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ABSTRACT 

 

We develop a conceptual framework to characterize science along four dimensions: (1) the nature of 

work; (2) characteristics of the workplace; (3) characteristics of workers; and (4) the disclosure of 

research results. Drawing on the broader organizational literature, we discuss relationships between these 

dimensions and derive predictions regarding differences and similarities in the four dimensions between 

industrial and academic science. We then employ detailed survey data from a representative sample of 

over 5,000 life scientists and physical scientists to examine key aspects of the framework. The descriptive 

results provide a nuanced and multidimensional view of industrial and academic science. Our analysis of 

relationships among dimensions suggests that the nature of work is a significant predictor of workplace 

characteristics and of the way in which research results are disclosed. However, important industry-

academia differences in the latter dimensions remain even controlling for the nature of work, consistent 

with the view that sectoral differences in features of science also reflect distinct institutional logics. 
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1 Introduction 

A growing body of research examines features of academic and industrial science. Many scholars 

have emphasized differences between the two sectors with respect to the basic versus applied nature of 

research, levels of freedom for individual scientists, the use of patents and publications as a method of 

disclosure, and more general institutional logics that govern the conduct of science (Aghion et al., 2008; 

Dasgupta & David, 1994; Lacetera, 2009; Murray, 2010). Other streams of work suggest important 

similarities. For example, many universities seek to profit from the commercial potential of research, 

while some firms also invest significant effort in basic research that promises little direct return 

(Bercovitz & Feldman, 2008; Cockburn & Henderson, 1998; Cohen & Levinthal, 1990; Lim, 2004; 

Rosenberg, 1990; Slaughter & Rhoades, 2004; Thursby et al., 2001; Vallas & Kleinman, 2008). At the 

individual level, scientists in both sectors can face constraints in their choice of research projects and may 

at times limit the sharing of research inputs or the disclosure of research results (Blumenthal, 2003; Haas 

& Park, 2010; Hackett, 1990; Vallas & Kleinman, 2008; Walsh et al., 2005). 

Despite a considerable body of work on particular aspects of industrial and academic science, we 

have a limited understanding of how different or similar the two sectors actually are. Conceptually, we 

lack a theoretically grounded framework that identifies a broader set of key dimensions of science and 

considers mechanisms that may lead to differences or similarities between sectors. Empirically, much of 

our understanding is based on insights gained from studies that independently examine selected aspects of 

science, often in only one of the sectors. Thus, there is little work that directly contrasts industrial and 

academic science using comparable measures and that considers interdependencies between features of 

science. We suggest that a deeper understanding of the features of science in each of the two sectors, and 

of differences and similarities between the sectors, may prove useful for organizational scholars, scholars 

of science, as well as managers and policy makers. 

To advance the understanding of industrial and academic science, we develop a conceptual 

framework that connects four key dimensions: the nature of work, characteristics of the workplace, 
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characteristics of workers, and the disclosure of research results. Drawing on organizational and 

disciplinary literatures, we discuss relationships between these four dimensions and mechanisms that may 

lead to differences in these dimensions between industrial and academic science. Building on prior work, 

we pay particular attention to differences in the nature of work across sectors as a driver of differences in 

the other dimensions of science. We then examine aspects of our framework empirically using detailed 

data for a nationally representative sample of over 5,000 PhD-level life and physical scientists. The 

strength of these data is that the same survey instrument was administered to researchers working in 

industry and academia, allowing us to make direct comparisons between the two sectors. 

Our empirical results paint a rich multidimensional picture of industrial and academic science. 

We find considerable differences with respect to certain dimensions but remarkable similarities with 

respect to others. We also observe considerable heterogeneity within sectors, e.g., across different types 

of universities and firms. Our analysis of relationships between dimensions shows that differences in the 

nature of work predict differences in characteristics of the workplace and in disclosure, consistent with 

the view that different research agendas shape how science is done in the two sectors. However, 

differences in the nature of work between sectors do not fully explain differences in these other 

dimensions, suggesting that scientific activity is also be shaped by different institutional logics.
1
 

Our work makes several contributions. First, we provide a multidimensional framework that can 

serve as an analytical tool for future inquiry into features of the scientific system, both from a static and a 

dynamic perspective. Second, our empirical results should be of general interest to scholars of science and 

may provide a useful reference point for work that relies on certain assumptions regarding differences and 

similarities between industrial and academic science (e.g., Aghion et al., 2008; Lacetera, 2009). We also 

show along which dimensions industry-academia differences are most pronounced, pointing towards 

particularly fruitful areas for future work on underlying mechanisms. Third, we provide initial insights 

                                                      

1 In line with prior work, we define institutional logics as patterns of missions, assumptions, values, incentives, and rules that 

characterize a particular institutional realm (Fini & Lacetera, 2010; Murray, 2010; Thornton & Ocasio, 2008). 
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regarding potential drivers of industry-academia differences, contrasting the nature of work and different 

institutional logics as two key factors suggested in prior work. Our results regarding the relationships 

between the nature of work, characteristics of the workplace, and attributes of workers also inform the 

broader organizational literature by providing novel evidence on these relationships in an important yet 

understudied empirical setting. Finally, our results suggest important implications for managers and 

policy makers concerned with interactions between industrial and academic science and with the 

management of knowledge workers within each of the two sectors. 

2 A multidimensional framework of industrial and academic science 

We propose a multidimensional framework of science, consisting of four key dimensions: (1) the 

nature of work; (2) characteristics of the workplace; (3) characteristics of workers; and (4) the disclosure 

of research results. Organizational and disciplinary literatures suggest important relationships between 

these dimensions such that industry-academia differences in one dimension may lead to differences in 

others. In addition to discussing the four dimensions, their relationships, and potential industry-academia 

differences, the following sections also address potential heterogeneity within each sector.
2
  Given space 

and data limitations, our discussion will focus on selected facets within each dimension and on selected 

relationships between them. Figure 1 summarizes the framework. 

--- Figure 1 about here --- 

2.1 The nature of work 

The starting point of much of the prior literature on industrial versus academic science is that the 

two sectors perform different types of research. In the conventional view, firms focus on applied research 

with the goal of solving concrete problems valued in the market place (Aghion et al., 2008; Lacetera, 

2009). The research mission of academia, on the other hand, is to add to the stock of public knowledge by 

conducting basic research, i.e., research resulting in fundamental insights (Argyres & Liebeskind, 1998; 

                                                      

2 Our framework abstracts from differences across scientific fields; we will consider field differences in the empirical analysis. 
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Nelson, 1959). Because basic research has little direct commercial value it must be supported by the 

public or by patrons (Bush, 1945; David, 2008; Nelson, 1959).
3
 

A growing body of work suggests that the division of labor between industry and academia is far 

from clear-cut, however. Some academic institutions were founded with an explicit charge to assist their 

regional economies through applied work (cf. Furman & MacGarvie, 2007; Rosenberg & Nelson, 1994) 

and universities may show an increasing interest in applied work as they turn towards industry to find 

new sources of funding (Hackett, 1990; Kleinman & Vallas, 2001; Thursby et al., 2001). Industrial firms, 

on the other hand, may have various reasons to engage in basic research activities. Among others, such 

research may increase firms’ ability to absorb external knowledge (Cockburn & Henderson, 1998; Cohen 

& Levinthal, 1990), may provide a map for downstream R&D (Fleming & Sorenson, 2004), or may result 

in unexpected commercial applications (Rosenberg, 1990). 

Overall, it is quite clear that although there is a division of innovative labor as suggested by the 

conventional view of industrial and academic science, there is also some overlap. The empirical question 

is how much scientific work differs across sectors with respect to its basic versus applied nature, and to 

what extent differences in the nature of work explain differences in other dimensions of science. 

2.2 Characteristics of the workplace 

To the extent that industry and academia differ in the basic versus applied nature of work, such 

differences may result in differences in the characteristics of the workplace. While many different 

characteristics could be examined, we follow the prior literature’s focus on the levels of freedom and pay 

(Aghion et al., 2008; Dasgupta & David, 1994; Lacetera, 2009; Merton, 1973).  

Organizational theory provides a useful lens to consider the relationships between the nature of 

work and the level of employee autonomy. More specifically, contingency theory as well as agency 

                                                      

3 Stokes (1997) suggests that some research can seek both fundamental knowledge and solutions to practical problems. While 

multi-dimensional classifications of research are a promising area for future work, we rely on the traditional distinction to be 

consistent with prior conceptual work and because our empirical measures also make this distinction. 
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theory suggest that higher levels of worker autonomy are beneficial in settings where there is uncertainty 

about the best approach to solving a given problem, effort is hard to observe, and managers lack expert 

knowledge (Donaldson, 1996; Eisenhardt, 1985; Foss & Laursen, 2005; Ouchi, 1979; Prendergast, 2002). 

