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ABSTRACT

The QoS Steiner Tree Problem asks for the most cost efficient way to multicast

multimedia to a heterogeneous collection of users with different data consumption

rates. We assume that the cost of using a link is not constant but rather depends on

the maximum bandwidth routed through the link. Formally, given a graph with costs

on the edges, a source node and a set of terminal nodes, each one with a bandwidth

requirement, the goal is to find a Steiner tree containing the source, and the cheapest

assignment of bandwidth to each of its edges so that each source-to-terminal path in

the tree has bandwidth at least as large as the bandwidth required by the terminal.

Our main contributions are: (1) New flow-based integer linear program formulation

for the problem; (2) First implementation of 4.311 primal-dual constant factor ap-

proximation algorithm; (3) an extensive experimental study of the new heuristics and

of several previously proposed algorithms.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Recent progress in audio, video, and data storage technologies has given rise to

a host of high-bandwidth real-time applications such as video conferencing. These

applications require Quality of Service (QoS) guarantees from the underlying net-

works. Multicast routing algorithms that manage network resources efficiently and

satisfy the QoS requirements have come under increased scrutiny in recent years [20].

The focus on multimedia data transfer capability in networks is expected to further

increase as applications such as video conferencing gain popularity.

It is becoming apparent that new network mechanisms will be required to provide

differentiated quality guarantees for customers with diverse demands. Of particular

importance is the problem of optimum multimedia distribution from a source to a

disparate collection of users.

Multimedia distribution is usually done via multicast trees. There are two rea-

sons for basing efficient multicast routes on trees: (a) the data can be transmitted

concurrently to destinations along the branches of the tree, and (b) only a minimum

number of copies of the data must be transmitted since information replication is

limited to the forks of the tree [23]. The bandwidth savings obtained from the use of

multicast trees can be maximized by using optimal or nearly optimal multicast tree

algorithms. Future networks will undoubtedly integrate such algorithms into basic

operational performance [4].

1



1.2 Problem Formulation

Several versions of the QoS multicast problem have been studied in the literature.

These versions seek routing tree cost minimization subject to (1) end-to-end delay,

(2) delay variation, and/or (3) minimum bandwidth constraints (see, e.g., [4, 18,

14]). This thesis deals with the case of minimum bandwidth constraints, that is, the

problem of finding an optimal multicast tree when each terminal possesses a different

rate of receiving information. This problem is a generalization of the classical Steiner

tree problem and therefore NP-hard [8]. Formally, given a graph G = (V, E), a source

s, a set of terminals S, and two functions: length : E → R+ representing the length

of each edge and rate : S → R+ representing the rate of each terminal, a multicast

tree T is a tree in G spanning s and S. The rate of an edge e in a multicast tree

T , denoted by rate(e, T ), is the maximum rate of a downstream terminal, i.e., of a

terminal in the connected component of T − e which does not contain s. The cost of

a multicast tree T is defined as

cost(T ) =
∑
e∈T

length(e) · rate(e)

Quality of Service Multicast Tree (QoSMT) Problem: Given a network

G = (V, E, length, rate) with source s ∈ V and set of terminals S ⊆ V , find a

minimum cost multicast tree in G.

Further it is assumed that the rates belong to a given discrete set of possible

rates: 0 = r0 < r1 < . . . < rN . The QoSMT problem is equivalent to the Grade

of Service Steiner Tree problem [22], which has a slightly different formulation. The

network has no source node; edge rates re need to be assigned so that the minimum

edge rate on the tree path from a terminal with rate ri to a terminal with rate rj

is at least min(ri, rj). Charikar et al. [8] also consider the QoSMT with Priorities

problem, where the cost of an edge e is given arbitrarily instead of being equal to the

2



length times the rate. In other words, edge costs in QoSMT with Priorities are not

required to be proportional to edge rates. This generalization seems more difficult

– the best known approximation ratio is logarithmic which holds also for multiple

multicast groups [8].

1.3 Previous Work

The QoSMT problem was introduced in the context of multimedia distribution

over communication networks by Maxemchuk [14]. Maxemchuk suggested a low-

complexity heuristic which can be used to build reliable multicast tree in many prac-

tical applications. Following Maxemchuk, Charikar et al [8] gave a useful approxima-

tion algorithm that finds a solution within eα of the optimal, where α < 1.550 is the

best approximation ratio of an algorithm for the Steiner tree problem. This is the

first known algorithm with a constant approximation ratio for this problem. Finally,

an approximation ratio of 3.802 based on accurate estimation of Steiner tree length

has been achieved in [13].

Surprisingly, the problem was also previously considered (under different names)

in the optimization literature. A number of results for particular instances of the

problem were obtained: Current et al. [10] gave an impractical integer programming

formulation for the problem and proposed a heuristic algorithm for its solution. Some

results for the case of few rates were obtained by Balakrishnan et al. in [1] and [2].

Specifically, [2] (see also [22]) suggested an algorithm for the case of two non-zero

rates with approximation ratio of 4
3
α < 2.066. A different approximation algorithm

with the factor 1.960 has been proposed in [13]. For the case of three non-zero rates,

Mirchandani [15] gave an 1.522-approximation algorithm.

3



1.4 Contributions and Organization

In Section 3.2 we introduce a mixed integer linear program to find the optimal

tree for the QOSST problem. This MILP is feasible upto a a network of 30 vertices.

For the networks above this limit we also introduce a linear program to get the lower

bound for the problem which work for networks with as many as 100 vertices in a

reasonable time. We used the resultant tree of MILP and LP as a benchmark and

compared the results of our newly implemented, naturally distributed approximation

primal-dual algorithm described in Section 2.2. We also described the previously

proposed and implemented algorithms for QOSST problem and compare the perfor-

mance of all the algorithms. We chose to focus on the primal-dual algorithms due

to their simplicity and distributed nature. Contrary to the centeralized algorithms

the primal-dual algorithms can work even when the multimedia distibutor does not

have the exact knowledge of the network topology. In Section 4.1 we describe a tech-

nique for generating random networks. The resulting networks from our generator

are uniformly distributed and can be presented as planar graphs. In order to closely

observer the behavior of the implemented algorithms we also implemented and net-

work visualization software which is described in Section 4.2. This software package

presents the generated networks as planar graphs and gives the user the ability to

manipulate the network and view the impact on the behavior of algirthms visually.

