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RESEARCH ARTICLE

Role of Ca2+ and L-Phe in Regulating
Functional Cooperativity of Disease-
Associated ‘‘Toggle’’ Calcium-Sensing
Receptor Mutations
Chen Zhang1,2, Nagaraju Mulpuri1, Fadil M. Hannan3, M. Andrew Nesbit3, Rajesh
V. Thakker3, Donald Hamelberg1,2, Edward M. Brown4, Jenny J. Yang1,2*

1. Department of Chemistry, Georgia State University, Atlanta, Georgia, United States of America, 2. Center for
Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, United States of America, 3.Academic
Endocrine Unit, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill
Hospital, Oxford, United Kingdom, 4. Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America

*chejjy@langate.gsu.edu

Abstract

The Ca2+-sensing receptor (CaSR) regulates Ca2+ homeostasis in the body by

monitoring extracellular levels of Ca2+ ([Ca2+]o) and amino acids. Mutations at the

hinge region of the N-terminal Venus flytrap domain (VFTD) produce either receptor

inactivation (L173P, P221Q) or activation (L173F, P221L) related to hypercalcemic

or hypocalcemic disorders. In this paper, we report that both L173P and P221Q

markedly impair the functional positive cooperativity of the CaSR as reflected by

[Ca2+]o–induced [Ca2+]i oscillations, inositol-1-phosphate (IP1) accumulation and

extracellular signal-regulated kinases (ERK1/2) activity. In contrast, L173F and

P221L show enhanced responsiveness of these three functional readouts to

[Ca2+]o. Further analysis of the dynamics of the VFTD mutants using computational

simulation studies supports disruption in the correlated motions in the loss-of-

function CaSR mutants, while these motions are enhanced in the gain-of-function

mutants. Wild type (WT) CaSR was modulated by L-Phe in a heterotropic positive

cooperative way, achieving an EC50 similar to those of the two activating mutations.

The response of the inactivating P221Q mutant to [Ca2+]o was partially rescued by

L-Phe, illustrating the capacity of the L-Phe binding site to enhance the positive

homotropic cooperativity of CaSR. L-Phe had no effect on the other inactivating

mutant. Moreover, our results carried out both in silico and in intact cells indicate

that residue Leu173, which is close to residues that are part of the L-Phe-binding

pocket, exhibited impaired heterotropic cooperativity in the presence of L-Phe.

OPEN ACCESS

Citation: Zhang C, Mulpuri N, Hannan FM, Nesbit
MA, Thakker RV, et al. (2014) Role of Ca2+ and L-
Phe in Regulating Functional Cooperativity of
Disease-Associated ‘‘Toggle’’ Calcium-Sensing
Receptor Mutations. PLoS ONE 9(11): e113622.
doi:10.1371/journal.pone.0113622

Editor: Giovanna Valenti, University of Bari Aldo
Moro, Italy

Received: July 28, 2014

Accepted: October 27, 2014

Published: November 24, 2014

Copyright: � 2014 Zhang et al. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author
and source are credited.

Data Availability: The authors confirm that all data
underlying the findings are fully available without
restriction. All relevant data are within the Supporting
Information files.

Funding: Funding was provided by National
Institutes of Health (http://www.nih.gov/) grants
GM081749 and EB007268 to JJY; National
Science Foundation (http://www.nsf.gov/) grant
MCB-0953061 to DH; and a Center for Diagnostic
Technology - Georgia State University (http://cdt.
gsu.edu/) fellowship to CZ. The funders had no role
in study design, data collection and analysis,
decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

PLOS ONE | DOI:10.1371/journal.pone.0113622 November 24, 2014 1 / 27

http://creativecommons.org/licenses/by/4.0/
http://www.nih.gov/
http://www.nsf.gov/
http://cdt.gsu.edu/
http://cdt.gsu.edu/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0113622&domain=pdf


Thus, Pro221 and Leu173 are important for the positive homo- and heterotropic

cooperative regulation elicited by agonist binding.

Introduction

The human calcium (Ca2+)-sensing receptor (CaSR) is a seven transmembrane, G

protein-coupled receptor (GPCR) that is expressed at the highest levels in the

parathyroid glands and kidneys [1]. The principal role of CaSR is to sense

alterations of the extracellular calcium concentration ([Ca2+]o) and to maintain

Ca2+ homeostasis by regulating parathyroid hormone (PTH) secretion as well as

renal Ca2+ reabsorption. Like other members of family C in the GPCR

superfamily, the CaSR possesses a large extracellular domain (ECD) consisting of

more than 600 amino acids [2]. Ca2+, the principal physiological agonist for CaSR,

is thought to bind to the ECD of the dimeric form of the receptor resulting in

activation of phospholipase C (PLC), with an attendant accumulation of inositol

1,4,5-triphosphate (IP3) followed by a resultant increase in the cytosolic calcium

([Ca2+]i) concentration [3].

Fluctuations of the plasma levels of amino acids can regulate the rate of

hormone synthesis and secretion as well as Ca2+ metabolism, among other

processes [4]. CaSR is present throughout the gastrointestinal tract [5, 6]. L-

amino acids, especially aromatic amino acids, are known to enhance the

sensitivity of CaSR to [Ca2+]o, which could be one potential explanation for how

dietary protein modulates [Ca2+]o homeostasis in normal individuals as well as in

patients with chronic renal failure [4, 7].

Mutations of the CaSR can perturb intracellular signaling events (e.g.,

intracellular calcium responses) and disrupt regulation of PTH secretion from the

parathyroid chief cell and Ca2+ reabsorption in the renal tubule. Mutations that

inactivate CaSR (i.e., result in loss-of-function) cause familial hypocalciuric

hypercalcemia (FHH) and neonatal severe primary hyperparathyroidism

(NSHPT) [8, 9]. On the other hand, activating mutations of the CaSR lead to

autosomal dominant hypocalcemia with hypercalciuria (ADHH) [10]. These

mutations, including the four studied here that involve the two ‘‘toggle’’ residues,

Leu173 and Pro221, where mutations of the same residue can either activate or

inactivate the CaSR, serve as a rich source of structure-function information.

Interestingly, among thirty-four identified ECD missense mutations in patients

with FHH, NSHPT and ADHH, 18 were located within 10 Å of one or more of

the five Ca2+-binding sites predicted in our previous studies [11], particularly site

1, which is proposed to be the principal site for Ca2+-binding during receptor

activation as well as for regulating both the homotropic and heterotropic

cooperativity of CaSR [12] [13]. Our group has also reported a putative L-Phe

binding site composed of residues S170, Y218, L51, S272 and T145, which are

located adjacent to the predicted calcium binding pocket 1 at the hinge region of

L-Phe and Ca2+ Regulate Disease-Related CaSR Mutants
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the CaSR ECD [12]. The location of the L-Phe binding site is pivotal in

cooperatively regulating the activity of the CaSR [12].

Our previous computational studies showed that movements of Ca2+-binding site 1

are dynamically correlated with those of the other predicted calcium-binding sites.

Mutations in Ca2+-binding site 1 could, therefore, affect both the homotropic and

heterotropic cooperativity of the CaSR. These results led us to hypothesize that residues

173 and 221 are essential for the functional cooperativity orchestrated by calcium and

L-Phe binding, and that related disease-associated mutations are the result of alteration

or perturbation of the receptor’s associated molecular connectivity.

In the present studies, we show that the loss-of-function mutations, L173P and

P221Q, but not the gain-of-function mutations, L173F and P221L, alter the

cooperativity of the CaSR though analyzing changes in functional readouts in

response to alterations in [Ca2+]o. Furthermore, L173P and P221Q disrupt the

strong correlated motions among the various calcium-binding sites as demon-

strated by molecular dynamics (MD) simulations. L-Phe induced positive

heterotropic cooperativity of the P221Q mutant, but had only a limited effect in

potentiating the functional activity of L173P due to its restricted molecular

dynamical features. These in vitro and in silico results provide important insights

into how Ca2+ and L-Phe interact at their respective binding sites in the cleft of the

VFTD, which are essential for the maintenance of calcium homeostasis that is

required for normal physiological function.