These criteria are more strongly associated with basic research than with applied work or development, 

suggesting that the level of researcher freedom should be higher in basic research. Thus, academia’s focus 

on basic research may lead to higher levels of autonomy granted to academic scientists. 

Even for a given type of research, however, academia may offer higher levels of autonomy than 

industry because of different institutional logics. In particular, if the mission of academia is to add to the 

stock of public knowledge, then it is of secondary importance to the university which particular piece of 

the “puzzle” the scientist solves (Kuhn, 1962), as long as the contribution is judged to be significant by 

the community of peers  or resulting commercially valuable knowledge can be transferred to the private 

sector for further development (Siow, 1998; Thursby et al., 2001). Firms, on the other hand, care less 

about new knowledge per se but primarily about knowledge that complements existing firm assets and 

increases profit, likely leading them to constrain scientists’ choice of projects (Aghion et al., 2008). 

While this discussion suggests higher levels of autonomy in academia compared to industry, 

differences may not be that large. Academic scientists do not have total freedom but may face constraints 

related to the broader agendas of internal or external funding sources (Hackett, 1990; Vallas & Kleinman, 

2008). At the same time, case evidence suggest that industrial scientists also enjoy considerable freedom, 

as long as their choices are within broad guidelines and goals set by the organization (Copeland, 2007; 

Vallas & Kleinman, 2008). Indeed, firms recognize that some level of autonomy may be beneficial for 

knowledge work generally (Alvesson, 2000; Drucker, 1999; Lepak & Snell, 2002). Thus, the empirical 

question is how large the differences in researcher freedom actually are between sectors, and to what 

extent they are explained by differences in the nature of research versus other factors. 

A second important workplace characteristic is financial compensation. Industry may be able to 

pay higher wages because of its focus on applied research with higher expected returns (Aghion et al., 

2008). Returns to industrial research may rise further if there are complementarities with other resources 
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of the firm such as physical capital or marketing capabilities (Ceccagnoli et al., 2010; Cohen & Klepper, 

1996). Further developing the notion of complementarities, Agarwal and Ohyama (2010) suggest that 

industry is also characterized by larger complementarities between basic and applied research than 

academia, resulting in higher and more similar wages for basic and applied researchers compared to 

academia. Even for a given value of the research, however, higher pay in industry may reflect different 

logics regarding how value is appropriated. The “open science” logic implies that much of the knowledge 

is given away for free and that the major reward to research comes from peer recognition and status in the 

scientific community (Merton, 1973; Murray, 2010). The commercial logic, in contrast, implies that firms 

and their employees seek to appropriate most of the value of the knowledge in the form of higher salaries 

and profits. 

Several other mechanisms may lead to pay differences across sectors and we can only briefly 

raise some of them. Most interestingly in the context of our earlier discussion, Aghion et al. (2008) argue 

that industry has to pay higher wages in order to compensate for the relative lack of freedom compared to 

academia. This idea fits into a broader literature that considers compensating wage differentials across 

jobs that differ with respect to nonfinancial job attributes (Rosen, 1986; Stern, 2004). Second, much 

scientific work involves team production (Ding et al., 2010; Wuchty et al., 2007) and teams in academia 

may more often cross organizational boundaries than do teams in industry. Thus, firms may find it easier 

to measure and financially reward team performance than individual academic institutions, potentially 

leading to higher compensation in industry.
4
 

While we focus on differences in workplace characteristics across sectors, there may be 

considerable heterogeneity within sectors as well. In industry, such heterogeneity may relate to firm size 

and age. In particular, organizational scholars have suggested that firms become more bureaucratic and 

formalized as they grow and mature, suggesting that larger and older firms may offer their employees less 

autonomy in their jobs (cf. Baron et al., 2001; Cardinal et al., 2004; Idson, 1990). It is not clear, however, 

                                                      

4 We thank an anonymous reviewer for suggesting this idea. 
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how strong these relationships are in the particular context of science. For example, large, diversified 

firms may be better able than small firms to find commercialization opportunities for inventions that 

result from employees’ self-directed exploration (cf. Nelson, 1959), potentially allowing them to provide 

scientists with more autonomy. Similarly, if science-based firms incorporate professional and academic 

norms early in their development (cf. Baron et al., 1999; Ding, 2011), they may be able to preserve 

employment models that emphasize autonomy even as they age. Firm age and size may also predict 

differences in levels of pay. In particular, prior work has shown that larger and older firms offer higher 

wages than small or young firms and has suggested asset complementarities, lower levels of nonpecuniary 

benefits, and higher degrees of specialization as possible explanations (Brown & Medoff, 1989; Idson & 

Feaster, 1990; Oi & Idson, 1999). Within academia, tier-one institutions have a stronger focus on research 

than lower-tier institutions, command higher levels of resources, and are likely to have higher 

expectations regarding the quantity and quality of research output. In return, they may provide their 

scientists with higher levels of pay and autonomy in their work. 

Predictions: Research positions in academia provide higher levels of freedom but lower pay than 

positions in industry. These differences are explained partly by differences in the nature of research.  

There is heterogeneity in freedom and pay within sectors, e.g., between firms of different size and age and 

between higher- and lower-tier universities. 

2.3 Characteristics of workers 

The third dimension of our framework captures characteristics of the individuals actually doing 

the scientific work. Continuing our discussion in the prior section, we focus on scientists’ preferences for 

certain job characteristics such as research freedom or money.
5
 

There are two views on scientists’ preferences and potential differences across sectors. One view 

emphasizes that scientists in both sectors share common characteristics by virtue of their professional 

                                                      

5 Space constraints prevent us from discussing other important individual-level characteristics such as ability, gender, or work 

experience. We will consider these characteristics in the empirical analysis. 
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training in academic institutions; in particular, they share a “taste for science” and the desire for freedom 

in their choice of research (Aghion et al., 2008; Lacetera, 2009; Stern, 2004). As a consequence, scientists 

working in settings that offer less freedom must be paid compensating differentials (Aghion et al., 2008), 

may reduce their effort (Lacetera, 2009), or experience role strain (Kristof-Brown et al., 2005). 

Another view suggests that there is heterogeneity across scientists and that preferences are related 

to characteristics of the workplace. If scientists have heterogeneous preferences when they enter the labor 

market, they are likely to self-select into the sector in which they expect to best satisfy their preferences 

(Agarwal & Ohyama, 2010; Roach & Sauermann, 2010; Rosen, 1986).
6
 Building on our discussion of 

differences in levels of pay and freedom across sectors, we expect that scientists with a stronger desire for 

freedom self-select into academia while those with a stronger desire for financial income self-select into 

industry. In addition, industry-academia differences in preferences may be reinforced by socialization 

processes. For example, scientists who are faced with lower levels of freedom in industry may find that 

freedom becomes less important to them, while higher levels of pay may raise the salience and 

importance of financial rewards to the scientist (Allen & Katz, 1992; Kornhauser, 1962; Saks & Ashforth, 

1997). Both mechanisms – selection and socialization – would lead to the following predictions. 

Predictions: Academic scientists have stronger preferences for freedom and weaker preferences for 

pay than industrial scientists. These differences are explained partly by differences in actual levels of 

freedom and pay offered by employers. 

2.4 Disclosure of research results 

The final dimension of our framework relates to the mechanisms by which research results are 

disclosed. Disclosure may depend on the nature of the research itself. Since basic research promises little 

                                                      

6 Roach and Sauermann (2010) surveyed PhD students at three universities and found that students with a stronger preference for 

money expressed greater interest in industry careers while those with a stronger preference for independence expressed a stronger 

preference for careers in academia. However, not all students will be able to realize their career goals, especially given the small 

number of faculty positions available (National Science Board, 2010). Moreover, preferences measured before scientists enter 

particular career paths will not reflect socialization processes that occur during employment. 
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financial return, its production is rewarded primarily with peer recognition and status in the scientific 

community. To obtain these rewards, however, scientists need to disclose their results widely and openly, 

typically in the form of publications (Dasgupta & David, 1994; Merton, 1973; Stephan, forthcoming). 

Downstream research, on the other hand, promises larger financial returns. These returns are reduced by 

an open disclosure in publications and are better captured through patents, which grant the inventor the 

right to exclude others from benefiting directly from that knowledge (Cohen et al., 2000; Reitzig & 

Puranam, 2009). While both publications and patents constitute disclosure, some downstream results may 

not be disclosed at all. Some results may be too incremental to pass the standards for publishing or 

patenting, and others may be kept secret to increase the appropriability of financial returns (Cohen et al., 

2000). Similarly, Allen (1984) suggests that knowledge resulting from downstream projects is often 

embedded in physical objects and not codified or disclosed in written form. 

