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CREB BINDING PROTEIN EXERTS TRANSCRIPTIONAL AND POST-TRANSLATIONAL 

REGULATORY EFFECTS ON DENDRITIC ARBORIZATION IN DROSOPHILA SENSORY 

NEURONS 

 

by 

 

SARAH CLARK 

 

Under the Direction of Daniel N. Cox, PhD 

 

ABSTRACT 

The Drosophila ortholog of CREB Binding Protein (dCBP) has been implicated in the 

pruning of sensory neuron dendrites and recent studies demonstrate that nuclear polyglutamate-

induced dendritic pathologies occur, in part, by inhibiting Golgi outpost formation via a CBP-

CrebA-COPII regulatory mechanism. Despite these advances, the role of dCBP in modulating 

dendritic development is incompletely understood. Here, we identify dCBP as a novel regulator 

of dendritic development that modulates the localization of Dar1, a protein known to affect 

dendritic growth via regulation of the microtubule severing protein Spastin and components of 

the Dynein complex. We discovered that dCBP is required for proper proximal-distal branch 

order distribution, with loss of function resulting in an aberrant reduction in terminal branching 

in favor of a shift towards proximal interstitial branching. Conversely, dCBP overexpression 

severely inhibits higher order dendritic branching in Class IV (CIV) md sensory neurons. 

Detailed structure-function studies using domain-specific deletions of dCBP provide further 



insights into the specific roles of different protein domains in mediating distinct aspects of 

dendritic growth. Analyses of domain-specific deletions implicate the N-terminal region (ΔNZK) 

in regulating the mutant phenotype, whereas expression of a deletion of the C-terminal region 

(ΔQ) phenocopies the overexpression phenotype. To characterize dCBP-mediated transcriptional 

mechanisms driving dendrite arborization, we conducted RNAseq analyses focusing on those 

genes that fail to be transcriptionally regulated by the ΔNZK deletion. These analyses reveal a 

primary role for dCBP in transcriptional repression. Enriched gene clusters included 

phosphorylation, ubiquitination, microtubule-based processes, protein modification processes, 

cytoskeletal organization, and cell morphogenesis. To characterize these putative regulatory 

targets, we simultaneously expressed the ΔNZK deletion construct in combination with gene-

specific knockdown. These analyses revealed that disruptions of Arp53D, CG12620, CG31391, 

CG16716, and α-actinin 3 partially rescue aspects of morphological defects that are caused by 

expression of the ΔNZK construct. Combined with cytoskeletal imaging, our results suggest that 

dCBP function includes transcriptional repression of genes that may otherwise over-stabilize 

both actin and microtubule components thereby contributing to cytoskeletal dynamics required 

for dendritic growth. Collectively, these analyses identified transcriptional and post-translational 

regulatory mechanisms by which dCBP functions to direct the specification of distinct neuronal 

morphologies. 
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1 

1 INTRODUCTION  

1.1 Dendritic development and neurological disease  

Cognition and behavior emerge from circuits of neurons in the brain. Therefore, 

comprehension of neural architecture is a necessary step towards understanding computation in 

the nervous system (Chiang et al. 2011, Helmstaedter and Mitra 2012). Two distinct tree-shaped 

neuronal structures, differing in both structure and function, are responsible for wiring the 

circuitry: dendrites and axons. Dendrites receive, integrate, transform, and propagate to the soma 

signals from other neurons, thus largely defining the computational properties of a neuron. In 

contrast, axons transmit signals to other neurons, often spanning long distances to connect the 

network.  Dendritic arbors remain plastic to a certain extent even after reaching a steady mature 

shape, and continuously adjust their existing structure (Lefebvre and Sanes, 2015). However, 

overall stability of mature dendrites is necessary for proper functioning of mature circuits and 

destabilizing dendritic morphology may cause neurodegeneration and functional impairment. 

Neuronal cell types are often defined by the morphology of their dendritic arbors (e.g. stellate 

cells, pyramidal cells) and defects in dendritic morphology are highly correlated with an 

assortment of developmental and neurological disorders. In sensory neurons, dendritic atrophy 

can result in an animal’s failure to perceive a dangerous stimulus (Honjo et al. 2016), whereas 

dendritic hypertrophy could result in exaggerated responses to benign stimuli. Thus, the animal 

must have genetic programs in place to ensure that each neuron will achieve an appropriate level 

of dendritic complexity and be responsive to activity-dependent cues that allow for dendritic 

dynamics, such as occurs in dendritic spines during learning and memory.   

Elucidating the molecular genetic mechanisms by which multiple local interactions of 

cytoskeleton elements direct the growth of dendrite arbors has direct clinical relevance because 
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disrupted arbor development is a common feature in a diverse variety of neuropathological 

disease states, including Down, Rett, and Fragile X Syndromes; autism; Alzheimer’s, 

Parkinson’s, and Huntington’s diseases; schizophrenia, and Duchenne/Becker muscular 

dystrophies (Belmonte et al.  2004, Anderton et al. 1998, Sheetz et al. 1998, Dickson et al. 1999, 

Jagadha and Becker 1988, Fiala et al. 2002, Kaufmann and Moser 2000, Ramocki and Zoghbi 

2008, Kulkarni and Firestein 2012), in all of which strong neuroanatomical correlations exist 

between dendritic abnormalities and cognitive impairments.  Learning to manipulate arbor 

growth mechanisms will be important to the development of neuro-regenerative strategies.  

Dendrites are the chief site of signal input into a neuron, receiving up to tens of thousands of 

inputs on each arbor.  In addition, correct dendrite arbor and spine morphologies are central to 

the proper establishment of synapses, and in turn, neuronal circuits. Thus, achieving an 

understanding of the regulatory mechanisms governing dendritic development will aid in 

understanding the cellular and molecular bases of pathologies underlying human neurological 

disease. 

 

1.2 Drosophila melanogaster as a model system for elucidating molecular control of 

dendritogenesis 

Research in Drosophila has yielded significant insight into the cellular and molecular 

processes driving cell-type specific dendritogenesis and neural circuit construction (Jan and Jan 

2010, Santiago and Bashaw 2014, Couton et al. 2015, Lefebvre et al. 2015, Nanda et al. 2017).  

Here, we focus on one of the most widely studied models for investigating dendritic 

development in the fruit fly, namely the multidendritic (md) sensory neurons of the peripheral 

nervous system.  Drosophila md neurons constitute an attractive model to investigate the 
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molecular mechanisms underlying the regulation of dendritic morphology and sensory behavior 

for several reasons: 1) powerful genetic tools are available in the fruit fly for investigating gene 

function; 2) the dendritic arbor lies immediately below a translucent, thin larval epithelium 

facilitating in vivo live cell and time-lapse imaging; 3) the class-specific diversity in tree 

morphology within this group of neurons facilitates comparative analyses of the key elements 

controlling the acquisition and maintenance of cell-type specific dendritic arborization and the 

promotion of dendritic diversity; and 4) distinct md neuron subclasses regulate a range of 

somatosensory behaviors, facilitating analyses of dendritic form and function.  Morphological 

phenomena including dendritic growth, branching, scaling, tiling, and remodeling have all been 

characterized using md neurons (reviewed in Jan and Jan 2010, Singhania and Grueber 2014, 

Tavosanis 2014, Nanda et al. 2017).  These md neurons are grouped into four distinct 

morphological classes (Class I-IV) based on increasing complexity of their dendritic arbors 

(Grueber et al. 2002) (Fig. 1.1). 

(A) Schematic of the distribution of PNS sensory neurons for an individual hemisegment; type I 

mono-dendritic neurons include external sensory neurons (yellow circles) and chordotonal 

stretch receptor neurons (teal bars); type II multidendritic (md) sensory neurons include bipolar 

Figure 1.1 Drosophila md sensory neurons. 
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neurons and tracheal dendrite neurons (green triangles) as well as md sensory neurons (class I-

IV) (red diamonds). (B) Representative images of md neuron dendritic morphologies by class, 

together with known behavioral functions and GAL4 drivers that mediate class-specific 

expression.  Panel (A) adapted from Grueber et al. (2002). Panel (B) adapted from Turner et al. 

(2016). 

 

Studies over the past fifteen years have revealed numerous genetic and cellular programs 

that govern cell type-specific dendrite development including transcriptional regulation, intrinsic 

and extrinsic cell signaling pathways, secretory and endocytic pathway function, cytoskeletal 

modulation, cell adhesion, RNA targeting and local translation, chromatin remodeling, and 

activity-dependent modulation of dendritic arborization.  Moreover, approximately half of the 

proteins produced by the fly genome have mammalian homologs and three-fourths of known 

human disease genes have a Drosophila ortholog (Reiter et al. 2001). The ease with which 

specific mutations can be generated and tracked makes Drosophila an efficient and effective 

model for many human diseases and disorders, including Parkinson’s disease, Huntington’s 

disease, Alzheimer’s disease, seizure disorders, sleep disturbances, and mental retardation 

(Bellen et al. 2010). 

 

1.3 Transcriptional regulation of dendritic morphology 

Cell type-specific dendritic morphologies emerge via complex growth mechanisms 

modulated by intrinsic signaling involving transcription factors (TFs) that mediate neuronal 

identity as well as functional and morphological properties of the neuron subtype (Jan and Jan 

2010; Lefebvre et al. 2015; Nanda et al. 2017).  Moreover, dendrite development is modulated 

by extrinsic signaling, influenced by external factors such as peripheral glial cells (Yamamoto et 

al. 2006), and coupled with activity-dependent regulation (Jan and Jan 2010; Tavosanis 2014).  

Combined, these processes converge on a broad spectrum of cellular pathways, including 
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pathways that regulate the cytoskeleton, to direct cell type-specific dendritic arbor development, 

stabilize mature architecture, and facilitate structural plasticity.   

TFs have been demonstrated to exert their effects on dendrite morphogenesis by several 

different mechanisms.  TFs are used by neurons to fine-tune the level of expression of many 

genes.  Distinct cell fates and morphologies can be achieved by the presence or absence of a TF, 

by varying the levels of an individual TF, or by a combinatorial mechanism of action that can 

involve many TFs (Santiago and Bashaw 2014, Puram and Bonni 2013, Jan and Jan 2010) (Fig. 

1.2 B).  Transcriptional control facilitates fine-tuning of gene expression levels, which ultimately 

contributes to the protein complement that an individual neuronal subtype expresses, thereby 

dictating neuronal form and function. Furthermore, recent evidence reveals that TFs involved in 

cell fate specification may also exhibit independent post-mitotic roles in directing cell-type 

specific neural differentiation, e.g. dendrite morphogenesis (Iyer et al. 2013a, de la Torre-Ubieta 

and Bonni 2011). 
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(A) Shown at top are representative tracings of dendritic architecture among class I-IV 

Drosophila md sensory neurons.  Shown below are known transcriptional regulatory programs 

that operate in individual md neuron subclasses to mediate class-specific dendritogenesis. 

Arrows indicate transcriptional activation, whereas bars represent transcriptional repression. (B) 

Summary of transcription factor protein expression levels and differential expression by da 

neuron subclass. Adapted from Nanda et al. (2017). 

 

Comprehensive studies in Drosophila md sensory neurons have provided substantial 

insight into individual and combinatorial roles for TFs in driving class-specific dendritogenesis 

(Hattori et al. 2007, Jinushi-Nakao et al. 2007, Kim et al. 2006, Moore et al. 2002, Sugimura et 

al. 2004, Sulkowski et al. 2011, Ye et al. 2011, Grueber et al. 2003, Crozatier and Vincent 2008, 

Li et al. 2004, Iyer et al. 2013a,  Iyer et al. 2013b, Das et al. 2017), however the molecular 

Figure 1.2 Transcriptional regulation of md sensory neuron dendritic architecture. 
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mechanisms by which these TFs govern arbor development and dynamics remains incompletely 

understood (Santiago and Bashaw 2014).  An ensemble of TFs, including Cut, Abrupt, Knot 

(also known as Collier), and Lola (Fig. 1.2), are required as major regulators of cell type-specific 

md sensory neuron dendritic morphogenesis, and although recent studies have begun to link cell 

type-specific TF activity to cytoskeletal regulation and other pathways (Ferreira et al. 2014, 

Hattori et al. 2013, Iyer et al. 2012, Iyer et al. 2013b, Jinushi-Nakao et al. 2007, Nagel et al. 

2012, Ye et al. 2011, Das et al. 2017), much remains unknown regarding the molecular 

mechanisms by which TFs direct final arbor shape.  A summary of the current state of 

knowledge regarding the expressivity and mechanisms by which these TFs regulate differential 

patterns of dendrite arborization is depicted in Fig. 1.2 A.  

TF regulation of dendritic morphology is not unique to Drosophila, but rather is a 

conserved mechanism observed across metazoans from C. elegans to H. sapiens. For example, 

Neurogenin 2 has a crucial role in the specification of dendrite morphology of pyramidal neurons 

in the neocortex: it promotes the outgrowth of a polarized leading process during the initiation of 

radial migration (Hand et al. 2005). Studies in C. elegans have revealed that UNC-86 controls 

dendritic outgrowth and cell identity in PVD nociceptive sensory neurons (Smith et al. 2010). 

Furthermore, in the zebrafish Rohon-Beard (RB) spinal sensory neurons, the LIM homeodomain 

transcription factor regulates the ability of microtubules to invade filopodia and mediates 

interactions between the microtubule and actin cytoskeleton, thus affecting several cell motility 

processes during RB morphogenesis (Andersen et al. 2011).  

  



8 

1.4 Post-translational regulation of dendritic morphology  

Beyond transcriptional regulation of gene expression, gene product activity can also be 

modulated indirectly by activation or inactivation of the protein product via post-translational 

modifications or by changes in subcellular localization.  For example, the homeodomain 

transcription factor Cut normally is not expressed in class I md neurons. Ectopic expression of 

Cut leads to a conversion of dendritic morphology such that the arbor takes on morphological 

characteristics of class III md neurons, which normally express Cut at high levels (Grueber et al., 

2003).  Protein-protein interactions have likewise been shown to regulate dendritic architecture 

(e.g. dendritic spines). Many neuronal proteins are in a state of near-constant flux, undergoing 

different post-translational modifications and associating and disassociating with other proteins 

in order to carry out the many tasks required for healthy neuronal functioning. For example, the 

protein spinophilin is known to bind directly to and stabilize actin filaments in a manner 

dependent upon its phosphorylation state (Feng et al. 2000). Additionally, spinophilin binds 

directly to protein phosphatase-1, which has been shown to dephosphorylate actin filaments 

(Feng et al. 2000). Thus, a single protein can function either to stabilize or destabilize the 

dendritic actin cytoskeleton depending upon its interactions with other proteins.  