Methods

Cell culture and transfection

Human embryonic kidney cells (HEK293) (ATCC) were cultured under standard

condition (5% CO2, 37 C̊) in High Glucose Dulbecco’s modified Eagle’s medium

(DMEM) (Sigma Chemicals) containing 10% fetal bovine serum with 100 mg/ml

penicillin-streptomycin. The CaSR mutations were introduced using site-directed

mutagenesis (QuikChange, Stratagene, La Jolla, CA, USA) [14]. Cells were

transfected with either pEGFP-N1-WT-CaSR or mutant CaSRs using

Lipofectamine 2000 in reduced serum Opti-MEM medium following the

manufacturer’s instructions (Invitrogen). After 4,6 hours, the medium was

changed to High Glucose DMEM, and the cells were incubated for an additional

48 hours to increase receptor expression. Transfection efficiency and expression

levels were confirmed by analyzing the fluorescence intensity of the EGFP-tagged

CaSR by fluorescence microscopy (Leica, DMI600B).

Measurement of [Ca
2+
]i responses in single cells transfected with

WT or mutant CaSRs

Measurement of [Ca2+]i was carried out as described by Jiang, et al. [15]. Briefly,

wild type CaSR or its mutants were transiently transfected into HEK293 cells

grown on coverslips and cultured for 48 h. The cells were subsequently loaded

L-Phe and Ca2+ Regulate Disease-Related CaSR Mutants
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with Fura-2 by incubation with 4 mM Fura-2 AM in 2 mL physiological saline

buffer (10 mM HEPES, 140 mM NaCl, 5 mM KCl, 1.0 mM MgCl2, 1 mM CaCl2
and pH 7.4). The coverslips were mounted in a bath chamber on the stage of a

Leica DM6000 fluorescence microscope. The cells were alternately illuminated

with 340 or 380 nm light, and the fluorescence at an emission wavelength of

510 nm was recorded in real time as the concentration of [Ca2+]o was increased in

a stepwise manner in the presence or absence of 5 mM L-Phe. The ratio of

emission fluorescence intensity from both excitation wavelengths was then

monitored as a function of [Ca2+]o and utilized as a parameter reflecting changes

in [Ca2+]i All experiments were performed at room temperature. In addition to

the use of the cell population assay as a means of calculating EC50 for Ca2+
o or L-

Phe, the signals from 30 to 60 single cells were recorded for each measurement in

a single cell [Ca2+]i assay. In the latter assay, [Ca2+]i oscillations in individual cells

were defined as three or more successive fluctuations in [Ca2+]i from the baseline

after the initial peak.

Immunostaining and Western blotting of CaSR

pcDNA3.1-CaSRs were used in the immunostaining and Western blotting

experiments. This CaSR construct contains a flag-tag between Asp371 and Thr372.

For immunostaining, 48 hours after transfection, cells were fixed with 3.7%

formaldehyde for 15 min at room temperature, and subsequently labeled with

mouse anti-Flag monoclonal antibody (1:3000) overnight at 4 C̊. The next day

cells were washed with PBS and stained with goat anti-mouse Alexa488-

conjugated secondary antibodies. Images were collected on a Zeiss LSM700

confocal microscope (Carl Zeiss, German). For Western blotting, cells were lysed

with RIPA buffer (Millipore, MA). Protein concentrations were determined using

a Bradford assay (Bio-Rad laboratories, Hercules, CA). Lysates containing 40 mg

of protein were separated by 7.5% SDS-PAGE. After gel electrophoresis, the

proteins were transferred to a nitrocellulose membrane, probed with anti-flag

monoclonal antibody (1:3000) in 3% milk/TBST overnight at 4 C̊. Blots were

subsequently probed with alkaline phosphatase-conjugated secondary antibody

(1:3000) for 1 hour at room temperature. After washing, the signals were detected

by standard enhanced chemiluminescence. The signals were quantitated using

ImageJ.

Measurement of inositol-1-phosphate (IP1) accumulation in CaSR

transfected HEK293 cells

HEK293 cells were seeded in 24-well plates at 36105 cells per well in 500 ml of

culture medium. After transfection with WT CaSR or its various mutants, cells

were further cultured for 24 hours at 37 C̊. Cell monolayers were first washed with

Ringer’s buffer without calcium (121 mM NaCl, 2.4 mM K2HPO4, 0.4 mM

KH2PO4, 10 mM HEPES, 5.5 mM glucose, 1.2 mM MgCl2) and then incubated

for 1 hour at 37 C̊ in stimulation buffer (140 mM NaCl, 5 mM KCl, 10 mM

L-Phe and Ca2+ Regulate Disease-Related CaSR Mutants
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LiCl2, 0.55 mM MgCl2, 10 mM HEPES) containing varying concentrations of

CaCl2. After treatment, cells were lysed for 30 min at 37 C̊ with 50 ml of 2.5% IP1

ELISA Kit Lysis Reagent (CIS Bio International, Gif-sur-Yvette, France). The

accumulation of IP1 was measured using an immunoassay based on competition

between free IP1 and horseradish peroxidase (HRP) conjugated IP1 for binding to

monoclonal anti-IP1 antibody. The results for IP1 were expressed as percentage

inhibition of IP1-HRP binding 5 [1-IP1-HRP binding in stimulated cells/IP1-

HRP binding in unstimulated cells] 6100. The EC50s of [Ca2+]o-dependent

responses were calculated by fitting the [Ca2+]o concentration-response curves

with the Hill equation.

Determination of ERK1/2 phosphorylation

Thirty-six hours post transfection of monolayers of HEK293 cells with CaSR or its

mutants, cells were incubated in serum-free high glucose DMEM medium

supplemented with 0.2% w/v BSA at 37 C̊ overnight. On the following day, cells

were first incubated with HBSS for 30 min, followed by stimulation with varying

levels of CaCl2 (0–20 mM) with or without L-Phe (5 mM) for 10 min. At the end

of the [Ca2+]o stimulation, cells were lysed with RIPA lysis buffer (Millipore, CA,

USA). In total, 150 mg aliquots of lysate protein were loaded into either a 12.5%

SDS-gel or a 4%–12.5% gradient gel for PAGE and analyzed by western blotting

with an anti-phospho-p44/42 ERK polyclonal antibody (Cell Signaling

Technology, Beverly, MA, USA) diluted (1:2000). A chemiluminescent method

(AP Conjugate Substrate Kit) was employed to detect the phospho-(p)44/42

proteins. Quantitative analysis of the results was performed using ImageJ software

(National Institutes of Health). The responses were normalized to the maximal

effect observed with [Ca2+]o alone. The EC50 of [Ca2+]o-dependent responses was

calculated by fitting the [Ca2+]o concentration-response curves with the Hill

equation.

Computational analysis and Molecular Dynamics (MD) simulation

of CaSR

CLUSTALW was used to align the sequences of the human CaSR ECD (residues

25–530) and the mGluR1 ECD [16]. The structure of the ECD of CaSR was

modeled based on the crystal structure of mGluR1 (1EWT, 1EWK and 1ISR)

using SWISS-MODEL [17] and MODELLER software [18], and the potential

Ca2+-binding sites in the CaSR ECD were predicted using MetalFinder [19], The

electrostatic potentials were calculated using Pymol.

