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TITLE: INTERSECTION OF LONGEST PATHS IN GRAPH THEORY AND

PREDICTING PERFORMANCE IN FACIAL RECOGNITION

by

AMY YATES

Under the Direction of Guantao Chen, PhD

ABSTRACT

A set of subsets is said to have the Helly property if the condition that each pair of

subsets has a non-empty intersection implies that the intersection of all subsets has a non-

empty intersection. In 1966, Gallai noticed that the set of all longest paths of a connected

graph is pairwise intersecting and asked if the set had the Helly property. While it is not

true in general, a number of classes of graphs have been shown to have the property. In this

dissertation, we show that K4-minor-free graphs, interval graphs, circular arc graphs, and



the intersection graphs of spider graphs are classes that have this property.

The accuracy of facial recognition algorithms on images taken in controlled conditions

has improved significantly over the last two decades. As the focus is turning to more uncon-

strained or relaxed conditions and toward videos, there is a need to better understand what

factors influence performance. If these factors were better understood, it would be easier to

predict how well an algorithm will perform when new conditions are introduced.

Previous studies have studied the effect of various factors on the verification rate (VR),

but less attention has been paid to the false accept rate (FAR). In this dissertation, we

study the effect various factors have on the FAR as well as the correlation between marginal

FAR and VR. Using these relationships, we propose two models to predict marginal VR and

demonstrate that the models predict better than using the previous global VR.

INDEX WORDS: Helly Property, longest paths, facial recognition.
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PART 1

INTRODUCTION

My time in graduate school has been split between Georgia State University (GSU) and

the National Institute of Standards and Technology (NIST). While at GSU, I focused on

structural graph theory and worked on the intersection of longest paths in connected graphs.

While at NIST, I have been working in the field of facial recognition. This dissertation is a

result of my years at both these institutions and reflects the work I have done at both.

1.1 Graph Theory

A well-known fact in structural graph theory is that in a connected graph, any two

longest paths contain a common vertex. In 1966, Gallai [1] questioned if, in a connected

graph, there was a vertex common to all longest paths. This is analogous to asking if the

set of longest paths, in a connected graph, has the Helly property.

In 1923, Helly [2] proved that for every finite family of at least n + 1 convex sets

of Rn such that every n + 1 sets have a nonempty intersection, the entire family has a

nonempty intersection. This has led to various theorems and properties [3]. A family of sets

has the Helly property if every subfamily of pairwise intersecting members has an element

common to all members.

Helly’s theorem and the Helly property has been used numerous times in graph theory

and various other disciplines [4]. Amenta [5] proved that every generalized linear program-

ming problem implies a Helly theorem but that the reverse was not necessarily true.

The Helly property has been applied to many properties of graphs and hypergraphs.

Dourado, Protti, and Szwarcfiter [4] did an extensive survey on the Helly property when

applied to graphs and hypergraphs.

Jamison and Nowakowski [6] proved that the Helly number of the convex sets of a
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connected graph is equal to the clique number of the graph. The Helly number of a family

of sets is the minimum number n such that every subfamily, which has the property that

the intersection of every n or fewer sets is nonempty, has a nonempty intersection itself. A

convex set S of a graph G is a subset of the vertices, S ⊆ V (G), such that for any two

vertices x, y ∈ S, all the vertices on every shortest (x, y)-path belong to S.

Bretto, Ubéda, and Žerovnik [7] characterized the strong Helly hypergraphs, hyper-

graphs in which the edges of every partial subhypergraph has the Helly property. In their

paper, they also found an algorithm to determine if a hypergraph is strong Helly in polyno-

mial time.

Daligault, Gonçalves, and Rao [8] proved that diamond-free graphs, graphs with no

induced subgraph isomorphic to K4 with the deletion of an edge, are Helly circle graphs. A

Helly circle graph is a graph whose vertices correspond to the chords of a circle such that

every set of three pairwise intersecting chords have a point common to all chords.

Lin, Soulignac, Szwarcfiter [9] partially characterized the classes of normal Helly, proper

Helly, and unit Helly circular arc graphs through forbidden induced subgraphs for each class.

A Helly circular arc graph is a graph whose vertices correspond to the arcs of a circle that

has the Helly property. A Helly circular arc graph is normal when at least three arcs are

required to cover the corresponding circle. The graph is proper when when no arc is a subset

of another, and the graph is unit when each arc is of the same length. As the authors

explained, these characterizations imply algorithms to recognize the classes in linear time

with the input being a circular arc graph. Recently, Cao, Grippo, and Safe [10] completely

characterized normal Helly circular arc graphs through forbidden induced subgraphs and

found an algorithm to recognize a normal Helly circular arc graph in linear time, answering

questions in [9].

Bonomo [11] characterized the Helly circular arc graphs that are self-clique. Bonomo,

Chudnovsky, and Durán [12] character the Helly circular arc graphs that are clique-perfect,

graphs in which the minimum number of vertices needed to intersect all cliques and the

maximum number of pairwise disjoint cliques are the same. Bonomo, Durán, Grippo, and
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Safe [13] completely characterized unit Helly circle graphs, Helly circle graphs in which the

chords of the corresponding circle are of equal length. Joeris, Lin, McConnell, Spinrad,

and Szwarcfiter [14] gave a characterization of Helly circular arc graphs, which lead to a

recognition algorithm that runs in polynomial time.

For a family of sets F , a graph G is said to be F -Helly if the family F has the Helly

property in G.

Hamelink [15] proved that if every subset of the cliques of a graph G has the Helly

property, i.e. G is clique-Helly, then G is a clique graph, which is a graph whose vertices

correspond to the cliques of another graph. A short time later, Roberts and Spencer [16]

characterized clique graphs stating that G is a clique graph if and only if there is a set of

complete subgraphs which covers the edges of G and every subset has the Helly property. Lin

and Szwarcfiter [17] proposed algorithms for determining if a graph is clique-Helly or heredi-

tary clique-Helly, improving the complexity from previous algorithms. These algorithms can

be done in polynomial time.

Groshaus and Szwarcfiter [18] in 2007 gave two characterizations of biclique-Helly

graphs; a biclique is a maximal set of vertices which induce a complete bipartite graph.

A year later, the authors [19] characterized the class of hereditary biclique-Helly graphs,

graphs whose induced subgraphs are also biclique-Helly. The authors also characterized

hereditary open neighborhood-Helly graphs and hereditary closed neighborhood-Helly.