Finally we conclude with the extensive experimental comparison of several heuristics

showing advantage of the primal-dual approach in chapter 6 and 7.
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CHAPTER 2

HEURISTICS

2.1 Maxemchuk’s Approach

Maxemchuk [14] proposed a heuristic algorithm for the QoS Steiner Tree Problem.

His algorithm is a modification of the MST heuristic for Steiner Trees [21] (see Figure

2.1).

The extensive experiments given in [14] demonstrate that this method works well

in practice. Nevertheless, the following example shows that the method may produce

arbitrarily large error (linear in the number of rates) compared with the optimal tree.

Consider the natural generalization of the example in Figure 2.2 with an arbitrary

number k of distinct rates. Its optimal solution has a cost of about 1, whereas

Maxemchuk’s method returns a solution of cost about (k+1)/2. As there are 2k−1 +1

nodes, this cost can also be written as 1+ 1
2
log2(n−1), where n is the number of nodes

in the graph. We conclude that the approximation ratio of Maxemchuk’s algorithm

Input: A graph G = (V,E, length, rate) with a source s in V and
a collection of terminals S ⊆ V .

Output: A QoS Steiner tree spanning the source and the terminals.

(1) Initialize the current tree to {s}.

(2) Find a non-reached terminal t of highest rate with the shortest distance to the current tree.

(3) Add t to the current tree along with a shortest path connecting it to the current tree.

(4) Repeat until all terminals are spanned.

Figure 2.1. Maxemchuk’s Algorithm for the QoS Steiner Tree Problem.

5



Figure 2.2. A bad example for Maxemchuk’s algorithm, with k = 4 rates. In the
figure, ε = 1/22k−1. The rate of each node is given above the node. The edge lengths
are given on the thin curved arcs, while on the solid horizontal line each segment has
length 1/2k−1+ε. The optimum, of total cost 1+2k−1ε = 1+2k−1(1/22k−1) = 1+1/2k,
uses the solid horizontal line at rate 1. Maxemchuk’s algorithm picks the thin curved
arcs at a cost of 1+(1/2)(1−ε)+2(1/4)(1−2ε)+4(1/8)(1−3ε) ≥ ((k+1)/2)(1−1/2k).

is no better than linear in the number of rates and no better than logarithmic in the

number of nodes in the graph.

2.2 Naive Primal-Dual Method

The primal-dual framework applied to network design problems usually grows

uniformly the dual variables associated to the “active” components of the current

forest [12]. This approach fails to take into account the different rates of different

nodes in the QoS problem. In Figure 2.3 we give a modification, referred to as the

“Naive Primal-Dual” algorithm. Our modification takes into account the different

rates by varying the speed at which each component grows. While the simulations

in the ensuing sections show that this is a good method in practice, the solution it

produces on some graphs may be very large compared to the optimal solution, as

shown by the following example.

The Frame Example. Consider two nodes of rate 1 connected by an edge of length

1 (see Figure 4.1). There is an arc between these two nodes, and on this arc there is

a chain of nodes of rate ε. Each two consecutive nodes in the chain are at a distance

δ from each other, where δ < 1. Each extreme node in the chain is at a distance δ/2

of its neighboring rate-1 node.
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Input: A graph G = (V,E, length, rate) with a source s in V and
a collection of terminals S ⊆ V .

Output: A QoS Steiner tree spanning the source and the terminals.

(1) Start from the spanning forest of G with no edges.

(2) Grow yC with speed rC for each “active” component C of the current forest. (A component
C is inactive if it contains s and all vertices of rate rC .)

(3) Stop growing once the dual inequality for a pair (e, r) becomes tight, with e connecting two
distinct components of the forest.

(4) Add e to the forest, collapsing the two components.

(5) Terminate when there is no active component left.

(6) Keep an edge of the resulting tree at the minimum needed rate.

Figure 2.3. The Naive Primal-Dual algorithm for the QoS Steiner Tree Problem.

Figure 2.4. The Restarting Primal-Dual avoids the mistake of the Naive Primal-
Dual. Part (a) shows duplication of the edges. Part (b) shows the components
growing along the respective edges.

The Naive Primal-Dual applied to this graph connects the rate-ε nodes first, since

δ
2

< 1
2
. So, the algorithm connects the rate-1 nodes via the rate-ε nodes, and not via

the direct edge connecting them. Thus, the Naive Primal-Dual can make arbitrarily

large errors (just take an arbitrarily long chain).

2.3 Restarting Primal-Dual Algorithm

An improved algorithm is given in Figure 2.5. One can easily see that this is a

primal-dual algorithm. Indeed, each addition of an edge to the current solution is

the result of growing dual variables. Moreover, since the feasibility requirement for

edge a is Σa∈δ(C)yC ≤ r · length(a), this addition preserves the feasibility of the dual

solution. The algorithm maintains forests F ri given by the edges picked at rate ri,
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Input: A Graph G′ = (V,E, cost, rate) with source s, and a
collection of terminals S.

Output: A QoS Steiner Tree spanning the source and the terminal.

(1) Grow each active Cri
with speed ri along incident edges (e, rj), j ≤ i, picking edges which

become tight.

(2) Continue this process until there is no active component of rate rk.

(3) Remove all edges which are not necessary for maintaining connectivity of nodes of rate rk.

