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SOME NOVEL STATISTICAL INFERENCES

by

CHENXUE LI

Under the Direction of Gengsheng Qin and Liang Peng

ABSTRACT

In medical diagnostic studies, the area under the Receiver Operating Characteristic

(ROC) curve (AUC) and Youden index are two summary measures widely used in the evalu-

ation of the diagnostic accuracy of a medical test with continuous test results. The first half

of this dissertation will highlight ROC analysis including extension of Youden index to the

partial Youden index as well as novel confidence interval estimation for AUC and Youden

index in the presence of covariates in induced linear regression models. Extensive simulation

results show that the proposed methods perform well with small to moderate sized samples.

In addition, some real examples will be presented to illustrate the methods.

The latter half focuses on the application of empirical likelihood method in economics

and finance. Two models draw our attention. The first one is the predictive regression model

with independent and identically distributed errors. Some uniform tests have been proposed

in the literature without distinguishing whether the predicting variable is stationary or n-

early integrated. Here, we extend the empirical likelihood methods in Zhu, Cai and Peng

(2014 [1]) with independent errors to the case of an AR error process. The proposed new

tests do not need to know whether the predicting variable is stationary or nearly integrated,

and whether it has a finite variance or an infinite variance. Another model we considered

is a GARCH(1,1) sequence or an AR(1) model with ARCH(1) errors. It is known that the

observations have a heavy tail and the tail index is determined by an estimating equation.

Therefore, one can estimate the tail index by solving the estimating equation with unknown

parameters replaced by Quasi Maximum Likelihood Estimation (QMLE), and profile empir-



ical likelihood method can be employed to effectively construct a confidence interval for the

tail index. However, this requires that the errors of such a model have at least finite fourth

moment to ensure asymptotic normality with
√
n rate of convergence and Wilk’s Theorem.

We show that the finite fourth moment can be relaxed by employing some Least Absolute

Deviations Estimate (LADE) instead of QMLE for the unknown parameters by noting that

the estimating equation for determining the tail index is invariant to a scale transformation

of the underlying model. Furthermore, the proposed tail index estimators have a normal

limit with
√
n rate of convergence under minimal moment condition, which may have an in-

finite fourth moment, and Wilk’s theorem holds for the proposed profile empirical likelihood

methods. Hence a confidence interval for the tail index can be obtained without estimating

any additional quantities such as asymptotic variance.

INDEX WORDS: ROC Analysis, Partial Youden Index, GPQ, MOVER, AR Errors, Em-
pirical Likelihood, Jackknife Empirical Likelihood, GARCH Sequence,
Tail Index.
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Chapter 1

INTRODUCTION

1.1 Statistical Evaluation of Medical Tests

In modern medicine, diagnostic/screening tests are essential procedures to prevent, de-

tect and treat diseases. An accurate test can provide reliable information about the condition

of subjects under diagnosis and influence the plan of the test users for managing the subjects.

Biopsy tests with high accuracy are often understood as the reliable diagnostic methods.

However, the costs of biopsy tests including extreme pain, tissue removal, neuron damage

and operational costs cannot be ignored. A compromise is to make diagnosis based on

alternative tests (e.g., biomarkers, body symptoms) with acceptable diagnostic accuracy.

Diagnostic errors always exist. For a test with binary outcomes, a subject will be

classified into either a healthy group or a diseased group based on it’s test result. False

negative (FN ) error that refers to classifying a diseased individual as non-diseased, and false

positive (FP) error that refers to classifying a non-diseased individual as diseased, are two

types of errors resulting from the inaccuracy of a test (Pierce, 1884 [2]). False Positive

Rate (FPR), False Negative Rate (FNR), True Negative Rate (TNR, 1-FPR, also called

specificity), and True Positive Rate (TPR,1-FNR, also called sensitivity), are commonly

used parameters for measuring the accuracy of a test.

When outcomes of a test are binary, specificity and sensitivity of the test can be calcu-

lated. When outcomes of a test are continuous, selection of a threshold/cut-off (“c”) point

is necessary to define the positivity of test results. Let random variable X denote the test

result from the non-diseased group, and random variable Y denote the test result from the

diseased group. Without loss of generality, assume that Y > X. Then, for a given cut-off

point c, specificity = P (X ≤ c), and sensitivity = P (Y > c). In order to evaluate the overall

performance of a test, we’d better take all possible c into account. A plot of sensitivity vs.
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1-specificity over all the possible cut-off points is called the “Receiver Operating Character-

istic (ROC ) curve”. A perfect diagnostic test has an ROC curve starting from the origin,

going straight to (0, 1), then turning right at ninety degrees and ending at (1, 1).

Figure (1.1) Example of ROC curve [3]

Different diagnostic/screening tests may have different ROC curves. The test with

higher sensitivity and specificity is a favorable test. However, sometimes the curves may

cross. Consequently, it causes a problem as we compare performances of tests by merely

looking at the ROC curves. One way to solve this problem is to evaluate the “Area Under

the ROC curve” (AUC ) of the test. AUC is a “one number summary” of an ROC curve.

Bamber (1975 [4]) proved that AUC = P (Y > X). In the ideal situation, AUC has a

value of 1. AUC has been used in a wide range of scientific fields such as signal detection

theory, medical imaging, weather forecasting, and diagnostic medicine. Some references on

inferences of AUC were provided by Refs. ([5], [6], [7]).

Although AUC has many advantages in summarizing the accuracy of a diagnostic test,

it has its limitations. In some circumstances, ROC curve might be used to represent test
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performance on a truncated range of clinically relevant values of FPR, or if one wished to

exclude those parts of the ROC space where study data are sparse [8]. The ROC curve

extends beyond the clinically relevant area of potential clinical interpretation. Hence, the

concept of the partial AUC (pAUC ) was proposed in literature. The partial AUC analysis has

been recognized and many methods for inference on the partial AUC have been developed.

With proper bi-normal model checking, McClish ([9], [10]) provided a method for comparing

portion of ROC curves. Based on McClish’s work, Jiang et al. ([11]) proposed a partial area

index for highly sensitive diagnostic tests (Zhang et al. [6]). Dodd and Pepe (2003 [12]) gave

very good interpretations for pAUC.

1.1.1 Inference for Youden Index

The AUC and the partial AUC are widely used summary measures for an ROC curve.

But they can not be used to select a cut-off level with desired sensitivity/specificity. A

wise choice of a cut-off point is an important implementation for a test. Several selection

methods of cut-off point including “CB” (cost-benefit method), “MinValueSp” (a minimum

value set for Specificity), “MinValueSe” (a minimum value set for Sensitivity), “RangeSp”

(a range of values set for Specificity), and “RangeSe” (a range of values set for Sensitivity)

have been proposed and can be found in R program package ‘Optimal Cutpoints’ (Miller

and Siegmund, 1982 [13], Altman, et al., 1994 [14]).

Here we focus on another “one number summary” of the ROC curve, Youden index

(J ), which is defined as follows:

J = max
c
{sensitivity(c) + specificity(c)− 1} (1.1)

= sensitivity(c0) + specificity(c0)− 1 (1.2)

where c0 is the optimal cut-point of the test.

Youden index was first introduced by Youden [15] in 1950. Indubitably, both high

sensitivity and specificity are desired for a medical test. Schisterman and Perkins [16] pointed



4

out that the optimal threshold for the positive test result of a disease should be the threshold

leading to the maximum of the sum of TPR and TNR. At the same time, this optimal cut-

off point also guarantees minimization of the sum of FPR and FNR, and Youden’s index

illustrates this simply and clearly. Youden index (J ) represents the maximum differentiating

ability of a biomarker when equal weight is given to sensitivity and specificity, with J ranging

from 0 to 1 where 0 indicates the test has no discriminating ability and 1 indicates the test

is perfect (Fluss et al., 2005 [17]). It not only supplies a method to find an optimal cut-off

point, but also provides a numerical summary of the classification likelihood of the test.

From a graphical perspective, Youden’s index is the maximum vertical distance between the

ROC curve and the diagonal chance line, which is in accord with the differentiating capacity

of the diagnosis. This index has several remarkable features, such as it is independent of the

relative/absolute sizes of the diseased and non-diseased groups, and all tests that share the

same index make the same total number of misclassifications per hundred patients (Youden

1950 [15]).

As mentioned above, the ROC curve is constructed by plotting “1-specificity” against

“sensitivity” at all possible cut-off points. Let X denote the test result from a non-diseased

population with distribution F (x) and {Xi : i = 1, 2, . . . , n} is a random sample from

F (x). Let Y denote the test result from diseased population with distribution G(y) and

{Yj : j = 1, 2, . . . ,m} is a random sample from G(y). For given cut-off point c, we have

sensitivity(c) = P (Y ≥ c) = 1−G(c) (1.3)

specificity(c) = P (X < c) = F (c). (1.4)

Youden index can be written as follows:

J = max
c
{1−G(c) + F (c)− 1} (1.5)

= max
c
{F (c)−G(c)} (1.6)

= F (c0)−G(c0) (1.7)
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where c0 is the optimal cut-point of the test results.

Hsieh and Turnbull [18] studied non-parametric estimation methods for the Youden

index based on the empirical and kernel estimates for the underlying distributions. They

provided asymptotic properties of the estimators. However, the asymptotic variances for

the empirical estimate of Youden’s index is still unknown, thus confidence intervals for the

Youden index cannot be constructed directly. Some studies (e.g., Faraggi [19]) considered

constructing non-parametric confidence intervals for the Youden index and the correspond-

ing cutoff point. Zhou and Qin [20] focused on construction of non-parametric confidence

intervals for the Youden index and provided two new non-parametric intervals for the Youden

index based on Agresti and Coull’s [21] adjusted estimate for a binomial proportion.

In practice, high sensitivity (e.g., 0.90 < sensitivity(c) < 1) or high specificity (e.g.,

0.8 < specificity(c) < 1, [22]) is of special interest for a medical test. However, no method

for finding the Youden index along with corresponding cut-off point on a partial interval of

possible cut-off points has been proposed. Inspired by the motivation for the partial AUC,

we will propose a new summary index, called “partial Youden index” on a partial interval of

possible cut-off points for a continuous-scale test. The traditional Youden index is a special

case of the proposed partial Youden index. More details on the partial Youden index and

its inference will be discussed in Chaper 2.

1.1.2 AUC and Youden Index in the Presence of Covariates

Nowadays, modern medical services enable us to collect more information of our pa-

tients. The extra information about the individual, other than the test result, for instance,

the age, the gender, the race etc. are called “covariates”. Ignoring the information on covari-

ates may cause low accuracy of the diagnostic/screening test. The following is an example

to show that incorporating age as a covariate significantly enhances the accuracy of the test.

It is a population-based cross-sectional pilot survey of diabetes mellitus in Cairo, Egypt,

and consists of postprandial blood glucose measurements of 286 subjects obtained from a

fingerstick (a clip of the data set 1.1.2). According to the gold standard criteria of the World
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Health Organization for diagnosing diabetes, 88 subjects were classified as diseased and 198

subjects as healthy. The age of the subject was considered as a relevant covariate in this

example because glucose levels are expected to be higher for older people who do not suffer

from diabetes (see Ref[23], for details).

finger gold age

82 0 37

82 0 20

87 1 51

80 0 54

The following table lists several measures of accuracy calculated from the same test with

and without consideration of the covariate “age”(“age” is linked to test results by a linear

model).

covariate AUC J TPR TNR

without 0.9057 0.6718 0.8894 0.7824

with 0.9543 0.7768 0.9654 0.8115

Apparently, with the consideration of “age”, the accuracy of the test has been improved,

which is very beneficial to our diagnosis.

Four general types of covariate information can be incorporated into the models for

diagnostic accuracy study: 1) subject characteristics, 2) clinical indicators, 3) confounding

variables, and 4) test operating parameters([24]). Dodd [24] pointed out that these 4 types

of covariate information are not mutually exclusive.

In order to evaluate the influence of covariates on AUC and Youden index, some re-

searchers have used induced-regression methods. They modeled the test/biomarker values

through regression models in each population separately. Pepe [25] and Tosteson et al. [26]

specified models for test results as a function of disease status and covariates. Smith and

Thompson [23] proposed a parametric survival model for modeling the distribution of the

screening test outcome as a function of true disease status and other confounding covariates.
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Zhou et al. [27] extended the models proposed in Pepe [25] by allowing for heteroscedas-

ticity. Zheng and Heagerty [28] proposed a semi-parametric estimator for the conditional

ROC curve, in which the distribution of the error terms is unknown and allowed to depend

on the covariates, but, as in the previous articles, the effect of the covariates on the con-

ditional means and variances is modeled parametrically. Recently, Rodŕıguez and Mart́ınez

[29] presented a Bayesian semi-parametric model, in which the error terms are assumed

to be normally distributed, but non-parametric specifications of the conditional means and

variances are allowed.

The models mentioned above are generally complex. Faraggi [30] used simple linear

regression to model biomarker values from the diseased and non-diseased populations. These

linear regression models permit the examination of a direct connection between covariates

and biomarker values within each population. Using maximum likelihood estimation and

the normal approximation method, Faraggi [30] obtained an adjusted confidence interval

for the AUC. Faraggi [30] also provided adjusted confidence intervals for the Youden index

and the corresponding critical threshold value by using a bootstrap method. However, these

methods may not perform well with small sample sizes. In addition, the bootstrap-based

methods are computationally time-consuming.

1.2 Uniform Test Predictive Regression Models

Predictive regression models have been widely used in economics and finance. A simple

predictive regression model goes as follows:

Yt = α + βXt−1 + Ut, Xt = θ + φXt−1 + et, B(L)et = Vt, (1.8)

where Liet = et−i, B(L) = 1 + (
∑q

i=1 biL
i), B(1) 6= 1, all the roots of B(L) are fixed and

less than one in absolute value, and (U1, V1), ..., (Un, Vn) are independent and identically

distributed random vector with mean zero and finite variances. Testing H0 : β = 0 or

constructing a confidence interval for β answers the important question whether the variable
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Xt−1 can be used to predict Yt.

When {Xt} is a stationary sequence, the least squares estimator for β based on the

first equation in (1.8) can be used to formulate a simple test and to construct a confidence

interval. However, this simple estimator ignores the dependence between Ut and Vt and so

tends to be biased in finite sample.This motivates the study of proposing some bias-corrected

estimators and tests in the literature; see Stambaugh (1999 [31]), Amihud and Hurvich (2004

[32]), Amihud, Hurvich and Wang (2009 [33]), Chen and Deo (2009 [34]).

When the predicting variable Xt−1 is a macroeconomic variable such as the log dividend-

price ratio or the log earnings-price ratio, the assumption of stationarity for {Xt} is quite

questionable. On the other hand, it is known that the asymptotic limit of the simple least

squares estimator is quite different when Xt has a finite variance or an infinite variance, and

when the sequence {Xt} is stationary or nearly integrated. Therefore, having a unified test

or interval estimation is of importance in practice, which avoids the extremely challenging

tasks in detecting whether the sequence {Xt} is stationary or nearly integrated, and whether

Xt has a finite variance or an infinite variable. Some existing uniform tests proposed in

the literature include the Bonferroni t-test of Cavanagh, Elliott and Stock (1995 [35]), the

Bonferroni Q-test of Campbell and Yogo (2006 [36]), and the empirical likelihood test of Zhu,

Cai and Peng (2014 [1]). All these methods assume that U ′ts are independent and identically

distributed random variables, which may be quite restrictive in practice, which draws our

attention.

1.3 Tail Index of GARCH(1,1) Model and AR(1) Model with ARCH(1) Errors

A large number of empirical studies show that many financial data series, such as

exchange rate returns and stock indices, often exhibit skewness and heavy tails (see Taylor

(2005 [37])). The heaviness of tails determines some unusual asymptotic behavior of sample

covariance functions, sample correlation functions and extremes of the underlying sequence;

see Davis and Resnick (1985, 1986 [38] [39]) for ARMA processes, Mikosch and Stărică (2000

[40]) and Basrak, Davis and Mikosch (2002 [41]) for GARCH sequences, Davis and Mikosch
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(1998 [42]) and De Haan, Resnick, Rootzén and de Vries (1989 [43]) for ARCH models,

Borkovec (2000, 2001 [44] [45]) for an AR(1) process with ARCH(1) errors, and Davis and

Resnick (1996 [46]) and Resnick and Van den Berg (2000 [47]) for bilinear time series. When

the sequence follows from a time series model, heavy tailed errors play an important role

in deriving the asymptotic limit of parameters estimation; see Hall and Yao (2003 [48]) for

the study of quasi maximum likelihood estimation (QMLE) for a GARCH process, Lange

(2011 [49]) and Zhang and Ling (2015 [50]) for the study of least squares estimation for

AR-GARCH models. Some robust inference procedures for heavy-tailed GARCH models

can be found in Hill (2015 [51]) and Hill and Prokhorov (2016 [52]). The tail index also

plays an important role in testing structural changes in stock prices (see Quinton, Fan

and Phillips (2001 [53])) and calculating financial risk measures such as Value-at-Risk and

expected shortfall (see Wagner and Marsh (2005 [54])). Therefore inference for the tail index

is useful in understanding and modeling time series data.

For a GARCH(p,q) sequence, i.e.,

Yt = σtεt, σ2
t = w +

p∑
i=1

aiσ
2
t−i +

q∑
j=1

bjY
2
t−j,

where w > 0, ai ≥ 0, bi ≥ 0 are unknown parameters, and ε′ts are independent and identically

distributed random variables with zero mean and variance one, Basrak, Davis and Mikosch

(2002 [41]) showed that, under some conditions, there is α > 0 such that limx→∞ x
αP (|Yt| >

x) ∈ (0,∞) by using results in Kesten (1973 [55]) for random difference equations. For

estimating the tail index α, one could simply employ the Hill’s estimator (see Hill (1975))

defined as

α̃(k) = {1

k

k∑
i=1

log
Yn,n−i+1

Yn,n−k
}−1, (1.9)

where Yn,1 < · · · < Yn,n denote the order statistics of Y1, · · · , Yn, and k = k(n) → ∞

and k/n → 0 as n → ∞. Although the Hill’s estimator has been studied extensively for

independent data, existing research on dependent data such as m-dependence or β-mixing can

be found in Hsing (1991 [56]), Resnick and Stărică (1998 [57]) and Drees (2000 [58]). However
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the choice of the sample fraction k for dependent data is much more complicated than that

for independent data. Indeed, as far as we are aware, there is no data-driven method for

choosing k for dependent data although several methods are available for independent data.

For the case of an ARMA sequence, one can apply the Hill’s estimator to either the sequence

itself or the estimated errors since heavy tailed errors imply that the observations have a

heavy tail with the same tail index (see Resnick and Stărică (1997 [59]) and Ling and Peng

(2004 [60])).

When p = q = 1, i.e., a GARCH(1,1) sequence, the tail index α is determined by

an estimating equation (see Section 5.2 for details). In this case, the tail index can be

estimated by using all observations rather than a small fraction of upper order statistics

as Hill’s estimator, and so the resulted estimator has a faster rate of convergence than

the Hill’s estimator and does not need to choose the sample fraction k. Asymptotic limit

was first derived in Mikosch and Stărică (2000 [40]), and later its asymptotic variance was

corrected by Berkes, Horváth and Kokoszka (2003 [61]). Since the asymptotic variance is

very complicated, interval estimation relies on bootstrap method, which is computationally

extensive due to the fact that one has to resample from estimated errors and refit the

GARCH(1,1) model. Moreover, it is known that the performance of bootstrap method for

non-pivotal statistics is not good in general. Therefore Chan, Peng and Zhang (2012 [62])

proposed a profile empirical likelihood method to construct a confidence interval for the index

α by using score equations derived from QMLE, which requires finite fourth moment for εt.

For an AR(1) model with ARCH(1) errors, which is sometimes called a double AR process in

the literature, the tail index is determined by an estimating equation too. Therefore Chan, Li,

Peng and Zhang (2013 [63]) derived the asymptotic limit of an estimator for the index based

on an estimation equation with QMLE, and proposed a profile empirical likelihood method to

construct a confidence interval without estimating the asymptotic variance explicitly. These

results require the errors to have a finite fourth moment as well.
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1.4 Aims of the Dissertation

As mention in section 1.1, no method for finding the Youden index along with corre-

sponding cut-off point on a partial interval of possible cut-off points has been proposed. Our

first aim is to extend the traditional Youden index to a more generalized index called “partial

Youden index”. In addition, we will propose various parametric and non-parametric methods

for inference on the partial Youden index including Generalized Confidence Interval Method,

Method of Variance Estimation Recovery (Hybrid Wilson-Score, Hybrid Agresti-Coull, and

Symmetric Hybrid Wilson-Score). Simulation studies will be conducted to evaluate the

performance of the proposed methods.

Considering the significance of incorporating covariate into test results, in Chapter 3,

we chose linear models to model the covariate and the test results. Our second aim is to

provide an exact “generalized confidence interval” for the AUC and Youden index. The new

method is going to be compared with some existing methods.

The third aim of this dissertation research is to investigate the possibility of extending

the unified approach in Zhu, Cai and Peng (2014 [1]) to the case in which {Ut} follows an

AR(p) process. When {Ut} is an α-mixing sequence, estimation and test are proposed by

Cai and Wang (2014 [64]), which do not lead to a unified procedure.

Motivated by the analysis of the exchange rates between Hong Kong dollar and US

dollar in Zhu and Ling (2015 [65]), our fourth aim is to propose a robust method to estimate

the tail index, which allows the errors to have an infinite fourth moment. More specifically,

by noting that the estimating equation for determining the tail index is invariant to a scale

transformation of the studied models, we propose to first estimate the unknown parameters

by a least absolute deviations estimate (LADE) and then to estimate the tail index by the

estimating equation. This leads to a tail index estimator with the
√
n rate of convergence and

asymptotic normality without requiring a finite fourth moment of errors. Since the asymp-

totic variance of the proposed tail index estimator is too complicated, we further propose

to employ the profile empirical likelihood method to construct a confidence interval, which
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does not require to estimate the asymptotic variance explicitly. Unlike existing methods in

Berkes, Horváth and Kokoszka (2003 [61]), Chan, Peng and Zhang (2012 [62]) and Chan, Li,

Peng and Zhang (2013 [66]), the proposed methods not only relax the moment conditions

of errors (see Section 5.2), but also perform well because LADE is more robust than QMLE

(see the empirical study in Section 5.3).

1.5 Outline of the Dissertation

The remainder of this dissertation is organized as follows. Chapters 2 and 3 are con-

centrated on “Inference for Partial Youden Index” and “Inference for AUC and Youden

Index with Covariate Adjustment”, respectively. Chapters 4 and 5 can be categorized as

the application of Empirical Likelihood method and its derivatives for two different time

series problems, which include “Uniform Test for Predictive Regression with AR errors” and

“Inference for Tail Index of GARCH(1,1) and AR(1) Model with ARCH(1) Errors Under

Minimal Moment Condition”. All the proofs are provided in the Appendices.
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Chapter 2

INFERENCE FOR PARTIAL YOUDEN INDEX

2.1 Review and Outline

In section 1.1, we have introduced the definition of Youden index. From formula (1.2),

we can see that Youden index is a function of sensitivity and specificity depending on the

underlying distributions of the diseased and non-diseased populations. Many methods have

been proposed for inference on Youden index. Most of them need assumptions about their

underlying distributions (e.g., binormal distributions). Fluss et al. [17] proposed parametric

estimate for Youden index. Schisterman and Perkins [16] provided parametric and non-

parametric confidence intervals for the index.

In this chapter, we will first define a “partial Youden index” (pYI ) for a medical test.

Both parametric and non-parametric methods will be proposed to construct confidence in-

tervals for the partial Youden index using Generalized Pivotal Quantities (GPQs, see Weer-

ahandi [67]) and “Method of Variance Estimates Recovery” (“MOVER”) (Zou and Donner,

2008 [68]). Extensive simulation studies will be conducted to evaluate the finite sample

performances of the new intervals. At last, our proposed method will be applied to a real

problem for comparing the diagnostic accuracy of two biomarkers (“CA-125” vs. “CA-19-9”)

for the detection of pancreatic cancer.

2.2 Motivation

As mentioned in Chapter 1, in diagnostic studies, high sensitivity (e.g., 0.90 < sensitiv-

ity(c) < 1) or high specificity (e.g., 0.8 < specificity(c) < 1, [22]) is of special interest for a

medical test. Dating back to 1989, the partial area under the ROC curve was first proposed

by McClish (1989 [9]), Thompson and Zucchini (1989 [69]). Dodd [12] pointed out that the

partial AUC was an alternative measure to the full AUC. When using the partial AUC, one
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considers only those regions of the ROC space where data have been observed, or which

correspond to clinically relevant values of test sensitivity or specificity [12]. Inspired by the

motivation for the partial AUC, we propose a new summary index, called “partial Youden

index” on a partial interval (c2, c1) of possible cut-off points for a continuous-scale test as

follows:

Jp1,p2 = max
c2≤c≤c1

{sensitivity(c) + specificity(c)− 1} (2.1)

= sensitivity(cpo) + specificity(cpo)− 1 (2.2)

= F (cpo)−G(cpo) (2.3)

where (p1, p2) (0 ≤ p1 < p2 ≤ 1) is an interval of FPRs of interest such that c1 = F−1(1−p1)

and c2 = F−1(1 − p2), cpo is the optimal cut-off point corresponding to the partial Youden

Index.

Remarks:

1. If p1 = 0, p2 = 1, then c1 =∞, c2 = −∞, the partial Youden index is reduced to the

Youden index on the full interval of cut-off points.

2. Jp1,p2 defined above is the partial Youden index with restriction on specificity. If

(p1, p2) (0 ≤ p1 < p2 ≤ 1) is an interval of TPRs of interest such that c1 = G−1(1− p1) and

c2 = G−1(1− p2), then Jp1,p2 is the partial Youden index with restriction on sensitivity. For

simplicity, we will only consider the partial Youden index with restriction on specificity in

this chapter.

2.3 Methodologies

Generalized Confidence Interval In the following, we will briefly review the basic

concept of the generalized confidence interval proposed by Weerahandi (1993 [67]).

Suppose that Y is a random variable whose distribution depends on (θ, δ), where θ is

a parameter of interest and δ is a nuisance parameter. Let y be the observed value of Y .

A generalized pivotal quantity (GPQ) R(Y ; y, θ, δ), a function of Y, y, θ, and δ, for interval
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estimation, defined in Weerahandi (1993 [67]), satisfies the following conditions:

(1) R(Y ; y, θ, δ) has a distribution free of all unknown parameters.

(2) The value of R(Y ; y, θ, δ) at Y = y is θ, the parameter of interest.

