
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

12-5-2006

Scalable Proxy Architecture for Mobile and Peer-to-Peer Networks Scalable Proxy Architecture for Mobile and Peer-to-Peer Networks

Praveena Jayanthi

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Jayanthi, Praveena, "Scalable Proxy Architecture for Mobile and Peer-to-Peer Networks." Thesis, Georgia
State University, 2006.
doi: https://doi.org/10.57709/1059379

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @
Georgia State University. It has been accepted for inclusion in Computer Science Theses by an authorized
administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_theses
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/1059379
mailto:scholarworks@gsu.edu

Scalable Proxy Architecture for Mobile and Peer-to-Peer Networks

by

Praveena Jayanthi

Under the Direction of Sushil k Prasad

ABSTRACT

The growth of wireless telecommunications has stipulated the interest for anywhere-anytime

computing. The synergy between networking and mobility will engender new collaborative applications

with mobile devices on heterogeneous platforms. One such middleware is “SYSTEM ON MOBILE

DEVICES”, SYD developed by the Yamacraw Embedded Systems research team. This type of

middleware is an opening step towards Peer-to-Peer mobile networks. This project envisioned

collaborative applications among mobile devices and PDAs were used as servers. This thesis studies

various existing architectures in mobile computing and their scalability issues. We also proposed new

scalable flexible thick client proxy system FTCPS, an architecture suitable for mobile Peer-to-Peer

networks. Our empirical study showed that FTCPS has low response time compared to other

architectures.

INDEX WORDS: Proxy, Client, Server, Mobile, Peer-to-Peer Networks, Architecture, Scalable, FTCPS

-
SCALABLE PROXY ARCHITECTURE FOR MOBILE AND PEER-TO-PEER NETWORKS

by

Praveena Jayanthi

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

In the College of Arts and Science

Georgia State University

2006

-

Copyright by

Praveena Jayanthi

2006

-
SCALABLE PROXY ARCHITECTURE FOR MOBILE AND PEER-TO-PEER NETWORKS

by

PRAVEENA JAYANTHI

Major Professor: Sushil K Prasad
 Committee: Anu G Bourgeois

 Raj Sunderraman

Electronic Version Approved:

Office of Graduate Studies
College of Arts and Sciences
Georgia State University
December 2006

-
TABLE OF CONTENTS

1. INTRODUCTION..1
1.1 Purpose of examining proxies in computing..1
1.2 Thesis Road-Map..2

2. Proxies in various computing paradigms..3
2.1 Proxy and WWW..3
2.2 Proxy and Mobile Computing..4
2.3 Proxy and Peer-to-Peer Networks...5
2.4 Proxy and Location Based Services..6
2.5 Proxy and Grid Computing...7
2.6 Proxy and Multimedia Applications...8
2.7 Proxy and Middleware..8
2.8 Proxy as a Service...8
2.9 Advantages of using Proxies..9
2.10 Disadvantages of using Proxies..10
2.11 Various Mathematical Distributions and their Implications for evaluating proxies.........10

3. Existing architectures for Mobile Computing..12
3.1 Thin-Client Architecture (Proxy as an agent for Mobile Unit)...12
3.2 Full Client Architecture (No way to handle disconnections)..14
3.3 Client-Server with Proxy ...15
3.4 Hybrid Client-Server with Proxy ...17
3.5 Flexible Thick Client Proxy System (Our Proposal)..20

4. SIMJAVA: Design choice for modeling the simulation...28
4.1 What is SIMJAVA?..28
4.2 The SIMJAVA Design..29
4.3 Overview of SIMJAVA..29

4.3.1 Setting up the simulation ..30
4.3.3 What is the trace of a simulation?...30
4.3.4 Sampling distributions...31
4.3.5 Adding statistical measurements...31
4.3.6 What is a transient condition?...33
4.3.6 Defining a transient condition...33
4.3.7 Defining a termination condition...34

5. Experimental set up FOR SIMULATION AND RESULTS..36
5.1 Thin Client Architecture...36
5.2 Full-Client Architecture..40
5.3 Client Proxy Server System..41
5.4 Flexible Thick Client Proxy Server..43

6. Final Results and Concluding Remarks..48
6.1 Concluding Remarks ...60
6.2. Future Work...60

7. References...62

iv

-
 LIST OF TABLES

Table 1: Trace Statistics..37
Table 2: Residence Time of Client in Thin Client Architecture...38
Table 3: Residence Time of Server in Thin Client Architecture..39
Table 4: Residence Time in Full Client Architecture...40
Table 5: Residence Time of Proxy in Client Proxy Server System..41
Table 6: Residence Time of Client in Client Proxy Server System..42
Table 7: Residence Time of Server in Client Proxy Server System...43
Table 8: Data Structure(HashMap) for the links in the network cluster.......................................44
Table 9: Residence Time of Client in FTCPS..44
Table 10: Residence Time of Proxy in FTCPS...45
Table 11: Residence Time of Server in FTCPS..46

v

-
LIST OF FIGURES

Figure 1: Typical Web Proxy action sequence...3
Figure 2: Proxy and Mobile Computing...4
Figure 3: Proxy Platform..5
Figure 4: Proxy and Peer-to-Peer Networks...6
Figure 5: Proxy and grid computing...7
Figure 6: Proxy Design Pattern...8
Figure 7: Thin-Client Architecture...12
Figure 8: Sequence Diagram of Thin-Client Architecture..13
Figure 9: Full Client Architecture...14
Figure 10: Message Sequence in Full Client Architecture...15
Figure 11: Client-Server with Proxy...15
Figure 12: Message Sequence in Client Proxy Server System...16
Figure 13: Message Sequence in Client Proxy System...17
Figure 14: Hybrid Client-Server with Proxy..18
Figure 15: Message Sequence in Hybrid Client Proxy Server System...19
Figure 16: Message Sequence in Hybrid Client Proxy Server System...20
Figure 17: SyD Architecture...21
Figure 18: Flexible Thick Client Proxy System...22
Figure 19: Message Sequence in FTCPS when MU1 and MU2 are both connected...................23
Figure 20: Message Sequence in FTCPS when MU2 is disconnected...24
Figure 21: Message Sequence in FTCPS when MU1 is disconnected after making the request to
MU2..25

Figure 22: Message Sequence when MU1 is disconnected after making the request to MU2
which is disconnected...26
Figure 23: Residence Time of a Proxy in Thin Client Architecture...38
Figure 24: Residence Time of a Client in Thin Client Architecture...39
Figure 25: Residence Time of a Server in Thin Client Architecture..39
Figure 26: Residence Time of 100 - 500 Nodes...41
Figure 27: Residence Time of Proxy in a Client Proxy Server System..42
Figure 28: Residence Time of Client in Client Proxy Server System..42
Figure 29: Residence Time Server 100 - 500 Nodes..43
Figure 30: FTCPS Client Residence Time 100 – 500 Nodes...45
Figure 31: FTCPS Proxy Residence Time 100 - 500 Nodes..46
Figure 32: FTCPS Server Residence Time 100 – 500 Nodes...47
Figure 33: Residence Time of Client for 30% disconnection probability....................................48
Figure 34: Residence Time of Client for 50% disconnection probability....................................49
Figure 35: Residence Time of Client for 70% disconnection probability....................................50
Figure 36: Residence Time of Proxy for 30% disconnection probability.....................................51
Figure 37: Residence Time of Proxy for 50% disconnection probability.....................................52
Figure 38: Residence Time of Proxy for 70% disconnection probability.....................................53
Figure 39: Residence Time of Server for 30% disconnection probability....................................54
Figure 40: Residence Time of Server for 50% disconnection probability....................................55
Figure 41: Residence Time of Server for 70% disconnection probability....................................56
Figure 42: Response Time across all architectures at 30% disconnection probability.................57
Figure 43: Response Time across all architectures at 50% disconnection probability.................58
Figure 44: Response Time across all architectures at 70% disconnection probability.................59

vi

-
LIST OF ABBREVIATIONS

1. P2P – Peer to Peer Networks

2. SYD- System of Mobile Devices

3. WWW – World Wide Web

4. FTCPS – Flexible Thick Client Proxy System

5. PVRD - Proxy Viewpoints Model-based Resources Discovery

6. SRS – Set of Requirements Specifications

7. RMI - Remote Method Invocation

8. RMIC - Remote Method Invocation Compiler

vii

-

1. INTRODUCTION

Proxy is “substitution”. The concept of proxy has spawned in to many areas of computing

especially WWW and mobile computing. Frequent disconnections and resource dearth are the

challenges faced by the wireless world. A proxy can play the role of FILLER between the wireless and

wired worlds. The synergy between networking and mobility will engender new collaborative

applications with mobile devices on heterogeneous platforms. One such middleware is “SYSTEM ON

MOBILE DEVICES”, SYD developed by the Yamacraw Embedded Systems research team. SYD is a

new paradigm for collaborative application development. SyD consists of a combination of middleware

and clientware technologies that enables application development independent of the specific nature of

the device, data, services, or network (device locations) that the application is targeted to run over. SyD

enables such independent application development through well defined wrapping standards for devices,

data, and services. This thesis aims to evaluate the role of proxies in various computing paradigms, a

retrospection followed by a vision to design a proxy architecture which is scalable and tolerant to

disconnections for SYD best suited for developing extensive collaborative applications.