(4) Accept (keep in the solution) and contract all edges of Crk
(i.e., set their length/cost to 0)

(5) Restart the algorithm with the new graph

Figure 2.5. The Restarting Primal-Dual algorithm for the QoS Steiner Tree Proble.

and the connected components of F ri , seen as sets of vertices, are denoted in the

algorithm by Cri
. Such a component is active if rCri

= ri and Cri
is disjoint from

components of higher rate.

The Restarting Primal-Dual avoids the mistake made by the Naive Primal-Dual on

the frame example in Figure 2.4. Then, at time δ
2

the rate-ε nodes become connected.

This means that δ(1− ε) of each rate-1 edge between the ε-rate nodes is not covered.

Meanwhile, the rate-1 nodes are growing on the respective edges as shown in Figure

4.1(b).

Let us assume that the Restarting Primal-Dual uses the chain of rate-ε nodes to

connect the two rate-1 nodes instead of the direct edge. This would imply that it

takes less time to cover the chain, i.e., 1
2
δ(1− ε)n ≤ 1

2
− δ

2
, where n is the number of

rate-ε nodes. With ε small, we obtain nδ ≤ 1, so if the Restarting Primal-Dual uses

the chain then it is correct to do so.

2.4 4.311 approximation Primal-Dual algorithm

A primal-dual constant-factor approximation algorithm is obtained based on the

enhanced integer linear programming formulation below. It takes into account the
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fact that if a set C ⊂ V \ {s} is connected to the source with edges of rate r′ > rC ,

then there should be at least two edges of rate r′ with exactly one endpoint in C.

The integer program is

min
∑

(e,r)∈E′

x(e,r) · r · length(e)

s.t.
∑

e∈δ(C)
r=rC

x(e,r) +
1

2

∑
e∈δ(C)
r>rC

x(e,r) ≥ 1, ∀C ⊆ V \ {s}

x(e,r) ∈ {0, 1}

The corresponding dual of the LP relaxation is

max
∑

C⊆V \{s}

yC

s.t.
∑

C :e∈δ(C)
rC=r

yC +
1

2

∑
C :e∈δ(C)

rC<r

yC ≤ r · length(e) (2.1)

yC ≥ 0

The core of the algorithm is presented in Figure 2.6. Before that, we do a random

bucketing of rates following [8]. Let a be a real (to be picked later) and γ be a real

picked uniformly at random from the interval [0 . . 1]. Every node of rate r is replaced

by a node of rate aγ+j, where j is the integer satisfying aγ+j−1 < r ≤ aγ+j.

The primal-dual part follows the classical framework [12], and works in stages

starting from the lower rate to the highest. During the execution of the algorithm,

edges are picked at a certain rate (in other words, x(e,r) is set to 1) one by one. Before

executing step 3 at rate r for the ith time, the set of edges picked at rate r by the

algorithm forms a forest F r
i . (An edge can be picked at several rates, but it is kept

in at most one such rate in the final solution because of the reverse delete step.) A

component C of F r
i is called an r-component if rC = r.
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Input: A graph G = (V,E, length, rate) with source s in V and
a collection of terminals S ⊆ V .

Output: A QoS Steiner tree spanning the source and the terminal.

(1) For each r = r1, r2, . . . , rk, execute steps 2-6.

(2) Start from the spanning forest F r of G with no edges.

(3) Grow yC uniformly for each r-component C of the current forest F r.

(4) Stop growing once the dual inequality for a pair (e, r) becomes tight, with e connecting two
distinct components of F r.

(5) Add (e, r) to F r, collapsing two of its components.

(6) Terminate when there is no r-component of F r left.

(7) Traversing the list of picked edges in reverse order, remove an edge (e, r) from F r if after
(e, r)’s removal the set of edges picked form a feasible tree.

Figure 2.6. The 4.311-approximation algorithm for QoS Steiner Tree.

Using Constraint (2.1), it follows by induction on j that, for an edge e and a rate

aγ+j, we have

∑
C :e∈δ(C)

rC≤aγ+j

yC ≤ length(e)aγ+j

j∑
i=0

(
1

2a

)i

≤ length(e)aγ+j 2a

2a− 1
.

For an edge picked by the algorithm at rate r, Constraint (2.1) is tight and therefore

∑
C :e∈δ(C)

rC≤aγ+j

yC ≥ length(e)
2a− 2

2a− 1
aγ+j. (2.2)

Exactly as in [12], we have that the number of edges of rate r in the final solution which

cross the active r-components at some moment (an edge being counted twice if it

crosses two r-components) is at most twice the number of active r-components. Using

Equation (2.2) and exactly the same argument as in Theorem 4.2 of [12], we obtain

that the cost of the solution of the algorithm is bounded by (2(2a−1)/(2a−2))
∑

yC ≤
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((2a− 1)/(a− 1)) opt, as any feasible solution for the dual linear program has value

at most the value of any feasible solution of the primal.

The same argument as in [8] shows that the approximation ratio of the algorithm

above is (2a− 1)/ ln a. Numerically picking the best value for a, we obtain:

Theorem 2.4.1 The output cost of the algorithm on Figure 2.6 is at most 4.311

times the optimum cost.
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2.4.1 Algorithm Explanation

In order to overcome the NP-completeness of the problems, there must be a com-

promise on the quality of the solution for the sake of computing a suboptimal solution

quickly. Approximation algorithms are polynomial-time heuristics which reach a so-

lution for all instances of the problem with values close to optimum. This closeness

can be determined by the approximation ratio, defined for a minimization problem

as the maximum value over all instances of the input over the optimal solution value

for the instance.

This 4.311-approximation algorithm consists of ten steps, as shown in Figure 1.

The basic structure of the algorithm maintains a forest F of edges, which is initially

empty (Step 1). The edges of F will be candidates for the set of edges to be output.

A component Cp is said to be active if it contains at least one vertex which is

a sink and the source vertex is in a different component, Cq. On the other hand, a

component Cp is said to be inactive if all sinks of the same rate have been connected

to the component of the higher rate vertices. Function f(Cp) returns either one or

zero determining if component Cp is active or inactive, respectively.

