean of dep. 

var.  
230.0 54.0 176.0 425.6 84.1 

Observations 568 568 568 568 568 

Adjusted R2 0.378 0.224 0.384 0.286 0.202 

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the state-level are in 

parentheses. Each column is a unique outcome. “Post” is equal to one five months after the 

legislation change and zero for the five months prior. “Treatment” is equal to one in the year of 

the legislation change and zero in year prior. Post x Treatment estimates the effect in the months 

after the legislation change, relative to the same time period the year before. The mean of the 

dependent variable in the post months of the control year is provided. Regressions include state, 

year, and month fixed effects. The 26 states included in this analysis are Alabama, Alaska, 

Arkansas, California, Colorado, DC, Delaware, Georgia, Illinois, Kansas, Louisiana, Maine, 

Nevada, New York, North Dakota, Ohio, Oklahoma, Pennsylvania, South Carolina, South Dakota, 

Tennessee, Vermont, Virginia, Washington, West Virginia, and Wisconsin.    

 

2.6. Who’s Reporting? 

In addition, I investigate who is making these reports because they potentially impact the 

probability of substantiation (Wolfe, 2012; King et al., 2013). Education personnel and law 

enforcement report the most cases of maltreatment across all states. Table 12 reports the changes 

in report source as additional jobs are added to the list of mandatory reporters for all states (panel 

1), the 9 states with only one change in mandatory reporter legislation (panel 2), and for the 

years post 2012 (panel 3). Across all analysis samples, as more professions are added to the list 
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of mandatory reporters, the report rates by education personnel, law enforcement, medical 

personnel, and social services personnel are unchanged. However, the report rate from other 

sources increases by 3 to 10 percent, depending on the sample. The increase in reports from other 

sources and the increase in unsubstantiated reports from earlier supports the idea that reports by 

nonprofessionals have lower rates of substantiation and complements related work (e.g. Wolfe, 

2012; King et al., 2013).  

A supplemental analysis, Table 13, investigates differences in report rates by profession, 

recognizing that some people have more interaction with children than others. These differences 

might contribute to differences in reporting. For example, adding camp staff would likely have a 

smaller impact than adding coaches because camp staff interact with children less often than 

coaches. Including the job classifications that had at least two changes over 2004 to 2017 

demonstrates that camp staff do have a smaller impact than coaches, although neither impact is 

statistically significant. In fact, only computer technicians contribute to a statistically significant 

change in reports. Interestingly, computer technicians contribute to a decline in reports. Although 

not statistically significant, adding clergy and coaches has the biggest impact of a 10 to 16 

percent increase in reports, whereas adding camp staff and university staff has the smallest 

impact of a 2.5 to 3.2 percent decline. For comparison, Baron et al. (2020) and Cabrera-

Hernandez and Padilla-Romo (2020) find that reporting declined by 21 to 30 percent during the 

COVID-19 pandemic as a result of reduced interactions between children and teachers. In 

addition, Palusci et al. (2016) find that counties in states that added clergy to the list of 

mandatory reporters between 2000 and 2010 had significantly more reports, but fewer 

substantiated reports; however, they do not provide percent changes.  
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Table 12: Source of Reports 

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the state-level are in 

parentheses. Each column is a different report source rate (per 100,000 children). The first panel 

includes all states. In the second panel, the analysis sample is limited to the 9 states with just one 

mandatory reporter change between 2004 to 2017 and the 27 states with no changes. The third 

panel is for the years between 2012 and 2017. The mean of the dependent variable is weighted by 

the population average. Regressions include state fixed effects, year-by-month fixed effects, and a 

state-specific linear time trend.  

  

 (1) (2) (3) (4) (5) 

 Education 

personnel and 

day care 

providers 

Legal, law 

enforcement, or 

criminal justice 

Medical 

personnel 

Social 

services 

personnel 

Other 

source 

Panel 1: All States 

Number of jobs 

listed as 

mandatory 

reporters 

0.215 1.519 -0.0295 0.956 6.674** 

(1.524) (1.141) (0.512) (1.278) (2.927) 

Mean of dep. var.  44.3 42.5 21.7 27.7 98.4 

Observations 8,377 8,377 8,377 8,377 8,377 

Adjusted R2 0.715 0.630 0.561 0.431 0.536            

Panel 2: States with no or one change 

Number of jobs 

listed as 

mandatory 

reporters 

-1.040 0.282 -0.605 0.286 10.97*** 

(1.573) (1.702) (1.642) (0.639) (3.571) 

Mean of dep. var. 

before change in 

control states 

42.6 48.5 23.7 27.3 108.6 

Observations 5,353 5,353 5,353 5,353 5,353 

Adjusted R2 0.725 0.631 0.564 0.494 0.581 

Panel 3: Post 2012 

Number of jobs 

listed as 

mandatory 

reporters 

-0.603 -0.125 -0.430 -0.981 3.720* 

(0.681) (0.354) (0.360) (1.017) (2.099) 

Mean of dep. var. 

before change in 

control states 

42.7 47.4 23.6 25.6 111.2 

Observations 3,672 3,672 3,672 3,672 3,672 

Adjusted R2 0.701 0.523 0.499 0.355 0.584 
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Table 13: Effect of Specific Jobs 

 (1) (2) (3) (4) (5) 

 Reports (per 

100,000 

children) 

Substantiated 

reports (per 

100,000 

children) 

Unsubstantiated 

reports (per 

100,000 

children) 

Number of 

children 

investigated 

(per 100,000 

children) 

Number of 

victims (per 

100,000 

children) 

computer 

technicians 

-22.81* -6.927 -15.88* -65.67** -16.31 

(12.55) (5.669) (8.172) (31.80) (9.758) 

      

probation and 

parole officers 

19.12 15.41 3.708 39.70 19.07 

(23.48) (10.38) (14.13) (51.25) (17.36) 

      

camp staff 7.578 8.633 -1.055 -1.534 8.215 

(15.28) (5.842) (12.73) (30.34) (9.161) 

      

animal control and 

humane officers 

15.84 -6.629 22.47 47.33 -4.505 

(28.17) (11.77) (17.21) (68.40) (20.58) 

      

CASAs and child 

advocates  

-10.21 -4.437 -5.777 -23.29 -6.594 

(10.21) (2.778) (7.947) (24.24) (5.415) 

      

clergy members 37.47 11.70 25.77 82.08 0.522 

(27.91) (8.783) (30.75) (65.31) (6.701) 

      

college staff -6.040 -8.708 2.668 -23.00 -12.81 

(18.79) (7.370) (13.47) (41.60) (11.88) 

      

emergency 

medical  

18.28 -0.289 18.57 22.02 -0.672 

(11.43) (2.668) (11.68) (21.53) (4.643) 

      

coaches or 

employees of rec 

sports 

23.83 8.522 15.31 73.87 15.70 

(17.65) (8.433) (11.75) (44.60) (14.83) 

Mean of dep. var. 234.3 55.0 179.3 427.7 86.1 

Observations 8,422 8,422 8,422 8,422 8,422 

Adjusted R2 0.601 0.443 0.662 0.535 0.601 

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the state-level are in 

parentheses. Each column is a unique outcome. The mean of the dependent variable is weighted by the 

population average. Regressions include state fixed effects, year-by-month fixed effects, and a state-specific 

linear time trend. 
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This analysis provides a starting point in understanding how reports vary by profession. 

Future research should continue to investigate why certain professions were added to the list to 

mandatory reporters and try to better understand the role these professions play in detecting child 

maltreatment.69 Understanding which professions can correctly detect maltreatment could inform 

states’ decisions on who to add to the list of mandatory reporters and how to prepare and regulate 

training.     

2.7. Conclusion   

The Penn State scandal, USA Gymnastics scandal, and COVID-19 pandemic have 

highlighted the vital role mandatory reporters play in protecting the wellbeing of children. 

Mandatory reporters have a legal obligation to report suspected maltreatment. Since child 

maltreatment is believed to be underreported, laws that increase the number of professions 

required to report may be an easy way for policymakers to approach the true amount of child 

maltreatment. Alternatively, competing forces, unintended consequences, or weak salience could 

render these policies ineffective.  

In response to a mandatory reporter legislation change, there are numerous ways 

reporters, perpetrators, and CPS may respond. Reporters may be more or less likely to report 

child maltreatment depending on the strength of the knowledge and bystander effect, perpetrators 

may be deterred, and CPS may modify their intake and investigation processes and allocate 

resources differently. An important limitation of this work is the inability to disentangle each of 

                                                            
69 There has been considerable effort in understanding the role teachers, pediatricians, clergy, and police 

play in detecting child maltreatment (e.g. Baron et al., 2020; Cabrera-Hernandez & Padilla-Romo, 2020; 

Fitzpatrick et al., 2020; Warner & Hansen, 1994; Palusci et al., 2016; Edwards, 2019), but there is no 

information, to my knowledge, about the role of coaches, camp staff, computer technicians, university 

staff, humane officers, and other professions that have recently been added to the list of mandatory 

reporters.  
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these mechanisms. Future research may want to concentrate on disentangling these mechanisms 

as their competing forces might attenuate the overall effectiveness of mandatory reporter laws, 

and each mechanism implies different policy responses.  

One potential unintended consequence of a mandatory reporter legislation change might 

be failing to identify and support the children with the greatest need for intervention (Raz, 2017). 

Determining whether changes in referrals are beneficial or burdensome depends on the 

composition of referrals screened-out and in. In the annual-level analysis, I find that after a 

mandatory reporter legislation change fewer referrals are screened-out and more referrals are 

screened-in and investigated. This finding suggests that mandatory reporter legislation may help 

identify cases of maltreatment. However, none of these coefficients are statistically significant, 

so this is speculative at best.  

In the monthly-level analysis, I find that increasing the number of mandatory reporters 

leads to a 4 percent increase in reporting. This effect size is smaller than the impact of a one-

dollar increase in the minimum wage and a one percentage point change in the unemployment 

rate.70 When there is an increase in reporting, CPS may have to modify their operations (e.g., 

changing the amount of time spent on each investigation, employing additional staff, differential 

investigation process, etc.). It is unclear which modification dominates or is more beneficial, but 

a 4 percent increase in reports is modest and may not require substantial changes to CPS’ 

operations.   

Of the reports screened-in for investigation, it is important to understand how the 

composition of substantiated and unsubstantiated reports changes. Increased reporting may result 

                                                            
70 A one-dollar increase in the minimum wage reduced neglect by 9.6 percent (Raissian & Bullinger, 

2017), and a one percentage point increase in the unemployment rate increased overall abuse by 10 

percent (Brown & De Cao, 2020).  
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in better identification of child maltreatment or increased workload for the investigation staff. 

Better identification would be indicated by relatively more substantiated reports, whereas 

increased workload would be indicated by relatively more unsubstantiated reports. Regardless of 

whether the investigation process remains the same or responds to an increase in reports, more 

unsubstantiated reports are indicative of an increased workload for the child welfare staff. For 

example, if staff have more reports to investigate and remain as diligent as before, then the 

increase in unsubstantiated reports is an indicator of increased workload. The staff have to 

investigate more, potentially less-severe, reports of maltreatment. Alternatively, if the 

investigation process remains the same and staff have more reports to investigate, then they may 

do so less diligently, thus not substantiating as many reports. In this scenario, the increase in 

unsubstantiated reports is a consequence of the increased workload. I find that the increase in 

reporting is entirely driven by unsubstantiated reports. While an increase in unsubstantiated 

reports is indicative of increased workload for the child welfare staff, it is unclear whether an 

unsubstantiated finding is helpful or harmful to the children and families involved. In 2019, 

almost one-third of the children involved in unsubstantiated reports received follow-up support 

and services (ACF, 2021). Alternatively, involvement in the child welfare system can have 

detrimental effects, especially for low-income and minority families (Fong, 2020; Merritt, 

2020).71  

Recognizing the potential for differential effects by treatment and timing, I interact 

legislation changes with the number of mandatory reporters already listed and conduct a short-

run analysis. I find that an additional legislation change leads to a smaller increase in reporting 

                                                            
71 See Wilson et al. (2020) for a detailed qualitative review of children’s experiences with CPS. 

Experiences vary from being traumatized by the investigation process to appreciating the material support 

provided by CPS.    
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for states with more mandatory reporters, relative to states with fewer mandatory reporters. This 

finding suggests that mandatory reporter legislation may have diminishing marginal returns. In 

the short-run, I find that child maltreatment reporting is somewhat unresponsive to mandatory 

reporter legislation changes. I can rule out increases and decreases greater than 8 percent. In 

other words, I do not find any evidence of a publicity effect. This finding is unsurprising as it 

appears that many of the mandatory reporter legislation changes occurred with little publicity. A 

policy implication of these results relating to saliency could be to add more training that 

addresses both how to detect maltreatment and explains the responsibilities of reporters. Future 

work should investigate how changes in mandatory reporters interacts with training requirements 

and punishments for failing to report. 

In summary, I use the NCANDS agency and child files to examine how screened-out 

referrals, reports, and substantiated and unsubstantiated reports responded to changes in 

mandatory reporter laws from 2004 to 2017. It is important to note that the results of this paper 

are strictly related to reporting and cannot make inferences about welfare effects. Without 

tracking children’s long-run outcomes, it is unclear whether more reporting guarantees improved 

child wellbeing. Another limitation of this study is that the NCANDS data only reports 

intrafamily child maltreatment. However, mandatory reporters are responsible for reporting child 

maltreatment that occurs both within and outside the family. While I do not find evidence of 

coaches, college staff, and other recently added professions impacting child maltreatment within 

a family, that does not mean that these professions have not impacted child maltreatment from 

perpetrators outside the family. Nonetheless, understanding the nature and reporting of 

intrafamily child maltreatment is important for the entire child welfare system because 

maltreatment makes up the demand for child protective services, including family preservation 
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and foster care placements. Presently, simply adding professions to an arbitrary list of mandatory 

reporters has done little to improve child maltreatment detection and reporting. In a system 

already overburdened with cases and limited funds (Giammarise, 2017; Raz, 2017; CBS News, 

2019), thoughtful consideration pertaining to who should be included on the mandatory reporter 

list coupled with training and incentives may be a relatively cheap way to more effectively detect 

child maltreatment and manage child welfare.            
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Chapter 3: Underreporting Child Maltreatment during the Pandemic: Evidence from 

Colorado  

3.1. Introduction 

At the beginning of the COVID-19 pandemic, headlines across the United States read 

“Child abuse hotline calls are down during COVID-19, but abuse fears are up” and “More than 

60% drop in calls to child abuse hotline spark safety concerns” (Callahan & Mink, 2020; 

Quander, 2020). State agencies across the country were reporting that child abuse and neglect 

reports dropped drastically, but they cautioned that the decline was not necessarily a function of 

reduced maltreatment, and instead a function of reduced reporting.72 Another headline read, 

“Advocates express concerns about children falling through the cracks” (WCTV, 2020). In 

Colorado, I find that reporting decreased by 15 percent in 2020 relative to 2019. The biggest 

drop in reporting, of 31 percent, occurred between April and June, but reporting remained 14 to 

18 percent below 2019 levels for the remainder of the year.   

Over the past year, child maltreatment research has shown that overall fewer allegations 

of maltreatment were reported than expected in March and April (Baron et al., 2020; Rapoport et 

al., 2020; Weiner et al., 2020), school closures drastically reduced the number of cases detected 

(Baron et al., 2020, Cabrera-Hernández & Padilla-Romo, 2020), and stay-at-home orders 

increased the incidence of neglect (Bullinger et al., 2020). All of these studies use different 

methods and data, yet come to the same conclusion in line with the concerns expressed by news 

articles: potential victims of child abuse and neglect are going unnoticed. Baron and colleagues 

(2020) use real-time data from Florida to estimate that a total of 212,500 allegations across the 

                                                            
72 This concern is not unique to the United States. Headlines in Canada read “Child protection reports on 

P.E.I. climb despite fewer eyes amid COVID.”   
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US, 40,000 of which would have been substantiated, went unreported in March and April of 

2020 as a result of school closures. In this paper, I use real-time data from Colorado to provide 

an updated national estimate on the number of unreported allegations and victims for the entire 

year. I find that millions of allegations may have gone unreported, potentially impacting over 

100,000 victims during the year. In addition, I estimate how child maltreatment incidences and 

reporting changed as a result of the COVID-19 pandemic, school closures, and the stay-at-home 

order. Not surprising, all three events concurrently resulted in the largest decline in reporting, 

followed by the pandemic-induced school closures.  

There are three main contributions of this paper. First, this paper uses real-time child 

maltreatment data and a model, similar to Baron et al. (2020), to predict the number of calls that 

would have been made to the Child Protective Services’ (CPS) hotline in 2020 had the pandemic 

not occurred. The counterfactual number of child maltreatment referrals is calculated two ways. 

The simplest way is by assuming that referrals would have followed a similar pattern in 2020 as 

previous years. Alternatively, the pandemic limited interactions between children and mandatory 

reporters through school closings and stay-at-home orders, and increased child maltreatment risk 

factors, such as unemployment, parental burnout, and adverse coping mechanisms, like alcohol 

abuse.73 For this reason, a second counterfactual is estimated taking into account the rise in 

unemployment and alcohol consumption. Comparing the two counterfactuals and the observed 

number of referrals sheds insight onto the two mechanisms in which the pandemic impacted 

child maltreatment. The first counterfactual underscores the importance of mandatory reporters. 

                                                            
73 Brown & De Cao (2020) find that unemployment is positively correlated with child maltreatment, 

Griffith (2020) explains how limited availability of social supports and child care can lead to parental 

burnout, which in turn can result in neglect and abuse (Mikolajczak et al., 2019), and the WHO published 

a brief explaining the links between alcohol abuse and neglect (WHO, nd).    
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The second counterfactual demonstrates how economic hardships and coping mechanisms 

brought about by the pandemic contribute to child maltreatment.  

As a second contribution, this paper uses the timing differences between the COVID-19 

national emergency, school closures, and stay-at-home order to determine the impact that each of 

these events had on the decline in child maltreatment referrals for the full year. Prior research has 

looked at either school closures or stay-at-home orders in isolation and only examined the effect 

from March to May (e.g. Baron et al, 2020; Bullinger et al., 2020). This is the first study to 

provide the impacts of all three events for the full year. To differentiate these three impacts, 

separate regression equations are estimated with an independent variable equal to the proportion 

of the quarter in which the event happened. I find evidence that the largest decline in reporting 

came when the three events were happening concurrently. Alternatively, the pandemic, without 

school closures and stay-at-home orders, had the smallest impact on underreporting. 

Understanding the difference in reported maltreatment as a result of the pandemic and policy 

responses to curb the spread of the virus helps quantify the effectiveness of these policy 

responses. In addition, understanding the difference in reported maltreatment as a result of the 

pandemic and school closures contributes to the emerging body of literature emphasizing 

teachers’ roles in detecting child maltreatment (Fitzpatrick et al., 2020; Cabrera-Hernandez & 

Padilla-Romo, 2020).  

The last contribution of this paper is to identify the impact of the pandemic and 

pandemic-induced policies on the type of child maltreatment reported and substantiated. Child 

welfare experts observed an increase in serious abuse (Hofmann, 2021), and doctors claimed the 

severity of the abuse they saw in the ER at the start of the pandemic was much worse (Schmidt 

& Natanson, 2020). In Colorado, I do not find evidence of these claims. Overall, the proportion 
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of neglect, physical abuse, and sexual abuse allegations is unchanged from 2019 to 2020. In 

addition, I use economic and seasonal trends to predict the type of maltreatment that might be 

going unreported. Based on this approach, victims of neglect are most likely being missed. In 

order to better prepare and target interventions, it is important to understand the type of 

maltreatment occurring and being underreported as a result of the COVID-19 pandemic. 

3.2. The COVID-19 Pandemic and Child Maltreatment in Colorado 

The COVID-19 pandemic national emergency was announced on March 13, 2020 and 

continued through the end of the year. To curb the spread of the virus in the early months, 

schools halted in-person learning, stay-at-home orders were issued, and non-essential employees 

worked from home. The unemployment rate rose to an all-time high of 14.8 percent in April 

2020 and remained above 6 percent for the remainder of the year (Trading Economics, nd). 

Frequency of alcohol consumption increased by 14 percent (Pollard et al., 2020), domestic 

violence calls increased by 7.5 percent (Leslie & Wilson, 2020), people’s mental health 

deteriorated (Brodeur et al., 2020), and parental burnout probably increased (Griffith, 2020). 

Despite these hardships and risk factors of child maltreatment, hotline calls to state agencies 

plummeted (Schmidt & Natanson, 2020), raising concerns that abuse and neglect are going 

unreported (MacFarlane et al., 2020).74 Research suggests that these drops in reporting came 

from the pandemic-induced school closures which limited interactions with mandatory reports 

(Baron et al., 2020, Cabrera-Hernández & Padilla-Romo, 2020).   

Colorado is no exception to the situation described above. School closures began at the 

end of March and continued until September. Compared to non-pandemic years, children were 

                                                            
74 Alternatively, Ortiz et al. (2021) find that the volume of text messages to Childhelp, the only national 

hotline providing counseling services with a focus on child abuse and neglect, increased in 2020 

compared to 2019.   
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out of school for three additional months, but they continued to have access to school meals 

(Grewe, 2020). In addition, Colorado issued a stay-at-home order from March 26 to April 26. 

Colorado permitted going outside during the stay-at-home order as long as social distancing was 

followed. In fact, the public health order specifically listed walking, hiking, skiing, snowshoeing, 

biking, and running as acceptable activities (Grewe, 2020). People could also go to the grocery 

store, liquor store, convenience store, cannabis store, banks, and pharmacies (Grewe, 2020). The 

unemployment rate fluctuated from 6.8 to 11 between April to December and alcohol sales 

increased by 8 percent.75  

Figure 6 shows the number of child maltreatment referrals received and screened-in for 

investigation from 2006 through 2020 in the state. From 2006 to 2020, there was a steady 

incline, with a steeper incline following the introduction of the statewide hotline in 2015. 

Between April and June of 2020, the number of total referrals and reports screened-in76 dropped 

by 31 and 26 percent, respectively, relative to the same time period in 2019. In the remaining 

months of the year, child maltreatment reporting rebounded somewhat, but referrals and reports 

still remained below pre-pandemic levels. The bottom graph of Figure 6 shows the number of 

allegations reported by maltreatment type, indicating the biggest drop and rebound in neglect 

allegations, and a small uptick in sexual abuse allegations. According to the Colorado 

Department of Human Resources, calls from education and medical personnel decreased by 30 

                                                            
75 Author’s calculations based on unemployment data from the BLS and alcohol sales data from NIAAA. 

These data sources are described in the next section. Additionally, the Liquor Excise Tax Reports show a 

similar increase and be accessed through Colorado’s Department of Revenue.   
76 Total referrals include both the calls to the hotline that are screened out and in. Referrals that are 

screened-in are also referred to as reports. There is no additional follow-up for referrals that are screened-

out, but reports are investigated for child maltreatment. 

https://cdor.colorado.gov/data-and-reports/liquor-data/liquor-excise-tax-reports
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and 11 percent, respectively; however, calls from friends and family increased by 5 percent 

(CDHS, 2021).  