 

1.5 Mammalian CREB binding protein 

CREB binding protein (CBP) is a large multi-domain protein (265 kDa) that is highly 

conserved across species.  Mutations in CBP in humans have been causally linked to the 

development of Rubinstein-Taybi syndrome (Kumar et al. 2004), a rare autosomal dominant 

disorder that manifests with moderate to severe forms of intellectual disability (Petrij et al. 

1995).  CBP contains a nuclear hormone receptor (NHR) binding domain, a KIX domain (where 
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CREB binds), a bromodomain (which binds to acetylated lysine residues), four zinc finger 

domains, a histone acetyltransferase (HAT) domain, and a glutamine-rich domain. The CBP 

HAT domain functions in epigenetic modification via acetylation of histones and other proteins, 

is capable of auto-acetylation, and has been linked to neurogenesis (Chatterjee et al. 2013). The 

NHR domain binds to nuclear hormone receptors and promotes CBP function as an integrator of 

multiple signal transduction pathways within the nucleus (Kamei et al. 1996), whereas the zinc 

finger protein domains function in DNA recognition, lipid binding, and transcriptional 

activation/regulation (Laity et al. 2001). 

CBP has been shown to interact with well over 70 other proteins, including many other 

transcription factors, e.g. cAMP response element binding protein (CREB) (reviewed in Vo and 

Goodman 2001).  CBP functions as a transcriptional co-regulator of RNA polymerase II-

mediated gene expression, thus integrating transcriptional responses via a variety of signal 

transduction pathways including Wnt and NF-B (Li et al. 2007, Mukherjee et al. 2013) (Fig. 

1.3).  
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Depiction of a CBP-containing complex involved in RNA Polymerase II-catalyzed transcription 

(from Tata 2002).  

 

CBP was originally isolated and described as a nuclear protein that binds to CREB to 

facilitate cAMP-regulated gene expression (Chrivia et al. 1993), but many other functions have 

since been described.  Phosphorylation of CREB recruits CBP or its paralog p300, thereby 

increasing CREB transcriptional activity (Cortés-Mendoza et al. 2013).  CBP has been 

implicated in the maintenance of circadian rhythms, the proliferation and survival of cancer cells, 

axon growth and regeneration, and adult neurogenesis. It is a requisite coactivator for the 

transcriptional activation of genes responsible for circadian rhythms, and its abnormal 

Figure 1.3 Mammalian CREB binding protein. 
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degradation has in fact been implicated in the disruption of circadian rhythms that occur in 

Alzheimer’s disease (Song et al. 2015). CBP is expressed at abnormally high levels in many 

types of cancerous tumors, and drug-mediated inhibition of CBP’s HAT activity has been shown 

to inhibit cancer cell proliferation (Tang et al. 2016). CBP, along with p53, regulates the 

expression of GAP-43 and is thereby necessary for axon outgrowth (Tedeschi et al. 2009), and 

pharmacological activation of CBP has been shown to promote adult neurogenesis and increase 

the duration of spatial memory retention (Chatterjee et al. 2013). 

In vertebrates, CREB is associated with controlling neuronal activity-dependent dendritic 

development (Wayman et al. 2006, Redmond et al. 2002).  Moreover, CBP has also been shown 

to be directly involved in dendritic growth. Redmond et al. (2002) showed that calcium-

dependent dendritic growth required CBP function and that direct inhibition of CBP caused 

greater deficits than inhibition of CREB, implying that CBP has functions in dendritic growth 

that go beyond its role as a CREB-mediated transcriptional co-activator. Other CBP-interacting 

proteins may be critical to this type of dendritic growth modulation, such as CREST (calcium-

responsive transactivator). CREST is a calcium-activated transcriptional regulator that cannot 

bind to DNA directly, but regulates dendritic development through its interaction with CBP 

(Aizawa et al. 2004).  In addition, CREST physically associates with the neuron-specific BRG1-

associated factor (nBAF) complex, a chromatin remodeling complex involved in specification of 

distinct neuronal subclasses from neural progenitors (Wu et al. 2007). 

 

1.6 nejire encodes the Drosophila ortholog of CREB binding protein (dCBP) 

The Drosophila ortholog of CBP (dCBP) is encoded by the nejire gene. Drosophila 

genes are traditionally named for the phenotype that occurs with loss of function of the gene, and 



12 

nejire (nej) (Japanese for “twisted”) was originally identified as a patterning gene whose 

mutation gave embryos a twisted appearance (Akimaru et al. 1997). Nejire encodes a 340 kDa 

protein that is considerably larger than mammalian CBP. Overall, the two proteins exhibit 

approximately 33% homology but their functional domains are all evolutionarily conserved. Like 

mammalian CBP, dCBP also contains NHR, KIX, bromo, HAT and glutamine-rich domains, as 

well as four zinc finger domains. Notably, dCBP also contains a large number of polyglutamine 

(poly-Q) tracts spread throughout its structure, while in mammalian CBP there is only a single 

poly-Q tract near the C-terminus (Fig. 1.4). Poly-Q tracts are involved in stabilizing protein-

protein interactions (Schaefer et al. 2012), as well as transcriptional transactivation (Gemayel et 

al. 2015), thus it is possible that the expanded occurrence of poly-Q tracts exhibited by dCBP has 

a functionally important role in mediating protein-protein interactions with different regions of 

the molecule contributing to cell type functional specificity.  The various domains of dCBP are 

each implicated in playing important roles in signaling and transcription, however their 

respective functional roles in regulating dendrite morphology remain poorly understood. 

 

 

Figure 1.4 CBP and dCBP poly-Q tracts. 

Schematic of human and Drosophila CBP proteins. Red sections indicate the approximate size 

and positions of poly-glutamine (poly-Q) tracts. 

 

While little is known regarding the roles of dCBP in dendritic morphogenesis, a recent 

study has demonstrated that it plays an essential role in pruning sensory neuron dendrites during 
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late-stage Drosophila metamorphosis. During late larval stages a steroid hormone, ecdysone, 

starts a cascade that results in the complete collapse of md sensory neuron dendritic arbors. The 

Class IV and Class I md neurons then re-elaborate their dendritic arbors as part of the adult 

sensory nervous system, while the Class II and Class III neurons undergo apoptosis (Williams 

and Truman 2005). dCBP is required to activate an early-response gene in the ecdysone cascade, 

sox14, and without dCBP function dendrite pruning at the pupal stage does not occur (Kirilly et 

al. 2011).   

 

1.7 Summary 

The establishment and maintenance of complex dendritic arbors is of crucial importance 

to the proper function and survival of individual neurons, as well as the formation and 

modulation of neural connectivity. Numerous genes and cellular processes have been shown to 

play significant roles in dendritic development and it has been established that the dosage of 

many of these genes must be kept within a physiologically optimal range (reviewed in Copf 

2015).  Transcriptional regulation has emerged as a key cell intrinsic mechanism governing cell-

type specific dendritic development, however the molecular mechanisms by which transcription 

factors regulate this process remain largely unknown.  This dissertation aims to advance our 

understanding of regulatory processes driving dendritic development by dissecting the molecular 

mechanisms by which dCBP/Nejire, the Drosophila ortholog of CREB binding protein (CBP), 

acts as an essential regulator of dendritic morphology via its action as a transcriptional co-

activator and through protein-protein interactions. We have identified dCBP as an essential 

regulator of the subcellular localization of Dar1 in CIV md neurons in later larval stages and 

characterized the effects of knockdown and overexpression of dCBP as well as the expression of 
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various dCBP structure-function mutants on the localization of Dar1 as well as their effects on 

dendritic morphology. Furthermore, we have utilized cell type-specific RNA sequencing 

combined with a phenotypic suppression screen to identify a number of putative transcriptional 

targets of dCBP that influence dendritic morphology and characterized the ways in which these 

targets might alter the morphological characteristics of CIV md neurons via cytoskeletal 

regulation. Taken together, these analyses reveal that dCBP executes multiple functions 

including utilizing transcriptional and post-translational mechanisms to direct dendritic 

development. In addition to expanding our understanding of molecular control of dendrite 

morphogenesis, the identification and characterization of downstream targets of dCBP-mediated 

regulation of dendritic morphology may inform future therapeutic intervention strategies 

designed to target CBP-mediated disease etiologies.  
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2 DCBP IS REQUIRED FOR SENSORY NEURON DENDRITIC DEVELOPMENT 

AND REGULATES THE SUBCELLULAR LOCALIZATION OF THE 

TRANSCRIPTION FACTOR DAR1 

2.1 Scientific Premise 

Genetic and molecular studies have demonstrated that the acquisition of cell-type specific 

dendritic morphologies is subject to regulation by complex programs involving intrinsic factors 

and extrinsic cues (Jan and Jan 2010, Lefebvre et al. 2015). Many of these factors are part of or 

activate signaling pathways that converge on transcription factors, which modulate gene 

expression to support both growth and dynamics of dendritic development. Among the key 

targets of transcriptional regulation are cytoskeletal effector molecules, which modulate cell 

type-specific dendritic architectures by regulating the assembly, disassembly, and reorganization 

of the actin and microtubule (MT) based cytoskeletons.  These cytoskeletal elements form the 

scaffold around which cell shape is built and the tracks along which intracellular components are 

transported (Rodriguez et al. 2003).  While class-specific TF activity has been linked to 

cytoskeletal regulation (Jinushi-Nakao et al. 2007, Iyer et al. 2012, Ye et al. 2011, Nagel et al. 

2012, Das et al. 2017), much remains unknown regarding the molecular mechanisms by which 

TFs direct final arbor shape through spatio-temporal modulation of cytoskeletal dynamics, as 

well as other key cellular processes such as the secretory pathway and cellular signaling 

pathways (Santiago and Bashaw 2014). 

We conducted a neurogenomic analysis of CIV md neurons coupled with a functional 

genetic screen to identify potential transcription factors that exert control on class-specific 

dendrite morphogenesis (Iyer et al. 2013a, Cox Lab, unpublished results).  From this screen, we 

identified CG12029 as a key mediator of CIV dendrite development.  While we were conducting 
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detailed analyses of this gene, another study was published by Ye et al. (2011) that identified the 

same gene and named it dar1 (dendritic arbor reduction 1).  This study reported that dar1 

mutants displayed severe defects in dendritic, but not axonal growth, and that dar1 encodes a 

Krüppel-like transcription factor corresponding to CG12029. Consistent with this study, we 

observed haploinsufficiency phenotypes for dar1D6 heterozygotes and even more severe cell 

autonomous deficits in dendrite development of dar1D6 homozygous mutant CIV neurons (Fig. 

2.1).   

Dar1 is required to promote CIV dendritic complexity, which is sensitive to the absolute levels of 

Dar1 protein expression. 

 

The study by Ye et al. (2011) asserts that Dar1 regulates dendritic development by 

suppressing the expression of the microtubule-severing protein Spastin, indicative of a role in 

mediating microtubule-based dendritic growth as no defects were observed in actin-based 

dendritic structures.  Limitations of the previous study include that the analyses presented treat 

embryonic and larval data interchangeably, and the study does not examine factors other than 

Spastin that may be involved in Dar1-mediated dendritogenesis.  Moreover, using independently 

developed Dar1 full-length overexpression transgenes and polyclonal antibodies, we discovered 

clear differences from what was previously published, in part due to the focus on embryonic 

Figure 2.1 Dar1 mutation and overexpression phenotypes. 
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development in Ye et al. (2011).  Interestingly, we observed that Dar1 overexpression in CIV 

neurons causes a change in branching morphology from controls with an increase in short 

interstitial branches, but a loss of the more complex, higher order branching typical of CIV 

neurons (Fig. 2.1).  

These findings are in sharp contrast to the previous study reporting that Dar1 

overexpression led to dendritic overgrowth in CIV neurons (Ye et al. 2011).  In both studies, a 

full length Dar1 cDNA was cloned into a pUAST vector and independent transformant lines 

were produced.  As such, the basis for the phenotypic differences observed between studies with 

respect to dendritic development upon Dar1 overexpression are unclear, but could potentially be 

due to position effect variegation which can impact the level of expressivity for different UAS-

dar1 transgene insertions.  With respect to Dar1 protein expression, the study by Ye et al. (2011) 

reported that Dar1 is localized to the nucleus “in all cells that express Dar1”, however the data 

upon which this assertion is based was collected exclusively from late-stage embryos.  

Consistent with the previous study, IHC analyses revealed that Dar1 is localized to the nucleus of 

all md neuron subclasses at the late embryonic stage of development (Ye et al. 2011, Cox Lab, 

unpublished results). However, as development proceeds to the third instar larval stage Dar1 

protein is differentially localized, remaining primarily nuclear in class I-III neurons but shifting 

to a largely cytoplasmic localization in the highly complex CIV neurons, indicative of a cell 

type-dependent localization pattern (Fig. 2.2 A).  We confirmed the specificity of the Dar1 

antibody by staining dar1f01014 mutants which revealed virtually no detectable immunostaining 

(Fig. 2.2 B).  These distinct discoveries suggest that the localization of Dar1 may play an 

important functional role in mediating class-specific dendritogenesis and promoting dendritic 

diversity, however it is unknown how this differential subcellular localization may be regulated. 
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Therefore, we sought to investigate the molecular mechanisms underlying this cell type-

dependent Dar1 localization by conducting an RNAi-based knockdown screen of putative Dar1-

interacting molecules at the third instar larval stage.  From this pilot screen we identified several 

putative interactors that disrupt dendritic morphology in similar ways to dar1 mutants as well as 

alter the subcellular localization of Dar1 in CIV neurons.  One of these putative interactors was 

dCBP, which we chose to investigate in more depth based on evidence from the vertebrate 

literature where the Dar1 ortholog, known as Krüppel-like factor 5 (KLF5), has been 

demonstrated to physically interact with the dCBP ortholog CBP in order to enhance KLF5 

transactivation function (Zhang and Teng 2003).    
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(A) In third instar larvae, Dar1 remains highly nuclear in Class I-III md neurons but shifts to a 

more cytoplasmic localization in Class IV md neurons. (B) Severely reduced immunostaining in 

dar1f01014 mutant larvae demonstrates antibody specificity. 