The algorithm starts with the lowest rate sinks in one component Cp and the all the

higher rate vertices including the source in the other component Cq. The algorithm

loops while active components exist in C (Step 5) and, on every iteration, selects an

edge e between two distinct connected components (Step 6). Since f(V ) = 0, the

loop will finish after at most n− 1 iterations. This edge selection is a key part of the

algorithm.

ε is calculated by taking the cost of an edge ce and subtracting the d values of

both its vertices and dividing it by either two or one, depending whether each vertex

belongs to an active component or only one of them, respectively. The value of ε could

be thought as the growth factor of active components, which is used to increment the

value d of all vertices belonging to active components (Step 8). Value d of a vertex
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can be thought as a radius of growth for each active component, so they are growing

trying to find and satisfy their requirements, whereas inactive components stay static

since they are already connected or their requirements have been met.

In Step 9 merged components are added to the set of components C. After no

more active components exist, the loop terminates and a set F
′
of edges is created

from only those edges of F needed to connect all the sinks to the source or the higher

rate vertices(Step 10). This process of cleaning the forest F is done in the reverse

order.

Figure 2.7 Figure and 2.8 show a step by step walkthrough of the 4.311-approximation

algorithm being run in parallel over two different instances. Vertices in red are active

and vertices in blue are inactive. Every iteration of the algorithm shows the pair of

graphs as edges are selected, as well as the d values and epsilons.
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Figure 2.7. The 4.311 approximation algorithm walkthrough.
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Figure 2.8. Another 4.311 approximation algorithm walkthrough.
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CHAPTER 3

AN EXACT INTEGER LINEAR PROGRAM SOLUTION

Linear programming, sometimes known as linear optimization, is the problem

of maximizing or minimizing a linear function over a convex polyhedron specified by

linear and non-negativity constraints. Linear programming theory falls within convex

optimization theory and is also considered to be an important part of operations

research. Linear programming is extensively used in business and economics, but

may also be used to solve certain engineering problems.

3.1 What is Linear Programming?

For any linear program, there are primal and dual linear program formulations.

The primal usually refers to the most natural way to describe the original problem.

The dual represents an alternative way to specify the original problem such that it

is a minimization problem if the primal is a maximization problem and vice versa.

Solving the dual is equivalent to solving the original problem.

Examples from economics include Leontief’s input-output model, the determina-

tion of shadow prices, etc., an example of a business application would be maximizing

profit in a factory that manufactures a number of different products from the same

raw material using the same resources, and example engineering applications include

Chebyshev approximation and the design of structures (e.g., limit analysis of a planar

truss).

Linear programming can be solved using the simplex method which runs along

polytope edges of the visualization solid to find the best answer. Khachian (1979)
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found a O(x5) polynomial time algorithm. A much more efficient polynomial time

algorithm was found by Karmarkar (1984). This method goes through the middle

of the solid (making it a so-called interior point method), and then transforms and

warps. Arguably, interior point methods were known as early as the 1960s in the

form of the barrier function methods, but the media hype accompanying Karmarkar’s

announcement led to these methods receiving a great deal of attention.

3.1.1 Application areas

Linear programming is an important field of optimization for several reasons.

Many practical problems in operations research can be expressed as linear program-

ming problems. Certain special cases of linear programming, such as network flow

problems and multicommodity flow problems are considered important enough to

have generated much research on specialized algorithms for their solution. A number

of algorithms for other types of optimization problems work by solving LP problems

as sub-problems. Historically, ideas from linear programming have inspired many

of the central concepts of optimization theory, such as duality, decomposition, and

the importance of convexity and its generalizations. Likewise, linear programming

is heavily used in microeconomics and business management, either to maximize the

income or minimize the costs of a production scheme.

3.1.2 Standard form

Standard form is the usual and most intuitive form of describing a linear program-

ming problem. It consists of the following three parts:

• A linear function to be maxmized

e.g. maximize c1x1 + c2x2
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• Problem constraints of the following form

e.g. a11x1 + a12x2 ≤ b1

a21x1 + a22x2 ≤ b2

a31x1 + a32x2 ≤ b3

• Non-negative variables

e.g. x1 ≤ 0

x2 ≥ 0

The problem is usually expressed in matrix form, and then becomes:

maximize cT x

subject to Ax ≤ b, x ≥ 0

Other forms, such as minimization problems, problems with constraints on al-

ternative forms, as well as problems involving negative variables can always be

rewritten into an equivalent problem in standard form.

3.1.3 Integer Linear Programs and Their Relaxations

If the variable is boolean, i.e., x ∈ {0, 1} then the linear program is called boolean

or integer linear program (ILP). Unlike linear program, the integer linear program is

NP-complete and therefore can not be solved exactly in polynomial time. CPLEX

and GLPK have tools (divide and conquer and others) for solving smaller instances

of ILP.

The relaxation of ILP is a linear program where the integer constraint x ∈ {0, 1} is

replaced with the interval constraint 0 ≤ x ≤ 1. For minimization problems (such as

QOSST) the relaxation gives a lower bound on the optimal solution given by ILP. In

Chapter 6 we will give both exact solutions and lower bounds for smaller instances of

QOSST. For larger instances of QOSST (for which ILP can not be solved in reasonable

time) we give only the lower bound obtained by solving the relaxation.
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Figure 3.1. Flow diagram

3.2 ILP Formulation for QOSST problem

In this study we have developed and implemented an exact algorithm for QOSST

problem based on a flow-base integer linear program. The flow formulation consists

on creating a flow per each requirement. The requirement is to connect each sink

to the source with the required bandwidth using any intermediate nodes. So having

a flow for each pair of a sink and the source will guarantee the connectivity. The

starting vertex of the flow would be called the source and the vertex in which the

flow ends will be called the sink. Since edges are undirected, for each edge e, two

flow variables are used to detect if a flow is an outgoing flow, denoted as fe′ , or an

incoming flow, denoted as fe, as shown in Figure 3.1.