Bandelt and Prisner [20] proved that the following classes are equivalent: disk-Helly

graphs, dismantable clique-Helly graphs, and clique-Helly graphs that are convergent to

a single vertex. Disk-Helly graphs are graphs in which the family of disks has the Helly

property. A disk with center v ∈ V (G) and radius k is the set of all vertices whose distance

from v is at most k. A graph is dismantable if recursively removing vertices whose closed

neighborhoods are completely contained in the closed neighborhood of another vertex results

in a graph with a single vertex. The clique operator K is defined as K0(G) = G and

Ki(G) = K(Ki−1(G)) for i ≥ 1 where K(G) is the clique graph of G. A graph is convergent

under the clique operator if Kj(G) = Kj−1(G). If Kj(G) is a graph with a single vertex,
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then G is said to converge to a single vertex.

Bondy, Durán, Lin, and Szwarcfiter [21] characterized the clique-Helly self-clique graphs

as the graphs whose clique matrices are quasi-symmetric, matrices whose row and column

families are identical. A graph is self-clique if it is isomorphic to its clique graph. Larrión

and Pizaña [22] characterized self-clique hereditary clique-Helly graphs.

In 2005, Dourado, Petito, and Teixeira [23] proved that both the clique-Helly and the

hereditary clique-Helly sandwich problems are NP -complete. Given a graph G and spanning

subgraph H, the property P sandwich problem is to find another spanning subgraph H∗ of

G such that the edge set of H∗ is a superset of the edge set of H and such that H∗ has

property P .

When it came to Gallai’s question on if connected graphs were longest path-Helly,

Walther [24] showed that the answer was no three years later by finding a planar coun-

terexample on 25 vertices. Walther and Voss [25] and Zamfirescu [26] independently found

a counterexample on 12 vertices, seen in Figure 1.1; Zamfirescu conjectured that no coun-

terexample on 11 or less vertices exists. This is the smallest known connected graph where

the set of all longest paths does not have the Helly property. Figure 1.2 from Schmitz and

Werner [27] shows a planar counterexample.

Figure (1.1) The 12-vertex counterexample

Counterexamples were found for 2-connected planar, 3-connected planar, and non-
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Figure (1.2) The 17-vertex planar counterexample

planar graphs as well. In 1972, Zamfirescu [28] found a 2-connected planar counterexample on

82 vertices. In 1974, Grünbaum [29] found a 3-connected planar counterexample on 484 ver-

tices and a 3-connected non-planar counterexample on 324 vertices. In 1976, Zamfirescu [26]

found smaller counterexamples. Zamfirescu found a 2-connected planar counterexample on

32 vertices and a 3-connected counterexample on 36 vertices.

Nadeem, Shabbir, and Zamfirescu [30] found a counterexample on 46 vertices embedded

in the square lattice, a counterexample on 94 vertices embedded in the hexagonal lattice, a 2-

connected counterexample on 126 vertices embedded in the square lattice, and a 2-connected

counterexample on 244 vertices embedded in the hexagonal lattice. They conjectured that

these counterexamples are minimal. In [31], Bashir and Tudor showed that Schmitz’s coun-

terexample in Figure 1.2 is not embeddable in the square lattice but that it is embeddable

in the cubic lattice, and thus there is a counterexample on 17 vertices embeddable in the

cubic lattice.

In 2012, Dino Jumani and Zamfirescu [32] found graphs which are embeddable into the

triangular lattice but whose longest paths do not share a common vertex; the connected

counterexample is on 30 vertices, and the 2-connected counterexample is on 92 vertices.

The triangular lattice is an infinite planar graph in which every face is a triangle. In 2013,

Nadeem, Shabbir, and Zamfirescu [33] found many graphs which are embeddable into the

planar square lattice but whose longest paths do not share a common vertex. The planar

square lattice is an infinite planar graph in which every face is a square.

Recently, Shabbir [34] found a counterexample on 58 vertices embedded on in a hexago-
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nal lattice on the Klein bottle, a planar counterexample on 17 vertices embedded in a square

lattice on the Klein bottle, a planar 2-connected counterexample on 80 vertices embedded in

a square lattice on the Klein bottle, a counterexample on 12 vertices in a triangular lattice

on the Klein bottle, and a planar 2-connected counterexample on 48 vertices in a triangular

lattice on the Klein bottle. Bashir, Nadeem, and Shabbir [35] found connected graphs such

that every pair of vertices is missed by a longest path in the triangular, square, and hexag-

onal lattices. They also found such graphs in some lattices embedded on the torus, Möbius

strip, and the Klein bottle.

Any hypotraceable graph, a graph that does not have a Hamiltonian path but any

vertex-deleted subgraph does, is a counterexample [36]. Araya and Wiener [37] proved the

existence of a cubic planar hypotraceable graph on 340 vertices; they also proved such graphs

existed on 2n vertices for every n ≥ 178. Thomassen [36] found hypotraceable graphs on 34,

37, 39, and 40 vertices and showed that for all n ≥ 42, a hypotraceable graph exists on n

vertices.

Although the Helly property on the set of longest paths is not true in general, it has

been shown to be true in certain classes of graphs. For example, in 1990, Klavžar and

Petkovšek [38] proved that all longest paths in connected split graphs, block graphs, and

cacti share a vertex. A split graph is a graph whose vertices can be partitioned into an

independent set and a clique. A block graph is the intersection graph for the blocks of

another graph. A cactus is a graph where no two cycles share an edge. In 2004, Balister,

Györi, Lehel, and Schelp [39] established a similar result for interval graphs and circular arc

graphs. Their proof for circular arc graphs had a gap that was recently closed by Joos [40].

Recently, Chen [41] proved the conjecture to be true when the matching number of a

graph, the maximum size of a set of independent (or non-adjacent) edges, is at most 3. Chen

also asked if the conjecture is true when the matching number is at most 5, pointing out that

the graph in Figure 1.1 has a matching number of 6. Instead of looking at the set of all longest

paths, Axenovich [42] proved in 2009 that any three longest paths in outerplanar graphs have

a common vertex. Tutte [43] proved that 4-connected planar graphs are Hamiltonian, and
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therefore, all longest paths contain all vertices and trivially have the Helly property. Tutte

modified the methods of Whitney used to prove that planar triangulations in which the edges

of every C3 are the bounds of a face is Hamiltonian.

In 2011, the Helly property for the set of all longest paths was confirmed for outerplanar

graphs by de Rezende, Fernandes, Martin, and Wakabayashi [44], strengthening the result

by Axenovich in [42]. Later, in 2013, the same authors [45] also proved that all longest paths

share a vertex in 2-trees, which are chordal graphs. In the same paper, they questioned

whether the Helly property holds for series-parallel graphs, which are 2-connected graphs

that can be reduced to a K2 by a series of deletions of parallel edges and contracting edges.

1.2 Facial Recognition

Over the years, the application and need for automatic face recognition has grown.

There are numerous applications in law enforcement. In the last few years, a need has

arisen even in social media. Social media platforms, such as Facebook and Google+, can

automatically tag friends and family in uploaded images. Cell phones can automatically tag

contacts in images.