The link between the nature of research and the level and form of disclosure of results may not be 

deterministic, however. Dasgupta and David (1994) as well as Nelson (2004) emphasize that basic 

research results can be kept secret and, at times, patented. Similarly, some applied results may be 

publishable in “applied” journals. Thus, disclosure choices may also be shaped by factors other than the 

nature of research per se. One additional driver may be scientists’ preferences for various outcomes tied 

to different forms of disclosure. In particular, scientists who care strongly about money may patent their 

research results to benefit from royalty payments that are typically shared between scientists and their 

employers (IPO, 2004; Lach & Schankerman, 2008). Scientists with a strong desire for peer recognition 

may instead choose to disclose their results more widely in the form of publications. The role of 

scientists’ preferences may be limited however, to the extent that disclosure choices are made by 

managers and administrators rather than by the scientists themselves (Murray, 2010). 

In addition to the nature of research and scientists’ preferences, a third potential factor shaping 

patterns of disclosure may be broader institutional logics prevailing in industry and academia. 

Interestingly, these logics may be more similar with respect to publishing than with respect to patenting. 

Publishing has always been a key aspect of the academic logic, but it may also be valued in industry for 
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several reasons. To some extent, norms supporting publishing may enter the industrial sector through 

flows of academically-trained scientists (Ding, 2011; Stephan, 2006). Moreover, firms have been shown 

to use publications as a strategic tool for various purposes, e.g., to pre-empt patenting by competitors 

(Parchomovsky, 1999), to signal scientific capabilities and a scientific work environment (Hicks, 1995; 

Penin, 2007), or to strengthen industry-academia collaborations (Cockburn & Henderson, 1998). The 

logics regarding patenting are likely to be more different between the sectors. Even though patenting has 

become more common in academia (Bercovitz & Feldman, 2008; Mowery et al., 2001), traditional norms 

of openness remain strong and some academics may see patenting as inappropriate even for downstream 

research (Argyres & Liebeskind, 1998; Gans & Stern, 2010; Murray, 2010; Owen-Smith & Powell, 

2001). Moreover, academia is unlikely to value patents for the various “strategic” purposes documented 

in industry, including the building of fences around technologies, cross-licensing with rivals, or building 

reputations for toughness (e.g., Agarwal et al., 2009; Cohen et al., 2000). 

Predictions: Academic scientists are more likely to publish but less likely to patent than industrial 

scientists. These differences are explained partly by differences in the nature of research and in 

researcher preferences. Controlling for these factors, the industry-academia gap in patenting is larger 

than that in publishing. 

3 Data and measures 

3.1 Data 

We empirically examine key aspects of our framework drawing on restricted-use data from the 

2003 Scientists and Engineers Statistical Data System (SESTAT) provided by the National Science 

Foundation (NSF, 2003). The data were collected in surveys whose sampling population includes all 

individuals living in the United States who either have a degree in a science or engineering (S&E) field or 

who are working in a science and engineering occupation and hold a degree in a non S&E field. The 

sample was drawn to be nationally representative and we use the sampling weights provided by NSF. 
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Response rates for the SESTAT surveys were well over 70%.
7
 For this study, we use data on PhD 

scientists who work in either industry or academia. The “industry” subsample includes respondents whose 

employer is classified as a private-for-profit, non-educational entity.  Included in the “academia” sample 

are respondents whose employer is classified as a 4-year college or university or as a medical school.  

Given our interest in scientific work, we restrict our sample to individuals who are research active, i.e., 

who report that basic research, applied research, or development is either their most important or second 

most important work activity (see below for details). We exclude postdoctoral fellows because 

postdoctoral positions are temporary and may be followed by employment in either industry or academia. 

Our sample includes 5,018 scientists; 36% are employed in industry and 64% are employed in 

academia; 57% work in life sciences occupations, while 43% work in the physical sciences.
8
 Of the 

industrial scientists, 29% work in firms with under 500 employees, while 35% work in firms with more 

than 25,000 employees. Eighty-nine percent of industrial scientists are employed in firms more than five 

years old. Of the academics, 43% are employed in Carnegie research I and II institutions, 28% in medical 

schools, and 29% in other academic institutions (e.g., doctorate granting or comprehensive). Fifty-one 

percent are tenured, 23% are on the tenure track but not tenured, and 26% are not on the tenure track.
9
  

3.2 Measures and measurement issues 

Table 1 summarizes our measures and table 2 provides descriptive statistics. 

--- Tables 1 and 2 about here --- 

The measure of the nature of R&D deserves further discussion. As described in table 1, 

respondents indicated the type of R&D that occupied the most of their time in a typical work week, 

including basic research, applied research, and development. Each of these activities was defined in the 

                                                      

7 Detailed information on the SESTAT data file is available at http://www.nsf.gov/statistics/sestat/. 

8 The SESTAT data also include industry codes for industrial employers. Since our focus is on comparisons between industry and 

academia, we use field classifications rather than industry codes that have no direct correspondence in academia. 

9 The respondents who are not on the tenure track are primarily employed in tier 1 academic institutions and are likely working as 

staff scientists and research faculty. 

http://www.nsf.gov/statistics/sestat/
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survey instrument.  In contrast to prior work that uses features of patents or publications as proxies for the 

nature of the underlying research (e.g., Ding, 2006; Narin et al., 1976; Thursby & Thursby, 2010), our 

measure is independent of patents and publications and allows us to examine the relationship between the 

nature of research and disclosure empirically. Moreover, our measure captures both successful and 

unsuccessful research effort, providing a more complete picture of research activities. At the same time, 

we cannot rule out that industrial and academic researchers apply the NSF definitions in slightly different 

ways, although it is difficult to sign any potential bias. Despite this limitation, our measure provides a 

unique perspective and complements prior work based on other measures of the nature of research. 

While we have an objective measure of the salary paid by the employing organization, we rely on 

a satisfaction measure as a proxy for the level of independence offered. Our rationale is that a positive 

relationship between the actual level of a job attribute and individuals’ satisfaction with that attribute has 

been widely documented, including in the R&D context (Cable & Edwards, 2004; Idson, 1990; Wood & 

LeBold, 1970). However, since an individual’s satisfaction with independence may not only reflect actual 

levels of independence but also his preference for independence (Cable & Edwards, 2004; Freeman, 

1978), we also estimate satisfaction models with the preference for independence as a control.
10

 

Finally, a concern with self-reported preferences is that respondents might inflate ratings of 

preferences that they think are socially desirable and give low scores to preferences that may seem less 

socially desirable (Moorman & Podsakoff, 1992). Any such social desirability bias that applies to both 

industrial and academic scientists should not affect our results regarding comparisons between the two 

groups. However, it is also conceivable that academic scientists may think that they are expected to care 

more strongly about independence than industrial scientists. The latter may think it is less problematic to 

state a strong preference for income, effectively inflating an industry-academia gap in preferences. Any 

descriptive data on preferences we present should be interpreted in light of this possibility. 

                                                      

10 The salary measures provide additional support for the suggested positive relationship between actual job attributes and 

satisfaction. In particular, those scientists who are “very satisfied” with their salary earn an average of $111,050, while those who 

are not very satisfied earn an average of $78,515. These relationships also hold in a regression context with additional controls. 
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4 Empirical analysis of industry-academia gaps and relationships among dimensions 

For each of the four dimensions of science, we first compare the key measures across sectors and 

compute the corresponding “industry-academia gaps.” These gaps are purely descriptive and may reflect a 

range of underlying mechanisms. We then employ regression analysis to examine relationships among the 

four dimensions. A focus of this analysis will be the extent to which differences in one dimension explain 

differences in other dimensions. Given cross-sectional data, our ability to draw causal conclusions is 

limited and our primary contribution is to examine the extent to which observed industry-academia 

differences are consistent with various mechanisms discussed in the conceptual part of the paper. 

Our regression analysis also explores heterogeneity within sectors, e.g., across different types of 

firms or universities. Although not discussed in the conceptual part, we also address potential differences 

across scientific fields (cf. Burton, 2001; Cohen et al., 2000; Lim, 2004) by including detailed field 

dummies and by analyzing key models separately for the life sciences and the physical sciences. 