 

 

Figure 2.2 Dar1 immunostaining in WT and mutant larvae. 
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2.2 Results 

2.2.1 dCBP regulates dendritic growth and branching complexity 

To characterize the potential roles of dCBP in regulating dendritogenesis, we conducted 

phenotypic analyses of dCBP loss-of-function (LOF) and gain-of-function (GOF) in CIV md 

neurons.  LOF studies include dCBP RNAi knockdown, while GOF studies include class-

specific full-length overexpression of dCBP.  CIV-specific RNAi knockdown for dCBP results 

in a phenotype that is markedly similar to the Dar1 overexpression phenotype (Fig. 2.1), 

characterized by a shift in morphology favoring clustered interstitial dendritic branching and 

stripped dendritic terminals, leading to an overall reduction in the total dendritic length 

(p<0.0001), the number of terminal branches (p=0.0001), and the total number of branches 

(p<0.0001) (Fig. 2.3 B, D-F).  The efficacy of the dCBPRNAi was confirmed by IHC analyses of 

dCBP protein expression following CIV-specific knockdown revealing a clear reduction in 

protein levels (Fig. 2.3 B (inset), G), while overexpression results in a notable increase in dCBP 

protein levels (Fig. 2.3 C (inset), G).  In contrast to the dendritic phenotype observed with 

dCBPRNAi, CIV-specific dCBP overexpression causes a loss of most higher order branches (Fig. 

2.3 C, E, H). Notably, neither of these changes to dCBP expression cause any significant 

changes to the number of first through fourth order branches (Fig. 2.3 B, C, H) (see Table S2 for 

specific p-values). Collectively, these analyses demonstrate that CIV dendritic development is 

sensitive to absolute dCBP protein levels. 
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CIV-specific phenotypic comparisons of dCBP-IR and dCBP overexpression.  Insets in (A-C) 

show dCBP protein expression pattern. (D-F) Quantitative morphometric analyses. (G) 

Quantification of dCBP protein signal percent change from WT in dCBP-IR and dCBP 

overexpression. (H, I) Quantification of branch orders (dCBP overexpression does not reach 6th 

order dendrites). ***=p<0.001; NS=not significant. 

 

 

2.2.2 dCBP and Dar1 exhibit differential cell type-specific subcellular localization in md 

neuron classes 

To explore the potential interaction of dCBP and Dar1, we used LOF and GOF genetic 

analyses via RNAi and overexpression of full-length proteins for both dCBP and Dar1. We made 

Figure 2.3 dCBP regulates dendritic growth and branching complexity. 
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comparisons between Class I and IV md neurons using neurometric analyses to quantify and 

describe changes in dendritic complexity and patterns, as well as IHC analyses to quantify and 

describe changes in the amounts and subcellular distribution of one protein in response to 

disruption of the normal expression of the other.  We found that there are substantial differences 

in subcellular localization of Dar1 between CI and CIV md neurons at the third instar larval stage 

(Fig. 2.4 C, F, J), in contrast to previous reports (Ye et al. 2011).  We established that in the 

morphologically simple CI neurons Dar1 is highly localized to the nucleus (Fig. 2.4 C, J) in 

comparison to the morphologically complex CIV neurons (p<0.0001), which show more 

cytoplasmic localization (Fig. 2.4 F, J). dCBP follows a similar pattern of localization, with a 

larger proportion of the protein localized to the nucleus in the CI neurons (Fig. 2.4 B, E, I) 

(p<0.0001), however dCBP is also differentially expressed, with stronger expression in CI 

neurons relative to CIV (Fig. 2.4 G) (p=0.0002) while Dar1 is expressed at similar levels 

between the two classes (Fig. 2.4 H) (p=0.6586). 
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(A-F) Representative images of wild-type dorsal md neurons showing dCBP (B, E) and Dar1 (C, 

F) protein localization in the morphologically simple CI md neurons (A-C) and the complex CIV 

md neurons (D-F). (G, H) Quantification of the total amounts of dCBP and Dar1 proteins present 

in CI and CIV neurons. (I, J) Quantification of the percentage of dCBP and Dar1 proteins 

localized to the nucleus in CI vs. CIV neurons. ***=p<0.001, NS=not significant. HRP labels all 

md sensory neurons. 

 

Figure 2.4 dCBP and Dar1 exhibit differential subcellular localization in md neuron 

subclasses. 
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2.2.3 dCBP regulates Dar1 subcellular localization and has Dar1-independent effects on 

dendritic morphology 

We next asked whether dCBP could be involved in regulating the subcellular localization 

of Dar1. IHC analyses revealed that when dCBP is knocked down in CIV neurons, total Dar1 

levels are not significantly changed relative to controls (p=0.7006) but the protein fails to 

maintain its normal cytoplasmic localization (p<0.0001) (Fig. 2.5 A-E), strongly supporting the 

hypothesis that dCBP is required to maintain the cytoplasmic localization of Dar1 in CIV 

neurons and that this change in subcellular Dar1 localization may be important in mediating the 

CIV morphological change.  This interpretation is further supported by the observation that with 

Dar1 overexpression in CIV neurons, the Dar1 protein exhibits increased nuclear localization, 

consistent with what is observed with dCBP knockdown (Fig. 2.5 B, C).  In fact, morphological 

comparison via Sholl analysis reveals a near phenocopy of dendritic defects between CIV-

specific dCBP knockdown and CIV-specific Dar1 overexpression, given that both the maximum 

radius and the radius at which the maximum number of intersections occur for dCBP knockdown 

and Dar1 overexpression are significantly decreased from control neurons but do not differ from 

each other (Fig. 2.5 F-H) (see Table S2 for specific p-values).  
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 (A-C) Representative CIV images, with insets documenting effects of dCBP-IR knockdown or 

UAS-dar1 overexpression on Dar1 expression and subcellular localization. (D, E) Quantitative 

analyses of total Dar1 levels and percent of total Dar1 in the nucleus. (F-H) Quantitative Sholl 

analyses of dCBP RNAi vs. Dar1 overexpression. **=p<0.01; ***=p<0.001, NS=not significant. 

 

We next asked whether Dar1 may have reciprocal regulatory effects on dCBP expression 

or subcellular localization. Dar1 overexpression experiments revealed a significant increase in 

the amount of dCBP present in the cell (p<0.0001), and both Dar1 and dCBP become highly 

nuclear (Fig. 2.6 H, I, K, M). This suggests that nuclear Dar1 may be sequestering dCBP in the 

nucleus and that this effect may be contributing to a morphological change.  In contrast, 

overexpression of dCBP, although it creates a drastically altered morphological phenotype (see 

Figure 2.5 dCBP regulates Dar1 subcellular localization. 
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Fig. 2.3 C), does not change the level of expression (p=0.1028) or the subcellular localization 

(p=0.1998) of Dar1 (Fig. 2.6 F, J, L). This suggests that in addition to maintaining the 

cytoplasmic localization of Dar1 in CIV md neurons, dCBP regulates dendritic morphology via a 

Dar1-independent mechanism. 
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 (A-I) IHC analysis of Dar1 and dCBP expression patterns in neurons overexpressing dCBP or 

Dar1. Representative images of WT (A-C), UAS-dCBP (D-F), and UAS-dar1 (G-I) Class IV md 

neurons triple labeled with HRP, anti-dCBP, and anti-Dar1. (J-M) Quantification of Dar1 and 

dCBP fluorescence intensities and percent of signal in the nucleus. ***=p<0.001; NS= not 

significant.  

Figure 2.6 Dar1 overexpression promotes nuclear localization of both 

Dar1 and dCBP. 
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2.2.4 dCBP-mediated modulation of Dar1 localization is essential for proper dendrite 

morphogenesis 

To characterize the potential molecular mechanisms by which dCBP and Dar1 may 

interact to direct cell type-specific dendritic morphogenesis and to further characterize the role of 

dCBP in this process, we conducted dCBP structure-function phenotypic analyses.  CIV-driven 

expression of dCBP structure-function mutations (∆dCBP) was used to explore the putative 

mechanistic requirements for dCBP protein domains in modulating CIV dendritic architecture 

(Fig. 2.7 A).  The KIX, ΔBHQ, ΔHQ, ΔQ, and ΔNZK structure-function mutations are believed 

to exert their effects by competitive inhibition of native dCBP (Kumar et al. 2004), while the ΔH 

mutant has an inactivated histone acetyltransferase (HAT) domain.  
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 (A) Schematic (adapted from Kumar et al. 2004) mapping the domains of the dCBP protein 

(relative positions and sizes) and the structure-function mutant transgenes used in our 

experiments. (B-I) Representative images of CIV neurons expressing the various dCBP 

structure-function mutant transgenes.   

 

We paired phenotypic analyses (Figs. 2.7, 2.8) with IHC studies (Fig. 2.9) to investigate 

which domains of dCBP may mediate its interaction with Dar1.  Mammalian CBP physically 

interacts with KLF5, the closest mammalian ortholog of Dar1, at the N-terminus of both proteins 

(Zhang and Teng 2003). Based on this, we predicted that the ∆BHQ, ∆HQ, and ∆Q constructs 

would interact normally with Dar1, while the ∆NZK and KIX constructs would be unable to 

interact with Dar1 due to N-terminal truncation.  Our analyses revealed that expression of the 

Figure 2.7 dCBP structure-function mutations. 



30 

KIX domain alone had no significant effect on CIV dendritogenesis, suggesting that dCBP’s 

regulatory control of CIV dendritic complexity is likely independent of its CREB-binding 

function (Figs. 2.7 C, 2.8 A-E).  Moreover, KIX construct expression causes no change in the 

percentage of Dar1 present in the nucleus (Fig. 2.9 A).  Expression of the ∆NZK construct 

causes no change in Dar1 nuclear localization (Fig. 2.9 B), but shows a reduction in dendritic 

field coverage (Fig. 2.8 D) and a branching pattern exhibiting short, clustered dendritic filopodia 

(Fig. 2.7 G), similar in appearance to a CIII md neuron (note that the dCBP antibody used in Fig. 

13 does not recognize the KIX or ∆NZK constructs, so the dCBP signal for both of these only 

accounts for native dCBP protein).  In contrast, the ∆BHQ and ∆Q constructs both show a 

significant increase in both dCBP (ΔBHQ p=0.0009, ΔQ p<0.0001) and Dar1 (ΔBHQ p=0.0008, 

ΔQ p<0.0001) localization in the nucleus (Fig. 2.9 C, E), while ΔHQ shows a modest but 

significant increase in dCBP nuclear localization (p=0.0408) and an increase in Dar1 nuclear 

localization that approaches significance (p=0.0652) along with reductions of varying severity in 

higher order branching and field coverage (Fig. 2.8 A-E). We also found that expression of a 

dCBP transgene which has an inactivated HAT domain (∆H) caused reduced dendritic growth 

and branching, suggesting that HAT domain function is required for normal CIV dendritogenesis 

(Fig. 2.8 A-E).  In the case of the ∆Q construct and expression of the UAS-inducible dCBPS-20 

insertion, the dendritic arbor is severely reduced down to major and intermediate (1st through 4th 

order) branches only (Figs. 2.7 H, I, 2.8 E), which is consistent with the effects observed with 

full-length dCBP overexpression (Fig. 2.2 C).    
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 (A-E) Morphological quantification of CIV neurons expressing the various dCBP structure-

function mutant transgenes. dCBP-ΔQ and dCBPS-20 do not have branches beyond 4th order. 

*=p<0.05; ***=p<0.01; ***=p<0.001; NS=not significant. 

 

  

Figure 2.8 Dendritic morphology of dCBP structure-function mutant neurons. 
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 (A-E) The first three columns show representative IHC images of dorsal CIV md neurons 

stained with HRP, anti-dCBP, and anti-Dar1 (as labeled). The last column shows IHC analysis of 

percent localization of Dar1 and dCBP in CIV md neurons for each of the domain deletions. 

*=p<0.05; ***=p<0.001; NS=not significant. 

 

Figure 2.9 dCBP-mediated modulation of Dar1 localization is essential for proper 

dendrite morphogenesis. 
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Collectively, these data suggest specific roles for different dCBP protein domains in Dar1 

and dCBP localization and reveal the contribution of dCBP domains to establishing proper 

dendritic branching and field coverage.  Furthermore, these analyses are indicative of a role for 

dCBP in the specification of dendritic morphology that is independent of its influence on the 

subcellular localization of Dar1.  

 

2.3 Materials and Methods 

 

2.3.1 Drosophila genetics  

Drosophila stocks were maintained at 25°C on standard molasses-cornmeal agar. The 

following strains were obtained from Bloomington Drosophila Stock Center: UAS-RNAi lines 

directed against dCBP (27724, 37489), UAS-dCBP, UAS-dCBPS-20 and UAS-dCBPH. 

Additional strains from other sources included the class I md reporter strain GAL4221,UAS-

mCD8::GFP; the class IV md neuron reporter strain GAL4477,UAS-mCD8::GFP; ppk1.9-

GAL4,UAS-mCD8::GFP; dar1D6 (gift from J. Kassis, NIH; Ye et al. 2011); and dar1f01014 

(Exelixis collection, Harvard).  To investigate the putative functional roles of dCBP domains, the 

following structure-function transgenes were used: UAS-dCBPNZK; UAS-dCBPQ; UAS-

CBPHQ; UAS-dCBPBHQ; and UAS-dCBP-KIX (Kumar et al. 2004).  The UAS-dar1 

transgene used in these analyses was generated by cloning the full length dar1 cDNA into a 

FLAG-tagged pUAST vector.  Transformant lines were generated by BestGene, Inc.  Detailed 

genotypes for each figure are reported in Table S1.  
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2.3.2 Immunofluorescent Labeling  

Dissection and immunofluorescent labeling of third instar larval filets was performed as 

previously described (Sulkowski et al. 2011). Primary antibodies used in this study include: 

guinea pig anti-dCBP (gift from M. Mannervik used at 1:200); rabbit anti-Dar1 (gift from J. 