Still, determining if two faces are of the same identity is a difficult task. Despite many

automated systems existing, the general face recognition problem is still unsolved. Predicting

how a system will perform in new settings is still challenging. Since 1993, the error rate of

facial recognition systems on frontal images, such as mugshots or taken in a controlled

studio, has decreased dramatically [46]. However, when the image conditions are less and

less constrained, performance decreases [47].

To help advance the state of automatic face recognition systems, various datasets and

challenges have been issued. Starting in 1993, the Face Recognition Technology (FERET)

program built database of 8525 images of 884 individuals [48]; the images were taken under

controlled conditions. In 2001, the BIOID database was introduced and consisted of 1521

frontal, grayscale images of 23 individuals [49].

In 2003, Carnegie Mellon University (CMU) introduced the Pose, Illumination, and
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Expression (PIE) Database [50]. The database consists of over 40,000 images of 68 indi-

viduals of various poses, illumination conditions, and expressions. Seven years later, CMU

introduced the Multi-PIE database, which has over 750,000 images of 337 individuals [51].

This database addressed shortcomings of CMU’s PIE database such has the low number

of expressions captured and only one recording session. The database also includes high

resolution images.

In 2005, the Face Recognition Grand Challenge (FRGC) was introduced [52]. The

dataset consists of over 50,000 images of over 400 individuals; the frontal images are 2D,

3D, controlled illumination, and uncontrolled illumination. In 2006, the Face Recognition

Vendor Test (FRVT 2006) used images taken under controlled conditions in studio lighting

and along with a probe set of frontal images in uncontrolled lighting [53].

In 2007, the University of Massachusetts released the Labeled Faces in the Wild (LFW)

database of over 13,000 images of over 5700 individuals [54]. The images are unconstrained

images of celebrities taken under a variety of conditions such as lighting, location, and

camera.

In 2010, NIST ran the Multiple-Biometric Evaluation (MBE) [55] using mugshots and

frontal images taken under controlled conditions; some of the images came from the FRVT

2006.

In 2011, the Good, the Bad, & the Ugly (GBU) Face Challenge was introduced [56].

The challenge dataset has three partitions each with 2170 nominally frontal images of 437

individuals. The partitions were made from the FRVT 2006 dataset. The partitions contain

the same set of individuals and were created based on how well or difficult the matched pairs

were matched correctly.

In 2013, Sgroi, Bowyer, Flynn, and Phillips [57] introduced the Strong, Neutral, or Weak

(SNoW) Face Impostor Pairs problem. The problem dataset was constructed similarly to

the GBU dataset. The SNoW dataset has three partitions created from the FRVT 2006

dataset. The partitions were created based on how well or difficult the non-matched pairs

were matched incorrectly.
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In 2013, the Point-and-Shoot Challenge (PaSC) was introduced [47]. The challenge

dataset has 9376 images of 293 individuals taken from various cameras, views, and conditions.

The dataset also includes 2802 videos of 265 individuals.

Beveridge, Givens, Phillips, Draper, and Lui [58] used generalized linear mixed models

to study factors that affect performance on images from the Face Recognition Vendor Test

2006. They looked at 50 factors, including gender, race, whether the subject was wearing

glasses, age, focus, resolution, and many more.

Beveridge, Givens, Phillips, and Draper [59] used generalized linear mixed models to

analyze factors that affect performance on images from the Face Recognition Grand Chal-

lenge. They looked at numerous factors including gender, race, age, expression, whether the

subject was wearing glasses, image size, resolution, and many others. Many of these factors

are very costly to annotate for each image.

Beveridge, Givens, Phillips, Draper, Bolme, and Lui [60] used generalized linear mixed

models to analyze factors on images of the Face Recognition Vendor Test 2006. They looked

at the factors gender, race, age, whether the subject was wearing glasses, and whether the

image was indoors or not.

O’Toole, Phillips, An, and Dunlop [61] used FRVT 2006 images to investigate the effects

of race and gender on the performance of algorithms. They showed a decrease in performance

when the non-matching pairs of images were restricted by these demographic factors.

1.3 Dissertation Results

The first result of this dissertation, as stated in Theorem 1 below, we show that Gal-

lai’s question has an affirmative answer for connected K4-minor-free graphs, another distin-

guished subclass of planar graphs. The class of K4-minor-free graphs contains the class of

series-parallel graphs. Series-parallel graphs are 2-connected, and based on the operations

performed to obtain a series-parallel graph, such graphs have no K4 minor. On the other

hand, graphs with no K4 minor can be 1-connected. Consequently, the Helly property holds

for outerplanar graphs (graphs with no K4 minor or K2,3 minor) and series-parallel graphs,
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which answers the question proposed in [45] positively.

The next result, in Section 6, establishes the property for interval graphs, and the third

result, in Section 7, establishes the property for the intersection graphs of spider graphs.

We use Lemma 7 to prove these results. The final result in Section 8 proves that the set of

longest paths for circular arc graphs has the Helly property. Though Balister, Györi, Lehel,

and Schelp [39] already proved the results for interval and circular arc graphs, we use new

techniques.

In face recognition, predicting how a system will perform in new settings is a challenging

problem. Without explicitly testing the new settings, a common method is to use the overall

performance of the system on previously known settings. However, is there a way to better

model the performance without needing the time to identify and label the individuals in the

videos? In Section 9, we show that a better model does indeed exist using the Point-and-

Shoot Face Recognition Challenge (PaSC) dataset.

Additionally, we investigate the impostor distribution and its relationship with the

genuine distribution over the levels of various factors. A setting may be thought to be

“easy” if it has a high amount of correct matches and a low amount of incorrect matches.

Do such easy settings exist?

In this dissertation, we investigate both of these questions over four different state of

the art, independently developed algorithms on the PaSC data set.
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PART 2

DEFINITIONS

2.1 Graph Theory

A graph G is an ordered pair (V (G), E(G)) where V (G) = {v1, v2, ..., vn} is a set whose

elements are referred to as vertices and where E(G) ⊆ V (G)2 is a set whose elements are

unordered pairs of vertices, called edges. V (G) is called the vertex set of G, and E(G) is

called the edge set of G. When the graph G is unambiguous, these sets are denoted as V

and E, respectively.

Edges are explicitly written as e = uv where u, v ∈ V (G) are the endpoints of the

edge. If two vertices, u and v, are the endpoints of an edge in G, then u and v are said to

be adjacent. A loop is an edge whose endpoints are the same vertex. If two (or more) edges

contain the exact same set of endpoints, the edges are said to be multiple edges, multi-edges,

or parallel edges.

In this dissertation, graphs contain no loops, but they may contain multi-edges. A

graph that contains no loops or multi-edges is said to be simple.