4.1 Basic versus applied nature of research 

Table 2 shows that roughly two thirds of academics are engaged in basic research, while over 

90% of industrial scientists work on applied research or development. Comparing the nature of research 

across fields, we find that academics in the life sciences are more likely to be engaged in applied work 

than academics in the physical sciences (32% vs. 21%), consistent with the notion that research in the 

academic life sciences more readily leads to practical applications and that basic and applied research 

may also be more complementary in the life sciences (cf. Agarwal & Ohyama, 2010; Mowery et al., 

2001). In industry, life scientists are more likely to be engaged in basic research than their colleagues in 

the physical sciences (8% vs. 4%), perhaps reflecting that firms in the biomedical sector benefit more 

from engaging in basic research than firms in industries that rely heavily on the physical sciences (Lim, 

2004). As a result of these field differences, the industry-academia gap in the nature of research is 

significantly smaller in the life sciences than in the physical sciences. 
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4.2 Characteristics of the workplace: Freedom and pay 

We find that academics report significantly higher satisfaction with the level of independence in 

their jobs: 78% of academics are “very satisfied”, compared to 51% of industrial scientists. On the other 

hand, industry wages are higher by an average of approximately 25,000 USD (table 2). We employ 

regression analysis to examine the relationships between the nature of research and characteristics of the 

workplace, and the degree to which industry-academia gaps in freedom and pay are explained by 

differences in the nature of research. Models 1 through 3 in table 3 use the pooled sample to estimate 

probit regressions of the satisfaction with independence. Consistent with our prediction, they show that 

scientists involved in basic research are more likely to be very satisfied with independence than those 

involved in applied research.  Moreover, controlling for the nature of research leads to a significant 

reduction in the industry-academia gap in independence (change of the INDUSTRY coefficient: 

Chi
2
(1)=4.09; p=0.043).

11
 

 Focusing on the industry subsample (model 4), we find no significant differences in satisfaction 

with independence between individuals working on different types of R&D. One potential interpretation 

is that, given the heterogeneity in firms’ activities (e.g., R&D, marketing, and production), different types 

of R&D are relatively similar from the firm’s perspective and are thus organized in similar ways. 

However, consistent with prior organizational literature, we find that larger firms provide less 

independence. In the academic subsample (model 5), we find no significant differences in independence 

between basic and applied researchers. However, we observe lower levels independence for academics in 

development, possibly reflecting that downstream work in academia is often tied to funding from industry 

or other agencies that may constrain project choice.
12

 As expected, we also observe significantly higher 

                                                      

11 Given that we do not observe exogenous variation in employment sectors, a variety of unobserved variables may underlie the 

industry-academia gaps that remain once we control for the nature of research (model 2) and selected individual-level variables 

(model 3). Thus, the coefficients on the INDUSTRY variable should not be interpreted as reflecting “causal” effects but rather as 

estimates of industry-academia differences conditional upon controlling for certain observed variables. 

12 The number of academics in development is small (n=56) and results for that subsample should be interpreted with caution. 



16 

levels of independence in tier I+II institutions than in lower-tier institutions. Models 6-8 additionally 

control for scientists’ preference for independence to account for the possibility that satisfaction reflects 

not only actual levels of independence but also individuals’ preferences. Our featured results are robust. 

We conduct a similar set of analyses for salary, employing OLS regression. Consistent with our 

expectation, model 9 shows that applied researchers are paid more than basic researchers. However, 

including the nature of research (model 10) only slightly reduces the industry-academia gap in pay 

(Chi
2
(1)=3.33, p=0.068).

13
 Model 11 includes additional controls

14
 and shows that the salary gap is not 

explained by differences in scientists’ ability or experience – indeed, the gap increases once we account 

for the fact that academic scientists tend to have been trained at higher quality institutions, have more 

work experience, and supervise more people.
15

 

Model 12 uses the industry sample and shows no significant pay differences between basic and 

applied researchers, although employees in development earn somewhat less. The lack of a pay 

differences between basic and applied research is consistent with the notion that basic and applied 

research are complements in industry, resulting in a sharing of rents between researchers (Agarwal & 

Ohyama, 2010). Consistent with our expectations, we also find that salary increases with firm size, with 

                                                      

13 The joint observation of higher salaries and lower independence in industry raises the question whether higher salaries are used 

to compensate industrial scientists for lower levels of independence (Aghion et al., 2008). In that case, we would expect a 

negative correlation between salary and independence. We estimated additional regressions of salary including the measure of 

satisfaction with independence but generally find a positive relationship. Moreover, including the satisfaction measure does not 

reduce the estimated salary gap across sectors (table 3, model 14). While these observations do not support the notion that higher 

salaries compensate for lower levels of freedom, they should not be interpreted as evidence against such compensating 

differentials. As discussed by Stern (2004), cross-sectional estimates of compensating differentials are likely to be biased by 

unobserved individual characteristics and a more appropriate empirical approach is to control for individual fixed effects. 

14 We control for several variables that have been shown to relate to pay (e.g., gender, ability, and work experience), yet there are 

other unobserved factors that may explain the remaining wage gaps. Given space and data limitations, we leave a more detailed 

analysis of industry-academia wage differences to future research. However, evidence of a large wage gap even controlling for 

many commonly considered variables and for differences in the nature of research may prove useful in such efforts.   

15 Lower levels of experience and supervisory responsibilities in industry may reflect that an increasing share of younger cohorts 

has entered industry careers rather than careers in academia (Stephan, forthcoming). Moreover, since we restrict our sample to 

research-active scientists, it excludes scientists who have stopped doing research to pursue a “management track”, which is more 

common in industry (cf.Allen & Katz, 1992). 
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time since graduation, and with managerial responsibilities. Using the academic sample (model 13), we 

find that academic scientists engaged in applied research earn significantly more than those engaged in 

basic research. Recall that the salary measure captures only base salary, and any unobserved consulting 

income or patent royalties would likely further increase the pay difference. As expected, we also observe 

higher pay at tier-1 institutions and at medical schools. 

--- Table 3 about here --- 

4.3 Characteristics of workers: Scientists’ preferences 

Our conceptual discussion suggests that selection and socialization mechanisms may lead to 

systematic relationships between workplace characteristics and the characteristics of workers. Table 2 

shows that industrial scientists indeed express a stronger preference for pay than academics (47% versus 

37% “very important” ratings), consistent with significantly higher pay levels in industry. Similarly, 81% 

of academics rate independence as “very important”, while only 61% of industrial scientists do so. 

The regressions reported in table 4 provide further insights regarding the relationships between 

workplace characteristics and scientists’ preferences. Models 1-3 show the expected positive relationship 

between levels of independence and preference for independence. Moreover, including the measures of 

organizational characteristics in the regression significantly reduces the industry-academia gap in 

preference for independence (Chi
2
(1)=19.20, p=<0.01). Models 4 and 5 show separate regressions for 

industrial and academic scientists, respectively. We find a positive relationship between levels of 

independence and the preference for independence in both sectors, suggesting that selection and 

socialization may occur not only across the two sectors, but also across organizations within sectors. 

Models 6 to 10 show results for the preference for salary. We observe a strong positive 

relationship between actual pay and the preference for pay, and the industry-academia gap is reduced by 

more than half when measures of organizational characteristics and the nature of research are included 

(Chi
2
(1)=12.67, p=<0.01), suggesting that the latter variables explain a significant part of the observed 

industry-academia gap in preference for money. 
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While our cross-sectional data do not allow us to conclusively distinguish selection and 

socialization mechanisms, we conduct some exploratory analyses. First, given that socialization would 

occur over time, we examine the relationships between preferences and time since graduation. We 

observe in table 4 that the preference for independence increases with time since graduation among 

academics but not among industrial scientists, consistent with a socialization process. However, the 

preference for money decreases with time since graduation in industry, inconsistent with a socialization 

process. The interpretation of these results is further complicated by the fact that we cannot disentangle 

age and cohort effects (Levin & Stephan, 1991). Second, we compute the industry-academia gap in 

preferences for scientists who graduated within the prior three years, thus limiting the analysis to 

scientists who are in a similar cohort and who had less exposure to socialization processes within their 

current employment sector. We find significant gaps in the preference for independence (0.60 in industry 

vs. 0.74 in academia) and for salary (0.54 in industry vs. 0.38 in academia), suggesting that selection may 

play an important role in driving the observed industry-academia differences in scientists’ preferences. 