MD simulation provides an approach complementary to experiments in live

cells for understanding biomolecular structure, dynamics, and function. The

initial coordinates for all the simulations were taken from a 2.20 Å resolution x-

ray crystal structure with PDBID 1EWK [20]. The AMBER 10 suite of programs

[21] was used to carry out all of the simulations in an explicit TIP3P water model

[22], using the modified version of the all-atom Cornell et. al. [23] force field and

L-Phe and Ca2+ Regulate Disease-Related CaSR Mutants
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the re-optimized dihedral parameters for the peptide v-bond [24]. An initial 2 ns

simulation was performed using NOE restraint during the equilibration in order

to reorient the side chains of residues in the Ca2+-binding site, but no restraints

were used during the actual simulation. A total of three MD simulations were

carried out for 50 ns each on the apo-form and the ligand-loaded forms. During

the simulations, an integration time step of 0.002 ps was used to solve the

Newton’s equation of motion. The long-range electrostatic interactions were

calculated using the Particle Mesh Ewald method, [25], and a cutoff of 9.0 Å was

applied for non-bonded interactions. All bonds involving hydrogen atoms were

restrained using the SHAKE algorithm [26]. The simulations were carried out at a

temperature of 300 K and a pressure of 1 bar. A Langevin thermostat was used to

regulate the temperature with a collision frequency of 1.0 ps-1. The trajectories

were saved every 500 steps (1ps). The trajectories were analyzed using the ptraj

module in AMBER 10.

Statistics

The data are presented as means ¡ SE of the indicated number of experiments.

One-way repeated measures analysis of variance (ANOVA), followed by the

Dunnett post hoc test was performed using SPSS (SPSS Inc, Chicago, IL, USA) for

multiple comparisons to compare the differences between groups without adding

L-Phe. Two-way ANOVA was used for comparison among different groups in the

presence of L-Phe. A P value of , 0.05 was considered to indicate a statistically

significant difference.

Results

The disease-associated CaSR mutations alter the [Ca
2+
]o-

triggered [Ca
2+
]i oscillation pattern

The two residues (Leu173, Pro221) involved in the four disease-associated

mutations studied here are located in the hinge region near the predicted calcium-

binding site 1, which is located between lobe 1 and lobe 2. Meanwhile they are also

adjacent (within 10 Å) to the reported L-Phe binding pocket formed by residues

K47, L51, W70, T145, G146, S169, S170, I187, Y218, S272, H413 and R415, which

can exert effects over a large region of the ECD through positive heterotropic

cooperativity as shown in Figure 1a [12]. The immunostaining as well as the

Western blotting results suggest that all of the CaSR mutants are expressed at the

cell surface at similar levels (Figure 1b, 1d, 1e).

Analysis of the [Ca2+]o-triggered [Ca2+]i signaling (Figure 1c), especially the

pattern of [Ca2+]i oscillations, is a straightforward method to depict the potential

alterations in the homotropic cooperativity induced by mutations. Three

parameters were employed to analyze the [Ca2+]i oscillation patterns: the starting

point, which refers to the [Ca2+]o at which a given cell starts to show at least three

continuous, sequential peaks; the frequency, which is defined as the number of

L-Phe and Ca2+ Regulate Disease-Related CaSR Mutants
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Figure 1. The disease-related mutations are located in the hinge region near Ca2+-binding site 1. a. Model structure of CaSR ECD based on the
mGluR1 crystal structure (PDB entry: 1ISR) was generated using MODELER 9v4 and Swiss-Model. The global view of the ECD is shown in the left panel. Spheres
highlighted in red: Ca2+; Purple: residues involved in predicted Ca2+-binding sites. L-phenylalanine (in yellow) is positioned at the hinge region between the two lobes
by Autodock vina. Right panel: A zoomed in view of the Ca2+-binding pocket of site 1. Residues involved in Ca2+-binding site 1are highlighted in purple; residues with
disease-related mutations are highlighted in pink; residues predicted to interact with L-Phe are presented in green. b. Immunofluorescence analysis of surface
expressed WT CaSR and its mutants in HEK293 cells. Immunostaining was done with anti-flag monoclonal antibody, and detection was carried out with Alex Fluor
488-conjugated, goat anti-mouse secondary antibody. Green: CaSR. The images were taken using equal exposure times. c. Schematic figure of calcium and L-Phe
induced downstream signaling changes and the principle for the measurement of IP1 accumulation. Red dots represent calcium ions. d. total proteins (40 mg) were
applied to SDS-PAGE under non-reducing conditions and blotted with anti-flag antibody. GAPDHwas used as an internal control. e. The signals were analyzed using
ImageJ and the normalized intensities were compared with WT CaSR.

doi:10.1371/journal.pone.0113622.g001

L-Phe and Ca2+ Regulate Disease-Related CaSR Mutants
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peaks of [Ca2+]i per minute, and the ending point, which is the [Ca2+]o at which

the [Ca2+]i ceases to oscillate and reaches a plateau. About 53% of the cells

transfected with WT CaSR showing oscillatory responses started to oscillate at

3.0 mM [Ca2+]o (Figure 2 & 3). However, the majority of cells transfected with

the inactive mutant, P221Q, did not oscillate until [Ca2+]o reached more than

4.0 mM, and the threshold for [Ca2+]i oscillations in cells transfected with the

other inactive mutant, L173P, was even higher at 12.5 mM. Conversely, for the

gain-of-function mutations (L173F and P221L), the majority of the cells, 79% for

L173F and 40% for P221L, started to oscillate at lower levels of [Ca2+]o, 2.0 mM

and 2.5 mM, respectively.

WT CaSR-transfected cells exhibited a normal distribution of oscillation

frequencies with an average frequency of 1.0,1.5 peaks/min at 3.0 mM [Ca2+]o

(Figs. 2&3b, Table 1). The two inactivating mutants (L173P and P221Q)

responded to changes in [Ca2+]o over a substantially different range. Therefore,

the frequencies were measured at the level of [Ca2+]o at which the majority of the

cells (.50%) started to oscillate—15 mM for L173P and 5 mM for P221Q. For

L173F and P221L, the frequencies were measured at 2.5 mM [Ca2+]o. The

oscillation frequency for the two inactivating mutants did not differ from that of

the WT (1.3¡0.1 peaks/min) and were 1.3¡0.1 peaks/min for L173P and

1.5¡0.1 peaks/min for P221Q, but there were slight but significant increases for

L173F (1.7¡0.1 peaks/min) and P221L (1.6¡0.1 peaks/min).

We also studied the oscillation ending point. About 50% of the oscillatory cells

expressing the CaSR reached a [Ca2+]i plateau (i.e., stopped oscillating) at 5.0 mM

[Ca2+]o (Figure 3c). The loss-of-function mutations exhibited a dramatic increase

in the [Ca2+]o required for a [Ca2+]i plateau as shown in Figure 3c. The majority

of the oscillatory cells transfected with L173P were still exhibiting [Ca2+]i

fluctuations even at a level of [Ca2+]o of 30.0 mM. Similarly, the ending point for

P221Q was substantially elevated at ,10.0–15.0 mM. On the other hand, quite a

few cells transfected with either of the gain-of-function mutants stopped [Ca2+]i

oscillations at a [Ca2+]o below 5.0 mM. Therefore, the [Ca2+]o-triggered [Ca2+]i

oscillation pattern, including its frequency, the [Ca2+]o required for initiating

oscillations, and the oscillation ending point are altered in the four mutations,

suggesting changes in [Ca2+]o–elicited positive homotropic cooperativity induced

by these mutations.

The disease-associated CaSR mutations affect functional positive homotropic

cooperativity as reflected by changes in multiple CaSR-activated signaling

pathways

We then investigated how those mutations affect the CaSR-mediated activation of

various intracellular signaling pathways. HEK293 cells transfected with WT CaSR

exhibited sigmoidal concentration response curves for the [Ca2+]i responses to

increases in [Ca2+]o in a cell population assay with a Hill coefficient of 3.7¡0.3

and an EC50 of 3.0¡0.2 mM, suggesting strong positive homotropic cooperativity

among its five predicted Ca2+-binding sites (Figure 4, Table 1). Notably, the two

inactivating mutations showed increases in EC50 and disruption of the CaSR’s

L-Phe and Ca2+ Regulate Disease-Related CaSR Mutants
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Figure 2. Functional studies of disease-related CaSR mutations in individual HEK293 cells. The various
panels show representative oscillation patterns from single cells. HEK-293 cells transfected with CaSR or one
of its mutants were loaded with Fura-2 AM for 15 min. [Ca2+]i was assessed by monitoring emission at 510 nm
with excitation alternately at 340 or 380 nm as described in Methods. Each experiment was carried out with or
without 5 mM L-Phe and began in Ca2+-free Ringer’s buffer (10 mM HEPES, 140 mM NaCl, 5 mM KCl, and
1.0 mM MgCl2, pH 7.4), followed by stepwise increases in [Ca2+]o until [Ca

2+]i reached a plateau (up to 30 mM
[Ca2+]o).

doi:10.1371/journal.pone.0113622.g002

L-Phe and Ca2+ Regulate Disease-Related CaSR Mutants
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positive homotropic cooperativity, with a change in the monophasic [Ca2+]o-

induced [Ca2+]i response curves to a biphasic one (L173P) or a decrease in Hill

number for P221Q, accompanied by an increase of EC50 to 5.2¡0.4 mM

(Figure 4, Table 1).