To derive a GPQ-based confidence for the partial Youden index, we assume that X and

Y are independent, and the underlying distributions F (x) and G(y) of the non-diseased and

diseased populations are N(µx, σ
2
x) and N(µy, σ

2
y), respectively. Without loss of generality,

we assume that µx < µy.

The following point estimates for the Youden index along with its optimal cut-off point

were given in Schisterman and Perkins (2007 [16]):

c0 =
µx(b

2 − 1)− a+ b
√
a2 + (b2 − 1)σ2

x ln b2

b2 − 1
(2.4)

and

J = Φ

(
µy − c0

σy

)
+ Φ

(
c0 − µx
σx

)
(2.5)

where a = µy − µx, b = σy
σx

, and Φ(·) denotes the standard normal cumulative distribution

function.

When σ2
x = σ2

y, c0 is undefined and it can be replaced by

c0 =
µx + µy

2
(2.6)

which is the limit of (2.4) as b→ 1.

For the “non-diseased” and the “diseased” samples {Xi : i = 1, · · · , n} and {Yj : j =

1, · · · ,m}, let X̄, Ȳ be the sample means and S2
x, S

2
y be the sample variances. Let x̄, ȳ,

s2
x and s2

y be the observed values of X̄, Ȳ , S2
x and S2

y , respectively. The generalized pivotal
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quantities of µx and µy are

Rµx = x̄−
(
X̄ − µx
σx/
√
n

)
σx
Sx

sx√
n

= x̄− Zx√
Vx/(n− 1)

sx√
n

= x̄− tx
sx√
n

(2.7)

Rµy = ȳ −
(
Ȳ − µy
σy/
√
m

)
σy
Sy

sy√
m

= ȳ − Zy√
Vy/(m− 1)

sy√
m

= ȳ − ty
sy√
m
, (2.8)

respectively, where Zx =
√
n(X̄−µx)
σx

∼ N(0, 1), Zy =
√
m(Ȳ−µy)

σy
∼ N(0, 1), Vx = (n−1)S2

x

σ2
x
∼

χ2
n−1, Vy =

(m−1)S2
y

σ2
y

∼ χ2
m−1 and tx = Zx√

Vx/(n−1)
, ty = Zy√

Vy/(m−1)
follow Student’s t-

distribution with degrees of freedom n− 1 and m− 1, respectively.

The generalized pivotal quantities for σ2
x and σ2

y are given by

Rσ2
x

=
σ2
x

(n− 1)S2
x

(n− 1)s2
x =

(n− 1)s2
x

Vx
, (2.9)

Rσ2
y

=
σ2
y

(m− 1)S2
y

(m− 1)s2
y =

(m− 1)s2
y

Vy
, (2.10)

respectively.

The generalized pivotal quantities for σx and σy are Rσx =
√
Rσ2

x
and Rσy =

√
Rσ2

y
,

respectively.

The GPQs for a and b are

Ra = Rµy −Rµx , Rb =
Rσy

Rσx

,

respectively.

Therefore, the GPQs for c0 and J are

Rc0 =
Rµx(R

2
b − 1)−Ra +Rb

√
R2
a + (R2

b − 1)Rσ2
x

lnR2
b

R2
b − 1

, (2.11)

when the variances are equal,

Rc0 =
Rµx +Rµy

2
, (2.12)
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RJ = Φ

(
Rµy −Rc0

Rσy

)
+ Φ

(
Rc0 −Rµx

Rσx

)
− 1, (2.13)

respectively.

Based on the definition of the partial Youden index, we can consider the following three

situations to find the optimal cut-off point cpo for the partial Youden Index:

1. If the regular optimal cut-off point c0 for the Youden index is located between c2 and

c1, then cpo = c0.

2. If the regular optimal cut-off point c0 for the Youden index is located to the left side

of c2, then cpo = c2.

3. If the regular optimal cut-off point c0 for the Youden index is located to the right side

of c1, then cpo = c1.

Hence, cpo = median of (c0, c1, c2). To construct the generalized confidence interval for the

partial Youden Index, we need to derive the GPQ for the optimal cut-off point cpo.

Note that

c1 = F−1(1− p1), c2 = F−1(1− p2). (2.14)

Since F (x) is N(µx, σ
2
x),

c1 = σxΦ
−1(1− p1) + µx, c2 = σxΦ

−1(1− p2) + µx. (2.15)

Consequently, the GPQs for c1 and c2 are Rc1 = RσxΦ
−1(1−p1)+Rµx and Rc2 = RσxΦ

−1(1−

p2) +Rµx , respectively. Therefore, the GPQ for cpo is Rcpo = median(Rc0 , Rc1 , Rc2).

The following algorithm is proposed to construct the generalized confidence interval

(GCI) for the partial Youden Index.

Algorithm:

For given “non-diseased” and “diseased” samples x1, . . . , xn and y1, . . . , ym,
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1. Compute the sample means x̄ and ȳ and sample variances s2
x and s2

y.

2. For k = 1, . . . , K

• Generate tn−1 and tm−1;

• Generate Vx and Vy from χ2
n−1 and χ2

m−1, respectively;

• Compute Rµx , Rµy , Rσx , and Rσy ;

• Compute Rc0 , Rc1 ;

• Compute Rcpo,k = median(Rc0 , Rc1 , Rc2);

• Compute RJp1,p2 ,k
by replacing Rc0 by Rcpo,k in RJ .

(end k loop)

3. Compute the 100α/2-th percentile RJp1,p2 ,α/2
and the 100(1 − α/2)-th percentile

RJp1,p2 ,(1−α)/2 of {RJp1,p2 ,1
, RJp1,p2 ,2

, . . . , RJp1,p2 ,K
}. Then,

(
RJp1,p2 ,α/2

, RJp1,p2 ,(1−α)/2

)
is

a 100(1− α)%level confidence interval for Jp1,p2 .

4. Compute the 100α/2th percentile Rcpo,α/2 and the 100(1−α/2)th percentile Rcpo,(1−α)/2

of {Rcpo,1, Rcpo,2, . . . , Rcpo,K}. Then,
(
Rcpo,α/2, Rcpo,(1−α)/2

)
is a 100(1 − α)% level con-

fidence interval for cpo.

Non-Parametric Hybrid Confidence Intervals The generalized confidence in-

terval has its limitation because it’s a parametric interval. Alternatively, non-parametric

method can also be considered. Here, we employ the “Method of Variance Estimates Recov-

ery” (“MOVER”) (Zou and Donner, 2008 [68]) and square-and-add approach (Newcombe,

1998 [70]) to construct non-parametric hybrid confidence intervals for the partial Youden

index.
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From

Jp1,p2 = max
c2≤c≤c1

{sensitivity(c) + specificity(c)− 1}

= sensitivity(cpo) + specificity(cpo)− 1

= sensitivity(cpo)− (1− specificity(cpo))

= P (Y ≥ cpo)− P (X ≥ cpo)

≡ θ2 − θ1,

we can see that the partial Youden index is the difference between two unknown proportions

θ2 and θ1, where θ1 ≡ P (X ≥ cpo), θ2 ≡ P (Y ≥ cpo). However, the two proportions

can estimated by θ̂1 =
∑n

i=1 I(Xi ≥ ĉpo)/n and θ̂2 =
∑m

j=1 I(Yj ≥ ĉpo)/m, where ĉpo is a

consistent estimate for cpo (e.g., the empirical estimate for cpo). Hence, Ĵp1,p2 = θ̂2 − θ̂1 is a

consistent estimate for the partial Youden index.

Under the assumption that the test results from non-diseased group and diseased group

are independent, the variance of Ĵp1,p2 can be consistently estimated by

V̂ ar(Ĵp1,p2) = V̂ ar(θ̂2 − θ̂1) = V̂ ar(θ̂2) + V̂ ar(θ̂1)

where V̂ ar(θ̂1) = θ̂1(1− θ̂1)/n and V̂ ar(θ̂2) = θ̂2(1− θ̂2)/m are consistent estimates for the

variance of θ̂1 and θ̂2, respectively.

The (1− α)-th Wald-Type confidence interval for the partial Youden index is:

(
Ĵp1,p2 − zα/2

√
V̂ ar(θ̂1) + V̂ ar(θ̂2), Ĵp1,p2 + zα/2

√
V̂ ar(θ̂1) + V̂ ar(θ̂2)

)
(2.16)

Our simulation studies showed that this Wald-Type confidence interval has poor small sample

performance. In order to improve the performance of the Wald-type CI, we use the MOVER

method (See also Zou et al. 2009 [71]) to construct new hybrid confidence intervals for the

partial Youden index.
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Let li and ui (i = 1, 2) be the lower and upper limits of a 100(1− α)% two-sided CI for

θi. From the Central Limit Theorem, it follows that

li = θ̂i − zα/2
√
V̂ ar(θ̂i),

ui = θ̂i + zα/2

√
V̂ ar(θ̂i),

which implies that the variance of θ̂i can be estimated by V̂ arl(θ̂i) = (θ̂i − li)
2/z2

α/2 and

V̂ aru(θ̂i) = (ui − θ̂i)2/z2
α/2. After plugging these variance estimates back to equation (2.16),

we get the following hybrid confidence intervals for the partial Youden index:

(
Ĵp1,p2 −

√
(θ̂2 − l2)2 + (u1 − θ̂1)2, Ĵp1,p2 +

√
(u2 − θ̂2)2 + (θ̂1 − l1)2

)
.

Here, we propose the following methods to get two-sided CI (li, ui) for θi.

(i) The Agresti-Coull method.

l1 = θ̃1 − zα/2

√
θ̃1(1− θ̃1)

n+ z2
α/2

, u1 = θ̃1 + zα/2

√
θ̃1(1− θ̃1)

n+ z2
α/2

where θ̃1 = (
∑n

i=1 I(Xi ≥ ĉpo) + 0.5z2
α/2)/(n+ z2

α/2).

l2 = θ̃2 − zα/2

√
θ̃2(1− θ̃2)

m+ z2
α/2

, u2 = θ̃2 + zα/2

√
θ̃2(1− θ̃2)

m+ z2
α/2

where θ̃2 = (
∑m

j=1 I(Yj ≥ ĉpo) + 0.5z2
α/2)/(m+ z2

α/2).

The hybrid confidence interval based on this method is called Hybrid Agresti-Coull

(HAC) interval for the partial Youden index. It can be seen that the HAC interval is a

symmetric interval.
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(ii) The Wilson score method.

l1 =
θ̂1 +

z2
α/2

2n
− zα/2

√
θ̂1(1−θ̂1)

n
+

z2
α/2

4n2

1 + z2
α/2/n

, u1 =
θ̂1 +

z2
α/2

2n
+ zα/2

√
θ̂1(1−θ̂1)

n
+

z2
α/2

4n2

1 + z2
α/2/n

.

l2 =
θ̂2 +

z2
α/2

2m
− zα/2

√
θ̂2(1−θ̂2)

m
+

z2
α/2

4m2

1 + z2
α/2/m

, u2 =
θ̂2 +

z2
α/2

2m
+ zα/2

√
θ̂2(1−θ̂2)

m
+

z2
α/2

4m2

1 + z2
α/2/m

The hybrid confidence interval based on this method is called Hybrid Wilson Score

(HWS) interval for the partial Youden index. Shan [72] proposed two improved confidence

intervals for Youden index using the square-and-add limits based on the Wilson score method.

Shan’s method is equivalent to the above Hybrid Wilson Score method.

(iii) The Symmetric Hybrid Wilson Score

We also can construct a symmetric interval based on the Hybrid Wilson Score method.

If lHWS = Ĵp1,p2 −∆l and uHWS = Ĵp1,p2 + ∆u are the lower and upper limits of 100(1−α)%

two-sided CI for Jp1,p2 based on the Hybrid Wilson Score method. A Symmetric Hybrid

Wilson Score (SHWS) confidence interval for the partial Youden index is defined as

(lSHWS, uSHWS),

where

lSHWS ≡ Ĵp1,p2 −
√

(∆2
l + ∆2

u)/2, uSHWS ≡ Ĵp1,p2 +
√

(∆2
l + ∆2

u)/2.

2.4 Simulation Studies

To evaluate the finite sample performance of the proposed method, two simulation

studies are conducted to compare the coverage probabilities (“cp”) and average lengths

(“al”) of the GPQ-based interval, the Hybrid Agresti-Coull (HAC) interval, the Hybrid

Wilson-Score (HWS)/Shan’s [72](NP) intervals, and the Symmetric Hybrid Wilson-Score
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(SHWS) interval when the underlying distributions are bi-normal distributions and Gamma

distributions, respectively. When the underlying distributions are Gamma distributions,

GPQ-based method can not be applied. In the simulation study, we apply the Box-Cox

transformation to the simulated data from the Gamma distributions, and then calculate

the coverage probabilities and average lengths of the GPQ-based intervals based on the

transformed data.

In the first simulation study, we generate the “non-diseased” sample {xi : i =

1, · · · , n} from a normal distribution with mean µx = 0 and variance σ2
x = 1 and

the “diseased” sample {yj : j = 1, · · · ,m} from a normal distribution with mean µy

and variances σ2
y = 3, respectively. In the second simulation study, the “non-diseased”

sample is generated from Gamma(1.5, 1), and the “diseased” sample is generated from

Gamma(2, θy), where the values for µy and θy are calculated such that the true Y-

ouden index J = 0.5, 0.8, respectively. In the two studies, we choose sample sizes

(n,m) = (20, 20), (20, 40), (40, 20), (40, 40), (80, 80), respectively, K = 1000, (p1, p2) =

(0, 0.01), (0, 0.1), (0.01, 0.2), (0.05, 0.1), (0.05, 0.2), (0.1, 0.3), (0, 1), where (p1, p2) = (0, 0.01)

represents the case with extremely high specificity, and (p1, p2) = (0, 1) represents the case

for the traditional Youden index which is a special case of the partial Youden index. 1000

iterations were made to compute the coverage probabilities and average lengths of the 95%

confidence intervals.

Table (3.1)- (3.2) display the simulation results when the underlying distributions of

the test results are bi-normal distributions. Table (3.3)- (3.4) display the results when the

underlying distributions of the test results are Gamma distributions.

From Table (3.1)- (3.2), we observe that GPQ method shows its prominent perfor-

mance consistently with both the sample sizes and the selected values of (p1, p2). All the

coverage probabilities of the GPQ-based intervals are close to 95% nominal level. For the

non-parametric HAC, HWS(NP ), and SHWS intervals, their coverage probabilities vary

for different combinations of (p1, p2). When p2 − p1 is small, these non-parametric interval-

s show under-coverage problem. When p2 − p1 increases, their coverage probabilities also
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increase. As the sample sizes m and n get bigger, these non-parametric intervals perform

better. Performances of HAC and HWS(NP ) methods also are related to the true values of

the Youden index. When the true Youden index is small, HAC and HWS intervals perform

well. When the true Youden index is big, HWS confidence intervals often overestimate the

partial Youden index. The coverage probabilities of HWS are far greater than the nomi-

nal level. Another observation is that SHWS intervals sometimes fail when J = 0.8 (See

Table (3.2)). HAC intervals have coverage probabilities closer to 95% than the HWS(NP )

intervals.

From Table (3.3)-(3.4), we can see that the HAC and HWS(NP ) methods stand out

among all the methods. Similar to the bi-normal case, the non-parametric intervals perform

better when the sample sizes m and n get bigger, especially for HAC intervals. When

J = 0.5, GPQ-based interval is not recommended, but when J = 0.8, GPQ-based intervals

have acceptable performances (see Table (3.4)). Similar to those results for the bi-normal

distributions, when J = 0.8, SHWS intervals fails sometimes, and HAC intervals have

coverage probabilities closer to 95% than the HWS(NP ) intervals.

In summary, we recommend the GPQ-based interval when the underlying distributions

follow bi-normal distributions, and the non-parametric HAC interval when the underlying

distributions are unknown.

2.5 A Real Example

In this section, we apply our methods to a dataset on pancreatic cancer. The dataset

are the outcomes of two biomarkers “CA-125” and “CA-19-9”, which include tests results

from 51 “control” patients and 90 “case” patients.

Wieand et al. [22] plotted the ROC curves of “CA-125” and “CA-19-9”, and demon-

strated that there were some differences between the two curves when the specificity falls in

(0.8, 1) [73]. This motivates us to focus on this interval to evaluate the diagnostic ability of

the biomarkers in terms of the partial Youden index.

Specificity within (0.8, 1) corresponds to p1 = 0 and p2 = 0.2. Since the original data
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Table (2.1) The coverage probabilities and average lengths of the 95% confidence interval

for the pYI in Normal Case J = 0.5

GPQ HAC HWS(NP ) SHWS
m n (p1, p2) pYI

cp al cp al cp al cp al

20 20 (0,0.01) 0.349 0.957 0.470 0.915 0.469 0.880 0.466 0.791 0.473

(0,0.1) 0.496 0.959 0.445 0.951 0.475 0.945 0.465 0.897 0.478

(0.01,0.2) 0.5 0.962 0.420 0.974 0.479 0.957 0.467 0.903 0.483

(0.05,0.1) 0.496 0.963 0.443 0.960 0.475 0.954 0.466 0.920 0.479

(0.05,0.2) 0.5 0.954 0.420 0.973 0.479 0.945 0.467 0.901 0.483

(0.1,0.3) 0.5 0.954 0.412 0.975 0.488 0.964 0.476 0.921 0.493

(0,1) 0.5 0.956 0.412 0.987 0.481 0.961 0.471 0.909 0.487

20 40 (0,0.01) 0.349 0.957 0.413 0.894 0.415 0.894 0.414 0.822 0.416

(0,0.1) 0.496 0.951 0.394 0.958 0.425 0.940 0.421 0.873 0.427

(0.01,0.2) 0.5 0.965 0.383 0.979 0.426 0.931 0.421 0.888 0.429

(0.05,0.1) 0.496 0.952 0.395 0.957 0.426 0.924 0.422 0.856 0.429

(0.05,0.2) 0.5 0.956 0.382 0.973 0.428 0.949 0.423 0.906 0.431

(0.1,0.3) 0.5 0.953 0.378 0.978 0.432 0.950 0.425 0.903 0.435

(0,1) 0.5 0.961 0.378 0.975 0.424 0.950 0.418 0.895 0.428

40 20 (0,0.01) 0.349 0.961 0.419 0.902 0.390 0.842 0.385 0.768 0.394

(0,0.1) 0.496 0.962 0.373 0.957 0.399 0.949 0.389 0.909 0.403

(0.01,0.2) 0.5 0.946 0.345 0.972 0.407 0.948 0.395 0.894 0.409

(0.05,0.1) 0.496 0.962 0.372 0.945 0.399 0.938 0.389 0.907 0.403

(0.05,0.2) 0.5 0.959 0.345 0.975 0.408 0.960 0.397 0.909 0.411

(0.1,0.3) 0.5 0.952 0.337 0.989 0.419 0.978 0.407 0.928 0.421

(0,1) 0.5 0.961 0.340 0.989 0.412 0.968 0.401 0.906 0.415

40 40 (0,0.01) 0.349 0.957 0.343 0.849 0.322 0.825 0.322 0.755 0.323

(0,0.1) 0.496 0.961 0.312 0.949 0.340 0.942 0.337 0.907 0.341

(0.01,0.2) 0.5 0.950 0.295 0.956 0.345 0.932 0.340 0.889 0.346

(0.05,0.1) 0.496 0.946 0.310 0.952 0.342 0.944 0.339 0.919 0.343

(0.05,0.2) 0.5 0.948 0.295 0.953 0.347 0.932 0.343 0.893 0.348

(0.1,0.3) 0.5 0.949 0.292 0.965 0.354 0.955 0.349 0.915 0.355

(0,1) 0.5 0.956 0.293 0.963 0.346 0.936 0.341 0.884 0.347

80 80 (0,0.01) 0.349 0.949 0.246 0.791 0.222 0.775 0.222 0.775 0.222

(0,0.1) 0.496 0.943 0.217 0.938 0.241 0.921 0.240 0.889 0.242

(0.01,0.2) 0.5 0.952 0.208 0.939 0.248 0.925 0.246 0.889 0.248

(0.05,0.1) 0.496 0.960 0.219 0.945 0.244 0.932 0.243 0.915 0.245

(0.05,0.2) 0.5 0.949 0.208 0.944 0.250 0.936 0.248 0.900 0.250

(0.1,0.3) 0.5 0.953 0.207 0.964 0.254 0.957 0.252 0.920 0.254

(0,1) 0.5 0.953 0.208 0.953 0.249 0.940 0.247 0.901 0.249
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Table (2.2) The coverage probabilities and average lengths of the 95% confidence interval

for the pYI in Normal Case J = 0.8

GPQ HAC HWS(NP ) SHWS
m n (p1, p2) pYI

cp al cp al cp al cp al

20 20 (0,0.01) 0.727 0.956 0.461 0.941 0.422 0.969 0.393 0.933 0.428

(0,0.1) 0.8 0.951 0.300 0.957 0.401 0.987 0.364 0.997 0.409

(0.01,0.2) 0.8 0.950 0.294 0.978 0.401 0.993 0.364 0.997 0.409

(0.05,0.1) 0.8 0.946 0.293 0.957 0.402 0.980 0.365 0.992 0.410

(0.05,0.2) 0.8 0.955 0.284 0.971 0.402 0.992 0.365 0.998 0.410

(0.1,0.3) 0.792 0.952 0.249 0.964 0.413 0.988 0.380 1.000 0.420

(0,1) 0.8 0.960 0.289 0.975 0.399 0.997 0.361 1.000 0.407

20 40 (0,0.01) 0.727 0.953 0.383 0.962 0.370 0.941 0.351 0.869 0.373

(0,0.1) 0.8 0.953 0.270 0.973 0.343 0.984 0.314 0.915 0.347

(0.01,0.2) 0.8 0.954 0.266 0.983 0.338 0.987 0.308 0.926 0.343

(0.05,0.1) 0.8 0.945 0.264 0.964 0.346 0.979 0.318 0.924 0.351

(0.05,0.2) 0.8 0.958 0.256 0.980 0.340 0.989 0.310 0.926 0.345

(0.1,0.3) 0.792 0.945 0.232 0.963 0.350 0.985 0.325 0.998 0.355

(0,1) 0.8 0.956 0.267 0.985 0.339 0.991 0.310 0.940 0.344

40 20 (0,0.01) 0.727 0.954 0.412 0.945 0.351 0.956 0.327 0.899 0.357

(0,0.1) 0.8 0.960 0.247 0.972 0.339 0.981 0.309 0.985 0.345

(0.01,0.2) 0.8 0.944 0.240 0.976 0.341 0.987 0.312 0.979 0.346

(0.05,0.1) 0.8 0.945 0.243 0.961 0.340 0.966 0.311 0.968 0.346

(0.05,0.2) 0.8 0.961 0.233 0.981 0.340 0.992 0.311 0.978 0.346

(0.1,0.3) 0.792 0.954 0.206 0.983 0.358 0.993 0.332 1.000 0.362

(0,1) 0.8 0.952 0.240 0.985 0.341 0.992 0.312 0.989 0.347

40 40 (0,0.01) 0.727 0.962 0.320 0.914 0.286 0.895 0.274 0.839 0.287

(0,0.1) 0.8 0.939 0.207 0.973 0.268 0.969 0.250 0.915 0.270

(0.01,0.2) 0.8 0.968 0.206 0.988 0.269 0.974 0.251 0.934 0.271

(0.05,0.1) 0.8 0.953 0.203 0.953 0.273 0.970 0.255 0.952 0.275

(0.05,0.2) 0.8 0.950 0.202 0.978 0.273 0.985 0.256 0.954 0.275

(0.1,0.3) 0.792 0.956 0.176 0.984 0.283 0.995 0.267 1.000 0.284

(0,1) 0.8 0.946 0.205 0.979 0.268 0.970 0.250 0.920 0.270

80 80 (0,0.01) 0.727 0.946 0.225 0.872 0.197 0.829 0.193 0.766 0.197

(0,0.1) 0.8 0.964 0.146 0.975 0.185 0.972 0.178 0.917 0.185

(0.01,0.2) 0.8 0.944 0.145 0.978 0.184 0.964 0.177 0.894 0.185

(0.05,0.1) 0.8 0.940 0.145 0.969 0.188 0.968 0.181 0.939 0.188

(0.05,0.2) 0.8 0.953 0.145 0.982 0.188 0.985 0.181 0.945 0.188

(0.1,0.3) 0.792 0.951 0.126 0.985 0.195 0.990 0.189 0.982 0.196

(0,1) 0.8 0.945 0.145 0.976 0.184 0.955 0.177 0.904 0.185
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Table (2.3) The coverage probabilities and average lengths of the 95% confidence interval

for the pYI in Gamma Case J = 0.5

GPQ HAC HWS(NP ) SHWS
m n (p1, p2) pYI

cp al cp al cp al cp al

20 20 (0,0.01) 0.242 0.771 0.431 0.805 0.460 0.767 0.459 0.685 0.465

(0,0.1) 0.465 0.872 0.513 0.930 0.476 0.939 0.468 0.826 0.480

(0.01,0.2) 0.5 0.912 0.478 0.965 0.481 0.939 0.469 0.859 0.486

(0.05,0.1) 0.465 0.848 0.501 0.938 0.477 0.941 0.468 0.822 0.481

(0.05,0.2) 0.5 0.896 0.480 0.950 0.481 0.928 0.469 0.877 0.486

(0.1,0.3) 0.5 0.900 0.443 0.973 0.485 0.948 0.471 0.882 0.489

(0,1) 0.5 0.913 0.415 0.984 0.481 0.950 0.468 0.885 0.486

20 40 (0,0.01) 0.242 0.725 0.356 0.847 0.400 0.774 0.399 0.774 0.402

(0,0.1) 0.465 0.843 0.440 0.936 0.428 0.925 0.424 0.856 0.430

(0.01,0.2) 0.5 0.890 0.411 0.957 0.427 0.912 0.420 0.859 0.430

(0.05,0.1) 0.465 0.847 0.440 0.924 0.430 0.928 0.427 0.860 0.432

(0.05,0.2) 0.5 0.879 0.417 0.963 0.430 0.924 0.423 0.880 0.433

(0.1,0.3) 0.5 0.910 0.389 0.979 0.429 0.941 0.421 0.900 0.432

(0,1) 0.5 0.898 0.365 0.973 0.421 0.935 0.411 0.866 0.423

40 20 (0,0.01) 0.242 0.878 0.426 0.772 0.384 0.737 0.381 0.652 0.389

(0,0.1) 0.465 0.890 0.455 0.885 0.400 0.878 0.390 0.826 0.403

(0.01,0.2) 0.5 0.917 0.408 0.959 0.414 0.945 0.402 0.885 0.416

(0.05,0.1) 0.465 0.911 0.460 0.881 0.401 0.887 0.392 0.847 0.404

(0.05,0.2) 0.5 0.913 0.405 0.953 0.412 0.927 0.401 0.875 0.415

(0.1,0.3) 0.5 0.905 0.378 0.975 0.422 0.952 0.410 0.892 0.424

(0,1) 0.5 0.921 0.358 0.989 0.417 0.960 0.406 0.887 0.419

40 40 (0,0.01) 0.242 0.797 0.332 0.746 0.311 0.702 0.312 0.702 0.312

(0,0.1) 0.465 0.869 0.372 0.913 0.343 0.891 0.339 0.860 0.344

(0.01,0.2) 0.5 0.911 0.333 0.955 0.349 0.926 0.344 0.879 0.350

(0.05,0.1) 0.465 0.869 0.369 0.904 0.344 0.894 0.341 0.872 0.345

(0.05,0.2) 0.5 0.899 0.328 0.933 0.351 0.914 0.345 0.867 0.351

(0.1,0.3) 0.5 0.885 0.306 0.958 0.354 0.923 0.348 0.881 0.355

(0,1) 0.5 0.923 0.299 0.958 0.350 0.932 0.345 0.872 0.351

80 80 (0,0.01) 0.242 0.824 0.253 0.703 0.210 0.679 0.210 0.665 0.210

(0,0.1) 0.465 0.854 0.260 0.880 0.245 0.868 0.245 0.821 0.246

(0.01,0.2) 0.5 0.904 0.228 0.923 0.253 0.923 0.251 0.889 0.253

(0.05,0.1) 0.465 0.871 0.263 0.889 0.246 0.890 0.246 0.846 0.247

(0.05,0.2) 0.5 0.920 0.225 0.936 0.253 0.928 0.251 0.887 0.253

(0.1,0.3) 0.5 0.906 0.215 0.942 0.255 0.937 0.253 0.892 0.255

(0,1) 0.5 0.909 0.214 0.957 0.254 0.952 0.251 0.903 0.254



27

Table (2.4) The coverage probabilities and average lengths of the 95% confidence interval