Figure 6: Child Maltreatment Referrals in Colorado from 2006 to 2020 

 

Notes: This figure shows the trend in child maltreatment reporting from 2006 to 2020. The top 

graph shows the total number of child maltreatment referrals (in thousands) reported to child 

welfare agencies in the state as well as the number of reports screened-in (in thousands). The 

bottom graph shows the number of allegations by maltreatment type (in thousands). The total 

number of maltreatment allegations in the bottom graph is less than the total referrals because not 



87 
 

all referrals are screened-in and investigated. In addition, the total number of maltreatment 

allegations is greater than the screened-in reports because a report can be assigned multiple 

maltreatment types.  

Referrals of child maltreatment are a function of actual incidences and reporting. The 

current pandemic, which increased economic hardship while reducing contact with mandatory 

reporters, poses a particularly unique challenge for child welfare agencies to detect child 

maltreatment. These two opposing forces will attenuate the impact of the pandemic on child 

maltreatment reporting towards zero. Alternatively, school closures and the stay-at-home order 

limited interactions with mandatory reporters. These two events should be driving the decline in 

reporting, and might explain some of the rebound in reporting after they ended.  

Since the stay-at-home order limited all potential interactions with mandatory reporters 

and occurred concurrently with the first month of school closures, we should see this event 

driving the decline experienced between April and June. While the stay-at-home order limited 

interactions, it also may have increased household stress and parental burnout, potentially more 

so for those who complied. Parental burnout can manifest into neglect (Mikolajczak et al., 2019). 

As a result, we expect to see increases in child maltreatment for counties with higher compliance 

relative to counties with worse compliance. This behavior might also be able to explain the 

uptick in neglect and sexual abuse.  

3.3. Data 

The data for this study come from multiple public sources. The child maltreatment data 

come from Colorado’s Department of Human Services (CDHS), which provides real-time 

quarterly counts of calls made to the child abuse and neglect hotline for each county in Colorado 

starting in 2006. For this time-sensitive project, the CDHS data are preferred over the National 

Child Abuse and Neglect Data System (NCANDS) because the national level data have a two-
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year time lag and only provide screened-in reports in counties with more than 1,000 records, 

whereas the real-time CDHS data provide the total number of hotline calls at the county level. 

Another advantage of the CDHS data, relative to other states’ real-time data, is that they provide 

the type of alleged maltreatment and the finding of the allegation. These data are used to test the 

hypothesis that child welfare experts have posited; more severe cases of abuse will result from 

the pandemic. Prior research in Florida and New York did not estimate the real-time composition 

of child maltreatment reports (Baron et al., 2020; Rapaport et al., 2020), and research in Indiana 

found an increase in neglect, not physical abuse (Bullinger et al., 2020).  

One drawback of these data, is that the analysis is limited to a single state. The extent to 

which these results can be generalized to the entire country is questionable. Colorado had one of 

the highest child maltreatment referral rates of 85.2 referrals per 1,000 children in 2019 (ACF, 

2021). The average referral rate for states across the country was 59.5 (ACF, 2021). In addition, 

Colorado screened out more referrals than the average state. Colorado screened out 66.4 percent 

of their referrals in 2019, whereas the average screen-out rate was 40.7 percent (ACF, 2021). Of 

the calls that were screened-in, about 34 percent were substantiated in Colorado, compared to an 

average of 29 percent across the country (ACF, 2021). Finally, the most common types of 

maltreatment in both the US and Colorado are neglect, abuse, and sexual abuse (ACF, 2021); 

however, neglect is relatively higher and physical abuse is relatively lower in Colorado 

compared to the typical state. While Colorado may not be representative of the typical state in 

the US, these results are essential to provide more evidence of the impacts of the pandemic and 

pandemic-induced policies.  

The remaining data come from multiple sources and are used to supplement the main 

analyses. First, I use employment and population data from the Bureau of Labor Statistics (BLS) 
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and US Census to control for changes in economic conditions. The BLS provides county and 

state-level unemployment rates and employment counts, quarterly from 2006 through 2020, and 

the Census provides the county population size, annually from 2008 to 2019. To estimate the 

2020 population numbers, I use the 3-year average percent change in each county.77 The 

population size and employment counts are used to determine the employment to population 

ratio. In addition, I use the population to determine county-level child maltreatment rates. Next, I 

use alcohol sales data from the “Surveillance Report #115” and “Alcohol Sales during the 

COVID-19 Pandemic” files, maintained by National Institute on Alcohol Abuse and 

Alcoholism,78 to proxy for alcohol consumption at the state-level. This estimate, in combination 

with the unemployment rate, is used to create a second counterfactual maltreatment number that 

accounts for an economic hardship and potential coping strategy. Finally, to proxy for stay-at-

home order compliance, I obtain county-level data on COVID-19 cases and deaths from 

Colorado’s Outbreak Data, maintained by Colorado’s Department of Public Health and 

Environment (CDPHE).79 These data are updated weekly and available online for transparency 

and evidenced-based decision-making, but may not be comparable across counties over time and 

should not be used to associate exposure risk with certain settings (CDPHE, nd). I use these data 

from the beginning of the pandemic (March 14, 2020 to May 10, 2020) to observe how caseloads 

changed within a county prior to and during the stay-at-home order to get an idea of stay-at-home 

order compliance. While these four additional sources of data do not control for all potential 

confounders, they enrich analyses that solely rely on seasonal and longitudinal trends. 

                                                            
77 More specifically, I first calculated the percent changes in population size from 2016 to 2017, 2017 to 

2018, and 2018 to 2019. Then, I calculated the 3-year average and used this average to estimate the 2020 

population size.      
78 These data can be found here.  
79 These data were downloaded March 24, 2021 from https://covid19.colorado.gov/covid19-outbreak-

data.  

https://pubs.niaaa.nih.gov/publications/surveillance.htm
https://covid19.colorado.gov/covid19-outbreak-data
https://covid19.colorado.gov/covid19-outbreak-data
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Table 14 provides statewide differences in child maltreatment reporting, economic 

conditions, and alcohol sales for each quarter between 2019 and 2020 in Colorado. In addition, 

percent changes are provided. Overall, child maltreatment reporting declined by 15 percent, with 

the biggest decline of 31 percent occurring between April and June. The proportion of screened-

in and substantiated reports remained similar between 2019 and 2020. Table 15 provides 

summary statistics of child maltreatment reporting and economic conditions for all 64 counties 

over the 4 quarters and 13 years. The average number of referrals received in a county during a 

given quarter between the years 2008 and 2020 is 18, per 1,000 children. I also provide the 2019 

and 2020 averages and a p-value indicating if they are statistically different from each other. 
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Table 14: State-Level Differences in Child Maltreatment Reporting and Economic Conditions between 2019 and 2020 

Year 2019 2020 

Quarter 
Jan - 

Mar 

Apr - 

Jun 

Jul - 

Sep 

Oct - 

Dec 
TOTAL 

Jan - 

Mar 

Apr - 

Jun 

Jul - 

Sep 

Oct - 

Dec 
TOTAL 

Child Maltreatment Variables            

Total Referrals Received 28626 28281 28549 29722 115178 29819 19577 24482 24280 98158 

Screened-in 9896 9782 9850 9422 38950 9727 7190 8856 8348 34121 

Screened-out 18730 18499 18699 20300 76228 20092 12387 15626 15932 64037 

Total Allegations of 

Maltreatment 
15333 15195 15688 14875 61091 15457 12020 14757 13019 55253 

Substantiated 3487 3397 3649 3197 13730 3426 3014 3322 2922 12684 

Unsubstantiated 11846 11798 12039 11678 47361 12031 9006 11435 10097 42569 

Neglect Allegations 10865 10785 11349 10577 43576 10865 8955 10660 9386 39866 

Physical Abuse Allegations 2623 2528 2548 2694 10393 2765 1693 2363 2045 8866 

Sexual Abuse Allegations 1106 1122 1106 938 4272 1105 842 1091 935 3973 

Substantiated Neglect 2786 2661 2940 2541 10928 2718 2462 2662 2335 10177 

Substantiated Physical Abuse 289 336 310 295 1230 336 249 306 254 1145 

Substantiated Sexual Abuse 311 299 310 270 1190 268 221 269 238 996 

Economic Conditions           

Unemployment rate 3.10 2.80 2.63 2.50  3.40 11.00 6.83 7.07  

Employment-population ratio 66.93 67.13 67.57 67.70  66.67 59.87 62.37 63.50  

Alcohol Purchased (gallons 

per capita) 
    2.78     2.99 

Percent Change between 2020 and 2019 

Child Maltreatment Variables            

Total Referrals Received 0.04 -0.31 -0.14 -0.18 -0.15      

Screened-in -0.02 -0.26 -0.10 -0.11 -0.12      

Screened-out 0.07 -0.33 -0.16 -0.22 -0.16      

Total Allegations of 

Maltreatment 
0.01 -0.21 -0.06 -0.12 -0.10      

Substantiated -0.02 -0.11 -0.09 -0.09 -0.08      
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Unsubstantiated 0.02 -0.24 -0.05 -0.14 -0.10      

Neglect Allegations 0.00 -0.17 -0.06 -0.11 -0.09      

Physical Abuse Allegations 0.05 -0.33 -0.07 -0.24 -0.15      

Sexual Abuse Allegations 0.00 -0.25 -0.01 0.00 -0.07      

Substantiated Neglect -0.02 -0.07 -0.09 -0.08 -0.07      

Substantiated Physical Abuse 0.16 -0.26 -0.01 -0.14 -0.07      

Substantiated Sexual Abuse -0.14 -0.26 -0.13 -0.12 -0.16      

Economic Conditions           

Unemployment rate 0.10 2.93 1.59 1.83       

Employment-population ratio 0.00 -0.11 -0.08 -0.06       

Alcohol Purchased (gallons 

per capita) 
    0.08      

Notes:  This table reports the number of referrals, screened-in and screened-out reports, allegations (including disposition), and 

allegations by maltreatment type for the state of Colorado for each quarter and the full year in 2019 and 2020. In addition, some economic 

conditions (unemployment rate and employment-population ratio) and a measure of a coping technique (alcohol sales) is included. The 

bottom panel reports the percent change between 2020 and 2019 for quarter and the year for each variable.    
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Table 15: Summary Statistics of Child Maltreatment Reporting and Economic Conditions 

in Colorado 

 

Mean 

(N=3,328) 
Std. Dev. 

2019 

Average 

(N=256) 

2020 

Average 

(N=256) 

p-value 

Child Maltreatment Variables (per 1,000 children) 

Total Referrals 18.03 9.66 24.66 20.16 0.00 

Screened-in  7.97 5.00 7.83 7.03 0.05 

Screened-out 10.06 7.21 16.83 13.14 0.00 

Total Allegations of Maltreatment 12.81 9.23 12.53 11.70 0.27 

Substantiated  3.12 3.46 2.61 2.57 0.86 

Unsubstantiated  9.69 7.34 9.92 9.14 0.21 

Neglect Allegations 8.45 6.73 8.72 7.80 0.09 

Physical Abuse Allegations  2.37 2.04 2.20 2.08 0.48 

Sexual Abuse Allegations  0.90 1.12 0.79 0.87 0.33 

Substantiated Neglect  2.26 2.73 1.97 1.83 0.51 

Substantiated Physical Abuse  0.36 0.67 0.25 0.25 0.85 

Substantiated Sexual Abuse  0.23 0.58 0.19 0.26 0.19 

Economic Conditions      

Unemployment Rate 5.46 2.82 2.86 6.41 0.00 

Employment to Population Ratio 50.55 9.67 53.68 48.95 0.00 

Child Population (0 to 17) 19471 39899 19680 19665 1.00 

Notes: This table provides summary statistics for child maltreatment reporting and economic 

conditions across all counties in Colorado from 2008 to 2020. The mean and standard deviation 

are given for all 3,328 observations (13 years x 4 quarters x 64 counties) in columns 1 and 2. The 

2019 and 2020 averages and corresponding p-value from a t-test are provided in columns 3-5. All 

averages for the child maltreatment variables are provided as rates, per 1,000 children, so the 

average of 18.03 means that in a typical quarter a county received 18.03 referrals, per 1,000 

children. 

 

3.4. Empirical Strategy  

Similar to Baron et al. (2020), I first predict the counterfactual number of child 

maltreatment referrals, screened-in reports, and substantiated reports for the state of Colorado by 

estimating the following equation:  

𝑌𝑞𝑦 = 𝛽0 + 𝜑𝑞 + 𝑓𝑔(𝑞𝑦) + 𝜀𝑞𝑦 (3.1) 

Where Y is the outcome of interest (i.e. number of referrals made to the hotline, number 

of reports screened-in, number of substantiated reports, etc.) in Colorado during quarter q of year 
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y, 𝜑𝑞 is the quarter fixed effect included to capture seasonal trends,80 𝑓𝑔(𝑞𝑦) is a polynomial in 

time of order g, and 𝜀𝑞𝑦 is the error term. In the main specification the polynomial takes a cubic 

form; however, the counterfactual results are similar across alternative specifications.81 This 

equation is estimated for each of the four quarters from the years 2006 to 2019. These estimates 

are then used to predict the outcomes for each quarter in year 2020. This approach assumes that 

the number of maltreatment referrals and reports would have been similar in 2020 as 2019, had 

the pandemic not occurred. Alternatively, the hardships and stresses brought about by the 

pandemic might increase child abuse and neglect. In attempt to capture the increase in 

maltreatment due to hardships, I estimate equation 3.1 again controlling for the unemployment 

rate and alcohol purchases. This approach assumes the relationships between unemployment and 

child maltreatment and alcohol purchases and child maltreatment are similar in 2020 and 2019. 

Estimating two counterfactuals based on seasonal and longitudinal trends is useful as there is no 

feasible control group since the announcement of the national emergency and subsequently 

policy responses occurred at the same time for the entire country.  

After understanding the difference between the counterfactual and actual scenarios, the 

next step is to understand how much of these differences are driven by the pandemic, the 

pandemic-induced school closures, and the pandemic-induced stay-at-home order. I estimate the 

following equations to differentiate these three effects:  

𝑌𝑐𝑞𝑦 = 𝛽0 + 𝛽1𝑐𝑜𝑣𝑖𝑑 𝑞𝑦 + 𝜑𝑞 + 𝛾𝑦 + 𝜌𝑐 + 𝜀𝑐𝑞𝑦 (3.2) 

𝑌𝑐𝑞𝑦 = 𝛼0 + 𝛼1𝑠𝑐ℎ𝑐𝑙𝑜 𝑞𝑦 + 𝜑𝑞 + 𝛾𝑦 + 𝜌𝑐 + 𝜀𝑐𝑞𝑦 (3.3) 

                                                            
80 Quarters one and four experience the highest call volume, whereas the quarters spanning the summer 

experience the lowest call volumes. This can be seen in Figure 6.  
81 See Appendix Figure E1 for a comparison of the different approaches that use a linear and quadratic 

polynomial.  
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𝑌𝑐𝑞𝑦 = 𝛿0 + 𝛿1𝑠𝑎ℎ 𝑞𝑦 + 𝜑𝑞 + 𝛾𝑦 + 𝜌𝑐 + 𝜀𝑐𝑞𝑦 (3.4) 

Where Y is the outcome of interest in county c during quarter q of year y, 𝜑𝑞, 𝛾𝑦, and 𝜌𝑐 

are the quarter, year, and county fixed effects, respectively, and 𝜀𝑐𝑞𝑦 is the error term. The 

independent variables of interest, covid, schclo, and sah, identify the proportion of the quarter in 

which the condition exists in quarter q of year y. For example, the COVID-19 pandemic national 

emergency was announced March 13, 2020 and continued through 2020,82 so covid is assigned a 

value of one-sixth in quarter one in 2020, and a value of one for the remaining quarters in 2020. 

The national emergency forced schools to close in March and delayed openings, so schclo equals 

one-sixth in quarter one, two-thirds in quarter two, and one-sixth in quarter three during 2020. 

Lastly, in attempt to slow the spread of the virus, Colorado issued a stay-at-home order from 

March 26th to April 26th, so sah in equation 3.4 is assigned one-third in quarter two of year 2020 

and zero otherwise.83 Table 16 provides the dates and values defined and Figure 7 provides a 

graphic representation of the timing of the events. 

These three effects cannot be estimated together because they are correlated with each 

other due to the timing of the events. For example, when the stay-at-home order is in effect, 

schools are closed and the pandemic exists. After the stay-at-home order is lifted, when schools 

are closed, the pandemic exists. The timing overlap of these events implies that 𝛿1captures the 

impact of the pandemic, school closures, and stay-at-home order concurrently on child 

maltreatment reporting. Similarly, 𝛼1 captures the impact of the pandemic-induced school 

closures, and 𝛽1 estimates the impact of the pandemic without stay-at-home orders or school 

closings, like the end of 2020. This setup implies 𝛿1>𝛼1>𝛽1. 

                                                            
82 See The White House notice on the continuation of the National Emergency found here.  
83 In all equations, standard errors are clustered at the county by quarter level. Results are similar when 

standard errors are clustered at the county level and available upon request.  

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/02/24/notice-on-the-continuation-of-the-national-emergency-concerning-the-coronavirus-disease-2019-covid-19-pandemic/#:~:text=The%20COVID%2D19%20pandemic%20continues,effect%20beyond%20March%201%2C%202021.
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Table 16: Timeline of Events and Independent Variable Values 

Event Dates Independent Variable Values 

COVID-19 National 

Emergency  

March 13, 2020 – 

March 202184   
𝑐𝑜𝑣𝑖𝑑𝑞𝑦 = {

0 𝑖𝑓 𝑦 < 2020
0.5

3
𝑖𝑓 𝑦 = 2020 ∩ 𝑞 = 1

1 𝑖𝑓 𝑦 = 2020 ∩ 𝑞 > 1

 

School Closures in 

Colorado 

March 16, 2020 – 

August 24, 202085 
𝑠𝑐ℎ𝑐𝑙𝑜𝑞𝑦 =

{
  
 

  
 
0.5

3
𝑖𝑓 𝑦 = 2020 ∩ 𝑞 = 1

2

3
𝑖𝑓 𝑦 = 2020 ∩ 𝑞 = 2

 
0.5

3
𝑖𝑓 𝑦 = 2020 ∩ 𝑞 = 3

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Stay-at-home Order in 

Colorado  

March 26, 2020 – 

April 26, 202086 
𝑠𝑎ℎ𝑞𝑦 = {

1

3
𝑖𝑓 𝑦 = 2020 ∩ 𝑞 = 2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Notes: This table lists the dates of the COVID-19 national emergency, stay-at-home order, and 

school closures in Colorado. Using these dates, the independent variables are defined. The variable 

y indicates the year, and the variable q indicates the quarter. The independent variable is rounded 

to the nearest half month, out of 3 months. For example, the COVID-19 pandemic was announced 

as a national emergency March 13th, so about 0.5 months out of 3 were impacted by the pandemic. 

The national emergency existed for the rest of 2020, so for the remaining three quarters, three out 

of three months were impacted, which equals one. The stay-at-home order primarily took place in 

April, so in 2020 for quarter 2, sah equals one-third and zero otherwise. Lastly, school closure is 

defined based on the month impacted by the pandemic. For example, quarter two consists of April, 

May, and June, and in June, schools would have been closed regardless of the pandemic, so schclo 

is two-thirds, and not three-thirds (i.e. one).         

                                                            
84 See The White House notice on the continuation of the National Emergency found here. 
85 Between the following two sources, https://co.chalkbeat.org/2020/3/12/21178764/the-complete-list-of-

coronavirus-related-colorado-school-closures and https://www.denverpost.com/2020/07/01/colorado-

schools-reopening-coronavirus-covid/, most school districts in Colorado closed on March 16, 2020 and 

most districts delayed opening in the fall by a few weeks, resulting in opening dates between August 24 

and September 1. In-person and virtual learning varied by district, but since Colorado counties and school 

districts do not align, the school closure variable is the same for all counties, regardless of instructional 

mode and based on the date that impacts most of the state. As a robustness check, I allow the opening 

dates to vary for a few counties that are clearly defined, such as those in the Denver metro-area, but the 

results are similar.     
86 See https://www.westword.com/news/covid-19-colorado-stay-at-home-order-shorter-than-most-in-

america-11682795 for a list of state closing and opening dates. Some jurisdictions, like Denver, extended 

their stay-at-home order, and Colorado issued a “safer-at-home” order following the stay-at-home order. 

See https://www.kktv.com/content/news/Gov-Polis-issues-Executive-Order-on-Safer-at-Home-

569966341.html for more details. These variations are not accounted for in this analysis.   

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/02/24/notice-on-the-continuation-of-the-national-emergency-concerning-the-coronavirus-disease-2019-covid-19-pandemic/#:~:text=The%20COVID%2D19%20pandemic%20continues,effect%20beyond%20March%201%2C%202021.
https://co.chalkbeat.org/2020/3/12/21178764/the-complete-list-of-coronavirus-related-colorado-school-closures
https://co.chalkbeat.org/2020/3/12/21178764/the-complete-list-of-coronavirus-related-colorado-school-closures
https://www.denverpost.com/2020/07/01/colorado-schools-reopening-coronavirus-covid/
https://www.denverpost.com/2020/07/01/colorado-schools-reopening-coronavirus-covid/
https://www.westword.com/news/covid-19-colorado-stay-at-home-order-shorter-than-most-in-america-11682795
https://www.westword.com/news/covid-19-colorado-stay-at-home-order-shorter-than-most-in-america-11682795
https://www.kktv.com/content/news/Gov-Polis-issues-Executive-Order-on-Safer-at-Home-569966341.html
https://www.kktv.com/content/news/Gov-Polis-issues-Executive-Order-on-Safer-at-Home-569966341.html
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Figure 7: Timeline of Events in 2020 

 

Notes: This figure plots the timeline of events during 2020 in Colorado. The COVID-19 National Emergency was announced on March 

13, 2020 and continued through the year. Schools closed on March 16 and the stay-at-home order began March 26. The stay-at-home 

order ended a month later, and schools reopened for in-person and virtual learning at the end of August. The red arrow shows when the 

stay-at-home order happened, the yellow arrow shows when schools were closed for in-person learning, and the blue arrow shows when 

the pandemic existed. All three events happened concurrently from March 26 to April 26, and two of the events happened concurrently 

from April 26 to August 24. After August 24, only the COVID-19 national emergency was happening.    
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Finally, to determine differential effects of the stay-at-home order by compliance, I 

estimate the following equation:  

𝑌𝑐𝑞𝑦 = 𝛿0 + 𝛿1𝑠𝑎ℎ 𝑞𝑦 + 𝛿2𝑐𝑐𝑐 + 𝛿3𝑠𝑎ℎ 𝑞𝑦 𝑥 𝑐𝑐𝑐 + 𝜑𝑞 + 𝛾𝑦 + 𝜌𝑐 + 𝜀𝑐𝑞𝑦 (3.5) 

Where the majority of the terms are defined above. cc measures the pre-stay-at-home 

order COVID-19 cases per 100,000 residents for county c, so 𝛿2 estimates the relation between 

COVID-19 cases and child maltreatment reporting, and 𝛿3estimates the interaction effect 

between the stay-at-home order and COVID-19 cases on child maltreatment. A positive 

coefficient on 𝛿3 means the stay-at-home order increased child maltreatment reporting for 

counties with higher COVID-19 cases, relative to counties with no COVID-19 cases as of March 

26th. 