Kassis, NIH used at 1:200); rabbit anti-CBP (LSBio, used at 1:100); and Dylight AffiniPure 

Goat anti-horseradish peroxidase (HRP) 488 conjugated (1:200). Secondary antibodies used 

include: donkey anti-guinea pig (1:400) (Jackson Immunoresearch) and donkey anti-rabbit 

(1:200) (Life Technologies). Filets were imaged on either a Nikon C1 Plus confocal 

microscope or a Zeiss LSM780 confocal microscope. Fluorescence intensities were quantified 

using the Measure function in Photoshop (Adobe) and were normalized to area to control for 

differences in md neuron subclass cell body size.  Identical confocal settings for laser intensity 

and other image capture parameters were applied for comparisons of control vs. experimental 

samples.   

 

2.3.3 Live Imaging Confocal Microscopy, Neuronal Reconstruction, and Morphometric 

Data Analyses  

Live neuronal imaging was performed as previously described (Iyer S et al. 2013, Iyer E 

et al. 2013).  We focused on the dorsal cluster of md neurons including C-I ddaE neurons and C-

IV ddaC neurons as morphological representatives of these md neuron subclasses. Dendritic 

morphology was quantified as previously described (Iyer E et al. 2013).  Briefly, maximum 

intensity projections of confocal Z-stacks were exported as a jpeg or TIFF. Once exported, 

images were manually curated to eliminate non-specific auto-fluorescent spots (such as the larval 
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denticle belts) using a custom designed program, Flyboys (freely available upon request). For 

total dendritic length measurements, images were processed and skeletonized in ImageJ (Iyer E 

et al. 2013, Schneider et al. 2012). Quantitative neuromorphometric information was extracted 

and compiled using custom Python algorithms. The custom Python scripts were used to compile 

the output data from the Analyze Skeleton ImageJ plugin and the compiled output data was 

imported into Excel (Microsoft). For total dendritic branches and number of terminal branches, 

images were reconstructed using NeuronStudio (Wearne et al. 2005). Branch number and order 

were then extracted using the centripetal branch labeling function and output data was compiled 

in Excel.  

 

2.3.4 Statistical Analysis and Data Availability  

Statistical analyses of neuromorphometric and IHC data and data plotting were 

performed using GraphPad Prism 7. Error bars reported in the study represent SEM.  Statistical 

analyses were performed using either two-tailed unpaired t-test with Welch’s correction or one-

way ANOVA using Dunnett’s multiple comparisons test when data sets were normally 

distributed as determined by the Shapiro-Wilk normality test. When data was not normally 

distributed, appropriate non-parametric tests were used (see Table S2 for specific tests used in 

each case).  Significance scores indicated on graphs are (*=p≤0.05, **=p≤0.01, ***=p≤0.001).  

Detailed information on statistical analyses for each figure is reported in Table S2.  
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3 DCBP UTILIZES TRANSCRIPTIONAL REPRESSION TO REGULATE CELL 

TYPE-SPECIFIC DENDRITOGENESIS VIA CYTOSKELETAL REGULATORS 

   

3.1 Scientific Premise 

The studies described in Chapter 2 establish a functional requirement for dCBP in 

directing cell type-specific dendritic arborization by regulating the subcellular localization of the 

transcription factor Dar1, but also suggested that dCBP plays a role in dendritic morphogenesis 

that is independent of its interaction with Dar1.  Phenotypic analyses revealed that knockdown of 

dCBP (dCBP-IR) (Fig. 2.5 B) and expression of the ΔNZK deletion transgene (Fig. 2.7 G) 

produce similar defects in CIV neurons, altering the dendritic arborization branching patterning 

(Fig. 2.3 D-F, H; Fig. 2.8 A-E), however dCBP-IR expression leads to a shift in Dar1 expression 

from largely cytoplasmic localization to nuclear expression relative to control (Fig. 2.5 A, B), 

whereas expression of ΔNZK does not shift Dar1 to a nuclear location and does not alter Dar1 

levels (Fig. 2.9 B). Thus, the dendritic defects observed with ΔNZK deletion suggest a role for 

other interactors in addition to Dar1 in dCBP-mediated dendritogenesis.  To that end, we sought 

to identify and characterize Dar1-independent mechanisms by which dCBP regulates cell-type 

specific dendritic development. 

To characterize dCBP-mediated transcriptional regulation in CIV neurons, we performed 

RNA sequencing (RNAseq) analyses of isolated CIV neurons expressing dCBP variants.  

Specifically, we selected the two dCBP deletion constructs that had profound effects on CIV 

dendritic arborization: the ΔQ (mimicking dCBP gain-of-function effects) and the ΔNZK 

(mimicking dCBP-IR loss-of-function effects). The Bromo, Z2, HAT, and Z3 functional domains 

are overexpressed in the cases of both the ΔQ and ΔNZK constructs (black box in Fig. 3.1), 
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while the NHR, Z1, and KIX domains are overexpressed in the case of the ΔQ construct but are 

not present in the ΔNZK construct (green box in Fig. 3.1). Therefore, differential expression of 

genes between WT control CIV neurons and ΔQ CIV neurons or between WT and ΔNZK CIV 

neurons could be due to the overexpression of any of the domains shared by the ΔQ and ΔNZK 

constructs. However, the intersection of the sets of genes differentially expressed between WT 

and the ΔNZK construct and the genes differentially expressed between the ΔNZK and ΔQ 

constructs represent genes that have failed to be regulated due to the loss of the NHR, Z1, and/or 

KIX domains in the ΔNZK construct. These genes are therefore the most likely to be implicated 

in the dendritic abnormalities associated with the ΔNZK phenotype. 

 

Wild type, ΔNZK, and ΔQ dCBP with domains shown in relative positions and sizes.  

 

Cytoskeletal effectors are common targets of the transcriptional regulation that 

contributes to class-specific dendritogenesis (Jinushi-Nakao et al. 2007; Iyer et al. 2012; Ye et al. 

2011; Nagel et al. 2012; Das et al. 2017) as cytoskeletal organization and dynamics play a 

pivotal role in driving neuronal cell shape. We therefore chose to examine the potential effects 

that the ΔNZK construct may have on F-actin and microtubule (MT) cytoarchitecture in CIV md 

neurons. When compared to the ΔQ construct, which has strong effects on both dendritic 

morphology and Dar1 localization (Fig. 2.7 H; Fig. 2.9 E), the ΔNZK construct appears similar 

Figure 3.1 dCBP schematic. 
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in its ability to enhance F-actin levels in CIV neurons but differs in that it also appears to 

enhance MT levels, whereas the ΔQ construct appears to cause disruptions in MT organization 

(Fig. 3.2 insets). Specifically, we observed that expression of the ΔNZK deletion construct leads 

to a qualitative increase in the intensities of both the F-actin and MT cytoskeletal levels, relative 

to controls.  In the case of the MT signal, the increased levels in ΔNZK may indicate a more 

stabilized or perhaps bundled MT architecture which can impact dendritic growth and branching, 

as these processes are reliant on dynamic MT properties.  In the case of the ΔQ deletion 

construct, the MT signal is notably disrupted (see arrow in Fig. 3.2 C, MT inset), whereas the F-

actin signal is increased in intensity, relative to control. This suggests that perhaps one major 

function of dCBP may be to promote MT dynamics and/or MT-mediated processes that 

contribute to normal dendritic growth and branching. Based upon these preliminary qualitative 

phenotypic assessments and our differential gene expression analyses, we chose to further 

investigate the putative transcriptional role of dCBP in directing dendritic morphogenesis and 

cytoskeletal architecture.  
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 (A-C) Wild type, ΔNZK, and ΔQ CIV md neurons expressing GMA, a GFP-tagged actin 

binding protein and mCherry-tagged Jupiter, a microtubule binding protein. The second through 

fifth columns show the intensity of the separated signals according to the key below the figure. 

 

To determine whether differentially expressed genes of interest were involved in dCBP-

mediated regulation of dendritic arborization and/or cytoskeletal dynamics, we utilized a 

phenotypic suppression approach (Fig. 3.3), focusing on the genes that exhibited increased 

expression in the ΔNZK background. In this approach, UAS-driven RNAi knockdown of a gene 

of interest is combined with expression of the ΔNZK construct in CIV md neurons. In the case of 

genes that are involved in dCBP-mediated regulation of dendritic arborization and/or 

cytoskeletal dynamics, we expect to see a suppression of the ΔNZK phenotype resulting in a 

morphological rescue back towards normal CIV morphology. In the case of genes that are not 

Figure 3.2 dCBP deletion constructs differentially affect cytoskeletal components. 
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involved in dCBP-mediated regulation of dendritic arborization and/or cytoskeletal dynamics, 

we expect to see the ΔNZK phenotype persist. 

 

 

 

 

 

 

 

Figure 3.4 Graphic representation of phenotypic suppression screen approach. Figure 3.3 Graphic representation of phenotypic suppression screen approach. 
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3.2 Results 

 

3.2.1 dCBP ΔNZK expression predominately results in release of transcriptional repression  

To characterize dCBP-mediated transcriptional regulatory effects that may underlie the 

phenotypic defects observed with the ΔNZK and ΔQ structure-function variants, we performed 

large-scale magnetic bead cell isolations for the ΔNZK and ΔQ constructs and for WT CIV md 

neurons, then extracted RNA from these cells for cell type-specific RNAseq analyses.  We then 

subjected RNAseq results from WT, ΔQ and ΔNZK CIV samples to bioinformatic differential 

expression analyses according to the workflow diagram in Fig. 3.4 A. We then selected the genes 

most likely to be implicated in the ΔNZK phenotype by determining the intersection of the sets 

of genes differentially expressed between WT and the ΔNZK construct and the genes 

differentially expressed between the ΔNZK and ΔQ constructs. This analysis resulted in a list of 

~600 genes (Fig. 3.4 B, C). Intriguingly, most of these differentially expressed genes 

demonstrate increased expression in the presence of the ΔNZK deletion construct.  These 

findings imply that a major function of dCBP-mediated regulation of dendritic morphogenesis 

may involve repression of target gene transcription in CIV neurons (Fig. 3.4 B). We next 

subjected this list of differentially expressed genes to ontological clustering using DAVID. Gene 

clusters of particular interest that were enriched in the analysis included phosphorylation, 

ubiquitination, microtubule-based processes, protein modification processes, cytoskeletal 

organization, and cell morphogenesis, among others (Fig. 3.4 D).  We selected these clusters due 

to their putative involvement in cytoskeletal processes that appear to be disrupted in the ΔNZK 

and ΔQ deletion constructs, as shown in Fig. 3.2. A full list of the 23 genes selected for further 

phenotypic analyses is presented in the Appendix. 
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 (A) Diagram of the workflow for analysis of RNAseq read counts. (B-C) Numbers of genes 

exhibiting differential expression in relevant comparisons. (D) Gene ontology clusters selected 

for further analysis, showing number of differentially expressed genes in each cluster (some 

genes appear in more than one cluster). 

 

 

Figure 3.5 RNAseq workflow, results, and gene ontological clustering. 
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3.2.2 Seven genes of interest exhibit partial rescue of the dCBP ΔNZK phenotype 

The ΔNZK phenotype exhibits multiple apparent morphological defects, including 

localized over-proliferation of terminal branches at the expense of intermediate branches, loss of 

field coverage, and a decrease in total dendritic length (Figs. 3.6-3.9). For the purposes of the 

phenotypic suppression screen, at least two independent gene-specific RNAi (IR) lines for each 

gene of interest were tested and lines that exhibited qualitative rescue of at least one aspect of the 

morphological defects observed in the ΔNZK phenotype were selected for detailed quantitative 

analysis. Of the 23 genes selected for the phenotypic suppression screen, seven exhibited notable 

rescue of at least one ΔNZK morphological defect. These genes were Actin-related protein 53D 

(Arp53D) (Fig. 3.5 C), CG10177 (Fig. 3.5 D), CG32238 (Fig. 3.5 E), α-actinin 3 (Actn3) (Fig. 

3.5 F), CG12620 (Fig. 3.5 G), CG31391 (Fig. 3.5 H), and CG16716 (Fig. 3.5 I).   
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               Representative images of ΔNZK + gene-specific RNAi CIV neurons exhibiting 

morphological rescue of at least one aspect of ΔNZK morphological deficits.  

 

 

A B C 

D E F 

H G I 

Wild Type (CIV) CIV>dCBPΔNZK 

CIV>dCBPΔNZK + 
CG16716-IR 

CIV>dCBPΔNZK + 
CG31391-IR 

CIV>dCBPΔNZK + 
CG12620-IR 

CIV>dCBPΔNZK + 
Actn3-IR 

CIV>dCBPΔNZK + 
CG32238-IR 

CIV>dCBPΔNZK + 
CG10177-IR 

CIV>dCBPΔNZK + 
Arp53D-IR 

 

   

   

  

Figure 3.6 Seven genes of interest exhibit partial rescue of the 

ΔNZK phenotype. 
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3.2.3 Actn3 and CG31391 knockdowns rescue ΔNZK-induced deficits in major and 

intermediate order branching   

One of the morphological defects evident in ΔNZK CIV md neurons is a change in 

branch order distribution to favor clusters of terminal branches with fewer intermediate branches 

over the more regular distribution apparent in WT CIV md neurons (Fig. 3.6 C). Quantitatively, 

this manifests as a significant decrease from WT in Strahler Order 3 branches (p=0.0022) (Fig. 

3.6 B) as well as branches of Strahler Order 4 and greater (p=0.0163) (Fig. 3.6 A). The Strahler 

Order of branches is counted from the terminal branches towards the cell body, thus “Strahler 

Order 4+” designates the group of major branches most directly connected to the cell body, while 

“Strahler Order 3” designates the intermediate branches one step removed from the major 

branches. The ΔNZK-induced deficit in major branches is rescued only by knockdown of 

CG31391 (p=0.0185) (Fig. 3.6 A, E), which encodes an ortholog of a protein-phosphatase 1 

regulatory subunit. The deficit in intermediate branching, however, is rescued by knockdown of 

CG31391 (p=0.0193) as well as by knockdown of Actn3 (p=0.0017) (Fig. 3.6 B, D, E). Actn3 

encodes a putative actin-binding protein that contains a calponin homology domain, however its 

function is not well understood. 
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 (A) Quantification of dendrites of Strahler Order 4 or greater, which denotes major dendrites 

most proximal to the cell body. (B) Quantification of dendrites of Strahler Order 3, which 

denotes intermediate order dendrites. (C-E) Representative images of third instar larval CIV md 

neurons for dCBPΔNZK (C); dCBPΔNZK + Actn3-IR (D) and dCBPΔNZK + CG31391-IR (E).  