for the pYI in Gamma Case J = 0.8

GPQ HAC HWS(NP ) SHWS
m n (p1, p2) pYI

cp al cp al cp al cp al

20 20 (0,0.01) 0.724 0.811 0.487 0.939 0.423 0.968 0.394 0.946 0.429

(0,0.1) 0.8 0.912 0.341 0.956 0.400 0.984 0.362 0.998 0.408

(0.01,0.2) 0.8 0.923 0.306 0.971 0.400 0.992 0.361 0.998 0.407

(0.05,0.1) 0.8 0.935 0.341 0.963 0.401 0.988 0.363 0.995 0.409

(0.05,0.2) 0.8 0.940 0.289 0.982 0.399 0.994 0.361 0.998 0.407

(0.1,0.3) 0.793 0.944 0.254 0.960 0.414 0.992 0.380 1.000 0.420

(0,1) 0.8 0.932 0.286 0.981 0.398 0.995 0.361 1.000 0.406

20 40 (0,0.01) 0.724 0.732 0.408 0.948 0.374 0.931 0.356 0.880 0.377

(0,0.1) 0.8 0.915 0.304 0.967 0.343 0.982 0.314 0.923 0.347

(0.01,0.2) 0.8 0.907 0.271 0.985 0.339 0.993 0.310 0.922 0.344

(0.05,0.1) 0.8 0.931 0.294 0.975 0.344 0.990 0.315 0.929 0.348

(0.05,0.2) 0.8 0.936 0.261 0.979 0.341 0.993 0.312 0.933 0.346

(0.1,0.3) 0.793 0.941 0.228 0.974 0.347 0.988 0.321 0.999 0.352

(0,1) 0.8 0.924 0.259 0.987 0.339 0.991 0.309 0.935 0.344

40 20 (0,0.01) 0.724 0.838 0.443 0.930 0.353 0.951 0.329 0.900 0.358

(0,0.1) 0.8 0.928 0.279 0.967 0.339 0.979 0.309 0.974 0.344

(0.01,0.2) 0.8 0.922 0.240 0.981 0.339 0.990 0.309 0.972 0.345

(0.05,0.1) 0.8 0.939 0.264 0.975 0.340 0.983 0.310 0.984 0.345

(0.05,0.2) 0.8 0.926 0.235 0.983 0.340 0.994 0.310 0.981 0.345

(0.1,0.3) 0.793 0.936 0.204 0.971 0.358 0.990 0.333 1.000 0.362

(0,1) 0.8 0.938 0.238 0.991 0.340 0.995 0.311 0.974 0.346

40 40 (0,0.01) 0.724 0.799 0.356 0.906 0.287 0.882 0.276 0.825 0.288

(0,0.1) 0.8 0.921 0.220 0.967 0.269 0.967 0.251 0.933 0.271

(0.01,0.2) 0.8 0.941 0.203 0.987 0.268 0.978 0.250 0.937 0.270

(0.05,0.1) 0.8 0.934 0.217 0.958 0.273 0.971 0.255 0.952 0.275

(0.05,0.2) 0.8 0.935 0.197 0.979 0.271 0.982 0.253 0.942 0.273

(0.1,0.3) 0.793 0.945 0.178 0.984 0.282 0.991 0.266 1.000 0.284

(0,1) 0.8 0.936 0.202 0.979 0.269 0.968 0.251 0.926 0.271

80 80 (0,0.01) 0.724 0.808 0.248 0.870 0.197 0.828 0.194 0.788 0.198

(0,0.1) 0.8 0.908 0.148 0.970 0.184 0.961 0.177 0.908 0.185

(0.01,0.2) 0.8 0.922 0.144 0.976 0.184 0.967 0.177 0.906 0.185

(0.05,0.1) 0.8 0.936 0.145 0.974 0.187 0.974 0.180 0.937 0.188

(0.05,0.2) 0.8 0.920 0.141 0.983 0.187 0.978 0.179 0.928 0.187

(0.1,0.3) 0.793 0.932 0.126 0.983 0.195 0.988 0.188 0.996 0.195

(0,1) 0.8 0.931 0.144 0.988 0.185 0.971 0.178 0.906 0.185
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are not normally distributed, we use Box-Cox transformation with the power parameter

φ = −0.425 to the “CA-125” test results, and φ = −0.015 to the “CA-19-9” tests results.

Then the transformed data would follow normal distribution.

In order to make sure the stability of GPQ-based method, we choose K = 106 to

construct 95% level GPQ-based interval for the partial Youden index J0,0.2 based on the

transformed data in this example. We also calculate 95% level HAC, HWS and SHWS

intervals for J0,0.2 (See Table (2.5)).

Table (2.5) shows that “CA-19-9” has higher partial Youden index than “CA-125”,

which indicates that biomarker “CA-19-9” has higher diagnostic accuracy to detect pancre-

atic cancer than biomarker “CA-125” when specificity of the two biomarkers falls in (0.8,

1). Therefore, we recommend “CA-19-9” for detection of pancreatic cancer. This conclusion

coincides with the results in Huang et al. [73]. Also, based on our proposed method, we can

get the confidence interval for the optimal cut off point.

Table (2.5) The 95% confidence interval for the J0,0.2 of CA-125 v.s. CA-19-9

GPQ HAC HWS SHWS

CA− 125 (0.1167, 0.4012) (0.1232, 0.4208) (0.1296, 0.4259) (0.1439, 0.4417)

CA− 19− 9 (0.5776, 0.7854) (0.4944, 0.7434) (0.5089, 0.7525) (0.5328, 0.7823)

2.6 Summary and Discussion

In this chapter, we propose a new summary index, called “partial Youden index”, for

a ROC curve. We also develop parametric and non-parametric confidence intervals for the

partial Youden index. The proposed methods are derived from GPQ and MOVER based

methods. The partial Youden index maintains merits of the traditional Youden index. It

can be a useful tool for finding an optimal cut-off point. In medial diagnostic studies, a test

having minimum sensitivity or specificity is often required clinically. The proposed partial

Youden index can assure a lower bound for sensitivity or specificity by adjusting the values of
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p1 and p2. We also conduct extensive simulation studies to evaluate the proposed methods.

Our simulation results show that the generalized confidence interval for the partial Youden

index method performs very well when the underlying distributions are binormal. The non-

parametric HAC interval has acceptable performance when the underlying distributions are

unknown.

The partial Youden index is a new summary index for a ROC curve. The traditional

Youden index is a special case of the proposed index. It is well known that Youden index

has been applied to many fields in medical and biological studies. We expect the partial

Youden index will have wilder applications in medical and biological sciences.
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Chapter 3

INFERENCE FOR AUC AND YOUDEN INDEX WITH COVARIATE

ADJUSTMENT

3.1 Review and Outline

As stated in Chapter 1.1.2, in this chapter, we consider similar linear regression models

to those used in Faraggi [30] and provide method for constructing exact confidence inter-

vals for AUC, and the Youden index along with its corresponding optimal cut-point. Our

approach is based on the concept of generalized pivotal quantity (GPQ) introduced by Tsui

[74] and Weerahandi [67] . When compared with the normal approximation-based interval-

s, the proposed generalized confidence intervals have better coverage accuracy, particularly

when sample sizes are small. In the literature, generalized pivotal quantity-based inferences

have been applied to many different problems. Gamage et al. [75] constructed a generalized

confidence region for the difference between two mean vectors. Lee and Lin [76] developed

confidence intervals for the ratio of the means of two normal populations. Tian and Wilding

[77] presented a generalized variable approach for confidence interval estimation of a common

correlation coefficient from several independent samples drawn from bivariate normal popu-

lations. Recently, Lai et al.[78] made use of a generalized approach to construct confidence

intervals for the Youden index and its corresponding optimal cut-point. Further details on

generalized confidence intervals can be found in Refs.[79] and [80].

The rest of the chapter is organized as follows. In Section 2, we introduce the induced-

regression models for biomarker values from diseased and non-diseased populations. In

Section 3, we derive GPQs for the AUC, and Youden index along with its cut-point. We

also propose algorithms for computing the generalized confidence intervals for the AUC,

and Youden index along with its cut-point. In section 4, simulation results are presented

for evaluating coverage probabilities and the mean lengths of the GPQ-based intervals. We
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compare these probabilities and mean lengths with those of the normal approximation-based

confidence intervals and bootstrap-based intervals. In Section 5, the proposed methods are

applied to a real data set. Finally, Section 6 concludes the chapter with discussion.

3.2 AUC, Youden index and its associated cut-point in the presence of covari-

ates

Two approaches have been used in the literature to model the relationship between the

test/biomarker values and covariates. The first approach is to model the dependence of the

ROC curve directly on the covariates. However this approach loses the connection with the

cut-off value and does not allow the prediction of the sensitivity and specificity at a given

cut-off conditional on covariates. The second approach is to directly model the covariate

effects on the test results and through the modeling process obtain the covariate-adjusted

ROC curve and its related summary measures. Faraggi [30] employed the second approach

by using a simple linear regression model with normal error. In this session, we use the direct

modeling approach and assume that the non-diseased test result (X) and diseased test result

(Y ) are linear functions of covariates (Zi):

X|Z1 = β′1Z1 + ε1 (3.1)

Y |Z2 = β′2Z2 + ε2 (3.2)

where Zi = (Zi1, Zi2, · · · , Zipi)′, i = 1, 2, are pi-dimensional covariates vectors associated

with the non-diseased and diseased test results, respectively, Z1 and Z2 are assumed to have

some common components, βi = (βi1, βi2, · · · , βipi)′ are pi-dimensional column vectors of

unknown parameters. pi-dimensional column vectors of unknown parameters, and the error

terms εi ∼ N(0, σ2
i ) and are independent random variables, and the error terms εi ∼ N(0, σ2

i )

and are independent random variables.

Under this model setting, at given covariates Z1 = z1 and Z2 = z2, the distribution of

X|Z1 is the normal distribution with mean µX|z1 ≡ E(X|Z1 = z1) = β′1z1 and variance σ2
1,



32

and the distribution of Y |Z2 is the normal distribution with mean µY |z2 ≡ E(Y |Z2 = z2) =

β′2z2 and variance σ2
2. From equations (3.1) and (3.2), we can derive the covariate-adjusted

AUC as follows

A(z1, z2) = Prob(Y > X|Z1 = z1,Z2 = z2) = Φ{δ(z1, z2)}, (3.3)

where

δ(z1, z2) =
µY |z2 − µX|z1√

(σ2
1 + σ2

2)

with Φ being the standard normal cumulative distribution function.

The covariate-adjusted sensitivity and specificity at a given cut-point C are

q(z1, z2) = Φ

(
µY |z2 − C

σ2

)
,

p(z1, z2) = Φ

(
C − µX|z1

σ1

)
,

respectively.

The covariate-adjusted Youden index is defined as

Y I(z1, z2) = max
C
{p(z1, z2) + q(z1, z2)} − 1.

The covariate-adjusted optimal cut-off point C∗(z1, z2) is given by (see Ref. [81])

C∗(z1, z2) =
µX|z1(b2 − 1)− a+ b

√
a2 + (b2 − 1)σ2

1 ln b2

b2 − 1
. (3.4)

where a = µY |z2 − µX|z1 , b = σ2
σ1

.

Hence

Y I(z1, z2) = Φ

(
µY |z2 − C∗(z1, z2)

σ2

)
+ Φ

(
C∗(z1, z2)− µX|z1

σ1

)
− 1. (3.5)
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If σ1 = σ2, C∗(z1, z2) is undefined and it can be replaced by

C∗(z1, z2) =
µX|z1 + µY |z2

2
, (3.6)

which is the limit of (3.4) as b→ 1.

The covariate-adjusted AUC and Youden index along with its the optimal cut-off point

defined as above are still unknown but they can be estimated by using the maximum likeli-

hood estimates for βi’s and σ2
i ’s. Let {(xi, z′i,1) : i = 1, · · · ,m} and {(yj, z′j,2) : j = 1, · · · , n}

be random samples of “non-diseased” subjects and “diseased” subjects from models (3.1)-

(3.2) respectively, where zi,1 = (zi1,1, zi2,1, · · · , zip1,1)′ and zj,2 = (zj1,2, zj2,2, · · · , zjp2,2)′ are

the corresponding covariates values in the “non-diseased” and “diseased” samples. Our goal

is to estimate A(z1, z2), Y I(z1, z2) and C∗(z1, z2) at given (z1, z2) based on these samples.

Let

Z̃1 =


z11,1 z12,1 · · · z1p1,1

z21,1 z22,1 · · · z2p1,1

...
...

...
...

zm1,1 zm2,1 · · · zmp1,1


, Z̃2 =


z11,2 z12,2 · · · z1p2,2

z21,2 z22,2 · · · z2p2,2

...
...

...
...

zn1,2 zm2,1 · · · zmp2,2


.

Then, βi’s and σ2
i ’s can be estimated by the following estimators based on the “non-diseased”

and “diseased” samples, respectively, i.e.

β̂1 = (Z̃ ′1Z̃1)−1Z̃ ′1X̃,

β̂2 = (Z̃ ′2Z̃2)−1Z̃ ′2Ỹ ,

σ̂2
1 = (X̃ ′X̃ − β̂1Z̃

′
1X̃)/(m− p1),

σ̂2
1 = (Ỹ ′Ỹ − β̂1Z̃

′
1Ỹ )/(n− p2),

where X̃ = (x1, · · · , xm)′ and Ỹ = (y1, · · · , yn)′.

Substituting these estimates for the corresponding unknown parameters in (3.3)-(3.6),

we obtain the point estimators Â(z1, z2), Ŷ I(z1, z2) and Ĉ∗(z1, z2) for the covariate-adjusted
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AUC and Youden index along with its optimal cut-off point. Using the asymptotic normality

of β̂i’s and σ̂2
i ’s and the delta method, it can be shown that these estimators are asymptotical-

ly normal (see Ref.[30]). Therefore, we can construct normal approximation-based confidence

intervals for the covariate-adjusted AUC and Youden index along with its optimal cut-off

point.

3.3 Generalized Confidence Intervals

The concept of the generalized confidence interval was introduced by Tsui and Weera-

handi [74] and Weerahandi [67] . Suppose that Y is a random variable whose distribution

depends on (θ, δ), where θ is a parameter of interest and δ is a nuisance parameter. Let y

be the observed value of Y . R(Y ; y, θ, δ), a function of Y, y, θ, and δ, is called a generalized

pivotal quantity (GPQ) if it satisfies the following two conditions:

1. R(Y ; y, θ, δ) has a distribution free of all unknown parameters.

2. The value of R(Y ; y, θ, δ) at Y = y is θ, the parameter of interest.

Under model assumptions (3.1) and (3.2), X|Z1 and Y |Z2 are independent and follow

normal distributions N(µX|z1 , σ
2
1) and N(µY |z2 , σ

2
2), respectively. In the following, we will

derive the GPQs of µX|z1 , µY |z2 , σ2
1, and σ2

2 at given covariates Z1 = z1, Z2 = z2. Note that

µX|z1 , µY |z2 can be consistently estimated by

µ̂X|z1 = β̂′1z1 (3.7)

µ̂Y |z2 = β̂′2z2. (3.8)

Since µ̂X|z1 , and µ̂Y |z2 are linear combinations of β̂1 and β̂2 which follow multivariate normal

distributions, µ̂X|z1 and µ̂Y |z2 are also normally distributed. i.e.,

µ̂X|z1 ∼ N
(
µX|z1 , σ

2
1V1

)
µ̂Y |z2 ∼ N

(
µY |z2 , σ

2
2V2

)
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with

V ar(µ̂X|z1) = V ar(β̂′1z1) = z1
′V ar(β̂1)z1 = σ2

1z1
′(Z̃ ′1Z̃1)−1z1 ≡ σ2

1V1 (3.9)

V ar(µ̂Y |z2) = V ar(β̂′2z2) = z2
′V ar(β̂2)z2 = σ2

2z2
′(Z̃ ′2Z̃2)−1z2 ≡ σ2

2V2 (3.10)

Therefore, the GPQ for µX|z1 is

RµX|z1
= µ̂X|z1 −

µ̂X|z1 − µX|z1
σ1

√
V1

× σ1

√
V1
ex
eX

= µ̂X|z1 −
Z√
e2
X/σ

2
1

× ex
√
V1

= µ̂X|z1 − Tm−p1
√

m

m− p1

× ex
√
V1, (3.11)

where eX =
{∑

i(Xi−X̄)2

m

}1/2

with X̄ =
∑

iXi/m, ex is the observed value of eX , and Tm−p1

is a chi-square random variable with degree of freedom m− p1.

Similarly, the GPQ for µY |z2 is

RµY |z2
= µ̂Y |z2 − Tn−p2

√
n

n− p2

× ey
√
V2, (3.12)

where eY =
{∑

j(Yj−Ȳ )2

n

}1/2

with Ȳ =
∑

j Yj/n, ey is the observed value of eY , and Tn−p2 is

a chi-square random variable with degree of freedom n− p2.

The GPQs for σ2
1 and σ2

2 are:

Rσ2
1

=
σ2
1

e2X
× e2

x = me2x
χ2
m−p1

(3.13)

Rσ2
2

=
σ2
2

e2Y
× e2

y =
ne2y
χ2
n−p2

(3.14)

Particularly, when p1 = p2 = 2, the above GPQ’s are reduced to the GPQs given by

[82].
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Let Rσi =
√
Rσ2

i
, i = 1, 2, and

Ra = RµY |z2
−RµX|z1

, Rb =
Rσ2

Rσ1

.

Obviously, Rσi is the GPQ for σi, Ra and Rb are the GPQs for a and b respectively.

Then by substituting Ra, Rb, RµX|z1
and Rσ2

1
for the corresponding quantities a, b, µX|z1

and σ2
1 in (3.4) and (3.6), we get the GPQs for C∗(z1, z2):

RC∗ =
RµX|z1

(R2
b − 1)−Ra +Rb

√
R2
a + (R2

b − 1)Rσ2
1

lnR2
b

R2
b − 1

. (3.15)

When σ2
1 = σ2

2,

RC∗ =
RµX|z1

+RµY |z2

2
. (3.16)

Similarly, the GPQs for Y I(z1, z2) and A(z1, z2) are

RY I = Φ

(
RµY |z2

−RC∗

Rσ2

)
+ Φ

(
RC∗ −RµX|z1

Rσ1

)
, (3.17)

and

RAUC = Φ{Rδ(z1,z2)}, (3.18)

respectively, where

Rδ(z1,z2) =
RµY |z2

−RµX|z1√
(Rσ2

1
+Rσ2

2
)
. (3.19)

To construct (1− α)% generalized confidence intervals for the covariate-adjusted AUC

and Youden index along with its optimal cut-off point, we propose the following algorithm:
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For the given “non-diseased” and “diseased” samples {(xi, z′i,1) : i = 1, · · · ,m} and

{(yj, z′j,2) : j = 1, · · · , n}, and at given covariates Z1 = z1 and Z2 = z2,

1. Compute ex =
{∑

i(xi−x̄)2

m

}1/2

, ey =
{∑

j(yj−ȳ)2

n

}1/2

, µ̂X|z1 and µ̂Y |z2 according to (3.7)-

(3.8).

2. For k = 1, . . . , K,

• Generate Tm−p1 and Tn−p2 from Student’s t-distribution with degrees of freedom

m− p1 and n− p2 respectively;

• Generate χ2
m−p1 and χ2

n−p2 from χ2 distribution with degrees of freedom m − p1

and n− p2 respectively;

• Compute RµX|z1
, RµY |z2

, Rσx , and Rσy according to equations (3.11)-(3.14);

• Compute RC∗,k following (3.15) or (3.16);

• Compute RAUC,k and RY I,k following (3.18) and (3.17).

(end k loop)

3. Compute the 100α/2-th percentile RAUC,α/2 and the 100(1 − α/2)-th percentile

RAUC,(1−α)/2 of {RAUC,1, RAUC,2, . . . , RAUC,K}. Then,
(
RAUC,α/2, RAUC,(1−α)/2

)
is a

100(1− α)% generalized confidence interval for the covariate-adjusted AUC.

4. Compute the 100α/2-th percentileRY I,α/2 and the 100(1−α/2)-th percentileRY I,(1−α)/2

of {RY I,1, RY I,2, . . . , RY I,K}. Then,
(
RY I,α/2, RY I,(1−α)/2

)
is a 100(1− α)% confidence

interval for the covariate-adjusted Y I.

5. Compute the 100α/2-th percentileRC∗,α/2 and the 100(1−α/2)-th percentileRC∗,(1−α)/2

of {RC∗,1, RC∗,2, . . . , RC∗,K}. Then,
(
RC∗,α/2, RC∗,(1−α)/2

)
is a 100(1 − α)% confidence

interval for the covariate-adjusted optimal cut-off point.
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3.4 Simulation Studies

In order to examine the finite sample performance of the generalized confidence inter-

vals for the covariate-adjusted AUC and Youden index along with its optimal cut-point, we

conduct extensive simulation studies to evaluate the coverage probabilities (“cp”) and the

average lengths (“al”) of the confidence intervals. For comparison, we also provide coverage

probabilities and average lengths of the bootstrap-based intervals for the covariate-adjusted

AUC and Youden index along with its optimal cut-point. The coverage probabilities and av-

erage lengths of the normal approximation-based (“AN”) intervals for the covariate-adjusted

AUC are presented in the studies as well.

In the first simulation study, we choose p1 = p2 = 2, β11 = 6, β12 = β22 = 1.5, β21 = 7.2,

and generate the “non-diseased” sample {(xi, z′i,1) : i = 1, · · · ,m} and the “diseased” sample

{(yj, z′j,2) : j = 1, · · · , n} from the following linear regression models:

Model 1:

X|Z1 = 6 + 1.5Z12 + ε1, (3.20)

Y |Z2 = 7.2 + 1.5Z22 + ε2, (3.21)

In the second simulation study, we choose p1 = p2 = 3. We keep the previous setting

for the parameters above, and add β13 = 1.8, β23 = 2 to the models. The “non-diseased”

and “diseased” samples are generated from the following models:

Model 2:

X|Z1 = 6 + 1.5Z12 + 1.8Z13 + ε1, (3.22)

Y |Z2 = 7.2 + 1.5Z22 + 2Z23 + ε2. (3.23)

In Model 1 and 2, Z1 and Z2 are covariates. The values of Z1 and Z2 among non-diseased

and diseased groups are not necessarily the same. εi is generated from N(0, σ2
i ) (i = 1, 2),

and ε1 is independent of ε2. Both Z12 and Z13 are generated from the uniform distribution on
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[1, 5]. Both Z22 and Z23 are generated from the uniform distribution on [6, 10]. We choose

(m,n) = (10, 10), (30, 30), (20, 50), (50, 20), (50, 50), and (100, 100) respectively. In the

studies, the given covariate values are z1 = z2 = (1, z0) with z0 being 2.0, 2.5, 3.0, 3.5, 4.0, 4.5

respectively in Model (1). In Model (2), the given covariate values are z1 = z2 = (1, z1, z2).

We choose the following combinations of (z1, z2): (2.0, 7.0), (2.0, 9.5), (2.5, 8.5), (3.0, 8.0),

(3.5, 9.0), and (4.5, 9.5).

Due to the complicated nature of the formulae for Ŷ I(z1, z2) and Ĉ∗(z1, z2), the deriva-

tion of their variances is quite complex. As Faraggi[30] suggested, we prefer to construct

bootstrap-based confidence intervals for the covariate-adjusted AUC and Youden index along

with its optimal cut-off point. We summarize the computation procedure of the proposed

confidence intervals as follows:

1. Draw a bootstrap resample {(x∗i , z′∗i,1) : i = 1, · · · ,m} from the“non-diseased” sample

{(xi, z′i,1) : i = 1, · · · ,m}, and a bootstrap resample {(y∗j , z′∗j,2) : j = 1, · · · , n} form the

“diseased” sample {(yj, z′j,2) : j = 1, · · · , n}, respectively.

2. For θ̂ = Â(z1, z2), Ŷ I(z1, z2), Ĉ∗(z1, z2), compute the bootstrap copy θ∗ of θ̂ from

(3.3), (3.5) and (3.4), respectively.

3. Repeat the first two steps B times to obtain the bootstrap replications {θ∗b : b =

1, 2, · · · , B}. Then, the bootstrap estimator V ∗(θ̂) for the variance of θ̂ is defined by

V ∗(θ̂) =
1

B − 1

B∑
b=1

(θ∗b − θ∗)2

where θ
∗

= (1/B)
∑B

b=1 θ
∗b.

4. Three (1 − α)100% (0 < α < 1) level bootstrap-based intervals for θ (θ = A(z1, z2),

Y I(z1, z2), C∗(z1, z2)) can be constructed as follows:

The first interval, called BP interval, for θ is defined as

(θ∗([Bα/2]), θ∗([B(1−α/2)])),
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where θ∗([Bα/2]) and θ∗([B(1−α/2)]) are the α/2-th and (1−α/2)-th quantiles of {θ∗b : b =

1, 2, · · · , B}, respectively.