--- Table 4 about here --- 

4.4 Disclosure of research results 

Fifty percent of all industrial scientists in our sample have at least one patent application in a five-

year span, compared to only 16% of academics who report at least one patent application. In contrast, 

92% of academics have at least one publication in five years, compared to 62% publishing scientists in 

industry.  Figure 2 shows the likelihood of patenting by sector and field. We see that the industry-

academia gap in patenting is smaller in the life sciences than in the physical sciences, both because life 

scientists in academia are more likely to patent than physical scientists in academia and because life 

scientists in industry are less likely to patent than physical scientists in industry.
16

 The industry-academia 

                                                      

16 Inventions in the life sciences tend to be less complex, likely resulting in fewer patents for a given invention. Moreover, firms 

in complex industries such as semiconductors and electronics (which tend to draw on the physical sciences) patent extensively for 

several strategic reasons, further increasing the role of patents (cf. Cohen et al., 2000). 
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gap in publishing is smaller in the life sciences primarily because life scientists in industry are more likely 

to publish than physical scientists in industry (71% vs. 54%). 

--- Figure 2 about here --- 

In table 5, we use probit regression analysis to examine the extent to which industry-academia 

gaps in the use of disclosure mechanisms are explained by differences in the nature of research. Focusing 

first on patenting in the pooled sample, we find that scientists engaged in development are less likely to 

have a patent application than those in applied research. This finding may reflect that such projects are 

less likely to be sufficiently novel to be patentable or that knowledge from such projects is encoded 

primarily in physical artifacts rather than words (Allen, 1984). Despite this result, including the nature of 

research does not change the industry-academia gap in patenting. Model 3 additionally includes scientists’ 

preferences for money and independence. We find no relationship between these preferences and 

patenting, perhaps reflecting that patenting decisions are made primarily by others, or that scientists 

patent for reasons other than money (Murray, 2010). Model 3 also includes additional controls but 

continues to predict very different probabilities of patenting across sectors. Evaluated at the mean of other 

independent variables, the predicted probability of patenting is 46% in industry versus 14% in academia. 

Next, we estimate separate regressions for academia and industry and further differentiate 

between the life sciences and the physical sciences. We find that the negative coefficient on development 

is significant only among industrial life scientists. We find no significant differences in the likelihood of 

patenting between scientists doing basic and applied research in industry or among academic life 

scientists. In the physical sciences, however, academics engaged in basic research are much less likely to 

patent than those engaged in applied work. 

We also observe significant heterogeneity in patenting within sectors. For example, physical 

scientists in young firms are more likely to have a patent than those in older firms, perhaps reflecting that 

young firms use patents as a signal of scientific capability and commercial potential (Hsu & Ziedonis, 

2008). Moreover, the likelihood that an industrial scientist has a patent increases with the ranking of her 

PhD granting institution, possibly reflecting an effect of ability on the quality of research. In academia, 
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scientists in lower-tier institutions are less likely to have patents than those in research I/II institutions and 

medical schools, perhaps reflecting otherwise unobserved differences in the commercial value of results, 

or in the resources devoted to technology transfer activities (cf. Belenzon & Schankerman, 2009). 

Models 8-14 examine the probability of publishing. In the pooled sample, we find no significant 

differences in publishing between basic and applied scientists, but scientists engaged in development are 

much less likely to publish. Once we control for the nature of research, the industry-academia gap in 

publishing decreases significantly (Chi
2
(1)=38.84, p<0.01), suggesting that publishing is less common 

among industrial scientists in part because they are more likely to be engaged in development work which 

is less likely to result in a publication. However, even controlling for the nature of research and other 

variables, academics are more likely to publish than industrial scientists (92% vs. 71%). 

Our split sample regressions show that the likelihood of publishing decreases with time since 

graduation in both sectors, i.e., younger scientists are more likely to have published in a 5-year span than 

older scientists. This result is consistent with prior work showing a decrease in research productivity over 

the life cycle (Levin & Stephan, 1991). In industry, that result may also reflect that firms have recently 

shifted towards open science by hiring more “academic” types of scientists (cf. Lacetera et al., 2004) or 

that freshly-minted PhDs publish their dissertation research after entering industry. To examine the latter 

possibility, we dropped those industrial scientists who graduated within the last five years but find that the 

effect of time since graduation remains highly significant. 

Overall, the nature of research explains a significant share of the industry-academia gap in 

publishing but does little to explain differences in patenting. Moreover, controlling for the nature of 

research and scientists’ characteristics, the industry-academia gap in patenting is considerably larger than 

that in publishing. These results are consistent with the notion that the disclosure of research results in 

part reflects different institutional logics of industrial and academic science, and that these logics are more 

similar with respect to publishing than with respect to patenting. A more detailed analysis of patenting 

and publishing is reported in the appendix and reinforces the conclusions of our main analysis. 

--- Table 5 about here --- 
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5 Discussion 

Knowledge production in industrial and academic science has attracted increasing interest by 

organizational scholars, economists and sociologists. Yet, important conceptual and empirical gaps 

remain, especially with respect to comparisons between the two sectors. We develop a multidimensional 

framework that considers four interdependent dimensions of science: the nature of work, characteristics of 

the workplace, characteristics of workers, and the way in which research results are disclosed. We then 

examine key aspects of this framework using survey data for a nationally representative sample of over 

5,000 PhD-level life and physical scientists. The data provide unique insights into industrial and academic 

science that should be of interest to scholars of science generally, and particularly useful for theoretical 

work that relies on certain assumptions regarding differences and similarities between sectors (Aghion et 

al., 2008; Lacetera, 2009). Our empirical results demonstrate the benefits of conceptualizing science as 

multidimensional: while we find large differences in some aspects such as the nature of research, levels of 

pay, and the use of patenting, differences in other aspects, such as levels of freedom or the likelihood of 

publishing, are smaller. Moreover, in contrast to prior work that has discussed industry-academia 

differences primarily based on evidence from the biomedical sciences, our data allow us to provide 

comparative insights for the physical sciences, showing industry-academia gaps that are similar in sign 

but often different in magnitude. 

The results regarding the relationships between various dimensions of science provide useful 

insights. For example, we find that the nature of research is significantly related to levels of freedom and 

pay, supporting more general organizational theories relating tasks to organizational characteristics 

(Donaldson, 1996; Lepak & Snell, 2002). Similarly, we find strong relationships between features of the 

workplace and scientists’ preferences, consistent with theories of selection and socialization (Agarwal & 

Ohyama, 2010; Besley & Ghatak, 2005; Rosen, 1986; Saks & Ashforth, 1997). Finally, we find that the 

nature of research has only limited power in explaining certain industry-academia gaps such as 

differences in freedom, pay, or patenting. The latter finding supports the notion that differences between 
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industrial and academic science also reflect different institutional logics rather than simply differences in 

the nature of research (Dasgupta & David, 1994; Fini & Lacetera, 2010; Murray, 2010). 

Our framework provides a useful basis for future conceptual and empirical work. First, future 

work can consider additional facets within each of the four dimensions. For example, our discussion of 

characteristics of the workplace is limited to freedom and pay; future work could examine other 

potentially relevant characteristics such as team size, team composition, or physical resources. Similarly, 

we focus on scientists’ preferences for freedom and pay. Future work could study other worker 

characteristics such as ability, gender, or the desire for peer recognition. The framework may serve as a 

useful starting point for linking these variables to other dimensions of science and for thinking about how 

these variables might differ between the industrial and the academic sector. Second, future work could 

extend the framework by considering additional relationships among dimensions. In particular, while we 

followed prior literature in considering the nature of research as a driver of other dimensions of science, 

scholars may examine how research choices themselves are shaped by other variables. Finally, our 

framework may be useful in studying changes in the scientific system. For example, it has been suggested 

that industrial and academic science “converge” over time (Hackett, 1990; Vallas & Kleinman, 2008), yet 

the empirical evidence is limited. Our framework suggests a set of dimensions that could be tracked over 

time in a more systematic assessment of convergence and also predicts how convergence with respect to 

one dimension may lead to convergence in others. In the context of such dynamic considerations, our 

empirical results may also serve as a useful reference point against which future data can be compared. 

We hope that our insights will be of use for managers and administrators concerned with the 

interactions between industrial and academic science and with managing knowledge workers within each 

sector. One possible interpretation of our findings is that the significant differences across sectors could 

inhibit industry-academia interactions, e.g., if firms emphasize patents, while patenting still conflicts with 

the academic logic. A different interpretation, however, is that certain similarities between sectors, e.g., 

regarding scientists’ preferences and publishing activities, may actually facilitate collaboration. The 

conceptual framework and the empirical results presented in this paper may help managers to consider 
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along which dimensions of science tensions with academic partners are most likely to arise and which 

interventions or compromises may be needed to mitigate those tensions. Our descriptive results can also 

be of value to managers who seek to attract research personnel. Many junior scientists prefer employment 

in academia over employment in industry, yet some of this preference may be due to biased perceptions 

of industrial science (cf. Roach & Sauermann, 2010). While managers have tried to address these 

“misconceptions” in a qualitative way (e.g., Copeland, 2007), data such as ours may help to convey a 

more objective picture of industrial science. Academic advisors seeking to advise students in their career 

decisions may similarly benefit from our descriptive insights. Finally, considering the relationships 

among dimensions of science may help in evaluating the implications of particular managerial or policy 

interventions. To illustrate, recent attempts to increase the levels of administrative oversight over 

academic researchers (as illustrated in Simon & Banchero, 2010) would seem a misfit with the task of 

basic research (the work – workplace link). Such reductions in freedom may also increase the 

attractiveness of outside job options for scientists who value freedom (the workplace – worker link), 

potentially requiring higher academic wages or leading to a greater flow of scientists with a strong “taste 

for science” into industry. The latter may then also lead to more openness in the private sector. While this 

example is simplistic, it suggests that considering interdependencies between dimensions of science is 

important in evaluating the broader implications of particular interventions. 