1.1 Purpose of examining proxies in computing

Proxies have been extensively used as an intermediate computational agent between a

client and the server. They also contributed for the increase in scalability and fault tolerance of a

system. Paradoxically, the more the functionality incorporated into a proxy, the less scalable the

system would become. The complexity and the bottleneck issues are now transferred from the

servers to the proxies. So in light of answering the following questions, we would like to

examine the role of proxies in various computing paradigms. 1) How to avoid performance

degradation? 2) How to increase scalability and fault tolerance of the system? 3) How to

increase the level of transparency to disconnections? This survey would be followed by a study

whose methodical stance is on tangible quantitative methods for the evaluation of existing

architectures. We would also like to propose a new architecture which leverages the benefits of

Mobile, WWW and Peer-to-Peer computing. Our approach is motivated by the goal of

offloading the functionality of proxies and servers to thick clients.

1

-
1.2 Thesis Road-Map

We begin Section 1 by a comprehensive examination of the role of proxies in various

computing paradigms. Then a detailed analysis of functions being offloaded to proxies is

presented. We discuss the relative advantages and disadvantages of using proxies. We then

present existing architectures available in mobile and Peer-to-Peer networks followed by an

empirical study that compares those with our proposed architecture in residence time and

response time metrics. The final section would summarize our findings and present our direction

of future research in this area.

2

-
2. PROXIES IN VARIOUS COMPUTING PARADIGMS

This chapter details the role of proxies in various computing paradigms like, the World

Wide Web, mobile computing, Peer-to-Peer networks, grid computing etc

2.1 Proxy and WWW

A proxy server, sitting in the middle-tier in the WWW infrastructure, serves many web

clients and covers a wide scale of web domains consisted of heterogeneous web-sites.

Figure 1: Typical Web Proxy action sequence

Typical Web Proxy action Sequence 1: Figure borrowed from [17]

WBI (Web Browser Intelligence) is a proxy that intercepts the HTTP stream and alters the data

thus providing opportunities for personalizing the web experience [2]. This paper also discusses

how a confederation of agents can enable the collaboration among web users and improving

their web experience. Web server based studies are fewer in number compared to proxy-based

studies. Web proxy servers have been used for the web work load characterization so far. Proxy

logs have been extensively used to study the effectiveness of caching at proxies and cooperative

caching. Markatos et al proposed a web conscious storage management for the web proxy servers

that exploit the unique reference characteristics of web page accesses in order to overcome the

file I/O limitations [17]. An effective caching policy at the proxies can considerably accelerate

the web browsing in wireless customer premises networks. Hadjiefthymiades et al proposed a new

3

-
path prediction algorithm to facilitate the dynamic cache relocation to the most probable cells

following the roaming users [9]. The above techniques accelerate the web-browsing experience

by minimizing the processing times and latencies at the proxies. Lou et al proposed a proxy-

based prediction (PPS) for an efficient prediction of web accesses on proxy servers [16]. Their

PPS applies a new prediction scheme which employs a two-layer navigation model to capture

both inter-site and intrasite access patterns, incorporated with a bottom up prediction mechanism

that exploits the locality of reference in the logs of proxy servers. Rabinovich et al observed that

sometimes it is better to fetch a web page from a server rather than a peer-proxy [20]. The result

of the study was the proposed co-operative caching scheme over wide area networks.

2.2 Proxy and Mobile Computing

Figure 2: Proxy and Mobile Computing

Communication, mobility and portability are the major issues of Mobile Computing. The

wireless world is often termed Long-Thin world due to the longer latencies and thin bandwidth

available. Frequent disconnections are a major challenge faced by mobile computing.

Automated hoarding techniques are used to give the mobile user an illusion of connection [14].

Besides the automated hoarding techniques, a detailed study is done on the CODA file system to

allow the users access files under weakly connected modes [18]. Mobile Computing platforms

typically provide a QoS management architecture that facilitates adaptation through the

installation of proxies. Predetermined or preconfigured QoS events could trigger the

instantiation of filtering, transcoding or caching components into the communication path

4

-
between the clients and the servers. Rao et al Propose a Proxy-based platform that implements

three key abstractions namely, infolet, applet and devlet. IMobile architecture tries to hide the

complexity due to the multiplicity of devices and information sources [21]. The infolet, applet

and devlets interact with each other through the LET engine. Devlet is a driver attached to a

proxy that sends and receives information using a particular protocol. Infolet tries to give an

abstract view of the information space. The let engine supports user and device profiles for

personalization and transcoding. The proxy platform is shown in the figure 4.

Figure 3: Proxy Platform

2.3 Proxy and Peer-to-Peer Networks

Peer-to-Peer technology is one of the most important technologies for ubiquitous

computing since it supports one-to-one communication, free and extensible distribution of

resources and an extensive support for the distributed search is already available for these

networks through the distributed directory services. Proxy would play a major role in performing

a happy marriage of mobile and Peer-to-Peer computing and thus providing platform for mobile

Peer-to-Peer applications. Kato et al proposed a platform for mobile Peer-to-Peer

communication [13] which treats the resource poor mobile clients as peers in Peer-to-Peer

networks. A simple protocol for Peer-to-Peer communications with a mobile proxy is designed.

5

-

Figure 4: Proxy and Peer-to-Peer Networks

2.4 Proxy and Location Based Services

Location based Services need access to more location-sensitive information than the

stationary computers. This challenge is to allow access to the information with out violating the

users’ privacy. Gerald proposes a proxy-architecture for location based services which gives the

mobile device an ability to hide its location information or the personal identity of the mobile

user [6]. Location based service proxy server acts as a SOAP dispatcher and a new server

architecture called PELBPS (Privacy Enhanced Location Based Proxy Server) is presented. [5]

Legitimate uses of location information could include contacting colleagues, routing telephone

calls, logging meetings in personal diaries etc.

6

-
2.5 Proxy and Grid Computing

Proxy based middleware services for Peer-to-Peer computing in virtually clustered

wireless grid networks were proposed by Junseok Hwang et al [12]. It is envisioned that the

combination of mobile Peer-to-Peer applications and grid technologies could ultimately lead

towards the goal of super computers with mobile devices anywhere, anytime. Figure 6 shows

proxy-based wireless grid

Figure 5: Proxy and grid computing

7

-
2.6 Proxy and Multimedia Applications

Proxies play an important role for streaming multimedia content over the internet.

Multimedia proxy caching has not been sufficiently explored by the research communities.

Infolibria MediaMall, RealSystem are examples for commercial multimedia proxy caches.

2.7 Proxy and Middleware

Use of proxy objects is prevalent in remote object interaction protocols. As an example,

when an object needs to interact with a remote object, say across a network, the most preferred

way of encapsulating and hiding the interaction mechanism is by using a proxy object that

mediates communication between the requesting object and the remote object. To be specific,

the stub and skeleton objects generated by the Remote Method Invocation (Java’s Middleware)

RMI compiler (rmic) are just local proxies for the real objects on the remote machines on client

and the server respectively. In fact, these stubs and skeletons perform remote procedure call to

send the request to the real object and then send the results back to the client on the local

machine. Figure 8 refers to the proxy design pattern.

Figure 6: Proxy Design Pattern

2.8 Proxy as a Service

The following section describes the services that a proxy can offer.

1. A proxy can serve as a prefetching agent which prefetches data when the

bandwidth is available. The prefetching technique can increase the hit rate

considerably.

8

-
2. A proxy filter can result in more efficient use of networked resources, reduced

costs and increased security.

3. Singh et al proposed a proxy that transcodes and caches. The excessive load of

transcoding is pushed from server to proxy [22].

4. A proxy can be used to run an optimized protocol between itself and the mobile

host [24]. An example could be Low Bandwidth X protocol, a compressed

version of X11.

5. A proxy can support user and device profiles. This mapping at the proxy can

support personalization of content, look-and-feel based on the users’ device and

interest.