The validity of this approach to yield causal estimates relies on two assumptions. First, 

counties with COVID-19 cases prior to March 26th had similar child maltreatment reporting 

trends as counties with no COVID-19 cases prior to March 26th. Second, counties with COVID-

19 cases prior to March 26th were more compliant to the stay-at-home order. One crude proxy for 

compliance is the number of COVID-19 cases during the stay-at-home order. Counties with 

fewer cases per 100,000 residents are considered more compliant, especially if they had cases 

prior to the stay-at-home order. Appendix Table E1 provides summary statistics of child 

maltreatment reporting by COVID-19 cases, and Appendix Figure E2 plots the relationship 

between COVID-19 cases prior to the stay-at-home order versus during the stay-at-home order 

with the regression adjusted correlation coefficient. Neither of these set of results provide 

convincing evidence that the two assumptions are satisfied, so this analysis is exploratory.  

To understand the direction of the potential bias, I estimate the relationship between 

compliance on pre-pandemic child maltreatment. For this analysis, compliance is measured as 
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the ratio between COVID-19 cases prior to and during the stay-at-home order.87 In this setup, 

counties with ratios greater than or equal to one are considered more compliant than counties 

with ratios less than one. I do not find strong evidence that compliance is correlated with child 

maltreatment prior to the pandemic, thus I cannot sign the potential bias.    

3.5. Results 

3.5.1. Counterfactual Number of Referrals and Reports 

Figure 8 shows the predicted versus actual number of referrals from 2006 to 2020. In 

2019, there were a total of 115,178 referrals made, 38,950 reports were screened-in, and 13,730 

reports were substantiated. In contrast, in 2020, there were a total of 98,158 referrals made, 

34,121 reports were screened-in, and 12,684 reports were substantiated. Counterfactual 1 shows 

the predicted number of referrals assuming the pandemic had not occurred, and counterfactual 2 

shows the predicted number of referrals after accounting for increases in unemployment and 

alcohol sales, de facto consumption.  

Comparing the actual number of referrals to counterfactual 1, an estimated 30,276 

referrals went unreported in 2020. Alternatively, recognizing that the pandemic has brought on 

significant hardships, we might expect the number of children suffering from maltreatment to be 

even greater in 2020 relative to 2019. Comparing the actual number of referrals to counterfactual 

2, an estimated 38,794 referrals went unreported in 2020.  

Colorado has a high referral rate, but a high proportion of referrals are screened-out and 

unsubstantiated. Next, I compare the actual screened-in reports to the predicted numbers of 

                                                            
87 The majority of counties (45) reported zero COVID-19 cases prior to and during the stay-at-home 

order. For these counties the ratio is set equal to one. In the remaining 19 counties, there were COVID-19 

cases before and/or during the stay-at-home order. In one county, they reported zero COVID-19 cases 

during the stay-at-home order, resulting in an invalid ratio (i.e. zero in the denominator). For this county, I 

set the ratio equal to the number of cases prior to the stay-at-home order.    
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screened-in reports to investigate whether the screening process changed during the pandemic. If 

the screening process remained the same, then the proportion of the predicted screened-in reports 

would be the same as the proportion of the actual screened-in reports. Figure 8 also shows the 

predicted versus actual number of screened-in reports from 2006 to 2020. Between 10,500 to 

11,500 fewer reports were screened-in in 2020 compared to counterfactual estimates. The 

proportion of reports that were screened-in in 2020 and the proportion of reports that should have 

been screened-in based on the counterfactual estimates was 33 to 35 percent, indicating the 

screening process remained the same during the pandemic. 

Lastly, I compare the actual number of substantiated reports to the predicted number of 

substantiated reports to determine whether the nature of child maltreatment changed during the 

pandemic. Figure 8 shows the predicted versus actual number of substantiated reports from 2006 

to 2020; 2,200 to 2,800 substantiated reports were missed. The different trends for each line and 

the uptick in actual reports in quarter 3 of year 2020 make it difficult to interpret how 

substantiated maltreatment has changed over the year. 
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Figure 8: Actual versus Predicted Child Maltreatment Referrals and Reports in Colorado 

from 2006 to 2020 
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Notes:  These figures plot the actual versus predicted counts of child maltreatment referrals (top 

graph), screened-in reports (middle graph), and substantiated reports (bottom graph). Two 

counterfactuals are estimated: counterfactual one assumes child maltreatment would have been the 

same in 2020 as 2019 had the pandemic not occurred, and counterfactual two accounts for changes 

in maltreatment as a result of changes in the unemployment rate and alcohol purchases.   

 

In addition to estimating counterfactuals for the screened-in and substantiated reports, the 

CDHS data also allow me to estimate counterfactuals for the composition of substantiated 

reports by maltreatment type. Figure 9 plots the predicted versus actual number of substantiated 

neglect, physical abuse, and sexual abuse allegations. The majority of unreported victims seem to 

be suffering from neglect.      
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Figure 9: Actual versus Predicted Substantiated Allegations by Child Maltreatment Type 

in Colorado from 2006 to 2020 
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Notes:  These figures plot the actual versus predicted counts of substantiated neglect (top graph), 

physical abuse (middle graph), and sexual abuse (bottom graph) allegations. Two counterfactuals 

are estimated: counterfactual one assumes child maltreatment would have been the same in 2020 

as 2019 had the pandemic not occurred, and counterfactual two accounts for changes in 

maltreatment as a result of changes in the unemployment rate and alcohol purchases.  

 

3.5.2. Impact of the COVID-19 Pandemic, School Closures, and the Stay-at-Home Order on 

Child Maltreatment Reporting 

Table 17 provides the main results of the paper. All else equal, an additional quarter with 

the COVID-19 pandemic reduced the number of referrals made to the hotline by 2.5 per 1,000 

children (or 10% relative to the average 2019 referral rate in a county). The screened-in report 

rate and substantiation rate are not statistically different as a result of the COVID-19 pandemic. 

All else equal, an additional quarter with pandemic-induced school closures reduced the number 

of referrals by 7.9 per 1,000 children (or 32% relative to the average 2019 referral rate in a 

county) and reports screened-in by 1.8 per 1,000 children (or 24% relative to the average 2019 

report rate in a county). Finally, all else equal, an additional quarter with a stay-at-home order 

reduced the number of referrals by 14.8 per 1,000 children (or 60% relative to the average 2019 

referral rate in a county) and reports screened-in by 3.3 per 1,000 children (or 42% relative to the
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average 2019 report rate in a county). Similar to the COVID-19 pandemic, neither school closings nor the stay-at home order had a 

statistically significant impact the substantiation rate.  

Table 17: Estimated Impacts of COVID-19 Pandemic, School Closures, and Stay-at-Home Order on Child Maltreatment 

Reporting in Colorado 

 Main Outcomes Type of Maltreatment  

 

Total Referrals 

(per 1,000 

children) 

Reports 

Screened-in (per 

1,000 children) 

Substantiated 

Reports (per 

1,000 children) 

Neglect 

Allegations 

(per 1,000 

children) 

Physical Abuse 

Allegations 

(per 1,000 

children) 

Sexual Abuse 

Allegations 

(per 1,000 

children) 

Ind. Var.: COVID-19 
-2.541* -0.079 -0.876 -0.445 -0.084 0.251 

(1.415) (0.710) (0.715) (1.078) (0.279) (0.178) 

       

Ind. Var.: School Closure 
-7.874*** -1.838** 0.615 -0.961 -0.229 0.115 

(1.829) (0.846) (0.966) (1.239) (0.512) (0.350) 

       

Ind. Var.: Stay-at-home 

Order 

-14.787*** -3.273** 0.628 -2.430 -0.638 0.265 

(3.070) (1.479) (1.764) (2.260) (0.909) (0.625) 

       

2019 Average  24.66 7.83 2.61 8.72 2.2 0.79 

Observations  3,328 3,328 3,328 3,328 3,328 3,328 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors, clustered at the county-by-quarter level, in parentheses. Each column 

indicates an outcome of interest, provided as a rate per 1,000 children. Each row represents a separate regression analysis, so row 1 

reports the coefficient from equation 3.2 where covid is the independent variable of interest. Row 2 reports the coefficient from 

equation 3.3 where schclo is the independent variable of interest, and row 3 reports the coefficient from equation 3.4 where sah is the 

independent variable of interest. Each regression includes year, county, and quarter fixed effects.  
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Rescaling the quarterly effect to a monthly effect, implies that an additional month of the 

COVID-19 pandemic, school closures, and stay-at home order reduced child maltreatment 

reporting by 0.85, 2.6, and 4.9 referrals per 1,000 children, respectively. The effect of the stay-at-

home order is almost six times as large as the effect of the pandemic and almost twice as large as 

the effect of the school closings. Finally, rescaling the monthly impact to an annual impact based 

on the number of months for each of the events implies the COVID-19 pandemic, school 

closures, and stay-at-home order reduced maltreatment reporting by 8, 7.9, and 4.9 referrals per 

1,000 children, respectively. With a child population of 1.26 million, approximately 10,000, 

9,900, and 6,200 referrals went unreported as a result of the COVID-19 pandemic, school 

closures, and stay-at-home order, respectively, in Colorado.     

3.5.3. Changes in Type of Maltreatment  

So far this paper has demonstrated that the COVID-19 pandemic, and subsequent school 

closures and stay-at-home order drastically decreased the child maltreatment referral and report 

rate, but had no statistically significant impact on the substantiation rate. Next, I explore whether 

the type of maltreatment reported changed during the pandemic. The right side of Table 17 

provides the results from estimating equations 3.2-3.4 for the neglect, physical abuse, and sexual 

abuse referral rates. Overall, there is no evidence that the pandemic altered the type of 

maltreatment reported. The direction of the coefficients implies fewer neglect and physical abuse 

allegations, and more sexual abuse allegations were reported as a result of the pandemic and 

subsequent policy responses; however, none of these estimates are statistically significant. As a 

result of statistically insignificant changes in the type of maltreatment referrals made, there are 

no statistically significant changes in the type of maltreatment substantiated.88  

                                                            
88 Results available upon request.  
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3.5.4. Impact of Stay-at-Home Order Compliance on Child Maltreatment Reporting   

Finally, Table 18 provides the estimates from the interaction between the stay-at-home order and COVID-19 cases. All else 

equal, an additional quarter under the stay-at-home order in counties with COVID-19 cases is associated with a smaller decline in the 

number of total referrals and screened-in referrals by 0.09 and 0.05 per 1,000 children, relative to counties without COVID-19 cases. 

Moreover, this interaction analysis indicates that counties with COVID-19 cases experienced a smaller decline in the neglect abuse 

allegation rate and an increase in the sexual abuse allegation rate, as a result of the stay-at-home order, relative to counties without 

COVID-19 cases.  

Table 18: Estimated Impact of Stay-at-Home Order Interacted with COVID-19 Cases on Child Maltreatment Reporting 

 Main Outcomes Type of Maltreatment  

 

Total Referrals 

(per 1,000 

children) 

Reports 

Screened-in (per 

1,000 children) 

Substantiated 

Reports (per 

1,000 children) 

Neglect 

Allegations 

(per 1,000 

children) 

Physical Abuse 

Allegations 

(per 1,000 

children) 

Sexual Abuse 

Allegations 

(per 1,000 

children) 

Stay-at-home -15.413*** -3.607** 0.664 -2.879 -0.619 0.220 

(3.104) (1.491) (1.812) (2.293) (0.935) (0.642) 

COVID-19 Cases 0.024 -0.123*** 0.045*** -0.030 -0.037 -0.014 

(0.077) (0.030) (0.015) (0.051) (0.023) (0.012) 

Stay-at-home x COVID-19 

Cases  

0.094*** 0.050*** -0.005 0.067*** -0.003 0.007** 

(0.015) (0.006) (0.008) (0.011) (0.005) (0.003) 

Observations  3,328 3,328 3,328 3,328 3,328 3,328 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors, clustered at the county-by-quarter level, in parentheses. Each column indicates an 

outcome of interest, provided as a rate per 1,000 children. Row 1 reports the coefficient on the stay-at-home order, row 2 reports the coefficient 

on the number of pre-stay-at-home order COVID-19 cases, and row 3 reports the coefficient on the interaction term between the stay-at-home 

order and pre-stay-at-home COVID-19 cases. Each regression includes year, county, and quarter fixed effects. 
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3.5.5. Alternative Analyses and Permutation Tests  

To determine the sensitivity of the main results, I estimate alternative analyses varying 

the sample size and control variables. Table 19 reports the results for different measures of the 

child maltreatment referral rate across different analyses. Column 1 provides the main results 

again. Columns 2 and 3 provide results from varying the sample size, and column 4 provides 

results that include county-level controls for economic conditions. The first panel of results 

shows the change in the rate, per 1,000 children, the second panel uses logged values, and the 

third panel uses the level values.  

Overall, the impact of the pandemic, school closures, and stay-at-home order on the 

referral rate (panel 1) and logged number of referrals (panel 2) is similar across varying sample 

sizes. In column 2, the time period is restricted to the years 2010 to 2020, to exclude any impacts 

of the Great Recession. In column 3, the Denver metro-area is excluded to test whether these 

results are generalizable to all counties in Colorado or unique to the most populous areas. When 

observing total referral levels (panel 3), the coefficients are not sensitive to excluding the Great 

Recession years, but they are drastically reduced when excluding the Denver metro-area. This 

analysis indicates that relatively more referrals are going unreported in the Denver metro-area 

relative to other parts of the state, which makes sense since there are more people and children in 

the Denver metro-area. This sensitivity also underscores the importance of using rates, and not 

levels. In all cases, including the economic conditions reduces the magnitude of the effect size, 

relative to the main specification. However, the change in magnitude is not statistically different 

from the main estimates. The same conclusions apply across analyses variations for the screened-

in and substantiation rates.89      

                                                            
89 See Appendix Table E2 and E3 for the results.  
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Table 19: Robustness Analyses for Child Maltreatment Referrals 

  (1) (2) (3) (4) 

  

Main Results Post 2010 

Exclude 

Denver 

Metro-area 

Include 

Economic 

Controls 

Panel A: 

Rate (per 

1,000 

children) 

COVID-19 
-2.541* -2.514* -1.868 -1.053 

(1.415) (1.418) (1.632) (1.547) 

School Closure 
-7.874*** -7.358*** -7.684*** -6.402*** 

(1.829) (1.799) (2.107) (1.917) 

Stay-at-home 
-14.787*** -14.019*** -14.396*** -12.415*** 

(3.070) (3.056) (3.538) (3.274) 

Panel B: 

Log  

COVID-19 
-0.133* -0.131* -0.096 -0.056 

(0.074) (0.072) (0.085) (0.080) 

School Closure 
-0.420*** -0.392*** -0.397*** -0.353*** 

(0.114) (0.111) (0.131) (0.120) 

Stay-at-home 
-0.780*** -0.744*** -0.733*** -0.681*** 

(0.192) (0.188) (0.221) (0.206) 

Panel C: 

Levels 

COVID-19 
-110.255*** -110.765*** -42.456* -73.236** 

(34.192) (29.319) (24.229) (32.786) 

School Closure 
-146.414*** -141.809*** -72.856*** -89.796*** 

(32.469) (36.791) (25.657) (28.643) 

Stay-at-home 
-301.492*** -295.858*** -148.273*** -201.033*** 

(61.579) (67.786) (48.256) (53.836) 

 Observations  3,328 2,560 2,860 3,328 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors, clustered at the county-by-

quarter level, in parentheses. Each column indicates a separate regression analysis. The first 

column provides the main results. The second column is post-2010. The third column excludes 

the Denver metro-area, and the fourth column includes controls for economic conditions (i.e. 

the unemployment rate and employment-to-population ratio). Each row represents a separate 

regression analysis for the three independent variables of interest, so row 1 reports the coefficient 

from equation 3.2 where covid is the independent variable of interest. Row 2 reports the 

coefficient from equation 3.3 where schclo is the independent variable of interest, and row 3 

reports the coefficient from equation 3.4 where sah is the independent variable of interest. There 

are 3 separate panels as well. Panel one reports the effect on the total referral rate, per 1,000 

children. The second panel reports the effect on the log total referrals, and the third panel reports 

the effect on the total referrals (level). Each regression includes year, county, and quarter fixed 

effects.  
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Since the pandemic started in 2020, there are only a few treated observations. Few treated 

observations can lead to improper inference (Cameron et al., 2008; MacKinnon & Webb, 2017, 

2018; Ferman & Pinto, 2019). One way to correct for this is to perform a set of permutation tests 

(Chetty et al., 2009; Buchmueller et al., 2011; Baron et al., 2020). I estimate equations 3.2-3.4 

with a placebo independent variable. This is done for every quarter-year combination from 2008 

to 2019. This approach results in 48 placebo estimates (12 years x 4 quarters). The distribution of 

the 48 placebo estimates and one actual estimate from equations 3.2-3.4 represents the sampling 

distribution of �̂�1,  �̂�1, �̂�1.  

 Figure 10 shows the cumulative distribution function of the placebo and actual estimates 

on covid, schclo, and sah, respectively for the referral rate and screened-in report rate. The actual 

estimate on covid is not statistically different from all of the placebo estimates, whereas the 

actual effect of the school closures and stay-at-home order are statistically different from the 

placebo estimates. These permutation tests indicate that the estimated impacts from school 

closures and the stay-at-home order are unlikely to be a result of chance.     
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Figure 10: Cumulative Distribution Function of Estimates from Permutation Tests 
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Notes: These figures plot the cumulative distribution function of the beta coefficient for the 48 

placebo and one actual estimate. The top graph plots the coefficients on covid from equation 3.2, 

the middle graph plots the coefficients on schclo from equation 3.3, and the bottom graph plots the 

coefficient on sah from equation 3.4.  The left-hand graphs plot the coefficient for the total referral 

rate (per 1,000 children) and the right-hand graphs plot the coefficient for the screened-in report 

rate.  

 

3.6. Conclusion 

There are three major findings of this paper. First, in Colorado, the COVID-19 pandemic 

and subsequent policy responses resulted in a 15 percent decline in reporting in 2020, compared 

to 2019. The biggest decline occurred between April and June as a result of the stay-at-home 

order and initial shift to virtual schooling; however, delayed school openings and continued 

spreading of the Coronavirus kept reporting below pre-pandemic averages for the remainder of 

2020. Using a model that accounts for economic hardships and harmful coping strategies brought 

about by the pandemic, an estimated 38,800 referrals went unreported and 2,200 victims went 

unnoticed. Applying these numbers to the whole country while taking into account Colorado’s 

unusually high reporting rate, an estimated 1.38 million referrals and 112,000 victims may have 
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gone unreported across the country during 2020.90 These estimates can (and should) be verified 

in two to three years when NCANDS releases the national-level data.91  

There are three reasons to verify these numbers after the pandemic ends. First, for 

documentation purposes, it is important to correctly quantify the detrimental impacts of the 

pandemic. Second, these numbers can be used to predict the extent of underreporting in the event 

of another national emergency that alters maltreatment and reporting, simultaneously. Finally, 

child abuse and neglect has lasting consequences on educational attainment, employment and 

earnings, and health (Slade & Wissow, 2007; Irigaray et al., 2013; Kalmakis & Chandler, 2015; 

Doyle & Aizer, 2018), so states should be making efforts to follow-up with the children who 

may have been missed. Having an accurate count for how many children may have experienced 

abuse or neglect during the pandemic allows states to know when their follow-up efforts have 

reached all potential candidates.  

The second key finding is that the stay-at-home order, school closings, and COVID-19 

national emergency all substantially reduced child maltreatment referrals and screened-in 

reports. Many child welfare experts and governors understand they are missing the opportunity 

to protect children (NGA, 2020); however, some experts disagree and claim that the pandemic is 

filtering out the flood of unsubstantiated reports.92 In Colorado, I do not find evidence that the 

composition of substantiated and unsubstantiated reports changes. Moreover, even if the 

                                                            
90 First the 38,800 unreported referrals are multiplied by 51. Next, 1,978,800 is divided by 1.43 because 

Colorado’s report rate is 1.43 times higher than the typical state. The number of victims is not rescaled 

because Colorado’s victim rate is similar to the average state (9.7 victims per 1,000 children versus 8.9 

victims per 1,000 children).   
91 If one were to scale early predictions from Baron et al., 2020 and Rapaport et al., 2020 to the full year, 

they would estimate that 833,000 to 1.06 million referrals went unreported. 
92 For an example, see the opinion piece, “National Opinion: COVID-19 is not leading to more child 

abuse, it’s cleaning the 'pollution' of false reports,” published in the Arizona Daily Star on September 4, 

2020.  

https://tucson.com/opinion/local/national-opinion-covid-19-is-not-leading-to-more-child-abuse-it-s-cleaning-the/article_d5c82035-e04a-526f-963e-4a844bea4086.html?utm_medium=email&utm_source=govdelivery
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pandemic filtered out unsubstantiated reports, it is unclear whether this is a good thing for child 

welfare. Ultimately, the answer depends on the state and what supports are provided to children 

and families of unsubstantiated reports. For example, in Colorado, children and families of 

unsubstantiated reports can be referred to other services, so a call to the hotline may connect 

families with needed resources (CDHS, nd b). In this case, fewer calls, regardless of the 

disposition, is concerning.  

While child welfare experts predicted that more severe child maltreatment would arise 

from the pandemic (Hofmann, 2021), and some research has found that the proportion of ER 

visits from child abuse and neglect almost doubled, relative to 2019 proportions (Swedo et al., 

2020), in Colorado, I do not find evidence of this hypothesis yet. Whether this is a limitation of 

the data or a glimmer of hope is unclear. Identifying victims from hotline calls is especially 

difficult in a state that screens out the majority of referrals and substantiates so few reports. 

Stephens-Davidowitz (2013) proposed two clever ways to try to identify victims of 

maltreatment. One method relies on using fatality counts (i.e. extreme cases of child 

maltreatment) and the other relies on using Google searches including terms like “child abuse 

and neglect.” Unfortunately, this study is not able to employ either method. First, CDHS does 

not provide real-time data on fatalities. Second, Google searches related to child abuse and 

neglect in 2020 saw a substantial uptick the first week of March, prior to the pandemic. This 

uptick follows the release of the Netflix true crime miniseries documentary, “The Trials of 

Gabriel Fernandez,” which was released February 26th. This limitation is an area that future 

research should continue to address as different types of maltreatment victims require different 

interventions.93       

                                                            
93 Fatality data during 2020 will be available through NCANDS for all states in two to three years. 
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Finally, I find that the referral rate for neglect decreased by less in counties that were 

more likely to comply with the stay-at-home order relative to counties that were less likely to 

comply.94 This result provides suggestive evidence of parental burnout and is supported by early 

research in the medical literature. For example, childhood injuries occurring in the home or on 

bicycles increased relative to sport and playground injuries during the pandemic (Bram et al., 

2020). In addition to targeting support and services to communities with historical records of 

substantiated cases, agencies need to target support and services to communities hit hard by the 

pandemic. 