The second interval, called BTI interval, for θ is defined as

(θ̂ − z1−α/2

√
V ∗(θ̂), θ̂ + z1−α/2

√
V ∗(θ̂)),

where θ̂ is the estimate of θ from the original samples.

The third interval, called BTII interval, for θ is defined as

(θ
∗ − z1−α/2

√
V ∗(θ̂), θ

∗
+ z1−α/2

√
V ∗(θ̂)).

In the simulation studies, we generate N = 1000 “non-diseased” and “diseased” samples

from Models 1 and 2, respectively, and choose K = 1000 for the calculation of the GPQ-based

intervals. In the bootstrap procedure, we draw B = 1000 bootstrap samples from each of the

“non-diseased” and “diseased” samples. Tables 1-3 display the coverage probabilities and the

mean lengths of various intervals for the covariate-adjusted AUC and Youden index along

with its optimal cut-point under Model 1. Tables 4-6 present the coverage probabilities

and the mean lengths of the intervals under Model 2.

From Table 1-6, we can see that when sample sizes get bigger, the coverage probabilities

of all the intervals are closer to the nominal level 95%, and the average lengths of the intervals

become shorter. From Table 1, we observe that the coverage probabilities of the GPQ-based

intervals are closer to the nominal level than those of the normal approximation-based AN

intervals for all cases. Comparing the GPQ method with bootstrap-based methods, we

can see that when sample sizes are small, the coverage probabilities of the bootstrap-based

confidence intervals are far below the nominal level and the GPQ-based intervals still perform

well.

In the multiple regression models (Model 2), the performances of the generalized con-

fidence intervals are stable in every sample size and combination of given covariates’ values.

For AUC, we can see from Table 4 that the coverage probabilities of the bootstrap-based
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confidence intervals are far below the nominal level, and the average lengths of the bootstrap

confidence intervals are longer than those of the generalized confidence intervals, especially

when sample sizes are small. For Youden index, we can see from Table 5 that the cover-

age probabilities of the bootstrap-based interval are far below 95% and the average lengths

are longer than those of the generalized confidence intervals when sample sizes are small

(n = m = 10). In large sample size situations, although the average lengths of the boot-

strap confidence intervals are shorter than those of the generalized confidence intervals, their

coverage probabilities are below the nominal 95% level. For the optimal cut-point, we can

see from Table 6 that in small sample size situations, the bootstrap-based intervals over-

cover the optimal cut-point and their average lengths are too big. Overall, the generalized

confidence intervals outperform the other intervals in most cases considered here.

3.5 Real data analysis

For illustration of the proposed GPQ-based method, we present an application to a data

set concerning diabetes diagnosis. This data set was first studied by Smith and Thompson

[23] . It has also been analyzed in Refs. [30], [83] and [84]. The data come from a population-

based pilot survey of diabetes mellitus in Cairo, Egypt, and consist of postprandial blood

glucose measurements of 286 subjects obtained from a fingerstick. According to the gold

standard criteria of the World Health Organization for diagnosing diabetes, 88 subjects were

classified as diseased and 198 subjects as healthy. The age of the subject was considered as a

relevant covariate in this example because glucose levels are expected to be higher for older

people who do not suffer from diabetes (see Ref [23], for details).

To examine the effect of age in estimating the AUC and Youden index along with its

optimal cut-off point, the following regression models are employed in the ROC analysis:

X|Z = β11 + β12Z + ε1

Y |Z = β21 + β22Z + ε2,
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Table (3.1) The coverage probabilities and average lengths of the 95% confidence interval

for the AUC in Model 1.

GPQ AN BP BTI BTII
m n z0

cp al cp al cp al cp al cp al

10 10 2.0 0.968 0.578 0.974 0.594 0.902 0.592 0.885 0.605 0.876 0.605

2.5 0.966 0.506 0.976 0.532 0.916 0.528 0.902 0.532 0.884 0.532

3.0 0.974 0.476 0.977 0.507 0.903 0.494 0.904 0.497 0.885 0.497

3.5 0.969 0.505 0.980 0.534 0.910 0.523 0.903 0.528 0.882 0.528

4.0 0.953 0.575 0.969 0.591 0.880 0.576 0.858 0.587 0.850 0.587

4.5 0.963 0.661 0.978 0.667 0.902 0.658 0.853 0.692 0.859 0.692

30 30 2.0 0.951 0.336 0.967 0.361 0.944 0.333 0.929 0.335 0.930 0.335

2.5 0.956 0.282 0.975 0.315 0.927 0.283 0.922 0.284 0.915 0.284

3.0 0.950 0.262 0.965 0.298 0.937 0.261 0.939 0.262 0.927 0.262

3.5 0.952 0.282 0.964 0.314 0.941 0.281 0.942 0.281 0.938 0.281

4.0 0.955 0.335 0.968 0.359 0.918 0.331 0.911 0.332 0.908 0.332

4.5 0.950 0.403 0.967 0.420 0.937 0.397 0.927 0.401 0.929 0.401

20 50 2.0 0.951 0.297 0.969 0.315 0.925 0.294 0.918 0.296 0.919 0.296

2.5 0.959 0.250 0.977 0.274 0.932 0.248 0.930 0.248 0.928 0.248

3.0 0.947 0.232 0.970 0.258 0.941 0.229 0.943 0.230 0.937 0.230

3.5 0.944 0.251 0.961 0.274 0.941 0.248 0.941 0.248 0.934 0.248

4.0 0.958 0.297 0.968 0.315 0.915 0.295 0.910 0.297 0.908 0.297

4.5 0.940 0.358 0.961 0.370 0.947 0.357 0.927 0.360 0.931 0.360

50 20 2.0 0.948 0.387 0.958 0.413 0.904 0.378 0.893 0.380 0.886 0.380

2.5 0.951 0.332 0.962 0.365 0.922 0.323 0.915 0.323 0.906 0.323

3.0 0.944 0.305 0.964 0.344 0.908 0.300 0.906 0.301 0.894 0.301

3.5 0.949 0.328 0.965 0.363 0.903 0.325 0.909 0.326 0.890 0.326

4.0 0.948 0.384 0.967 0.410 0.922 0.381 0.910 0.383 0.906 0.383

4.5 0.949 0.456 0.968 0.473 0.909 0.450 0.881 0.455 0.879 0.455

50 50 2.0 0.962 0.260 0.983 0.282 0.956 0.256 0.953 0.257 0.945 0.257

2.5 0.952 0.219 0.970 0.245 0.936 0.215 0.937 0.215 0.934 0.215

3.0 0.955 0.202 0.977 0.232 0.933 0.201 0.936 0.202 0.927 0.202

3.5 0.957 0.218 0.973 0.245 0.917 0.216 0.917 0.216 0.917 0.216

4.0 0.944 0.259 0.967 0.281 0.932 0.258 0.928 0.259 0.925 0.259

4.5 0.959 0.312 0.972 0.329 0.948 0.311 0.940 0.313 0.939 0.313

100 100 2.0 0.943 0.183 0.961 0.200 0.953 0.183 0.949 0.183 0.947 0.183

2.5 0.953 0.153 0.974 0.174 0.940 0.153 0.940 0.154 0.939 0.154

3.0 0.956 0.142 0.980 0.165 0.940 0.143 0.943 0.143 0.937 0.143

3.5 0.937 0.154 0.969 0.174 0.936 0.153 0.940 0.154 0.935 0.154

4.0 0.939 0.185 0.963 0.201 0.941 0.183 0.937 0.183 0.936 0.183

4.5 0.950 0.224 0.964 0.237 0.947 0.223 0.935 0.223 0.934 0.223
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Table (3.2) The coverage probabilities and average lengths of the 95% confidence interval

for the Youden Index in Model 1.

GPQ BP BTI BTII
m n z0

cp al cp al cp al cp al

10 10 2.0 0.962 0.685 0.912 0.720 0.871 0.749 0.871 0.749

2.5 0.964 0.623 0.914 0.681 0.907 0.691 0.891 0.691

3.0 0.968 0.598 0.901 0.656 0.906 0.660 0.885 0.660

3.5 0.954 0.625 0.912 0.678 0.908 0.687 0.888 0.687

4.0 0.951 0.683 0.879 0.709 0.848 0.735 0.841 0.735

4.5 0.965 0.752 0.904 0.763 0.826 0.821 0.841 0.821

30 30 2.0 0.950 0.432 0.940 0.437 0.936 0.438 0.925 0.438

2.5 0.946 0.372 0.924 0.377 0.921 0.377 0.914 0.377

3.0 0.945 0.348 0.928 0.353 0.939 0.352 0.927 0.352

3.5 0.949 0.371 0.936 0.376 0.938 0.375 0.933 0.375

4.0 0.958 0.431 0.925 0.436 0.918 0.437 0.914 0.437

4.5 0.951 0.501 0.935 0.504 0.904 0.510 0.912 0.510

20 50 2.0 0.942 0.398 0.920 0.395 0.915 0.397 0.912 0.397

2.5 0.946 0.346 0.919 0.341 0.922 0.342 0.918 0.342

3.0 0.950 0.324 0.929 0.321 0.944 0.321 0.931 0.321

3.5 0.931 0.348 0.931 0.340 0.929 0.340 0.919 0.340

4.0 0.957 0.398 0.924 0.395 0.917 0.397 0.909 0.397

4.5 0.947 0.465 0.933 0.464 0.912 0.469 0.912 0.469

50 20 2.0 0.956 0.481 0.908 0.485 0.890 0.487 0.886 0.487

2.5 0.953 0.419 0.922 0.429 0.930 0.426 0.919 0.426

3.0 0.945 0.388 0.919 0.404 0.923 0.401 0.915 0.401

3.5 0.952 0.417 0.914 0.429 0.909 0.427 0.899 0.427

4.0 0.951 0.479 0.929 0.496 0.914 0.497 0.905 0.497

4.5 0.945 0.555 0.908 0.558 0.882 0.569 0.881 0.569

50 50 2.0 0.969 0.338 0.952 0.339 0.947 0.339 0.940 0.339

2.5 0.954 0.287 0.931 0.287 0.937 0.286 0.931 0.286

3.0 0.942 0.267 0.937 0.269 0.940 0.269 0.931 0.269

3.5 0.953 0.287 0.930 0.287 0.934 0.287 0.925 0.287

4.0 0.947 0.337 0.936 0.338 0.926 0.338 0.924 0.338

4.5 0.959 0.400 0.940 0.404 0.934 0.406 0.929 0.406

100 100 2.0 0.937 0.240 0.946 0.240 0.949 0.240 0.946 0.240

2.5 0.953 0.202 0.936 0.202 0.942 0.203 0.938 0.203

3.0 0.947 0.188 0.940 0.188 0.945 0.188 0.939 0.188

3.5 0.939 0.202 0.942 0.203 0.949 0.203 0.942 0.203

4.0 0.940 0.240 0.934 0.240 0.935 0.240 0.933 0.240

4.5 0.949 0.289 0.946 0.289 0.944 0.290 0.940 0.290
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Table (3.3) The coverage probabilities and average lengths of the 95% confidence interval

for the Cut-point in Model 1.

GPQ BP BTI BTII
m n z0

cp al cp al cp al cp al

10 10 2.0 0.971 5.273 0.931 5.352 0.965 13.467 0.963 13.467

2.5 0.958 3.757 0.908 3.490 0.965 9.146 0.953 9.146

3.0 0.959 3.154 0.907 2.870 0.956 7.687 0.944 7.687

3.5 0.963 3.580 0.910 3.154 0.966 8.736 0.949 8.736

4.0 0.971 5.007 0.925 4.889 0.963 12.861 0.964 12.861

4.5 0.971 6.909 0.945 8.204 0.980 22.096 0.975 22.096

30 30 2.0 0.965 1.278 0.936 1.158 0.947 1.398 0.941 1.398

2.5 0.961 1.038 0.915 0.941 0.924 1.008 0.918 1.008

3.0 0.959 0.955 0.918 0.874 0.941 0.934 0.925 0.934

3.5 0.951 1.038 0.928 0.930 0.940 0.997 0.936 0.997

4.0 0.951 1.260 0.925 1.164 0.941 1.375 0.932 1.375

4.5 0.948 1.664 0.938 1.599 0.948 2.244 0.947 2.244

20 50 2.0 0.949 1.469 0.911 1.304 0.925 1.354 0.918 1.354

2.5 0.954 1.202 0.904 1.062 0.920 1.097 0.908 1.097

3.0 0.948 1.113 0.905 0.986 0.917 1.011 0.912 1.011

3.5 0.940 1.229 0.920 1.074 0.938 1.121 0.930 1.121

4.0 0.945 1.452 0.909 1.295 0.932 1.391 0.920 1.391

4.5 0.950 1.937 0.916 1.646 0.934 1.845 0.926 1.845

50 20 2.0 0.942 1.169 0.941 1.227 0.962 2.248 0.959 2.248

2.5 0.948 0.977 0.933 0.961 0.957 1.437 0.942 1.437

3.0 0.958 0.883 0.927 0.859 0.939 1.091 0.934 1.091

3.5 0.965 0.962 0.930 0.995 0.943 1.610 0.940 1.610

4.0 0.957 1.168 0.942 1.215 0.952 2.054 0.951 2.054

4.5 0.959 1.572 0.956 1.825 0.971 3.933 0.970 3.933

50 50 2.0 0.955 0.881 0.926 0.819 0.937 0.832 0.931 0.832

2.5 0.948 0.755 0.944 0.703 0.951 0.705 0.946 0.705

3.0 0.946 0.697 0.931 0.660 0.935 0.660 0.932 0.660

3.5 0.942 0.741 0.923 0.703 0.933 0.708 0.923 0.708

4.0 0.949 0.887 0.935 0.842 0.948 0.849 0.944 0.849

4.5 0.939 1.075 0.939 1.027 0.947 1.050 0.944 1.050

100 100 2.0 0.939 0.593 0.942 0.579 0.942 0.579 0.942 0.579

2.5 0.961 0.510 0.947 0.496 0.951 0.496 0.944 0.496

3.0 0.944 0.476 0.943 0.465 0.945 0.465 0.945 0.465

3.5 0.954 0.510 0.948 0.496 0.949 0.496 0.944 0.496

4.0 0.950 0.597 0.947 0.581 0.947 0.580 0.946 0.580

4.5 0.945 0.722 0.946 0.699 0.953 0.698 0.949 0.698
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Table (3.4) The coverage probabilities and average lengths of the 95% confidence interval

for the AUC in Model 2.

GPQ AN BP BTI BTII
m n (z1, z2)

cp al cp al cp al cp al cp al

10 10 (2.0,7.0) 0.953 0.402 0.949 0.369 0.900 0.555 0.911 0.602 0.907 0.602

(2.0,9.5) 0.952 0.274 0.955 0.265 0.907 0.554 0.939 0.618 0.941 0.618

(2.5,8.5) 0.962 0.192 0.976 0.209 0.860 0.370 0.897 0.417 0.882 0.417

(3.0,8.0) 0.962 0.173 0.983 0.197 0.866 0.334 0.897 0.378 0.876 0.378

(3.5,9.0) 0.966 0.213 0.972 0.221 0.869 0.434 0.923 0.489 0.918 0.489

(4.5,9.5) 0.966 0.306 0.961 0.288 0.911 0.616 0.944 0.694 0.944 0.694

30 30 (2.0,7.0) 0.956 0.380 0.972 0.419 0.935 0.252 0.910 0.258 0.905 0.258

(2.0,9.5) 0.948 0.252 0.978 0.314 0.930 0.227 0.897 0.235 0.896 0.235

(2.5,8.5) 0.946 0.187 0.990 0.270 0.908 0.165 0.892 0.168 0.878 0.168

(3.0,8.0) 0.958 0.170 0.995 0.259 0.910 0.152 0.901 0.155 0.886 0.155

(3.5,9.0) 0.949 0.203 0.981 0.280 0.913 0.180 0.885 0.184 0.883 0.184

(4.5,9.5) 0.955 0.289 0.972 0.345 0.921 0.264 0.895 0.274 0.901 0.274

20 50 (2.0,7.0) 0.963 0.341 0.974 0.365 0.940 0.220 0.919 0.224 0.915 0.224

(2.0,9.5) 0.959 0.225 0.985 0.268 0.916 0.205 0.889 0.211 0.889 0.211

(2.5,8.5) 0.959 0.158 0.993 0.219 0.927 0.146 0.911 0.147 0.894 0.147

(3.0,8.0) 0.966 0.148 0.995 0.215 0.906 0.137 0.899 0.138 0.887 0.138

(3.5,9.0) 0.947 0.178 0.980 0.233 0.925 0.163 0.903 0.166 0.899 0.166

(4.5,9.5) 0.952 0.248 0.977 0.287 0.942 0.235 0.909 0.242 0.915 0.242

50 20 (2.0,7.0) 0.947 0.453 0.962 0.492 0.891 0.295 0.871 0.305 0.866 0.305

(2.0,9.5) 0.949 0.307 0.972 0.385 0.902 0.274 0.859 0.288 0.859 0.288

(2.5,8.5) 0.965 0.219 0.990 0.321 0.904 0.191 0.878 0.197 0.860 0.197

(3.0,8.0) 0.956 0.205 0.992 0.313 0.888 0.175 0.878 0.180 0.857 0.180

(3.5,9.0) 0.955 0.246 0.982 0.340 0.887 0.211 0.867 0.219 0.854 0.219

(4.5,9.5) 0.946 0.346 0.968 0.414 0.915 0.322 0.878 0.340 0.886 0.340

50 50 (2.0,7.0) 0.942 0.294 0.968 0.326 0.924 0.194 0.916 0.196 0.916 0.196

(2.0,9.5) 0.937 0.188 0.968 0.238 0.933 0.174 0.909 0.178 0.910 0.178

(2.5,8.5) 0.962 0.138 0.997 0.203 0.936 0.129 0.923 0.130 0.909 0.130

(3.0,8.0) 0.948 0.128 0.996 0.197 0.917 0.120 0.914 0.121 0.901 0.121

(3.5,9.0) 0.954 0.151 0.993 0.210 0.931 0.141 0.917 0.143 0.909 0.143

(4.5,9.5) 0.958 0.207 0.983 0.251 0.925 0.197 0.903 0.202 0.912 0.202

100 100 (2.0,7.0) 0.962 0.397 0.950 0.365 0.941 0.137 0.937 0.138 0.935 0.138

(2.0,9.5) 0.957 0.272 0.964 0.263 0.935 0.120 0.917 0.121 0.917 0.121

(2.5,8.5) 0.968 0.192 0.983 0.208 0.949 0.092 0.938 0.093 0.931 0.093

(3.0,8.0) 0.973 0.176 0.988 0.199 0.937 0.086 0.932 0.087 0.924 0.087

(3.5,9.0) 0.960 0.210 0.975 0.219 0.930 0.100 0.911 0.101 0.908 0.101

(4.5,9.5) 0.952 0.301 0.948 0.283 0.945 0.136 0.924 0.138 0.924 0.138
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Table (3.5) The coverage probabilities and average lengths of the 95% confidence interval

for the Youden Index in Model 2.

GPQ BP BTI BTII
m n (z1, z2)

cp al cp al cp al cp al

10 10 (2.0,7.0) 0.950 0.619 0.893 0.756 0.871 0.817 0.849 0.817

(2.0,9.5) 0.948 0.508 0.900 0.745 0.871 0.826 0.870 0.826

(2.5,8.5) 0.954 0.390 0.846 0.605 0.858 0.638 0.818 0.638

(3.0,8.0) 0.963 0.358 0.846 0.582 0.892 0.608 0.836 0.608

(3.5,9.0) 0.962 0.423 0.865 0.654 0.865 0.705 0.832 0.705

(4.5,9.5) 0.967 0.549 0.907 0.784 0.858 0.883 0.864 0.883

30 30 (2.0,7.0) 0.949 0.584 0.931 0.441 0.922 0.443 0.911 0.443

(2.0,9.5) 0.949 0.455 0.921 0.436 0.906 0.442 0.897 0.442

(2.5,8.5) 0.947 0.334 0.907 0.322 0.915 0.324 0.891 0.324

(3.0,8.0) 0.952 0.301 0.899 0.294 0.930 0.295 0.890 0.295

(3.5,9.0) 0.949 0.370 0.911 0.355 0.901 0.358 0.881 0.358

(4.5,9.5) 0.957 0.504 0.924 0.485 0.887 0.494 0.885 0.494

20 50 (2.0,7.0) 0.967 0.541 0.914 0.393 0.911 0.395 0.892 0.395

(2.0,9.5) 0.959 0.421 0.908 0.393 0.887 0.397 0.876 0.397

(2.5,8.5) 0.964 0.308 0.899 0.291 0.917 0.293 0.889 0.293

(3.0,8.0) 0.967 0.285 0.883 0.268 0.893 0.269 0.876 0.269

(3.5,9.0) 0.944 0.344 0.906 0.322 0.906 0.325 0.888 0.325

(4.5,9.5) 0.956 0.459 0.935 0.436 0.900 0.443 0.896 0.443

50 20 (2.0,7.0) 0.944 0.654 0.895 0.509 0.887 0.512 0.876 0.512

(2.0,9.5) 0.951 0.521 0.909 0.509 0.875 0.517 0.864 0.517

(2.5,8.5) 0.961 0.378 0.906 0.374 0.923 0.376 0.885 0.376

(3.0,8.0) 0.950 0.342 0.891 0.339 0.910 0.340 0.881 0.340

(3.5,9.0) 0.950 0.425 0.895 0.412 0.899 0.415 0.878 0.415

(4.5,9.5) 0.944 0.572 0.910 0.562 0.868 0.575 0.866 0.575

50 50 (2.0,7.0) 0.943 0.466 0.925 0.341 0.918 0.342 0.915 0.342

(2.0,9.5) 0.939 0.352 0.935 0.342 0.926 0.344 0.917 0.344

(2.5,8.5) 0.959 0.254 0.941 0.248 0.939 0.249 0.929 0.249

(3.0,8.0) 0.943 0.229 0.921 0.225 0.930 0.226 0.913 0.226

(3.5,9.0) 0.954 0.284 0.929 0.277 0.931 0.278 0.918 0.278

(4.5,9.5) 0.945 0.387 0.926 0.380 0.901 0.383 0.903 0.383

100 100 (2.0,7.0) 0.956 0.615 0.938 0.241 0.936 0.241 0.931 0.241

(2.0,9.5) 0.949 0.505 0.934 0.242 0.926 0.243 0.920 0.243

(2.5,8.5) 0.968 0.391 0.941 0.176 0.941 0.176 0.933 0.176

(3.0,8.0) 0.966 0.361 0.928 0.160 0.937 0.160 0.927 0.160

(3.5,9.0) 0.957 0.421 0.928 0.195 0.928 0.196 0.914 0.196

(4.5,9.5) 0.950 0.539 0.943 0.270 0.932 0.272 0.928 0.272
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Table (3.6) The coverage probabilities and average lengths of the 95% confidence interval

for the Cut-point in Model 2.

GPQ BP BTI BTII
m n (z1, z2)

cp al cp al cp al cp al

10 10 (2.0,7.0) 0.953 3.871 0.970 4.969 0.996 17.032 0.994 17.032

(2.0,9.5) 0.947 2.655 0.975 5.847 0.996 22.925 0.995 22.925

(2.5,8.5) 0.954 1.645 0.969 3.048 0.993 10.243 0.984 10.243

(3.0,8.0) 0.941 1.422 0.966 2.362 0.995 7.008 0.990 7.008

(3.5,9.0) 0.948 1.918 0.965 3.686 0.988 13.441 0.983 13.441

(4.5,9.5) 0.948 3.112 0.969 7.918 0.988 29.549 0.985 29.549

30 30 (2.0,7.0) 0.952 1.725 0.931 1.131 0.938 1.160 0.934 1.160

(2.0,9.5) 0.957 1.364 0.939 1.310 0.940 1.320 0.939 1.320

(2.5,8.5) 0.946 0.887 0.928 0.852 0.944 0.850 0.935 0.850

(3.0,8.0) 0.955 0.772 0.927 0.743 0.943 0.742 0.933 0.742

(3.5,9.0) 0.955 1.037 0.924 1.007 0.933 1.014 0.925 1.014

(4.5,9.5) 0.953 1.564 0.938 1.512 0.938 1.577 0.937 1.577

20 50 (2.0,7.0) 0.954 2.042 0.923 1.337 0.945 1.335 0.932 1.335

(2.0,9.5) 0.946 1.568 0.905 1.541 0.923 1.535 0.916 1.535

(2.5,8.5) 0.963 1.021 0.907 1.006 0.940 1.004 0.920 1.004

(3.0,8.0) 0.950 0.898 0.890 0.875 0.935 0.874 0.903 0.874

(3.5,9.0) 0.947 1.213 0.912 1.167 0.935 1.163 0.927 1.163

(4.5,9.5) 0.948 1.810 0.922 1.727 0.936 1.731 0.927 1.731

50 20 (2.0,7.0) 0.951 1.699 0.953 1.132 0.960 1.572 0.959 1.572

(2.0,9.5) 0.954 1.273 0.943 1.321 0.961 1.851 0.957 1.851

(2.5,8.5) 0.946 0.816 0.950 0.834 0.955 0.894 0.952 0.894

(3.0,8.0) 0.958 0.711 0.959 0.715 0.965 0.719 0.963 0.719

(3.5,9.0) 0.952 0.949 0.954 0.973 0.964 1.041 0.961 1.041

(4.5,9.5) 0.966 1.476 0.947 1.588 0.962 2.587 0.956 2.587

50 50 (2.0,7.0) 0.954 1.211 0.930 0.843 0.932 0.843 0.931 0.843

(2.0,9.5) 0.945 1.010 0.937 0.981 0.934 0.980 0.935 0.980

(2.5,8.5) 0.949 0.662 0.927 0.641 0.936 0.640 0.933 0.640

(3.0,8.0) 0.953 0.575 0.927 0.561 0.939 0.561 0.929 0.561

(3.5,9.0) 0.943 0.771 0.943 0.747 0.947 0.746 0.942 0.746

(4.5,9.5) 0.944 1.132 0.940 1.110 0.941 1.107 0.938 1.107

100 100 (2.0,7.0) 0.951 3.713 0.934 0.585 0.944 0.584 0.934 0.584

(2.0,9.5) 0.947 2.606 0.939 0.681 0.941 0.681 0.936 0.681

(2.5,8.5) 0.950 1.629 0.932 0.447 0.929 0.448 0.936 0.448

(3.0,8.0) 0.953 1.423 0.943 0.391 0.951 0.391 0.944 0.391

(3.5,9.0) 0.953 1.943 0.956 0.518 0.957 0.517 0.952 0.517

(4.5,9.5) 0.948 2.989 0.944 0.766 0.945 0.765 0.944 0.765
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where X and Y are the transformed (postprandial blood glucose) biomarker values (which is

−(biomarker value)−
1
2 as Farragi [30] suggested) for the non-diseased and diseased subjects,

respectively, and Z denotes the age of the subjects. The transformed biomarker values

comply with the normality assumption for the underlying models.