Activation of the Gq/11 pathway by GPCRs activates phospholipase C (PLC),

which induces an increase in [Ca2+]i caused by the associated accumulation of

inositol phosphates (IPs) [3]. Thus the activation of PLC in response to increases

in [Ca2+]o in cells transiently transfected with WT CaSR were assessed by

Figure 3. Frequency distribution of oscillation parameters in HEK293 cells transfected with CaSR or its mutants. The pattern of the [Ca2+]i response
in each cell (minimum of 40 cells) was analyzed. a. The [Ca2+]o at which individual cells started to oscillate was recorded. The X-axis comprises 1.0 mM to
8.0 mM [Ca2+]o for WTand for mutants L173F and P221L, 1.5 mM to 10.0 mM [Ca2+]o for P221Q or 7.5 mM to 25.0 mM for mutant L173P. b. The frequency
of the individual cell oscillation patterns was investigated. For experiments without L-Phe, the peaks per minute were recorded at the levels of [Ca2+]o at
which the majority of the cells (.50%) started oscillating. Specifically, for the gain-of-function mutants, the peaks per minute were recorded at 2.5 mM
[Ca2+]o, while for loss-of-function mutants, the frequency was analyzed at 15.0 mM [Ca2+]o for L173P and 5.0 mM [Ca2+]o for P221Q. c. The [Ca2+]o at which
the [Ca2+]i oscillations began to reach a plateau was recorded. Empty bar: in the absence of L-Phe; Black bar: in the presence of 5 mM L-Phe.

doi:10.1371/journal.pone.0113622.g003
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measuring the accumulation of IP1 as an index of PLC activation Figure 1c &

Figure 5). The EC50 for the stimulation of IP1 accumulation was 2.9¡0.3 mM,

similar to the EC50 calculated from the [Ca2+]i responses (3.0¡0.2). As with their

Ca2+
i responses, L173P and P221Q exhibited impaired [Ca2+]o–stimulated IP1

accumulation as reflected by the increases in their EC50s, 10.7¡1.0 mM and

6.1¡0.3 mM respectively, vs. 2.9¡0.3 mM for the WT) (Figure 5, Table 2). In

contrast, the L173F and P221L mutants showed substantial decreases in their

EC50s to 1.2¡0.1 mM and 1.1¡0.1 mM, respectively (Table 2).

We further examined the effects of [Ca2+]o on mitogen-activated protein

kinases (MAPK) (ERK1/2) activation. Exposure of WT CaSR-transfected HEK293

Table 1. Summary of cellular responses of HEK293 cells transiently transfected with WT CaSR or disease related mutants.

Mutants EC50[Ca
2+]O Hill coefficient Frequency

w/o L-Phe with 5 mM L-Phe w/o L-Phe with 5 mM L-Phe w/o L-Phe with 5 mM L-Phe

WT 3.0¡0.2 1.9¡0.3* 3.7¡0.3 5.0¡0.7* 1.3¡0.1 2.1¡0.1*

L173F 1.9¡0.2# 1.6¡0.1 3.3¡0.1 3.7¡0.3 1.7¡0.1# 1.9¡0.1

P221L 2.0¡0.1# 1.7¡0.1 3.2¡0.2 2.8¡0.2 1.6¡0.1# 1.8¡0.2

L173P (Phase 1) 3.8¡0.3 3.1¡0.2 3.3¡0.6 2.5¡0.2 1.3¡0.1 1.8¡0.2*

L173P (Phase 2) 13.0¡0.3 12.2¡0.2* 3.6¡0.4 5.8¡0.3

P221Q 5.2¡0.4# 3.7¡0.4* 2.4¡0.4# 4.1¡0.7* 1.5¡0.1 2.2¡0.1*

The average levels of [Ca2+]o at which cells started to exhibit [Ca2+]i oscillations were recorded for WTor each mutant CaSR. For the oscillation frequencies
in the absence of L-Phe, peaks per minute were measured at the level of [Ca2+]o at which more than 50% cells started to oscillate; when L-Phe was added,
frequencies were recorded at the same [Ca2+]o as their counterparts without L-Phe. Specifically, the frequencies of WT was measured at 3.0 mM [Ca2+]o, at
2.5 mM [Ca2+]o for L173F and P221L; at 15.0 mM [Ca2+]o for L173Pand at 5.0 mM [Ca2+]o for P221Q. Curve-fitting was performed using the Hill equation.
The data were obtained from three experiments for each construct. Values are means ¡ S.E. EC50 and Hill numbers obtained from the cell population assay
by fitting plots using the Hill equation. # indicates significance with respect to wild type CaSR in the absence of L-Phe, p,0.05 (ANOVA, Dunnett test); *

indicates significance with respect to the corresponding mutants in the absence of L-Phe, p,0.05 (two-way ANOVA).

doi:10.1371/journal.pone.0113622.t001

Figure 4. L-Phe modulates the [Ca2+]o concentration response curves in CaSR-transfected HEK293 cells. The [Ca2+]i responses of HEK293 cells
transiently overexpressing WT CaSR or disease-related mutations were measured using Fura-2AM during stepwise increases in [Ca2+]o from 0.5 to 30 mM
with or without L-Phe as above. The ratio of light emitted at 510 nm upon excitation alternately with 340 or 380 nm was normalized to the maximum
response. And the average [Ca2+]i responses at various [Ca2+]o were normalized and plotted against [Ca2+]o and further fitted using the Hill equation. Open
marker: in the absence of L-Phe; Closed marker: in the presence of 5 mM L-Phe.

doi:10.1371/journal.pone.0113622.g004
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cells to increasing concentrations of [Ca2+]o in the range of 0.0-,2.0 mM for

10 minutes had little effect on the phosphorylation of p44/42 ERK. Greater

increases of [Ca2+]o resulted in the accumulation of p44/42 ERK, which exhibited

a maximum response at 8.0 mM [Ca2+]o. Immunoblots of [Ca2+]o–induced

increases in ERK activity were further quantified using ImageJ and plotted against

[Ca2+]o. The data were then fitted using the Hill equation, giving an EC50 of

around 3.0¡0.1 mM, which is close to the result measured using intracellular

calcium responses. The mutants L173P and P221Q also impaired the [Ca2+]o-

triggered ERK activity of the CaSR. More than 8.0 mM [Ca2+]o was needed in

order to induce the phosphorylation of ERK1/2 for both mutants (Figure 6). For

the activating mutation, L173F, a phosphorylated ERK1/2 signal could be detected

at 2.0 mM [Ca2+]o, which was in line with its enhanced intracellular calcium

response compared to WT CaSR. The mutant P221L also potentiated [Ca2+]o-

Figure 5. L-Phenylalanine potentiates [Ca2+]o-induced IP1 accumulation. IP1 accumulation was measured using the IP-One ELISA Kit as detailed in
Methods. Left: Changes in IP1 accumulation were measured in response to incubation with 0, 1.0, 2.0, 3.0, 5.0 and 7.5 mM [Ca2+]o in HEK293 cells
transfected with WT CaSR, or with mutants L173F or P221L. For mutant L173P, IP1 accumulation was measured in response to 0, 3.0, 5.0, 7.5, 10.0, 15.0,
20.0 and 25.0 mM [Ca2+]o; for mutant P221Q, the IP1 responses at 0, 3.0, 5.0, 7.5, 10.0, 15.0 mM [Ca2+]o were recorded. The IP1 response-calcium
concentration responses were fitted using Hill equation as described in Methods.

doi:10.1371/journal.pone.0113622.g005

Table 2. Summary of EC50s from experiments measuring IP1 accumulation and ERK1/2 phosphorylation.