6. The link characteristics could demand the proxies to be able to compress the data

and send it to the mobile host. A proxy could be made more intelligent to drop,

delay or send the data to the mobile host based on available bandwidth. Zenal et

al discusses these functions of a proxy [24].

7. Gupta et al proposed ad insertion at proxies [8]. Some content providers disable

caching at clients, since their business depends on the number of visits per day,

the clients experience request latency due to increased traffic. If ads are inserted

at proxies, the content providers can choose to insert different ads to different

cached data streams.

8. Ads could be distracting to a user during his web experience. A client side proxy

can be used to disable or remove the ads from web pages before they are

presented to the user.

2.9 Advantages of using Proxies

File creation tends to be a frequent event and the high frequency of modification and

accesses to modified files suggest that pre-fetching by proxies and push by servers proves to be

useful [19]

Proxies assist in load balancing at servers and minimization of latency in delivery. They

provide a good abstraction of the limitations of mobile devices. They result in systems which are

9

-
more fault-tolerant, scalable and robust. The functionalities of proxies described in section 3

show the advantages of using a proxy in a server.

2.10 Disadvantages of using Proxies

Proxy caching can be a solution to WWW traffic and server bottleneck problems.

However, using a proxy as a caching entity between the client and server might have the

following drawbacks.

1. The client might be looking at the stale data if the proxy is not updated [23].

2. A cache miss at the proxy might prove to be costly because the access latency might increase

due to an intermediate entity between client and server [23].

3. Caching at proxies might reduce the number of hits on the original server which might lead

to disabling caches by the web sites. This could result increased network traffic and

congestion [4]. The hit rate of proxy caches is found to be low often not much higher than

50% [7]. A substantial percentage of cache miss is from the compulsory misses (First time

accesses). Once a steady state has been achieved the hit rate would be greater.

2.11 Various Mathematical Distributions and their Implications for evaluating proxies

The mobile telephone call requests and WWW traffic were initially assumed to follow

the Poisson or Markovian arrival process. However, the studies challenged that assumption and

showed that the distributions often follow heavy tailed distributions (simplest being the Pareto

distribution). A heavy-tailed distribution implies that regardless of the behavior of the

distribution for small values of random variable, the asymptotic shape of the distribution is

hyperbolic [3].

File popularity follows the Zipf’s distribution where the popularity of the ith most

popular file is proportional to (1/i). For instance, just the top 2% of documents could account for

90% of the accesses [19]

The file popularity distribution the documents accessed by mobile users do not follow the Zipf-

like distribution [1]. However, the reason for deviation from Zipf-like distribution could because

of a relatively small data set used for their analysis. It reported that users spend very less time on

channels. This could be because of browsing on cell phones and PDAs could be cumbersome

10

-
and browse time on cellular networks is not free. Hence, in course of time with availability of

better content, cheaper air time we could expect users to stay on the channels for longer time. It

is reported that the WAP traffic shows strong resemblances to the self-similar property of the

WWW traffic [15].

11

-
3. EXISTING ARCHITECTURES FOR MOBILE COMPUTING

In this chapter we present the existing architectures in wired and wireless worlds. We are

presenting with five different architectures namely, thin-client, full client, client-proxy-server,

hybrid proxy server and mobile proxy architectures followed by our proposed architecture called

FTCPS which is flexible thick client proxy system.

3.1 Thin-Client Architecture (Proxy as an agent for Mobile Unit)

Figure 11 shows the block diagram of a thin-client architecture system in which a proxy

is a computational agent for mobile device. Every request from the mobile device is handled by

the mobile proxy. The request re-direction and processing is done at the server. The server

becomes the bottleneck as all the requests pass through the server. This is a single point of

failure in the system. If the server is down for some reason, entire system fails as a whole.

Figure 7: Thin-Client Architecture

Typical request-response flow in this architecture is as shown below.

1: Request from MobileUnit-1 to MobileProxy-1

2: Request from MobileProxy-1 to Directory Service

3. Request from Directory Service to MobileProxy-2

4. Request from MobileProxy-2 to MobileUnit-2

5. Response from MobileUnit-2 to MobileProxy-2

6. Response from MobileProxy-2 to Directory Service

7. Response from Directory Service to MobileProxy-1

12

-
8. Response from MobileProxy-1 to MobileUnit-1

Figure 12 shows the message sequence for the flow of events in a thin client system.

MU1 DS MP1 MU2 MP2

GetIPAddress : Request :=Request ()

return IPAdress (): Response := Response ()

getInfoFromMobileUnit (): Request

getInfoFromMobileUnit (): Request

return infoFromMobileUnit (): Response

return infoFromMobileUnit : Response

Figure 8: Sequence Diagram of Thin-Client Architecture

13

-

3.2 Full Client Architecture (No way to handle disconnections)

Figure 12 shows the block diagram of a full-client architecture system in which the client

is self-sufficient in its computational power. It does not need a proxy to handle processing on its

behalf. This is an ideal architecture for wired world where the disconnection probability is

negligible. This architecture is handicapped by its inability to handle disconnections.

Figure 9: Full Client Architecture

Typical request-response flow in full-client architecture is as shown below.

1. Request from MobileUnit-1 to Server

2. Request from Server to MobileUnit-2

3. Response from MobileUnit-2 to Server

4. Response from Server to MobileUnit-1

Figure 14 shows the message sequence in a full client system.

14

-

Figure 10: Message Sequence in Full Client Architecture

3.3 Client-Server with Proxy

Figure15 is a block diagram for the client-server with a proxy system. The proxy in this

system handles disconnections. Apparent problem with this architecture is that the bandwidth is

wasted if the mobile unit cannot handle the content given by the server when the mobile unit is

not disconnected. If the server is given the responsibility to transcode the content according to

the mobile unit’s profile, the system becomes less scalable with server becoming the bottleneck.

Figure 11: Client-Server with Proxy

Typical request-response flow in a client-proxy-server is shown below.

15

-
1. Request from MobileUnit-1 to Server

2. Request from Server to MobileUnit-2

3. Response from MobileUnit-2 to Server

4. Response from Server to MobileUnit-1

5. Request from Server to MobileProxy-2 (In case of disconnection of MobileUnit-2)

6. Response from MobileProxy-2 to Server

7. Response from Server to MobileProxy-1(In case of disconnection of MobiliUnit-1)

Figure 16 depicts the message sequence in a client-proxy-server system when the mobile unit

and the proxy are synchronized and when the mobile unit cannot handle the content delivered by

the server.

Figure 12: Message Sequence in Client Proxy Server System

16

-
Figure 17 depicts the message sequence in a client-proxy-server system when the mobile unit

and the proxy are synchronized and when the mobile unit can handle the content delivered by

the server.

Figure 13: Message Sequence in Client Proxy System

3.4 Hybrid Client-Server with Proxy

More functionality at proxies makes the system less scalable [11]. Hence the server also

shares the functionality of the proxy. Instead of pure proxy-based solution or pure end-end

solutions, a hybrid approach is proposed which would scale better than the above two. Figure 18

shows the Hybrid-Client-Server with Proxy architecture proposed by Joshi et al [11].

17

-

Figure 14: Hybrid Client-Server with Proxy

Typical request – response flow in the Hybrid Client-Server with Proxy architecture is as

follows.

1. Request from MobileUnit-1 to MobileProxy-1

2. Request from MobileProxy-1 to Server

3. Request from Server to MobileProxy-2

4. Request from MobileProxy-2 to MobileUnit-2

5. Response from MobileUnit-2 to MobileProxy-2

6. Response from MobileProxy-2 to Server

7. Response from Server to MobileUnit-1 (if MobileUnit-1 can handle the response on its

own)

8. Response from Server to MobileProxy-1 (if the MobileUnit-1 cannot handle the response

on its own)

9. Response from MobileProxy-1 to MobileUnit-1

10. Request from Server to MobileUnit-2 (if MobileUnit-2 can handle the request)

18

-
Figure 19 depicts the message sequence for a synchronized mobile unit and proxy and when

mobile unit cannot handle the content delivered by the server

Figure 15: Message Sequence in Hybrid Client Proxy Server System

19

-
Figure 20 depicts the message sequence diagram for a synchronized mobile unit and proxy that

are not synchronized and when mobile unit can handle the content delivered by the server

Figure 16: Message Sequence in Hybrid Client Proxy Server System

3.5 Flexible Thick Client Proxy System (Our Proposal)

The synergy between networking and mobility will engender new collaborative applications

with mobile devices on heterogeneous platforms. One such middleware is “SYSTEM ON MOBILE

DEVICES”, SYD developed by the Yamacraw Embedded Systems research team. SYD is a new

paradigm for collaborative application development. SyD consists of a combination of middleware and

clientware technologies that enables application development independent of the specific nature of the

device, data, services, or network (device locations) that the application is targeted to run over [26]. SyD

enables such independent application development through well defined wrapping standards for devices,

data, and services.