 

3.2.4 Actn3, CG31391, CG16716, and CG12620 knockdowns rescue ΔNZK-induced deficits 

in spatial distribution of dendrites 

Another apparent morphological defect induced by expression of the ΔNZK construct is a 

shift in the spatial distribution of dendrites. Specifically, the previously mentioned clusters of 

Figure 3.7 Actn3 and CG31391 knockdowns rescue ΔNZK-induced deficits in major 

and intermediate order branching. 
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terminal branches appear mainly in an area about halfway between the cell body and the 

maximum radius of the dendrites, leaving more “stripped” appearing branches both proximal and 

extremely distal to the cell body (Fig. 3.7 C). These stripped branches also tend to extend further 

from the cell body than major branches do in WT CIV neurons. Quantitatively, this results in a 

significantly increased maximum dendritic radius (p=0.0001) (Fig. 3.7 A) in ΔNZK CIV neurons 

along with a significant decrease in the radius at which the maximum number of intersections 

occur (p=0.0001) (Fig. 3.7 B) according to Sholl analysis. The increased maximum radius is 

rescued by knockdowns of Actn3 (p=0.0060), CG31391 (p=0.0026), and CG16716 (p=0.0114) 

(Fig. 3.7 A, D-F) and knockdown of CG10177 approaches significance (p=0.0598), while the 

decrease in the radius at which the maximum number of intersections occurs is rescued by 

knockdown of CG12620 (p=0.0250) (Fig. 3.7 B, G), with knockdowns of Arp53D (p=0.0889) 

and CG16716 (p=0.0742) approaching significance.  CG10177 encodes a MT-associated protein 

with doublecortin-like kinase activity which is thought to have a role in Golgi organization 

(Zacharogianni et al. 2011), among other potential roles. CG16716 encodes an ortholog of 

tubulin tyrosine ligase-like 6A, a tubulin polyglutamylase, and CG12620 encodes a protein 

ortholog of protein-phosphatase 1 regulatory subunit 2 (H. sapiens PPP1R2), which has been 

investigated as potentially influencing the development of non-insulin dependent diabetes in 

some populations (Permana and Mott 1997).  
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 (A) Quantification of Sholl analysis of the neuronal maximum radius. (B) Quantification of 

Sholl analysis of the radius at which the maximum number of intersections occur. (C-G) 

Representative images of third instar larval CIV md neurons for dCBPΔNZK (C); dCBPΔNZK + 

Actn3-IR (D); dCBPΔNZK + CG31391-IR (E); dCBPΔNZK + CG16716-IR (F); and 

dCBPΔNZK + CG12620-IR (G). 

 

3.2.5 Actn3 knockdown rescues ΔNZK-induced deficits in total dendritic length 

Expression of the ΔNZK construct also results in a significant decrease in the total 

dendritic length from WT CIV neurons (p=0.0005) (Fig. 3.8 A, C). This decrease occurs in spite 

of there being no change in the total number of dendrites (p=0.7573) (Fig. 3.8 B), indicating that 

the dendrites that are present are generally reduced in length. Moreover, this is consistent with 

the loss of major and intermediate order branches shown in Fig. 19. This decrease in total 

dendritic length is rescued by knockdown of Actn3 (p=0.0392), and knockdown of Arp53D 

Figure 3.8 Actn3, CG31391, CG16716 and CG12620 knockdowns rescue ΔNZK-

induced deficits in spatial distribution of dendrites. 



49 

approaches significance (p=0.0553) (Fig. 3.8 A, D). Arp53D encodes an actin-related protein 

whose exact function is poorly understood.  

 

 

 (A) Quantification of total dendritic length (voxels). (B) Total number of dendrites in WT and 

ΔNZK neurons. (C, D) Representative images of third instar larval CIV md neurons for 

dCBPΔNZK (C) and dCBPΔNZK + Actn3-IR (D).  

 

Figure 3.9 Actn3 knockdown rescues ΔNZK-induced deficits in total dendritic length. 
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3.2.6 Arp53D, Actn3, and CG16716 knockdowns rescue ΔNZK-induced deficits in dendritic 

field coverage 

Finally, expression of the ΔNZK construct results in deficits in dendritic field coverage. 

This parameter was measured using a Fiji macro (Sears and Broihier 2016) that populates a 

described area with squares and quantifies the number of squares that contain a signal (see Fig. 

3.9 A-E for examples). The space-filling properties of WT CIV md neurons result in mainly 

positive (containing dendrite) squares within the space bounded by the dendritic arbor (Fig. 3.9 

A) and this number is significantly decreased (p=0.0001) in the ΔNZK-expressing CIV neurons 

(Fig. 3.9 B, F). This decrease in coverage is rescued by knockdowns of Actn3 (p=0.0001) (Fig. 

3.9 C, F), Arp53D (p=0.0005) (Fig. 3.9 D, F), and CG16716 (p=0.0246) (Fig 3.9 E, F). Fig. 

3.10 shows a summary of all of these results. 
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 (A-E) Representative images of neurons processed using the Internal Field Coverage macro in 

Fiji, with negative/empty boxes filled in gray. (F) Quantification of number of positive 

(containing dendrite) 20x20 μm squares. 

 

 

 

 

 

 

 

 

Figure 3.10 Arp53D, Actn3, and CG16716 knockdowns rescue ΔNZK-induced deficits 

in dendritic field coverage. 
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Summary table of statistically significant rescue of ΔNZK-induced deficits by knockdown of 

genes of interest.  

 

 

3.3 Materials and Methods 

 

3.3.1 Drosophila genetics  

Drosophila stocks were maintained at 25°C on standard molasses-cornmeal agar. The 

following strains were obtained from Bloomington Drosophila Stock Center and the Vienna 

Drosophila Resource Center: UAS-RNAi lines directed against targets of interest (see Appendix 

for full listing). Additional strains from other sources included the class IV md neuron reporter 

strain GAL4477,UAS-mCD8::GFP; ppk1.9-GAL4,UAS-mCD8::GFP; UAS-dCBPNZK and UAS-

dCBPQ (Kumar et al. 2004), and UAS-GMA;GAL4477,UAS-Jupiter::mCherry.  Detailed 

Figure 3.11 Summary of results. 
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genotypes for each figure are reported in Table S1.  

 

3.3.2 Cell isolation and RNA sequencing 

Six large-scale magnetic bead cell isolations were performed as previously described 

(Iyer et al. 2009, Iyer E et al. 2013, Iyer S et al. 2013). Briefly, for each condition 150-200 age-

matched third instar larvae expressing mCD8::GFP under the control of the class IV 

GAL4477;ppk1.9-GAL4 driver were collected and washed several times in ddH20. The larvae 

were then rinsed in RNAse away, ddH20 and coarsely dissected. The tissue was then dissociated 

to yield single cell suspensions, which were filtered using a 30µm membrane. The filtrate was 

then incubated with Dynabeads MyOne Streptavidin T1 magnetic beads (Invitrogen) coupled 

with biotinylated mouse anti-CD8a antibody (eBioscience) for 60 minutes. The md neurons 

attached to the magnetic beads were then separated using a magnet. The isolated neurons were 

washed at least five times with PBS to remove any potential non-specific cells and the quality 

and purity of isolated neurons was assessed under a stereofluorescent microscope equipped with 

phase contrast for examining the number of fluorescent (GFP-positive) vs. non-fluorescent 

(GFP-negative) cells. Only if the isolated cells were free of cellular debris and non-specific (i.e. 

non-fluorescent) contaminants were they retained. The purified class IV neuron populations 

(NZK, Q, and wild type CIV md neurons) were then lysed and RNA was extracted using 

Exiqon’s miRCURY total RNA isolation kit. Six separate isolations were performed for each 

condition. The integrity of each RNA sample was assessed using an Agilent 2100 Bioanalyzer 

and Agilent Technologies RNA Pico Chips, and the three best samples for each condition were 

selected. RNA quality for these samples was assessed by Beckman-Coulter and all samples were 

found to be of high quality (FastQC quality scores >30).  RNA sequencing was performed by 
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Beckman-Coulter. RNAseq results from control, ΔQ and ΔNZK CIV samples were then 

subjected to bioinformatic differential expression analyses.  Specifically, the raw read counts 

provided by Beckman-Coulter were analyzed using the differential expression tools CuffDiff, 

EdgeR, Gfold and Noiseq (Fig. 3.4 A), and the resulting differential expression data was 

subjected to ontological clustering using DAVID. 

 

3.3.3 Live Imaging Confocal Microscopy, Neuronal Reconstruction, and Morphometric 

Data Analyses  

Live neuronal imaging was performed as previously described (Iyer S et al. 2013, Iyer E 

et al. 2013) on either a Nikon C1 Plus confocal microscope or a Zeiss LSM780 confocal 

microscope.  Dendritic morphology was quantified as previously described (Iyer E et al. 2013).  

Briefly, maximum intensity projections of confocal Z-stacks were exported as a jpeg or TIFF. 

Once exported, images were manually curated to eliminate non-specific auto-fluorescent spots 

(such as the larval denticle belts) using a custom designed program, Flyboys (freely available 

upon request). For total dendritic length measurements, images were processed and skeletonized 

in ImageJ (Iyer E et al. 2013, Schneider et al. 2012). Quantitative neuromorphometric 

information was extracted using the Analyze Skeleton ImageJ plugin and compiled using custom 

Python algorithms. For Sholl analyses, images were processed using the Sholl plugin for ImageJ 

(Ferreira et al. 2014). For total dendritic branches and Strahler order, images were reconstructed 

using NeuronStudio (Wearne et al. 2005). Branch number and order were then extracted using 

the centripetal branch labeling function. For dendritic field coverage, images were processed 

using the Internal Coverage macro for ImageJ (Sears and Broihier 2016) using a rectangular ROI 

bounded by the outermost dendrite on each side, with square side size set to 20 μm.  
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3.3.4 Statistical Analysis and Data Availability  

Statistical analyses of neuromorphometric data and data plotting were performed using 

GraphPad Prism 7. Error bars reported in the study represent SEM.  Statistical analyses were 

performed using either two-tailed unpaired t-test with Welch’s correction or one-way ANOVA 

using Dunnett’s multiple comparisons test when data sets were normally distributed as 

determined by the Shapiro-Wilk normality test. When data was not normally distributed, 

appropriate non-parametric tests were used (see Table S2 for specific tests used in each case).  

Significance scores indicated on graphs are (*=p≤0.05, **=p≤0.01, ***=p≤0.001).  Detailed 

information on statistical analyses for each figure is reported in Table S2.  
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4 GENERAL DISCUSSION 

4.1 Overview 

Neurons utilize a myriad of mechanistic processes to exert regulatory control over 

cytoskeletal components and thereby ultimately drive neurite morphology (Nanda et al. 2017, 

Lefebvre and Sanes 2015, Santiago and Bashaw 2014). Proteins that directly impact the stability 

and/or organization of the cytoskeleton, such as Arp2/3, Formins, MAP2, and Tau, can be 

degraded at higher or lower rates, sequestered or released from sequestration, or can undergo any 

of a multitude of post-translational modifications that change their functional properties, such as 

phosphorylation, glutamylation, glycylation, or acetylation (Georges et al. 2008, Flynn 2013). 

Additionally, the levels of these proteins present in the neuron can be regulated by transcription 

factors, which are themselves proteins potentially subject to all the same methods of regulation. 

This incredible system creates a complex web of interconnected elements that work together and 

influence each other to finally determine neuronal dendritic morphology. While many pieces of 

this system have been investigated and described, our understanding of it is by no means 

complete. Here, we have used the powerful model of the Drosophila md sensory neurons to 

reveal novel mechanisms by which one transcription factor, dCBP, exerts both transcriptional 

and post-translational effects in order to regulate dendritic morphology. 

 

4.2 Dar1-mediated regulation of dendritic morphology by dCBP 

The transcription factor dar1 has previously been shown to regulate dendritic 

development of md sensory neurons specifically, without disrupting axonal growth (Ye et al. 
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2011).  dar1 mutant md neurons display severely reduced arborization whereas Dar1 

overexpression promotes dendritic overgrowth in CIV neurons (Ye et al. 2011).  

Immunohistochemistry analyses suggest that Dar1 protein is localized to the nucleus in all md 

neuron subclasses (Class I-Class IV) at both embryonic and larval stages of development 

whereas Dar1 is not expressed in neurons that exhibit mono- or bipolar dendritic morphologies 

(Ye et al. 2011, Wang et al. 2015).  In fact, Dar1 appears to determine multipolar neuron 

morphology at the level of the dendrite without converting neuronal cell fate (Wang et al. 2015).  

Cytoskeletal studies in dar1 gain and loss of function conditions are indicative of a preferential 

function in regulating microtubules. Genetic interaction studies indicate that Dar1 restricts the 

expression of the microtubule-severing protein Spastin.  Furthermore, microarray analyses of 

embryonic dar1 mutant md neurons reveal a transcriptional role for other molecules involved in 

microtubule-based processes, including several genes encoding Dynein complex components 

(Wang et al. 2015).  

In contrast to these previous studies, we found that Dar1 protein is differentially localized 

in md neuron classes as development progresses to the third instar larval stage, and that the 

presence of dCBP in CIV neurons is required to maintain this differential localization, in that 

RNAi-mediated dCBP knockdown in these neurons results in Dar1 shifting from a 

predominately cytoplasmic localization to a more nuclear localization pattern while the total 

amount of Dar1 protein remains unchanged.  The basis for the observed differences is as yet 

unclear, however, it should be noted that the Dar1 antibodies used between our study and the 

previously published work were independently generated and target different regions of the Dar1 

protein, which may account for possible differences in the observed localization patterns. The 

morphological phenotype induced by dCBP knockdown is distinct in the proliferation of 
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clustered interstitial dendritic branches that it displays - a phenotype that is also apparent when 

Dar1 is overexpressed. Because both Dar1 overexpression and dCBP knockdown result in a 

more nuclear localization of Dar1, it is possible that this morphological phenotype is due to an 

increase in Dar1-dependent transcriptional regulation. Interestingly, two previous studies 

revealed that Dar1 appears to function as a transcriptional regulator for microtubule-associated 

molecules such as Spastin and components of the Dynein complex (Ye et al. 2011, Wang et al. 