In interpreting the results of this study, important limitations have to be kept in mind. First, while 

our measure of the nature of R&D has unique benefits, objective and more fine-grained measures could 

provide additional insights. Second, we rely on scientists’ satisfaction with independence as a proxy for 

actual independence. While the qualitative results regarding this measure are robust to the inclusion of 

various controls, it would be desirable to assess industry-academia gaps in freedom using more direct 

measures. Most importantly, our ability to make causal inferences is limited and more work is needed to 

identify the exact mechanisms underlying observed industry-academia differences. However, our 

conceptual discussion of possible mechanisms in conjunction with the empirical evidence regarding the 

existence and magnitude of sectoral differences should prove useful for such future work.
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Table 1: Measures 

Variable  Measure Description 

 

Classification 

variables 

 

Employment 

sector 

Dummy variable indicating whether respondent works in industry (INDUSTRY=1) 

or academia (INDUSTRY=0). 

Field of 

occupation 

Based on respondents’ own classification using occupational codes provided by the 

NSF, we split the sample into respondents working in the life sciences and in the 

physical or related sciences. We also use more detailed subfield dummies to control 

for 10 different fields in our regression analyses. In the life sciences, these fields 

include agricultural and food sciences (5.9% of total), biomedical sciences including 

biochemistry and biophysics (36.6%), biomedical engineering (1.2%), health 

sciences (7.3%), and other life sciences (0.7%). In the physical sciences, these fields 

include physics (7.0%), chemistry (16.7%), earth sciences (6.26%), mathematics 

(8.15%), and other physical sciences (0.6%). We also include a separate dummy for 

individuals who self-classified as “R&D management”. 

Dimensions of 

Science 

 

Nature of R&D 

 

Respondents indicated which work activities were most important and second most 

important in terms of time spent. The survey instrument provided a list of work 

activities, including the following three R&D activities and their definitions: 

 “Basic research - study directed toward gaining scientific knowledge primarily 

for its own sake”; 

 “Applied research - study directed toward gaining scientific knowledge to meet a 

recognized need”; and 

 “Development - using knowledge gained from research for the production of 

materials, devices”. 

We coded three dummy variables indicating which activity was the most important 

R&D activity (BASIC, APPLIED, DEVELOPMENT). 

Salary 

 

Respondents reported the basic annual salary received at their current employer, 

excluding bonuses, overtime, summer support, or consulting. NSF annualized this 

variable on the basis of a separate question asking about the number of weeks upon 

which this salary was based. The NSF data also include a measure of total earnings 

in all jobs combined that yields qualitatively similar results. Given the difficulties in 

interpreting the earnings measure, we feature the measure of base salary. 

Satisfaction with 

independence 

and income 

 

Respondents rated on a 4-point scale how satisfied they were at their current 

employer with independence and salary. We use these measures as proxies for 

organizational characteristics (see below for a discussion). Given the prevalence of 

high ratings, we dichotomize these measures (SAT_IND and SAT_SAL) such that 1 

indicates “very satisfied” and 0 indicates a rating lower than “very satisfied”. 

Scientists’ 

preferences for 

independence 

and income  

 

Respondents used a 4-point scale to rate their preferences for salary and 

independence in response to the following question: “When thinking about a job, 

how important is each of the following factors to you . . .”. Given the prevalence of 

high ratings, we dichotomize these measures (IMP_IND and IMP_SAL) such that 1 

indicates “very important” and 0 indicates a rating lower than “very important”. 
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U.S. Patent 

applications 

 

Each respondent reported the number of U.S. patent applications in which he or she 

was named as an inventor over the last 5 years prior to the survey. We created a 

dummy variable coded as 1 if the respondent had at least one patent application in 

the 5-year period (PATENT01). Our empirical analysis focuses on this variable 

because our main interest is in whether a scientist discloses in the form of patents at 

all, rather than in the quantity or quality of patent output. The patent measure should 

capture all patents applied for by academic scientists, whether or not these patents 

are assigned to universities, and is thus more comprehensive than patent measures 

based on data provided by university administrators (cf. Thursby et al., 2009). 

Publications 

 

Respondents reported the number of (co)authored articles that have been accepted 

for publication in a refereed professional journal over the last 5 years. We focus our 

analysis on a dummy variable coded as 1 if the respondent had at least one 

publication in the 5-year period (PUBS01), indicating that a scientist is willing to 

publish and that the employer allows the individual to publish. The data provide no 

information on the actual content or the quality of publications and SESTAT users 

are not allowed to match the data to external publication data. 

Control 

Variables 

 

Experience Years since obtaining PhD degree (YRS_SINCE_GRAD).  

PhD quality 

 

We matched each respondent’s PhD-granting institution and the PhD field to the 

National Research Council’s evaluation of PhD program quality (Goldberger et al., 

1995), using the rating of “program effectiveness in educating research scholars and 

scientists”. The scale ranges from 0 (“not effective”) to 5 (“extremely effective”). 

This measure formally captures the quality of graduate education, but may also 

reflect innate ability to the extent that high-ability individuals self-select or are 

selected into high-quality PhD programs. 

Number of 

individuals 

supervised  

Respondents indicated how many people they supervised directly in their jobs. We 

interpret this (logged) measure as a proxy for managerial status and, for those 

scientists running their own labs, as a proxy for the size of the laboratory. 

Firm size 

 

The survey asked respondents to estimate the number of employees in all locations 

of their employer combined, using 8 size categories (<10; 11-24; 25-99; 100-499; 

500-999; 1,000-4,999; 5000-24,999; 25,000+). We constructed a continuous firm 

size variable using the logged midpoints of these categories. Applies only to industry 

sample. 

Firm age Respondents indicated in a yes/no question whether their employer came into being 

as a new business within the past 5 years. We created a dummy variable that equals 1 

if the employer is older than 5 years and 0 otherwise. Industry sample only. 

Type of 

academic 

institution 

We distinguish academic institutions using the Carnegie classification provided by 

NSF: Carnegie research 1 and 2 institutions, lower-tier institutions (e.g, doctorate 

granting, comprehensive) and medical schools. Academic sample only. 

Academic 

position 

Dummy variables indicating whether an academic scientist is tenured, on the tenure 

track but not tenured, or not on the tenure track. Academic sample only. 

Race/Ethnicity  Dummies for white, Asian, and other 

Gender MALE =1 if respondent is male 

U.S. citizen USCITIZEN =1 if respondent is a U.S. citizen 
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Table 2: Descriptive statistics and industry-academia gaps 

 

*=significant at 5%; **=significant at 1%. 

  

Industry Academia Industry Academia

N=848 N=1993 N=983 N=1194

Dimension Variable Type Mean Mean Mean Mean Mean Mean

Nature of work Basic research Dummy 0.06 0.70 -0.64 ** 0.08 0.66 -0.59 ** 0.04 0.77 -0.72 ** 0.14 **

Applied Research Dummy 0.58 0.28 0.30 ** 0.60 0.32 0.28 ** 0.56 0.21 0.34 ** -0.06 *

Development Dummy 0.36 0.02 0.35 ** 0.32 0.01 0.30 ** 0.40 0.02 0.38 ** -0.08 n.s.

Characteristics Actual salary Continuous 106,081   81,326   24,755    ** 107,052   84,063   22,989   ** 105,256    76,739      28,517    ** -5,527 n.s.

of work place Satisfaction salary Dummy 0.41 0.26 0.15 ** 0.42 0.27 0.15 ** 0.39 0.24 0.15 ** 0.00 n.s.

Satisfaction independence Dummy 0.51 0.78 -0.27 ** 0.52 0.79 -0.27 ** 0.51 0.76 -0.26 ** -0.01 n.s.