Based on our simulation results, we construct generalized confidence intervals for the

age-adjusted AUC and Youden index along with its optimal cut-off point at given Z (age).

Figures 1-3 provide estimates for the area under the ROC curve and Youden index along

with its the optimal cut-off point as a function of age and the corresponding pointwise 95%

level generalized confidence intervals. In Figure 3, the values of the cut-off points have

been transformed back to the original biomarker values. From Figures 1-2, we can see that

the diagnostic accuracy of the biomarker for individuals with age < 50 years is high (AUC

> 0.90, YI > 0.7). From Figure 3, we observe that the estimated cut-off value increases

as individuals get older. Using a fixed cut-off value regardless of age would be misleading.

Additionally, we observe that the widths of all three types of intervals for people with ages

between 40 and 60 are much shorter than those for people with ages < 40 or age > 60. Thus

inferences on the diagnostic accuracy of the biomarker for people with ages between 40 and

60 will be more precise. These results indicate substantial effects of age on the estimation of

AUC and Youden index along with its optimal cut-off point in the diagnosis of diabetes by

using postprandial blood glucose measurements. This conclusion is consistent with Faraggi

[30] .

3.6 Discussion

Covariates are important in the evaluation of the diagnostic accuracy of a biomark-

er/medical test. Ignoring the covariates’ effects may lead to biased estimation of the di-

agnostic accuracy and even wrong conclusions. Pepe [7] gave an introduction to why and

how to adjust for covariates in ROC analysis. Pardo-Fernandez et al. [85] gave an excellent

review on ROC curve analysis in the presence of covariates. One important approach to

incorporate covariates to the ROC analysis is through regression models. In a parametric
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Figure (3.1) AUC curve as a function of age with 95% confidence intervals based on GPQ
method

Figure (3.2) YI curve as a function of age with 95% confidence intervals based on GPQ
method
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Figure (3.3) C* curve as a function of age with 95% confidence intervals based on GPQ
method

framework, Faraggi [30] used simple linear regression models for the conditional means with

normal errors, in both non-diseased and diseased populations, and provided a simple method

for inferences on covariate-adjusted ROC curve. It is well known that bi-normal models play

an important role in parametric ROC curve analysis, and the GPQ-based methods can pro-

vide “exact” interval estimation for AUC and Youden index under bi-normal models for

test results (see Refs.[86] and [87]). In this paper, we have proposed GPQ-based intervals

for covariate-adjusted AUC and Youden index along with its optimal cut-off point. Our

simulation results have shown that the proposed methods outperform existing parametric

methods under the same parametric linear models setting, particularly for small to moder-

ate sized samples which are more applicable and practical in second or third phase medical

diagnostic trial studies. As Faraggi [30] indicated, although the method is limited by the

normality assumption, it can be extended to many non-normal situations by using Box-Cox-

type transformations. Further research will focus on non-linear/non-parametric regression

modeling for test results in ROC analysis when covariates are present.
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Chapter 4

UNIFORM TEST FOR PREDICTIVE REGRESSION WITH AR ERRORS

This chapter is based on the accepted paper by C. Li, D. Li and L. Peng, Uniform Test

for Predictive Regression with AR Errors, Journal of Business & Economic Statistics 11 Jun

2015.

4.1 Review and Outline

Referring to what we stated in Chapter 1 1.2, in this chapter, we investigate the pos-

sibility of extending the unified approach in Zhu, Cai and Peng (2014 [1]) to the case when

{Ut} follows an AR(p) process. When {Ut} is an α-mixing sequence, estimation and test

are proposed by Cai and Wang (2014 [64]), which do not lead to a unified procedure. We

organize this chapter as follows. Section 4.2 presents methodologies and theoretical results.

A simulation study and a real data analysis are given in Sections 4.3 and 4.4, respectively.

All proofs are put in Appendix A.

4.2 Methodologies and Theoretical Results

4.2.1 Profile Empirical Likelihood

To better appreciate the proposed methodologies, we start with a simpler predictive

regression model without an intercept. That is, we assume the observations {(Xt, Yt)}nt=1

follow from

Yt = βXt−1 + Ut, Xt = θ + φXt−1 + et, B(L)et = Vt, εt = Ut +

p∑
j=1

γjUt−j, (4.1)

where (ε1, V1), ..., (εn, Vn) are independent and identically distributed random vectors. Ob-

viously the least squares estimator β̂LS =
∑n

t=1 YtXt−1/
∑n

t=1X
2
t−1 is inefficient. By taking
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the structure of Ut into account, one may consider to minimize the following least squares

n∑
t=1

{
Yt − βXt−1 +

p∑
j=1

γj
(
Yt−j − βXt−j−1

)}2

,

which implies that the proposed new least squares estimator solves the following score equa-

tions

n∑
t=1

{
Yt − βXt−1 +

p∑
j=1

γj(Yt−j − βXt−j−1)
}

(Yt−j − βXt−j−1) = 0, for j = 1, 2, ..., p (4.2)

and
n∑
t=1

{
Yt − βXt−1 +

p∑
j=1

γj(Yt−j − βXt−j−1)
}(
Xt−1 +

p∑
j=1

γjXt−j−1

)
= 0. (4.3)

This simple idea of taking the error structure into account has appeared in the literature;

see Xiao, Linton, Carroll, Mammen (2003 [88]) and Liu, Chen and Yao (2010 [89]) for

nonparametric regression models; Hall and Yao (2003 [90]) for parametric regression models;

Hill, Li and Peng (2014 [91]) for an AR process with a possible near unit root.

In order to construct an interval for β without estimating the asymptotic variance, one

may apply the profile empirical likelihood method to the above equations as in Qin and

Lawless (1994 [92]). However, when {Xt} is nearly integrated, Wilks theorem fails for the

above profile empirical likelihood method. Like the uniform estimation in Zhu, Cai and Peng

(2014), we propose to apply the profile empirical likelihood method to equations (4.2) and

the following weighted version of (4.3)

n∑
t=1

{
Yt − βXt−1 +

p∑
j=1

γj(Yt−j − βXt−j−1)

} Xt−1√
1 +X2

t−1

+

p∑
j=1

γj
Xt−j−1√

1 +X2
t−j−1

 = 0.

(4.4)
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More specifically, write Zt(β, γ) := (Zt,1(β, γ), · · · , Zt,p+1(β, γ))T ∈ Rp+1, where

Zt,j(β, γ) =

{
Yt − βXt−1 +

p∑
k=1

γk(Yt−k − βXt−k−1)

}
(Yt−j − βXt−j−1) for j = 1, · · · , p,

and

Zt,p+1(β, γ) =

{
Yt − βXt−1 +

p∑
k=1

γk(Yt−k − βXt−k−1)

} Xt−1√
1 +X2

t−1

+

p∑
k=1

γk
Xt−k−1√

1 +X2
t−k−1

 ,

and define the empirical likelihood function for (β, γ) as

L(β, γ) = sup

{
n∏
t=1

(npt) : p1, · · · , pn ≥ 0,
n∑
t=1

pt = 1,
n∑
t=1

ptZt(β, γ) = 0

}
.

Since we are only interested in β, we consider the profile empirical likelihood function:

LP (β) = max
γ∈Rp

L(β, γ).

Theorem 1. Suppose model (4.1) hold with either |φ| < 1 independent of n or φ = 1 −

δ0/n for some constant δ0 ∈ R. Further we assume E|εt|d < ∞ for some d > 2, and the

distribution of Vt is in the domain of attraction of a stable law with index α∗ ∈ (0, 2]. Then

−2 logLP (β0)
d→ χ2(1) as n→∞, where β0 denotes the true value of β.

Next, we consider a predictive regression model with a linear time trend:

Yt = α1+α2t+βXt−1+Ut, Xt = θ+φXt−1+et, B(L)et = Vt, εt = Ut+

p∑
j=1

γjUt−j, (4.5)

where (ε1, V1), ..., (εn, Vn) are independent and identically distributed random vectors. As

explained in Zhu, Cai and Peng (2014 [1]), a directly application of the same or a similar

weighted idea fails due to a degenerate limit. Instead, Zhu, Cai and Peng (2014 [1]) proposed

to first split data into two parts and then to apply the empirical likelihood method to some

weighted score equations based on the differences constructed from these two sub-samples.
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Here one may need to split the sample into three parts due to the linear trend. Instead of

splitting the data, we employ the trick of adding pseudo samples proposed by Li, Chan and

Peng (2014 [93]) and Hill, Li and Peng (2014 [91]) to achieve a uniform inference.

More specifically, put

Z̄t(β, α1, α2, γ) :=
[
Z̄t,1(β, α1, α2, γ), · · · , Z̄t,p+3(β, α1, α2, γ)

]T ∈ Rp+3,

where

Z̄t,j(β, α1, α2, γ) =

{
Yt − α1 − α2t− βXt−1 +

p∑
k=1

γk(Yt−k − α1 − α2(t− k)− βXt−k−1)

}
× (Yt−j − α1 − α2(t− j)− βXt−j−1)

for j = 1, · · · , p, and

Z̄t,p+1(β, α1, α2, γ) = Yt − α1 − α2t− βXt−1 +

p∑
k=1

γk (Yt−k − α1 − α2(t− k)− βXt−k−1) ,

Z̄t,p+2(β, α1, α2, γ) =

{
Yt − α1 − α2t− βXt−1 +

p∑
k=1

γk(Yt−k − α1 − α2(t− k)− βXt−k−1)

}
t

Z̄t,p+3(β, α1, α2, γ) =

{
Yt − α1 − α2t− βXt−1 +

p∑
k=1

γk(Yt−k − α1 − α2(t− k)− βXt−k−1)

}

×

{
Xt−1

(1 +X2
t−1)δ

+

p∑
j=1

γj
Xt−j−1

(1 +X2
t−j−1)δ

}
+Wt for some δ > 0.

Note that we drop out the factor 1+
∑p

k=1 γk in Z̄t,p+1 and replace the factor t+
∑p

k=1 γk(t−k)

by t in Z̄t,p+2 since solving the score equations is invariant to these changes. The W ′
ts are

simulated independent and identically distributed random variables with N(0, σ̄2), and σ̄2

≥ 0 is chosen not to be larger than E(e2
t ). In order to avoid the effect of a random seed in

generating W ′
ts, we use Wt = 1/

√
1000

∑1000
i=1 Wt,i in our simulation study, where the W ′

t,is

for t = 1, · · · , n, and i = 1, · · · , 1000 are a random sample from N(0, σ̄2).

Note that when σ̄ = 0, δ = 1/2 and |Xt|
p→∞, the joint limit of 1/

√
n
∑n

t=1 Z̄t,p+3(β, α1, α2, γ)
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and 1/
√
n
∑n

t=1 Z̄t,p+1(β, α1, α2, γ) is no longer normally distributed, which makes the ap-

plication of the empirical likelihood method fail. This is why we need to add the pseudo

sample Wt here to achieve uniform inference. Based on arguments presented in Li, Chan and

Peng (2014 [93]) and Hill and Peng (2014 [91]), in the nonstationary case a choice of δ > 1/2

makes
∑n

t=1 Z̄t,p+3(β0, α0,1, α0,2, γ0) asymptotically equivalent to
∑n

t=1Wt, while small δ ≤ 1

allows
∑n

t=1 Z̄t,p+3(β, α0,1, α0,2, γ0) to better detect departures from β0. Here β0, α0,1, α0,2, γ0

denote the true values of β, α1, α2, γ, respectively. Given the above arguments, we therefore

enforce δ ∈ (1/2, 1] to balance power and size, and in practice simply use δ = 0.75.

Finally we define the empirical likelihood function for (β, α1, α2, γ) based on {Z̄t(β, α1, α2, γ)}nt=1

as

L̄(β, α1, α2, γ) = sup

{
n∏
t=1

(npt) : p1, · · · , pn ≥ 0,
n∑
t=1

pt = 1,
n∑
t=1

ptZ̄t (β, α1, α2, γ) = 0

}
,

and as before, for obtaining an interval for β we consider the profile empirical likelihood

function

L̄P (β) = max
(α1,α2,γT )T∈Rp+2

L̄(β, α1, α2, γ).

Theorem 2. Suppose model (4.5) hold with either |φ| < 1 independent of n or φ = 1 −

δ0/n for some constant δ0 ∈ R. Further we assume E|εt|d < ∞ for some d > 2, and the

distribution of Vt is in the domain of attraction of a stable law with index α∗ ∈ (0, 2]. Then

−2 log L̄P (β0)
d→ χ2(1) as n→∞ .

Remark 1. When we consider model (4.5) with a constant trend, i.e., α2 = 0 in (4.5) is

known, the above Theorem 2 still holds if the term Z̄t,p+2 is removed and α2 is replaced by

zero.

4.2.2 Jackknife Empirical Likelihood

The above profile empirical likelihood methods become computationally intensive when

p is large. In order to reduce computational time, one may estimate γ first by solving (4.2),

which results in an explicit function of β, and then apply the empirical likelihood method
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to (4.4) with γ replaced by the obtained estimator. However, this does not lead to a chi-

squared limit due to the plug-in estimator. Recently a jackknife empirical likelihood method

was proposed by Jing, Yuan and Zhou (2009 [94]) to deal with non-linear functionals, and

Li, Peng and Qi (2011 [95]) employed this idea to reduce the computation of the empirical

likelihood method based on estimating equations. Here, we employ the jackknife empirical

likelihood method to reduce the computation of the above profile empirical likelihood method

so as to give a unified interval estimation regardless of the process {Xt} being stationary or

non-stationary, or having a finite variance or an infinite variance.

We again first consider a simpler model, i.e., model (4.1). Let γ̂(β) = (γ̂1(β), · · · , γ̂p(β))T

be, for arbitrary β, the solution to (4.2), and for each i = 1, · · · , n let γ̂(i)(β) =

(γ̂
(i)
1 (β), · · · , γ̂(i)

p (β))T be the solution to

n∑
t=1,t6=i

{
Yt − βXt−1 +

p∑
k=1

γk(Yt−k − βXt−k−1)

}
(Yt−j − βXt−j−1) = 0 for j = 1, · · · , p.

(4.6)

Next we define the pseudo sample as

Z∗j (β) =
n∑
t=1

{
Yt − βXt−1 +

p∑
k=1

γ̂k(β)(Yt−k − βXt−k−1)

}

×

 Xt−1√
1 +X2

t−1

+

p∑
k=1

γ̂k(β)
Xt−k−1√

1 +X2
t−k−1


−

n∑
t=1,t 6=j

{
Yt − βXt−1 +

p∑
k=1

γ̂
(j)
k (β)(Yt−k − βXt−k−1)

}

×

 Xt−1√
1 +X2

t−1

+

p∑
k=1

γ̂
(j)
k (β)

Xt−k−1√
1 +X2

t−k−1


for j = 1, · · · , n. Based on this pseudo sample, the jackknife empirical likelihood function

for β is defined as

L∗(β) = sup

{
n∏
i=1

(npi) : p1 ≥ 0, · · · , pn ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piZ
∗
i (β) = 0

}
.
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Theorem 3. Suppose model (4.1) hold with either |φ| < 1 independent of n or φ = 1 −

δ0/n for some constant δ0 ∈ R. Further we assume E|εt|d < ∞ for some d > 4, and the

distribution of Vt is in the domain of attraction of a stable law with index α∗ ∈ (0, 2]. Then

−2 logL∗(β0)
d→ χ2(1) as n→∞.

Next, we consider a model with a linear time trend, i.e., model (4.5). Define the pa-

rameter subset

θ = [α1, α2, β]T .

Let γ̄(θ) = (γ̄1(θ), · · · , γ̄p(θ))T denote, for arbitrary θ, the solution to

n∑
t=1

Z̄t,j(θ, γ) = 0 for j = 1, · · · , p, (4.7)

and let γ̄(i)(θ) = (γ̄
(i)
1 (θ), · · · , γ̄(i)

p (θ))T for i = 1, · · · , n denote the solution to

n∑
t=1,t 6=i

Z̄t,j(θ, γ) = 0 for j = 1, · · · , p. (4.8)

Then a jackknife pseudo sample is obtained as

Z̄∗i,k(θ) =
n∑
t=1

Z̄t,p+k(θ, γ̄)−
n∑

t=1,t 6=i

Z̄t,p+k(θ, γ̄
(i)),

for i = 1, · · · , n and k = 1, 2, 3. Put

Z̄∗i (θ) = (Z̄∗i,1(θ), Z̄∗i,2(θ), Z̄∗i,3(θ)),

and define the jackknife empirical likelihood function for (β, α1, α2) as

L̄∗(β, α1, α2) = L̄∗(θ) = sup

{
n∏
i=1

(npi) : p1 ≥ 0, · · · , pn ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piZ̄
∗
i (θ) = 0

}
.

Since we are only interested in β, we consider the following profile jackknife empirical likeli-
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hood function

L̄∗P (β) = max
(α1,α2)T∈R2

L̄∗(β, α1, α2).

Theorem 4. Suppose model (4.5) hold with either |φ| < 1 independent of n or φ = 1 −

δ0/n for some constant δ0 ∈ R. Further we assume E|εt|d < ∞ for some d > 4, and the

distribution of Vt is in the domain of attraction of a stable law with index α∗ ∈ (0, 2]. Then

−2 log L̄∗P (β0)
d→ χ2(1) as n→∞.

Remark 2. Based on the above theorems, confidence intervals for β with level a can be

obtained as

Ia = {β : −2 logLP (β) ≤ χ2
1,a}, Īa = {β : −2 log L̄P (β) ≤ χ2

1,a},

I∗a = {β : −2 logL∗(β) ≤ χ2
1,a}, Ī∗a = {β : −2 log L̄∗P (β) ≤ χ2

1,a},

where χ2
1,a is the a-th quantile of a chi-squared distribution with one degree of freedom.

4.3 Simulation study

In this section we examine the finite sample behavior of the proposed methods for models

(4.1), (4.5) and (4.5) with known α2 = 0.

Let {(ε∗i , V ∗i )}ni=1 be a random sample from a bivariate normal distribution with zero

means, one variances and 0.5 correlation coefficient. Let {Ti}ni=1 be a random sample from

a t-distribution with degrees freedom ν and independent of {(ε∗i , V ∗i )}ni=1. Then we take

εi = ε∗i and Vi = V ∗i + Ti for i = 1, · · · , n throughout, and draw 10, 000 random samples

with size n = 50 and 200 from either model (4.1) or (4.5), with φ ∈ {.9, .99, 1}, p = 5 with

γ =
((
p
1

)
0.4,

(
p
2

)
0.42, · · · ,

(
p
p

)
0.4p

)
, q = 1, b1 = −0.4, θ = 1, β = 0 and ν = 1.5 or 3. In the

case of model (4.5) we use α1 = .2 and α2 ∈ {0, .2}. The added pseudo sample {Wt}nt=1 is

computed using Wt = 1/
√

1000
∑1000

i=1 Wt,i, where W ′
t,is are a random sample from N(0, .5).

We employ the R package ’emplik’ to compute the empirical likelihood function and then

use the R package ’nlm’ to calculate the profile empirical likelihood function. For using
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’nlm’ to compute coverage probabilities for model (4.1), we choose the initial value for γ by

minimizing
n∑
t=1

{Yt − βXt−1 +

p∑
j=1

γj(Yt−j − βXt−j−1)}2

for each fixed β. However, for using ’nlm’ to compute coverage probabilities for model (4.5),

we use the following procedure to choose initial values for α1, α2 and γ. We first minimize∑n
t=1{Yt − α1 − α2t− βXt−1}2 for each fixed β to obtain α̃i(β), and then minimize

n∑
t=1

{
Yt − α̃1 (β)− α̃2 (β) t− βXt−1 +

p∑
k=1

γk(Yt−k − α̃1 (β)− α̃2 (β) (t− k)− βXt−k−1)

}2

with respect to γ to achieve γ̃(β). Finally the initial values for α1 and α2 are chosen to

minimize

n∑
t=1

{Yt − α1 − α2t− βXt−1 +

p∑
k=1

γ̃k(β)(Yt−k − α1 − α2(t− k)− βXt−k−1)}2

for each fixed β, say α̂1(β) and α̂2(β), and the initial value of γ is chosen to minimize

n∑
t=1

{Yt − α̂1(β)− α̂2(β)t− βXt−1 +

p∑
k=1

γk(Yt−k − α̂1(β)− α̂2(β)(t− k)− βXt−k−1)}2

for each fixed β. Note that we only need to compute the profile (jackknife) empirical likeli-

hood functions at β = β0 for calculating the coverage probabilities.

Coverage probabilities are reported in Tables 1–3. We observe from these tables that i)

coverage probabilities for n = 200 are much closer to the nominal level than those for n = 50;

ii) the profile empirical likelihood method is worse than the jackknife empirical likelihood

method for most cases; and iii) the jackknife empirical likelihood method gives more accurate

coverage probabilities for model (4.5) with α2 = 0 known than that with unknown α2. In

conclusion, the proposed methods perform quite well for all considered cases especially for

n = 200.
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4.4 Data Analysis

In this section, we re-visit the data sets analyzed by Campbell ad Yogo (2006 [36]) and

Zhu, Cai and Peng (2014 [1]), where the monthly CRSP value-weighted index (1926:12–

2002:12) is used as predictable variable Yt, and either the log dividend-price ratio (ldp) or

the log earnings-price ratio (lep) is treated as predicting variable Xt. We fit this data set to

model (4.5) with α2 = 0 known.

First we estimate α1, β, γ by minimizing the following least squares

n∑
t=1

{Yt − α1 − βXt−1 +

p∑
k=1

γk(Yt−k − α1 − βXt−k−1)}2,

say α̃
(p)
1 , β̃(p), γ̃(p). Based on these estimators, we estimate εt by

ε̃
(p)
t = Yt − α̃(p)

1 − β̃(p)Xt−1 +

p∑
k=1

γ̃
(p)
k (Yt−k − α̃(p)

1 − β̃(p)Xt−k−1)

for t = 1, · · · , n. Hence, the standard deviation of εt is estimated by

σ̃(p) = { 1

n

n∑
t=1

(ε̃
(p)
t −

1

n

n∑
i=1

ε̃
(p)
i )2}1/2.

Note that ε̃
(p)
t and σ̃(p) become an estimator for Ut and the standard deviation of Ut, respec-

tively when p = 0. In Figures 1 and 2, we plot the autocorrelation functions by applying

the ’acf’ function in R to {ε̃(p)
t }nt=1 with p = 0, 5, 10, 20, where the plots with p = 0 clearly

show that independence assumption for U ′ts is questionable. When p becomes larger, the

dependence among ε′ts tends to be weaker.

Next we employ the proposed jackknife empirical likelihood method to test H0 : β = 0

against Ha : β 6= 0. To reduce the effect of the added pseudo sample in the proposed

jackknife empirical likelihood methods, we repeat the test 1, 000 times and report the average

of these obtained 1, 000 P-values in Table 4, which concludes that the null hypothesis of no

predictability can not be rejected for these two predicting variables. However, both Campbell
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and Yogo (2006 [36]) and Zhu, Cai and Peng (2014 [1]) rejected the null hypothesis of no

predictability when the predicting variable is the log earnings-price ratio, which may be due

to the ignored dependence among errors.

When the predicting variable is nearly integrated, the proposed methods mainly depend

on the behavior of ε′ts. From Figures 1 and 2, the estimated ε′ts for both predicting variables

have a similar pattern of autocorrelation function. Hence, the P-values of the proposed

jackknife empirical likelihood method for both predicting variables may be similar, which is

supported by Table 4.

Table (4.1) No trend. Coverage probabilities based on Theorem 1 and Theorem 3 are
reported for model (4.1) with levels 0.9 and 0.95, where intervals are defined in Remark 2.

(φ, n) I0.9 I∗0.9 I0.95 I∗0.95 I0.9 I∗0.9 I0.95 I∗0.95

ν = 1.5 ν = 1.5 ν = 1.5 ν = 1.5 ν = 3 ν = 3 ν = 3 ν = 3

(0.9, 50) 0.8799 0.8874 0.9337 0.9430 0.8828 0.8914 0.9353 0.9454
(0.99, 50) 0.8740 0.8853 0.9274 0.9393 0.8796 0.8929 0.9368 0.9471

(1, 50) 0.8729 0.8836 0.9277 0.9395 0.8784 0.8914 0.9347 0.9451

(0.9, 200) 0.9055 0.9085 0.9534 0.9581 0.8932 0.8978 0.9445 0.9478
(0.99, 200) 0.8917 0.8959 0.9470 0.9521 0.8912 0.8959 0.9470 09512

(1, 200) 0.8920 0.8965 0.9428 0.9474 0.8887 0.8949 0.9453 0.9511

Table (4.2) Linear time trend. Coverage probabilities based on Theorem 2 and Theorem 4
are reported for model (4.5) with levels 0.9 and 0.95, where intervals are defined in Remark
2.

(φ, n) Ī0.9 Ī∗0.9 Ī0.95 Ī∗0.95 Ī0.9 Ī∗0.9 Ī0.95 Ī∗0.95

ν = 1.5 ν = 1.5 ν = 1.5 ν = 1.5 ν = 3 ν = 3 ν = 3 ν = 3

(0.9, 50) 0.8501 0.8578 0.9110 0.9199 0.8412 0.8483 0.9062 0.9132
(0.99, 50) 0.8546 0.8645 0.9210 0.9261 0.8482 0.8563 0.9098 0.9190

(1, 50) 0.8598 0.8698 0.9218 0.9288 0.8541 0.8656 0.9162 0.9249

(0.9, 200) 0.8810 0.8834 0.9405 0.9443 0.8830 0.8861 0.9382 0.9400
(0.99, 200) 0.8846 0.8887 0.9385 0.9408 0.8803 0.8836 0.9337 0.9370

(1, 200) 0.8929 0.8950 0.9448 0.9468 0.8820 0.8841 0.9356 0.9382
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Figure (4.1) Autocorrelation function is plotted based on estimated ε′ts when the predicting
variable is the log dividend-price ratio.
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Figure (4.2) Autocorrelation function is plotted based on estimated ε′ts when the predicting
variable is the log earnings-price ratio.
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Table (4.3) Constant trend. Coverage probabilities based on Theorem 2 and Theorem 4
are reported for model (4.5) with α2 = 0 known and levels 0.9 and 0.95, where intervals are
defined in Remark 2.