2015).  These findings suggest that increased Dar1 transcriptional regulation may result in a 

reduction in Spastin-mediated microtubule severing and/or disruptions in Dynein-mediated 

vesicular transport on microtubules. Either of these regulatory effects could contribute to the 

morphological defects observed with dar1 mutants or Dar1 overexpression conditions, because 

proper balance of neuronal cytoskeletal stability and dynamics is required to maintain the 

dendritic arbor as well as to initiate new growth.  The alterations in the spatial distribution and 

organization of branching observed in both dCBP-IR and Dar1 overexpression are similar to 

those reported in previous studies that identified roles of Dynein motor complex components, 

which is intriguing given the role of Dar1 in regulating the expression of genes associated with 

the Dynein complex.  For example, mutations in the Dynein light intermediate chain (Dlic) gene 

lead to hyperproliferation of dendritic branches adjacent to the cell body with concomitant 

stripping of terminal dendritic branching complexity in CIV md neurons (Satoh et al. 2008, 

Zheng et al. 2008).  In another recent study, mutations in the genes cut up (ctp) and Cytoplasmic 

dynein light chain 2 (Cdlc2), which both encode cytoplasmic dynein light chains, produced a 

phenotype that is highly consistent with what is observed with dCBP loss-of-function and Dar1 

overexpression (i.e. altered spatial distribution of dendritic branching resulting in clustered 

dendritic tufting at intermediate locations on the dendritic arbor and stripped terminals) (Das et 
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al. 2017).  These findings suggest that different classes of Dynein microtubule motor light chains 

exert distinct regulatory effects on dendritic branch distribution by potentially contributing to 

differential regulation of Dynein-linked cargo on microtubules (Das et al. 2017). 

Therefore, in the context of dCBP mutant effects on Dar1 protein localization in CIV 

neurons, the increased nuclear expression of Dar1 observed in dCBP-IR CIV neurons may 

contribute to Dar1 transcriptional effects on Dynein complex components or Spastin, thereby 

mediating, at least in part, the dendritic defects in the spatial distribution of branches.  Such 

defects could impact the ability to initiate new microtubule-based structures to support growth 

and branching dynamics, as well as potentially disrupt microtubule-based vesicular transport.  

Ultimately, additional studies will be required to further characterize the potential mechanistic 

links between dCBP, Dar1, and microtubule-based processes.     

Interestingly, overexpression of Dar1 also results in an increase in both the total amount 

and the nuclear localization of dCBP. While an in-depth investigation of this phenomenon is 

outside the scope of these studies, we note that the Dar1 overexpression generated by our UAS-

dar1 transgenic strain is extremely robust.  The increase in total dCBP expression could occur 

through a variety of mechanisms such as via a direct or indirect transcriptional regulatory effect 

of Dar1 on dCBP expression, by Dar1-mediated stabilization of dCBP expression in CIV 

neurons or possibly as a homeostatic effect for regulating Dar1 subcellular localization.  The 

increase in nuclear dCBP could potentially occur because the excessive amount of Dar1 present 

in the nucleus upon overexpression results in dCBP becoming sequestered in the nucleus via 

interaction with Dar1.  Future studies would be necessary in order to distinguish between these 

possible mechanisms.  
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Our structure-function studies also support a role for dCBP in determining the subcellular 

localization of Dar1. In these studies we have demonstrated that expression of either the dCBP-

ΔBHQ or dCBP-ΔQ construct results in a significant increase in the nuclear localization of Dar1 

in CIV md neurons. These constructs both have deletions of the C-terminal portion of dCBP, but 

the ΔBHQ construct removes multiple functional domains while the ΔQ construct removes none. 

However, there is a consensus nuclear export signal (NES) located in the region of dCBP that is 

removed in the ΔQ, ΔBHQ, and ΔHQ constructs. The sequestration of these three constructs in 

the nucleus suggests that this sequence is likely a functional NES for dCBP. The ΔHQ construct 

appears to be expressed at a much lower level than either ΔQ or ΔBHQ (Fig. 2.9 D, C, E). While 

expression of the ΔHQ construct does cause a small but significant increase in nuclear dCBP, it 

does not appear to be a quantity sufficient to completely out-compete native dCBP in regulating 

the percent nuclear localization of Dar1, which doubles but does not quite reach significance 

(p=0.0652).  

The closest mammalian orthologs of Dar1 are the Krüppel-like transcription factors 

KLF5 and KLF7 (Ye at al. 2011, Wang et al. 2015, Cox Lab, unpublished results).  With respect 

to neuronal development, KLF7 is required to promote axon and dendrite growth (Laub et al. 

2005) and KLF7 overexpression leads to a dramatic increase in the number of primary dendrites 

in neurons that typically exhibit unipolar or bipolar morphologies, revealing a conserved role of 

Dar1 and KLF7 in promoting multipolar dendritic arborization profiles (Wang et al. 2015).  

Interestingly, KLF5 is known to interact with CBP at the N-terminal region of both proteins 

(Zhang and Teng 2003) and overexpression of KLF5 in cultured retinal ganglion cells results in a 

modest reduction in neurite growth (Moore et al. 2009), however potential loss-of-function roles 

for KLF5 in neural development in vertebrates remains unknown. If dCBP and Dar1 interact 
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similarly then the ΔQ, ΔHQ, and ΔBHQ constructs should preserve this interaction, because they 

still contain the N-terminal region of dCBP, whereas the ΔNZK and KIX constructs should not 

be able to interact with Dar1 because neither of them contain the N-terminal region. The results 

of our structure-function studies support this, as neither the ΔNZK nor KIX constructs cause any 

change in the percent of Dar1 localized to the nucleus, whereas the three constructs that contain 

the N-terminal region do, as described above.  Moreover, the three constructs that contain the N-

terminal domain are also those that lack the putative dCBP NES which may explain how 

nuclearly localized dCBP serves to promote nuclear sequestration of Dar1. 

 

4.3 Dar1-independent regulation of dendritic morphology by dCBP 

The dCBP gain-of-function studies performed here, as well as the structure-function 

studies, strongly suggest an additional Dar1-independent role for dCBP in the regulation of 

dendritic morphology. Overexpression of full-length dCBP, while having no discernible effect 

on the amount or localization of Dar1, causes dramatic defects in CIV dendritic morphology. 

Expression of the ΔNZK construct likewise has no effect on Dar1 expression or localization, but 

causes defects in dendritic morphology which appear distinct from the defects caused by full-

length overexpression. These observations led us to investigate transcriptional targets of dCBP 

that could be involved in the regulation of dendritic morphology. Our RNAseq results implied 

that dCBP engages in both transcriptional activation and repression, but that repression is its 

predominant role in CIV md neurons. This finding was surprising, because CBP has generally 

been described and studied as a transcriptional activator (e.g. Holmqvist and Mannervik 2013, 

Valor et al. 2013). We therefore utilized a phenotypic suppression screen approach to identify 

putative transcriptional targets of dCBP that could be involved in regulation of dendritic 
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morphology with a focus on putative cytoskeletal regulators and identified several targets that 

may act in this role. The results from our screen identified a variety of factors associated with 

different aspects of cytoskeletal regulation for both actin and microtubule based processes and 

suggest that dCBP-mediated repressive regulation of these factors plays a role in directing 

normal CIV md sensory neuron dendritogenesis.  

 

4.3.1 Actin-related proteins 

Arp53D and Actn3 knockdowns were both effective in rescuing aspects of the ΔNZK-

induced morphology deficits.  Orthologs of these actin-related proteins are known to be 

expressed in skeletal muscle, however little is known regarding their potential functional roles in 

neurons. Arp53D rescued field coverage defects and demonstrated a trend towards rescue of total 

dendritic length and spatial distribution of branches (as measured by Sholl analysis), while Actn3 

demonstrated rescue of all three of these parameters as well as branch order distribution. Both of 

these proteins are involved in the regulation of actin dynamics, therefore the robustness of the 

rescue, particularly by Actn3, was somewhat unexpected as we initially hypothesized that 

microtubule-related effects would be most relevant to rescue of the ΔNZK phenotype. 

Actn3 is perhaps best known as a human gene with polymorphisms that have been 

associated with enhanced athletic performance and is known to be expressed in fast twitch 

skeletal muscle (Yang et al. 2003). Drosophila Actn3 has very little sequence identity with 

human Actn3, therefore they are unlikely to share many functional properties beyond their 

calponin homology (CH) domain. Proteins with a single CH domain such as Actn3 are thought to 

dimerize in order to cross-link actin filaments (Stradal et al. 1998), however single CH domains 

have also been implicated in microtubule binding in some cases (Hayashi and Ikura 2003). 
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Because very little is known about the function of Actn3 in Drosophila, further investigation of 

its properties in relation to the neuronal cytoskeleton could be a fruitful path for future research. 

Arp53D demonstrates strong (65%) sequence identity with human Gamma-actin, 

encoded by the ACTG1 gene. A single previous study in which Arp53D was identified in 

Drosophila (Fyrberg et al. 1994) found it to be expressed only in males and predominately in the 

testes, however there has been no published research on Arp53D since then and our results 

suggest that it may have some relevance in neuronal cytoskeletal regulation. Gamma-actin is a 

widely expressed cytoskeletal component in vertebrates (Vandekerckhove and Weber 1978) and 

Gamma-actin has been shown to bind to both profilin and cofilin (Rainger et al. 2017). The level 

of sequence identity of Arp53D with Gamma-actin therefore raises the possibility that Arp53D 

could function as a structural component of the actin cytoskeleton and could perhaps play a role 

in actin dynamics. 

Actin-based structures can range from the highly dynamic, as in the case of actin “waves” 

that travel along neurites to promote branching (Flynn et al. 2009), to the extremely stable, such 

as the actin rings that have recently been shown to occur in a periodic manner along the length of 

many neurites (D’Este et al. 2015). Dendritogenesis requires dynamic actin for growth and 

pathfinding, as well as more stable actin structures for anchoring and trafficking receptors and 

other components of the dendrite (Georges et al. 2008). Therefore, hyperactivity of actin binding 

proteins such as Actn3 may impair dendritic growth by limiting the available pool of dynamic 

actin, while an overabundance of actin monomers such as Arp53D may inappropriately saturate 

regulatory factors that maintain homeostatic levels of dynamic vs. stabilized actin, potentially 

interfering with the actin-mediated growth and branching processes that must occur for dendrites 

to develop appropriately.   
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4.3.2 Tubulin polyglutamylases 

Knockdown of CG16716, which encodes a tubulin polyglutamylase, rescued field 

coverage defects and defects in spatial distribution of branches in the ΔNZK phenotype. Another 

tubulin polyglutamylase, CG32238, was selected from our initial screen because it appeared to 

rescue some qualitative aspects of ΔNZK morphological defects but it failed to achieve 

significant rescue for any of the parameters we measured. This failure does not allow us to rule 

out the possibility that CG32238, or indeed any other genes that did not demonstrate rescue of 

the ΔNZK phenotype, might be involved in dCBP-mediated regulation of dendritic morphology. 

It is possible that the knockdown efficiency was insufficient to cause a measurable rescue effect. 

It is also highly likely that many of the genes we identified by RNAseq function as members of 

complex pathways and are not individually sufficient to cause a measurable rescue effect. 

Tubulin is generally thought of as the more stable of the cytoskeletal components and 

while this may be broadly accurate, like actin it requires the ability to shift between dynamic and 

stable states in order to fulfill its many roles in neurons. More stable networks of MTs provide 

the “roads” on which various cargos are trafficked in the cell body and neurites, as well as 

providing structural support for existing and developing neurites. More dynamic MTs can 

depolymerize to provide tubulin dimers for the growth of new MTs or be severed to provide 

small sections of polymerized tubulin that can then be transported to facilitate MT growth in 

other areas of the cell. MT stability can be conferred by post-translational modifications (PTMs) 

and by a variety of MT-associated proteins (MAPs) (Flynn 2013). Whether some specific tubulin 

PTMs are effectors or consequences of tubulin stability is an area of active scientific research 

and debate.  
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Tubulin polyglutamylation is a versatile PTM that can stabilize or destabilize MTs 

depending on a number of other factors, including the degree of glutamylation present and the 

presence or absence of various MAPs (Wloga and Gaertig 2010). Polyglutamylation occurs in 

two steps, initiation and elongation. Some vertebrate tubulin tyrosine ligase-like proteins 

(TTLLs) are capable of both functions, but TTLL6, the closest vertebrate ortholog of CG16716, 

is only involved in the elongation step (van Dijk et al. 2007).  Overexpression of TTLL6 in 

Tetrahymena (a ciliate model organism) results in MTs that are resistant to nocodazole-induced 

depolymerization, suggesting that hyperglutamylation exerts a stabilizing effect on these MTs 

(Wloga et al. 2010). Interestingly, experiments using human cell lines have demonstrated that 

polyglutamylation by TTLLs that cause the addition of long glutamate side chains (as TTLL6 

does) potentiates the activity of the MT severing protein Spastin (Lacroix et al. 2010), which is 

also one of the transcriptional targets of Dar1 (Ye et al. 2011). The addition of short glutamate 

side chains, as by TTLL4, did not affect Spastin-mediated MT severing in this study (Lacroix et 

al. 2010). Thus, it is possible that different degrees of polyglutamylation could directly impact 

MT stability in neurons. Neurite growth has been shown to be sensitive to the level of Spastin 

activity, with reductions causing defects in neurite growth, small increases causing increased 

growth and branching, and abnormally high levels causing severely decreased neurite growth 

(Riano et al. 2009). If CG16716 functions as TTLL6 does, then increased expression of 

CG16716 may result in an increase of MT severing by Spastin, which would increase neurite 

growth to a point and then begin to impair it. This could make dCBP-mediated regulation of 

polyglutamylation via CG16716 an efficient way to make fine adjustments to neuronal 

morphology.  
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4.3.3 Regulators of protein-phosphatase 1 (PP1) 

Knockdown of either CG12620 or CG31391 rescues aspects of the ΔNZK-induced 

defects in spatial branch distribution as measured by Sholl analysis, and knockdown of CG31391 

additionally rescues the ΔNZK-induced defects in major and intermediate order dendritic 

branching. The closest human ortholog of CG12620 is protein-phosphatase inhibitor 2 (PPP1R2) 

and the closest human ortholog of CG31391 is protein-phosphatase regulatory subunit 36 

(PPP1R36). The regulatory subunits of PP1 confer specific substrate recognition, preventing PP1 

from dephosphorylating substrates indiscriminately, and can also mediate the localization of PP1 

(Virshup and Shenolikar 2009). Various combinations of catalytic and regulatory subunits allow 

PP1 to modulate cellular functions ranging from cell cycle progression to apoptosis (Cohen 

2002). Mammalian PPP1R36 has been shown to promote autophagy during spermatogenesis 

(Zhang et al. 2016), however since PPP1R36 and CG31391 demonstrate only 23% protein 

identity we should not draw conclusions from this as to the probable function of CG31391. 