20

-

Figure 17: SyD Architecture

Following questions need to be answered while designing architecture for mobile applications

using a proxy.

Should a proxy be monolithic or distributed in design?

What level of transparency to disconnections is to be guaranteed?

How to increase the scalability of the system?

How to make the system more robust and fault tolerant?

What functionalities could be offloaded to clients from proxies?

FTCPS is the proposed proxy architecture that supports that the peer to peer capability for

mobile networks. The following block diagram explains the FTCPS – Flexible Thick Client

Proxy System. Mobile Units are peers and can communicate with each other. If a mobile unit is

disconnected during the communication, then its proxy plays the role of a mobile unit for

serving the request. For example, if Mobile Unit – 1 is making a request to Mobile Unit -2

which is disconnected then, Mobile Proxy 2 serves Mobile Unit-1’s request and if Mobile Unit

21

-
-1 is disconnected while Mobile Proxy -2 is serving, then the response is sent to Mobile Proxy

-1.

Figure 18: Flexible Thick Client Proxy System

Typical request-response sequence in FTCPS is as follows.

1: Request from MobileUnit-1 to Directory Service

2: Response from Directory Service to Mobile Unit-1

3. Request from MobileUnit-1 to MobileUnit-2

4. Response from MobileUnit-2 to MobileUnit-1

5. Request from MobileUnit-1 to Mobile Proxy-2 (If MU2 is disconnected)

6. Response from Mobile Proxy-2 to MobileUnit-1

7. Response from MobileProxy-2 to Mobile Proxy –1 (If MobileUnit-1 is down, Response is redirected

to MobileProxy-1)

22

-

Figure 23 shows the message sequence in FTCPS when MU1 and MU2 are both connected.

The sequence of events is as follows.

1: Request from MobileUnit-1 to Directory Service

2: Response from Directory Service to Mobile Unit-1

3. Request from MobileUnit-1 to MobileUnit-2

4. Response from MobileUnit-2 to MobileUnit-1

Figure 19: Message Sequence in FTCPS when MU1 and MU2 are both connected

23

-

Figure 24 shows the message sequence in FTCPS when MU2 is disconnected. The request-

response sequence is as follows.

1: Request from MobileUnit-1 to Directory Service

2: Response from Directory Service to Mobile Unit-1

3. Request from MobileUnit-1 to MobileProxy-2

4. Response from Mobile Proxy-2 to MobileUnit-1

Figure 20: Message Sequence in FTCPS when MU2 is disconnected.

24

-
Figure 25 shows the message sequence in FTCPS when MU1 is disconnected after making the

request to MU2. The request-response sequence is as follows.

1: Request from MobileUnit-1 to Directory Service

2: Response from Directory Service to Mobile Unit-1

3. Request from MobileUnit-1 to MobileUnit-2

4. Response from MobileUnit-2 to MobileProxy-1

Figure 21: Message Sequence in FTCPS when MU1 is disconnected after making the request to MU2

25

-
Figure 26 shows the message sequence in FTCPS when MU1 is disconnected after making the

request to MU2 which is disconnected. The request-response sequence is as follows.

1. Request from MobileUnit-1 to Directory Service

2. Response from Directory Service to Mobile Unit-1

3. Request from MobileUnit-1 to Mobile Proxy-2

4. Response from MobileProxy-2 to Mobile Proxy -1

Figure 22: Message Sequence when MU1 is disconnected after making the request to MU2 which is disconnected

A slight variation of FTCPS called Hybrid-FTCPS has an intelligent proxy which can hide the

mobile unit’s incapability to handle some responses. The following block diagram explains the

Hybrid-FTCPS – Flexible Thick Client Proxy System. Mobile Units are peers and can

26

-
communicate with each other. If a mobile unit cannot handle the content delivered by the

responding mobile unit or proxy, then the proxy of the mobile unit plays the role delivering the

content that could be handled by the mobile-unit. This means that in FTCPS, a proxy can come

handy when a mobile proxy is disconnected or when a mobile unit cannot handle the content

delivered by the responding proxy or the server. A typical example could a user requesting a

PDF file but do not have acrobat reader to view the document. The proxy could be more

intelligent here to either deliver the content in a format that the mobile unit can accept or drop

the request as it is a waste of bandwidth to deliver the content that cannot be handled by the

mobile unit.

27

-
4. SIMJAVA: DESIGN CHOICE FOR MODELING THE SIMULATION

SIMJAVA became our natural choice for simulation as it has the following features to

bolster our experimental set-up.

1) Support for JAVA

2) In built support for Statistical Analysis

3) Package of Mathematical Distributions

4) Graphs generating package

5) Efficient TRACE tools

6) Animation package

It is very costly to measure the scaling-up and scaling-down factors in a system in terms of

infrastructure. So simulations of large scale systems are preferred and are studied by

incorporating real-time parameters from the study of existing real time systems. Our

experiments needed events which followed various mathematical distributions, effective tracing

tools, and a tool which eases the analysis of the results obtained. SIMJAVA was strongly

preferred as it had all the features that this experimental set-up demanded.

4.1 What is SIMJAVA?

SIMJAVA is a toolkit for building working models of complex systems. It is based

around a discrete event simulation kernel and includes facilities for representing simulation

objects as animated icons on screen. SIMJAVA simulations may be incorporated as ``live

diagrams'' into web documents. SIMJAVA is actually a collection of three packages,

eduni.simjava, eduni.simanim and eduni.simdiag. eduni.simjava is a package for

building stand alone text only java simulations, which produces a trace file as the output by

default. eduni.simanim is tightly integrated with the text only simulation package, and provides

a skeleton applet for easily building a visualization of a simulation. eduni.simdiag is a

collection of JavaBeans based classes for displaying simulation results.

Using a programming language to build models (rather than building them graphically) has the

advantage that complex regular interconnections are straightforward to specify, which was

28

-
crucial for some of the networks we were interested in simulating. It also allows the inclusion of

existing libraries of code to build simulations.

The SIMJAVA package has been designed for simulating fairly static networks of active entities

which communicate by sending passive event objects via ports. This model is appropriate for

hardware and distributed software systems modeling.

4.2 The SIMJAVA Design

A SIMJAVA simulation contains a number of entities each of which runs in parallel in its own

thread. An entity's behavior is encoded in Java using its body () method. Entities have access to

a small number of simulation primitives:

• sim_schedule () sends event objects to other entities via ports.

• sim_hold () holds for some simulation time.

• sim_wait () waits for an event object to arrive.

• sim_select () selects events from the deferred queue.

• sim_trace () writes a timestamped message to the trace file.

In SIMJAVA event objects are passed to other entities via ports using sim_schedule (). They

are automatically queued, and retrieved as required by the receiver using sim_select () and

sim_wait (). sim_select () is used to select from events which have already arrived, and

sim_wait () waits for the next future event.

The other difference from message passing interaction models is that in SIMJAVA all events are

globally sorted by simulation timestamp to ensure that messages never arrive out of order.

4.3 Overview of SIMJAVA

This section gives an introduction to SIMJAVA and a detailed API is available at

http://www.icsa.informatics.ed.ac.uk/research/groups/hase/simjava/

29

-
This is an excerpt taken from the SIMJAVA tutorial[25]

4.3.1 Setting up the simulation

The simulation is managed by Sim_system, a static class which will be setup in our main ()

method. To define the simulation's main () method we will have to create one further class.

The name given to this class should be representative of the system being simulated and also be

given to the file containing all the classes.

In any simulation the following four steps are required:

1. Initialize Sim_system.

2. Make an instance for each entity.

3. Link the entities' ports.

4. Run the simulation.

4.3.3 What is the trace of a simulation?

Simulations are often quite complex programs. Whenever complexity is added to any

program the number of errors present is bound to increase. After building a simulation it is

always good practice to test it before fully instrumenting it with statistical measures and

exhaustively running it. A tool that is very useful in a simulation's debugging process (also

known as verification) is the simulation's trace. The trace is essentially internal information that

is made available to the modeler through which the exact actions within the simulation can be

examined. Such an examination could lead to the discovery of undesired entity behavior which

would require the simulation's modification.

30

-
4.3.4 Sampling distributions

It is more suitable to describe an entity's performance characteristics by means of certain

distributions; sampling them to produce specific values for e.g. a disk's seek time. By using

distributions the real world is more accurately simulated since the entities' behavior will be, as in

the real world, stochastic. A good example of the importance of non-determinism is a network

router whose packet inter-arrival times are far from deterministic.