A walk, W , is a sequence of vertices, written W = w1w2...wm, such that wi ∈ V (G) for

i = 1, 2, ...,m such that wiwi+1 ∈ E(G) for i = 1, 2, ...,m− 1. A walk, P = p1p2...pm, whose

vertices are distinct, i.e. pi 6= pj if i 6= j, is called a walk. A subpath is a subsequence of a

path P . The length of a path is the number of edges in the path. A walk, C = c1c2...cm,

such that C ′ = c1c2...cm−1 is a path and c1 = cm is called a cycle. Two paths P = p1p2...pk

and Q = q1q2...ql are said to be internally vertex-disjoint if k = l, {p1, pk} = {q1, ql}, and

{p2, p3, ..., pk−1} ∩ {q2, q3, ..., ql−1} = ∅. That is, two paths are internally vertex-disjoint if no

internal vertices, non-endvertices, are shared between the two paths.

A complete graph is a simple graph in which every pair of vertices is adjacent. Up to

isomorphism, there is only one complete graph on n vertices, denoted Kn.



12

Let G = (V (G), E(G)) and H = (V (H), E(H)) be graphs for the following definitions.

A graph is said to be connected if there exists a path between any two distinct vertices

in the vertex set. A graph is said to be 2-connected if it is isomorphic to K2 or if there exist

two vertex-disjoint paths between any two distinct vertices in the vertex set. A connected

graph without any cycles is called a tree. If V (H) ⊆ V (G) and E(H) ⊆ E(G), then H is

a subgraph of G. A connected subgraph of a tree is called a subtree.

Let uv ∈ E(G). To subdivide the edge means to add a new vertex w to the vertex set of

G and to replace the edge uv with the edges uw and wv. To contract the edge means to delete

the edge uv then to identify the vertices u and v. This means that, in the resulting graph

G′, the vertices u and v are replaced by one vertex w and for each vertex x ∈ V (G) \ {u, v},

the edge wx ∈ E(G′) exists for every edge ux ∈ E(G) and vx ∈ V (G), possibly resulting in

multiple edges.

If there exists a mapping φ : V (G) → V (H) such that if uv ∈ E(G) then φ(u)φ(v) ∈

E(H), then G is said to be homomorphic to H. H is said to be a minor of G if H can be

obtained from G after a series of contractions of edges and deletions of vertices and edges.

If no such minor exists, then G is said to be H-minor-free.

A series-parallel graph is a graph that can be obtained by starting with a K2 and

performing the following operations in some order. (1) Add a parallel edge to an existing

edge. (2) Subdivide an edge. Series-parallel graphs are exactly the K4-minor-free graphs [62].

An intersection graph is a graph whose vertices correspond to subsets of a set such

that two vertices are adjacent if and only if their corresponding subsets have nonempty

intersection. A chordal graph is a graph with no chordless cycles with length greater than

three; a chord is an edge between any two nonconsecutive vertices on a cycle. In fact, Gavril

proved that a chordal graph is the intersection graph of a set of subtrees of a tree T [63].

An interval graph is a graph whose vertices correspond to a set of real open intervals such

that two vertices are adjacent if their corresponding intervals have a nonempty intersection.

An interval graph can also be defined as the intersection graph of a path graph, so an interval

graph is a chordal graph. A circular arc graph is a graph whose vertices correspond to a set
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of open arcs on a circle such that two vertices are adjacent if their corresponding arcs have

a nonempty intersection.

2.2 Facial Recognition

Given two overlapping distributions of scores, genuine and impostors, a receiver operat-

ing characteristic (ROC) can be calculated. Given a threshold, all scores above the threshold

are classified as matches and those below by non-matches. If a score from the genuine dis-

tribution is above the threshold, the score is declared a genuine match. If a score from the

impostor distribution is above the threshold, the score is declared a false alarm. The per-

centage of scores in the genuine distribution that are classified as genuine matches is called

the verification rate (VR). The percentage of scores in the impostor distribution that are

classified as false alarms is called the false accept rate (FAR). By varying this threshold, a set

of ordered pairs of these rates, (FAR,VR), can be obtained. Plotting these values produces

an ROC curve and shows the trade-off “between true positive rate and false positive rate of

a classifier” [64].

Our results are reported on participants in the Face and Gesture 2015 Person Recogni-

tion Evaluation [65], and in this competition, the participants followed the PaSC protocol.

In the protocol for the PaSC, algorithms are given two videos and then return a number

measuring the degree of similarity between the subjects in the pair of videos. Hence, in

calculating and predicting performance, we compare videos in pairs.

In measuring performance, we are observing how often an algorithm correctly declares

the same person to be in two videos. We are also interested in how often the algorithm

incorrectly believes two different people from videos are the same person. However, we are

not interested in the overall performance of the algorithm. Instead, we are more interested

in how the performance changes over levels of a factor. Later in this disseration, for a set

of videos of a factor-level, we are predicting how well an algorithm will correctly match

videos of the same person (marginal VR). In our prediction, we use how often the algorithm

incorrectly declared different people to be the same (marginal FAR). We then compare our
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predicted performance to the actual observed performance.

The focus of analysis in this dissertation is on performance when comparing videos for

a factor-level. Presented with two faces from videos x and y, an algorithm A returns a

similarity score, sA(x, y), for video-pair (x, y). The similarity score denotes how similar the

faces are estimated to be; a higher similarity score indicates a higher likelihood of the two

faces belonging to the same subject.

To make a decision, a threshold τg is set so that every video-pair score at least as large

τg is declared a match and every score below the threshold is considered a non-match. We

denote the set of all video-pairs by V , and we note that V is partitioned into two sets M

and I in the following way. Let M denote the set of video-pairs that are genuine matches,

i.e. of the same subject, and let I denote the set of video-pairs that are impostors, i.e. of

different subjects. The verification rate (VR) is the ratio of correctly matched pairs to the

set of all genuine matches, and the false accept rate (FAR) is the ratio of the incorrectly

matched pairs to the set of all impostors. Given a threshold τg, these are explicitly defined

as

VR(sA(V ), τg) =
|{(x, y) ∈M | sA(x, y) ≥ τg}|

|M |
(2.1)

FAR(sA(V ), τg) =
|{(x, y) ∈ I | sA(x, y) ≥ τg}|

|I|
(2.2)

where, again, V is the set of all video-pairs.

Generally, the threshold τg is set to specify the FAR at a certain instance. In our disser-

tation, we select τg so that FAR(sA(V ), τg) = 0.10. For PaSC, the standard for reporting VR

is FAR = 0.01. However, we shifted the threshold to have enough false matches for analysis.