(φ, n) Ī0.9 Ī∗0.9 Ī0.95 Ī∗0.95 Ī0.9 Ī∗0.9 Ī0.95 Ī∗0.95

ν = 1.5 ν = 1.5 ν = 1.5 ν = 1.5 ν = 3 ν = 3 ν = 3 ν = 3

(0.9, 50) 0.8593 0.8658 0.9191 0.9274 0.8549 0.8672 0.9175 0.9262
(0.99, 50) 0.8684 0.8752 0.9246 0.9334 0.8612 0.8715 0.9169 0.9281

(1, 50) 0.8678 0.8738 0.9248 0.9337 0.8632 0.8716 0.9181 0.9300

(0.9, 200) 0.8920 0.8957 0.9446 0.9467 0.8925 0.8964 0.9447 0.9475
(0.99, 200) 0.8889 0.8916 0.9406 0.9429 0.8860 0.8906 0.9427 0.9460

(1, 200) 0.8874 0.8896 0.9428 0.9456 0.8859 0.8898 0.9399 0.9432

Table (4.4) P-values. The average of P-Values is reported by repeating 1, 000 times of the
proposed jackknife empirical likelihood method for testing H0 : β = 0 against Ha : β 6= 0
based on model (4.5) with α2 = 0 known.

ldp ldp lep lep

σ̄ = σ̃(p) σ̄ = σ̃(p)/2 σ̄ = σ̃(p) σ̄ = σ̃(p)/2

p = 0 0.4901 0.4894 0.4894 0.4878

p = 5 0.4935 0.4936 0.4930 0.4923

p = 10 0.4941 0.4948 0.4938 0.4945

p = 20 0.4932 0.4949 0.4931 0.4951
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Chapter 5

INFERENCE FOR TAIL INDEX OF GARCH(1,1) MODEL AND AR(1)

MODEL WITH ARCH(1) ERRORS

This chapter is based on the following revised paper by R. Zhang, C. Li and L. Peng

(2015), Inference for Tail Index of GARCH(1,1) Model and AR(1) Model with ARCH(1)

Errors Econometric Reviews.

5.1 Outline

As we stated in Chapter 1 1.3, in this chapter, for tail index of GARCH(1,1) Model

and AR(1) Model with ARCH(1) Errors, we will illustrate our methods in details. This

chapter is organized as follows. The proposed methodologies and their asymptotic results

are presented in Section 5.2. Section 5.3 presents a simulation study and a data analysis.

Some conclusions are given in Section 5.4. All technical proofs are put in Appendix A.

5.2 Models, Methodologies and Theoretical Results

5.2.1 Heavy Tailed GARCH(1, 1) Model

Being a benchmark of GARCH family, GARCH(1, 1) model is simply used to capture

the heteroscedastic and heavy-tailed phenomena in financial returns, which is defined as

Yt = σ∗t ε
∗
t , (σ∗t )

2 = ω∗ + a∗(σ∗t−1)2 + b∗Y 2
t−1, (5.1)

where ω∗ > 0, a∗ ≥ 0, b∗ ≥ 0 and {ε∗t} is a sequence of independent and identically

distributed random variables with zero mean and unit variance. For some general studies

and applications of GARCH models in financial econometrics, we refer to Tayor (2005 [37])

and Francq and Zaköıan (2010 [96]). For model (5.1), it is known that, under some conditions,
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Yt has a heavy tail with index α > 0. More specifically, it follows from Basrak, Davis and

Mikosch (2002 [41]) that

P (|Yt| > x) = cx−α{1 + o(1)} for some c > 0 as x→∞, (5.2)

and the tail index α is determined by

E{a∗ + b∗(ε∗t )
2}α/2 = 1. (5.3)

Note that equations (5.2) and (5.3) can be derived from Kesten (1973 [55]) and Goldie

(1991 [97]) too. When E|ε∗t |δ <∞ for some δ > max{4, 2α}, one can estimate the nuisance

parameters θ∗ = (ω∗, a∗, b∗)T by the QMLE (say θ̂∗ = (ω̂∗, â∗, b̂∗)T ) and then estimate the

tail index α by solving the following estimating equation:

1

n

n∑
t=1

{â∗ + b̂∗(ε̂∗t )
2}α/2 = 1, (5.4)

where ε̂∗t = Yt/σ̂
∗
t and σ̂∗t is an estimator of σ∗t with θ∗ being replaced by θ̂∗, see Berkes,

Horváth and Kokoszka (2003 [61]) for the asymptotic distribution of the above estimator

and Chan, Peng and Zhang (2012 [62]) for a profile empirical likelihood inference based on

the above estimation procedure.

Note that δ > 4 ensures that the QMLE θ̂∗ has a normal limit, and δ > 2α ensures the

asymptotic normality for estimating α via solving n−1
∑n

t=1{a∗ + b∗(ε∗t )
2}α/2 = 1. Therefore

the condition of δ > 2α can not be relaxed. However, we may be able to allow E|ε∗t |4 =∞ by

using some different estimate for parameters θ∗ such as least absolute deviations estimate,

which generally requires to reparameterize model (5.1). Issues on reparameterization for

GARCH sequences are discussed in Fan, Qi and Xiu (2014 [98]).

Assume the unknown median of (ε∗t )
2 is d > 0 and put εt = ε∗t/

√
d. Then the median

of log ε2
t becomes log{median((ε∗t )

2/d)} = 0. Furthermore, model (5.1) and equation (5.3)
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can be written as

Yt = σtεt, σ2
t = ω + aσ2

t−1 + bY 2
t−1 (5.5)

and

E{a+ bε2t}α/2 = 1, (5.6)

where σt =
√
dσ∗t , ω = dω∗, a = a∗ and b = db∗. It is clear that the estimating equation for

the tail index α remains unchanged. Therefore we propose to first apply the least absolute

deviations estimate in Peng and Yao (2003 [99]) to (5.5) and then to estimate the tail index

α via (5.6) so as to relax the moment condition on ε∗t or equivalently on εt.

More specifically, for any θ = (ω, a, b)T , by the recursion of (5.5), the conditional vari-

ance σ2
t = σ2

t (θ) can be represented as follows:

σ2
t (θ) = ω + aσ2

t−1(θ) + bY 2
t−1 =

ω(1− at)
1− a

+
t−1∑
k=0

bakY 2
t−1−k + atσ2

0(θ). (5.7)

Thus, given the observations {Y1, Y2, · · · , Yn} and the initial value Y0, we can estimate θ by

the following LADE:

θ̂inital = arg min
θ

n∑
t=1

| log Y 2
t − log σ2

t (θ)|. (5.8)

However, since σ2
0(θ) depends on the unobserved sample path Y−1, Y−2, . . ., one cannot use the

above expression of σ2
t (θ) in practice. Instead, we consider the LADE based on a truncated

version of σt(θ), which is

θ̂ = arg min
θ

n∑
t=1

| log Y 2
t − log σ̄2

t (θ)|, (5.9)

where σ̄2
t (θ) = ω(1− at)/(1− a) + b

∑
0≤k≤t−1 a

kY 2
t−k−1. Using this LADE θ̂, we estimate α

by solving

1

n

n∑
t=1

(â+ b̂ε̄2
t (θ̂))

α/2 = 1,
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where ε̄2
t (θ̂) = Y 2

t /σ̄
2
t (θ̂). Denote this estimator by α̂. For deriving the asymptotic limit of

α̂, we need some regularity conditions:

Condition 1. E log(a∗0 + b∗0(ε∗t )
2) < 0 (i.e., E log(a0 + b0ε

2
t ) < 0) and E|ε∗t |δ0 <

∞ (i.e., E|εt|δ0 < ∞) for some δ0 > max{2, 2α0}, where θ0 = (ω0, a0, b0)T ,

θ∗0 = (ω∗0, a
∗
0, b
∗
0)T and α0 denote the true values of θ, θ∗ and α respectively.

Condition 2. (ε∗t )
2 has an unknown median d > 0 and a continuous density

at d, i.e., log{ε2
t} has median zero and its density f(x) is continuous at zero.

Remark 3. E log(a0 + b0ε
2
t ) < 0 in Condition 1 is a sufficient and necessary condition for

the existence of a stationary solution of σ2
t (see Nelson (1990)). Further, Condition 1 and

(5.3) imply that b0 can not be zero, as a result, we have a0 < 1. Condition 2 is a standard

condition for a LADE, which is the same as that in Peng and Yao (2003 [99]).

Remark 4. When a0 + b0 < 1, it is known that Yt has a finite variance (see Fan and Yao

(2003 [100])), i.e., α0 > 2. Therefore Condition 1 implies ε∗t has a finite fourth moment in

case of a0 + b0 < 1. In order to consider the case of infinite fourth moment for errors, one

has to study the case of a+ b ≥ 1.

Theorem 5. Assume Conditions 1 and 2 hold for model (5.1). Then, as n→∞

√
n(α̂− α0)

d−→ N(0, γ2
α0

), (5.10)

where

γ2
α0

= {4A2
0f

2(0)}−1(µ1, µ2, µ3)Ω−1(µ1, µ2, µ3)T + 4{A2
0}−1E[(a0 + b0ε

2
1)

α0
2 − 1]2

+2{A2
0f(0)}−1(µ1, µ2, µ3)Ω−1E{A(1)[(a0 + b0ε

2
1)

α0
2 − 1]}
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with 

A0 = E[(a0 + b0ε
2
1)

α0
2 log(a0 + b0ε

2
1)],

e0 = α0E[(a0 + b0ε
2
1)α0/2−1ε2

1],

µ1 = − b0e0
2

E
∂ log σ2

1(θ0)

∂w
,

µ2 = α0E[(a0 + b0ε
2
1)

α0
2
−1]− b0e0

2
E
∂ log σ2

1(θ0)

∂a
,

µ3 = e0 − b0e0
2

E
∂ log σ2

1(θ0)

∂b
,

Ω = E[A(1)AT (1)],

A(t) =
(
∂(log σ2

t (θ))

∂ω
,
∂(log σ2

t (θ))

∂a
,
∂(log σ2

t (θ))

∂b

)T
sgn{log(ε2

t )},

and sgn denotes the sign function.

Remark 5. Although the moment condition on errors depends on the unknown parameter

α0, this can be checked when the error distribution has heavy tails. More specifically one can

simply compute the Hill’s estimator based on estimated errors via quasi maximum likelihood

estimators for parameters in the GARCH(1,1) model and then compare it with max(2, 2α̂);

see the data analysis in Section 3.

To construct a confidence interval for the tail index α, an obvious approach is to esti-

mate the asymptotic variance γ2
α0

. Due to the complexity of this asymptotic variance, one

can simply employ a naive bootstrap method. However bootstrapping nonpivotal statistics

is inefficient in general. Bootstrap method for a time series model is computationally in-

tensive since one has to resample from the estimated errors and refit the time series model.

Alternatively, we seek an empirical likelihood method to bypass estimating the asymptotic

variance. A direct application of the empirical likelihood method to equation (5.6) with θ

replaced by θ̂ cannot capture the variance of the plug-in estimator θ̂ since the asymptotic

variance γ2
α0

of the tail index estimator α̂ really depends on the asymptotic variances of θ̂.

Hence, Wilks theorem fails for such a direct application of an empirical likelihood method.

Instead we propose the following profile empirical likelihood method.

Note that the proposed LADE is a solution to the score equations

n∑
t=1

Z̄t,j(θ) = 0 for j = 2, 3, 4,
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where 
Z̄t,2(θ) = (∂(log σ̄2

t (θ))/∂ω) sgn{log(Y 2
t /σ̄

2
t (θ))},

Z̄t,3(θ) = (∂(log σ̄2
t (θ))/∂a) sgn{log(Y 2

t /σ̄
2
t (θ))},

Z̄t,4(θ) = (∂(log σ̄2
t (θ))/∂b) sgn{log(Y 2

t /σ̄
2
t (θ))}.

It follows from (5.6) that θ and α can be estimated simultaneously by solving the following

equations
n∑
t=1

Z̄t,j = 0 for j = 1, 2, 3, 4,

where Z̄t,1 := Z̄t,1(θ, α) = {a + bY 2
t /σ̄

2
t (θ)}α/2 − 1. This simultaneous estimation procedure

motivates us to apply the empirical likelihood method to the above four equations and then

profile the nuisance parameters θ. This is the so-called profile empirical likelihood method

based on estimating equations proposed by Qin and Lawless (1994 [92]).

Put Z̄t(θ, α) = (Z̄T
t,1(θ, α), Z̄t,2(θ), Z̄t,3(θ), Z̄t,4(θ))T for t = 1, . . . , n, and define the em-

pirical likelihood function of (θ, α) as

L(θ, α) = sup{
n∏
t=1

(npt) : p1 ≥ 0, . . . , pn ≥ 0,
n∑
t=1

pt = 1,
n∑
t=1

ptZ̄t(θ, α) = 0}.

By virtue of the Lagrange multipliers, it is clear that pt = n−1{1 + λT Z̄t(θ, α)}−1 for t =

1, . . . , n and

l(θ, α) := −2 logL(θ, α) = 2
n∑
t=1

log{1 + λT Z̄t(θ, α)},

where λ = λ(θ, α) satisfies
n∑
t=1

Z̄t(θ, α)

1 + λT Z̄t(θ, α)
= 0. (5.11)

Since we are interested in the tail index α, we consider the profile empirical likelihood ratio

lp(α) = l(θ̃(α), α), where θ̃(α) = arg minθ l(θ, α). Next theorem shows that Wilks theorem

holds for the proposed profile empirical likelihood method.

Theorem 6. Under conditions of Theorem 5, the random variable lp(α0) converges in dis-

tribution to χ2(1) as n→∞.
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Corollary 1. For any 0 < ξ < 1, let χ2
1,ξ denote the ξ-th quantile of a χ2(1) random variable

and define the empirical likelihood confidence interval with level ξ as Iξ = {α| lp(α) ≤ χ2
1,ξ}.

Then, under conditions of Theorem 5, P (α0 ∈ Iξ) −→ ξ as n→∞.

Remark 6. It is possible to develop similar estimation procedure and empirical likelihood

method as above by replacing the LADE by other estimators such as those in Berkes and

Horváth (2004 [101]).

5.2.2 AR(1) with heavy tailed ARCH(1) noise

In this subsection, we study another time series model called the first-order autore-

gressive model (AR(1)) with autoregressive conditional heteroskedastic errors of order one

(ARCH(1)), which is defined as

Yt = a∗Yt−1 +
√
ω∗ + b∗Y 2

t−1ε
∗
t , (5.12)

where {ε∗t} is a sequence of independent and identically distributed random variables with

zero mean and unit variance, a∗ ∈ R, ω∗ > 0 and b∗ > 0. This model is also called a double

AR model in the literature. Throughout this subsection, we assume model (5.12) satisfies

the following regularity conditions:

Condition A. E log(|a∗ +
√
b∗ε∗1|) < 0;

Condition B. ε∗t has a symmetric, positive and continuous Lebesgue density onR.

Under Conditions A and B, it is known that Yt has a heavy tail with index α > 0, which is

determined by

E(|a∗ +
√
b∗ε∗t |α) = 1, (5.13)

see Borkovec and Klüppelberg (2001[45]) for details. Therefore, one can estimate α by

solving

1

n

n∑
t=1

|â∗ +
√
b̂∗ε̂∗t |α = 1,
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where â∗, b̂∗, ε̂∗t are some estimators for a∗, b∗, ε∗t , respectively. Indeed Chan, Li, Peng and

Zhang (2013 [63]) proposed to first employ the QMLE in Ling (2004 [102]) to estimate α and

then to apply a profile empirical likelihood method for interval estimation, where finite fourth

moment of ε∗t is required to ensure a normal limit. Here we propose to relax this moment

condition by using the weighted least absolute deviations estimate in Chan and Peng (2005

[103]) as follows by observing that equation (5.13) is invariant to a scale transformation of

the model.

Assume the unknown median of (ε∗t )
2 is d > 0. Put εt = ε∗t/

√
d. Then the median of ε2

t

becomes one, and model (5.12) and equation (5.13) can be written as

Yt = aYt−1 +
√
ω + bY 2

t−1εt (5.14)

and

E{|a+
√
bεt|α} = 1, (5.15)

where a = a∗, ω = dω∗ and b = db∗. Therefore, as before we first propose to estimate

θ = (ω, a, b)T by the following weighted least absolute deviations estimate

θ̂ = (ω̂, â, b̂)T = arg min
θ

n∑
t=1

1

1 + Y 2
t−1

|(Yt − aYt−1)2 − (ω + bY 2
t−1)|. (5.16)

Put ε̂t = (Yt − âYt−1)/
√
ω̂ + b̂Y 2

t−1. Then, α can be estimated by solving the following

equation:

1

n

n∑
t=1

|â+
√
b̂ε̂t|α = 1. (5.17)
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Denote this estimator by α̂, and let α0 denote the true value of α. Put ∆ = (1 + Y 2
1 )(ω0 +

b0Y
2

1 ), S = 1 + Y 2
1 ,

Γ1 =


E
a20Y

4
1

∆
+ E

Y 2
1

S
E
a0Y 2

1

∆
−E

a0Y 4
1

∆

E
a0Y 2

1

∆
E 1

∆
−E

Y 2
1

∆

−E
a0Y 4

1

∆
−E

Y 2
1

∆
E
Y 4
1

∆

 , Γ2 =


1
2

0 0

0 1 0

α0 0 1

 .

Let Ā(t) = (YtYt−1, 1,−Y 2
t−1)T sgn(ε2

t − 1)/(1 + Y 2
t−1), f(x) denote the density of ε1,

γ̄2
α0

= {f(1)}−2(c1, c2, c3)Γ2Γ−1
1 Cov{Ā(1)}Γ−1

1 Γ2(c1, c2, c3)T + κ−2
0 Var(|a0 +

√
b0ε1|α0)

−2{f(1)}−1κ−1
0 (c1, c2, c3)Γ2Γ−1

1 E{Ā(1)(|a0 +
√
b0ε1|α0 − E|a0 +

√
b0ε1|α0)},

where 

κ0 = E{|a0 +
√
b0ε1|α0 log |a0 +

√
b0ε1|},

c1 = κ−1
0 E

√
b0(α0|a0+

√
b0ε2|α0−1sgn(a0+

√
b0ε2))ε2

2(w0+b0Y 2
1 )

,

c2 = κ−1
0 E{(α0|a0 +

√
b0ε2|α0−1sgn(a0 +

√
b0ε2))(

√
b0Y1√

w0+b0Y 2
1

− 1)},

c3 = κ−1
0 E{(α0|a0 +

√
b0ε2|α0−1sgn(a0 +

√
b0ε2))(

√
b0ε2Y 2

1

2(w0+b0Y 2
1 )
− ε2

2
√
b0

)}.

Then the following theorem holds.

Theorem 7. In addition to Conditions A and B for model (5.12), we further assume that

α0 > 1 and E|εt|δ0 <∞ for some δ0 > 2α0. Then as n→∞

√
n(α̂− α0)

d−→ N(0, γ̄2
α0

).

Again, to avoid estimating γ̄2
γ0

, we develop a profile empirical likelihood method for

constructing a confidence interval for α0. Put ε2
t (ω, a, b) = [(Yt− aYt−1)2− (ω+ bY 2

t−1)]/(1 +
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Y 2
t−1), define

Xt,1(θ, α) =
∣∣∣a+

√
b(Yt − aYt−1)/

√
ω + bY 2

t−1

∣∣∣α − 1,

Xt,2(θ) = (∂(ε2
t (ω, a, b))/∂ω)sgn{ε2

t (ω, a, b)},

Xt,3(θ) = (∂(ε2
t (ω, a, b))/∂a)sgn{ε2

t (ω, a, b)},

Xt,4(θ) = (∂(ε2
t (ω, a, b))/∂b)sgn{ε2

t (ω, a, b)},

and write Xt(θ, α) = (Xt,1(θ, α), Xt,2(θ), Xt,3(θ), Xt,4(θ))T . Based on the estimating equa-

tions
∑n

t=1Xt(θ, α) = 0, we define the empirical likelihood function of (θ, α) as

L(θ, α) = sup{
n∏
t=1

(npt) : p1 ≥ 0, . . . , pn ≥ 0,
n∑
t=1

pt = 1,
n∑
t=1

ptXt(θ, α) = 0}.

Put l(θ, α) = −2 logL(θ, α). Since we are interested in α, we consider the profile empirical

likelihood ratio lp(α) = l(θ̃(α), α), where θ̃ = θ̃(α) := arg minθ l(θ, α). Next theorem shows

that Wilks theorem holds for the proposed profile empirical likelihood method.

Theorem 8. Under conditions of Theorem 7, lp(α0) converges in distribution to χ2(1) as

n −→∞.

Remark 7. Based on Theorem (8), one can construct a confidence interval for the tail index

α0 under model (5.12) as in Corollary 1.

5.3 Data Analysis and Simulation Study

5.3.1 Data Analysis

We revisit the analysis of the daily HKD/USD exchange rate from January 21, 1998

to June 6, 2000 in Zhu and Ling (2015 [65]), where LADE-based inference is proposed to

replace QMLE due to the lack of moments. Therefore it is useful to accurately estimate the

tail index of this data set.

As in Zhu and Ling (2015 [65]), we consider the log-returns (×100) of this data sample

denoted by {Xt}600
t=1. First we fit an ARMA(10,10) model to the data and use the function
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’auto.arima’ in the R package ’forecast’ with AIC to obtain the following best model:

Xt = 0.0012+ 0.2374Xt−1+ 0.0127Xt−2− 0.1536Xt−3− 0.1516Xt−4

(0.0004) (0.4867) (0.7874) (0.2930) (0.0689)

+ 0.0283Xt−5− 1.5400et−1+ 0.2160et−2+ 0.3375et−3+ et.

(0.0620) (0.4868) (0.9383) (0.4560)

(5.1)

Denote the resulted residuals by Y ′t s. Next we use the function ’garchFit’ in the R package

’fGarch’ to fit a GARCH(1,1) to Y ′t s and obtain

Yt = σtεt, σ2
t = 1.098× 10−5+ 0.7220σ2

t−1+ 0.3773Y 2
t−1.

(9.794× 10−6) (0.04657) (0.14012)
(5.2)

Numbers in brackets mean standard deviations. After this fitting, we plot {Xt}, the auto-

correlation functions of {Yt}, {Y 2
t } and estimated {εt} in Figure 1, which indicate the fitting

is good. However, as showed in Zhang and Ling (2015), the estimators in (5.1) would be

inconsistent theoretically if EY 2
t = ∞, and the standard deviations in (5.1) may be theo-

retically incorrect when EY 4
t =∞ since this case implies that the joint asymptotic limit of

estimators in (5.1) is nonnormal.

Here we study the tail index of Yt by applying the profile empirical likelihood methods

based on both the LADE in this paper and the QMLE in Chan, Peng and Zhang (2012 [62]) to

{Yt} without taking into account of the randomness in obtaining {Yt}. Since the parameters

in (5.2) satisfy w > 0, a ∈ (0, 1), b > 0, we rewrite w = exp(w̃), a = exp(ã)/{1 + exp(ã)},

b = exp(b̃) in computing the profile empirical likelihood ratio based on QMLE. Similar

transformation for θ∗ in (5.1) is applied to computing the profile empirical likelihood ratio

based on LADE.

First we use the R function ’garchFit’ to obtain the QMLE for θ̃∗, and then get an

estimator for (ε∗t )
2, which results in an estimator for d. Hence we have initial values for

both θ̃ and θ̃∗, which are the transformed θ and θ∗. Denote them by θ̃ini and θ̃∗ini. Using

the obtained initial value θ̃ini, we minimize ∆(θ) =
∑4

j=1( 1
n

∑n
t=1 Z̄t,j(θ))

2 to obtain θ̄ini.
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Next we employ the R package ’emplik’ and the R function ’optim’ to compute the profile

empirical likelihood ratio based on LADE for α = 0.7, 0.75, 0.8, ..., 4 by using either θ̃ini or

θ̄ini, depending on which one gives a smaller value of ∆(θ), as an initial value. The same

approach is applied to calculating the profile empirical likelihood ratio based on QMLE

by using θ̃∗ini instead of θ̃ini. We also compute the profile empirical likelihood ratios by

restricting |θ̃ − θ̃ini| ≤ δ and |θ̃∗ − θ̃∗ini| ≤ δ with δ = 0.5. Hence we use δ = ∞ to mean no

such a restriction in our calculation. The profile empirical likelihood ratio based on LADE

in Figure 2 has its minimum around α = 1.8 and indicates α0 ∈ (1, 3) at both level 90% and

level 95%. The profile empirical likelihood ratio based on QMLE in Figure 2 gives a very

large value when α = 2, which rejects H0 : α0 = 2. This is in line with the fact that the

estimated value of a + b in (5.2) is larger than one, i.e., EY 2
t = ∞. However, the empirical

likelihood ratio based on QMLE fails to reject other considered α’s in (0.7, 4) at levels 90%

and 95%, which may indicate the method is not applicable to this data set. After plotting

the Hill’s estimator in (1.9) for both {Yt} and estimated {εt} in Figure 3, we conclude that

the method in Chan, Peng and Zhang (2012 [62]) is problematic since Eε4
t seems infinite,

and the standard deviations in (5.1) are inaccurate since EY 4
t = ∞. Note that the 95%

confidence intervals in Figure 3 are based on
√
k(α̃(k)/α0 − 1)

d→ N(0, 1) for independent

data.

5.3.2 Simulation Study

In this section we examine the finite sample behavior of the proposed profile empirical

likelihood for a GARCH(1,1) sequence and compare it with the method in Chan, Peng and

Zhang (2012 [62]), where the errors are required to have a finite fourth moment.

Consider model (5.1) with ε∗t ∼ t(ν)/
√
ν/(ν − 2) with ν = 3.2, or 4, or 8, or 12, and

θ∗0 = (1, 0.72, 0.38)T , or (1, 0.65, 0.38)T , or (1, 0.65, 0.25)T , or (1, 0.6, 0.25)T . By drawing

5, 000 random samples with sample size n = 500, n = 1, 000 and n = 2, 000, we follow the

procedure in the data analysis to compute the profile empirical likelihood ratios and calculate

the coverage probabilities for the proposed profile empirical likelihood confidence interval in
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this paper and that in Chan, Peng and Zhang (2012 [62]) with levels ξ = 0.9 and ξ = 0.95,

which are denoted by ILADEξ and IQMLE
ξ .

Coverage probabilities for these two methods are reported in Table 1, which shows that

the proposed profile empirical likelihood method works well and even performs better than

the method based on the QMLE in Chan, Peng and Zhang (2012 [62]). Results for ν = 3

and 4 well indicate that the method in Chan, Peng and Zhang (2012 [62]) does not work

since the errors have an infinite fourth moment.