3.2.1 Variables

In our problem we will have variables for each edge as described in the objective

function and will be denoted by xi. Since the connections will be established using

the flows, for each edge e = (u, v) we will have two flow variables i.e. fe(outgoing

from u) and fe′(incoming to u). Once again as we know that we have multiple rates

with which an edge can be used and so we will need as many flow variables as many

rates we will have in our source graph. Therefore for each edge e we will have 2 times

the rates, flow variables.
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3.2.2 Objective Function

The objective of our ILP program is to minimize the cost of connecting the source

to the sinks. If we denote the edges e0, e1, ..., en with xi variables and the length of

each edge with li then the objective will be to minimize the sum of the product of all

the edges being used with their length. Now the trick here is that each edge can be

used with multiple bandwidths. In this case we will have a separate edge variable for

all the rates for each edge. Therefore the objective function will look like this:

min
n∑

e=0

xele

3.2.3 Flow Constraints

To each target we send its own flow from the source. Thus we will have as many

flows as many targets. For each flow we have three types of constraints.

For the source v the outgoing flow should exceed incoming flow by 1:

∑
e incident to v

fe −
∑

e incident to v

fe′ = 1

For each target v the incoming flow should exceed outgoing flow by 1:

∑
e incident to v

fe −
∑

e incident to v

fe′ = −1

For every intermediate node v the incoming flow should be equal to the outgoing:

∑
e incident to v

fe −
∑

e incident to v

fe′ = 0

The next step is to link the flow variables with the edge variable so that while mini-
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Figure 3.2. An instance of QOSST with source v1 and two targets v2 and v3 with
rates 6 and 4, respectively.

mizing the objective function the edge variables can used. Following constraints will

link the flow variables with the edge variables.

xe ≥ rfe ∀ r ∈ R, e ∈ E

xe ≥ rfe′ ∀ r ∈ R, e′ ∈ E

3.2.4 Example

We implemented this ILP using two different languages. The first choice was

CPLEX. Following is an example of a graph with it’s model and solution. The graph

contains three nodes. One is a source node and two are the sinks with different rate

requirements. The graph is given below in the figure.
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3.2.4.1 ILP representation of QOSST in CPLEX

\Objective function

Minimize

obj: x_1_2 + x_2_3 + 2 x_1_3

\Constraints \ flow constraints = flows x 2 x edges

Subject To \ Flow 2 edge constraints

outflow_e_1_2_2: x_1_2 - 6 f_1_2_2 >= 0 inflow_e_1_2_2: x_1_2 - 6

f_2_1_2 >= 0 outflow_e_2_3_2: x_2_3 - 6 f_2_3_2 >= 0 inflow_e_2_3_2:

x_2_3 - 6 f_3_2_2 >= 0 outflow_e_1_3_2: x_1_3 - 6 f_1_3_2 >= 0

inflow_e_1_3_2: x_1_3 - 6 f_3_1_2 >= 0

\Flow 2 Source constraints outflow_source_2: f_1_2_2 + f_1_3_2 -

f_2_1_2 - f_3_1_2 = 1

\Flow 2 Sink constraints inflow_sink_2: f_2_1_2 + f_2_3_2 - f_1_2_2

- f_3_2_2 = -1

\ Flow 2 intermediate nodes constraints flow_conservation_3: f_3_1_2

+ f_3_2_2 - f_1_3_2 - f_2_3_2 = 0

\ Flow 3 edge constraints outflow_e_1_2_3: x_1_2 - 4 f_1_2_3 >= 0

inflow_e_1_2_3: x_1_2 - 4 f_2_1_3 >= 0 outflow_e_2_3_3: x_2_3 - 4
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f_2_3_3 >= 0 inflow_e_2_3_3: x_2_3 - 4 f_3_2_3 >= 0 outflow_e_1_3_3:

x_1_3 - 4 f_1_3_3 >= 0 inflow_e_1_3_3: x_1_3 - 4 f_3_1_3 >= 0

\Flow 3 Source constraints outflow_source_3: f_1_2_3 + f_1_3_3 -

f_2_1_3 - f_3_1_3 = 1

\Flow 3 Sink constraints inflow_sink_3: f_3_1_3 + f_3_2_3 - f_1_3_3

- f_2_3_3 = -1

\Flow 3 Intermediate nodes constraints flow_conservation_2: f_2_3_3

+ f_2_1_3 - f_3_2_3 - f_1_2_3 = 0

\Binary variables Binary f_1_2_2 f_2_1_2 f_2_3_2 f_3_2_2 f_1_3_2

f_3_1_2

f_1_2_3 f_2_1_3 f_2_3_3 f_3_2_3 f_1_3_3 f_3_1_3

End \EOF }

3.2.4.2 ILP representation of QOSST in MathProg

# QOS for multimedia distribution # Faheem A Hussain, Dr Alex

Zelikovsky # # This model finds the optimal solution # to connect

the source node to the destination # nodes in the hetrogenous

network
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/* The sets for the model */ set NODES; set EDGEIDS; set EDGES dimen

3; set FLOWEDGES dimen 3; set SINKS;

/* parameters */ param source; param rate {i in NODES}; param length

{i in EDGEIDS};

/* decision variables: xi, i in {1,...,n}

xi = 1 -> edge is selected

xi = 0 -> edge is not selected */

var x {i in EDGEIDS} >=0; var flow{i in SINKS, j in NODES, k in

NODES} binary;

/* Objective function */ minimize Cost: sum{i in EDGEIDS} x[i] *

length[i];

/* Constraints */ s.t. edge_con {i in SINKS, (j,k,l) in EDGES}: x[j]