In order to generate samples from a distribution a random number generator needs to be

used. This generator is sampled to produce a sample uniformly distributed between 0 and 1.

Following this, the uniform sample is modified to fit in the desired distribution. This process is

called random variate generation.

To be precise, the random number generators used in simulation packages are

pseudorandom. This means that although a generator's output is statistically random, if it is

setup in the same way at a later time it will produce the exact same sequence of samples. This is

of great importance in simulation studies since without pseudorandomness experiments would

not be repeatable. Furthermore, maintaining the exact same sequence of samples enables the

modeler to focus on the effect of changes introduced to the system. If for example a

modification to the simulation is made and different results are observed, this difference will be

totally attributed to the modifications and not to the random samples used.

4.3.5 Adding statistical measurements

The first step to adding statistical support to entities is to define measures of interest. In

order to understand how measures are defined we need to identify their possible types. These

types will dictate how they are defined, updated, and used to produce measurements.

31

-
All measures can be classified into three categories:

• Rate based measures.

• State based measures.

o Continuous.

o Non-continuous.

• Interval based measures.

Rate based measures are based on the occurrence of an event over a period of time. When the

sums of these events are taken into account along with the interval in which they occurred. Such

measures are for example an entity's throughput or loss rate. In the first case the event of interest

is an event completing all service and in the second case, an event having been lost (according to

a user defined condition). State based measures reflect the entity's state over a period of time. An

entity can be considered as being in one state for a certain interval and then being in another for

another interval. A state based measure can be considered as continuous if the entity moves from

one state to another in a continuous fashion. An example of this could be the entity's utilization

in which case the entity is either busy or not, moving seamlessly between these two states. A

non-continuous state based measure does not have the characteristic of continuity. This means

that each interval is not required to begin where the previous one ended but may begin at a later

time. Interval based measures usually have less to do with the entity itself and more to do with

events that pass through it. Such measures reflect time intervals that were experienced by these

events. Examples of such measures could be the waiting time or residence time of events at an

entity.

32

-
4.3.6 What is a transient condition?

Simulations are started off in an arbitrary starting state. In this starting state entities quite

often exhibit a different behavior compared to the behavior they would have if the simulation

progressed for a while. Once the bias of the system's original state is overcome, the system is

considered to have entered steady state. In this state the entities' behavior remains largely the

same.

It is often the case that simulations are built to study the system only after it has warmed up i.e.

reached steady state. This, for example is the approach used by Markovian modeling techniques

that solve global balance equations to obtain the steady state probability distribution. The period

of time from the beginning of the simulation up to the point that steady state starts is termed the

transient or warm-up period. The effects of this period should be discarded if steady state

analysis is of interest. Alternatively, if the modeller is interested in a system's startup, the

transient period should be included in calculations.

In simulations the transient period can't be mathematically identified. As such, the modeller

needs to specify a condition after which steady state is considered to have been entered. This

condition is termed here the transient condition

4.3.6 Defining a transient condition

A transient condition is set using a set_transient_condition() method when the

simulation is being setup. Three types of transient conditions are available:

33

-
• Event completions: The system is considered to have entered steady state after a number

of event service completions at a given entity. To use this method the modeller needs to

specify the entity of interest, an event tag to identify events counting towards the

condition, and a number of event completions.

• Elapsed time: In this case the transient period is explicitly identified as a time period

from the beginning of the simulation. The modeller needs to provide a point in time after

which the system is considered to have entered steady state.

• The minimum-maximum method: This method allows Sim_system to attempt to

automatically locate the time at which the transient period has elapsed. To do this the

modeller provides an entity and one of its measures. The minimum-maximum method

searches the given measure's observations and decides that the transient period has

elapsed once an observation is located that is neither the minimum nor the maximum of

the remaining observations. This method is quite crude and in most cases fails to identify

a long enough transient period.

• None: in this last case, any transient condition is specified. This is used when transient

analysis is of interest and is the default when the set_transient_condition ()

method isn't used.

4.3.7 Defining a termination condition

A termination condition is quite obviously the condition that once satisfied, terminates the

simulation. As in the case of transient conditions, since version 2.0, SIMJAVA centrally holds

and checks the termination condition. A termination condition is defined in a similar way to the

transient one by using a set_termination_condition () method. The following termination

condition types are available to the modeller:

34

-
• Event completions: Similar to the corresponding transient condition type. The modeller

provides an entity and an event type tag, as well as the number of event completions.

Once the number of specified events have completed the simulation will terminate.

• Elapsed time: The termination time is explicitly set. The modeller provides a point in

time that once reached, will terminate the simulation.

• Confidence interval accuracy: A very useful termination condition. This termination

condition tells Sim_system to run until a measure's total mean has been calculated to a

certain degree of accuracy. To use this method the modeller provides an entity and one of

its measures, a confidence level, an accuracy level, and an output analysis method to use

for variance reduction. The total mean differs from the sample mean and is the mean

produced after applying output analysis to the simulation. The accuracy level is the ratio

of the confidence interval half width of the specified measure's mean, over the total

mean. The confidence interval will be calculated with the confidence level provided.

More on this termination condition type will be discussed in the relevant section

covering output analysis.

• None: As in the case of the transient condition, this it the default if a

set_termination_condition () method isn't used. Running an infinite simulation

may seem pointless but may be of some use if animation is used. In this case, the

simulation's animation could be used as an elaborate demo of a system.

35

-
5. EXPERIMENTAL SET UP FOR SIMULATION AND RESULTS

We carried out our experiments in the following environment.

JAVA: Programming language for the simulation.

SIMJAVA: Package for simulation.

PERL: To parse the SIMJAVA trace file and put into an excel sheet

UNIX: For large scale simulations of 500 nodes

WINDOWS: For small scale simulations of 100-300 nodes

5.1 Thin Client Architecture

In a thin client system, a mobile unit has computation limitations. Each mobile unit has a

proxy which is its computation agent and a gateway for flow of request and responses. For

example, a cell phone which has low memory and low battery life has a proxy at the base

station. When a cell phone is out of charge, the proxy would store messages for the device at the

base station. The simulation has four entities namely, Mobile Unit, Mobile Proxy (Proxy for the

mobile unit), Directory Service and a Server. All these are subclasses of Sim_entity. The

simulation requires establishing the links among the entities before starting the experiment. This

means that the network designed for the experiment is static in terms of number of entities

involved; however, the probability of disconnection makes the network dynamic. A random

number generator is used to decide the destination entity of a request. Since we have a

centralized server, connecting any two devices through this server’s ports is easy. In this set-up,

since a mobile proxy is the computation agent for the device, the responses are served by the

proxy. A mobile device can make requests of following four types

1) File handling requests

2) Database requests

3) Method invocation requests

4) HTTP requests

36

-
The program also takes into account the probability of disconnections. The probability of each

type of requests can be varied. The experiments are carried out for networks of 100, 200, 300,

400 and 500 nodes.

Table 1 show the trace statistics for an experiment where the http and method invocation

requests are predominant.

Table 1: Trace Statistics

Request Type Number of Requests Percentage
HTTP 20000 40
File Handling 5000 10
Method Invocation 15000 30
Database 5000 10
Total 50000 100

We evaluated the performance of mobile units, proxies and servers using a combination of

simulation and experimental evaluation. In the simulation study, we modelled various

architectures using SIMJAVA. We used the SIMJAVA’s event generator to generate the events

which follow POISSON and NEG-EXP distributions. These events are translated into file

system operations, http requests, database operations and method invocation which are sent to

other entities through the Sim_ports. In all the experiments, we feed the simulator with a trace of

50000 requests summarized by the table below with trace statistics. The performance metric

recorded was the residence time. To distinguish between the events arrived at the server

uniquely; we identified each event with the timestamp of its arrival. We used a Hashmap to store

the source and destination of that event appended by its timestamp. An event arrived at server

has the information about the source of the event, the timestamp and the data packet. We had

placeholders for the information about source, destination and the current entity. In thin-client

architecture, we do not need to vary the disconnection probability to study the system because

the requests from client pass through proxy always. So the experiments were conducted on this

system only varying the number of nodes as shown below.

37

-
Table 1 shows the residence time of proxy in thin client architecture. The residence time

increases from 507 seconds to 800 seconds suggested by the slope of the graph in Figure 28

when the size of the network is increased from 100 to 500 nodes.

Table 1: Residence Time for Proxy in Thin Client Architecture

 100 200 300 400 500
Proxy 507 600 700 750 800

Residence Time Proxy : 100 - 500 Nodes

0
100
200
300
400
500
600
700
800
900

100 200 300 400 500

Number of Nodes

Ti
m

e
in

 s
ec

on
ds

Residence Time

Figure 23: Residence Time of a Proxy in Thin Client Architecture

Table 2 shows the residence time of client in thin client architecture. The residence time

increases from 485 seconds to 508 seconds suggested by the slope of the graph in Figure 29

when the size of the network is increased from 100 to 500 nodes.