Eventually the pandemic will be a thing of the past; however, the findings of this study 

have implications beyond the pandemic. These findings quantify another hardship brought about 

by the pandemic: underreporting child maltreatment. The prevalence of underreporting 

highlights the role mandatory reporters play in detecting child maltreatment. These results can be 

used to inform policy decisions related to underreporting, mandatory reporting, and training. For 

example, states might want to consider additional ways to detect child maltreatment that do not 

rely on mandatory reporters to prepare for future events that may limit interactions between 

children and mandatory reporters. These results also speak to resource allocation for intervention 

after a pandemic. Based on findings from this paper, states should target resources to assist 

neglected children. For example, states may want to allocate additional funding to address the 

consequences of neglect. This paper can also inform policy decisions related to future pandemic 

responses. While school closures and stay-at-home orders reduced the spread of Coronavirus 

(Auger et al., 2020; Castillo et al., 2020), policymakers also have to consider the impact such 

policies had on child maltreatment reporting to design even better responses in the future. For 

                                                            
94 Bullinger et al. (2020) come to a similar conclusion in Indiana. 
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example, the Department of Education in Maine provided an updated guide for teachers and 

others who care for children to detect maltreatment virtually (Maine DOE, 2020). Finally, this 

paper can be used as a reference to understand how events that alter maltreatment and reporting 

simultaneously impact child maltreatment referrals and substantiation rates in the data. 

Ultimately, fluctuations in the data seem to be more reflective of reporting than actual 

incidences.            
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Appendix A – Extended Foster Care Effective Dates and Policy Details   

The source of identification comes from state and federal policy changes to extended 

foster care. Prior to the Fostering Connections Act of 2008 (FCA) only a handful of states 

allowed foster youth to remain in care beyond their 18th birthday. In response to the FCA, many 

states extended their age-out age to 21 years old via state funding and/or federal reimbursement. 

States that are federally reimbursed for extended foster care support and services face more 

reporting and accountability requirements compared to states that solely rely on state funds to 

implement extended foster care. In addition, states with federally-funded extended foster care 

can support more youth by using both federal and state dollars.  

In 2010, 25 states and the District of Columbia had extended foster care, and in 2017, 48 

states and the District of Columbia, had extended foster care. Oklahoma is the only state that 

does not offer extended foster care. Louisiana and South Dakota have an exception that youth 

still in high school can remain in foster care until 21 years old, but otherwise youth age-out at 18 

years old. Wisconsin only offers extended foster care to youth with Individual Education Plans 

(IEPs). There is considerable variation in timing, age-out age, requirements to be in extended 

foster care, and transitional services available. Appendix Table A1 provides more specific details 

about extended foster care in each state.  

Although there is variation across many dimensions, I primarily exploit the timing 

variation for a few reasons. First, federal funding for independent living programs (ILPs) have 

existed since the 1980s, well before the FCA; therefore, all states offer some sort of independent 

living support to their youth aging out of foster care. Second, the marginal costs of pinning down 

all of the intricacies in every single state outweigh the marginal benefits at this time. Lastly, there 
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is not enough data to effectively estimate a model that exploits the variation within each of these 

alternative dimensions.  

Information about extended foster care in each state comes from a host of sources ranging 

from government reports and documents to state statutes and house bills. First, I used reports and 

documents from 2014 to 2019 created by Child Trends, Child Welfare Information Gateway, 

Congressional Research Service, National Conference of State Legislatures (NCSL), Pew 

Charitable Trusts, and the U.S. Government Accountability Office to get a time frame as to when 

a state implemented extended foster care. Each of these reports lists either “HHS, Children’s 

Bureau,” or “responses from state agencies” as their source. These reports include a map or table 

identifying states with state or federal extended foster care at a single point in time. Some of 

these resources also include current state statutes, administrative codes, and agency policies 

providing additional details and context. In combination, these sources allow me to observe 

changes over time and infer a time frame in which a state implemented extended foster care. For 

example, the 2014 Pew Charitable Trusts report shows that North Carolina does not have 

extended foster care, but the 2017 NCSL webpage shows that North Carolina does have 

extended foster care, so I can infer that North Carolina implemented extended foster care 

sometime between 2014 and 2017. Although the time frame provides a good starting point, for 

my analysis I need specific dates in which extended foster care was implemented.  

Next, I used legal databases to verify details and record effective dates of statutes and 

policies. The Juvenile Law Center (JLC) developed a tool that provides state-level information 

about implementation of extended foster care, such as availability, eligibility, and funding. 

Additionally, this tool provides the statute or policy from which the information comes. Using 

Westlaw Campus Research, a legal database provided by Georgia State University, I then looked 
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up the referenced statutes and recorded the appropriate effective date. This database tracks the 

history of the statues, so I can read older versions and determine the first year a state 

implemented the extended foster care program. I use the earliest effective date, as long as there 

have not been revisions.  

I used the NCSL’s child welfare database to differentiate between state and federal 

extended foster care and to double check statue codes against JLC and effective dates against the 

Westlaw database. The NCSL database contains child welfare legislation related to foster care, 

services for older youth, and funding for child welfare services, among other topics, that have 

been enacted between 2012 and 2018 for all 50 states and D.C. For some states, the legal 

documentation can be viewed and tracked, and for others the state legal database was accessible 

to further look up the statute. Another way I determined if a state has federally-funded extended 

foster care was by noting the definition of a child and language related to juvenile court 

jurisdiction. States eventually seeking federal reimbursement, at a minimum, must change the 

statutory definition of “child” for Title IV-E programs95. The NCSL resource provides rich detail 

about more recent legislation, but I needed to use Westlaw for policies that predated 2012. 

Together these resources were used to verify and adjust effective dates of the state or federally-

funded extended foster care.     

Finally, for states where dates were still missing or resources yielded conflicting dates, I 

google searched “<<state>> extended foster care.” Often this search resulted in state specific 

journal articles discussing the policy climate at the time of publication, and sometimes 

referenced specific house bills.  

                                                            
95 JCYOI. 2014. A Guide to Support the Implementation of Foster Care beyond 18. Pg. 6. 
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Appendix Table A1: Effective Dates and Details of Policy Changes 

State 
Date 

effective 

Age-

Out 

Age 

Federal 

Reimbursement 
Treatment 

Eligibility 

Requirements 
Process to Stay 

Re-entry 

Allowed 

Direct 

Payment 

to Youth 

Law/Bill/Act and extra notes 

AL 10/1/2010 21 yes Always federal least restrictive 
Automatic with 

VPA 
yes  

Ala. Admin. Code § 660-5-22-.06(11)(a).; state 

policy prior to FCA 

AK 1/1/2011 21 no Always state unknown 
Court approved 

with VPA 
unknown yes 

HB126; HB27 adds eligibility requirements and 

reentry in 2016 

AZ 11/30/2012 21 no Nothing to state least restrictive VPA 
yes, until 

20  
yes 

AZ ADC R21-5-205; Navajo Nation and Pascua 

Yaqui federally reimbursed starting in 2014 and 

2016  

AR 6/1/2011 21 yes Always federal least restrictive VPA yes   

CA 1/1/2012 

19; 21 

in 

2014 

yes 
Nothing to 

federal 
least restrictive 

Automatic with 

VPA 
yes yes 

AB12; age-out age increased incrementally until 

2014 

CO 1/1/2012 21 no Nothing to state least restrictive Court ordered  no  CO ST § 19-3-205 

CT 
6/30/2007 

21 
no 

State to federal  
enrolled in school  unknown  CT ST § 46b-129; Youth can stay until 23 in 

some cases. 10/1/2013 yes least restrictive Voluntary opt-in yes  

DC 10/1/2010 21 yes Always federal least restrictive Automatic yes  DC CODE § 16-2303. State policy prior to FCA 

DE 7/5/2012 21 no Nothing to state unknown 

Automatic with 

VPA or court 

ordered 

yes yes HJR18 (146th GA), SB113 

FL 1/1/2014 21 no Nothing to state least restrictive 

Automatic with 

VPA or court 

ordered 

yes  FL ST § 39.6251; 22 if disability. 

GA 2/6/2012 21.5 no Nothing to state 
enrolled in high 

school 
VPA 

yes, until 

20  
 GA ST § 15-11-2 in 2014 

HI 7/1/2014 21 yes 
Nothing to 

federal 
least restrictive 

Court approved 

with VPA 
yes  

Senate Bill 1340 (Act252).Program name: Imua 

Kakou. 

ID 7/1/2010 21 no Always state unknown 
Court approved 

with VPA 
no  ID ST § 39-1202. Referred to as "continued care". 

IL 10/1/2010 21 yes Always federal least restrictive 

Automatic with 

VPA or court 

ordered 

yes  State policy prior to FCA 

IN 
3/14/2012 

20 
no 

State to federal  least restrictive 
Court approved 

with VPA 
yes yes IN ST 31-28-5.8-5 

7/1/2012 yes 

IA 1/1/2009 19 no Always state 
enrolled in high 

school 
VPA yes  Iowa Code § 234.1(2) 

KS 5/31/2012 21 no Nothing to state 
enrolled in high 

school 

Court approved 

with VPA 
no  Kan. Stat. § 38-2203 
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State 
Date 

effective 

Age-

Out 

Age 

Federal 

Reimbursement 
Treatment 

Eligibility 

Requirements 
Process to Stay 

Re-entry 

Allowed 

Direct 

Payment 

to Youth 

Law/Bill/Act and extra notes 

KY 4/11/2012 21 no Nothing to state none specified  VPA 
yes, until 

19 
 KY S 213 

LA 6/1/2018 21 no Nothing 
enrolled in high 

school 
VPA no  

La. Stat. § 46:286.24(A). 21 if still in HS. Young 

Adult Program (YAP) prior to 2013, ended due to 

budget cuts. 

ME 
9/28/2011 

20 
no 

State to federal  least restrictive VPA yes 
 Me. Rev. Stat. tit 22, § 4037-A(1)(a). V9 

Program/Agreement 1/1/2012 yes  

MD 10/1/2010 21 yes Always federal least restrictive 
Court approved 

with VPA 

yes, until 

20.5 
 State policy prior to FCA 

MA 10/1/2010 21 yes Always federal least restrictive VPA yes yes MA ST 119 § 21. State policy prior to FCA 

MI 
11/22/2011 

21 
no 

State to federal  least restrictive VPA yes 
 

MI ST 400.645 
7/1/2012 yes  

MN 10/1/2010 21 yes Always federal least restrictive VPA yes yes MN ST § 260C.451; State policy prior to FCA 

MS 7/1/2013 21 no Nothing to state 
enrolled in high 

school 

Automatic with 

VPA 
no  MS ST § 43-15-13 

MO 8/28/2013 21 no Nothing to state none specified  
Court approved 

with VPA 

yes, until 

20 
 MO ST 211.036 

MT 11/29/2017 21 no Nothing  
enrolled in high 

school 

Court approved 

with VPA 
no  

MT ADC 37.51.102. No age limit if in secondary 

school starting in 2018. Transitional living 

program.  

NE 

12/1/2008 19 no 

State to federal  

unknown  unknown   

9/1/2014 21 yes least restrictive VPA yes yes 

2013 Young Adult Voluntary Services and 

Supports Act. Program name: Bridge to 

Independence (b2i). 

NV 10/1/2015 19 no Nothing to state NA VPA no yes  

NH 1/1/2009 18 no Nothing unknown VPA yes  
NH ST § 169-C:34 (V-a). Voluntary services 

until 21 

NJ 7/1/2006 21 no Always state 

enrolled in school, 

working at least 

part time, or 

unable due to 

medical or 

disability  

Court approved 

with VPA 
yes yes  

NJ ST 30:4C-2.3. Direct payments used for 

independent living  

NM 9/29/2015 18 no Nothing NA 
Court approved 

with VPA 
no yes 

N.M. Stat. § 32A-4-25.3. Navajo Nation  

federally reimbursed starting in 2014. 

NY 10/1/2010 21 yes Always federal least restrictive  yes  NY FAM CT § 1055 
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State 
Date 

effective 

Age-

Out 

Age 

Federal 

Reimbursement 
Treatment 

Eligibility 

Requirements 
Process to Stay 

Re-entry 

Allowed 

Direct 

Payment 

to Youth 

Law/Bill/Act and extra notes 

NC 1/1/2017 21 yes Nothing least restrictive 
Court approved 

with VPA 

yes, until 

20  
yes 

N.C. Gen. Stat. §108A-48(c ). Eastern Band 

federally reimbursed starting in 2015. 

ND 1/1/2012 21 yes 
Nothing to 

federal 
least restrictive 

Court approved 

with VPA 
yes  ND ST 27-20-30.1 

OH 
9/13/2016 

21 
no 

Nothing least restrictive VPA 
no  

HB 50 of the 131 GA 
10/1/2018 yes yes yes 

OK 11/1/2015 18 no Nothing unknown Court ordered  yes  
OK ST T. 10A § 1-9-107. Successful Adulthood 

Act. 

OR 4/1/2011 21 yes Always federal least restrictive Automatic no yes 
OR ADC 413-030-0220; OR ST § 418.330. 

Direct payments used for tuition and waiver fees. 

PA 
1/1/2010 

21 
no 

State to federal  

enrolled in school 

or unable due to 

medical or 

disability  

Court approved 

with VPA 

no   

7/1/2012 yes least restrictive yes  PA H 1261 

RI 
6/28/2018 

21 
no 

Nothing least restrictive VPA yes yes 
RI ST § 14-1-6 (c ). Had extended foster care 

prior to 2007, but then scaled back. 1/1/2019 yes 

SC 4/26/1996 21 no Always state 

enrolled in school 

or working at least 

part time 

VPA yes  
SC ADC 114-595. Referred to as Aftercare 

Placement. 

SD 1/1/1991 21 no Always state 
enrolled in high 

school 
VPA no  SD ST § 26-6-6.1 

TN 10/1/2010 21 yes Always federal 

enrolled in school 

or unable due to 

medical or 

disability  

VPA yes yes 
Tennessee's Transitioning Youth Empowerment 

Act of 2010 

TX 10/1/2010 21 yes Always federal least restrictive VPA yes  
40 TX ADC § 700.346. 22 if still in HS. State 

policy prior to FCA.  

UT 4/1/2015 21 no Nothing to state unknown VPA yes  
Transition to Adult Living Program. Navajo 

Nation federally reimbursed starting in 2014.   

VT 6/6/2007 22 no Always state least restrictive VPA yes  VT ST T. 33 § 4904 

VA 

7/1/2015 

21 

no 

Nothing to state 

unknown VPA 

yes 

 VA ST § 63.2-905.1 

7/1/2016 yes least restrictive 
Automatic with 

VPA 
yes Fostering Futures Program 
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State 
Date 

effective 

Age-

Out 

Age 

Federal 

Reimbursement 
Treatment 

Eligibility 

Requirements 
Process to Stay 

Re-entry 

Allowed 

Direct 

Payment 

to Youth 

Law/Bill/Act and extra notes 

WA 7/22/2011 21 yes Always federal 

Restrictions 

loosened 

overtime. Most 

restrictive in 2011 

and least 

restrictive in 2016.  

VPA yes yes WA ST 74.13.020. Pilot program prior to FCA.  

WV 1/1/2011 21 yes Always federal enrolled in school VPA 
yes, until 

20 
 WV ST § 49-2B-2 

WI 
8/1/2014 

21 
no 

State to federal  
enrolled in high 

school 

Court approved 

with VPA. Needs 

IEP 

unknown  Wisconsin Act 334 

7/14/2015 yes yes  Wis. Stat. Ann. § 48.975(3m);  

WY 3/4/2016 21 no Nothing unknown 
Court approved 

with VPA 
no  WY ST § 14-3-431 

Notes: This table provides an overview of the dates and details about each states’ extended foster care policy. The effective date is used 

to determine whether a youth has EFC available at the time they turned 18 years old. Most states with EFC extend the age-out age to 

21; however, some states have younger ages. Federal reimbursement indicates that the state has an approved Title IV-E plan and receives 

federal reimbursement for EFC services. States that receive federal reimbursement are said to have “federally-funded EFC.” The 

treatment column specifies how each state is represented in my sample. “Nothing” means that there was no policy prior to 2016. “Nothing 

to state” means that a state adopted a policy between 2012 and 2016. “Nothing to federal” means that a state adopted a policy and is 

receiving federal reimbursements between 2012 and 2016. “State to federal” identifies the seven states that have both a state and federal 

policy between the years 2012 and 2016. “Always state” means that the state had a policy prior to 2012, and “always federal” means 

that the state had a policy and is receiving federal reimbursement prior to 2012. Eligibility requirements are referred to as “least 

restrictive” in states that allow youth to participate in extended foster care if any of the following requirements are met: enrolled in 

secondary school, enrolled in post-secondary school, working part-time, participating in training programs to reduce barriers to work or 

school, or unable to do the above due to a medical condition or disability. More restrictive eligibility requirements are specified. Most 

states require youth to sign a voluntary placement agreement (VPA) in order to remain in care, and some have the additional step of 

court approval. The majority of states allow for re-entry and some states pay their foster care maintenance payments directly to the 

youth. The final column references laws, bills, and acts when appropriate and provides additional details about a state’s specific program. 

All of the information in this table comes from the collection of sources discussed above. A more detailed excel spreadsheet is available 

upon request.     
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Appendix B – What Factors Predict Extended Foster Care Implementation?  

A common concern using a difference-in-differences approach is that treated subjects 

differ from untreated subjects (i.e. the parallel trends assumption is not satisfied). In my analysis, 

I use cross-sectional data to compare outcomes for youth before and after the implementation of 

extended foster care in a specific state. Since I use cross-sectional data, I cannot verify the 

parallel trends assumption, but in this appendix, I demonstrate that treated states do not differ 

from the untreated states in ways that would bias the results.  

First, I provide statistics by treatment status. Appendix Table B1 provides NYTD 

participant characteristics aggregated at the state level by treatment. The average high school 

enrollment rate ranges from 86 to 91 percent, and the youth employment rate ranges from 13 to 

17 percent with no notable monotonic trend. The foster care environment, as indicated by age of 

entry, removal reasons, and placements, is similar across treatment status. One monotonic trend 

worth noting is survey participation. Average survey participation rates range from 53 to 76 

percent, decline with age, and are higher among states with extended foster care. This pattern 

indicates differences in attrition between the treatment and control groups and is addressed in the 

main paper.  

Next, Appendix Table B2 summarizes the economic conditions and safety net generosity 

as NYTD participants transition to adulthood by treatment. There are some differences across 

cohorts, but no notable differences across treatment status. For example, the unemployment rate 

ranges from 6.5 to 8 percent for the older cohort and 4.3 to 5.5 for the younger cohort. Income 

per capita (in 2016 USD) ranges from $42,000 to $51,000 for the older cohort and $44,000 to 

$53,000 for the younger cohort. Finally, the number of Medicaid beneficiaries ranges from 156 

to 201 per 1,000 people for the older cohort and 189 to 250 per 1,000 people for the younger 
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cohort. In the younger cohort, states that implemented extended foster care between 2012 and 

2016 have overall fewer Medicaid beneficiaries.  

Finally, I create a state panel of economic conditions, safety net generosity, and foster 

care environment for the years 2008 to 2017 to further demonstrate that these factors are 

uncorrelated with implementing federally-funded extended foster care and have little explanatory 

power. I estimate the following fixed effects linear in probability model:  

𝑃𝑟𝑜𝑏(𝐹𝑒𝑑𝐸𝐹𝐶𝑠𝑡 = 1) = 𝛽0 + 𝑿𝒔𝒕𝜷 + 𝛾𝑠 + 𝛾𝑡 + 𝛾𝑠 ∗ 𝑌𝑒𝑎𝑟 (B1) 

Where FedEFC is a binary indicator that equals one if state s has federally-funded 

extended foster care in year t, X is a vector of predictive factors for state s in year t, such as the 

unemployment rate, and 𝛾𝑠 and 𝛾𝑡 are state and year fixed effects, respectively. The final term 

𝛾𝑠 ∗ 𝑌𝑒𝑎𝑟 captures the state-specific linear trends. The results from this analysis are provided in 

Appendix Table B3.  

 The first three models reveal correlations between implementation and economic 

conditions and the foster care environment. There are only a few notable correlations. First, 

states with higher monthly SNAP benefits and fewer Medicaid beneficiaries are more likely to 

implement federally-funded extended foster care. Although statistically significant, this finding 

is economically insignificant. For example, increasing the monthly SNAP payment by $23 (one 

standard deviation) is correlated with a 0.23 percent increase in extended foster care 

implementation. Second, having a Democratic Governor is correlated with a 14 percent increase 

in the likelihood of implementing extended foster care. Finally, states with more disconnected 

youth between the ages of 16 to 24 are marginally less likely to have extended foster care.     

The final model uses lagged independent variables to try to determine whether the 

conditions of the previous year have any explanatory power for future implementation. In this 
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model, the earlier correlations go away and only the proportion of foster youth ages 16 to 21 

funded with Title IV-E dollars has explanatory power. States that experienced a 1 percent 

increase in the proportion of youth ages 16 to 21 funded with Title IV-E dollars were 0.88 

percent less likely to implement extended foster care. In other words, states with more Title IV-E 

eligible youth are less likely to implement extended foster care.       

Overall, there are few notable correlations implying implementation of federally-funded 

extended foster care is unpredictable, at least based on a variety of observable characteristics. 

After controlling for state and cohort effects, implementation of extended foster care should be 

as good as random.         
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Appendix Table B1: State Characteristics by Treatment 

 
Federal policy 

prior to 2012 

State policy 

prior to 2012  

Nothing to federal 

policy between 

2012 and 2016  

Nothing to state 

policy between 

2012 and 2016  

State to federal 

policy between 

2012 and 2016  

No policy as of 

2016  

Number of States  13 7 3 12 7 9 

 Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. 