- ( rate[i] * flow[i,k,l] ) >= 0; s.t. edge_con1 {i in SINKS,

(j,k,l) in EDGES}: x[j] - ( rate[i] * flow[i,l,k] ) >= 0; s.t.

source_constraint {i in SINKS}: sum{(j,k,l) in FLOWEDGES: k ==

source } flow[i,k,l] - sum{(m,n,o) in FLOWEDGES: o == source }

flow[i,n,o] == 1; s.t. sink_constraint {i in SINKS}: sum{(j,k,l) in

FLOWEDGES: k == i } flow[i,k,l] - sum{(m,n,o) in FLOWEDGES: o==i }

flow[i,n,o] == -1;

s.t. intermediate_node {i in SINKS, j in NODES : j != source && j !=

i }: sum{(k,l,m) in FLOWEDGES: l == j } flow[i,l,m] - sum{(n,o,p) in
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FLOWEDGES: p == j } flow[i,o,p] = 0;

data; set NODES := 1 2 3;

set EDGEIDS := 1 2 3;

set EDGES := (1,1,2) (2,2,3) (3,1,3);

set FLOWEDGES := (1,1,2) (2,2,3) (3,1,3) (4,2,1) (5,3,2) (6,3,1);

set SINKS := 2 3;

param source := 1;

param rate := 1 6 2 6 3 4;

param length := 1 1 2 1 3 2;

3.2.4.3 Output of GLPK

Problem: Rows: 18 Columns: 15 (12 integer, 12 binary)

Non-zeros: 48 Status: INTEGER OPTIMAL Objective: obj = 10

(MINimum) 10 (LP)

No. Row name Activity Lower bound Upper bound
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------ ------------ ------------- ------------- -------------

1 outflow_e_1_2_2

0 0

2 inflow_e_1_2_2

6 0

3 outflow_e_2_3_2

4 0

4 inflow_e_2_3_2

4 0

5 outflow_e_1_3_2

0 0

6 inflow_e_1_3_2

0 0

7 outflow_source_2

1 1 =

8 inflow_sink_2

-1 -1 =

9 flow_conservation_3

0 0 =

10 outflow_e_1_2_3

2 0

11 inflow_e_1_2_3

6 0

12 outflow_e_2_3_3

0 0

13 inflow_e_2_3_3

4 0
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14 outflow_e_1_3_3

0 0

15 inflow_e_1_3_3

0 0

16 outflow_source_3

1 1 =

17 inflow_sink_3

-1 -1 =

18 flow_conservation_2

0 0 =

No. Column name Activity Lower bound Upper bound

------ ------------ ------------- ------------- -------------

1 x_1_2 6 0

2 x_2_3 4 0

3 x_1_3 0 0

4 f_1_2_2 * 1 0 1

5 f_2_1_2 * 0 0 1

6 f_2_3_2 * 0 0 1

7 f_3_2_2 * 0 0 1

8 f_1_3_2 * 0 0 1

9 f_3_1_2 * 0 0 1

10 f_1_2_3 * 1 0 1

11 f_2_1_3 * 0 0 1

12 f_2_3_3 * 1 0 1

13 f_3_2_3 * 0 0 1

14 f_1_3_3 * 0 0 1
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15 f_3_1_3 * 0 0 1

Integer feasibility conditions:

INT.PE: max.abs.err. = 0.00e+000 on row 0

max.rel.err. = 0.00e+000 on row 0

High quality

INT.PB: max.abs.err. = 0.00e+000 on row 0

max.rel.err. = 0.00e+000 on row 0

High quality

End of output
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CHAPTER 4

SOFTWARE PACKAGE

4.1 Planar Graph Generation

The objective is to generate planar graphs as instances of the problem due to the

practical planar applications, like VLSI routing or networking connectivity, plus the

ease of viewing them in a 2D environment. In order to accomplish this, a Delaunay

triangulation is implemented. First we create all vertices of the instance by using

a pair of single precision float numbers created randomly, per vertex, as its x and

y coordinates. Then a complete graph is created where the cost cij for every edge

is the Euclidian distance from vertex i to vertex j. We visit every edge checking

all its intersecting edges, removing those which have a cost greater than or equal to

the visited edge. If the visited edge costs more than an intersecting one, then it is

removed. When all edges are visited, the resulting graph is planar.

Figure 4.1. The simple planar graph with ten vertices in it. The vertices are not
assigned any rates yet, neither have the source and targets been set up in this figure.
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4.2 Graphical User Interface

Figure 4.2. Graphical user interface for SimQ.
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CHAPTER 5

IMPLEMENTATION

This section will describe the implementation details of the approximation algo-

rithm and the simulation environment that we developed for creating and solving the

QOS network problems.

Our system is named as ”SimQ”. The object oriented modeling tools are used

to design and develop the SimQ system. While designing this system it was kept

in mind that this system can be used as a basic framework to implement further

problems and have visual solutions. So far most of the algorithms for the network

problems have been implemented in the command line mode. This type of system’s

give the solutions but sometimes it gets really hard to visualize the solution. SimQ

generates the graphs and shows the solution graph visually. Further it can color code

the vertices and edges. The graph can also be modified when the source graph is

generated.

5.1 Specifications

• Create a graph generator for creating undirected weighted planar graphs.

• Write adapter to convert the existing graph samples into the required format

of the SimQ system.

• Create a system that can create and show the graphs visually. This system

will have the functionality to create a random planar graph with given number
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of vertices. This system will also have the functionality of letting the user

manipulate the graphs once they are generated. The vertices can be moved

around to visualize the graph clearly.

• Since the source graph in our particular problem have different requirements.

Which include being able to define the source and sinks. Sinks being the ver-

tices which need to be connected to the source. Each sink will have different

bandwidth requirements. There will also be intermediate nodes which can be

used to connect the source with the sinks but need not be connected to the

source in the final solutions graph. Therefore the graph creating and visualiz-

ing system should be able to assign vertices the required bandwidths with which

these vertices would be connected to the source. This system should also be

able to define the source and sinks in the graph to be solved. It is just like the

user laying out the network and then finding the final solution.