Table 2: Residence Time of Client in Thin Client Architecture

 100 200 300 400 500
Client 485 495 500 505 508

38

-

Residence Time : 100 - 500 Nodes

470
475
480
485
490
495
500
505
510

100 200 300 400 500

Number of Nodes

T
im

e
in

 s
ec

o
n

d
s

Residence
Time

Figure 24: Residence Time of a Client in Thin Client Architecture

Table 3 shows the residence time of server in thin client architecture. The residence time

increases from 464 seconds to 23809 seconds suggested by the steep slope of the graph in Figure

30 when the size of the network is increased from 100 to 500 nodes. This clearly shows that the

server is the bottleneck that affects the scalability of this system.

Table 3: Residence Time of Server in Thin Client Architecture

 100 200 300 400 500
Server 464 9373 14170 18647 23809

Residence Time Server : 100 - 500 Nodes

0

5000

10000

15000

20000

25000

100 200 300 400 500

Number of Nodes

Ti
m

e
in

 s
ec

on
ds

Residence Time

Figure 25: Residence Time of a Server in Thin Client Architecture

39

-

5.2 Full-Client Architecture

Full Client Architecture is one extreme in the spectrum of client-server computing. A

full client does not need a proxy to be its computational agent. Typically, Directory service is a

process at the server. We separated the directory service from the server to depict the steps in

making a request clearly. The Full Clients are connected to a centralized server and the

communication among the clients is through the server. The blatant defect of this model is its

intolerance to disconnections. The system is not scalable. Hence this architecture is not suitable

for mobile Peer-to-Peer networks. Our experiment set up has full clients connected to directory

service and the server. The simulated system is an exact representation of the block diagram

above. Since there is no way to handle disconnections, all the requests from FCx to FCy are lost

if FCy is disconnected and all the responses from FCy to FCx are lost if FCx is disconnected. We

designed a parent entity which as placeholder for source, destination and the name of the current

entity. The system was studied for various probabilities of disconnections as summarized in

Table 4. Figure 35 represents the graphical view of results in Table 4.

Table 4: Residence Time in Full Client Architecture

30 40 50 70 80 100
Client 1014 1121 1084 1158 1189 1190
Server 671 1035 1619 629 338 338

40

-

Residence Time : 100 - 500 Nodes

0

1000

2000

3000

4000

5000

6000

7000

100 200 300 400 500

Number of Nodes

Ti
m

e
in

 s
ec

on
ds

30

40

50

70

80

100

Figure 26: Residence Time of 100 - 500 Nodes

5.3 Client Proxy Server System

In a Client Proxy Server system, the disconnections of client are handled by proxy in the

system. Table 5 shows the results of residence time of proxy in this system. Figure 36 is the

graphical representation of the results. It is evident from Figure 36 that the residence time of

proxy increases with the increase in the probability of disconnection.

Table 5: Residence Time of Proxy in Client Proxy Server System

Residence Time Proxy
30 40 50 70 80

100 182.00 312.00 415.00 577.00 720.00
200 409.00 601.00 800.00 1223.00 1364.00
300 615.00 910.00 1127.00 1775.00 2015.00
400 829.00 1202.00 1507.00 2356.00 2705.00
500 1132.00 1606.00 1986.00 2957.00 3452.00

41

-

Residence Time of Proxy in Client
Proxy Server system

0

1000

2000

3000

4000

100 200 300 400 500

Number of Nodes

Ti
m

e
in

 s
ec

on
ds 30

40

50

70

80

Figure 27: Residence Time of Proxy in a Client Proxy Server System

Table 6 shows the results of residence time of client in client proxy server system. Figure 37 is

the graphical representation of the results. It is evident from Figure 36 that the residence time of

client decreases with the increase in the probability of disconnection.

Table 6: Residence Time of Client in Client Proxy Server System

Residence Time Client
30 40 50 70 80

100 181.00 83.00 23.00 23.00 14.00
200 360.00 130.00 55.00 18.00 30.00
300 537.00 183.00 102.00 25.00 30.00
400 629.00 202.00 150.00 30.00 33.00
500 713.00 301.00 220.00 33.00 35.00

Residence Time Client : 100 - 500
Nodes

0.00

200.00

400.00

600.00

800.00

100 200 300 400 500

Number of Nodes

Ti
m

e
in

 s
ec

on
ds 30

40

50

70

80

Figure 28: Residence Time of Client in Client Proxy Server System

42

-

Table 7 shows the results of residence time of server in client proxy server system. Figure 38 is

the graphical representation of the results. It is evident from Figure 36 that the residence time of

server increases with the increase in the probability of disconnection and with the increase in

number of nodes.

Table 7: Residence Time of Server in Client Proxy Server System

Residence Time Server
30 40 50 70 80

100 166.00 243.00 270.00 154.00 294.00
200 327.00 485.00 577.00 586.00 608.00
300 509.00 736.00 852.00 905.00 921.00
400 609.00 948.00 1213.00 1168.00 1190.00
500 821.00 1242.00 1458.00 1517.00 1511.00

Residence Time Server : 100 - 500 Nodes

0.00
200.00
400.00
600.00
800.00

1000.00
1200.00
1400.00
1600.00

100 200 300 400 500

Number of Nodes

Ti
m

e
in

 s
ec

on
ds 30

40

50

70

80

Figure 29: Residence Time Server 100 - 500 Nodes

5.4 Flexible Thick Client Proxy Server

To present a realistic model for a calendar application, we came up with 125 clusters of 4

nodes in each cluster. Since this is a scenario for mobile Peer-to-Peer networks, proxy handles

the disconnections for mobile units. Hence each cluster would be a complete graph with 4

mobile units and 4 mobile proxies. This implies that there are 56 (8*7=56) bidirectional links to

be established. In SIMJAVA, each bidirectional link is programmed as two unidirectional links.

43

-
A HashMap is an ideal data structure to keep track of the links in a graph. We used 4 HashMaps

to capture the links of all the 4-node clusters in the network. Typical entity in a HashMap is

shown in Table 8.

Table 8: Data Structure(HashMap) for the links in the network cluster

From Port To Port
MU1 MU2
MP1 MP2
MP1 MU2
MU1 MP1

We used four Hashmaps to capture entire network.

1) HMUtoU : For the links between Mobile Unit to Mobile Unit

2) HMUtoP : For the links between Mobile Unit to Mobile Proxy

3) HMPtoU : For the links between Mobile Proxy to Mobile Unit

4) HMPtoP : For the links between Mobile Proxy to Mobile Proxy

Trace and sim reports are flat files generated for each experimental set-up. We needed a way to

compare results by parsing these flat files. A PERL script is written to parse the sim_report file

and export the results to an excel sheet. Table 9 shows the residence time of a client in FTCPS

for disconnection probabilities ranging from 30 percent to 100 percent for a network of size

from 100 nodes to 500 nodes. Figure 44 shows the graphical view of client’s residence time in

FTCPS when the network is scaled up from 100 nodes to 500 nodes for various disconnection

probabilities.

Table 9: Residence Time of Client in FTCPS

 30 50 70 80 100
100 63 71 75 78 78
200 114 131 146 154 156
300 169 196 220 229 234
400 222 258 292 314 312
500 276 324 366 379 390

44

-

FTCPS Client Residence Time

0

100

200

300

400

500

100 200 300 400 500

Number of Nodes

Ti
m

e
in

 s
ec

on
ds 30

50

70

80

100

Figure 30: FTCPS Client Residence Time 100 – 500 Nodes

Table 9 shows the residence time of a proxy in FTCPS for disconnection probabilities ranging

from 30 percent to 100 percent for a network of size from 100 nodes to 500 nodes. Figure 45

shows the graphical view of proxy’s residence time in FTCPS when the network is scaled up

from 100 nodes to 500 nodes for various disconnection probabilities. The residence time of

proxy in FTCPS rises very slightly with increase in number of nodes.

Table 10: Residence Time of Proxy in FTCPS

 30 50 70 80 100
100 6 8 11 13 16
200 5 8 10 11 13
300 5 7 10 11 14
400 5 7 10 11 14
500 5 7 10 11 14

45

-

FTCPS Proxy Residence Time : 100 - 500
Nodes

0

5

10

15

20

100 200 300 400 500

Number of nodes

Ti
m

e
in

 s
ec

on
ds

30

50

70

80

100

Figure 31: FTCPS Proxy Residence Time 100 - 500 Nodes

Table 11 shows the residence time of a server in FTCPS for disconnection probabilities ranging

from 30 percent to 100 percent for a network of size from 100 nodes to 500 nodes. Figure 46

shows the graphical view of server’s residence time in FTCPS when the network is scaled up

from 100 nodes to 500 nodes for various disconnection probabilities. The residence time of

server in FTCPS is constant even when the network is scaled up.