Nonetheless, the analysis in this dissertation is not focused on the overall performance

over the set of all video-pairs. Rather, for this dissertation, as previously mentioned, the

analysis is centered on performance when comparing video-pairs of factor levels. As an

example, if the factor is gender, then we know from Section 9.1.4 that the factor-levels are
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both-female (F/F), both-male (M/M), or female-male (F/M). Note female-male only arises

for impostor-pairs. Let Fi ⊂ V denote the set of video-pairs for the ith level of some factor

(e.g. FM/M with the gender factor). With τg set so that the global FAR is 0.10 as desired,

the marginal rates for factor-level Fi are calculated the following way:

VR(sA(Fi), τg) =
|{(x, y) ∈ Fi ∩M | sA(x, y) ≥ τg}|

|Fi ∩M |
(2.3)

FAR(sA(Fi), τg) =
|{(x, y) ∈ Fi ∩ I | sA(x, y) ≥ τg}|

|Fi ∩ I|
(2.4)



16

PART 3

DECOMPOSITION OF K4-MINOR-FREE GRAPHS

A connected graph can be decomposed into blocks and cut-vertices. Tutte [66] intro-

duced a method to decompose 2-connected graphs into 3-connected blocks: bonds, cycles,

and 3-connected blocks. Here, we modify this decomposition for K4-minor-free graphs. The

following observations imply that there are no 3-connected blocks (aside from K3) when

applying Tutte’s decomposition to a 2-connected K4-minor-free graph.

Lemma 1. Let G be a 2-connected K4-minor-free graph. If a subgraph H of G is a Θ-graph

consisting of three internally vertex-disjoint paths P
[u,v]
1 , P

[u,v]
2 , and P

[u,v]
3 , then P

(u,v)
1 , P

(u,v)
2 ,

and P
(u,v)
3 are in three different components of G− {u, v}, provided they are not empty.

Proof. Suppose to the contrary there is a path Q[x,y] connecting x ∈ V (P
(u,v)
1 ) and y ∈

V (P
(u,v)
2 ) such that Q[x,y] ∩ P (u,v)

3 = ∅. Then by contracting P
(u,v)
1 to u, P

(u,v)
2 to y, Q(x,y) to

x, and P
(u,v)
3 to v, we get a K4, giving a contradiction.

As a result of Lemma 1, {u, v} is a 2-separation of G.

Lemma 2. Let G be a 2-connected series-parallel graph but not a bond, and let e = {u, v}

be an arbitrary edge of G. If {u, v} is not a 2-separation of G, then G − e is no longer

2-connected. In particular, if G has at least 4 vertices, G is not 3-connected.

Proof. Since {u, v} is not a 2-separation of G and |E(G)| ≥ 3, e is the only edge between u

and v. Suppose on the contrary that G− e is still 2-connected. By Menger’s Theorem, there

exist two internally vertex-disjoint {u, v}-paths P and Q. Then P ∪ Q ∪ {e} is a Θ-graph.

By Lemma 1, P (u,v) and Q(u,v) are in two different components of G− {u, v}, which in turn

shows that {u, v} is a 2-separation of G, a contradiction.

Lemma 3. Let G be a 2-connected graph, and let {u, v} be a 2-separation of G. Then, there

is no 2-separation {x, y} such that x and y are in different {u, v}-bridges of G.
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Proof. Since {u, v} is a 2-separation of G, there are three internally vertex-disjoint (u, v)-

paths in G, so for any two distinct vertices x and y in different bridges of {u, v}, G− {x, y}

does not separate u and v. As each graph induced on the vertex set of a {u, v}-bridge

together with {u, v} is 2-connected, {x, y} is not a 2-cut of G, which in turn shows that

{x, y} is not a 2-separation of G.

In the following, we apply Tutte Decomposition Algorithm (TDA) (see chapter 3 in [66])

specifically for 2-connected K4-minor-free graphs. Given a 2-connected graph G, we apply

TDA to produce a set D(G) of 3-blocks, a set φ(G) of virtual edges, and a rooted tree T3(G)

with vertex set D(G). This algorithm is applied on an ordered pair (G, e) where e is an

arbitrary edge of G, but both D(G) and φ(G) are independent from the selection of edge e

as Tutte pointed out in [66].

Tutte Decomposition Algorithm (TDA) Let G be a nontrivial 2-connected K4-

minor-free graph, and let e ∈ E(G) be an arbitrary edge of G with end vertices u and v. We

perform the following operations.

O-0 If G is a cycle, let T3(G) := K1 with vertex set D(G) := {G} and φ(G) := ∅. We let

G be the root of T3(G). Otherwise, we perform the following operations.

O-A If {u, v} is a 2-separation of G, let G1, G2, · · · , Gk be all non-trivial bridges of edge

e. For i = 1, 2, · · · , k, add a virtual edge ei between u and v, and let Gi := Gi + ei.

Let Buv be a bond with vertex set {u, v} and edge set {e, e1, e2, · · · , ek}. Clearly, each

Gi is a 2-connected K4-minor-free graph with |E(Gi)| < |E(G)| and {u, v} is not a

2-separation of Gi. By applying TDA to the ordered pair (Gi, ei) and to the resulting

smaller graphs, we obtain T3(Gi), D(Gi), and φ(Gi). Let D(G) := (
⋃k

i=1D(Gi))∪{Buv}

and T3(G) be a tree obtained from vertex set D(G) and by adding an edge between

Buv and the root of T3(Gi) for each i = 1, 2, · · · , k. Set the root of T3(G) as Buv. Let

φ(G) := (
⋃k

i=1 φ(Gi)) ∪ {e1, e2, . . . , ek} be the set of virtual edges.

O-B If {u, v} is not a 2-separation of G, then G− e is no longer 2-connected by Lemma 2.

That means G−e is a nontrivial block chain, say G1v1G2v2 · · · vk−1Gk with u ∈ V (G1),
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v ∈ V (Gk), u 6= v1, and v 6= vk−1. Designate u = v0 and v = vk. For i = 1, 2, · · · , k, if

Gi
∼= K2 with V (Gi) = {vi−1, vi}, let ei = vi−1vi. Otherwise, let Fi,1, Fi,2, . . . , Fi,ki be

all nontrivial bridges of {vi−1, vi} in Gi, add ki+1 virtual edges ei and ei,j between vi−1

and vi for j = 1, 2, · · · , ki, and let Bvi−1vi = E(vi−1, vi) ∪ {ei, ei,1, . . . , ei,ki} and Gi,j =

Fi,j ∪ {ei,j} for j = 1, 2, . . . , ki. Let Cuv be the cycle induced by {e, e1, e2, · · · , ek−1}.

For each pair (i, j) with 0 ≤ i ≤ k − 1 and 1 ≤ j ≤ ki, it is readily seen that Gi,j is a

2-connected K4-minor-free simple graph. Moreover, {vi−1, vi} is not a 2-separation of

Gi,j.