• Create the persistence system which will persist the generated graphs in multiple

formats (old format and XML), to be used in later experimentation.

• Implement the LP (linear programming) solution to solve the source graphs.

Some open source LP solver package can be used for this purpose. In this case

a source model generator and some other adapters will be needed to be able to

use any existing LP solver package.

• Implement the GS algorithm, which will take the source graph and generate the

solution graph and display that in the Graph visualizer.

• Take existing source graphs in old format and generate multiple other source

graphs with heterogeneous sizes and requirements.

• Run the experiments on the collected source graphs and save the solutions

generated using NAPD(existing algorithm), LP and GS algorithm.
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Figure 5.1. Package diagram

• Analyze and compare the results obtained by running multiple algorithms on

the same source graphs.

5.2 Design

5.2.1 Package Diagram

These are the four packages that will be used to create our system. Following is

a brief description of what each package is responsible for.
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5.2.1.1 GLPK

This is an open source package to solve linear programming problems. We will use

this package to solve our QOS problems and find the perfect solution. The challenge

to use this package was that this system is written in C++ whereas our solution was

written in JAVA. So to use this package we needed a JNI package which will be able

to feed the source models and obtain the resultant solutions from this package.

5.2.1.2 JGraphT

This open source package is basically very useful to manipulate the backend data

structures of all sorts of graphs. Although to use this package we had to subclass and

modify a lot of classes but still it simplified our heavy load of work. This package

also has some of the basic graph algorithms implemented such as DFS and BFS.

Sometimes it was really hard to implement some of the features that we needed in

our system due to the nature of design of this package, however finally we were able

to modify this package to our needs.

5.2.1.3 JGraph

This package is available both in basic which is open source and free to use, and

commercial versions. We however only needed the basic version which helped us plot

the graphs and visualize the source and solution graphs. This package is used solely

to take the graph objects and draw them based on provided attributes. Using this

package the visual graphs can be modified such that the style, appearance and color of

a graph’s vertices and edges can be customized. This feature was used to distinguish

the source graph from the solution graph. In the solution graph the edges are color

coded to show which edges have been used and with what rate.
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5.2.1.4 SimQ

This is the package where all our implementations exist. There are 38 classes and

around 10,000 lines of code in this package. The design of this package is simple and

flexible enough to be used to implement the functionality of same sort of algorithms.

There will be a complete list of classes described later in this section for this package.

Basically this package has the implementation of LP and GS algorithm.

5.2.2 Classes

Following is a list of classes in the SimQ package in alphabetical order and a brief

description of what they do. ClosableTabbedPaneUI

A modified tabbed pane of JAVA swing interface which has a close button.

5.2.2.1 ColoredComboBoxRenderer

A modified combo box of Java Swing interface which shows color coded rate

options.

5.2.2.2 ColoredRate

The underlying class for setting and getting the color option for the colored combo

box.

5.2.2.3 CompoundVertexView

Vertex view that supports visual vertex nesting to show inclusion edges in a com-

pound graph.

5.2.2.4 ConsoleListener

The listener for listening the messages pumped to the system console.

35



5.2.2.5 EdgeComponent

A critical part of the GS algorithm where each edge will be used with different

rate and that information is stored in the objects of this class.

5.2.2.6 ForestConnectivityIterator

This is a depth first iterator to test the connectivity of the sinks in the Goeman’s

solution forest during the pruning phase.

5.2.2.7 Goeman

This class implements the basic solution of GS algorithm. It takes a source graph

and creates a solution graph which sets the attributes of the edges used to connect

the sinks to the source with the rates they are used.

5.2.2.8 GoemanConnectivityIterator

This depth first iterator is customized to suit the specialized needs of GS algorithm

where we look at only the current rate vertices, whereas the current and higher rate

edges are used to iterate over the current rate sinks.

5.2.2.9 GoemanEdgesForest

This class holds the collection of EdgeComponents that are used in the Goeman

solution graph.

5.2.2.10 GraphFactory

The factory class, that generates a random planar graph.

5.2.2.11 GraphFileFilter

The filter to filter out the graph files when browsing to open a source graph file.
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5.2.2.12 GraphLoader

This class reads the source graph from a file and loads it into the QOSGraph

object.

5.2.2.13 LocalConsole

This is class is used to redirect the console messages to the text area in our GUI

instead of the black system screen.

5.2.2.14 LPCreator

This class creates the source Linear Program model from a given graph to be fed

to GLPK.

5.2.2.15 LPSolver

This class takes a source graph and used JNI to feed the model to GLPK to find

the solution. Using this class we can call the GLPK API to get the solution instead

of having it to create a solution file.

5.2.2.16 LPSolverFrame

The frame to show the LPSolver progress.

5.2.2.17 LPSolverThread

In order for our system to not wait for the solution we run the LPSolver in a

separate thread.

5.2.2.18 NodePropertyDialog

This dialog is used to set the properties of a node including source, sink and rate.

5.2.2.19 QOSConnectivityIterator

Another Depth First iterator.
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5.2.2.20 QOSEdge

A subclass of the Edge class to accommodate our needs of QOS problems.

5.2.2.21 QOSFileWriter

This class writes out any QOSGraph to a file in XML.
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CHAPTER 6

SIMULATION RESULTS

We simulated two different type of sample instances. The results given in the

tables are an average of the ten experiment results. We decided to generate two

different type of sample instances. All the experiments were run on ten instances of

the graph with the same number of nodes and rates.

• The smaller instances. The limit of number of nodes in these instances was

30. The reason for this strategy was to compare the results with the exact

optimal results generated by running the ILP on these instances. Since the

time taken by ILP for instances larger than 50 nodes was not feasible therefore

the limit for these instances was set to 30.

• The larger instances. These instances have 50 to 150 number of nodes.