Table 11: Residence Time of Server in FTCPS

 30 40 50 70 80 100

100 1 1 1 1 1 1

200 1 1 1 1 1 1
300 1 1 1 1 1 1

400 1 1 1 1 1 1

500 1 1 1 1 1 1

46

-

Residence Time Server FTCPS : 100 - 500 Nodes

0

0

0

1
1

1

1

100 200 300 400 500

Number of Nodes

Ti
m

e
in

 S
ec

on
ds 30

40

50

70

80

100

Figure 32: FTCPS Server Residence Time 100 – 500 Nodes

47

-
6. FINAL RESULTS AND CONCLUDING REMARKS

Figure 47

shows the residence time of events at clients for different architectures for 30% disconnection

probability. It is evident from figure 47 that the residence time of client in FTCPS is the least

and did not increase steeply with increase in the number of nodes. The residence time of client

in Full Client architectures had the maximum residence time. The behavior of Client Proxy

Server system and FTCPS is similar at lower disconnection rates.

Residence Time of Client for 30% disconnection probability

0

1000

2000

3000

4000

5000

6000

Number of Nodes

T
im

e
in

 s
ec

on
ds Thin Client

Full Client

Client-Proxy-Server

FTCPS

Thin Client 485 495 500 505 508

Full Client 1014.00 2102 3228 4390 5570

Client-Proxy-Server 182.00 409 615 829 1132

FTCPS 63.00 114 169 222 276

100 200 300 400 500

Figure 33: Residence Time of Client for 30% disconnection probability

48

-
Figure 48 shows the residence time of events at clients for different architectures at 50%

disconnection probability. The residence time of client in Full Client architectures had the

maximum residence time. The resident time of Client Proxy Server system and FTCPS is similar

at 30% disconnection probability.

Residence Time of client for 50% disconnection probability

0

1000

2000

3000

4000

5000

6000

7000

Number of Nodes

T
im

e
in

 s
ec

on
ds Thin Client

Full Client

Client-Proxy-Server

FTCPS

Thin Client 485 495 500 505 508

Full Client 1121.00 2259 3428 4585 5778

Client-Proxy-
Server

23.00 55 102 150 220

FTCPS 71.00 131 196 258 324

100 200 300 400 500

Figure 34: Residence Time of Client for 50% disconnection probability

49

-
Figure 49 shows the residence time of events at clients for different architectures at 70%

disconnection probability. The client in Full Client architecture has the maximum resident time

and the Client Proxy Server systems’ client has the least resident time since the events end up at

proxy if client is disconnected.

Residence Time of Client for 70% disconnection probability

0

1000

2000

3000

4000

5000

6000

7000

Number of Nodes

T
im

e
in

 s
ec

on
ds

Thin Client

Full Client

Client-Proxy-Server

FTCPS

Thin Client 485 495 500 505 508

Full Client 1158.00 2315 3541 4674 5864

Client-Proxy-
Server

23.00 18 25 30 33

FTCPS 75.00 116 220 292 366

100 200 300 400 500

Figure 35: Residence Time of Client for 70% disconnection probability

50

-
Figure 50 shows the residence time of events at proxies for different architectures at 30%

disconnection probability. The Full Client Architecture does not have a proxy. That is why we

are comparing three architectures instead of four for residence time in Figures 50 through 53.

Residence Time of Proxy for 30% disconnection probability

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

Number of Nodes

T
im

e
in

 s
ec

on
ds

Thin Client

Client-Proxy-Server

FTCPS

Thin Client 507.00600.00700.00 750.00800.00

Client-
Proxy-
Server

182.00409.00615.00 829.001132.0
0

FTCPS 5.00 5.00 5.00 5.00 5.00

100.0
0

200.0
0

300.0
0

400.0
0

500.0
0

Figure 36: Residence Time of Proxy for 30% disconnection probability

51

-
Figure 51 shows the residence time of events at proxies for different architectures at 50%

disconnection probability. The difference between various architectures becomes evident as the

number of nodes is increased and the disconnection probability is varied. FTCPS has a constant

residence time which makes it the best choice for large mobile networks. FTCPS scales up very

well from Figure 51.

Residence Time of Proxy for 50% disconnection Probability

0.00

500.00

1000.00

1500.00

2000.00

2500.00

Number of Nodes

Ti
m

e
in

 s
ec

on
ds

Thin Client

Client-Proxy-Server

FTCPS

Thin Client 507.00 600.00 700.00 750.00 800.00

Client-Proxy-
Server

415.00 800.00 1127.00 1507.00 1986.00

FTCPS 8.00 8.00 8.00 8.00 8.00

100.00 200.00 300.00 400.00 500.00

Figure 37: Residence Time of Proxy for 50% disconnection probability

52

-
Figure 52 shows the residence time of events at proxies for different architectures at 70%

disconnection probability.

Residence Time of Proxy for 70% disconnection probability

0

500

1000

1500

2000

2500

3000

3500

Number of Nodes

Ti
m

e
in

 s
ec

on
ds

Thin Client

Client-Proxy-Server

FTCPS

Thin Client 507 600 700 750 800

Client-Proxy-
Server

577 1223 1775 2356 2957

FTCPS 10 10 10 10 10

100 200 300 400 500

Figure 38: Residence Time of Proxy for 70% disconnection probability

53

-
Figure 53 shows the residence time of events at server for different architectures at 30%

disconnection probability. The residence time of server in FTCPS is constant .

Residence Time of Server for 30% disconnection probability

0

5000

10000

15000

20000

25000

Number of Nodes

Ti
m

e
in

 s
ec

on
ds Thin Client

Full Client

Client-Proxy-Server

FTCPS

Thin Client 464 9373 14170 18647 23809

Full Client 671 1342 2044 2670 3399

Client-Proxy-
Server

166 327 509 609 821

FTCPS 1 1 1 1

100 200 300 400 500

Figure 39: Residence Time of Server for 30% disconnection probability

54

-
Figure 54 shows the residence time of events at server for different architectures at 50%

disconnection probability. The residence time of server in FTCPS is constant.

Residence Time of Server for 50% disconnection probability

0

5000

10000

15000

20000

25000

Number of Nodes

T
im

e
in

 s
ec

on
ds Thin Client

Full Client

Client-Proxy-Server

FTCPS

Thin Client 464 9373 14170 18647 23809

Full Client 1619 3398 4943 6759 8308

Client-Proxy-
Server

270 577 852 1213 1458

FTCPS 1 1 1 1 1

100 200 300 400 500

Figure 40: Residence Time of Server for 50% disconnection probability

55

-
Figure 55 shows the residence time of events at server for different architectures at 70%

disconnection probability. The residence time of server in FTCPS is constant.

Residence Time of Server for 70% disconnection probability

0

5000

10000

15000

20000

25000

Number of Nodes

Ti
m

e
in

 s
ec

on
ds Thin Client

Full Client

Client-Proxy-Server

FTCPS

Thin Client 464 9373 14170 18647 23809

Full Client 629 1252 1907 2624 3192

Client-Proxy-
Server

154 586 905 1168 1517

FTCPS 1 1 1 1 1

100 200 300 400 500

Figure 41: Residence Time of Server for 70% disconnection probability

56

-
Figure 56 shows the response time (event-turn-around-time) for different architectures at 30%

disconnection probability. The residence time of client, proxy and server makes up for the

response time or event turn around time i.e the time taken for a request generated at a mobile

unit to get its response back. The response time is the least in FTCPS.

Response Time across all architectures at 30%
Disconnection Probability

0

5000

10000

15000

20000

25000

30000

Number of Nodes

Ti
m

e
in

 S
ec

on
ds

Thin Client
Full Client
Client-Proxy-Server
FTCPS

Thin Client 1456 10468 15370 19902 25117

Full Client 1685.00 3444 5272 7060 8969

Client-Proxy-
Server

529 1096 1661 2067 2666

FTCPS 69.00 120 175 228 282

100 200 300 400 500

Figure 42: Response Time across all architectures at 30% disconnection probability

57

-
Figure 57 shows the response time (event-turn-around-time) for different architectures at 50%

disconnection probability. The response time in thin client architecture is very high and makes

it less scalable as the server becomes the bottleneck of the system.