Mutants EC50 (IP1-Elisa) EC50 (ERK1/2 activity)

Without L-Phe With L-Phe With L-Phe Without L-Phe With L-Phe

WT 2.9¡0.3 2.0¡0.1* 3.0¡0.1 1.9¡0.1*

L173F 1.2¡0.1# 1.0¡0.1 2.7¡0.1# 1.6¡0.1*

P221L 1.1¡0.1# 0.9¡0.1 2.2¡0.3# 1.7¡0.2

L173P 10.7¡1.0# 9.0¡0.9 14.9¡1.0# 13.5¡0.8

P221Q 6.1¡0.3# 4.5¡0.4* 11.9¡0.3# 9.5¡0.4*

HEK293 cells were transiently transfected with the WT CaSR or disease-associated CaSR mutants. Cells were then treated with various levels of [Ca2+]o.
The EC50s of [Ca2+]o-IP1 responses and the -[Ca2+]o-ERK1/2 phosphorylation activity responses were obtained from curve fitting using the Hill equation as
mentioned in Method. # indicates significance with respect to wild type CaSR, p,0.05 (ANOVA, Dunnett test); * indicates significance with respect to the
corresponding mutants in the absence of L-Phe, p,0.05 (two-way ANOVA).

doi:10.1371/journal.pone.0113622.t002
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evoked ERK1/2 activity in the transfected cells, approaching a maximum at

3.0 mM [Ca2+]o.

Disease-associated mutations affect the heterotropic positive cooperativity

induced by L-Phe on the CaSR

We assessed the impact of L-Phe on [Ca2+]o–induced changes in [Ca2+]i in

HEK293 cells transfected with WT CaSR in our recent work [12], however, it was

not clear how the disease-associated mutations would influence the heterotropic

positive cooperativity generated by L-Phe. For the majority of WT CaSR-

transfected HEK293 cells, [Ca2+]i oscillations first began at 1.5 mM [Ca2+]o and

ended at 3.0 mM [Ca2+]o in the presence of 5 mM L-Phe, and the oscillation

frequency at 3.0 mM [Ca2+]o increased to 2.1¡0.1 peaks/min, which was

significantly higher than the 1.3¡0.1 peaks/min observed in the absence of L-Phe

(Figure 3). For the loss-of-function mutants, cells transfected with mutant L173P

started oscillating at 10.0 mM [Ca2+]o with 5.0 mM L-Phe (Figure 3). L-Phe

increased the frequency of the L173P mutant significantly from 1.3¡0.1 to

1.8¡0.2 peaks/min at 15.0 mM [Ca2+]o in the presence of L-Phe (Figure 3b &

Figure 6. L-Phe potentiates [Ca2+]o-activated ERK signaling in CaSR-transfected HEK293 cells. HEK-293 cells transfected with WT CaSR or its
mutants were incubated in serum-free high glucose MEM medium containing 0.2% BSA overnight. Cells were washed with Hank’s balance salt solution
(HBSS) and then incubated in the presence of various Ca2+ concentrations (0.0-,25.0mM) in the absence or presence of 5 mM L-phenylalanine for 10 min
at 37˚C. The incubations were stopped by exposure to the lysis buffer and processed for SDS/PAGE and Western blotting as described in the Methods. The
Western blot results were further quantified using Image J. All [Ca2+]o-concentration response curves were normalized to the maximum response in each
individual experiment. The Hill equation was employed to fit the data. Markers: [Ca2+]o only; closed markers: with L-Phe.

doi:10.1371/journal.pone.0113622.g006
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Table 1). In most cells, the [Ca2+]i oscillations stopped at 25.0 mM [Ca2+]o

(Figure 3c). In contrast, without L-Phe, 80% of the cells were still oscillating at

30 mM [Ca2+]o. For the P221Q mutant, addition of 5 mM L-Phe at 5.0 mM

[Ca2+]o decreased the threshold for initiation of [Ca2+]i oscillations from 5.0 mM

to 3.5 mM [Ca2+]o, increased the oscillation frequency from 1.5¡0.1 peaks/min

to 2.2¡0.1 peaks/min, and reduced the [Ca2+]o required to reach the ending

point. Regarding the gain-of-function mutations (L173F, P221L), L-Phe lowered

the threshold for the termination of [Ca2+]i oscillations, but barely shifted the

frequency distribution of their starting points nor significantly increased their

frequencies at 2.5 mM [Ca2+]o (Figs. 2 & 3).

Meanwhile, L-Phe facilitated the response of the WT CaSR to [Ca2+]o by

significantly decreasing the EC50 for [Ca2+]i responses from 3.0¡0.2 mM to

1.9¡0.3 mM (p,0.05, two-way ANOVA) and increasing the Hill coefficient to

5.0¡0.7 mM (Figure 4). Similar analyses were carried out for the four CaSR

mutants. L-Phe shifted the sigmoidal curve to the left producing a lower EC50

(3.7¡0.3 mM) with an increase in Hill number (4.1¡0.7 mM) for mutant

P221Q as measured from the [Ca2+]o-evoked increase in [Ca2+]i. L-Phe did not

left-shift the activation of the L173P mutant by [Ca2+]o to the same extent that it

did with the other loss-of-function mutant, P221Q, potentially because of the

proximity of this residue to the binding site for L-Phe, which might interfere with

L-Phe binding. The disruption of the positive homotropic cooperativity induced

by [Ca2+]o as a result of the Leu to Pro change, which was reflected as a biphasic

concentration response curve, was also not corrected by the addition of L-Phe

(Figure 4). On the other hand, the addition of L-Phe barely induced any further

left-shift in the concentration-response curves of the two gain-of-function CaSR

mutants (p.0.05).

The influence of the L-Phe on the four mutants was also assessed by changes in

IP1 production upon ligand stimulation. The addition of 5 mM L-Phe

significantly elevated the level of IP1 accumulation in cells transfected with WT

CaSR at 2.0 and 3.0 mM [Ca2+]o, resulting in a left-shifted [Ca2+]o-IP1

concentration response curve (EC5052.0¡0.1 mM, p,0.05). In the case of the

mutant P221Q, the EC50 was reduced from 6.1¡0.3 mM to 4.5¡0.4 mM in the

presence of L-Phe (p,0.05). On the contrary, L-Phe failed to reduce the EC50 of

L173P significantly (9.0¡0.9 mM). The EC50s of the IP1 responses for the two

receptors with activating mutations, L173F and P221L, were not altered by L-Phe

either (Figure 5, Table 2). Thus results from the IP1 experiments were consistent

with the [Ca2+]i readouts in terms of EC50.

L-Phe also had an impact on the [Ca2+]o-triggered ERK1/2 activities of WT and

mutant CaSRs in CaSR transfected cells. As shown in Figure 6 and Table 2, the

amount of phosphorylated ERK1/2 was increased significantly by L-Phe at 2.0 mM

[Ca2+]o in the WT CaSR. The ERK1/2 activity of the WT CaSR in the presence of

L-Phe reached a maximum at 4.0 mM [Ca2+]o. Quantitative analysis of the

immunoblots suggests that L-Phe shifted the sigmoidal curves to the left

producing a lower EC50s for [Ca2+]o-evoked ERK activity. In accordance with the

[Ca2+]i responses and the IP1 accumulation readouts, the addition of 5 mM L-Phe
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shifted the [Ca2+]o-stimulated p-ERK1/2 concentration response curve of mutant

P221Q to the left, resulting in a decrease in the EC50 from 11.9¡0.3 mM to

9.5¡0.4 mM (p,0.05), but had little influence on the activity of mutant L173P

(Figure 6, Table 2). On the other hand, the maximum ERK1/2 activity in cells

transfected with the L173F mutant was achieved at 3.0 mM [Ca2+]o with 5.0 mM

L-Phe, significantly shifting the [Ca2+]o-triggered [Ca2+]i concentration response

curve to the left. For the mutant P221L, the addition of L-Phe failed to activate the

ERK1/2 signaling at lower levels of [Ca2+]o, but the maximal p-ERK1/2 activity was

enhanced ,15% in the presence of L-Phe. The differences of the ERK activity

results compared with the IP1 readouts suggested that L-Phe may differentially

change the heterotropic cooperativity via multiple signaling pathways.