The graph instances were generated using four different types of parameters. Fol-

lowing is the list of these parameters:

• Number of nodes.

• Number of rates.

• Percentage of nodes that are intermediate.

• Sequence of rates

We ran the following seven algorithms on the same instances:

(1) Maxemchuk (max)
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(2) Charikar (char)

(3) Naieve Primal-Dual (NA-PD)

(4) Restarting Primal-Dual (Re-PD)

(5) 4.311 Approximation Primal-Dual (4.311)

(6) Mixed Integer Linear Program (LP)

(7) Integer Linear Program (ILP)

In the result tables the Rates are denoted by R and Nodes by N, respectively.

6.0.3 Small instances with 50% Intermediate nodes, Arithmetic Progres-

sion

The table 6.1 has the results by running simulations on the small network instances

with rates increasing by arithmetic progression. The reason for generating the small

instances was to get the ILP results as well. Since the LP solver runs for unreasonable

time for large instances so that was not a feasible solution.

Table 6.1. 50% Intermediate nodes, Arithmatic Progression.

R N Max Char NA-PD Re-PD 4.311 MILP ILP
1 10 7583 7566 7433 7408 1784 1768 1381
1 15 6494 6481 6374 6354 2140 2128 1589
1 20 5865 5854 5765 5748 2718 2412 1713
2 10 5445 5435 5352 5343 2926 2843 2318
2 15 5208 5199 5121 5111 3584 3469 2715
2 20 5149 5142 5065 5057 4700 4570 3296
5 10 5011 5004 4932 4924 3771 3700 3039
5 15 5123 5110 5032 5025 6322 5905 4733
5 20 5384 5372 5295 5283 8471 7052 5499

10 10 6478 6505 6469 6465 6523 6375 5251
10 15 8769 8732 8591 8570 11263 10503 8517
10 20 9516 9494 9316 9283 11110 - -
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Figure 6.1. Small instances, 50% intermediate nodes, Arithmetic Progression.

6.0.4 Small instances with 50% Intermediate nodes, Geometric Progres-

sion

Table 6.2 has the same number of nodes and rates as the table 6.1 except that the

rates grow with a geometric progression.

Table 6.2. 50% Intermediate nodes, Geometric Progression.

R N Max Char NA-PD Re-PD 4.311 ILP ILP
1 10 1784 1784 1784 1784 1784 1768 1381
1 15 2140 2140 2140 2140 2140 2128 1589
1 20 2718 2718 2718 2718 2718 2709 1894
2 10 2923 2923 2876 2912 2926 2843 2318
2 15 3550 3550 3505 3485 3584 3469 2715
2 20 4681 4681 4616 4626 4700 4489 3225
5 10 4319 4319 4310 4300 4342 4263 3589
5 15 9277 9277 9258 9429 9374 8976 7575
5 20 12509 12509 12930 12597 12771 - -

10 10 14795 14795 15357 14779 14880 14772 13071
10 15 59986 59986 60050 61517 60642 - -
10 20 26316 26316 27857 26591 26445 25967 21104
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Figure 6.2. Small instances, 50% intermediate nodes, Geometric Progression.

6.0.5 Large instances with 50% Intermediate nodes, Arithmetic Progres-

sion

The large instances generated have three different number of nodes ranging from

50 to 150. The ILP results for this large number of nodes could not be obtained except

the instances with 50 nodes and 1 rate. The table 6.3 shows the results of simulations

run on these instances with rates generated using the arithmetic progression.

Table 6.3. 50% Intermediate nodes, Arithmatic Progression.

R N Max Char NA-PD Re-PD 4.311 ILP
1 50 4217 4217 4217 4217 4217 1836
1 100 5904 5904 5904 5904 5904 -
1 150 7073 7073 7074 7074 7073 -
2 50 7595 7595 7485 7491 7628 3640
2 100 10832 10832 10643 10600 10872 -
2 150 12807 12807 12763 12713 12880 -
5 50 15521 15198 15290 15159 16110 9073
5 100 23584 23527 23078 22988 24498 -
5 150 29394 29225 28284 28131 30232 -

10 50 29116 28247 28140 28098 30600 16781
10 100 40956 40510 39826 39309 42373 -
10 150 56135 55636 53283 53035 59082 -
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Figure 6.3. Large instances, 50% intermediate nodes, Arithmetic Progression.

6.0.6 Large instances with 50% Intermediate nodes, Geometric Progres-

sion

Table 6.4 shows the results of instances with nodes 50 to 150 and rates generated

using geometric progression.

Table 6.4. 50% Intermediate nodes, Geometric Progression.

R N Max Char NA-PD Re-PD 4.311 ILP
1 50 4217 4217 4217 4217 4217 1836
1 100 5904 5904 5904 5904 5904 3465
1 150 7073 7073 7074 7074 7073 -
2 50 7595 7595 7485 7491 7628 3640
2 100 10832 10832 10643 10600 10870 -
2 150 12807 12807 12763 12713 12880 -
5 50 37471 31471 33611 32346 32522 20884
5 100 54596 54596 55492 54800 56096 -
5 150 70961 70961 72813 71854 72405 -

10 50 403755 403755 423769 410586 424123 299236
10 100 561079 561079 571414 563776 573906 -
10 150 1451722 1451722 1524655 1510602 1490925 -
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Figure 6.4. Large instances, 50% intermediate nodes, Geometric Progression.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The new ILP solution and 4.311 primal dual algorithm was implemented and

simulations were run on all previously implemented algorithms and new algorithms

on same instances. The results show that restarting-PD is still the best of all.

The next step of our research will be to compare the efficiency of new approach by

creating clustered networks to make it more realistic. Different clusterings will be

used for random networks that are intended to look like national and international

networks. In a national network there are more nodes in major population centers

and in the international network there are more nodes on land masses. Another

improvement could be the use of edge contraction technique.
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