Number of NYTD 

Participants 
745.9 572.4 305.1 293.6 1,500 2,407 600 335.3 767.6 527.9 349.7 265.6 

Percent of youth 

that participated in 

survey at 19  
76.02 11.8 75.54 10.11 75.76 9.028 72.99 10.26 66.85 12.06 68.08 9.765 

Percent of youth 

that participated in 

survey at 21 
74.37 9.523 68.28 10.07 70.57 4.23 64.30 15.47 52.76 18.5 67.16 7.773 

Percent female 49.13 4.808 51.09 5.268 55.54 3.645 49.03 6.380 45.9 5.039 45.54 5.479 

Percent Non-

Hispanic White 
44.77 21.55 53.06 25.46 32.85 26.66 49.91 14.47 49.63 15.62 52.75 17.59 

Percent Non-

Hispanic Black 
33.6 25.21 18.99 21.96 10.83 11.17 30.58 18.34 29.03 14.82 20.70 21.60 

Percent Hispanic 12.87 10.84 8.811 6.1 17.64 25.3 13.70 11.44 12.6 6.55 14.25 14.90 

Percent Other 

Race 
8.757 7.55 19.14 23.64 38.68 35.24 5.802 3.578 8.74 1.914 12.29 8.904 

Percent of youth 

ever diagnosed 

with disability 
58.54 24.24 37.51 20.04 63.22 25.95 54.86 27.06 56.77 17.45 51.98 21.99 

Total removals as 

a child 
1.531 0.215 1.466 0.116 1.563 0.118 1.440 0.161 1.453 0.2 1.571 0.236 

Total number of 

placements as a 

child 
7.222 2.093 6.595 1.379 6.234 1.104 7.718 2.084 6.337 1.304 7.102 2.633 

Cumulative length 

of stay in foster 

care as a child 
4.446 1.36 3.721 0.597 4.173 1.136 3.615 0.374 3.987 1.004 3.918 0.682 

Age of first 

removal  
11.66 1.318 12.75 0.782 11.25 1.515 12.53 0.574 12.2 0.879 11.86 1.000 
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Federal policy 

prior to 2012 

State policy 

prior to 2012  

Nothing to federal 

policy between 

2012 and 2016  

Nothing to state 

policy between 

2012 and 2016  

State to federal 

policy between 

2012 and 2016  

No policy as of 

2016  

Number of States  13 7 3 12 7 9 

 Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. 

Percent placed in a 

foster home 
60.73 13.88 58.75 14.27 66.81 15.99 59.73 11.39 61.18 10.34 60.59 15.92 

Percent placed in a 

group home 
32.69 15.1 33.2 12.37 25.04 13.35 34.56 12.97 32.47 10.81 34.61 16.96 

Percent placed in 

other setting 
6.588 2.6 8.053 6.631 8.144 2.658 5.705 4.106 6.346 5.025 4.802 2.027 

Age of last 

placement 
17.43 0.747 16.99 0.337 17.12 0.183 17.20 0.422 17.56 0.578 17.07 0.512 

Last placement 

setting as a child: 

kinship care 
10.47 5.861 11 5.385 17.66 12.11 8.338 4.967 12.96 3.106 12.32 6.420 

Last placement 

setting as a child: 

foster family 
39.37 8.528 40.79 13.2 43.77 3.29 41.57 10.51 39.94 12.14 35.60 10.40 

Last placement 

setting as a child: 

group home 
31.65 13.25 25.69 12.39 26.62 8.278 32.79 16.12 28.29 11.13 32.64 13.84 

Last placement 

setting as a child: 

supervised 

independent living 

5.901 3.155 4.87 4.861 1.709 2.961 4.538 3.998 6.91 8.194 6.846 8.225 

Percent ever 

removed for abuse 
27.14 13.3 26.68 10.8 24.58 15 25.39 7.537 24.45 7.215 23.83 10.07 

Percent ever 

removed for 

neglect 
48.32 20.89 54.2 25.25 48.8 23.9 53.61 20.30 56.78 28.02 59.66 18.07 

Percent ever 

removed for 

parental 

incarceration 

5.129 3.854 6.912 7.517 4.552 2.758 7.695 3.626 7.387 2.085 6.549 4.314 

Percent ever 

removed for 
19.93 13.39 22.63 14.21 13.97 7.226 20.36 7.213 22.61 8.702 19.10 10.78 
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Federal policy 

prior to 2012 

State policy 

prior to 2012  

Nothing to federal 

policy between 

2012 and 2016  

Nothing to state 

policy between 

2012 and 2016  

State to federal 

policy between 

2012 and 2016  

No policy as of 

2016  

Number of States  13 7 3 12 7 9 

 Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. 

parental substance 

abuse 

Percent ever 

removed for 

inadequate 

housing 

8.831 6.746 7.628 7.516 11.66 13.64 14.29 8.468 12.93 5.469 7.693 6.488 

Percent ever 

removed for child-

related problems 
40.23 17.75 38.61 24.51 34.52 33.26 45.49 24.78 42.58 16.11 36.86 23.15 

Median monthly 

foster care 

payment 

$2,233 $1,362 $1,086 $561 $1,858 $1,204 $2,029 $2,738 $2,216 $848 $1,510 $1,214 

Percent in foster 

care at 17 
100 0 99.88 0.312 100 0 99.13 2.052 99.54 0.914 99.64 0.882 

Percent enrolled in 

HS at 17 
91.39 3.231 91.61 4.189 89.22 3.651 86.25 14.30 92.51 3.253 87.80 4.550 

Percent homeless 

prior to 17 
15.58 7.653 19.09 12.76 23.83 7.173 17.70 6.082 17.88 7.506 21.94 11.37 

Percent employed 

at 17 
13.35 6.501 16.39 5.129 14.35 7.165 13.12 3.191 15.08 4.734 17.42 5.700 

Percent 

incarcerated prior 

to 17 
31.03 9.921 31.37 17.12 36.09 13.84 38.43 13.97 36.82 11.33 34.79 13.68 

Percent referred 

for substance 

abuse prior to 17  
26.37 7.531 29.99 8.968 34.08 9.601 28.29 11.26 29.34 6.982 29.88 10.88 

Percent not 

enrolled or 

employed at 17 
5.399 2.947 4.787 2.4 5.741 2.262 5.244 3.936 4.561 0.946 7.564 3.445 

Percent enrolled in 

college at 17 
2.792 1.276 2.887 1.729 4.803 1.966 7.833 13.98 2.953 1.893 3.847 1.808 

Percent in foster 

care at 19 
41.74 22.47 6.663 9.627 31.82 23.69 16.81 17.86 27.4 18.13 6.899 8.078 
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Federal policy 

prior to 2012 

State policy 

prior to 2012  

Nothing to federal 

policy between 

2012 and 2016  

Nothing to state 

policy between 

2012 and 2016  

State to federal 

policy between 

2012 and 2016  

No policy as of 

2016  

Number of States  13 7 3 12 7 9 

 Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. 

Percent homeless 

in past 2 years 
19.23 7.053 29.64 13.72 31.26 12.99 21.01 6.323 20.81 4.946 27.37 9.192 

Percent that have 

graduated high 

school by 19 
40.41 16.21 43.85 21.52 55.99 4.375 47.33 20.04 40.77 10.38 46.63 11.53 

Percent enrolled in 

college at 19 
26.18 8.967 20.19 10.99 30.41 6.535 25.68 11.51 26.77 6.955 21.29 5.871 

Percent employed 

at 19 
35.99 4.473 40.54 3.771 38.68 6.222 38.36 8.905 35.86 4.895 37.41 5.028 

Percent not 

enrolled or 

employed at 19 
30.85 5.963 33.22 6.094 31.86 6.069 29.56 7.633 30.56 9.613 33.13 4.665 

Percent 

incarcerated in 

past 2 years 
24.33 8.126 24.62 11.67 21.03 5.741 25.29 9.342 27.59 8.741 25.66 11.29 

Percent in foster 

care at 21 
21.11 18.18 2.722 6.734 15.9 14.41 7.159 17.60 8.338 10.11 1.158 2.236 

Percent homeless 

in past 2 years 
25.77 8.335 37.63 13.07 27.39 4.009 32.36 7.813 30.33 6.717 35.12 8.765 

Percent that have 

graduated high 

school by 21 
69.37 12.31 74.74 9.011 83.28 5.753 78.25 10.86 68.57 12.8 71.78 11.42 

Percent enrolled in 

college at 21 
20.6 6.199 19.41 8.709 29.28 6.964 22.54 8.810 22.01 8.039 15.53 5.144 

Percent employed 

at 21 
49.28 5.516 48.71 7.683 56.19 8.779 53.85 11.06 50.99 6.744 52.86 9.480 

Percent not 

enrolled or 

employed at 21 
38.42 6.473 42.03 10.21 31.42 3.413 35.35 10.43 36.83 7.321 36.25 6.818 

Percent 

incarcerated in 

past 2 years 
24.69 7.947 30.12 13.27 23.58 7.109 27.37 10.11 26.14 12.38 27.15 9.787 
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Appendix Table B2: Average Economic Conditions and Safety Net Generosity by Treatment 

 
Federal policy prior to 

2012 

State policy prior to 

2012  

Nothing to federal policy 

between 2012 and 2016  

Nothing to state policy 

between 2012 and 

2016  

State to federal policy 

between 2012 and 

2016  

No policy as of 2016  

Number of 

States  
13 7 3 12 7 9 

 Mean  Std. Dev.  Mean  Std. Dev.  Mean  Std. Dev.  Mean  Std. Dev.  Mean  Std. Dev.  Mean  Std. Dev.  

 Cohort 1 3-Year Average (2011, 2012, 2013) 

Unemployment 

Rate 
7.82 1.02 6.69 1.96 6.47 3.62 7.92 1.64 7.48 1.69 7.10 1.77 

Poverty Rate   14.92 3.24 12.36 2.57 12.88 2.79 15.12 3.27 12.55 1.45 15.14 4.22 

Income per 

Capita (in 2016 

USD) 

$48,097 $10,259 $46,412 $8,143 $50,522 $4,124 $41,816 $5,060 $47,228 $9,323 $44,516 $5,937 

Gross State 

Product (in 

millions of 

2016 USD) 

$470,440 $460,338 $154,951 $180,817 $793,747 $1,264,000 $279,790 $212,161 $303,536 $206,575 $194,921 $195,266 

TANF 

Recipients (per 

1,000 people) 

13.35 7.30 9.12 4.06 20.87 15.60 8.85 4.11 10.75 3.46 9.04 6.72 

Child-only 

TANF 

Recipients (per 

1,000 children) 

9.69 4.84 7.10 3.02 12.83 13.70 7.62 4.62 7.95 1.38 7.95 4.67 

Monthly 

TANF Benefit 

for 3-person 

family 

$449 $191 $524 $246 $617 $143 $350 $98 $482 $122 $461 $162 

SNAP 

Recipients (per 

1,000 people) 

164.80 35.93 135.60 28.39 104.20 21.10 149.00 41.85 143.40 34.70 148.20 48.21 

Monthly 

SNAP Benefit 

for 1-person 

household  

$210 $0 $215 $15 $250 $70 $210 $0 $210 $0 $210 $0 

Medicaid 

Beneficiaries 

(per 1,000 

people) 

201.60 49.10 171.90 45.37 181.50 80.99 156.00 42.93 180.60 35.72 179.50 60.37 
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Federal policy prior to 

2012 

State policy prior to 

2012  

Nothing to federal policy 

between 2012 and 2016  

Nothing to state policy 

between 2012 and 

2016  

State to federal policy 

between 2012 and 

2016  

No policy as of 2016  

Number of 

States  
13 7 3 12 7 9 

 Mean  Std. Dev.  Mean  Std. Dev.  Mean  Std. Dev.  Mean  Std. Dev.  Mean  Std. Dev.  Mean  Std. Dev.  

             

 Cohort 2 3-Year Average (2014, 2015, 2016) 

Unemployment 

Rate 
5.54 0.83 4.76 1.38 4.31 1.85 5.29 1.03 4.95 0.95 5.23 1.05 

Poverty Rate   13.66 3.16 11.79 1.91 11.79 2.38 13.99 3.75 11.73 1.56 13.92 4.32 

Income per 

Capita (in 2016 

USD) 

$51,050 $11,166 $48,744 $8,032 $53,187 $3,232 $44,094 $5,252 $49,483 $9,052 $46,402 $6,191 

Gross State 

Product (in 

millions of 

2016 USD) 

$507,666 $498,001 $164,549 $191,815 $898,508 $1,437,000 $302,953 $235,459 $323,665 $221,817 $205,675 $212,882 

TANF 

Recipients (per 

1,000 people) 

12.77 9.96 7.85 4.05 19.97 19.00 6.95 3.60 12.31 13.37 7.30 4.85 

Child-only 

TANF 

Recipients (per 

1,000 children) 

8.70 4.54 6.89 3.41 9.67 9.32 6.89 4.54 6.91 1.73 6.88 4.70 

Monthly 

TANF Benefit 

for 3-person 

family 

$442 $189 $519 $228 $628 $148 $342 $95 $469 $115 $460 $166 

SNAP 

Recipients (per 

1,000 people) 

157.90 33.86 125.20 21.60 104.70 30.31 139.90 41.13 133.30 23.02 142.80 50.68 

Monthly 

SNAP Benefit 

for 1-person 

household  

$194 $0 $199 $14 $242 $83 $194 $0 $194 $0 $194 $0 

Medicaid 

Beneficiaries 

(per 1,000 

people) 

250.90 56.41 200.60 59.25 195.00 71.81 189.20 55.89 193.30 34.53 218.00 84.66 

 



133 
 

Appendix Table B3: Predictors of Implementing Federally-Funded Extended Foster Care 

Outcome: Federally-funded extended foster care 

Independent Variables (1) (2) (3) (4) 

Unemployment rate -0.003 -0.002 -0.001 -0.004 

 (0.025) (0.025) (0.026) (0.031) 

Gross state product (in millions of 2016 USD) 0.334 0.471 0.382 -1.046 

 (0.703) (0.760) (0.751) (1.197) 

Poverty Rate 0.006 0.006 0.007 -0.001 

 (0.008) (0.008) (0.008) (0.010) 

Income per capita (in 2016 USD) 0.011 0.015 0.012 0.024 

 (0.018) (0.017) (0.016) (0.019) 

TANF recipients (per 1000 people) -0.006 -0.006 -0.006 -0.005 

 (0.007) (0.007) (0.007) (0.007) 

Monthly TANF benefit for 3-person family (in 

2016 USD) 
0.000 0.001 0.001 0.001 

 (0.001) (0.001) (0.001) (0.001) 

SNAP recipients (per 1000 people) -0.001 -0.001 -0.001 0.002 

 (0.003) (0.002) (0.002) (0.002) 

Monthly SNAP benefit for 1-person household 

(in 2016 USD) 
0.010*** 0.010*** 0.009*** 0.000 

 (0.003) (0.003) (0.003) (0.002) 

Child-only TANF recipients (per 1000 children) 0.011 0.012 0.010 0.011 

 (0.017) (0.018) (0.018) (0.022) 

Medicaid beneficiaries (per 1000 people) -0.001 -0.002* -0.002* -0.001* 

 (0.001) (0.001) (0.001) (0.001) 

Governor is Democrat 0.145** 0.141** 0.139** 0.106 

 (0.061) (0.061) (0.061) (0.077) 

Federal medical assistance percentage 0.829 0.914 0.823 2.351 

 (1.281) (1.290) (1.352) (1.435) 

Foster youth (per 1000 people)  0.049 0.060 -0.017 

  (0.091) (0.094) (0.117) 

Proportion of Foster Youth aged 16 to 21  0.158 0.021 0.970 

  (1.234) (1.242) (0.969) 

Proportion of Foster Youth that are Funded 

under Title IV-E 
 0.284 0.310 0.672 

  (0.498) (0.512) (0.451) 

Proportion of Foster Youth that are Funded 

under Title IV-E, age 16 to 21  
 0.001 -0.010 -0.888** 

  (0.346) (0.358) (0.367) 

Proportion of Foster Youth in Supervised 

Independent Living, age 16 to 21 
 -0.733 -0.758 -1.059 

  (0.618) (0.622) (0.635) 

Median Monthly Payment for Foster Youth, age 

16 to 21 
 -0.000 -0.000 -0.000* 

  (0.000) (0.000) (0.000) 

Median Monthly Payment for Foster Youth  0.000 0.000 0.000** 
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  (0.000) (0.000) (0.000) 

Homeless (per 1000 people)   0.015 0.021 

   (0.050) (0.041) 

Percent of disconnected youth, age 16 to 24   -2.140* 0.579 

   (1.135) (1.154) 

Percent of youth enrolled in college, age 18 to 

24 
  -0.528 -0.844 

   (0.755) (0.881) 

Observations 510 510 510 459 

Number of States 51 51 51 51 

Adjusted R-squared 0.629 0.632 0.632 0.565 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the state level are in 

parentheses. All regressions include year fixed effects, state fixed effects, and a state linear time 

trend. The fourth column uses lagged independent variables, thus has one less year of data.  
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Appendix C – Appendix Tables and Figures for Chapter 1 

 

Appendix Table C1: Summary Statistics for NYTD Participants (Full Set of Controls) 

  
For 19 Year Olds 

(N=11,120) 

For 21 Year Olds 

(N=8,416) 

 Variable Mean Std. Dev. Mean Std. Dev. 

Extended Foster Care 

Policy  

Federal EFC at 18 0.51 0.50 0.51 0.50 

State EFC at 18  0.24 0.43 0.23 0.42 

Average Number of Years 

with Federal EFC 
  1.92 1.74 

Average Number of Years 

with State EFC 
  0.86 1.35 

NYTD Cohort 
Cohort 1 (17 in FY2011) 0.47  0.46  

Cohort 2 (17 in FY2014) 0.53 0.50 0.54 0.50 

Demographic 

Characteristics  

Female 0.54 0.50 0.57 0.50 

Non-Hispanic White 0.42 0.49 0.41 0.49 

Non-Hispanic Black 0.30 0.46 0.30 0.46 

Non-Hispanic Other 0.08 0.27 0.08 0.28 

Hispanic 0.20 0.40 0.21 0.40 

Ever diagnosed with a 

disability 
0.58 0.49 0.58 0.49 

Experiences at 17  

Ever been homeless  0.17 0.38 0.17 0.38 

Employed at 17  0.15 0.36 0.15 0.36 

Ever been incarcerated  0.27 0.44 0.26 0.44 

Ever been referred for 

substance abuse  
0.23 0.42 0.22 0.41 

Foster Care History  

Total removals from home 

as a child 
1.39 0.66 1.39 0.67 

Total placements as a child 7.16 7.15 7.13 6.98 

Cumulative length of stay in 

foster care as a child (in 

years) 
4.43 3.65 4.44 3.64 

Age at first removal 11.72 4.76 11.72 4.72 

Age at last removal  17.28 1.98 17.27 1.99 

First Placement  

Kinship Care 0.16 0.37 0.16 0.37 

Foster home 0.49 0.50 0.50 0.50 

Group home 0.29 0.45 0.28 0.45 

Other 0.06 0.23 0.06 0.24 

Ever removed for… 

These do not add up 

to 100% because a 

child may be removed 

for multiple reasons.  

Abuse 0.27 0.45 0.27 0.45 

Neglect 0.56 0.50 0.56 0.50 

Parental Incarceration 0.06 0.24 0.06 0.24 

Parental Substance Abuse 0.19 0.39 0.19 0.39 

Inadequate Housing 0.10 0.30 0.10 0.30 

Child-related issue 0.32 0.47 0.31 0.46 

Kinship Care 0.12 0.32 0.12 0.33 
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For 19 Year Olds 

(N=11,120) 

For 21 Year Olds 

(N=8,416) 

 Variable Mean Std. Dev. Mean Std. Dev. 

Last Placement 

Setting under 18  

Foster home  0.44 0.50 0.45 0.50 

Group home 0.29 0.45 0.28 0.45 

Other 0.16  0.15  

State Controls (3-

Year Average) 

Unemployment Rate 6.69 1.86 5.22 1.31 

Poverty Rate   13.98 2.65 12.99 2.69 

Income per Capita (in 2016 

USD) 
$48,115 $7,509 $50,146 $8,065 

Gross State Product (in 

millions of 2016 USD) 
$855,344 $904,501 $939,415 $986,356 

TANF Recipients (per 1,000 

people) 
15.50 13.55 13.61 12.49 

Child-only TANF Recipients 

(per 1,000 children) 
10.82 7.56 9.53 6.35 

Monthly TANF Benefit for 

3-person family 
$500 $197 $500 $200 

SNAP Recipients (per 1,000 

people) 
137.04 33.17 130.63 31.88 

Monthly SNAP Benefit for 

1-person household  
$202 $11 $194 $9 

Medicaid Beneficiaries (per 

1,000 people) 
202.28 54.09 218.15 64.18 

Outcomes 

Supervised Independent 

Living 
0.23 0.42 0.24 0.42 

Foster Care  0.40 0.49 0.21 0.41 

Uses ILP Services 0.86 0.35 0.78 0.42 

Homelessness 0.20 0.40 0.37 0.48 

Enrolled in high school  0.29 0.45 0.06 0.24 

Finished high school/GED  0.56 0.50 0.81 0.40 

Enrolled in college/post-

secondary education  
0.28 0.45 0.27 0.44 

Employed  0.38 0.49 0.56 0.50 

Disconnected  0.25 0.43 0.30 0.46 

Incarceration 0.19 0.39 0.28 0.45 

Notes: The sample is restricted to foster youth who completed the NYTD survey at 19 and/or 21 

years old and are not missing demographic information, foster care history, nor outcomes. Less 

than one percent of the observations are missing the indicator for high school graduation at age 

19. The summary statistics do not vary much when restricting the sample to the youth that are not 

missing this variable and so I report the results of the larger sample. The similarity in demographic 

characteristics and foster care history across ages 19 and 21 indicates similar youth responded to 

the survey in both years. This table includes the three-year average state-level controls, in addition 

to those already presented in Table 1. 
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Appendix Table C2: Summary Statistics for NYTD Participants by Treatment 

  No EFC (N=2,804) State EFC (N=2,670) Federal EFC (N=5,646) 

  Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

NYTD Cohort 
Cohort 1 (17 in FY2011) 0.73  0.42  0.36  

Cohort 2 (17 in FY2014) 0.27 0.44 0.58 0.49 0.64 0.48 

Demographic 

Characteristics  

Female 0.53 0.50 0.54 0.50 0.55 0.50 

Non-Hispanic White 0.52 0.50 0.50 0.50 0.34 0.47 

Non-Hispanic Black 0.27 0.44 0.33 0.47 0.30 0.46 

Non-Hispanic Other 0.08 0.28 0.08 0.27 0.08 0.27 

Hispanic 0.13 0.33 0.10 0.29 0.28 0.45 

Ever diagnosed with a 

disability 
0.52 0.50 0.45 0.50 0.66 0.47 

Experiences at 17  

Ever been homeless  0.19 0.39 0.17 0.38 0.16 0.37 

Employed at 17  0.15 0.36 0.17 0.37 0.14 0.35 

Ever been incarcerated  0.31 0.46 0.30 0.46 0.23 0.42 

Ever been referred for 

substance abuse  
0.24 0.43 0.23 0.42 0.22 0.41 

Foster Care History  

Total removals from 

home as a child 
1.35 0.63 1.40 0.67 1.40 0.67 

Total placements as a 

child 
8.08 8.52 7.18 7.24 6.70 6.26 

Cumulative length of stay 

in foster care as a child 

(in years) 

4.24 3.44 3.87 3.09 4.79 3.95 

Age at first removal 12.16 4.46 12.33 4.40 11.22 5.00 

Age at last removal  17.08 1.77 17.07 1.69 17.47 2.18 

First Placement  

Kinship Care 0.15 0.36 0.12 0.33 0.19 0.39 

Foster home 0.51 0.50 0.48 0.50 0.49 0.50 

Group home 0.29 0.45 0.34 0.48 0.26 0.44 

Other 0.05 0.21 0.06 0.23 0.06 0.24 

Ever removed for… 

These do not add up to 

100% because a child 

may be removed for 

multiple reasons.  