CaSR mutants exhibit different sensitivities to L-Phe

To determine whether or not the distinctive effects shown by L-Phe on different

mutants are due to changes in their apparent affinities for this amino acid,

concentration responses for L-Phe at a physiological level of 1.5 mM [Ca2+]o were

first compared among cells transfected with different CaSR mutants. Figure 7

shows that at 1.5 mM [Ca2+]o, the loss-of-function mutant L173P exhibited a

lower sensitivity (EC5055.5¡0.3 mM) to L-Phe compared to WT and the other

mutants (all EC50s,5.0 mM). Since the influence of L-Phe might, to some extent,

depend on the extracellular calcium concentration, the apparent affinities of L-

Phe for the two loss-of-function mutants were further analyzed at levels of [Ca2+]o

equal to their respective EC50s for [Ca2+]o, specifically 15.0 mM [Ca2+]o for L173P

and 5.0 mM [Ca2+]o for P221Q. P221Q exhibited a reduced EC50 for the L-Phe

response (EC5052.5¡0.2 mM, p,0.05) at 5.0 mM [Ca2+]o compared with EC50

for L-Phe measured at 1.5 mM [Ca2+]o (EC5054.5¡0.4 mM), while L173P

Figure 7. Sensitivity of various CaSR mutants to L-Phe in HEK293 cells. a. HEK-293 cells transfected
with CaSR or its mutants were loaded with Fura-2 AM for 15 min. The intracellular Ca2+ level was assessed
by monitoring emission at 510 nm with excitation alternately at 340 or 380 nm using fluorescence microscopy
as above. Each experiment started with 1.5 mM mM Ca2+ followed by stepwise increases in the level of L-Phe
(up to 12.0 mM) while the [Ca2+]o was maintained at 1.5 mM. b. The sensitivity of P221Q and L173P to L-Phe
were compared at 5.0 mM [Ca2+]o or 15.0 mM [Ca2+]o, respectively.

doi:10.1371/journal.pone.0113622.g007
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retained a similar sensitivity to L-Phe regardless of the extracellular calcium

concentration (EC5054.9¡0.5 mM, p.0.05) (Figure 7, Table 3).

Computational simulations reveal different dynamic behaviors of the four

mutants

The correlated motions in Figure 8 illustrate the molecular dynamic motions of

WT CaSR and its mutants obtained from computational simulations. In the

modeled WT structure, Site 1 has strong correlated motions with sites 2, 3 and 4,

shown in blue (negative correlated motions between a pair of residues signify

motions in opposite direction) and red (positive correlations, which are

movements in the same direction) (Figure 8, top two panels). We also have

reported in our earlier work that the presence of both L-Phe and Ca2+ in site 1

produces greater correlated motions among the Ca2+-binding sites compared with

L-Phe alone in site 1 [12]. Interestingly, the loss-of-function mutations, L173P

and P221Q, exhibit less correlated motions compared to the WT CaSR as

demonstrated by a decrease in the negative (blue) and/or positive correlated

motions (Figure 8, bottom panel). On the other hand, the correlated motions of

the gain-of-function mutants, L173F and P221L, are dramatically increased in

regions similar to those of the WT correlated motions in the presence of L-Phe,

indicating an enhancement of correlated motions between the respective residues

in these two mutants (Figure 8, middle panel). A closer analysis of the correlated

motions of L173F and P221L reveals that the negative correlations between Site 1

and Site 3 and between Site 1 and Site 2 observed in the WT correlation map

become positive correlations in the gain-of-function mutants indicating that the

mutations might have profound impacts on the dynamic properties of the CaSR-

ECD. Especially for P221L, strong negative correlations between lobe 1 and lobe 2

are observed as indicated by the abundant blue area between residues 200–300 and

residues 24–170. These results indicate that residues Leu173 and Pro221 play pivotal

roles in modulating the molecular connectivity between the binding sites for

Table 3. Summary of EC50s of concentration-response curves for L-Phe at different [Ca2+]o.

Mutants EC50 (at 1.5 mM [Ca2+]o)

WT 3.7¡0.4

L173F 3.2¡0.2

P221L 4.3¡0.3

L173P 5.5¡0.3# (4.9¡0.5)

P221Q 4.5¡0.4 (2.5¡0.2*)

The [Ca2+]i responses of HEK-293 cells transfected with CaSR or its mutants upon stepwise increases of L-
Phe in the presence of 1.5 mM [Ca2+]o were recorded. For L173P and P221Q, the L-Phe induced intracellular
change were also measured in the presence of a level of high [Ca2+]o corresponding to their EC50 values for
the [Ca2+]o, specifically 15.0 mM [Ca2+]o for mutant L173P and 5.0 mM for P221Q. The results are shown in
the brackets. The EC50s were calculated from the concentration-response curves fitted using the Hill
equation. # indicates significance with respect to wild type CaSR, p,0.05 (ANOVA, Dunnett test); * indicates
significance with respect to the corresponding mutants in the presence of 1.5 mM [Ca2+]o, p,0.05 (two-way
ANOVA).

doi:10.1371/journal.pone.0113622.t003
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[Ca2+]o. In order to examine the possibility that the effects of inactivating

mutations of the CaSR can be cancelled by those of activating mutations through

molecular correlated motions, two double mutations, L173F/P221Q and L173P/

P221L have been analyzed. We found that L173F/P221Q behaved like WT CaSR,

thereby exhibiting a ‘‘cancelling’’ effect (Figure S1a), while L173P/P221L exhibited

oscillation patterns similar to those of the L173P mutant, suggesting that the

activating mutant P221L cannot overcome the inactivating effect of L173P (Figure

S1b). These results suggest that mutations close to calcium binding Site 1 may

play key roles in modulating correlated motions of the CaSR.

The docking of L-Phe to CaSR mutant P221Q engendered a more correlated

molecular dynamics features similar to WT CaSR ECD, suggesting that the

receptor is converted into an active conformation. Intriguingly, the other inactive

mutant L173P did not exhibited dramatic alterations in its correlated motion in

Figure 8. Correlation map of the modeled WT and mutant CaSR ECD structures. The correlation maps are depicted based on molecular dynamic (MD)
simulations of the WTand mutant CaSR ECD structures in the apo form or in the presence of Ca2+ and L-Phe. The X axis and Y axis are residue numbers of
the CaSR ECD sequence minus twenty four. The strongest negative correlation is given the value -1, while the strongest positive correlation is defined as
+1. Residues that have the strongest negative correlated motions are shown in blue, while those involved in positive correlated motions are shown in red.
Green indicates no apparent correlated motion between the two residues. The correlated motions between calcium binding site 1 and the other calcium
binding sites are mapped onto the CaSR ECD models as shown in the top right panel.

doi:10.1371/journal.pone.0113622.g008
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response to L-Phe compared to P221Q. This result suggests that the difference in

the influence of L-Phe on potentiating the activity of the CaSR mutants may rely

on the intrinsic molecular dynamic connectivity that is disrupted by mutant

L173P. It is worth noting that the activating mutant L173F also showed enhanced

correlated motions, which could be an explanation for the left shift curve of the

ERK activity. The addition of L-Phe was unable to make the profile of mutant

P221L into a more dramatically active state, which correlated well with the in vitro

studies, suggesting the mutation is already in a ‘‘fully active’’ state upon the

binding with Ca2+ similar as WT CaSR with both Ca2+ and L-Phe.