5.4 Conclusions

It is known that the tail index of a GARCH(1,1) sequence or an AR(1) model with

ARCH(1) errors is determined by an estimating equation, which can be employed to estimate

the tail index at the rate of
√
n, where n is the sample size. That is, the resulted tail index

estimator has a faster rate of convergence than an estimator based on extreme value theory.

However, this estimation procedure requires that the plug-in estimators for the unknown

parameters in the model should have a joint normal limit, which generally needs a finite

fourth moment for the errors. By noting that the estimating equation for determining

the tail index is invariant to a scale transformation of the underlying model, we propose

to estimate the tail index by employing some least absolute deviations estimate so as to

relax the moment condition on errors. Although the resulted tail index estimator has a
√
n

rate of convergence and a normal limit, the asymptotic variance is quite complicated. To

effectively construct a confidence interval for the tail index, we further propose a profile

empirical likelihood method, which does not need to estimate any additional quantities such

as asymptotic variance. A simulation study confirms that the proposed new methods have

good finite sample behavior.
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Figure (5.1) We plot {Xt}, the autocorrelation functions of {Yt}, {Y 2
t } and estimated {εt}

respectively.
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Figure (5.2) The profile empirical likelihood ratios based on both LADE and QMLE are
plotted against α = 0.7, 0.75, · · · , 4 in solid line and dotted line, respectively. Two straight
lines represent the 90th and 95th quantile of χ2(1) respectively.

Table (5.1) Coverage probabilities based on the method in Section 2.1 (ILADEξ ) and the

method in Chan, Peng and Zhang (2012) (IQMLE
ξ ) are calculated for w0 = 1 and ε∗t ∼

t(ν)/
√
ν/(ν − 2). Here ν =∞ means ε∗t ∼ N(0, 1).

(a0, b0, ν, n) ILADE0.90 ILADE0.95 IQMLE
0.90 IQMLE

0.95 α0

(0.72, 0.38, 3.2, 500) 0.8892 0.9340 0.9700 0.9882 1.1678
(0.65, 0.38, 4, 500) 0.8988 0.9528 0.9374 0.9682 1.7367
(0.65, 0.25, 8, 500) 0.9044 0.9530 0.9536 0.9734 3.8212
(0.6, 0.25, 12, 500) 0.9000 0.9526 0.9174 0.9546 4.7681

(0.72, 0.38, 3.2, 1000) 0.9052 0.9484 0.9842 0.9930 1.1678
(0.65, 0.38, 4, 1000) 0.9034 0.9538 0.9552 0.9848 1.7367
(0.65, 0.25, 8, 1000) 0.8940 0.9468 0.9504 0.9752 3.8212
(0.6, 0.25, 12, 1000) 0.8988 0.9514 0.9102 0.9586 4.7681

(0.72, 0.38, 3.2, 2000) 0.9064 0.9524 0.9854 0.9948 1.1678
(0.65, 0.38, 4, 2000) 0.9130 0.9616 0.9694 0.9872 1.7367
(0.65, 0.25, 8, 2000) 0.8978 0.9492 0.9222 0.9724 3.8212
(0.6, 0.25, 12, 2000) 0.9020 0.9476 0.8768 0.9416 4.7681
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Appendix A

PROOFS OF CHAPTER 3

Recall we use α0,1, α0,2, β0, γ0 = (γ0,1, · · · , γ0,p)
T to denote the true values of α1, α2, β

and γ, respectively. Our proofs are along the lines of Hill, Li and Peng (2014). Before

proving Theorem 1, we need the following lemmas. Throughout when we say |φ0| < 1, we

also mean that φ0 is independent of the sample size n.

Lemma 1. Under conditions of Theorem 1, we have 1√
n

∑n
t=1 Zt(β0, γ0)

d→ N(0,Σ) as n→

∞, where Σ = (σi,j)1≤i,j≤p+1 with σi,j = E(ε2
t )E(Ut−iUt−j) for i, j = 1, · · · , p,

σi,p+1 =


E(ε2

t )E

{
Ut−i

(
Xt−1√
1+X2

t−1

+
∑p

j=1 γ0,j
Xt−j−1√
1+X2

t−j−1

)}
when |φ0| < 1,

0 when φ0 = 1− δ0/n

for i = 1, · · · , p and

σp+1,p+1 =


E(ε2

t )E

{
Xt−1√
1+X2

t−1

+
∑p

j=1 γ0,j
Xt−j−1√
1+X2

t−j−1

}2

when |φ0| < 1,

E(ε2
t )×

(
1 +

∑p
j=1 γ0,j

)2

when φ0 = 1− δ0/n.

Proof. Note that


Zt,j(β0, γ0) = εtUt−j for j = 1, · · · , p,

Zt,p+1(β0, γ0) = εt

{
Xt−1√
1+X2

t−1

+
∑p

j=1 γ0,j
Xt−j−1√
1+X2

t−j−1

}
.

(A.1)

In the local to unity case, i.e., φ0 = 1− δ0/n, we have |Xt|
p→∞ as t→∞, and hence

 Xt−1√
1 +X2

t−1

+

p∑
j=1

γ0,j
Xt−j−1√

1 +X2
t−j−1

2

p→

(
1 +

p∑
j=1

γ0,j

)2

as t→∞. (A.2)
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The lemma follows from (B.2), (B.3) and the central limit theorem for martingale differences.

See Hall and Heyde (1980[104]).

Lemma 2. Under conditions of Theorem 1, n−1
∑n

t=1 Z
T
t (β0, γ0)Zt(β0, γ0)

p→ Σ as n→∞.

Proof. The claim follows instantly from (B.2)–(B.3) and the weak law of large numbers for

martingale differences (see Hall and Heyde (1980[104])).

Lemma 3. Under conditions of Theorem 1, as n→∞, with probability one L(β0, γ) attains

its maximum value at some point γ̃ in the interior of the ball ||γ − γ0|| ≤ n−d/3, and γ̃ and

λ̃ satisfy Q1n(γ̃, λ̃) = 0 and Q2n(γ̃, λ̃) = 0, where

Q1n(γ, λ) :=
1

n

n∑
i=1

Zi(β0, γ)

1 + λTZi(β0, γ)
and Q2n(γ, λ) :=

1

n

n∑
i=1

1

1 + λTZi(β0, γ)

(
∂Zi(β0, γ)

∂γ

)T
λ.

Proof. The proof is similar to the proof of Lemma 1 in Qin and Lawless (1994[92]) by using

Lemmas 1 and 2.

Proof of Theorem 1. Apply Lemmas 1–3 and arguments in Qin and Lawless (1994[92]).

Proof of Theorem 2. The proof is similar to the proof of Theorem 1.

Before proving Theorems 3 and 4, we need some notations and lemmas. Put

A =



1
n

∑n
t=1 εtUt−1

·

·

·
1
n

∑n
t=1 εtUt−p


, A(i) =



1
n−1

∑n
t=1,t6=i εtUt−1

·

·

·
1

n−1

∑n
t=1,t 6=i εtUt−p


,
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B =



1
n

∑n
t=1 U

2
t−1 · · · 1

n

∑n
t=1 Ut−pUt−1

·

·

·
1
n

∑n
t=1 Ut−pUt−1 · · · 1

n

∑n
t=1 U

2
t−p


,

B(i) =



1
n−1

∑n
t=1,t 6=i U

2
t−1 · · · 1

n−1

∑n
t=1,t 6=i Ut−pUt−1

·

·

·
1

n−1

∑n
t=1,t6=i Ut−pUt−1 · · · 1

n−1

∑n
t=1,t6=i U

2
t−p


,

Σ̄ = E(B), D = (Σ̄−B)Σ̄−1A, D(i) = (Σ̄−B(i))Σ̄−1A(i),

where i = 1, · · · , n.

Lemma 4. Under the conditions of Theorem 3, we have

γ̂(β0)− γ0 + Σ̄−1A = Op(n
−1), (A.3)

max
1≤i≤n

|γ̂(i)(β0)− γ0 + Σ̄−1A(i)| = Op(n
−1) (A.4)

and

max
1≤i≤n

|B(γ̂(i)(β0)− γ̂(β0)) +BΣ̄−1(A(i) − A) +D(i) −D| = op(n
−3/2). (A.5)

Proof. Equation (A.3) follows from

0 = A+B(γ̂(β0)− γ0) = D +B(γ̂(β0)− γ0 + Σ̄−1A), (A.6)
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A = Op(n
−1/2) and Σ̄−B = Op(n

−1/2). Write

B(i) =
n

n− 1
B − B∗i

n− 1
, A(i) =

n

n− 1
A− A∗i

n− 1
, (A.7)

where

B∗i =



U2
i−1 · · · Ui−pUi−1

·

·

·

Ui−pUi−1 · · · U2
i−p


, A∗i =



εiUi−1

·

·

·

εiUi−p


.

Since max1≤i≤n,1≤j≤p |Ui−1Ui−j| = op(n
1/2), it follows from (A.7) that

B(i) = Op(1) and B(i) −B = op(n
−1/2) uniformly in i = 1, · · · , n. (A.8)

Similarly,

Σ̄−B(i) = Op(n
−1/2), A(i) = Op(n

−1/2) and A(i) − A = op(n
−1/2) uniformly in i = 1, · · · , n.

(A.9)

Therefore, equation (A.4) follows from (A.9) and 0 = D(i) + B(i)(γ̂(i)(β0) − γ0 + Σ̄−1A(i)).

By writing

0 = D(i) + (B(i) −B)(γ̂(i)(β0)− γ0 + Σ̄−1A(i)) +B(γ̂(i)(β0)− γ0 + Σ̄−1A(i)),

equation (A.5) follows from (A.8), (A.4) and (A.6).

Lemma 5. Under the conditions of Theorem 3, we have

1√
n

n∑
t=1

Z∗n,t(β0)
d
=

1√
n

n∑
t=1

εtẽt + op(1)
d→ N(0, E(ε2

t ẽ
2
t )) and

1

n

n∑
t=1

Z∗2n,t(β0)
p→ E(ε2

t ẽ
2
t )
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as n→∞, where

ẽt = Xt−1√
1+X2

t−1

+
∑p

k=1 γ0,k
Xt−k−1√
1+X2

t−k−1

−



Ut−1

·

·

·

Ut−p



T 

E(U2
p ) · · · E(UpU1)

·

·

·

E(UpU1) · · · E(U2
1 )





E

{
Up

(
Xp√
1+X2

p

+
∑p

k=1 γ0,k
Xp−k√
1+X2

p−k

)}
·

·

·

E

{
U1

(
Xp√
1+X2

p

+
∑p

k=1 γ0,k
Xp−k√
1+X2

p−k

)}


.

Proof. By (A.7)–(A.9) and

n∑
i=1

(A(i) − A) = 0 and
n∑
i=1

(B(i) −B) = 0, (A.10)

we have

∑n
i=1{D(i) −D} =

∑n
i=1(B −B(i))Σ̄−1(A(i) − A)

=
∑n

i=1( n
n−1

B −B(i))Σ̄−1(A(i) − n
n−1

A)− n
(n−1)2

BΣ̄−1A

= − 1
(n−1)2

∑n
i=1B

∗
i Σ̄
−1A∗i +Op(n

−1)

= Op(n
−1)

(A.11)

and

D(i) −D = A(i) − A− (B(i) −B)Σ̄−1A(i) −BΣ̄−1(A(i) − A)

= op(n
−1/2) uniform in i = 1, · · · , n.

(A.12)

Using (A.5), (A.10), (A.11) and (A.12), we can show that, for any p× p matrix ∆,

nop(n
−3/2) =

n∑
i=1

{∆(γ̂(β0)− γ̂(i)(β0))−∆Σ̄−1(A(i) − A)−∆B−1(D(i) −D)}

=
n∑
i=1

∆(γ̂(β0)− γ̂(i)(β0)) + op(n
−1/2),
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∑n
i=1(A(i) − A)T Σ̄−1∆Σ̄−1(A(i) − A)

=
∑n

i=1(A(i) − n
n−1

A)T Σ̄−1∆Σ̄−1(A(i) − n
n−1

A) +Op(n
−1)

= 1
(n−1)2

∑n
i=1A

∗T
i Σ̄−1∆Σ̄−1A∗i +Op(n

−1)

= Op(n
−1),

∑n
i=1(A(i) − A)T Σ̄−1∆B−1(D(i) −D)

=
∑n

i=1(A(i) − n
n−1

A)T Σ̄−1∆B−1(D(i) −D) +Op(n
−2)

= − 1
n−1

∑n
i=1A

∗T
i Σ̄−1∆B−1(D(i) −D) +Op(n

−2)

= Op(n
−1/2)op(n

−1/2) +Op(n
−2) = Op(n

−1),

∑n
i=1(D(i) −D)TB−1∆B−1(D(i) −D)

=
∑n

i=1{A(i) − A}TB−1∆B−1(D(i) −D)

−
∑n

i=1{(B(i) −B)Σ̄−1A(i)}TB−1∆B−1(D(i) −D)

−{BΣ̄−1(A(i) − A)}TB−1∆B−1(D(i) −D)

= Op(n
−1) + nop(n

−1/2)Op(n
−1/2)op(n

−1/2) +Op(n
−1)

= op(n
−1/2),

∑n
i=1(A(i) − A)T Σ̄−1∆(γ̂(β0)− γ̂(i)(β0))

=
∑n

i=1(A(i) − A)T Σ̄−1∆{γ̂(β0)− γ̂(i)(β0)− Σ̄−1(A(i) − A)−B−1(D(i) −D)}+Op(n
−1)

= nop(n
−1/2)op(n

−3/2) +Op(n
−1) = Op(n

−1),

n∑
i=1

(D(i) −D)TB−1∆(γ̂(β0)− γ̂(i)(β0)) = Op(n
−1),

and

nop(n
−3/2)op(n

−3/2) =
n∑
i=1

{
γ̂(β0)− γ̂(i)(β0)− Σ̄−1(A(i) − A)−B−1(D(i) −D)

}T
∆

×
{
γ̂(β0)− γ̂(i)(β0)− Σ̄−1(A(i) − A)−B−1(D(i) −D)

}
=

n∑
i=1

(γ̂(β0)− γ̂(i)(β0))T∆(γ̂(β0)− γ̂(i)(β0)) + op(n
−1/2),
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which imply that


∑n

i=1 ∆(γ̂(β0)− γ̂(i)(β0)) = op(n
−1/2),∑n

i=1(γ̂(β0)− γ̂(i)(β0))T∆(γ̂(β0)− γ̂(i)(β0)) = op(n
−1/2).

(A.13)

For j = 1, ..., n, put

Wj1 =

p∑
l=1

(γ̂l(β0)− γ̂(j)
l (β0))

n∑
t=1

Ut−l

 Xt−1√
1 +X2

t−1

+

p∑
k=1

γ0,k
Xt−k−1√

1 +X2
t−k−1


+

p∑
l=1

(γ̂l(β0)− γ̂(j)
l (β0))

n∑
t=1

εt
Xt−l−1√

1 +X2
t−l−1

+
1

2

p∑
k=1

p∑
l=1

(γ̂k(β0)− γ̂(j)
k (β0))(γ̂l(β0)− γ̂(j)

l (β0))
n∑
t=1

Ut−k
Xt−l−1√

1 +X2
t−l−1

and

Wj2 =

Uj−1{
Xj−1√

1 +X2
j−1

+

p∑
k=1

γ0,k
Xj−k−1√

1 +X2
j−k−1

}+ εj
Xj−1−1√

1 +X2
j−1−1

,

· · · , Uj−p{
Xj−1√

1 +X2
j−1

+

p∑
k=1

γ0,k
Xj−k−1√

1 +X2
j−k−1

}+ εj
Xj−p−1√

1 +X2
j−p−1

T
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Then it follows from Lemma 4, (A.13) and Taylor expansions that

1√
n

n∑
i=1

Z∗n,i(β0) =
1√
n

n∑
i=1

Wi1 +
1√
n

n∑
i=1

(γ̂(i)(β0)− γ0)TWi2

+
1√
n

n∑
i=1

εi

 Xi−1√
1 +X2

i−1

+

p∑
k=1

γ0,k
Xi−k−1√

1 +X2
i−k−1

+ op(1)

= − 1√
n

n∑
i=1

(A(i))TΣ−1Wi2

+
1√
n

n∑
i=1

εi

 Xi−1√
1 +X2

i−1

+

p∑
k=1

γ0,k
Xi−k−1√

1 +X2
i−k−1

+ op(1)

= −(
√
nA)TΣ−1 1

n

n∑
i=1

Wi2

+
1√
n

n∑
i=1

ei

 Xi−1√
1 +X2

i−1

+

p∑
k=1

γ0,k
Xi−k−1√

1 +X2
i−k−1

+ op(1)

=
1√
n

n∑
i=1

εiẽi + op(1).

Now apply a Martingale central limit theorem argument as in Lemma 1 to 1√
n

∑n
i=1 εiẽi to

achieve 1√
n

∑n
i=1 Z

∗
n,i(β0)

d→ N(0, E(ε2
1ẽ

2
1)). Similarly, we can show that

1

n

n∑
i=1

Z∗2n,i(β0) =
1

n

n∑
i=1

ε2
i ẽ

2
i + op(1)

p→ E(ε2
1ẽ

2
1).

This completes the proof.

Proof of Theorem 3. The claim can be proven by using Lemma 5, and arguments in Qin

and Lawless (1994).

Proof of Theorem 4. The argument is similar to the proof of Theorem 3.
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Appendix B

PROOFS OF CHAPTER 4

B.1 Proofs for GARCH(1, 1) Case

In this subsection, we define Θ = {θ : ||θ− θ0|| ≤ n−
1
2γ } for some 1 < γ < min{δ0/2, 2},

where || · || denotes the L2 norm.

Lemma 6. Under conditions of Theorem 5,

sup
1≤t≤n

sup
θ∈Θ
||Z̄t(θ, α0)|| = op(n

1
2γ ). (B.1)

Proof. Put g(t, θ) = (Z̄t,2(θ), Z̄t,3(θ), Z̄t,4(θ))T =: (g1(t, θ), g2(t, θ), g3(t, θ))T and

h(t, θ) = (
1− at

1− a
,
ω{(1− at)− tat−1(1− a)}

(1− a)2
+ b

t−1∑
k=0

kak−1Y 2
t−k−1,

t−1∑
k=0

akY 2
t−k−1)T

=: (h1(t, θ), h2(t, θ), h3(t, θ))T .

Then we have

g(t, θ) = sgn{log(Y 2
t /σ̄

2
t (θ))}h(t, θ)σ̄−2

t (θ). (B.2)

Write σ0 = σ0(θ0). It follows from (5.7) that

σ̄2
t (θ)− σ2

t (θ0) = (ω − ω0)
1− at0
1− a0

+ ω

{
at0 − at

1− a
+

(1− at0)(a− a0)

(1− a)(1− a0)

}
+b

t−1∑
i=0

(ai − ai0)Y 2
t−1−i + (b− b0)

t−1∑
i=0

ai0Y
2
t−1−i − at0σ2

0. (B.3)

Thus, there exists C1 > 0 such that

∣∣σ̄2
t (θ)− σ2

t (θ0)
∣∣ /σ2

t (θ0) ≤ [C1n
− 1

2γ {1 +
t−1∑
i=0

i(max(a, a0))i−1Y 2
t−1−i}+ at0σ

2
0]/σ2

t (θ0) (B.4)
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uniformly for t ≥ 1 and θ ∈ Θ. By the inequality

x/(1 + x) ≤ xτ for x > 0 and 0 < τ < 1,

it can be shown that there exist constants C2 and ρ ∈ (0, 1) such that for any τ ∈ (0, 1)

sup
θ∈Θ
{1 +

t−1∑
i=0

i(max(a, a0))i−1Y 2
t−1−i}/σ2

t (θ0) ≤ C2

(
1 +

∞∑
i=0

ρi|Yt−1−i|
)τ
, (B.5)

at0σ
2
0/σ

2
t (θ0) ≤ C2

∞∑
i=t

aiτ0 |Yt−1−i|τ and (B.6)

sup
θ∈Θ
||h(t, θ)||/σ̄2

t (θ) ≤ C2

(
1 +

∞∑
i=0

ρi|Yt−1−i|
)τ

(B.7)

uniformly for t ≥ 1. By (B.4), (B.5) and a0 < 1 (see Remark 3), for any 0 < δ < 1/2 there

exists a tδ such that

sup
t≥tδ

sup
θ∈Θ

∣∣σ̄2
t (θ)− σ2

t (θ0)
∣∣ /σ2

t (θ0) < δ in probability . (B.8)

Thus, by inequality | log(1 + x)| ≤ 2|x| for all x > −1/2, we have for all t ≥ tδ,

∣∣log(σ̄2
t (θ)/σ

2
t (θ0))

∣∣ =
∣∣log{1 + (σ̄2

t (θ)− σ2
t (θ0))/σ2

t (θ0)}
∣∣

≤ 2
∣∣σ̄2
t (θ)− σ2

t (θ0)
∣∣ /σ2

t (θ0)

≤ 2C2

[
C1n

− 1
2γ

(
1 +

∞∑
i=0

ρi|Yt−1−i|
)τ

+
( ∞∑

i=t

ai0|Yt−1−i|
)τ]

=: d(n, t). (B.9)
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It follows that

∣∣sgn{log(Y 2
t /σ̄

2
t (θ))} − sgn{log ε2

t}
∣∣

=
∣∣sgn{log(Y 2

t /σ
2
t (θ0))− log(σ̄2

t (θ)/σ
2
t (θ0))} − sgn{log(Y 2

t /σ
2
t (θ0))}

∣∣
≤ 2|I{log(σ̄2

t (θ)/σ
2
t (θ0)) < log ε2

t ≤ 0} − I{0 ≤ log ε2
t < log(σ̄2

t (θ)/σ
2
t (θ0))}|

≤ 2I{| log ε2
t | ≤ d(n, t)}. (B.10)

This, combining with (B.7) and (B.9), yields that for any 0 < τ < 1,

||g(t, θ)|| ≤ C2

(
1 +

∞∑
i=0

ρi|Yt−1−i|
)τ
I{| log ε2

t | ≤ d(n, t)}

+C2

(
1 +

∞∑
i=0

ρi|Yt−1−i|
)τ

=: I1(t) + I2(t) (B.11)

uniformly for t ≥ tδ. By the corollary on p.322 of Nelson (1990), we have Eσp0 <∞ for any

0 < p < α0.

Since log ε2
t is independent of Ft−1 = σ(Yt−1, . . . , Y−∞) and its density is continuous

at zero, by taking τ small enough such that E|Yt|8γτ < ∞ and δ small enough such that

sup|x|≤δ f(x) ≤ 2f(0), there exists C3 > 0 such that for all t > tδ,

E

∣∣∣∣∣(1 +
∞∑
i=0

ρi|Yt−1−i|
)τ
I{| log ε2

t | ≤ d(n, t)}

∣∣∣∣∣
4γ

= E

[(
1 +

∞∑
i=0

ρi|Yt−1−i|
)τ

E
(
I{| log ε2

t | ≤ d(n, t)}|Ft−1

)]4γ

≤ C3f
4γ(0)E

(
1 +

∞∑
i=0

ρ̃i|Yt−1−i|
)8γτ [

n−2 + a4γtτ
0

]
, (B.12)
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where ρ̃ = max{ρ, a0}. Therefore, for any ζ > 0,

P{ sup
1≤t≤n

I1(t) > ζn
1
2γ }

≤
tδ∑
t=1

P

{
C2

(
1 +

∞∑
i=0

ρi|Yt−1−i|
)τ

> ζn
1
2γ

}
+

n∑
t=tδ+1

ζ−4γn−2E|I1(t)|4γ

→ 0. (B.13)

Similarly, for any ζ > 0,

P{ sup
1≤t≤n

I2(t) > ζn
1
2γ } ≤

n∑
t=1

ζ−4γn−2E|I2(t)|4γ ≤ C3ζ
−4γn−1 → 0. (B.14)

So it follows from (B.13) and (B.14) that

sup
1≤t≤n

sup
θ∈Θ
||g(t, θ)|| = op(n

1
2γ ). (B.15)

On the other hand, similar to (B.5), we have

(a+ bY 2
t /σ̄

2
t (θ))

α0/2

= {a0 + b0Y
2
t /σ̄

2
t (θ) + (a− a0) + (b− b0)Y 2

t /σ̄
2
t (θ)}α0/2

≤ {a0 + b0ε
2
t + Cn−

1
2γ (1 + ε2

t (1 +
∑∞

i=0 ρ
i|Yt−1−i|)τ + ω−1at0ε

2
tσ

2
0)}α0/2

(B.16)

uniformly for t ≥ 1. Thus, by the inequality: (1 + x)p ≤ 1 + 2px for p > 0 and small x > 0,

we have

sup
1≤t≤n

sup
θ∈Θ
|{a+ bY 2

t /σ̄
2
t (θ)}α0/2 − (a0 + b0ε

2
t )
α0/2| = op(n

1
2γ ). (B.17)

Since {ε2
t} is a sequence of independent and identically distributed random variables with

E|εt|δ0 <∞ and E(a0 + b0ε
2
t )
α0/2 = 1, we have

sup
1≤t≤n

|(a0 + b0ε
2
t )
α0/2 − 1| = op(n

1
2γ ). (B.18)

Thus, the lemma follows from (B.15), (B.17) and (B.18). �
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Lemma 7. Under Conditions of Theorem 5,

(i) sup
θ∈Θ
|| 1
n

n∑
t=1

Z̄t(θ, α0)Z̄T
t (θ, α0)− E{Z1(θ0, α0)ZT

1 (θ0, α0)}|| = op(1), and

(ii)
1√
n

n∑
t=1

Z̄t(θ0, α0)
d−→ N

(
0,E{Z1(θ0, α0)ZT

1 (θ0, α0)}
)
,

where Z̄t,i(θ, α0) = Z̄t,i(θ) when i = 2, 3, 4, and Zt(θ, α0) is defined as Z̄t(θ, α0) with σ2
t (θ)

replaced by σ̄2
t (θ).