By applying TDA to all pairs (Gi,j, ei,j) such that Gi 6= ei and the resulting smaller

graphs, we obtain T3(Gi,j), D(Gi,j), and φ(Gi,j) for Gi 6= ei. Let

D(G) := {Cuv} ∪
(
∪i:Gi 6=ei ∪

ki
j=1 D(Gi,j)

)
∪
(
∪i:Gi 6=eiBvi−1vi

)
.

Let T3(G) be obtained from ∪ki=1(∪kij=1T3(Gi,j) (where the union is taken over theseGi 6=

ei) by adding a vertex Cuv and Bvi−1vi for each i such that Gi 6= ei and an edge between

Cuv and each Bvi−1vi and by adding an edge between Bvi−1vi to the root of each T3(Gi,j).

Set Cuv as the root of T3(G). Let φ(G) := ∪i:Gi 6=ei

(
{ei} ∪ (∪kij=1φ(Gi,j)) ∪ {ei,j}

)
be

the virtual edge set.

Lemma 4. Let G be a 2-connected simple K4-minor-free graph and A = {x, y} be a set

of two vertices of G. Then, A is the vertex set of a bond B ∈ D(G) if and only if A is a

2-separation of G.

Proof. We prove the lemma by induction on |V (G)|. Lemma 4 is clearly true if |V (G)| = 1,

for then G is a cycle as there is no 2-separation of G nor bond in D(G). Now, we assume

that |V (G)| > 1, so G is not a cycle and either O-A or O-B was applied.

If O-A was applied, then {u, v} is a 2-separation and Buv ∈ D(G). By Lemma 3, {u, v}

are in the same V (Gi) for some i ∈ {1, 2, · · · , k}. Additionally, {x, y} is a 2-separation in

Gi if and only if {x, y} is a 2-separation of G with x, y ∈ V (Gi) and {x, y} 6= {u, v}. Thus,

inductively, the proof follows.
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If O-B was applied, the bonds are Bvivi+1
, and these resulted in Gi,j for each Gi 6= ei

with j = 1, 2, · · · , ki. Because G is not a cycle, there is at least one such i. Since each

Gi such that Gi 6= ei is 2-connected, there are two internally vertex-disjoint (vi−1, vi)-paths

P1 and P2 in Gi. Since these two paths and a (vi−1, vi)-path along the other direction of

Cuv form a Θ-graph, P1vi−1, vi) and P2(vi−1, vi) are in different bridges of {vi−1, vi} in Gi,

which in turn shows that {vi−1, vi} is a 2-separation of G. Since Gi,j such that Gi 6= ei is

2-connected and vi−1 and vi are adjacent in Gi,j for each j = 1, 2, · · · , ki, a pair of vertices

in Gi form a 2-separation in Gi if and only if they form a 2-separation in G, are in V (Gi),

and are not in V (Cuv). Inductively, we can show that Lemma 4 holds in this case.

Applying Lemma 4, we can show that D(G), φ(G), and T3(G) are independent from

the choice of the edge uv and are uniquely determined by G. In fact, Tutte [66] showed that

this statement is true for every 2-connected simple graph without the condition of being

K4-minor-free.

For each vertex v ∈ V (G), let Dv(G) denote the set of 3-blocks containing v and

T3[Dv(G)] be the subgraph induced by Dv(G).

Lemma 5. Let G be a 2-connected K4-minor-free graph. For each vertex v ∈ V (G), then

the subgraph T3[Dv(G)] is a subtree of T3(G).

Proof. Since T3(G) is a tree, we only need to show that the subgraph induced by Dv(G) is

connected. Otherwise, assume that there exist two 3-blocks A,B ∈ Dv(G) such that not

all of the internal vertices of the (A,B)-path D1(= A)D2 . . . Dm−1Dm(= B) in T3(G) are

in Dv(G). Since T3(G) is a bipartite graph with one class containing all bonds and the

other containing all cycles, the path is an alternating path of bonds and cycles. Recall

V (B) ⊂ V (C) if bond B and cycle C are adjacent in T3(G). Since v ∈ V (Di−1) V (Di) for

some i > 1, Di−1 is a cycle and Di is a bond, and let V (Di) = {w, z}. Because v /∈ V (Di)

but v ∈ V (Dm), then i < m. As T3(G) is a tree, D1, D2, ..., Di−1 and Di+1, Di+2, ..., Dm

are in two different components of T3(G) − Di. From O-A, the connected components of

G− {w, z} correspond to some nontrivial {w, z}-bridge of G. The 3-block Di in T3(G) has
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a unique neighbor for each nontrivial {w, z}-bridge. Therefore ∪i−1
j=1V (Dj) and ∪mj=i+1V (Dj)

are in two different components of G− {w, z}. However v is both sets, a contradiction.

We now expand our consideration from 2-connected graphs to connected graphs. Let

G be a connected K4-minor-free graph. We obtain a decomposition tree, denoted as TG, by

the following steps.

Step 1. Decompose G into blocks and cut vertices (see [66]) and obtain a block-cut vertex tree,

say T2(G), by the following description.

T2(G) is a bipartite graph with two partitions (U, V ) such that for vertices in U , there

is a 1-1 correspondence to blocks of G and such that for vertices in V , there is a 1-1

correspondence to cut vertices of G. For any u ∈ U and v ∈ V , uv ∈ E(T2(G)) if and

only if the block corresponding to u contains the cut vertex corresponding to v in G.

It is easy to see that T2(G) is a tree. Note that each block with at least 3 vertices is a

2-connected K4-minor-free graph but not 3-connected by Lemma 2.

For notation simplicity, for each element X ∈ U , we use X either as a vertex of T2(G)

or a 2-connected subgraph of G, but the meaning will be clear from the context.

Step 2. For each nontrivial 2-connected K4-minor-free X ∈ U , we apply TDA on X and obtain

T3(X), the rooted tree of X, with vertex set D(X) and virtual edge set φ(X). Notice

that if X = K2, then T3(X) = K1, which is a single-vertex graph; otherwise D(X)

consists of cycles and bonds only by the assumption that G is K4-minor-free.

For each X ∈ U and a cut vertex v ∈ X, recall Dv(X) = {B ∈ D(X) | v ∈ B}, which

we will call v-blocks in X. By Lemma 5, T3[D(Xv)] is a subtree of T3(X).

Let

D(G) =
⋃
X∈U

D(X),

which is a set consisting of K2s, cycles, and bonds obtained TDA applied in Step 2.