Response Time across all architectures at 50%
disconnection probability

0

5000

10000

15000

20000

25000

30000

Number of Nodes

Ti
m

e
in

 S
ec

on
ds

Thin Client
Full Client
Client-Proxy-Server
FTCPS

Thin Client 1456 10468 15370 19902 25117

Full Client 1792.00 3601 5472 7255 9177

Client-Proxy-
Server

708.00 1432 2081 2870 3664

FTCPS 80.00 140 205 267 333

100 200 300 400 500

Figure 43: Response Time across all architectures at 50% disconnection probability

58

-
Figure 58 shows the response time (event-turn-around-time) for different architectures at 70%

disconnection probability. The response time of FTCPS is best across any disconnection

probability and even with the increased number of nodes in the network.

Response Time across all architectures at 70%
disconnection probability

0

5000

10000

15000

20000

25000

30000

Number of Nodes

Ti
m

e
in

 S
ec

on
ds Thin Client

Full Client
Client-Proxy-Server
FTCPS

Thin Client 1456 10468 15370 19902 25117

Full Client 1787.00 3567 5448 7298 9056

Client-Proxy-
Server

754.00 1827 2705 3554 4507

FTCPS 86.00 127 231 303 377

100 200 300 400 500

Figure 44: Response Time across all architectures at 70% disconnection probability

59

-

6.1 Concluding Remarks

We have examined the performance of four architectures for their residence times. The thin

client architecture is not scalable as the server became the bottleneck for performance. The full

client architecture is not suitable for mobile networks as the architecture cannot tolerate

disconnections. The client-proxy-server architecture is a traditional approach where the proxies

handle the requests only under disconnections. This architecture failed to scale well when the

probability of disconnections is high and behaved closely like thin-client architecture under high

disconnections. Our contribution of this thesis is to measure the “scalability” factor of a system

from metrics like event residence time and response time (event-turn-around-time).

Another contribution of our work is the proposal for a new proxy architecture which envisions

mobile devices to be servers. This architecture suits well for mobile Peer-to-Peer networks

where the disconnections are needed to be tolerated gracefully. Our empirical study shows that

FTCPS tolerated the disconnections gracefully and the response time never shot up even when

the number of nodes and clusters were increased in our system.

6.2. Future Work

This thesis has prepared a test-bed for testing various architectures for their fault-tolerance,

scalability and response time issues. It is a good idea to come up with a frame-work to extend

the existing simulated models to test various applications. Synchronization policies of mobile

unit and proxy are potential areas on their own. Also, various caching policies to reduce the

latency in a system can be studied. The existing architectures can be studied under events which

follow various mathematical distributions. Systems can be examined for their optimal

performance by varying the processing times, probabilities of disconnection, mathematical

distributions followed by the events across various architectures in the simulation. Further

research can be done for answering questions like,

60

-
How does a proxy authenticate itself in a network?

How can a proxy be used to create new services based on the location and mobility information?

Should the proxy be centralized or distributed?

How should the proxy be deployed?

How should proxy be used to maintain user and device profiles to offer better services?

61

-
7. REFERENCES

[1]Adya, A., Bahl, P., and Qiu, L. Analyzing the browse patterns of mobile clients. In Proceedings of the
First ACM SIGCOMM Workshop on Internet Measurement (2001), ACM Press, pp. 189–194.

[2]Barrett, R., Maglio, P. P., and Kellem, D. C. Wbi: a confederation of agents that personalize the web.
In Proceedings of the first international conference on Autonomous agents (1997), ACM Press, pp. 496–
499.

[3]Crovella, M. E., and Bestavros, A. Self-similarity in World Wide Web traffic: evidence and possible
causes. IEEE/ACM Transactions on Networking 5, 6 (1997), 835–846.

 [4] Duska, B. M., Marwood, D., and Freeley, M. J. The measured access characteristics of World-Wide-
Web client proxy caches. In Proceedings of the 1997 Usenix Symposium on Internet Technologies and
Systems (USITS-97) (Monterey, CA, 1997).

[5] Forman, G. H., and Zahorjan, J. The challenges of mobile computing. Tech. Rep. TR-93-11-03,
1993.

[6] Gerald, A. E.-P. Role(s) of a proxy in location based services.

[7] Gribble, S. D., and Brewer, E. A. System design issues for Internet middleware services: Deductions
from a large client trace. In Proceedings of the 1997 Usenix Symposium on Internet Technologies and
Systems (USITS- 97) (Monterey, CA, 1997).

[8] Gupta, A., and Baehr, G. Ad insertion at proxies to improve cache hit rates.

[9] Hadjiefthymiades, S., and Merakos, L. Proxies + path prediction: improving web service provision in
wireless-mobile communications. Mob. Netw. Appl. 8, 4 (2003), 389–399.

[10] Jing, J., Helal, A. S., and Elmagarmid, A. Client-server computing in mobile environments. ACM
Comput. Surv. 31, 2 (1999), 117–157.

[11] Joshi, A. On proxy agents, mobility, and web access. Mob. Netw. Appl. 5, 4 (2000), 233–241.

[12] Junseok Hwang, P. A. Proxy-based middleware services for peer-to-peer computing in virtually
clustered wireless grid networks.

[13] Kato, T., Ishikawa, N., Sumino, H., Hjelm, J., Yu, Y., and Murakami, S. A platform and
applications for mobile peer to peer communications.

 [14] Kuenning, G. H., and Popek, G. J. Automated hoarding for mobile computers. In Proceedings of
the sixteenth ACM symposium on Operating systems principles (1997), ACM Press, pp. 264–275.

[15] Kunz, T., Barry, T., Black, J. P., and Mahoney, H. M. Wap traffic: description and comparison to
www traffic. In Proceedings of the 3rd ACM international workshop on Modeling, analysis and
simulation of wireless and mobile systems (2000), ACM Press, pp. 11–19.

[16] Lou, W., and Lu, H. Efficient prediction of web accesses on a proxy server. In Proceedings of the
eleventh international conference on Information and knowledge management (2002), ACM Press, pp.
169–176.

[17] Markatos, E. P., Pnevmatikatos, D. N., Flouris, M. D., and Katevenis, M. G. H. Web-conscious
storage management for web proxies. IEEE/ACM Trans. Netw. 10, 6 (2002), 735–748.

62

-
[18] Mummert, L. B., Ebling, M. R., and Satyanarayanan, M. Exploiting weak connectivity for mobile
file access. In Proceedings of the fifteenth ACM symposium on Operating systems principles (1995),
ACM Press, pp. 143–155.

[19] Padmanabhan, V. N., and Qiu, L. The content and access dynamics of a busy web site: findings and
implications. In Proceedings of the conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (2000), ACM Press, pp. 111–123.

[20] Rabinovich, M., Chase, J., and Gadde, S. Not all hits are created equal: cooperative proxy caching
over a wide-area network. Computer Networks and ISDN Systems 30, 22–23 (1998), 2253–2259.

[21] Rao, C.-H. H., Chen, Y.-F. R., Chang, D.-F., and Chen, M.-F. imobile: a proxy-based platform for
mobile services. In Proceedings of the first workshop on Wireless mobile internet (2001), ACM Press,
pp. 3–10.

[22] Singh, A., Trivedi, A., Ramamritham, K., and Shenoy, P. Ptc : Proxies that transcode and cache in
heterogeneous web client environments.

[23] Wang, J. A survey of web caching schemes for the internet. SIGCOMM Comput. Commun. Rev.
29, 5 (1999), 36–46. 17

[24] Zenel, B., and Duchamp, D. A general purpose proxy filtering mechanism applied to the mobile
environment. In Proceedings of the 3rd annual ACM/IEEE international conference on Mobile
computing and networking (1997), ACM Press, pp. 248–259. 18

[25] A tutorial on SIMJAVA http://www.icsa.informatics.ed.ac.uk/research/groups/hase/SIMJAVA/

[26] Sushil K. Prasad, Vijay Madisetti, Shamkant B. Navathe, Raj Sunderraman, Erdogan
Dogdu, Anu Bourgeois, Michael Weeks, Bing Liu, Janaka Balasooriya, Arthi Hariharan,
Wanxia Xie, Praveen Madiraju, Srilaxmi Malladi, Raghupathy Sivakumar, Alex Zelikovsky,
Yanqing Zhang, Yi Pan, and Saied Belkasim. SyD: A Middleware Testbed for Collaborative
Applications over Small Heterogeneous Devices and Data Stores,, In Proceedings of
ACM/IFIP/USENIX, 5th International Middleware Conference, Toronto , Ontario , Canada ,
October 18th - 22nd, 2004

63

	Scalable Proxy Architecture for Mobile and Peer-to-Peer Networks
	Recommended Citation

	praveena_jayanthi