Abuse 0.26 0.44 0.29 0.45 0.27 0.44 

Neglect 0.53 0.50 0.51 0.50 0.59 0.49 

Parental Incarceration 0.08 0.27 0.07 0.26 0.04 0.20 

Parental Substance Abuse 0.20 0.40 0.22 0.41 0.17 0.37 

Inadequate Housing 0.12 0.32 0.11 0.32 0.08 0.28 
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  No EFC (N=2,804) State EFC (N=2,670) Federal EFC (N=5,646) 

  Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Child-related issue 0.35 0.48 0.41 0.49 0.27 0.45 

Last Placement Setting 

under 18  

Kinship Care 0.10 0.30 0.09 0.29 0.14 0.35 

Foster home  0.45 0.50 0.43 0.50 0.43 0.50 

Group home 0.28 0.45 0.31 0.46 0.28 0.45 

Other 0.17  0.17  0.15  

State Controls (3-Year 

Average) 

Unemployment Rate 7.03 1.86 6.26 1.82 6.73 1.83 

Poverty Rate   14.36 2.89 13.61 2.94 13.96 2.34 

Income per Capita (in 

2016 USD) 
$43,924 $4,619 $45,768 $7,659 $51,306 $7,156 

Gross State Product (in 

millions of 2016 USD) 
$394,817 $453,910 $309,506 $224,578 $1,342,184 $1,000,992 

TANF Recipients (per 

1,000 people) 
9.51 7.17 7.78 3.51 22.13 15.51 

Child-only TANF 

Recipients (per 1,000 

children) 

8.42 5.86 7.03 3.55 13.80 8.42 

Monthly TANF Benefit 

for 3-person family 
$404 $136 $404 $152 $594 $197 

SNAP Recipients (per 

1,000 people) 
143.85 34.57 141.24 35.84 131.68 30.11 

Monthly SNAP Benefit 

for 1-person household  
$206 $11 $202 $10 $200 $11 

Medicaid Beneficiaries 

(per 1,000 people) 
174.19 53.16 178.89 39.78 227.28 48.32 

Outcomes 

Supervised Independent 

Living 
0.13 0.34 0.13 0.33 0.32 0.47 

Foster Care  0.19 0.39 0.15 0.36 0.61 0.49 

Uses ILP Services 0.85 0.36 0.86 0.35 0.86 0.35 

Homelessness 0.22 0.41 0.21 0.41 0.18 0.38 

Enrolled in high school  0.27 0.45 0.29 0.46 0.29 0.46 

Finished high 

school/GED  
0.57 0.50 0.51 0.50 0.57 0.49 

Enrolled in college  0.28 0.45 0.24 0.43 0.30 0.46 

Employed  0.37 0.48 0.41 0.49 0.38 0.48 
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  No EFC (N=2,804) State EFC (N=2,670) Federal EFC (N=5,646) 

  Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Disconnected  0.26 0.44 0.27 0.44 0.24 0.43 

Incarceration 0.20 0.40 0.20 0.40 0.17 0.38 

Notes: This table reports the summary statistics by treatment status for youth in the 19-year-old analytical sample.   
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Appendix Table C3: Differences in Controlling for and Omitting the State Policy 

Outcomes at 19 Years Old 

 (1) (2) (3) 

 Main Results Omit State Policy 
Combine State and 

Federal Policy  

Outcome: Homelessness 

Fed EFC at 18  -0.048* -0.037  

 (0.025) (0.026)  

State EFC at 18 -0.015   

 (0.021)   

Any EFC at 18   -0.021 

   (0.022) 

Observations 11,120 11,120 11,120 

Adjusted R-squared 0.088 0.088 0.088 

Outcome: Incarceration 

Fed EFC at 18  -0.053* -0.039*  

 (0.029) (0.023)  

State EFC at 18 -0.021   

 (0.016)   

Any EFC at 18   -0.027* 

   (0.013) 

Observations 11,120 11,120 11,120 

Adjusted R-squared 0.197 0.196 0.196 

Outcome: Disconnected 

Fed EFC at 18  -0.043** -0.055***  

 (0.020) (0.014)  

State EFC at 18 0.017   

 (0.015)   

Any EFC at 18   0.006 

   (0.020) 

Observations 11,120 11,120 11,120 

Adjusted R-squared 0.049 0.049 0.048 

Outcome: High School Enrollment 

Fed EFC at 18  0.052* 0.056**  

 (0.029) (0.021)  

State EFC at 18 -0.005   

 (0.022)   

Any EFC at 18   0.004 

   (0.028) 

Observations 11,097 11,097 11,097 

Adjusted R-squared 0.041 0.041 0.040 

Outcome: College Enrollment 

Fed EFC at 18  0.010 0.035  

 (0.038) (0.039)  

State EFC at 18 -0.041   

 (0.025)   
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Any EFC at 18   -0.029 

   (0.026) 

Observations 6,155 6,155 6,155 

Adjusted R-squared 0.083 0.082 0.083 

Outcome: Employment 

Fed EFC at 18  0.083*** 0.047**  

 (0.028) (0.019)  

State EFC at 18 0.051***   

 (0.018)   

Any EFC at 18   0.056*** 

   (0.016) 

Observations 11,120 11,120 11,120 

Adjusted R-squared 0.045 0.045 0.045 

Outcomes at 21 Years Old 

 (1) (2) (3) 

 Main Results Omit State Policy 
Combine State and 

Federal Policy  

Outcome: Homelessness 

Years with Fed EFC -0.026* -0.021*  

 (0.014) (0.012)  

Years with State EFC -0.030***   

 (0.010)   

Years with Any EFC   -0.030*** 

   (0.010) 

Observations 8,416 8,416 8,416 

Adjusted R-squared 0.139 0.138 0.139 

Outcome: Incarceration 

Years with Fed EFC -0.035*** -0.031***  

 (0.007) (0.006)  

Years with State EFC -0.019**   

 (0.008)   

Years with Any EFC   -0.029*** 

   (0.006) 

Observations 8,416 8,416 8,416 

Adjusted R-squared 0.234 0.234 0.234 

Outcome: Disconnected 

Years with Fed EFC -0.031** -0.028*  

 (0.013) (0.015)  

Years with State EFC -0.019   

 (0.012)   

Years with Any EFC   -0.024** 

   (0.009) 

Observations 8,416 8,416 8,416 

Adjusted R-squared 0.062 0.062 0.062 

Outcome: High School Graduation 

Years with Fed EFC 0.014** 0.016***  
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 (0.006) (0.006)  

Years with State EFC -0.012   

 (0.009)   

Years with Any EFC   0.003 

   (0.007) 

Observations 8,416 8,416 8,416 

Adjusted R-squared 0.069 0.069 0.068 

Outcome: College Enrollment 

Years with Fed EFC 0.045** 0.043**  

 (0.019) (0.019)  

Years with State EFC 0.014   

 (0.013)   

Years with Any EFC   0.027* 

   (0.016) 

Observations 8,416 8,416 8,416 

Adjusted R-squared 0.143 0.143 0.142 

Outcome: Employment 

Years with Fed EFC -0.028*** -0.029***  

 (0.010) (0.010)  

Years with State EFC 0.009   

 (0.012)   

Years with Any EFC   -0.007 

   (0.011) 

Observations 8,416 8,416 8,416 

Adjusted R-squared 0.066 0.066 0.066 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the state level are in 

parentheses. All regressions control for demographic characteristics, foster care history, 

experiences at 17 years old, state controls, and include cohort and state fixed effects. The 

abbreviation EFC is shorthand for extended foster care. "Fed" and "State" indicate how the 

program is funded. The first column reports the main results again for easy reference, the second 

column reports the results when the state EFC variable is omitted, and the third column reports 

the results when the federal and state policy are combined, effectively a state either has EFC or 

not.   
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Appendix Table C4: Measuring the Full Policy Potential 

Outcomes at 21 Years Old 

(1) (2) (3) 

Effect of having EFC at Age 18  

Marginal Effect of an 

Additional Year Exposed to 

EFC 

Policy Effect of being 

Exposed to EFC 

Outcome: Homelessness 

Fed EFC at 18 -0.061** 
Years exposed 

to Fed EFC 
-0.026* 

1 Year 

exposed to 

Fed EFC 

-0.003 

 (0.029)  (0.014)  (0.054) 

State EFC at 18 -0.038 
Years exposed 

to State EFC 
-0.030*** 

2 Years 

exposed to 

Fed EFC 

-0.087* 

 (0.023)  (0.010)  (0.044) 

    

3 Years 

exposed to 

Fed EFC 

-0.133*** 

     (0.048) 

    

4 Years 

exposed to 

Fed EFC 

-0.144*** 

     (0.046) 

    

1 Year 

exposed to 

State EFC 

0.017 

     (0.027) 

    

2 Years 

exposed to 

State EFC 

-0.056 

     (0.036) 

    

3 Years 

exposed to 

State EFC 

-0.074** 

     (0.033) 

    

4 Years 

exposed to 

State EFC 

-0.138*** 

     (0.039) 

Mean of Control 

Group (No EFC at 

18) 

0.418 

Mean of 

Control Group 

(No Policy 

Ever) 

0.444 

Mean of 

Control Group 

(No Policy 

Ever) 

0.444 

Adjusted R-Squared 0.138 
Adjusted R-

Squared 
0.139 

Adjusted R-

Squared 
0.139 

Outcome: Incarceration 
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Fed EFC at 18 -0.086*** 
Years exposed 

to Fed EFC 
-0.035*** 

1 Year 

exposed to 

Fed EFC 

-0.023 

 (0.019)  (0.007)  (0.049) 

State EFC at 18 -0.039 
Years exposed 

to State EFC 
-0.019** 

2 Years 

exposed to 

Fed EFC 

-0.086 

 (0.026)  (0.008)  (0.071) 

    

3 Years 

exposed to 

Fed EFC 

-0.137** 

     (0.067) 

    

4 Years 

exposed to 

Fed EFC 

-0.160** 

     (0.065) 

    

1 Year 

exposed to 

State EFC 

0.016 

     (0.028) 

    

2 Years 

exposed to 

State EFC 

-0.006 

     (0.041) 

    

3 Years 

exposed to 

State EFC 

-0.032 

     (0.037) 

    

4 Years 

exposed to 

State EFC 

-0.082** 

     (0.035) 

Mean of Control 

Group (No EFC at 

18) 

0.308 

Mean of 

Control Group 

(No Policy 

Ever) 

0.295 

Mean of 

Control Group 

(No Policy 

Ever) 

0.295 

Adjusted R-Squared 0.233 
Adjusted R-

Squared 
0.234 

Adjusted R-

Squared 
0.234 

Outcome: Disconnected 

Fed EFC at 18 -0.053* 
Years exposed 

to Fed EFC 
-0.031** 

1 Year 

exposed to 

Fed EFC 

-0.092** 

 (0.031)  (0.013)  (0.039) 

State EFC at 18 -0.046* 
Years exposed 

to State EFC 
-0.019 

2 Years 

exposed to 

Fed EFC 

0.033 
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 (0.025)  (0.012)  (0.050) 

    

3 Years 

exposed to 

Fed EFC 

-0.024 

     (0.054) 

    

4 Years 

exposed to 

Fed EFC 

-0.064 

     (0.055) 

    

1 Year 

exposed to 

State EFC 

0.022 

     (0.032) 

    

2 Years 

exposed to 

State EFC 

0.012 

     (0.035) 

    

3 Years 

exposed to 

State EFC 

-0.048 

     (0.040) 

    

4 Years 

exposed to 

State EFC 

-0.052 

     (0.042) 

Mean of Control 

Group (No EFC at 

18) 

0.321 

Mean of 

Control Group 

(No Policy 

Ever) 

0.321 

Mean of 

Control Group 

(No Policy 

Ever) 

0.321 

Adjusted R-Squared 0.061 
Adjusted R-

Squared 
0.062 

Adjusted R-

Squared 
0.063 

Outcome: High School Graduation 

Fed EFC at 18 0.000 
Years exposed 

to Fed EFC 
0.014** 

1 Year 

exposed to 

Fed EFC 

0.007 

 (0.022)  (0.006)  (0.042) 

State EFC at 18 -0.035 
Years exposed 

to State EFC 
-0.012 

2 Years 

exposed to 

Fed EFC 

0.044 

 (0.021)  (0.009)  (0.042) 

    

3 Years 

exposed to 

Fed EFC 

0.036 

     (0.037) 
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4 Years 

exposed to 

Fed EFC 

0.053 

     (0.038) 

    

1 Year 

exposed to 

State EFC 

-0.020 

     (0.025) 

    

2 Years 

exposed to 

State EFC 

-0.016 

     (0.035) 

    

3 Years 

exposed to 

State EFC 

-0.043 

     (0.037) 

    

4 Years 

exposed to 

State EFC 

-0.050 

     (0.038) 

Mean of Control 

Group (No EFC at 

18) 

0.821 

Mean of 

Control Group 

(No Policy 

Ever) 

0.798 

Mean of 

Control Group 

(No Policy 

Ever) 

0.798 

Adjusted R-Squared 0.069 
Adjusted R-

Squared 
0.069 

Adjusted R-

Squared 
0.068 

Outcome: College Enrollment 

Fed EFC at 18 -0.010 
Years exposed 

to Fed EFC 
0.045** 

1 Year 

exposed to 

Fed EFC 

0.063** 

 (0.043)  (0.019)  (0.029) 

State EFC at 18 -0.012 
Years exposed 

to State EFC 
0.014 

2 Years 

exposed to 

Fed EFC 

-0.053 

 (0.026)  (0.013)  (0.038) 

    

3 Years 

exposed to 

Fed EFC 

-0.051 

     (0.044) 

    

4 Years 

exposed to 

Fed EFC 

0.033 

     (0.045) 

    

1 Year 

exposed to 

State EFC 

0.010 
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     (0.020) 

    

2 Years 

exposed to 

State EFC 

0.002 

     (0.020) 

    

3 Years 

exposed to 

State EFC 

-0.051 

     (0.034) 

    

4 Years 

exposed to 

State EFC 

0.003 

     (0.036) 

Mean of Control 

Group (No EFC at 

18) 

0.249 

Mean of 

Control Group 

(No Policy 

Ever) 

0.214 

Mean of 

Control Group 

(No Policy 

Ever) 

0.214 

Adjusted R-Squared 0.141 
Adjusted R-

Squared 
0.143 

Adjusted R-

Squared 
0.146 

Outcome: Employment 

Fed EFC at 18 0.001 
Years exposed 

to Fed EFC 
-0.028*** 

1 Year 

exposed to 

Fed EFC 

-0.014 

 (0.039)  (0.010)  (0.045) 

State EFC at 18 0.035 
Years exposed 

to State EFC 
0.009 

2 Years 

exposed to 

Fed EFC 

-0.060 

 (0.034)  (0.012)  (0.050) 

    

3 Years 

exposed to 

Fed EFC 

-0.082 

     (0.050) 

    

4 Years 

exposed to 

Fed EFC 

-0.114** 

     (0.050) 

    

1 Year 

exposed to 

State EFC 

-0.033 

     (0.039) 

    

2 Years 

exposed to 

State EFC 

-0.036 

     (0.055) 
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3 Years 

exposed to 

State EFC 

0.031 

     (0.056) 

    

4 Years 

exposed to 

State EFC 

0.032 

     (0.051) 

Mean of Control 

Group (No EFC at 

18) 

0.550 

Mean of 

Control Group 

(No Policy 

Ever) 

0.561 

Mean of 

Control Group 

(No Policy 

Ever) 

0.561 

Adjusted R-Squared 0.066 
Adjusted R-

Squared 
0.066 

Adjusted R-

Squared 
0.066 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the state level are in 

parentheses. All regressions control for demographic characteristics, foster care history, 

experiences at 17 years old, state controls, and include cohort and state fixed effects. The 

abbreviation EFC is shorthand for extended foster care. "Fed" and "State" indicate how the 

program is funded. The first column reports the results using a binary indicator for whether EFC 

was available when the youth turned 18. The second column reports the marginal effect of an 

additional year exposed to EFC. The final column reports the fixed effect for the number of 

years exposed. If the effect were identical over time, then results in column 1 would be similar 

to results at 3 and 4 years in column 3. If the effect were perfectly linear, then the results in 

column 2 multiplied by 3 would be the same as the results at year 3 in column 3.      
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Appendix Table C5: Regression Results Testing the Impact of Extended Foster Care at Age 17 

Outcomes at 19 Years Old (N=11,120) 

 Homelessness Incarceration Disconnectedness 
High School 

Enrollment 

College 

Enrollment 
Employment 

Fed EFC at 

18  

-0.048* -0.053* -0.043** 0.052* 0.010 0.083*** 

(0.025) (0.029) (0.020) (0.029) (0.038) (0.028) 

State EFC 

at 18 

-0.015 -0.021 0.017 -0.005 -0.041 0.051*** 

(0.021) (0.016) (0.015) (0.022) (0.025) (0.018) 

Fed EFC at 

17  

0.011 0.006 -0.071*** 0.013 0.041 0.059** 

(0.023) (0.029) (0.014) (0.032) (0.052) (0.025) 

State EFC 

at 17 

-0.022 -0.026 -0.004 0.007 -0.073** 0.014 

(0.025) (0.023) (0.027) (0.024) (0.036) (0.030) 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the state level are in parentheses. All regressions control for 

demographic characteristics, foster care history, experiences at 17 years old, state controls, and include cohort and state fixed effects. 

The abbreviation EFC is shorthand for extended foster care. "Fed" and "State" indicate how the program is funded. The main results 

are presented in the first panel for ease of comparison. The second panel presents results when the independent variable is an 

indicator for EFC at 17 years old, as opposed to 18. The adjusted R-squared is similar across both models. See the main results for 

the adjusted R-squared.    
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Appendix Table C6: Regression Results from Alternative Specifications 

Outcomes at 19 Years Old 

 (1) (2) (3) (4) 

 Main Results DDD Results  
Probit - 

Marginal Effects 

Logit - Odds 

Ratio 

Outcome: Homelessness 

Fed EFC at 18  -0.048* -0.049 -0.047* 0.715* 

 (0.025) (0.029) (0.027) (0.140) 

State EFC at 18 -0.015 0.022 -0.020 0.868 

 (0.021) (0.024) (0.021) (0.133) 

Observations 11,120 11,120 11,120 11,120 

Adjusted R-squared 0.088 0.089   

Outcome: Incarceration 

Fed EFC at 18  -0.053* -0.039 -0.053** 0.650** 

 (0.029) (0.024) (0.025) (0.136) 

State EFC at 18 -0.021 -0.030 -0.024 0.831 

 (0.016) (0.021) (0.015) (0.101) 

Observations 11,120 11,120 11,120 11,120 

Adjusted R-squared 0.197 0.198   

Outcome: Disconnected 

Fed EFC at 18  -0.043** -0.022 -0.042** 0.783** 

 (0.020) (0.028) (0.019) (0.081) 

State EFC at 18 0.017 0.038** 0.018 1.100 

 (0.015) (0.016) (0.015) (0.092) 

Observations 11,120 11,120 11,120 11,120 

Adjusted R-squared 0.049 0.049   

Outcome: High School Enrollment 

Fed EFC at 18  0.052* 0.081*** 0.057* 1.325 

 (0.029) (0.020) (0.032) (0.227) 

State EFC at 18 -0.005 -0.003 0.002 1.000 

 (0.022) (0.016) (0.026) (0.132) 

Observations 11,097 11,097 11,097 11,097 

Adjusted R-squared 0.040 0.043   

Outcome: College Enrollment 

Fed EFC at 18  0.010 -0.010 0.008 1.036 

 (0.038) (0.045) (0.039) (0.178) 

State EFC at 18 -0.041 -0.052 -0.044* 0.824 

 (0.025) (0.038) (0.026) (0.098) 

Observations 6,155 6,155 6,150 6,150 

Adjusted R-squared 0.083 0.085   

Outcome: Employment 

Fed EFC at 18  0.083*** 0.052*** 0.087*** 1.485*** 

 (0.028) (0.014) (0.029) (0.196) 

State EFC at 18 0.051*** 0.034** 0.054*** 1.286*** 

 (0.018) (0.014) (0.019) (0.113) 
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Observations 11,120 11,120 11,120 11,120 

Adjusted R-squared 0.045 0.047   

Outcomes at 21 Years Old 

 (1) (2) (3) (4) 

 Main Results DDD Results  
Probit - 

Marginal Effects 

Logit - Odds 

Ratio 

Outcome: Homelessness 

Years with Fed EFC -0.026* -0.026 -0.026* 0.875* 

 (0.014) (0.018) (0.014) (0.061) 

Years with State EFC -0.030*** -0.062*** -0.029*** 0.860*** 

 (0.010) (0.014) (0.010) (0.044) 

Observations 8,416 8,416 8,416 8,416 

Adjusted R-squared 0.139 0.142   

Outcome: Incarceration 

Years with Fed EFC -0.035*** -0.043*** -0.035*** 0.796*** 

 (0.007) (0.009) (0.008) (0.042) 

Years with State EFC -0.019** -0.048*** -0.018** 0.885** 

 (0.008) (0.015) (0.008) (0.047) 

Observations 8,416 8,416 8,416 8,416 

Adjusted R-squared 0.234 0.237   

Outcome: Disconnected 

Years with Fed EFC -0.031** -0.046*** -0.032** 0.845** 

 (0.013) (0.010) (0.014) (0.060) 

Years with State EFC -0.019 -0.008 -0.019 0.908 

 (0.012) (0.019) (0.012) (0.057) 

Observations 8,416 8,416 8,416 8,416 

Adjusted R-squared 0.062 0.065   

Outcome: High School Graduation 

Years with Fed EFC 0.014** 0.011 0.014** 1.107*** 

 (0.006) (0.007) (0.006) (0.043) 

Years with State EFC -0.012 -0.000 -0.012 0.919 

 (0.009) (0.013) (0.010) (0.069) 

Observations 8,416 8,416 8,411 8,411 

Adjusted R-squared 0.069 0.071   

Outcome: College Enrollment 

Years with Fed EFC 0.045** 0.067*** 0.051*** 1.291*** 

 (0.019) (0.014) (0.019) (0.124) 

Years with State EFC 0.014 0.028** 0.017 1.092 

 (0.013) (0.011) (0.014) (0.081) 

Observations 8,416 8,416 6,870 6,870 

Adjusted R-squared 0.143 0.146   

Outcome: Employment 

Years with Fed EFC -0.028*** -0.029*** -0.028*** 0.884*** 

 (0.010) (0.011) (0.010) (0.038) 