PPP1R2 has been studied more than PPP1R36 and has been implicated in synaptic scaling 

(Siddoway et al. 2014) and memory formation processes (Yang et al. 2015) in addition to being 

studied as a potential regulator of metabolic processes (Permana and Mott 1997). CG12620 has 

35% identity with PPP1R2 and so may share some functions, but this would certainly require 

further study. Although we cannot draw any firm conclusions from current literature as to the 

specific functions of CG12620 or CG31391, PP1 is known to be an important regulator of many 

cytoskeletal proteins including tau, MAP1B, and MAP2 (Hoffman et al. 2017), therefore these 

two regulators of PP1 activity may warrant further investigation in future studies. 
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4.3.4 Proteins with doublecortin-like kinase activity 

Knockdown of CG10177 demonstrated a trend towards rescue of spatial branch 

distribution as measured by Sholl analysis. CG10177 contains a Doublecortin domain and a 

calmodulin-dependent kinase (CaM kinase)-like domain. One study using Drosophila S2 cells 

has specifically implicated CG10177 in maintaining proper Golgi organization, however this 

study was a large-scale screen and did not further investigate CG10177 (Zacharogianni et al. 

2011). Doublecortin-like kinases (DCLKs) have been somewhat more extensively studied in 

mammalian systems however, and doublecortin domains are known to interact directly with MTs 

and to stabilize them (Gleeson et al. 1999), whereas CaM kinase-like domains have been 

generally implicated in neuronal development (e.g. Won et al. 2006, Kruidering et al. 2001). 

Intriguingly, DCLKs have been shown to localize specifically to distal dendrites where they 

promote growth by stabilizing MTs and promote plasticity by inhibiting synapse maturation 

(Shin et al. 2013). Because overexpression of DCLKs in cultured hippocampal neurons results in 

increased dendritic growth (Shin et al. 2013), it is not immediately clear how removing 

transcriptional repression of CG10177 might contribute mechanistically to the ΔNZK phenotype, 

nor why CG10177 knockdown might mitigate aspects of that phenotype. The large number of 

genes affected by ΔNZK is likely a confounding factor in this case, and because CG10177 

remains an uncharacterized protein in Drosophila it is an excellent candidate for further 

investigation independent of its potential role as a target of dCBP-mediated regulation of 

dendritic morphology. 
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4.3.5 Summary and future directions 

Many studies have identified CBP as an important factor in disease processes ranging 

from cancer cell proliferation to some developmental disabilities, however its pleiotropic nature 

in cellular processes makes it a problematic target in potential treatments (Bordonaro and 

Lazarova 2015, Valor et al. 2013, Wang et al. 2013). Our research reinforces this, demonstrating 

that dCBP engages in both transcriptional and post-translational regulation of dendritic 

development. This regulation occurs via multiple cellular pathways and mechanisms, even when 

one investigates only the cytoskeletal effects of dCBP-mediated regulation. The identification 

and characterization of downstream effectors of dCBP-mediated regulation is therefore crucial to 

the future development of specific treatments for disease processes involving aberrant CBP 

function. The four types of proteins that we have implicated in dCBP-mediated transcriptional 

regulation of dendritic development – actin-related proteins, tubulin polyglutamylases, regulators 

of PP1, and proteins with doublecortin-like kinase activity – each have the potential to be more 

specific therapeutic targets for disease processes than CBP itself. Further investigation of these 

downstream effectors of dCBP function will involve more clearly characterizing how they affect 

cytoskeletal components in md neurons. For example, some tubulin polyglutamylases have been 

shown to potentiate Spastin activity in human cell lines. To investigate this process in md neuron 

dendritogenesis we can perform a double knockdown of CG16716 and Spastin, which should 

exacerbate any phenotype generated by knockdown of CG16716 alone. Alternately, we can 

knock down CG16716 while overexpressing Spastin. If tubulin polyglutamylation exerts its 

effects on dendritogenesis via potentiation of Spastin activity, then we will observe a rescue of 

the CG16716 phenotype under these conditions. These experiments and others like them could 



69 

elucidate some of the downstream mechanisms by which dCBP regulates cytoskeletal processes, 

leading eventually to improvements in pharmaceutical targeting of such processes. 
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5 SUPPLEMENTAL MATERIAL 

 

Table 1. Genotypes of larvae used in this study. 

 

Figure Larval Genotypes 

2.1 w1118; GAL4477,UAS-mCD8::GFP/+; ppk1.9-GAL4,UAS-mCD8::GFP/+ 

w1118; GAL4477,UAS-mCD8::GFP/+; ppk1.9-GAL4,UAS-mCD8::GFP/dar1D6 

w1118, elavC155-GAL4, UAS-mCD8::GFP, hsFLP; +; FRT80B, dar1D6 (MARCM) 

w1118; GAL4477,UAS-mCD8::GFP/+; ppk1.9-GAL4,UAS-mCD8::GFP/UAS-dar1 

2.2 A w1118; GAL4477,UAS-mCD8::GFP/+; ppk1.9-GAL4,UAS-mCD8::GFP/+ 

2.2 B w1118; +; + 

w1118; +; PBac(WH)dar1f01014 

2.3 w1118; GAL4477,UAS-mCD8::GFP/+; ppk1.9-GAL4,UAS-mCD8::GFP/+ 

w1118; GAL4477,UAS-mCD8::GFP/+; ppk1.9-GAL4,UAS-mCD8::GFP/UAS-

nejRNAi(HMS01507) 

w1118; GAL4477,UAS-mCD8::GFP/+; ppk1.9-GAL4,UAS-mCD8::GFP/UAS-nej.wt-

V5 

2.4 w1118; +; + 

2.5 w1118; GAL4477,UAS-mCD8::GFP/+; ppk1.9-GAL4,UAS-mCD8::GFP/+ 

w1118; GAL4477,UAS-mCD8::GFP/+; ppk1.9-GAL4,UAS-mCD8::GFP/UAS-

nejRNAi(HMS01507) 

w1118; GAL4477,UAS-mCD8::GFP/+; ppk1.9-GAL4,UAS-mCD8::GFP/UAS-dar1 

2.6 w1118; GAL4477,UAS-mCD8::GFP/+; ppk1.9-GAL4,UAS-mCD8::GFP/+ 

w1118; GAL4477,UAS-mCD8::GFP/+; ppk1.9-GAL4,UAS-mCD8::GFP/UAS-nej.wt-

V5 

w1118; GAL4477,UAS-mCD8::GFP/+; ppk1.9-GAL4,UAS-mCD8::GFP/UAS-dar1 

2.7-2.9 w1118; GAL4477,UAS-mCD8::GFP/+; ppk1.9-GAL4,UAS-mCD8::GFP/+ 

w1118; GAL4477,UAS-mCD8::GFP/UAS-dCBP KIX; ppk1.9-GAL4,UAS-

mCD8::GFP/+ 

w1118; GAL4477,UAS-mCD8::GFP/UAS-dCBP∆BHQ; ppk1.9-GAL4,UAS-

mCD8::GFP/+ 

w1118; GAL4477,UAS-mCD8::GFP/+; ppk1.9-GAL4,UAS-mCD8::GFP/UAS-

dCBP∆HQ 

w1118; GAL4477,UAS-mCD8::GFP/UAS-nej.F2161A-V5; ppk1.9-GAL4,UAS-

mCD8::GFP/+ 

w1118; GAL4477,UAS-mCD8::GFP/UAS-dCBP∆NZK; ppk1.9-GAL4,UAS-

mCD8::GFP/+ 

w1118; GAL4477,UAS-mCD8::GFP/UAS-dCBP∆Q; ppk1.9-GAL4,UAS-

mCD8::GFP/+ 

P(GSV1)nejS-20/+; GAL4477,UAS-mCD8::GFP/+; ppk1.9-GAL4,UAS-mCD8::GFP/+ 

3.2 UAS-GMA/+;GAL4477,UAS-mCherry::Jup/+; + 

UAS-GMA/+;GAL4477,UAS-mCherry::Jup/UAS-dCBP∆NZK; + 

UAS-GMA/+;GAL4477,UAS-mCherry::Jup/UAS-dCBP∆Q; + 
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3.5-3.9 w1118; +; ppk1.9-GAL4,UAS-mCD8::GFP/+ 

w1118; UAS-dCBP∆NZK/UAS-mCD8::RFP; ppk1.9-GAL4,UAS-mCD8::GFP/+ 

w1118; UAS-dCBP∆NZK/+; ppk1.9-GAL4,UAS-mCD8::GFP/Arp53DRNAi(HMS02876) 

w1118; UAS-dCBP∆NZK/+; ppk1.9-GAL4,UAS-mCD8::GFP/CG10177RNAi(HMC04182) 

w1118; UAS-dCBP∆NZK/CG32238RNAi(HMJ21441); ppk1.9-GAL4,UAS-mCD8::GFP/+ 

w1118; UAS-dCBP∆NZK/+; ppk1.9-GAL4,UAS-mCD8::GFP/Actn3RNAi(JF02279) 

w1118; UAS-dCBP∆NZK/CG12620RNAi(KK103350); ppk1.9-GAL4,UAS-mCD8::GFP/+ 

w1118; UAS-dCBP∆NZK/CG31391RNAi(HMJ24131); ppk1.9-GAL4,UAS-mCD8::GFP/+ 

w1118; UAS-dCBP∆NZK/CG16716RNAi(HMJ23972); ppk1.9-GAL4,UAS-mCD8::GFP/+ 
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Table 2. Statistics by figure. 

Figure/Label Passed 

Shapiro-Wilk 

Normality? 

Statistical tests used p-value N value 

(neurons) 

Fig. 2.3 D  One-way ANOVA with 

Tukey’s multiple 

comparisons test 

  

WT Yes   11 

dCBP-IR Yes  <0.0001 12 

dCBP OE Yes  <0.0001 14 

Fig. 2.3 E  One-way ANOVA with 

Tukey’s multiple 

comparisons test 

  

WT Yes   8 

dCBP-IR Yes  0.0001 10 

dCBP OE Yes  <0.0001 11 

Fig. 2.3 F  One-way ANOVA with 

Tukey’s multiple 

comparisons test 

  

WT Yes   8 

dCBP-IR Yes  <0.0001 10 

dCBP OE Yes  <0.0001 11 

Fig. 2.3 H 1st order  Two-way ANOVA with 

Dunnett’s multiple 

comparisons test 

  

WT Yes   9 

dCBP-IR Yes  0.9929 10 

dCBP OE Yes  0.9990 11 

Fig. 2.3 H 2nd 

order 

 Two-way ANOVA with 

Dunnett’s multiple 

comparisons test 

  

WT Yes   9 

dCBP-IR Yes  0.9809 10 

dCBP OE Yes  0.9933 11 

Fig. 2.3 H 3rd 

order 

 Two-way ANOVA with 

Dunnett’s multiple 

comparisons test 

  

WT Yes   9 

dCBP-IR Yes  0.8994 10 

dCBP OE Yes  0.9646 11 

Fig. 2.3 H 4th order  Two-way ANOVA with 

Dunnett’s multiple 

comparisons test 

  

WT Yes   9 

dCBP-IR Yes  0.3551 10 
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dCBP OE Yes  0.9721 11 

Fig. 2.3 H 5th order  Two-way ANOVA with 

Dunnett’s multiple 

comparisons test 

  

WT Yes   9 

dCBP-IR Yes  0.0005 10 

dCBP OE Yes  0.0001 11 

Fig. 2.3 H 6th order  Two-way ANOVA with 

Dunnett’s multiple 

comparisons test 

  

WT Yes   9 

dCBP-IR Yes  0.0001 10 

dCBP OE Yes  0.0001 11 

Fig. 2.4 G  Unpaired t test with Welch’s 

correction 

  

CI Yes   9 

CIV Yes  0.0002 10 

Fig. 2.4 H  Unpaired t test with Welch’s 

correction 

  

CI Yes   10 

CIV Yes  0.6586 10 

Fig. 2.4 I  Unpaired t test with Welch’s 

correction 

  

CI Yes   9 

CIV Yes  <0.0001 10 

Fig. 2.4 J  Unpaired t test with Welch’s 

correction 

  

CI Yes   9 

CIV Yes  <0.0001 10 

Fig. 2.5 D  Unpaired t test with Welch’s 

correction 

  

WT Yes   14 

dCBP-IR Yes  0.7006 12 

Fig. 2.5 E  Unpaired t test with Welch’s 

correction 

  

WT Yes   14 

dCBP-IR Yes  <0.0001 12 

Fig. 2.5 G  One-way ANOVA with 

Tukey’s multiple 

comparisons test 

  

WT Yes   9 

dar1 OE Yes  0.0006 (vs. WT) 11 

dCBP-IR Yes  0.0011 (vs. WT) 

0.9969 (vs. Dar1 OE) 

8 

Fig. 2.5 H  One-way ANOVA with   
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Tukey’s multiple 

comparisons test 

WT Yes   10 

dar1 OE Yes  0.0006 (vs. WT) 12 

dCBP-IR Yes  0.0001 (vs. WT) 

0.5167 (vs. Dar1 OE) 

8 

Fig. 2.6 J  Unpaired t-test with Welch’s 

correction 

  

WT Yes   12 

dCBP OE Yes  0.1028 6 

Fig. 2.6 K  Unpaired t-test with Welch’s 

correction 

  