Characteristics Importance of salary Dummy 0.47 0.37 0.10 ** 0.49 0.39 0.10 ** 0.46 0.34 0.12 ** -0.02 n.s.

of workers Importance of independence Dummy 0.61 0.81 -0.20 ** 0.63 0.82 -0.18 ** 0.59 0.79 -0.20 ** 0.02 n.s.

Disclosure U.S. patent applications Count 2.91 0.51 2.41 ** 2.23 0.60 1.63 ** 3.50 0.35 3.14 ** -1.51 **

mechanisms U.S. patent applications yes/no Dummy 0.50 0.16 0.34 ** 0.43 0.19 0.24 ** 0.55 0.11 0.45 ** -0.21 **

Publications Count 3.49 12.00 -8.50 ** 3.94 12.02 -8.08 ** 3.10 11.95 -8.85 ** 0.77 *

Publications yes/no Dummy 0.62 0.92 -0.30 ** 0.71 0.94 -0.23 ** 0.54 0.90 -0.36 ** 0.13 *

Controls Years since graduation Count 15.03 17.18 -2.15 ** 14.33 16.79 -2.46 ** 15.63 17.83 -2.21 **

NRC PhD program ranking score Continuous 3.41 3.47 -0.06 ** 3.38 3.40 -0.02 n.s. 3.44 3.58 -0.15 **

People supervised (ln) Continuous 0.99 1.10 -0.11 ** 1.07 1.26 -0.19 ** 0.93 0.83 0.10 *

Firm size (ln) Continuous 8.11 7.69 8.46

Firm age Dummy 0.89 0.86 0.92

Not tenure track Dummy 0.25 0.29 0.19

Tenure track not tenured Dummy 0.21 0.22 0.20

Tenured Dummy 0.54 0.49 0.61

Carnegie I, II Dummy 0.43 0.37 0.53

Lower tier Dummy 0.28 0.19 0.43

Medical School Dummy 0.29 0.44 0.04

Male Dummy 0.81 0.76 0.05 ** 0.75 0.71 0.04 * 0.86 0.84 0.02 n.s.

U.S. Citizen Dummy 0.87 0.90 -0.03 ** 0.87 0.91 -0.05 ** 0.87 0.89 -0.02 n.s.

Full Sample

Life-Phys

Diff. in Gaps

Life Sciences Physical Sciences

Ind-Acad Ind-Acad

Gap Gap

Industry Academia Ind-Acad

N=1831 N=3187 Gap
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Table 3: Characteristics of the workplace: Independence and salary 

 

Robust standard errors in brackets. *=sig at 5%, **=sig at 1%. Omitted categories are Applied research, Tenure track but not tenured, Carnegie I+II.

Industry Academia Full Sample Industry Academia Industry Academia

Probit Probit Probit Probit Probit Probit Probit Probit OLS OLS OLS OLS OLS OLS

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sat_Ind Sat_Ind Sat_Ind Sat_Ind Sat_Ind Sat_Ind Sat_Ind Sat_Ind Ln_Salary Ln_Salary Ln_Salary Ln_Salary Ln_Salary Ln_Salary

Industry -0.738** -0.663** -0.575** -0.496** 0.266** 0.233** 0.290** 0.300**

[0.040] [0.055] [0.061] [0.062] [0.020] [0.026] [0.026] [0.026]

Basic research 0.121* 0.159** -0.041 0.092 0.150** 0.012 0.089 -0.048* -0.058** 0.006 -0.070** -0.060**

[0.052] [0.056] [0.139] [0.066] [0.057] [0.142] [0.067] [0.024] [0.022] [0.058] [0.025] [0.022]

Development 0.004 -0.015 0.001 -0.426* 0.005 0.026 -0.401* 0.003 -0.067* -0.070* 0.053 -0.067*

[0.062] [0.064] [0.067] [0.189] [0.064] [0.068] [0.182] [0.033] [0.031] [0.034] [0.051] [0.031]

Imp. Independence 0.680** 0.601** 0.707**

[0.046] [0.065] [0.065]

Sat. Independence 0.048*

[0.021]

Detailed field incl. incl. incl. incl. incl. incl. incl. incl. incl. incl.

Yrs since grad 0.003 0.000 0.006 0.002 -0.001 0.005 0.021** 0.021** 0.017** 0.021**

[0.003] [0.004] [0.004] [0.003] [0.004] [0.004] [0.001] [0.002] [0.001] [0.001]

Yrs since grad_sq 0.001** 0.001** 0.000 0.001** 0.001** 0.000 -0.000** -0.001** 0.000 -0.000**

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

PhD quality 0.031 0.000 0.029 0.021 0.002 0.010 0.051** 0.039 0.031* 0.051**

[0.029] [0.045] [0.039] [0.029] [0.045] [0.040] [0.012] [0.024] [0.014] [0.012]

People supervised 0.122** 0.087* 0.107** 0.096** 0.060 0.086* 0.121** 0.072** 0.111** 0.119**

[0.026] [0.043] [0.035] [0.026] [0.044] [0.035] [0.010] [0.020] [0.012] [0.010]

Firm size -0.051** -0.051** 0.013*

[0.012] [0.013] [0.006]

Firm age 0.162 0.173 -0.013

[0.114] [0.116] [0.061]

Not tenure track -0.469** -0.392** -0.177**

[0.083] [0.085] [0.029]

Tenured -0.126 -0.131 0.024

[0.090] [0.092] [0.028]

Lower tier -0.205** -0.198** -0.164**

[0.072] [0.073] [0.028]

Medical school -0.014 0.006 0.160**

[0.075] [0.077] [0.027]

Male -0.086 -0.171* -0.073 -0.067 -0.146 -0.050 0.061** 0.002 0.089** 0.062**

[0.050] [0.082] [0.064] [0.050] [0.083] [0.065] [0.022] [0.040] [0.027] [0.022]

U.S. citizen 0.126 -0.017 0.278** 0.136 -0.014 0.300** 0.014 0.013 0.024 0.012

[0.074] [0.113] [0.095] [0.075] [0.115] [0.095] [0.036] [0.061] [0.044] [0.036]

Race incl. incl. incl. incl. incl. incl. incl. incl. incl. incl.

Constant 0.766** 0.683** 0.419** 0.615* 0.419* -0.013 0.181 -0.004 11.165** 11.199** 10.414** 10.735** 10.541** 10.381**

[0.026] [0.045] [0.151] [0.275] [0.200] [0.156] [0.286] [0.208] [0.012] [0.021] [0.069] [0.123] [0.088] [0.068]

Observations 5018 5018 5018 1831 3187 5018 1831 3187 5018 5018 5018 1831 3187 5018

Chi-square 333.408 338.295 449.243 63.349 166.825 649.292 145.967 282.176

R-squared 0.038 0.039 0.198 0.146 0.228 0.199

Full Sample Full Sample Full Sample
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Table 4: Characteristics of workers: Preferences 

 

Robust standard errors in brackets. *=sig at 5%, **=sig at 1%. Omitted categories are Applied research, Tenure 

track but not tenured, Carnegie I+II institution. 

 

 

Industry Academia Industry Academia

1 2 3 4 5 6 7 8 9 10

Probit Probit Probit Probit Probit Probit Probit Probit Probit Probit

Imp_Ind Imp_Ind Imp_Ind Imp_Ind Imp_Ind Imp_Sal Imp_Sal Imp_Sal Imp_Sal Imp_Sal

Industry -0.592** -0.403** -0.338** 0.259** 0.124* 0.143*

[0.041] [0.060] [0.066] [0.039] [0.054] [0.060]

Basic research 0.056 0.047 -0.212 0.017 -0.116* -0.091 -0.179 -0.093

[0.057] [0.061] [0.142] [0.071] [0.049] [0.052] [0.137] [0.060]

Development -0.054 -0.066 -0.095 -0.082 0.015 -0.005 0.067 -0.583**

[0.063] [0.065] [0.069] [0.198] [0.061] [0.062] [0.067] [0.210]

Sat. independence 0.691** 0.673** 0.597** 0.700** -0.061 -0.043 0.051 -0.130*

[0.044] [0.045] [0.064] [0.063] [0.042] [0.043] [0.063] [0.060]

Ln_Salary 0.103** 0.039 0.063 -0.001 0.151** 0.135** 0.141** 0.116*

[0.030] [0.033] [0.048] [0.048] [0.032] [0.035] [0.050] [0.049]

Detailed field incl. incl. incl. incl. incl. incl.