Recall that V is the set of cut-vertices of G mentioned in Step 1. We modify T2(G)

into a graph TG with vertex set V ∪ D(G) through the step below:
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Step 3. For each X ∈ U ⊂ V (T2(G)), replace X by its Tutte decomposition rooted tree T3(X)

from Step 2; then for each v ∈ V , if vX ∈ E(T2(G)), X is a block containing v. In

this case, we let v be adjacent to a vertex in T3([DvX]). (Note that to which specific

vertex in T3([DvX]) we join v is not essential to our proof.) Denote the resulted tree

by TG and call it a decomposition tree of G.

Given a subgraph H of G, let VTG
(H) = {X ∈ V (TG) |X ∩ V (H) 6= ∅} and TH =

TG[VTG
(H)]. Particularly, when H = {v}, i.e. a single vertex, we simply denote T{v} by Tv.

The following lemma implies that if H is connected, then TH is connected.

Lemma 6. Let G be a connected K4-minor-free graph. The following two statements hold.

(1) For each vertex v ∈ V (G), Tv is a subtree in TG;

(2) For every edge e = uv ∈ E(G), Tu ∩ Tv 6= ∅.

Proof. (1). If v is not a cut vertex of G, then v is contained in exactly one block of G. We

then know Tv is connected by Lemma 5. Assume v is a cut vertex. Then for each block X

of G which contains v, TG[DXv] is a subtree. Let Tv be the graph obtained by taking the

union of all TG[DXv] and adding v and edges joining v to a vertex of TG[DXv], for each of

the subtree TG[DXv]. It is easy to see Tv is a connected graph.

(2). For each edge e ∈ E(G), there exists exactly one block, say B, of G containing e.

If B = e, then e ∈ Tu ∩ Tv. Otherwise, there exists at least 3 vertices in B. If {u, v} is not a

2-separation of G, there is a unique cycle in D(B) containing e; otherwise, there is a bond

in D(B) containing e. In either case, we have Tu ∩ Tv 6= ∅.
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PART 4

K4-MINOR-FREE GRAPHS

Theorem 1. Let G be a connected graph with no K4-minor. Then all longest paths share a

common vertex in G.

Proof. Let G be a connected simple K4-minor-free graph and L be the set of all longest

paths in G. We prove Theorem 1 by a sequence of claims.

Claim 1. We may assume that there exists a cycle C ∈ D(G) such that P ∩C 6= ∅ for each

P ∈ L.

Proof. Let TG be a decomposition tree of G. For each longest path P , recall VTG
(P ) =

{X ∈ V (TG) |X ∩ V (P ) 6= ∅} and TP = TG[VTG
(P )]. By Lemma 6, TP is connected and

thus a subtree of TG. For any two longest paths P and Q in L, we have TP ∩ TQ 6= ∅ since

P ∩ Q 6= ∅. Let TL = {TP |P ∈ L}. It is well-known that a family of subtrees of a tree has

the Helly property (see problem 18 on p. 49 of [67]), so there is a vertex B ∈ V (TG) such

that B ∈
⋂

P∈L TP . By the construction of TG, there are four possibilities of B: a cut-vertex

of G, a block K2 of G, a bond, or a cycle from D(G). We may assume that B is a cut-vertex,

a cut-edge, or a bond.

If B is a cut-vertex of G, then B ⊂
⋂

P∈L P , so Theorem 1 holds.

If B = xy is a cut-edge of G, we may assume, without loss of generality, x ∈
⋂

P∈L P ,

so Theorem 1 holds. We may assume this, for otherwise, there exists two longest paths

P, Q ∈ L such that x ∈ V (P ) but y /∈ V (P ) and x /∈ V (Q) with y ∈ V (Q). Since P ∩Q 6= ∅,

there is a vertex z ∈ P ∩Q. Then {x, y, z} contains a triangle-minor, which contradicts xy

being a cut edge in G.

Suppose B is a bond. Let C be a cycle adjacent to B in T (G). Since G is a simple

graph, we have V (B) ⊆ V (C), which in turn gives Claim 1.
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In what follows, the notation C is reserved for the cycle C ∈ D(G) such that every

longest path contains a vertex of C.

Let uv ∈ E(C). If {u, v} is a 2-cut in G, then uv ∈ E(C) is a virtual edge while the

possible real edge between u and v is in the corresponding bond. Following TDA, {u, v}

is a 2-separation of G. In this case, let Guv be the subgraph of G obtained by deleting all

components of G− {u, v} containing a vertex of C − {u, v}. Since {u, v} is a 2-separation,

there are two (u, v)-paths R[u,v] and S[u,v] in Guv. By Lemma 1, R(u,v) and S(u,v) are in

different components of G− {u, v}. We call R[u,v] and S[u,v] connectors of Guv.

The following two claims follow directly from TDA.

Claim 2. For any two distinct edges uv, pq ∈ E(C), we have V (Guv) ∩ V (Gpq) ⊆ {u, v} ∩

{p, q} and E(Guv − {u, v}, Gpq − {p, q}) = ∅ (see Figure 4.1).

Claim 3. If P [u,v] is a path in G with P [u,v] ∩ C = {u, v}, then u and v are two consecutive

vertices on C.

Guv v

u

x

y z

p

q

Gpq

Figure (4.1) Structure of the cycle C

Claim 4. If P ∈ L is a longest path in G such that P has at least one end, say u, on C,

then both its predecessor u− and successor u+ along C are also on P .

Proof. Suppose, on the contrary, that we assume u+ /∈ V (P ). If uu+ ∈ E(G), the P ∪{uu+}

is a longer path, a contradiction. Otherwise, consider R[u,u+] and S[u,u+]. Since R(u,u+) and
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S(u,u+) are in different components of G− {u, v}, one of them, say R(u,u+) is vertex-disjoint

from P . Then P ∪R[u,u+] is a longer path than P , giving a contradiction.

Guv v

u

x

y z

p

q

Gpq

S

y

x

v

u

R S [u,v]

R [u,v]

Figure (4.2) Two (u, v)-paths

For any two vertices x, y ∈ C, we use
−→
C

[x,y]
Π (resp.

←−
C

[x,y]
Π ) to denote a path obtained

from
−→
C [x,y] (resp.

←−
C [x,y]) by replacing each edge uv ∈ E(C) by R[u,v] or S[u,v] whenever

{u, v} is a 2-separation.

Let L1 = {P ∈ L |P has at least one end vertex onC}.

Claim 5. For any P ∈ L1, V (C) ⊂ V (P ), so V (C) ⊂
⋂

P∈L1 V (P ).

Proof. Let P ∈ L1 with end vertex u on C, and set Q = P − {u}. By Claim 4, Q is a path

containing both u+ and u− but not u. By Claim 3, traveling along Q from u+ to u− one

must go through all vertices in V (C)− u, so V (C) ⊂ V (P ).