Proof. For the proof of (i), it is sufficient to show that

sup
θ∈Θ

∣∣∣∣∣∣ 1
n

n∑
t=1

{Z̄t,i(θ, α0)Z̄t,j(θ, α0)} − E{Zt,i(θ0, α0)Zt,j(θ0, α0)}
∣∣∣∣∣∣ = op(1) (B.19)

for i, j = 1, 2, 3, 4. Here we only show the case of i = 3 and j = 4, since the other cases can

be proved similarly. Define h̃2(t, θ) = ω/(1− a)2 + b
∑∞

k=0 ka
k−1Y 2

t−k−1. By (B.2),

Z̄t,3(θ, α0) = sgn{log(Y 2
t /σ̄

2
t (θ))}

( ω

(1− a)2
+ b

∞∑
k=0

kak−1Y 2
t−k−1

)
σ̄−2
t (θ)

−sgn{log(Y 2
t /σ̄

2
t (θ))}

(ωat + tat−1(1− a)

(1− a)2
+ b

∞∑
k=t

kak−1Y 2
t−k−1

)
σ̄−2
t (θ)

= sgn(log ε2
t )
[
h̃2(t, θ0)/σ2

t (θ0)
]

+sgn(log ε2
t )
[
(h̃2(t, θ)− h̃2(t, θ0))/σ2

t (θ0)
]

+sgn(log ε2
t )
[
(σ2

t (θ0)− σ̄2
t (θ))/σ

2
t (θ0)

] [
h̃2(t, θ)/σ̄2

t (θ)
]

−sgn{log(Y 2
t /σ̄

2
t (θ))}at−1

[(ωa+ t(1− a)

(1− a)2
+ b

∞∑
k=0

(t+ k)akY 2
−k−1

)
/σ̄2

t (θ)

]
+
[
sgn{log(Y 2

t /σ̄
2
t (θ))} − sgn(log ε2

t )
] [
h̃2(t, θ)/σ̄2

t (θ)
]

=: L1(t) + L2(t) + L3(t) + L4(t) + L5(t)
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and

Z̄t,4(θ, α0) = sgn{log(Y 2
t /σ̄

2
t (θ))}

t−1∑
k=0

akY 2
t−k−1/σ̄

2
t (θ)

= sgn(log ε2
t )
∞∑
k=0

ak0Y
2
t−k−1/σ

2
t (θ0)

+sgn{log(Y 2
t /σ̄

2
t (θ))}

∞∑
k=0

[akY 2
t−k−1/σ

2
t (θ0)][(σ2

t (θ0)− σ̄2
t (θ))/σ̄

2
t (θ)]

+sgn(log ε2
t )
∞∑
k=0

(ak − ak0)Y 2
t−k−1/σ

2
t (θ0)

−sgn{log(Y 2
t /σ̄

2
t (θ))}

∞∑
k=t

akY 2
t−k−1/σ̄

2
t (θ)

+
[
sgn{log(Y 2

t /σ̄
2
t (θ))} − sgn(log ε2

t )
] ∞∑
k=0

akY 2
t−k−1/σ

2
t (θ0)

=: M1(t) +M2(t) +M3(t) +M4(t) +M5(t).

Similar to (B.5) and (B.7), there exist C4 > 0 and ρ ∈ (0, 1) such that for any 0 < τ < 1,

sup
θ∈Θ
|L2(t) + L3(t) + L4(t)|

≤ sup
θ∈Θ

C4

{[
n−

1
2γ

(
1 +

∞∑
i=0

ρi|Yt−i−1|
)τ

+ at0σ
2
0

](
1 +

∞∑
i=0

ρi|Yt−i−1|
)τ}

+ω−1at−1

[(ωa+ t(1− a)

(1− a)2
+ b

∞∑
k=0

(t+ k)akY 2
−k−1

)]

≤ C4

[
n−

1
2γ

(
1 +

∞∑
i=0

ρi|Yt−i−1|
)τ

+ at0σ
2
0

](
1 +

∞∑
i=0

ρi|Yt−i−i|
)τ

(B.20)

+2ω−1
0

(
a0 + 1

2

)t−1
{

4ω0(1 + a0) + 6t(1− a0)

(1− a0)2
+ 2b0

∞∑
k=0

(t+ k)

(
a0 + 1

2

)k
Y 2
−k−1

}
,

where the inequalities follow by taking n sufficiently large such that C4n
− 1

2γ ≤ min{(1 −
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a0)/2, ω0/2, b0/2}, and

sup
θ∈Θ
|M2(t) +M3(t) +M4(t)|

≤ C4

{
n−

1
2γ

(
1 +

∞∑
i=0

ρi|Yt−i−1|
)τ

+ at0σ
2
0

}(
1 +

∞∑
i=0

ρi|Yt−i−1|
)τ

+2ω−1
0

(
a0 + 1

2γ

)t ∞∑
k=0

(
a0 + 1

2

)k
Y 2
−k−1. (B.21)

Thus, by (B.20) and (B.21), we can show that

1

n

n∑
t=1

{
sup
θ∈Θ

[|M1(t)|(|L2(t) + L3(t) + L4(t)|)]
}

p−→ 0, (B.22)

1

n

n∑
t=1

{
sup
θ∈Θ

[|L1(t)|(|M2(t) +M3(t) +M4(t)|)]
}

p−→ 0, and (B.23)

1

n

n∑
t=1

{
sup
θ∈Θ

[(|L2(t) + L3(t) + L4(t)|)(|M2(t) +M3(t) +M4(t)|)]
}

p−→ 0. (B.24)

Further, using the same arguments as in proving Lemma 5.1, we have

1

n

n∑
t=1

{
sup
θ∈Θ

[|M5(t)|(|L1(t) + L2(t) + L3(t) + L4(t) + L5(t)|)]
}

p−→ 0, and (B.25)

1

n

n∑
t=1

{
sup
θ∈Θ

[|L5(t)|(|M1(t) +M2(t) +M3(t) +M4(t)|)]
}

p−→ 0. (B.26)

Therefore,

sup
θ∈Θ

∣∣∣ 1
n

n∑
t=1

{Z̄t,3(θ, α0)Z̄t,4(θ, α0)} − E{Zt,3(θ0, α0)Zt,4(θ0, α0)}
∣∣∣

= sup
θ∈Θ

∣∣∣ 1
n

n∑
t=1

{L1(t)M1(t)} − E{Zt,3(θ0, α0)Zt,4(θ0, α0)}
∣∣∣+ op(1) = op(1), (B.27)

i.e., (B.19) holds for the case of i = 3 and j = 4.



106

Next, we prove (ii). Note that

g(t, θ0) = sgn{log ε2
t}h(t, θ0)/σ2

t (θ0)

+
(
sgn{log(Y 2

t /σ̄
2
t (θ0))} − sgn{log ε2

t}
)
h(t, θ0)/σ2

t (θ0)

+sgn{log(Y 2
t /σ̄

2
t (θ0))}h(t, θ0)[1/σ̄2

t (θ0)− 1/σ2
t (θ0)]

=: H1(t) +H2(t) +H3(t). (B.28)

Using σ2
t (θ0)− σ̄2

t (θ0) = at0σ
2
0 and the same arguments as in deriving (B.10)–(B.12), we have

E{ 1√
n

n∑
t=1

(||H2(t)||+ ||H3(t)||)}p = O

{
n−p/2

n∑
t=1

E||at0σ2
0h(t, θ0)||p

}
= O(n−p/2) (B.29)

for any 0 < p < min{1, α0/8}, which implies that

1√
n

n∑
t=1

g(t, θ0)− 1√
n

n∑
t=1

H1(t)
p−→ 0. (B.30)

Similarly, we can show that

1√
n

n∑
t=1

{(a0 + b0Y
2
t /σ̄

2
t (θ0))α0/2 − 1} − 1√

n

n∑
t=1

{(a0 + b0ε
2
t )
α0/2 − 1} p−→ 0. (B.31)

Note that H1(t) = (Zt,2(θ0), Zt,3(θ0), Zt,4(θ0))T . By (B.30) and (B.31), we have

1√
n

n∑
t=1

Z̄t(θ0, α0) =
1√
n

n∑
t=1

Zt(θ0, α0) + op(1). (B.32)

Since Zt(θ0, α0) is a martingale difference sequence, (ii) follows from (B.32) and the central

limit theorem (CLT) for martingales (see Hall and Heyde (1980)). This completes the proof

of Lemma 5.2.
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Lemma 8. Under conditions of Theorem 5,

sup
θ∈Θ

∣∣∣∣∣∣ 1√
n

n∑
t=1

{[
sgn
(

log
Y 2
t

σ̄2
t (θ)

)
− sgn

(
log

Y 2
t

σ̄2
t (θ0)

)]h(t, θ)

σ̄2
t (θ)

−2f(0)
(σ2

t (θ0)− σ̄2
t (θ)

σ2
t (θ0)

)h(t, θ0)

σ̄2
t (θ0)

}∣∣∣∣∣∣ = op(1),

where h(t, θ) is defined in the proof of Lemma 5.1.

Proof. By Taylor expansion, similar to Lemma 5.2, it can be shown that

sup
θ∈Θ

∣∣∣∣∣∣ 1√
n

n∑
t=1

{[
sgn
(

log
Y 2
t

σ̄2
t (θ)

)
− sgn

(
log

Y 2
t

σ̄2
t (θ0)

)](h(t, θ)

σ̄2
t (θ)

− h(t, θ0)

σ̄2
t (θ0)

)}∣∣∣∣∣∣ = op(1).

Further, similar to (B.30), we have

sup
θ∈Θ

∣∣∣∣∣∣ 1√
n

n∑
t=1

[
sgn

(
log

Y 2
t

σ̄2
t (θ0)

)
− sgn(log ε2

t )

]
h(t, θ0)

σ̄2
t (θ0)

∣∣∣∣∣∣ = op(1).

Thus, for proving Lemma 5.3, it suffices to show that

sup
θ∈Θ

∣∣∣∣∣∣ 1√
n

n∑
t=1

[
sgn
(

log
Y 2
t

σ̄2
t (θ)

)
− sgn(log ε2

t )− 2f(0)
(σ2

t (θ0)− σ̄2
t (θ)

σ2
t (θ0)

)]h(t, θ0)

σ̄2
t (θ0)

∣∣∣∣∣∣ = op(1).

Put ξ1t(θ) = [2I(log(
σ̄2
t (θ)

σ2
t (θ0)

) < log ε2
t < 0)+I(log(

σ̄2
t (θ)

σ2
t (θ0)

) < log ε2
t = 0)]h(t, θ0)/σ̄2

t (θ0), ξ2t(θ) =

[2I(0 < log ε2
t ≤ log(

σ̄2
t (θ)

σ2
t (θ0)

)) + I(0 = log ε2
t ≤ log(

σ̄2
t (θ)

σ2
t (θ0)

))]h(t, θ0)/σ̄2
t (θ0) and Ft = σ(εs, s ≤

t). Then
[
sgn
(

log
Y 2
t

σ̄2
t (θ)

)
− sgn(log ε2

t )
]
hT (t,θ0)

σ̄2
t (θ0)

= ξ1t(θ)− ξ2t(θ) and

E[(ξ1t(θ)− ξ2t(θ))|Ft−1] = −2f(0) log
(
σ̄2
t (θ)/σ

2
t (θ0)

) (
h(t, θ0)/σ̄2

t (θ0)
)

(1 + op(1))

= 2f(0)

(
σ2
t (θ0)− σ̄2

t (θ)

σ2
t (θ0)

)
h(t, θ0)

σ̄2
t (θ0)

(1 + op(1))

holds uniformly in θ ∈ Θ. Hence, we only need to show that

sup
θ∈Θ

∥∥∥ 1√
n

n∑
t=1

{ξit(θ)− E[ξit(θ)|Ft−1]}
∥∥∥ = op(1) for i = 1, 2. (B.33)
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It follows from (B.7) and (B.10) that for i = 1, 2

1

n

n∑
t=1

E‖ξit(θ)‖2 = o(1) and
1

n

n∑
t=1

E‖ξit(θ1)− ξit(θ2)‖2 ≤ C||θ1 − θ2||. (B.34)

Note that for any given θ, {ξit(θ) − E[ξit(θ)|Ft−1]} is a martingale difference sequence. By

(B.34) and a chaining technique (see pp. 356-358 in Hansen (1996) or pp. 330–331 in Koul

and Surgailis (2001)), (B.33) can be derived.

Proof of Theorem 2.1. By Theorem 1 of Peng and Yao (2003), under Conditions 1 and 2,

there exists a positive definition matrix Ω such that

√
n(θ̂ − θ0)

d−→ N(0,Ω). (B.35)

Thus, by (B.16) with α instead of α0 and some similar arguments as in proving (B.17), we

have for any 0 ≤ α ≤ δ0,

1

n

n∑
t=1

{(â+ b̂ε̄2
t (θ̂))

α/2 − (a0 + b0ε
2
t )
α/2} p−→ 0. (B.36)

It follows from the weak law of large numbers that

1

n

n∑
t=1

{(a0 + b0ε
2
t )
α/2 − E(a0 + b0ε

2
t )
α/2} p−→ 0.

Since the convergence of a monotone function to its limit is uniform over any closed interval,

we have

sup
0≤α≤δ0

∣∣∣∣∣ 1n
n∑
t=1

{(â+ b̂ε̄2
t (θ̂))

α/2 − E(a0 + b0ε
2
t )
α/2}

∣∣∣∣∣ p−→ 0. (B.37)

Since α0 is the unique positive solution to E(a0 + b0ε
2
t )
α/2 = 1, we have α̂

p−→ α0. Thus, by
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Taylor expansion, when |α̂− α0| ≤ ν with ν > 0 small enough,

0 =
1

n

n∑
t=1

(â+ b̂ε̄2
t (θ̂))

α̂/2 − 1

=
1

n

n∑
t=1

[(â+ b̂ε̄2
t (θ̂))

α̂/2 − (a0 + b0ε
2
t )
α0/2] +

1

n

n∑
t=1

[(a0 + b0ε
2
t )
α0/2 − 1]

=
α̂

2n

n∑
t=1

[ã0 + b̃0ε̃
2
t ]
α̂/2−1[(â− a0) + (b̂ε̄2

t (θ̂)− b0ε
2
t )]

+
1

n

n∑
t=1

[(a0 + b0ε
2
t )
α0/2 − 1] +

1

2n

n∑
t=1

(a0 + b0ε
2
t )
α0/2 log(a0 + b0ε

2
t )(α̂− α0)

+
1

4n

n∑
t=1

(a0 + b0ε
2
t )
α̃/2{log(a0 + b0ε

2
t )}2(α̂− α0)2, (B.38)

where (ã, b̃, ε̃2
t , α̃) lies between (â, b̂, ε̄2

t (θ̂), α̂) and (a0, b0, ε
2
t , α0). Thus, like the proof of Lemma

5.2, the right hand side of (B.38) is equal to

{α0

2n

n∑
t=1

[a0 + b0ε
2
t ]
α0/2−1[(â− a0) + (b̂− b0)ε2

t − (θ̂ − θ0)T (b0ε
2
th(t, θ0)/σ̄2

t (θ0))]

+
1

n

n∑
t=1

[(a0 + b0ε
2
t )

α0
2 − 1] +

1

2n

n∑
t=1

(a0 + b0ε
2
t )

α0
2 log(a0 + b0ε

2
t )(α̂− α0)

}
(1 + op(1))

=
α0

2
(â− a0)E[a0 + b0ε

2
t ]
α0
2
−1 +

e0

2
(b̂− b0)− b0e0

2
(θ̂ − θ0)T lim

t→∞
E(h(t, θ0)/σ̄2

t (θ0))

+
1

n

n∑
t=1

[(a0 + b0ε
2
t )

α0
2 − 1] +

1

2
(α̂− α0)E[(a0 + b0ε

2
t )

α0
2 log(a0 + b0ε

2
t )] + op(n

− 1
2 ),

where e0 = α0E[(a0 + b0ε
2
t )
α0/2−1ε2

t ]. As a result, let A0 = E[(a0 + b0ε
2
t )

α0
2 log(a0 + b0ε

2
t )], we

have

√
n(α̂− α0)

= A−1
0

√
n

{
α0(â− â0)E[a0 + b0ε

2
t ]
α0
2
−1 + e0(b̂− b̂0)− b0e0

2
(θ̂ − θ0)T lim

t→∞
E

(
h(t, θ0)

σ̄2
t (θ0)

)}
+

2A−1
0√
n

n∑
t=1

[(a0 + b0ε
2
t )

α0
2 − 1] + op(1). (B.39)

Thus, by (B.35) and the CLT for martingales (see Hall and Heyde (1980)), the right-hand
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side of (B.39) converges in distribution to a Gaussian distribution with asymptotic variance

Σ depending on the asymptotic covariance of
√
n(θ̂−θ0) and 1√

n

∑n
t=1[(a0 +b0ε

2
t )
α0/2−1].

Proof of Theorem 2.2. Put

θ = θ0 + n−1/2ν, ν = (ν1, ν2, ν3)T and S11 = E{Z1(θ0, α0)ZT
1 (θ0, α0)}.

Then by Lemmas 5.1, 5.2 and some similar arguments as in the proof of Theorem 1 of Owen

(1990), we have

l(θ, α0)

=

(
1√
n

n∑
t=1

Z̄t(θ, α0)

)T (
1

n

n∑
t=1

Z̄t(θ, α0)Z̄T
t (θ, α0)

)(
1√
n

n∑
t=1

Z̄t(θ, α0)

)
(1 + op(1))

=

(
1√
n

n∑
t=1

Z̄t(θ, α0)

)T

S−1
11

(
1√
n

n∑
t=1

Z̄t(θ, α0)

)
(1 + op(1)), (B.40)

holds uniformly for all θ ∈ Θ. Especially,

l(θ0, α0) =

(
1√
n

n∑
t=1

Z̄t(θ0, α0)

)T

S−1
11

(
1√
n

n∑
t=1

Z̄t(θ0, α0)

)
(1 + op(1)). (B.41)

Put ∆n(θ) = 1√
n

∑n
t=1 Z̄t(θ, α0). Then

l(θ, α0)− l(θ0, α0) = (∆n(θ)−∆n(θ0))TS−1
11 ∆n(θ0) + ∆T

n (θ0)S−1
11 (∆n(θ)−∆n(θ0))

+(∆n(θ)−∆n(θ0))TS−1
11 (∆n(θ)−∆n(θ0)) + op(1) and

∆n(θ)−∆n(θ0) =
1√
n

n∑
t=1

{
[(a+ bY 2

t /σ̄
2
t (θ))

α0/2 − (a0 + b0Y
2
t /σ̄

2
t (θ0))α0/2],

{sgn[log(Y 2
t /σ̄

2
t (θ))]− sgn[log(Y 2

t /σ̄
2
t (θ0))]}hT (t, θ)/σ̄2

t (θ)

+sgn[log(Y 2
t /σ̄

2
t (θ0))][hT (t, θ)/σ̄2

t (θ)− hT (t, θ0)/σ̄2
t (θ0)]

}T
=:

1√
n

n∑
t=1

(Zt1(ν), gA(t, ν) + gB(t, ν))T .
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By Taylor expansion (see also the expression for (B.38)), it follows that

1√
n

n∑
t=1

Zt1(ν) =
α0

2n

n∑
t=1

[a0 + b0ε
2
t ]
α0
2
−1

[
ν2 + ν3ε

2
t − νT b0ε

2
t

h(t, θ0)

σ̄2
t (θ0)

]
+ op(1)

=
νTα0

2n

n∑
t=1

[a0 + b0ε
2
t ]
α0
2
−1
[
− b0ε

2
th1(t, θ0)

σ̄2
t (θ0)

, 1− b0ε
2
th2(t, θ0)

σ̄2
t (θ0)

,

ε2
t −

b0ε
2
th3(t, θ0)

σ̄2
t (θ0)

]T
(1 + op(1)) (B.42)

holds uniformly for all θ ∈ Θ. By Lemma 5.3 and Taylor expansion, we have

1√
n

n∑
t=1

gA(t, ν) =
−2νTf(0)

n

n∑
t=1

(
h(t, θ0)

σ2
t (θ0)

)(
h(t, θ0)

σ2
t (θ0)

)T
(1 + op(1)) and (B.43)

1√
n

n∑
t=1

gB(t, ν) =
νT

n

n∑
t=1

sgn(log ε2
t )
[
σ−2
t (θ0)

(∂h1(t, θ0)

∂θ
,
∂h2(t, θ0)

∂θ
,
∂h3(t, θ0)

∂θ

)
−
(
h(t, θ0)/σ2

t (θ0)
)(
h(t, θ0)/σ2

t (θ0)
)T]

(1 + op(1)) (B.44)

holds uniformly for all θ ∈ Θ, where ∂hi(t,θ0)
∂θ

= (∂hi(t,θ0)
∂θ1

, ∂hi(t,θ0)
∂θ2

, ∂hi(t,θ0)
∂θ3

)T for i = 1, 2, 3.

Since the median of sgn(log ε2
t ) is zero, it follows from the weak law of large numbers for

a martingale that the right-hand side of (B.44) converges to zero in probability. Put d0 =

b0E[(a0 + b0ε
2
t )
α0/2−1ε2

t ] and define

A1 = lim
t→∞

α0d0

2

[
−E

(
h1(t, θ0)

σ̄2
t (θ0)

)
,
E[a0 + b0ε

2
t ]
α0
2
−1

d0

− E

(
h2(t, θ0)

σ̄2
t (θ0)

)
,E

(
1

b0

− h3(t, θ0)

σ̄2
t (θ0)

)]T
,

A2 = lim
t→∞

E
[
−2f(0)

(
h(t, θ0)/σ2

t (θ0)
) (
h(t, θ0)/σ2

t (θ0)
)T]

and A = (A1, A2). It follows from (B.42)–(B.44) that

l(θ, α0)− l(θ0, α0) =
(
νTAS−1

11 ∆n(θ0) + ∆T
n (θ0)S−1

11 A
Tν + νTAS−1

11 A
Tν
)

(1 + op(1)) (B.45)

holds uniformly for all θ ∈ Θ. Like the proof of Lemma 1 of Qin and Jin (1994), we know

that the minimizer θ̂ = θ0 +n−1/2ν of (B.45) must lie in Θ. Thus, by minimizing (B.45) with
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respect to ν, it follows that

ν̂ = −(AS−1
11 A

T )−1AS−1
11 ∆n(θ0) + op(1).

Substitute this into (B.45), we have

l(θ̂, α0)

= [S
−1/2
11 ∆n(θ0)]T [I − S−1/2

11 AT (AS−1
11 A

T )−1AS
−1/2
11 ][S

−1/2
11 ∆n(θ0)](1 + op(1)).

(B.46)

By Lemma 5.2, S
−1/2
11 ∆n(θ0) converges in distribution to a multivariate standard normal

distribution. Thus, by (B.46) and noting that the trace of I − S−1/2
11 AT (AS−1

11 A
T )−1AS

−1/2
11

is 1, we have l(θ̂, α0)
d−→ χ2(1), i.e., Theorem 6 follows.

B.2 Proofs for AR(1)-ARCH(1) Case

In this subsection, we define Θ = {θ : ||θ − θ0|| ≤ n−
1
2γ } for some γ ∈ (1, α0).

Lemma 9. Under conditions of Theorem 7,

sup
1≤t≤n

sup
θ∈Θ
||Xt(θ, α0)|| = op(n

1
2γ ). (B.47)

Proof. Define G(t, θ) = (Xt2(θ), Xt3(θ), Xt4(θ))T and

H(t, θ) = (1, 2(Yt − aYt−1)Yt−1, Y
2
t−1)T/(1 + Y 2

t−1).

Then G(t, θ) = −sgn(ε2
t (ω, a, b))H(t, θ) and

sup
θ∈Θ
||G(t, θ)|| ≤ 1

(1 + Y 2
t−1)

∣∣∣∣∣∣(1, 2|εtYt−1|+ 2n−
1
2γ Y 2

t−1, Y
2
t−1)T

∣∣∣∣∣∣ ≤ C

(
1 +
|εtYt−1|
1 + Y 2

t−1

)
.
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Since E[|εtYt−1|/(1 + Y 2
t−1)]2α0 <∞, we can show that

sup
1≤t≤n

sup
θ∈Θ
||G(t, θ)|| = op(n

1
2γ ).

Further, by Lemma 4.1 of Chan, Li, Peng and Zhang (2013[63]), we have

sup
1≤t≤n

sup
θ∈Θ
|Xt1(θ, α0)| = op(n

1
2γ ).

Hence Lemma 5.4 follows from the above two equations.

Proof of Theorem 7. It follows from Theorem 1 of Chan and Peng (2005[103]) that there

exists a positive matrix Ω1 such that

√
n{θ̂ − θ0}

d−→ N(0,Ω1). (B.48)

Like the proofs in Chan, Li, Peng and Zhang (2013[63]), we can show that

√
n(α̂− α0)

=
√
n(ω̂ − ω0)κ−1

0 E
[√b0(α0|a0 +

√
b0ε2|α0−1sgn(a0 +

√
b0ε2))ε2

2(ω0 + b0Y 2
1 )

]
+
√
n(â− a0)κ−1

0 E
[
(α0|a0 +

√
b0ε2|α0−1sgn(a0 +

√
b0ε2))

( √
b0Y1√

ω0 + b0Y 2
1

− 1
)]

+
√
n(b̂− b0)κ−1

0 E
[
(α0|a0 +

√
b0ε2|α0−1sgn(a0 +

√
b0ε2))[

√
b0ε2Y

2
1

2(ω0 + b0Y 2
1 )
− ε2

2
√
b0

]
]

− 1

κ0

√
n

n∑
t=1

(|a0 +
√
b0εt|α0 − E|a0 +

√
b0ε1|α0) + op(1), (B.49)

where κ0 = E(|a0 +
√
b0ε1|α0 log |a0 +

√
b0ε1|). Thus, Theorem 7 follows from (B.48), (B.49)

and the CLT for martingales.
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Lemma 10. Under conditions of Theorem 2.3, we have, as n→∞

(a) sup
θ∈Θ
|| 1
n

n∑
t=1

Xt(θ, α0)XT
t (θ, α0)− E{X1(θ0, α0)XT

1 (θ0, α0)}|| = op(1);

(b)
1√
n

n∑
t=1

Xt(θ0, α0)
d−→ N

(
0,E{X1(θ0, α0)XT

1 (θ0, α0)}
)
.

Proof. Conclusion (a) can be proved in a way similar to the proof of Lemma 5.3.

Conclusion (b) follows from the CLT for martingales by noting that

Xt(θ0, α0) =
(
|a0 +

√
b0εt|α0 − 1, −sgn(ε2t−1)

1+Y 2
t−1

,

−
2(ω0 + b0Y

2
t−1)

1
2Yt−1sgn(ε2

t − 1)εt
1 + Y 2

t−1

,
Y 2
t−1sgn(ε2

t − 1)

1 + Y 2
t−1

)T
is a martingale difference sequence.

Lemma 11. Under conditions of Theorem 7,

sup
θ∈Θ

∥∥∥ 1√
n

n∑
t=1

{ [
sgn
(
ε2
t (ω, a, b)

)
− sgn

(
ε2
t − 1

)]
H(t, θ)

+2(θ − θ0)Tfε21(1)H(t, θ0)HT (t, θ0)
}∥∥∥ = op(1),

where fε21(·) denotes the density of ε2
1.

Proof. This lemma can be proved in a way similar to the proof of Lemma 5.3, hence we omit

the details.

Proof of Theorem 2.4. Theorem 2.4 can be shown similar to the proof of Theorem 2.2 by

using Lemmas 5.5 and 5.6.
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