Principal component analysis (PCA) separates out the protein motions into

principal modes ranked according to their relative contributions [27]. The

analysis was done on the trajectories of the four mutations and the WT CaSR

from the molecular dynamics simulations in order to predict the effect of the

mutations on the response of L-Phe and Ca2+ at the atomic level (Figure 9).

Projection of the trajectories of the CaSR mutants in both the apo forms (upper

panel) and the holo forms (lower panel) onto the first three modes that accounted

for the majority of the total fluctuations is shown in Figure 9. In the absence of

Ca2+ and L-Phe, the conformations sampled by the CaSR mutants are similar to

that of the WT CaSR. However, in the L-Phe and Ca2+-loaded forms, the

conformations of the CaSR mutants L173P and L173F are distinguishable from

the other mutants and WT CaSR (Figure 9). The results suggest that Ca2+ and L-

Figure 9. Principal component analysis (PCA) of the CaSR ECDs. The trajectories of the molecular
dynamics simulations were analyzed using principal component analysis (PCA), which separates out the
motions of the CaSR ECD into principal modes ranked according to their relative contributions. The first three
principal modes were included in the present study to analyze the four CaSR mutants and the wild type: WT
(black), L173F (green), presence P221L (magenta), L173P (red), P221Q (blue).

doi:10.1371/journal.pone.0113622.g009
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Phe might shift the population of conformational ensembles of mutant L173P and

L173F in a different way than in WT CaSR or in the other two mutants,

supporting the essential role for the residue Leu173 in the molecular connectivity

underlying the Ca2+ - and Phe-mediated functional cooperativity of CaSR.

Discussion

Loss-of-function mutations impair the functional cooperativity of

the CaSR

The CaSR hinge region is considered to be crucial for the sensing of agonists (e.g.,

polyvalent cations and amino acids) [19, 28]. Mutations near Ca2+-binding site 1

are hypothesized to influence the functional cooperativity of the entire receptor.

In vitro studies showed that the L173P and P221Q mutants produce a receptor

with reduced positive homotropic cooperativity and impaired capability to sense

[Ca2+]o, while the L173F and P221L mutants enhance the sensitivity of the CaSR

to [Ca2+]o compared to the WT receptor, but barely change the cooperativity of

the receptor. The results with the loss-of-function mutants indicate that Leu173

and Pro221 are important in maintaining the positive homotropic cooperativity

among the receptor’s calcium-binding sites. Conversely, the gain-of-function

mutants show that these residues also are important for restraining the receptor

from assuming its most active form (e.g., that seen in the WT CaSR in the

presence of both high [Ca2+]o and L-Phe). Thus unlike mutations of residues that

cause only gain- or loss-of-function, Leu173 and Pro221 serve dual functions,

perhaps reflecting their key locations in the cleft between the receptor’s two lobes

and their proximities to the binding sites for both [Ca2+]o and L-Phe.

[Ca2+]i oscillations have been postulated to be the result of complex responses

from multiple signaling pathways. The [Ca2+]o-triggered [Ca2+]i oscillation

pattern is believed to be modulated by the activity of phosphoinositide pathway

[29] as well as a negative feedback loop involving the inhibitory effect of protein

kinase C (PKC) on IP3 production [30]. Downstream intracellular signaling

responses, such as the production of IP1 and the activity of ERK1/2, which will be

discussed later, can be reflected in the oscillation patterns associated with the

different disease-related mutations. Although most research has focused on

intracellular calcium mobilization in HEK293 cells heterologously expressing the

CaSR, CaSR-induced [Ca2+]i oscillations have also been found in cells with

endogenously expressed CaSR, for instance in parathyroid cells [31], bovine

anterior pituitary cells [32], opossum kidney (OK) cells [33] and medullary

thyroid carcinoma cells [34]. Oscillations in [Ca2+]i modulate not only the rate of

parathyroid hormone (PTH) secretion, but also gene expression and other

processes [35–38]. The pattern of [Ca2+]i oscillations is thus one of the most

important signatures reflecting the state of CaSR activity. In the present study, we

showed that the inactive mutants required higher [Ca2+]o to trigger intracellular

[Ca2+]i oscillations compared to the WT CaSR, while the active mutants needed

lower [Ca2+]o to initiate oscillations. The oscillation frequency of the inactive
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mutants remained similar to that of the WT CaSR, but higher [Ca2+]i oscillations

frequencies were observed in HEK293 cells transfected with gain-of-function

mutations. As [Ca2+]o is increased, the [Ca2+]i oscillations cease and reach a

plateau in CaSR-transfected cells as the desensitization process occurs and/or

there is depletion of [Ca2+]i stores. Although the loss-of-function mutation L173P

still oscillated at 30.0 mM [Ca2+]o, considering the elevated and broad range of its

sensitivity to [Ca2+]o, it is possible that a plateau would be reached at even higher

levels of [Ca2+]o.

Our studies of CaSR-mediated accumulation IP1 (a metabolite of IP3) and

activation of the ERK1/2 pathways in HEK293 cells transfected with the various

CaSR mutants conveyed two messages: Firstly, the mutations caused changes in

the patterns of [Ca2+]i oscillations that at least partially involve activation of the

Gaq/11 pathway. The changes in the accumulation of IP1 upon stimulation with

various concentrations of [Ca2+]o correlated well with [Ca2+]i changes. Secondly,

high [Ca2+]o-evoked increases in ERK1/2 activities of WT-CaSR and its four

mutants were in accordance with the accumulation of IP1. Stimulation of the

ERK1/2 activity in CaSR-transfected HEK293 cells has been reported to involve

PKC-mediated as well as a PTX-sensitive, tyrosine kinase-dependent pathways

[39]. Although it is believed that the carboxyl terminus of the protein is involved

in the activation of MAPK signaling by interacting with the scaffold protein,

filamin A [40, 41], other data showed that that alterations in the extracellular

domain can also affect the ERK cascade, which is in agreement with previous

studies [42]. Since all the mutations studied here were expressed at similar levels

on the cell membrane (Figure 1b), these downstream signaling changes may at

least partially be contributed by the disruption of cooperativity among different

calcium binding sites introduced by different mutations. On the other hand, the

gain-of-function mutations may increase the stability the receptor as suggested by

other studies [43], or they possibly induce more correlated motions among the

calcium-binding sites as suggested by the dynamic cross-correlation map.

L-Phe-induced heterotropic cooperativity rescues activity of the

CaSR

In the current study, we showed that L-Phe could affect one or two of the three

parameters depicting the [Ca2+]o triggered [Ca2+]i oscillation patterns in all of the

mutants as measured in individual cellular responses (e.g., [Ca2+]i oscillation

starting points, ending points and [Ca2+]i oscillation frequencies). The alterations

in the oscillation patterns after the introduction of the allosteric activator could be

the result of the activation of signaling downstream of Ga12/13 or a combined

effect with the positive heterotropic cooperativity between the multiple Ca2+

binding sites induced by L-Phe. The interaction between CaSR and L-Phe has

been reported to modulate the Ga12/13-RhoA pathway [44]; however, L-Phe could

also potentially enhance [Ca2+]o-induced alterations in intracellular signaling

pathways through Gq/11 pathway as reflected by the IP1 accumulation assay.
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The present study also confirms that the ERK signaling pathway in CaSR-

transfected HEK293 cells can be modulated not only by [Ca2+]o but also by the

positive allosteric modulator, L-Phe [45]. It should be noted that the ability of L-

Phe to enhance the intracellular responses of the various signaling pathways varied

between different mutations. L-Phe enhanced the maximum responses of the ERK

signaling pathway to a greater extent than it altered the apparent affinities in the

two gain-of-function mutants, although it barely showed any influence on the

[Ca2+]o-triggered [Ca2+]i and IP1 responses for these mutants, which may explain,

in part, the dramatic changes in correlated motions from the computational

simulation results using molecular dynamics. As a signaling messenger further

downstream than either IP1 or [Ca2+]i, the phosphorylation of ERK1/2 may not

merely reflect activation of the Gq/11 pathway, but could be contributed to by

other G-proteins (e.g., Gi). In agreement with the in silico results, L-Phe exhibited

less effect on the regulation of the ERK1/2 pathway in mutant L173P. The

predicted L-Phe-binding site has been reported to be located near the hinge region

between lobe 1 and lobe 2 and to involve residues S169A/S170A/S171A [46].