Yrs since grad 0.007** 0.003 0.008* 0.002 -0.010** 0.004

[0.002] [0.004] [0.004] [0.002] [0.004] [0.003]

PhD quality 0.05 -0.015 0.090* -0.083** -0.045 -0.114**

[0.030] [0.045] [0.043] [0.027] [0.045] [0.036]

People supervised 0.106** 0.108* 0.092* 0.043 0.046 0.026

[0.027] [0.045] [0.036] [0.024] [0.043] [0.030]

Firm size -0.001 0.025*

[0.013] [0.013]

Firm age -0.067 -0.092

[0.120] [0.117]

Not tenure track -0.371** 0.029

[0.084] [0.076]

Tenured 0.021 0.150*

[0.088] [0.075]

Lower tier -0.06 -0.03

[0.075] [0.066]

Medical school -0.102 0.119

[0.080] [0.068]

Male -0.095 -0.114 -0.116 0.102* 0.158 0.067

[0.052] [0.085] [0.068] [0.047] [0.081] [0.058]

U.S. citizen -0.073 -0.027 -0.125 -0.181** -0.147 -0.179

[0.077] [0.113] [0.107] [0.070] [0.111] [0.092]

Race incl. incl. incl. incl. incl. incl.

Constant 0.872** -0.812* -0.423 -0.388 -0.116 -0.325** -1.886** -1.548** -1.778** -1.219*

[0.027] [0.339] [0.375] [0.586] [0.539] [0.024] [0.362] [0.394] [0.593] [0.544]

Observations 5018 5018 5018 1831 3187 5018 5018 5018 1831 3187

Chi-square 204.109 459.172 493.378 125.649 247.908 44.086 73.967 149.731 49.828 108.88

df 1 5 22 23 25 1 5 22 23 25

Full Sample Full Sample
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Table 5: Disclosure: Patenting and publishing 

 

Probit. Robust standard errors in brackets. *=sig at 5%, **=sig at 1%. Omitted: Applied research, Tenure track but not tenured, Carnegie I+II institution. 

Life Physical Life Physical Life Physical Life Physical

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Patent01 Patent01 Patent01 Patent01 Patent01 Patent01 Patent01 Pubs01 Pubs01 Pubs01 Pubs01 Pubs01 Pubs01 Pubs01

Industry 0.986** 1.017** 0.964** -1.113** -0.845** -0.847**

[0.042] [0.058] [0.067] [0.047] [0.062] [0.074]

Basic research -0.044 -0.100 0.053 0.014 0.099 -0.515** 0.087 0.049 0.352 0.360 0.118 -0.014

[0.056] [0.064] [0.187] [0.231] [0.091] [0.141] [0.064] [0.072] [0.248] [0.236] [0.122] [0.142]

Development -0.173** -0.211** -0.324** -0.127 -0.239 -0.111 -0.599** -0.522** -0.420** -0.572** -0.514 -0.235

[0.062] [0.066] [0.106] [0.094] [0.341] [0.367] [0.063] [0.065] [0.106] [0.095] [0.299] [0.378]

Imp. salary 0.044 -0.104 -0.016 0.083 0.231 -0.077 -0.188 -0.124 -0.076 -0.011

[0.045] [0.096] [0.090] [0.073] [0.122] [0.049] [0.103] [0.091] [0.098] [0.120]

Imp. independence 0.106* 0.101 0.072 0.195 0.14 0.093 0.064 0.051 0.106 0.215

[0.050] [0.099] [0.091] [0.101] [0.150] [0.054] [0.106] [0.092] [0.123] [0.133]

Detailed field incl. incl. incl. incl. incl. incl. incl. incl. incl. incl.

Yrs since grad 0.007** 0.005 0.003 0.014* 0.009 -0.033** -0.041** -0.043** -0.017* -0.038**

[0.003] [0.006] [0.006] [0.006] [0.010] [0.003] [0.007] [0.006] [0.008] [0.010]

Yrs since grad_sq -0.001** -0.002** -0.002** -0.001* -0.001 0.001** 0.001* 0.002** 0.000 0.001

[0.000] [0.001] [0.001] [0.000] [0.001] [0.000] [0.001] [0.000] [0.000] [0.000]

PhD quality 0.129** 0.277** 0.123* 0.039 -0.022 0.182** 0.140 0.187** 0.065 0.161*

[0.033] [0.074] [0.060] [0.058] [0.087] [0.033] [0.078] [0.062] [0.068] [0.070]

People supervised 0.272** 0.301** 0.140* 0.313** 0.211** 0.206** 0.151* 0.099 0.148* 0.278**

[0.027] [0.071] [0.061] [0.045] [0.064] [0.032] [0.073] [0.058] [0.061] [0.085]

Firm size -0.015 0.032 0.027 0.024

[0.018] [0.019] [0.020] [0.019]

Firm age -0.225 -0.445* -0.243 -0.305

[0.151] [0.201] [0.180] [0.192]

Not tenure track 0.085 -0.244 -0.018 -0.515*

[0.109] [0.210] [0.152] [0.206]

Tenured -0.011 -0.299 0.128 -0.056

[0.116] [0.210] [0.158] [0.210]

Lower tier -0.506** -0.548** -0.706** -0.699**

[0.121] [0.144] [0.124] [0.133]

Medical school 0.081 0.065 0.015 0.681

[0.085] [0.262] [0.126] [0.486]

Male 0.175** 0.278* 0.290* 0.117 0.029 0.070 0.271* -0.106 0.084 0.133

[0.055] [0.115] [0.130] [0.082] [0.169] [0.063] [0.122] [0.137] [0.107] [0.150]

U.S. citizen -0.026 0.122 -0.201 0.141 -0.237 -0.162 -0.174 -0.287 0.103 0.179

[0.085] [0.172] [0.166] [0.153] [0.212] [0.101] [0.191] [0.174] [0.210] [0.199]

Race incl. incl. incl. incl. incl. incl. incl. incl. incl. incl.

Constant -0.993** -0.959** -2.052** -1.424** 0.022 -2.069** 0.213 1.413** 1.367** 1.037** -0.011 0.511 1.332** 0.836

Observations 5018 5018 5018 848 983 1993 1194 5018 5018 5018 848 983 1993 1186

Chi-square 556.334 565.229 806.499 72.426 128.082 138.419 115.359 573.386 654.384 729.189 100.653 153.924 89.576 85.177

df 1 3 23 19 19 21 21 1 3 23 19 19 21 20

Academia Full SampleFull Sample Industry AcademiaIndustry
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Figure 1: Conceptual framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Probability of patenting and publishing, by field and sector 
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Online Appendix: Disclosure by a “Standardized Individual” 

The regressions using the pooled sample showed that significant industry-academia gaps in 

publishing and especially patenting remain even controlling for the nature of R&D and various other 

factors (Table 5). However, these regressions constrained the coefficients of independent variables to be 

the same across sectors and subfields. To address this limitation, we estimate regressions separately by 

sector for two large subfields and use the results to predict the probability that a “Standardized 

Individual” engaged in a particular type of work patents or publishes when working in industry versus in 

academia. For the most part, we use the median or mean values of variables to define the “Standardized 

Individual.” One such “Standardized Individual” is a biomedical scientist who is engaged in applied 

research, graduated 10 years ago from an average PhD program, supervises three other people, and is 

white, male and a U.S. citizen. The second “Standardized Individual” is a physicist who otherwise has the 

same characteristics as the biomedical scientist. 

Figure A1 shows large and statistically significant predicted industry-academia gaps in the 

probability of patenting for both scientists. However, the predicted industry-academia gaps in the 

probability of publishing are much smaller and not statistically significant. For comparison, figure A2 

provides the predicted counts of patents and publications for the same “Standardized Individuals”, based 

on negative binomial regressions. While the industry-academia gaps in the predicted likelihood of 

publishing were quite small, we continue to find sizeable gaps in predicted counts of publications. Thus, 

while firms appear to be open to publishing in principle, industrial scientists publish much less frequently 

than comparable academics. 

Our data do not allow us to disentangle various potential drivers of the remaining differences in 

the use of disclosure mechanisms, some of which we discussed in the conceptual part of this paper. 

However, by separating out differences associated with the nature of research and important scientist 

characteristics, we provide estimates of the potential magnitude of these effects.  
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Figure A1: Predicted probabilities of patenting and publishing for a “Standardized Individual”, by 

field and sector 

 

Based on probit regressions by sector and subfield. The “Standardized Individual” is engaged in applied 

research, received his Ph.D. 10 years ago from average Ph.D. program, supervises three other people, is 

white, male, and U.S. citizen. 

 

Figure A2: Predicted counts of patents and publications for a “Standardized Individual”, by field 

and sector 

 

Based on negative binomial regressions by sector and subfield. The “Standardized Individual” is engaged 

in applied research, received Ph.D. 10 years ago from average Ph.D. program, supervises three other 

people, is white, male, and U.S. citizen. 
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