WT Yes   14 

dar1 OE Yes  <0.0001 16 

Fig. 2.6 L  Unpaired t-test with Welch’s 

correction 

  

WT Yes   12 

dCBP OE Yes  0.1998 6 

Fig. 2.6 M  Unpaired t-test with Welch’s 

correction 

  

WT Yes   15 

dar1 OE Yes  <0.0001 16 

Fig. 2.8 A  Kruskal-Wallis test with 

Dunn’s multiple comparisons 

test 

  

WT Yes   11 

dCBP-KIX Yes  >0.9999 9 

dCBP-∆NZK Yes  0.0102 9 

dCBP-∆BHQ Yes  >0.9999 11 

dCBP-∆HQ No  >0.9999 9 

dCBP-∆Q Yes  <0.0001 8 

dCBP-∆H Yes  0.0195 11 

dCBPS-20 Yes  <0.0001 12 

Fig. 2.8 B  One-way ANOVA with 

Dunnett’s multiple 

comparisons test 

  

WT Yes   8 

dCBP-KIX Yes  0.4268 9 

dCBP-∆NZK Yes  0.0001 9 

dCBP-∆BHQ Yes  0.0001 10 

dCBP-∆HQ Yes  0.0001 9 

dCBP-∆Q Yes  0.0001 9 

dCBP-∆H Yes  0.0001 11 

dCBPS-20 Yes  0.0001 12 

Fig. 2.8 C  Kruskal-Wallis test with   
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Dunn’s multiple comparisons 

test 

WT Yes   8 

dCBP-KIX Yes  >0.9999 9 

dCBP-∆NZK Yes  0.9515 9 

dCBP-∆BHQ Yes  0.0050 11 

dCBP-∆HQ No  0.0645 8 

dCBP-∆Q No  <0.0001 9 

dCBP-∆H Yes  0.0046 10 

dCBPS-20 Yes  <0.0001 12 

Fig. 2.8 D  One-way ANOVA with 

Dunnett’s multiple 

comparisons test 

  

WT Yes   9 

dCBP-KIX Yes  0.3528 10 

dCBP-∆NZK Yes  0.0001 9 

dCBP-∆BHQ Yes  0.5918 11 

dCBP-∆HQ Yes  0.9978 9 

dCBP-∆Q Yes  0.0001 8 

dCBP-∆H Yes  0.0001 10 

dCBPS-20 Yes  0.0001 11 

Fig. 2.8 E 1st order  Two-way ANOVA with 

Dunnett’s multiple 

comparisons test 

  

WT Yes   9 

dCBP-KIX Yes  0.9996 10 

dCBP-∆NZK Yes  0.8674 9 

dCBP-∆BHQ Yes  0.8510 11 

dCBP-∆HQ Yes  0.8674 9 

dCBP-∆Q Yes  0.5976 9 

dCBP-∆H Yes  0.8954 11 

dCBPS-20 Yes  0.9999 12 

Fig. 2.8 E 2nd 

order 

 Two-way ANOVA with 

Dunnett’s multiple 

comparisons test 

  

WT Yes   9 

dCBP-KIX Yes  0.9995 10 

dCBP-∆NZK Yes  0.2310 9 

dCBP-∆BHQ Yes  0.4048 11 

dCBP-∆HQ Yes  0.5251 9 

dCBP-∆Q Yes  0.0365 9 

dCBP-∆H Yes  0.6455 11 

dCBPS-20 Yes  0.9997 12 

Fig. 2.8 E 3rd order  Two-way ANOVA with 

Dunnett’s multiple 
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comparisons test 

WT Yes   9 

dCBP-KIX Yes  0.8292 10 

dCBP-∆NZK Yes  0.0001 9 

dCBP-∆BHQ Yes  0.0001 11 

dCBP-∆HQ Yes  0.0001 9 

dCBP-∆Q Yes  0.0001 9 

dCBP-∆H Yes  0.0003 11 

dCBPS-20 Yes  0.9806 12 

Fig. 2.8 E 4th order  Two-way ANOVA with 

Dunnett’s multiple 

comparisons test 

  

WT Yes   9 

dCBP-KIX Yes  0.9975 10 

dCBP-∆NZK Yes  0.5620 9 

dCBP-∆BHQ Yes  0.5124 11 

dCBP-∆HQ Yes  0.7371 9 

dCBP-∆Q Yes  0.0319 9 

dCBP-∆H Yes  0.6174 11 

dCBPS-20 Yes  0.8542 12 

Fig. 2.8 E 5th order  Two-way ANOVA with 

Dunnett’s multiple 

comparisons test 

  

WT Yes   9 

dCBP-KIX Yes  0.7365 10 

dCBP-∆NZK Yes  0.0001 9 

dCBP-∆BHQ Yes  0.0001 11 

dCBP-∆HQ Yes  0.0001 9 

dCBP-∆Q Yes  0.0001 9 

dCBP-∆H Yes  0.0001 11 

dCBPS-20 Yes  0.0001 12 

Fig. 2.8 E 6th order  Two-way ANOVA with 

Dunnett’s multiple 

comparisons test 

  

WT Yes   9 

dCBP-KIX Yes  0.0575 10 

dCBP-∆NZK Yes  0.0001 9 

dCBP-∆BHQ Yes  0.0001 11 

dCBP-∆HQ Yes  0.0001 9 

dCBP-∆Q Yes  0.0001 9 

dCBP-∆H Yes  0.0001 11 

dCBPS-20 Yes  0.0001 12 

Fig. 2.9 A dCBP  Kruskal-Wallis test with 

Dunn’s multiple comparisons 

test 
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WT No   18 

dCBP-KIX Yes  >0.9999 20 

Fig. 2.9 A dar1  Kruskal-Wallis test with 

Dunn’s multiple comparisons 

test 

  

WT Yes   18 

dCBP-KIX Yes  >0.9999 19 

Fig. 2.9 B dCBP  Kruskal-Wallis test with 

Dunn’s multiple comparisons 

test 

  

WT No   18 

dCBP-∆NZK  Yes  >0.9999 22 

Fig. 2.9 B dar1  Kruskal-Wallis test with 

Dunn’s multiple comparisons 

test 

  

WT Yes   18 

dCBP-∆NZK No  >0.9999 22 

Fig. 2.9 C dCBP  Kruskal-Wallis test with 

Dunn’s multiple comparisons 

test 

  

WT No   18 

dCBP-∆BHQ  Yes  0.0009 30 

Fig. 2.9 C dar1  Kruskal-Wallis test with 

Dunn’s multiple comparisons 

test 

  

WT Yes   18 

dCBP-∆BHQ Yes  0.0008 29 

Fig. 2.9 D dCBP  Kruskal-Wallis test with 

Dunn’s multiple comparisons 

test 

  

WT No   18 

dCBP-∆HQ  Yes  0.0408 16 

Fig. 2.9 D dar1  Kruskal-Wallis test with 

Dunn’s multiple comparisons 

test 

  

WT Yes   18 

dCBP-∆HQ Yes  0.0652 17 

Fig. 2.9 E dCBP  Kruskal-Wallis test with 

Dunn’s multiple comparisons 

test 

  

WT No   18 

dCBP-∆Q  Yes  <0.0001 31 

Fig. 2.9 E dar1  Kruskal-Wallis test with 

Dunn’s multiple comparisons 

test 
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WT Yes   18 

dCBP-∆Q Yes  <0.0001 32 

Fig. 3.6 A  One-way ANOVA with 

Dunnett’s multiple 

comparisons test 

  

WT Yes   9 

∆NZK  Yes  0.0163 11 

Arp53D-IR Yes  0.3106 8 

CG10177-IR Yes  0.9999 10 

CG32238-IR Yes  0.1464 8 

Actn3-IR Yes  0.1458 10 

CG12620-IR Yes  0.6860 10 

CG31391-IR Yes  0.0185 6 

CG16716-IR Yes  0.9996 7 

Fig. 3.6 B  One-way ANOVA with 

Dunnett’s multiple 

comparisons test 

  

WT Yes   8 

∆NZK  Yes  0.0022 11 

Arp53D-IR Yes  0.1911 7 

CG10177-IR Yes  0.9869 10 

CG32238-IR Yes  0.0037 9 

Actn3-IR Yes  0.0017 10 

CG12620-IR Yes  0.0793 10 

CG31391-IR Yes  0.0193 7 

CG16716-IR Yes  0.5327 6 

Fig. 3.7 A  One-way ANOVA with 

Dunnett’s multiple 

comparisons test 

  

WT Yes   8 

∆NZK  Yes  0.0001 11 

Arp53D-IR Yes  0.4751 8 

CG10177-IR Yes  0.0598 10 

CG32238-IR Yes  0.1263 10 

Actn3-IR Yes  0.0060 9 

CG12620-IR Yes  0.1330 10 

CG31391-IR Yes  0.0026 7 

CG16716-IR Yes  0.0114 8 

Fig. 3.7 B  One-way ANOVA with 

Dunnett’s multiple 

comparisons test 

  

WT Yes   9 

∆NZK  Yes  0.0001 12 

Arp53D-IR Yes  0.0889 8 

CG10177-IR Yes  0.8266 10 
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CG32238-IR Yes  0.9996 10 

Actn3-IR Yes  0.1076 10 

CG12620-IR Yes  0.0250 10 

CG31391-IR Yes  0.9724 7 

CG16716-IR Yes  0.0742 8 

Fig. 3.8 A  One-way ANOVA with 

Dunnett’s multiple 

comparisons test 

  

WT Yes   9 

∆NZK  Yes  0.0005 12 

Arp53D-IR Yes  0.0553 8 

CG10177-IR Yes  0.9252 10 

CG32238-IR Yes  0.1313 10 

Actn3-IR Yes  0.0392 10 

CG12620-IR Yes  0.9996 10 

CG31391-IR Yes  0.9911 7 

CG16716-IR Yes  0.9739 8 

Fig. 3.8 B  Unpaired t test with Welch’s 

correction 

  

WT Yes   8 

∆NZK  Yes  0.7573 10 

Fig. 3.9 F  One-way ANOVA with 

Dunnett’s multiple 

comparisons test 

  

WT Yes   9 

∆NZK  Yes  0.0001 12 

Arp53D-IR Yes  0.0005 8 

CG10177-IR Yes  0.2889 9 

CG32238-IR Yes  0.8154 10 

Actn3-IR Yes  0.0001 10 

CG12620-IR Yes  0.1702 10 

CG31391-IR Yes  0.9928 7 

CG16716-IR Yes  0.0246 7 
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APPENDIX  

Curated list of differentially expressed target genes for dCBP-mediated transcriptional 

repression. 

 

Gene name GO Cluster(s) Probable Function (by homology) RNAi lines 

screened * 

Ppm1 Protein dephosphorylation, 

protein modification processes 

PP2C family, negative regulation of 

TGF-β signaling and termination of 

TNF-α-mediated NF-κB activation 

B41987 

V101257 

CG12620 Protein dephosphorylation, 

protein modification processes, 

regulation of protein 

dephosphorylation 

protein-phosphatase 1 inhibitor V39748 

V108964 

CG6380 Protein dephosphorylation, 

protein modification processes, 

regulation of protein 

dephosphorylation 

protein-phosphatase 1 inhibitor V29950 

V100121 

CG6036 Protein dephosphorylation, 

protein modification processes 

Downregulation of 

SMAD2/3:SMAD4 transcriptional 

activity 

B65115 

B66318 

 

CG31391 Protein dephosphorylation, 

protein modification processes, 

regulation of protein 

dephosphorylation 

protein-phosphatase 1 regulatory 

subunit 

B62891 

V107247 

Protein 

phosphatase 1 

at 13C 

Protein dephosphorylation, 

protein modification processes 

protein-phosphatase 1 catalytic 

subunit 

B32465 

V107770 

CG32568 Protein dephosphorylation, 

protein modification processes 

Protein-phosphatase 2A regulatory 

subunit 

B38910 

B62506 

robl62A Microtubule-based processes Accessory component of the dynein 

complex involved in linking dynein 

to cargo and adapter proteins. 

B54813 

V104759 

Kinesin-like 

protein at 59C 

Microtubule-based processes Plus end-directed MT-dependent 

motor, has MT depolymerizing 

activity 

B35596 

B64673 

Kinesin-like 

protein at 59D 

Microtubule-based processes Plus end-directed MT-dependent 

motor, has MT depolymerizing 

B35474 

B64657 
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activity 

CG7716 Microtubule-based processes, 

cytoskeletal organization 

Gamma tubulin V25526 

V104217 

Cytoplasmic 

dynein light 

chain 2 

Microtubule-based processes Accessory component of the dynein 

complex involved in linking dynein 

to cargo and adapter proteins. 

V42113 

V42114 

CG18109 Microtubule-based processes, 

cytoskeletal organization 

Gamma tubulin B67359 

V101222 

CG10177 Phosphorylation, protein 

modification processes 

Doublecortin-like kinase B25945 

B55900 

Gasket Phosphorylation, protein 

modification processes, 

nervous system development 

Constitutively active protein kinase 

(GSK3β/α homolog) 

B64922 

V107429 

V25641 

CG8565 Phosphorylation, protein 

modification processes 

14-3-3 protein binding, 

upregulation of cyclin-D1 

expression via p53 pathway 

B55368 

B62359 

CG16716 Protein modification processes Polyglutamylase which 

preferentially modifies β-tubulin 

B62488 

V106602 

CG32238 Protein modification processes Probable tubulin polyglutamylase B54016 

V109628 

Tubulin 

tyrosine ligase-

like 3B 

Protein modification processes Glycylation of α- and β-tubulin 

and/or component of the Arp2/3 

complex regulating actin 

polymerization  

B67791 

V104449 

Ran-like Establishment of protein 

localization 

Nuclear protein import and RNA 

export 

B27512 

B63003 

Actin-related 

protein 53D 

Cytoskeletal organization Actin filament B44580 

V108369 

α actinin 3 Cytoskeletal organization Actin filament bundle assembly B26737 

V106162 

CG17118 Cell morphogenesis Polyglutamylation of microtubules B53304 

V37623 
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* B = Bloomington Stock Center, Bloomington Indiana; V = Vienna Drosophila 

Resource Center, Vienna Austria 
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