Leu173 is located within 5 Å of this region. The Leu to Pro change could

potentially generate additional steric effects on the closure of lobe 1 and lobe 2 so

that addition of exogenous L-Phe has relatively little impact on the CaSR’s

response to changes in [Ca2+]o. Thus, the hetero-cooperativity between the

allosteric modulator and calcium binding sites could be disturbed, resulting in the

lack of a left-shifted concentration-response curve in response to [L-Phe].

Disease-associated mutations influence the molecular

connectivity between the Ca
2+
-binding sites of the CaSR as

revealed by molecular dynamic simulations

Based on all of the in vitro results and the in silico simulations, we propose a

model to illustrate the possible mechanism by which the disease-associated

mutations affect the function of CaSR and how their activities can be modulated

by Ca2+ and L-Phe through the molecular connectivity that is encoded at the

hinge region of the ECD of the protein. As shown in Fig 10, there are four

functional states of the CaSR. In the absence of Ca2+, WT CaSR is at the basal state

can be converted to the active state upon Ca2+ binding to site 1 at the hinge

region. Subsequent binding of L-Phe at the adjacent hinge region further

strengthens molecular connectivity and elevates the receptor to a ‘‘fully active’’

status in the presence of high [Ca2+]o by a heterotropic positive cooperative

mechanism. Mutations close to the hinge region such as those at Leu173 and

Pro221 affect the overall dynamic correlated motions of the respective mutant

receptors and the Ca2+-induced homotropic cooperativity, which could further

influence the conformation of the receptor. The inactivating mutation L173P

impairs the molecular connectivity in the WT CaSR and cannot be rescued by L-

Phe. On the other hand, the inactivating mutation P221Q weakens the

connectivity but can be partially rescued by binding Phe with a resultant activity

similar to the basal activity of the WT CaSR. In contrast, the gain-of-function
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mutants L173F and P221L may already have been converted to the active state

with dynamic properties similar to that of Ca2+- loaded WT CaSR. They can be

further activated upon binding extracellular Ca2+ to reach a state close to the

‘‘fully active’’ state (Phe + [Ca2+]o in the WT) that is insensitive to further

Figure 10. Schematic representation of the mechanisms underlying the effects of the mutations on the
CaSR and the modulation of receptor activity by extracellular Ca2+ and L-Phe. Ca2+ and L-Phe modulate
the activity as well as the cooperativity of CaSR (the color changes of the receptor from white to red indicates
an increase in functional activity). Elevating [Ca2+]o, e.g., to 3.0 mM, is proposed to change the basal CaSR
status into an active form in a positive homotropic cooperative manner and further trigger [Ca2+]i oscillations.
L-Phe binds to the hinge region between lobe 1 and lobe 2, modulating the receptor together with Ca2+ in a
positive heterotropic cooperative way. This could potentiate conversion of the receptor to a ‘‘fully active’’ form
associated with a higher frequency of [Ca2+]i oscillations and a left-shifted EC50. Loss-of-function CaSR
mutants (indicated by white color) could cause a disruption of the cooperativity among the various Ca2+-
binding sites (dashed arrows). [Ca2+]o at 3.0 mM does not trigger [Ca2+]i oscillations in the mutant CaSRs.
The impaired receptor function and the cross-talk between Ca2+-binding sites can be at least partially rescued
for some mutants by L-Phe (e.g.P221Q). However, if the mutation interferes the interaction between CaSR
and L-Phe, the function of the receptor may not be fully recovered (e.g.L173P). CaSR gain-of-function
mutants (left) exhibit enhanced correlated motions (double line arrows) and their activity is not further
potentiated by L-Phe, potentially due to a ceiling effect.

doi:10.1371/journal.pone.0113622.g010
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activation by L-Phe achieving an apparent ‘‘ceiling’’ represented by the maximal

achievable activity of the CaSR.

The results from PCA may also provide an explanation as to why L-Phe

interacts preferably with the P221Q mutant. L-Phe could not effectively shift the

inactive population of conformational ensembles of L173P to an active ensemble

of conformations as it did with the other inactivating mutant and WT. However,

whether the in silico simulations provide a novel method to predict mutational

effects on CaSR will ultimately require the kind of structural detail available for

the mGluRs, whose structures have been solved. Here, the model structure does

not take into consideration the possible interactions between the ECD and the

extracellular loops and/or transmembrane domain as well as the intracellular

domains. Thus, caution is merited in over-interpreting the in silico results.

Nevertheless, the predicted structural motions may help to identify the mutations

or ligands that produce increased or diminished coupling among specific

structural elements within the CaSR ECD. While this type of analysis is limited at

the moment to the environment of the orthosteric site, this strategy could

facilitate drug design for modulating the functions of disease-related mutations

affecting the CaSR, as well as other members of the family C GPCRs.

The distinctive combinatorial effects of L-Phe and [Ca2+]o on different mutant

CaSRs also suggests that ligand selectivity at the orthosteric site and receptor

activity at non-orthosteric sites could both contribute to the function of the

receptor. This feature of the adjacent orthosteric binding sites and allosteric

regulatory sites that cooperatively regulate the molecular connectivity may be

shared by other members of the family C GPCRs [47, 48]. In addition to the Ca2+-

sensing receptor, [Ca2+]o regulates 14 of the other members of the family C G

protein-coupled receptors (GPCRs), including the metabotropic glutamate

receptors (mGluR), c-aminobutyric acid GABAB receptors and receptors for

pheromones, amino acids and sweet substances [1, 49–55]. The observed

molecular modulatory mechanism may be shared by other members of the family

C GPCRs [47, 48]. For instance, the analyses of multiple point mutations in the

taste receptors (T1R1/T1R3) suggested that the combination of the two distinct

determinants selectivity at the ligand binding site and receptor activity at allosteric

sites may mediate the ligand specificity of T1R1/T1R3 [56].

In conclusion, through analysis of [Ca2+]i oscillations and the [Ca2+]o- and L-

Phe triggered downstream signaling changes, functional positive cooperativity of

CaSR was revealed to be disrupted in the identified FHH-associated CaSR

mutations, L173P and P221Q, but not in the ADHH related mutations, L173F and

P221L. The addition of L-Phe rescued the function of P221Q by inducing

heterotropic positive cooperativity. The distinctive correlated motions of the gain-

of-function mutations, on the one hand, and the loss-of-function mutations, on

the other, and the potential utility revealed by the molecular dynamic simulation

in providing insights into the mechanism for the disease-associated functional

alterations in the receptor may also apply to other GPCR proteins.

L-Phe and Ca2+ Regulate Disease-Related CaSR Mutants

PLOS ONE | DOI:10.1371/journal.pone.0113622 November 24, 2014 23 / 27



Supporting Information

Figure S1. Functional studies of the CaSR double mutations in individual

HEK293 cells. The panels show representative oscillation patterns from single

cells. HEK-293 cells transfected with L173F/P221Q or L173P/P221L were loaded

with Fura-2 AM for 15 min. [Ca2+]i was assessed by monitoring emission at

510 nm with excitation alternately at 340 or 380 nm as described in Methods.

Each experiment began in Ca2+-free Ringer’s buffer (10 mM HEPES, 140 mM

NaCl, 5 mM KCl, and 1.0 mM MgCl2, pH 7.4), followed by stepwise increases in

[Ca2+]o until [Ca2+]i reached a plateau (up to 30 mM [Ca2+]o). a. Cells were

transfected with pEGFP-N1-CaSR L173F/P221Q. b. Cells were transfected with

pEGFP-N1-CaSR L173P/P221L.

doi:10.1371/journal.pone.0113622.s001 (DOCX)
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