Years with State EFC 0.009 -0.006 0.010 1.047 
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 (0.012) (0.016) (0.011) (0.052) 

Observations 8,416 8,416 8,416 8,416 

Adjusted R-squared 0.066 0.068   

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the state level are in 

parentheses. All regressions control for demographic characteristics, foster care history, and 

experiences at 17 years old, state controls, and include cohort and state fixed effects, unless 

otherwise noted. The abbreviation EFC is shorthand for extended foster care. "Fed" and "State" 

indicate how the program is funded. The first column reports the main results again for easy 

reference. The second column reports the results from a triple differences specification, so it 

includes a cohort by state fixed effect and does not include state controls. The third column 

reports marginal effects from a probit model, and the fourth column reports the odds ratio from 

the logit model.   
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Appendix Table C7: Regression Results Changing the Set of Control Variables 

Outcomes at 19 Years Old 

 (1) (2) (3) (4) (5) (6) (7) 

 
Main 

Results 

Excludes all 

Controls 

Excludes 

Foster Care 

History 

Controls 

Excludes 

Controls for 

Experiences at 

17 Years Old 

Excludes 

State 

Controls 

Excludes 

State Fixed 

Effects 

Excludes 

Cohort 

Fixed 

Effects 

Outcome: Homelessness 

Fed EFC at 18  -0.048* -0.023 -0.044* -0.042 -0.035 -0.011 -0.049* 

 (0.025) (0.023) (0.024) (0.026) (0.026) (0.021) (0.025) 

State EFC at 18 -0.015 -0.018 -0.020 -0.012 -0.014 0.002 -0.016 

 (0.021) (0.023) (0.021) (0.022) (0.022) (0.016) (0.021) 

Observations 11,120 11,120 11,120 11,120 11,120 11,120 11,120 

Adjusted R-squared 0.088 0.023 0.070 0.061 0.086 0.075 0.088 

Outcome: Incarceration 

Fed EFC at 18  -0.053* -0.049 -0.051* -0.053 -0.049* 0.024 -0.054* 

 (0.029) (0.031) (0.028) (0.033) (0.026) (0.022) (0.028) 

State EFC at 18 -0.021 -0.034* -0.025 -0.017 -0.024 0.014 -0.021 

 (0.016) (0.017) (0.016) (0.018) (0.016) (0.018) (0.016) 

Observations 11,120 11,120 11,120 11,120 11,120 11,120 11,120 

Adjusted R-squared 0.197 0.030 0.184 0.117 0.196 0.183 0.197 

Outcome: Disconnected 

Fed EFC at 18  -0.043** -0.034 -0.042** -0.043** -0.037* 0.012 -0.039* 

 (0.020) (0.020) (0.020) (0.021) (0.020) (0.018) (0.020) 

State EFC at 18 0.017 0.016 0.012 0.017 0.020 0.021 0.018 

 (0.015) (0.016) (0.015) (0.015) (0.016) (0.015) (0.014) 

Observations 11,120 11,120 11,120 11,120 11,120 11,120 11,120 

Adjusted R-squared 0.049 0.015 0.036 0.042 0.048 0.043 0.049 

Outcome: High School Enrollment 

Fed EFC at 18  0.052* 0.052* 0.053* 0.050* 0.053* 0.031 0.054* 
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 (0.029) (0.027) (0.028) (0.029) (0.028) (0.025) (0.027) 

State EFC at 18 -0.005 -0.007 -0.003 -0.007 -0.008 0.017 -0.004 

 (0.022) (0.025) (0.021) (0.022) (0.026) (0.025) (0.021) 

Observations 11,097 11,097 11,097 11,097 11,097 11,097 11,097 

Adjusted R-squared 0.040 0.041 0.040 0.033 0.040 0.038 0.040 

Outcome: College Enrollment 

Fed EFC at 18  0.010 -0.009 0.009 0.003 -0.002 -0.007 0.005 

 (0.038) (0.036) (0.037) (0.039) (0.037) (0.028) (0.038) 

State EFC at 18 -0.041 -0.032 -0.040 -0.040 -0.036 -0.044** -0.044* 

 (0.025) (0.023) (0.026) (0.026) (0.024) (0.020) (0.024) 

Observations 6,155 6,155 6,155 6,155 6,155 6,155 6,155 

Adjusted R-squared 0.083 0.039 0.074 0.075 0.083 0.070 0.083 

Outcome: Employment 

Fed EFC at 18  0.083*** 0.070*** 0.083*** 0.087*** 0.074*** 0.006 0.076*** 

 (0.028) (0.023) (0.027) (0.029) (0.025) (0.020) (0.026) 

State EFC at 18 0.051*** 0.051** 0.055*** 0.053*** 0.049** 0.020 0.048*** 

 (0.018) (0.020) (0.017) (0.018) (0.020) (0.018) (0.017) 

Observations 11,120 11,120 11,120 11,120 11,120 11,120 11,120 

Adjusted R-squared 0.045 0.015 0.039 0.033 0.045 0.040 0.045 

Outcomes at 21 Years Old 

 (1) (2) (3) (4) (5) (6) (7) 

 
Main 

Results 

Excludes all 

Controls 

Excludes 

Foster Care 

History 

Controls 

Excludes 

Controls for 

Experiences at 

17 Years Old 

Excludes 

State 

Controls 

Excludes 

State Fixed 

Effects 

Excludes 

Cohort 

Fixed 

Effects 

Outcome: Homelessness 

Years with Fed EFC -0.026* -0.036*** -0.030** -0.029** -0.029** -0.017** -0.027* 

 (0.014) (0.012) (0.012) (0.014) (0.014) (0.008) (0.014) 

Years with State EFC -0.030*** -0.034** -0.035*** -0.031*** -0.031*** -0.007 -0.030*** 

 (0.010) (0.014) (0.011) (0.010) (0.011) (0.007) (0.010) 
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Observations 8,416 8,416 8,416 8,416 8,416 8,416 8,416 

Adjusted R-squared 0.139 0.035 0.114 0.117 0.139 0.125 0.139 

Outcome: Incarceration 

Years with Fed EFC -0.035*** -0.050*** -0.037*** -0.040*** -0.037*** 0.004 -0.035*** 

 (0.007) (0.008) (0.007) (0.007) (0.007) (0.009) (0.007) 

Years with State EFC -0.019** -0.021 -0.023*** -0.018* -0.016 0.004 -0.018** 

 (0.008) (0.013) (0.008) (0.009) (0.010) (0.007) (0.008) 

Observations 8,416 8,416 8,416 8,416 8,416 8,416 8,416 

Adjusted R-squared 0.234 0.041 0.218 0.166 0.233 0.217 0.234 

Outcome: Disconnected 

Years with Fed EFC -0.031** -0.037** -0.033** -0.033** -0.033** 0.001 -0.033** 

 (0.013) (0.014) (0.014) (0.013) (0.013) (0.008) (0.013) 

Years with State EFC -0.019 -0.014 -0.022* -0.019 -0.013 -0.003 -0.017 

 (0.012) (0.014) (0.012) (0.012) (0.013) (0.006) (0.012) 

Observations 8,416 8,416 8,416 8,416 8,416 8,416 8,416 

Adjusted R-squared 0.062 0.017 0.058 0.051 0.061 0.051 0.061 

Outcome: High School Graduation 

Years with Fed EFC 0.014** 0.018*** 0.014*** 0.015** 0.017** -0.004 0.013** 

 (0.006) (0.006) (0.005) (0.006) (0.006) (0.007) (0.006) 

Years with State EFC -0.012 -0.006 -0.010 -0.012 -0.009 -0.006 -0.012 

 (0.009) (0.012) (0.009) (0.009) (0.012) (0.008) (0.009) 

Observations 8,416 8,416 8,416 8,416 8,416 8,416 8,416 

Adjusted R-squared 0.069 0.031 0.056 0.059 0.068 0.049 0.069 

Outcome: College Enrollment 

Years with Fed EFC 0.045** 0.052*** 0.046** 0.047** 0.045** 0.007 0.047** 

 (0.019) (0.019) (0.019) (0.018) (0.018) (0.010) (0.018) 

Years with State EFC 0.014 0.013 0.015 0.014 0.013 0.011 0.012 

 (0.013) (0.020) (0.013) (0.013) (0.016) (0.008) (0.012) 

Observations 8,416 8,416 8,416 8,416 8,416 8,416 8,416 

Adjusted R-squared 0.143 0.044 0.141 0.138 0.142 0.121 0.143 

Outcome: Employment 
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Years with Fed EFC -0.028*** -0.018* -0.026*** -0.026** -0.022** -0.010** -0.027** 

 (0.010) (0.010) (0.009) (0.010) (0.010) (0.005) (0.010) 

Years with State EFC 0.009 0.004 0.012 0.009 0.004 -0.006 0.008 

 (0.012) (0.010) (0.011) (0.012) (0.010) (0.007) (0.012) 

Observations 8,416 8,416 8,416 8,416 8,416 8,416 8,416 

Adjusted R-squared 0.066 0.013 0.062 0.058 0.066 0.060 0.066 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the state level are in parentheses. The abbreviation EFC is 

shorthand for extended foster care. "Fed" and "State" indicate how the program is funded. The first column reports the main results 

again for easy reference. The main results regression controls for demographic characteristics, foster care history, and experiences at 

17 years old, state controls, and include cohort and state fixed effects. The remaining columns indicate which set of controls are 

excluded from the regression.     
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Appendix Table C8: Regression Results Changing the Set of States in the Sample 

Outcomes at 19 Years Old 

 (1) (2) (3) (4) 

 Main Results 

Sample of 

treated states 

only 

Sample excludes 

states that went 

from state to 

federal policy 

Sample 

excludes 

states with 

state policy 

Outcome: Homelessness 

Fed EFC at 18  -0.048* -0.053* -0.082*** -0.078*** 

 (0.025) (0.026) (0.016) (0.012) 

State EFC at 18 -0.015 -0.002 0.019  

 (0.021) (0.020) (0.024)  

Observations 11,120 6,851 9,610 7,639 

Adjusted R-squared 0.088 0.082 0.090 0.092 

Outcome: Incarceration 

Fed EFC at 18  -0.053* -0.056* -0.002 -0.028 

 (0.029) (0.032) (0.006) (0.020) 

State EFC at 18 -0.021 -0.027 -0.023  

 (0.016) (0.020) (0.016)  

Observations 11,120 6,851 9,610 7,639 

Adjusted R-squared 0.197 0.208 0.197 0.203 

Outcome: Disconnected 

Fed EFC at 18  -0.043** -0.015 -0.057*** -0.043 

 (0.020) (0.027) (0.011) (0.026) 

State EFC at 18 0.017 0.039** 0.025*  

 (0.015) (0.016) (0.014)  

Observations 11,120 6,851 9,610 7,639 

Adjusted R-squared 0.049 0.049 0.047 0.050 

Outcome: High School Enrollment 

Fed EFC at 18  0.052* 0.061** 0.100*** 0.057** 

 (0.029) (0.025) (0.007) (0.027) 

State EFC at 18 -0.005 0.007 -0.042*  

 (0.022) (0.016) (0.025)  

Observations 11,097 6,835 9,594 7,625 

Adjusted R-squared 0.040 0.047 0.044 0.026 

Outcome: College Enrollment 

Fed EFC at 18  0.010 -0.010 0.039*** 0.043 

 (0.038) (0.043) (0.011) (0.034) 

State EFC at 18 -0.041 -0.049 -0.089***  

 (0.025) (0.035) (0.016)  

Observations 6,155 3,936 5,417 4,315 

Adjusted R-squared 0.083 0.090 0.078 0.061 

Outcome: Employment 

Fed EFC at 18  0.083*** 0.069** 0.040*** 0.061*** 

 (0.028) (0.025) (0.007) (0.019) 
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State EFC at 18 0.051*** 0.032* 0.074***  

 (0.018) (0.016) (0.022)  

Observations 11,120 6,851 9,610 7,639 

Adjusted R-squared 0.045 0.049 0.043 0.039 

Outcomes at 21 Years Old 

 (1) (2) (3) (4) 

 Main Results 

Sample of 

treated states 

only 

Sample excludes 

states that went 

from state to 

federal policy 

Sample 

excludes 

states with 

state policy 

Outcome: Homelessness 

Years with Fed EFC -0.026* -0.014 -0.027 -0.024 

 (0.014) (0.012) (0.019) (0.014) 

Years with State EFC -0.030*** -0.034** -0.035***  

 (0.010) (0.013) (0.011)  

Observations 8,416 5,037 7,467 5,827 

Adjusted R-squared 0.139 0.126 0.145 0.143 

Outcome: Incarceration 

Years with Fed EFC -0.035*** -0.039*** -0.035*** -0.031*** 

 (0.007) (0.007) (0.007) (0.007) 

Years with State EFC -0.019** -0.040*** -0.021**  

 (0.008) (0.012) (0.010)  

Observations 8,416 5,037 7,467 5,827 

Adjusted R-squared 0.234 0.244 0.228 0.242 

Outcome: High School Graduation 

Years with Fed EFC 0.014** 0.018** 0.007 0.017** 

 (0.006) (0.008) (0.005) (0.007) 

Years with State EFC -0.012 -0.022* -0.008  

 (0.009) (0.012) (0.011)  

Observations 8,416 5,037 7,467 5,827 

Adjusted R-squared 0.069 0.068 0.063 0.070 

Outcome: Disconnected 

Years with Fed EFC -0.031** -0.037** -0.040*** -0.036*** 

 (0.013) (0.016) (0.011) (0.011) 

Years with State EFC -0.019 -0.028** -0.011  

 (0.012) (0.012) (0.012)  

Observations 8,416 5,037 7,467 5,827 

Adjusted R-squared 0.062 0.062 0.063 0.061 

Outcome: College Enrollment 

Years with Fed EFC 0.045** 0.054** 0.067*** 0.049** 

 (0.019) (0.022) (0.016) (0.019) 

Years with State EFC 0.014 0.027** -0.003  

 (0.013) (0.011) (0.010)  

Observations 8,416 5,037 7,467 5,827 

Adjusted R-squared 0.143 0.147 0.145 0.126 

Outcome: Employment 
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Years with Fed EFC -0.028*** -0.035*** -0.037*** -0.025** 

 (0.010) (0.010) (0.010) (0.010) 

Years with State EFC 0.009 0.013 0.016  

 (0.012) (0.012) (0.012)  

Observations 8,416 5,037 7,467 5,827 

Adjusted R-squared 0.066 0.073 0.065 0.065 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the state level are in 

parentheses. All regressions control for demographic characteristics, foster care history, 

experiences at 17 years old, state controls, and include cohort and state fixed effects. The 

abbreviation EFC is shorthand for extended foster care. "Fed" and "State" indicate how the 

program is funded. The first column reports the main results again for easy reference, the second 

column limits the sample to the 22 treated states, the third column excludes the 7 states that 

changed from a state to federal policy, and the fourth column excludes the 19 states with state 

policies.  
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Appendix Figure C1: Graphical Display of Effect Size for Outcomes at Age 19 Omitting One State at a Time 

Each graph plots the effect size (in percentage points) and the 95 percent confidence interval for the federally-funded extended foster 

care indicator variable for each outcome at age 19. There are 52 estimates plotted in each graph. The first estimate (left most) is the main 

result, and the remaining 51 are the results when a single state is omitted from the analysis. States are dropped in alphabetical order, so 

the sixth estimate is the result when California is excluded.  
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Appendix Figure C2: Graphical Display of Effect Size for Outcomes at Age 21 Omitting One State at a Time 

Each graph plots the marginal effect size (in percentage points) and the 95 percent confidence interval for the federally-funded extended 

foster care counter variable for each outcome at age 21. There are 52 estimates plotted in each graph. The first estimate (left most) is the 

main result, and the remaining 51 are the results when a single state is omitted from the analysis. States are dropped in alphabetical 

order, so the sixth estimate is the result when California is excluded.  
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Appendix Table C9: Regression Results Changing the Sample Size 

Outcomes at 19 Years Old 

 (1) (2) (3) 

 Main Results 
Sample varies by 

outcome measure 

Sample limited to 

those who 

participated in survey 

at 21  

Outcome: Homelessness 

Fed EFC at 18  -0.048* -0.041 -0.054** 

 (0.025) (0.026) (0.024) 

State EFC at 18 -0.015 -0.010 -0.015 

 (0.021) (0.021) (0.028) 

Observations 11,120 11,420 7,994 

Adjusted R-squared 0.088 0.087 0.094 

Outcome: Incarceration 

Fed EFC at 18  -0.053* -0.048* -0.057*** 

 (0.029) (0.026) (0.018) 

State EFC at 18 -0.021 -0.019 -0.014 

 (0.016) (0.015) (0.016) 

Observations 11,120 11,697 7,994 

Adjusted R-squared 0.197 0.214 0.184 

Outcome: Disconnected 

Fed EFC at 18  -0.043** -0.050** -0.064*** 

 (0.020) (0.021) (0.013) 

State EFC at 18 0.017 0.009 0.024* 

 (0.015) (0.014) (0.013) 

Observations 11,120 11,498 7,994 

Adjusted R-squared 0.049 0.048 0.050 

Outcome: High School Enrollment 

Fed EFC at 18  0.052* 0.057* 0.065*** 

 (0.029) (0.029) (0.020) 

State EFC at 18 -0.005 -0.004 -0.027 

 (0.022) (0.022) (0.021) 

Observations 11,097 11,485 7,980 

Adjusted R-squared 0.040 0.040 0.044 

Outcome: College Enrollment 

Fed EFC at 18  0.010 0.012 0.043 

 (0.038) (0.039) (0.039) 

State EFC at 18 -0.041 -0.037 -0.001 

 (0.025) (0.024) (0.026) 

Observations 6,155 6,362 4,780 

Adjusted R-squared 0.083 0.083 0.077 

Outcome: Employment 

Fed EFC at 18  0.083*** 0.080*** 0.070* 

 (0.028) (0.026) (0.037) 
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State EFC at 18 0.051*** 0.050*** 0.032 

 (0.018) (0.016) (0.021) 

Observations 11,120 11,915 7,994 

Adjusted R-squared 0.045 0.047 0.048 

Outcomes at 21 Years Old 

 (1) (2) (3) 

 Main Results 
Sample varies by 

outcome measure 

Sample limited to 

those who 

participated in survey 

at 19  

Outcome: Homelessness 

Years with Fed EFC -0.026* -0.058*** -0.020 

 (0.014) (0.012) (0.015) 

Years with State EFC -0.030*** -0.042*** -0.022** 

 (0.010) (0.010) (0.011) 

Observations 8,416 9,435 7,994 

Adjusted R-squared 0.139 0.145 0.124 

Outcome: Incarceration 

Years with Fed EFC -0.035*** -0.064*** -0.030*** 

 (0.007) (0.008) (0.008) 

Years with State EFC -0.019** -0.037*** -0.004 

 (0.008) (0.010) (0.008) 

Observations 8,416 9,470 7,994 

Adjusted R-squared 0.234 0.273 0.217 

Outcome: High School Graduation 

Years with Fed EFC 0.014** 0.048** 0.018*** 

 (0.006) (0.021) (0.006) 

Years with State EFC -0.012 -0.029*** -0.016* 

 (0.009) (0.010) (0.008) 

Observations 8,416 14,165 7,994 

Adjusted R-squared 0.069 0.104 0.066 

Outcome: Disconnected 

Years with Fed EFC -0.031** -0.028** -0.022 

 (0.013) (0.013) (0.014) 

Years with State EFC -0.019 -0.017 -0.012 

 (0.012) (0.012) (0.012) 

Observations 8,416 10,189 7,994 

Adjusted R-squared 0.062 0.059 0.060 

Outcome: College Enrollment 

Years with Fed EFC 0.045** 0.037** 0.042** 

 (0.019) (0.015) (0.019) 

Years with State EFC 0.014 0.014 0.013 

 (0.013) (0.010) (0.014) 

Observations 8,416 12,354 7,994 

Adjusted R-squared 0.143 0.180 0.142 

Outcome: Employment 
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Years with Fed EFC -0.028*** -0.017 -0.036*** 

 (0.010) (0.011) (0.010) 

Years with State EFC 0.009 0.013 0.003 

 (0.012) (0.010) (0.012) 

Observations 8,416 10,407 7,994 

Adjusted R-squared 0.066 0.072 0.064 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the state level are in 

parentheses. All regressions control for demographic characteristics, foster care history, 

experiences at 17 years old, state controls, and include cohort and state fixed effects. The 

abbreviation EFC is shorthand for extended foster care. "Fed" and "State" indicate how the 

program is funded. The first column reports the main results again for easy reference. The main 

analysis sample is restricted to youth that are linked across NYTD and AFCARS and not missing 

any of the above outcomes. The second column lets the sample size vary by outcome measure, 

and the third column limits the sample to youth who participated in all three waves of the NYTD 

survey.   
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Appendix Table C10: Characteristics of NYTD Survey Participants 

 
Full Sample 

(N=15,733) 

All Surveys 

(N=9,349) 
Returned (N=1,696) Drop-out (N=2,705) 

No Surveys 

(N=1,983) 

 Mean  St. Dev.  Mean  St. Dev.  Mean  St. Dev.  Mean  St. Dev.  Mean  St. Dev.  

Any EFC at 18 0.733 0.443 0.748 0.434 0.686 0.464 0.747 0.435 0.680 0.466 

Fed EFC at 18 0.484 0.500 0.514 0.500 0.420 0.494 0.471 0.499 0.415 0.493 

State EFC at 18 0.249 0.432 0.235 0.424 0.266 0.442 0.276 0.447 0.266 0.442 

NYTD Cohort 2014 0.520 0.500 0.534 0.499 0.481 0.500 0.524 0.500 0.482 0.500 

Female 0.513 0.500 0.551 0.497 0.514 0.500 0.445 0.497 0.429 0.495 

Non-Hispanic White 0.426 0.494 0.414 0.493 0.415 0.493 0.443 0.497 0.466 0.499 

Non-Hispanic Black 0.297 0.457 0.305 0.460 0.312 0.463 0.296 0.457 0.249 0.432 

Non-Hispanic Other 

Race 
0.0828 0.276 0.0829 0.276 0.0825 0.275 0.0791 0.270 0.0877 0.283 

Hispanic 0.194 0.396 0.198 0.399 0.191 0.393 0.182 0.386 0.197 0.398 

Homeless at 17 0.177 0.382 0.170 0.376 0.201 0.401 0.173 0.378 0.198 0.399 

Employment at 17 0.144 0.351 0.153 0.360 0.141 0.348 0.133 0.340 0.119 0.324 

Incarcerated at 17 0.307 0.461 0.264 0.441 0.376 0.485 0.336 0.472 0.407 0.491 

Referred for substance 

abuse at 17 
0.251 0.434 0.220 0.414 0.293 0.455 0.275 0.446 0.331 0.471 

Total time in foster 

care under 18 (in 

years) 

4.299 3.604 4.477 3.674 4.029 3.515 4.302 3.605 3.685 3.249 
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Full Sample 

(N=15,733) 

All Surveys 

(N=9,349) 
Returned (N=1,696) Drop-out (N=2,705) 

No Surveys 

(N=1,983) 

 Mean  St. Dev.  Mean  St. Dev.  Mean  St. Dev.  Mean  St. Dev.  Mean  St. Dev.  

Total removals from 

home under 18 
1.398 0.673 1.391 0.662 1.428 0.714 1.399 0.676 1.402 0.684 

Total number of 

placements under 18 
7.311 7.499 7.197 7.223 7.837 8.417 7.436 7.395 7.224 8.050 

Ever removed for 

abuse 
0.260 0.439 0.279 0.449 0.227 0.419 0.244 0.429 0.221 0.415 

Ever removed for 

neglect 
0.538 0.499 0.559 0.497 0.500 0.500 0.531 0.499 0.482 0.500 

Ever removed for 

parental incarceration 
0.0587 0.235 0.0600 0.238 0.0560 0.230 0.0591 0.236 0.0545 0.227 

Ever removed for 

parental substance 

abuse 

0.184 0.387 0.191 0.393 0.182 0.386 0.176 0.381 0.160 0.367 

Ever removed for 

inadequate housing 
0.0974 0.296 0.101 0.301 0.0861 0.281 0.0972 0.296 0.0918 0.289 

Ever removed for 

child-related issue 
0.350 0.477 0.321 0.467 0.390 0.488 0.372 0.484 0.424 0.494 

Ever diagnosed with 

disability 
0.571 0.495 0.581 0.493 0.551 0.498 0.569 0.495 0.548 0.498 

Age at first removal 11.85 4.736 11.67 4.765 12.20 4.655 11.79 4.808 12.49 4.497 

Age at most recent 

placement 
17.27 1.876 17.27 1.991 17.26 1.643 17.30 1.939 17.24 1.337 
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Full Sample 

(N=15,733) 

All Surveys 

(N=9,349) 
Returned (N=1,696) Drop-out (N=2,705) 

No Surveys 

(N=1,983) 

 Mean  St. Dev.  Mean  St. Dev.  Mean  St. Dev.  Mean  St. Dev.  Mean  St. Dev.  

First Placement: 

Foster home 
0.634 0.482 0.658 0.474 0.598 0.490 0.615 0.487 0.575 0.494 

First Placement: 

Group home or 

institution 

0.305 0.460 0.286 0.452 0.327 0.469 0.326 0.469 0.345 0.476 

Monthly foster care 

maintenance payment 

as an adult 

$1,507  $2,530  $1,461  $2,431  $1,541  $2,633  $1,613  $2,658  $1,555  $2,710  

Notes: “Full sample” consists of all NYTD and AFCARS records that were successfully linked. Youth that participated 

in all surveys answered at least one question at ages 17, 19, and 21. “Returned” means youth completed the survey at 

ages 17 and 21, but not at age 19. “Drop-out” means youth completed the survey at ages 17 and 19, but not at age 21. 

“No surveys” means youth with records that were successfully linked across NYTD and AFCARS did not answer any 

questions in the surveys at ages 17, 19, nor 21.    
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Appendix Table C11: Results from NYTD Participation Regression 

 Participated at 19 Participated at 21 

Fed EFC 0.032 0. 175*** 

 (0.045) (0.044) 

State EFC 0.031 0. 102*** 

 (0.028) (0.021) 

Average 

Participation 

Rate without 

EFC 

0.72 0.66 

Observations 15,733 15,733 

R-Squared 0.0526 0.1004 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors 

clustered at the state level are in parentheses. Regressions 

include a dummy variable for sample states, and cohort 

and state fixed effects. Sample states only followed up 

with the youth randomly selected. Positive coefficients 

suggest NYTD participation is positively correlated with 

EFC.      
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Appendix Table C12: Full Set of Results from Techniques that Address Non-Response 

Outcomes at 19 Years Old 

 (1) (2) (3) (4) (5) 

 
Main 

Results 

Inversely 

Weighted by 

State Survey 

Participation 

Rate 

Inversely 

Weighted 

by 

Individual 

Response 

Rate 

Mean 

Imputed 

Regression 

Imputed  

Outcome: Homelessness 

Fed EFC at 18  -0.048* -0.043 -0.046** -0.034* -0.030* 

 (0.025) (0.029) (0.022) (0.018) (0.018) 

State EFC at 18 -0.015 -0.016 -0.008 -0.005 -0.010 

 (0.021) (0.021) (0.023) (0.015) (0.017) 

Observations 11,120 11,120 11,120 15,733 15,733 

Adjusted R-squared 0.088 0.088 0.087 0.062 0.124 

Outcome: Incarceration 

Fed EFC at 18  -0.053* -0.059* -0.046 -0.038** -0.038* 

 (0.029) (0.029) (0.028) (0.016) (0.022) 

State EFC at 18 -0.021 -0.023 -0.012 -0.008 -0.014 

 (0.016) (0.016) (0.017) (0.011) (0.013) 

Observations 11,120 11,120 11,120 15,733 15,733 

Adjusted R-squared 0.197 0.197 0.193 0.155 0.281 

Outcome: Disconnected 

Fed EFC at 18  -0.043** -0.046** -0.047*** -0.037** -0.047*** 

 (0.020) (0.021) (0.016) (0.014) (0.015) 

State EFC at 18 0.017 0.016 0.009 0.007 0.003 

 (0.015) (0.015) (0.012) (0.009) (0.014) 

Observations 11,120 11,120 11,120 15,733 15,733 

Adjusted R-squared 0.049 0.049 0.046 0.035 0.070 

Outcome: High School Enrollment 

Fed EFC at 18  0.052* 0.049 0.054* 0.038** 0.035 

 (0.029) (0.030) (0.032) (0.018) (0.022) 

State EFC at 18 -0.005 -0.005 -0.012 -0.013 -0.022 

 (0.022) (0.022) (0.022) (0.017) (0.022) 

Observations 11,097 11,097 11,097 15,733 15,733 

Adjusted R-squared 0.040 0.041 0.039 0.029 0.063 

Outcome: College Enrollment 

Fed EFC at 18  0.010 0.014 0.012 0.011 0.016 

 (0.038) (0.039) (0.036) (0.037) (0.037) 

State EFC at 18 -0.041 -0.040 -0.038 -0.025 -0.029 

 (0.025) (0.025) (0.027) (0.024) (0.022) 

Observations 6,155 6,155 6,155 6,657 6,657 

Adjusted R-squared 0.083 0.084 0.081 0.080 0.089 

Outcome: Employment 
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Fed EFC at 18  0.083*** 0.093*** 0.070*** 0.050** 0.069** 

 (0.028) (0.033) (0.023) (0.021) (0.027) 

State EFC at 18 0.051*** 0.051*** 0.058*** 0.031** 0.043** 

 (0.018) (0.019) (0.018) (0.012) (0.016) 

Observations 11,120 11,120 11,120 15,733 15,733 

Adjusted R-squared 0.045 0.046 0.047 0.036 0.065 

 

Outcomes at 21 Years Old 

 (1) (2) (3) (4) (5) 

 
Main 

Results 

Inversely 

Weighted by 

State Survey 

Participation 

Rate 

Inversely 

Weighted 

by 

Individual 

Response 

Rate 

Mean 

Imputed 

Regression 

Imputed  

Outcome: Homelessness 

Years with Fed EFC -0.026* -0.029* -0.023 -0.052*** -0.055*** 

 (0.014) (0.015) (0.014) (0.007) (0.009) 

Years with State EFC -0.030*** -0.033*** -0.028*** -0.028*** -0.035*** 

 (0.010) (0.011) (0.010) (0.008) (0.009) 

Observations 8,416 8,416 8,416 15,733 15,733 

Adjusted R-squared 0.139 0.140 0.132 0.099 0.214 

Outcome: Incarceration 

Years with Fed EFC -0.035*** -0.039*** -0.036*** -0.066*** -0.058*** 

 (0.007) (0.008) (0.006) (0.017) (0.007) 

Years with State EFC -0.019** -0.021** -0.018** -0.033*** -0.033*** 

 (0.008) (0.008) (0.008) (0.010) (0.009) 

Observations 8,416 8,416 8,416 15,733 15,733 

Adjusted R-squared 0.234 0.238 0.231 0.206 0.388 

Outcome: Disconnected 

Years with Fed EFC -0.031** -0.029** -0.033** -0.021* -0.017 

 (0.013) (0.013) (0.012) (0.011) (0.013) 

Years with State EFC -0.019 -0.020* -0.018 -0.015** -0.019* 

 (0.012) (0.011) (0.012) (0.007) (0.010) 

Observations 8,416 8,416 8,416 15,733 15,733 

Adjusted R-squared 0.062 0.062 0.059 0.041 0.088 

Outcome: High School Graduation 

Years with Fed EFC 0.014** 0.014** 0.013** 0.047*** 0.049*** 

 (0.006) (0.006) (0.006) (0.014) (0.017) 

Years with State EFC -0.012 -0.016 -0.011 -0.008 -0.013 

 (0.009) (0.010) (0.009) (0.008) (0.009) 

Observations 8,416 8,416 8,416 15,733 15,733 

Adjusted R-squared 0.069 0.069 0.067 0.077 0.100 

Outcome: College Enrollment 

Years with Fed EFC 0.045** 0.043** 0.045** 0.036* 0.035** 

 (0.019) (0.018) (0.018) (0.018) (0.015) 
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Years with State EFC 0.014 0.015 0.013 0.013 0.013 

 (0.013) (0.012) (0.013) (0.009) (0.010) 

Observations 8,416 8,416 8,416 15,733 15,733 

Adjusted R-squared 0.143 0.142 0.152 0.091 0.148 

Outcome: Employment 

Years with Fed EFC -0.028*** -0.025** -0.026** -0.007 -0.012 

 (0.010) (0.010) (0.011) (0.007) (0.011) 

Years with State EFC 0.009 0.007 0.008 0.015* 0.022** 

 (0.012) (0.011) (0.011) (0.008) (0.009) 

Observations 8,416 8,416 8,416 15,733 15,733 

Adjusted R-squared 0.066 0.067 0.060 0.056 0.100 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the state level are in 

parentheses. All regressions control for demographic characteristics, foster care history, 

experiences at 17 years old, state controls, and include cohort and state fixed effects, unless 

otherwise noted. The abbreviation EFC is shorthand for extended foster care. "Fed" and "State" 

indicate how the program is funded. The first column reports the main results again for easy 

reference, the second and third columns report estimates weighted by response rate at the state 

and individual level, respectively. The fourth and fifth columns report results from imputation 

methods. These regressions also control for missingness. This table is similar to Table 5, but 

includes the coefficient on state EFC as well.  
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Appendix D – Appendix Tables and Figures for Chapter 2  

 

Appendix Figure D1: Average Report Rate by State 

 

Notes: The report rate is calculated per 100,000 children. In practice, the number of reports 

screened-in is divided by the number of children and then multiplied by 100,000. The average is 

taken across all years. 
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Appendix Figure D2: Average Report Rate by Year 

 

Notes: The report rate is calculated per 100,000 children. In practice, the number of reports 

screened-in is divided by the number of children and then multiplied by 100,000. The average is 

taken across all states and is weighted by the state population. 
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Appendix Figure D3: Selected Charts of the Report Rate Before and After the First 

Mandatory Reporter Legislation Change, Relative to the Previous Year 
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Notes: These charts plot the report rate, per 100,000 children, the five months before and after the 

mandatory reporter legislation change in the year the change occurred (treated year), relative to 

the previous year (control year) for a handful of states. Pennsylvannia is a good example of what 

we would expect to see if mandatory reporter legilsation led to an increase in reporting, and South 

Dakota is a good example of what we would expect if mandatory reporter legislation led to a 

decrease in reporting.        
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Appendix Table D1: Group Effects for Mandatory Reporter Policy Changes 

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the state-level are in 

parentheses. Each cell reports the beta coefficient and standard error for the outcome-group 

regression analysis combination. The first column reports the overall results again, and then the 

remaining columns report the results for groups 1 through five. In agreement with Callaway and 

Sant’Anna (2020), the overall effect is similar to the weighted average of the group effects. Group 

1 consists of the 9 states that only had one mandatory reporter legislation change, group 2 consists 

of the 8 states with two changes, etc. In addition to the treated states, the 24 control states are 

included in all analyses. These are the states that did not change their mandatory reporter 

legislation between 2004 and 2017. All regressions include state fixed effects, year-by-month fixed 

effects, and a state-specific linear time trend.  

  

  Group 

Outcome Var. 

Overall 

Effect 
(1) (2) (3) (4) (5) 

Reports (per 100,000 children) 
12.90* 19.91 12.97 -3.913 20.05* 3.958 

(7.408) (12.00) (18.44) (8.426) (11.18) (2.825) 

       

Substantiated reports (per 

100,000 children)  

1.862 -0.648 0.432 -3.723 6.754 2.469*** 

(2.363) (4.014) (2.852) (3.317) (4.287) (0.883) 

       

Unsubstantiated reports (per 

100,000 children) 

11.03* 20.55** 12.54 -0.190 13.29* 1.489 

(5.711) (9.308) (17.05) (5.393) (7.059) (2.235) 

       

Number of children investigated 

(per 100,000 children) 

28.76 20.09 31.02 -8.825 51.92 11.96** 

(19.06) (23.36) (42.52) (14.97) (33.15) (5.461) 

       

Number of victims (per 100,000 

children) 

2.756 -3.597 0.648 -6.262 11.47 2.011 

(4.257) (6.242) (4.587) (5.381) (8.434) (1.471) 

       

Observations  8,422 5,398 5,376 4,872 4,704 4,200 

Number of Treated States 27 9 8 5 4 1 
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Appendix Table D2: Short-Run Effects of the Legislation Change that Added Athletic 

Coach, College Staff, or Camp Staff between 2012 and 2014 

 (1) (2) (3) (4) (5) 

 Reports (per 

100,000 

children) 

Substantiated 

reports (per 

100,000 

children) 

Unsubstantiated 

reports (per 

100,000 

children) 

Number of 

children 

investigated 

(per 

100,000 

children) 

Number of 

victims (per 

100,000 

children) 

Post 5.145 0.237 4.908 1.930 -0.358 

(10.69) (3.292) (8.087) (17.98) (5.354) 

     

Treatment  7.127 -0.707 7.835 -1.530 -1.681 

(18.69) (5.877) (13.85) (32.34) (9.410) 

      

Post x Treatment -6.168 -1.653 -4.515 -12.40 -2.716 

(4.111) (1.724) (4.019) (7.629) (3.362) 

Mean of dep. 

var.  
237.4 49.9 187.4 438.4 77.4 

Observations 308 308 308 308 308 

Adjusted R2 0.384 0.201 0.381 0.296 0.163 

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the state-level are in 

parentheses. Each column is a unique outcome. “Post” is equal to one five months after the 

legislation change and zero for the five months prior. “Treatment” is equal to one in the year of 

the legislation change and zero in year prior. Post x Treatment estimates the effect in the months 

after the legislation change, relative to the same time period the year before. The mean of the 

dependent variable in the post months of the control year is provided. Regressions include state, 

year, and month fixed effects. The 14 states included in this analysis are Alabama, Alaska, 

Arkansas, California, Colorado, Georgia, Illinois, Louisiana, New York, Pennsylvania, Tennessee, 

Virginia, Washington, West Virginia.    
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Appendix E – Appendix Tables and Figures for Chapter 3  

Appendix Figure E1: Actual versus Predicted Child Maltreatment Reporting using Linear 

and Quadratic Polynomials 

 

 
Notes: This figure plots the counterfactual estimates from equation 3.1 using a linear and quadratic 

polynomial, as opposed to the preferred cubic specification. The linear model is less predictive 

than the quadratic, and the quadratic model is similar to the cubic model. 
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Appendix Table E1: Summary Statistics of Child Maltreatment Reporting by COVID-19 Cases 

 2019 2020  

 (1) (2)  (3) (4)  
Unconditional 

DD Estimate (4-

2-(3-1)) 
 

Non-

COVID-19 

Counties 

COVID-19 

Counties 
p-value 

Non-COVID-

19 Counties 

COVID-19 

Counties 
p-value 

Child Maltreatment Variables (per 1,000 children) 

Total Referrals 24.83 23.62 0.17 20.23 19.77 0.61 0.76 

Screened-in 7.81 7.96 0.71 7.03 6.99 0.90 -0.20 

Substantiated Reports  2.66 2.34 0.31 2.62 2.24 0.25 -0.06 

Neglect Allegations  8.73 8.62 0.84 7.76 8.05 0.57 0.40 

Physical Abuse 

Allegations  
2.22 2.06 0.36 2.13 1.72 0.02 -0.26 

Sexual Abuse 

Allegations  
0.78 0.80 0.79 0.89 0.78 0.26 -0.13 

Economic Conditions        

Unemployment Rate 2.89 2.64 0.02 6.33 6.93 0.24 0.85 

Employment to 

Population Ratio 
53.75 53.24 0.62 48.79 49.97 0.26 1.70 

Child Population 6009 103223 0.00 5988 103247 0.00 45.36 

COVID-19 Cases (per 100,000 residents) 

pre stay-at-home order    0.00 47.61 0.15  

during stay-at-home 

order 
   23.75 47.04 0.17  

post stay-at-home order    59.23 26.84 0.31  

Number of Counties 55 9  55 9   

Notes: This table reports the average child maltreatment referral, screened-in, and substantiated report rate, and economic conditions across all 

counties and quarters in 2019 and 2020 based on the counties’ COVID-19 caseload. Nine counties (“treated”) reported COVID-19 cases prior to 

the stay-at-home order, whereas 55 counties (“control”) reported no cases prior to the stay-at-home order. The p-value for t-tests between the 

COVID-19 and non-COVID-19 counties are reported for each year, and a crude DD is provided.  
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Appendix Figure E2: Relationship between COVID-19 Cases Before and During the Stay-

at-Home Order 

 

Notes: This figure plots the number of COVID-19 cases (per 100,000 residents) before the stay-

at-home order against the number of cases during the month of the stay-at-home order. The 

negative regression adjusted coefficient (-0.07) suggests places with higher pre-stay-at-home order 

COVID-19 cases might have been more compliant to the stay-at-home order. 

Coeff: -0.07   

s.e.: 0.06 
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Appendix Table E2: Robustness Analyses for Screened-In Reports 

  (1) (2) (3) (4) 

  

Main Results Post 2010 

Exclude 

Denver 

Metro-area 

Include 

Economic 

Controls 

Panel A: 

Rate (per 

1,000 

children) 

COVID-19 
-0.079 -0.079 -0.024 0.118 

(0.710) (0.708) (0.801) (0.795) 

School Closure 
-1.838** -1.814** -1.711* -1.883* 

(0.846) (0.831) (0.966) (0.961) 

Stay-at-home 
-3.273** -3.291** -3.146* -3.514** 

(1.479) (1.466) (1.681) (1.759) 

Panel B: Log 

COVID-19 
-0.004 0.003 0.012 0.031 

(0.095) (0.094) (0.106) (0.104) 

School Closure 
-0.201* -0.195* -0.152 -0.176 

(0.121) (0.117) (0.137) (0.134) 

Stay-at-home 
-0.382* -0.375* -0.309 -0.347 

(0.211) (0.205) (0.238) (0.242) 

Panel C: 

Levels 

COVID-19 
-19.531* -21.527* -8.392 -15.955 

(11.504) (11.230) (9.196) (11.007) 

School Closure 
-45.600*** -43.433*** -21.899** -41.476** 

(16.603) (15.174) (10.072) (16.030) 

Stay-at-home 
-89.454*** -86.960*** -44.373** -84.199*** 

(29.659) (27.306) (18.952) (28.668) 

 Observations  3,328 2,560 2,860 3,328 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors, clustered at the county-by-

quarter level, in parentheses. Each column indicates a separate regression analysis. The first 

column provides the main results. The second column is post-2010. The third column excludes 

the Denver metro-area, and the fourth column includes controls for economic conditions (i.e. 

the unemployment rate and employment-to-population ratio). Each row represents a separate 

regression analysis for the three independent variables of interest, so row 1 reports the coefficient 

from equation 3.2 where covid is the independent variable of interest. Row 2 reports the 

coefficient from equation 3.3 where schclo is the independent variable of interest, and row 3 

reports the coefficient from equation 3.4 where sah is the independent variable of interest. There 

are 3 separate panels as well. Panel one reports the effect on the screened-in report rate, per 

1,000 children. The second panel reports the effect on the log screened-in reports, and the third 

panel reports the effect on the total screened-in reports (level). Each regression includes year, 

county, and quarter fixed effects.  
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Appendix Table E3: Robustness Analyses for Substantiated Reports 

  (1) (2) (3) (4) 

  

Main Results Post 2010 

Exclude 

Denver 

Metro-area 

Include 

Economic 

Controls 

Panel A: 

Rate (per 

1,000 

children) 

COVID-19 
-0.876 -0.947 -1.077 -0.855 

(0.715) (0.701) (0.817) (0.749) 

School 

Closure 

0.615 0.412 0.870 0.933 

(0.966) (0.961) (1.106) (1.150) 

Stay-at-home 
0.628 0.227 0.939 1.236 

(1.764) (1.748) (2.028) (2.166) 

Panel B: Log 

COVID-19 
-0.046 -0.063 -0.079 -0.016 

(0.154) (0.146) (0.171) (0.161) 

School 

Closure 

0.206 0.179 0.281 0.300 

(0.201) (0.191) (0.225) (0.227) 

Stay-at-home 
0.315 0.261 0.428 0.516 

(0.356) (0.338) (0.401) (0.416) 

Panel C: 

Levels 

COVID-19 
-5.794 -7.053 -5.118 -5.196 

(8.598) (7.548) (7.281) (8.558) 

School 

Closure 

-5.966 -5.429 0.329 -3.918 

(8.473) (6.771) (6.232) (8.431) 

Stay-at-home 
-13.249 -13.255 -1.623 -9.381 

(15.645) (12.636) (12.047) (15.559) 

 Observations  3,328 2,560 2,860 3,328 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors, clustered at the county-by-

quarter level, in parentheses. Each column indicates a separate regression analysis. The first 

column provides the main results. The second column is post-2010. The third column excludes 

the Denver metro-area, and the fourth column includes controls for economic conditions (i.e. 

the unemployment rate and employment-to-population ratio). Each row represents a separate 

regression analysis for the three independent variables of interest, so row 1 reports the coefficient 

from equation 3.2 where covid is the independent variable of interest. Row 2 reports the 

coefficient from equation 3.3 where schclo is the independent variable of interest, and row 3 

reports the coefficient from equation 3.4 where sah is the independent variable of interest. There 

are 3 separate panels as well. Panel one reports the effect on the substantiated report rate, per 

1,000 children. The second panel reports the effect on the log substantiated reports, and the third 

panel reports the effect on the total substantiated reports (level). Each regression includes year, 

county, and quarter fixed effects.  
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