Following Claim 5, we may assume L2 := L\L1 6= ∅. If |L2| ≤ 1, then Theorem 1 holds.

We may assume |L2| ≥ 2. Moreover, we have
⋂

P∈L P ∩C =
⋂

P∈L2 P ∩C. Notice that each

path in L2 has exactly two tails of C.

Claim 6. If |P ∩ C| ≥ 2 for every P ∈ L2, then
⋂

P∈L P 6= ∅.

Proof. Let L be a longest tail of C, and let z be the origin (the common vertex of L and C)

of L. We claim z ∈
⋂

P∈L P . Suppose this is not true. By Claim 5, there exists P ∈ L2 such

that z /∈ P . Let P ′ and P ′′ be the two tails of P on C with origins u1 and u2, respectively.
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Because |P ∩C| ≥ 2, we know u1 6= u2. If P ′∩L 6= ∅, then u1z ∈ E(C) and both P ′ and L are

subgraphs of Gu1z by Claim 2, which in turn shows that P ′′∩L = ∅. Similarly, if P ′′∩L 6= ∅,

then P ′ ∩ L = ∅. We assume, without loss of generality, P ′′ ∩ L = ∅. We also assume that

along C the segment
−→
C [u1,u2] does not contain vertex z. Then, P [u1,u2] ∩ L = ∅. Note that

paths P ′′ ∪ P [u2,u1],
←−
C

[u1,z]
Π , and L are internally vertex-disjoint paths. Concatenating these

paths together, we obtain a longer path, which gives a contradiction.

Hence, we assume there exists P ∈ L2 sharing exactly one vertex with C. We let

P ∩ C = {v}, and we denote P ′ := P [v,v1] and P ′′ := P [v,v2] as the two tails of P on C, both

with origin v. Notice that P = P ′ ∪ P ′′.

Claim 7. v ∈
⋂

P∈L P .

Proof. Suppose to the contrary that there exists Q ∈ L2 such that v /∈ V (Q). By Claim 5,

neither of the two ends of Q is on C. Thus Q has two tails, denoted as Q′ = Q[w1,u1]

and Q′′ = Q[w2,u2], of C with origins w1 and w2, respectively. We assume, without loss of

generality, the segment
−→
C [w1,w2] does not contain v. Note that w1 = w2 if and only if Q and

C share exactly one vertex.

We will distinguish a few cases according to which one of the four tails P ′, P ′′, Q′ and

Q′′ is the longest. By the symmetry of P ′ and P ′′ and the symmetry of Q′ and Q′′, we only

need to consider two cases according to whether P ′ or Q′ is the longest one among the four

tails.

First we assume that |P ′| ≥ |Q′|. If w1 6= w2, then P ′ ∩ Q′ 6= ∅ and P ′ ∩ Q′′ 6= ∅. If

P ′ ∩ Q′′ = ∅, then consider the path
−→
C

[v,w1]
Π that does not intersect with P ′ except at v.

We note that
−→
C

[v,w1]
Π intersects Q[w1,w2] ∪Q′′ only at w1 as w1 6= w2. Thus, P ′,

−→
C

[v,w1]
Π , and

Q[w1,w2]∪Q′ are internally vertex-disjoint paths. Thus by concatenating these paths, we have

a path that is longer than Q, a contradiction. Similarly, we cannot have P ′ ∩Q′ = ∅.

Therefore, P ′ ∩ Q′ 6= ∅ and P ′ ∩ Q′′ 6= ∅. However, this leads to a contradiction. If

P ′∩Q′ 6= ∅, then P ′ is in a {v, w1}-bridge different from the one Q′′ is in, which implies that

Q′′ should not intersect P ′. Thus, if w1 6= w2, then it cannot be that |P ′| ≥ |Q′|.
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If w1 = w2 and |P ′| ≥ |Q′|, then we can interchange P and Q. Therefore, we assume

that |Q′| > |P ′|, we may have w1 = w2 or w1 6= w2.

We claim that P ′ ∩ Q′ 6= ∅ and P ′′ ∩ Q′ 6= ∅. Otherwise, say P ′ and Q′ are disjoint.

Assume, without loss of generality,
←−
C [v,w1] = x0(= v)x1 . . . xm(= w1) contains at least three

vertices. We may assume that both x0x1 and xm−1xm are virtual edges because otherwise,

P ′
←−
C

[x0,xm]
Π Q′ is longer than P . Since two (x0, x1)-pathsR(x0,x1) and S(x0,x1) are in two different

bridges of {x0, x1}, we may assume R[x0,x1] and P ′ only share a common vertex x0. For the

similar reason, we may assume that R[xm−1xm] and Q′ only share a common vertex xm. Then,

P ′, R(x0,x1),
←−
C

[x1,xm−1]
Π , R(xm−1,xm), and Q′ are internally vertex-disjoint. By concatenating

these paths, we get a path longer than P , which gives a contradiction.

Hence, Q′ ∩P ′ 6= ∅ and Q′ ∩P ′′ 6= ∅. Along with TDA, this indicates that w1v ∈ E(C).

Let x (respectively y) be the first vertex along P ′[v,v1] (respectively P ′′[v,v2]) intersecting

Q′, that is, Q′ ∩P ′[v,x] = {x} and Q′ ∩P ′′[v,y] = {y}. Moreover, we assume that x is between

w1 and y on Q′.

Since Q′[w1,x] ∪ P ′[x,v] and Q′[w1,y] ∪ P ′′[y,v] are two (w1, v)-paths in Gw1v, and the three

tails Q′, P ′, and P” are in the same{v, w1}-bridge in G. We note that if Q′′ ∩ P ′ 6= ∅, then

w2 = w1.

y
x

v

P''

w1

v1
v2

P'

w2

u2

u1

Q''

Q'

Figure (4.3) Illustration of x and y along with tails P ′, P ′′, Q′, and Q′′.

Let Θvx be the union of the paths P ′[v,x], P ′′[v,y] ∪Q′[y,x], and Q′[x,w1] ∪Q[w1,w2] ∪
−→
C

[w2,v]
Π .

Clearly, Θvx is a Θ-graph. Applying Lemma 1 three times to Θvx, we deduce P ′′[y,v2] ∩
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Q′[w1,x] = ∅, Q′′ ∩ P ′′ = ∅, and Q′′ ∩ P ′[v,x] = ∅.

We claim Q′(x,u1] ∩ P ′(x,v1] 6= ∅. Otherwise, let R1 = P ′[x,v1] ∪Q′[x,u1] and R2 = P ′′[v2,v] ∪

P ′[v,x] ∪ Q′[x,w1] ∪ Q[w1,w2] ∪ Q′′[w2,u2] be two walks. Since we assume Q′(x,u1] ∩ P ′(x,v1] = ∅,

R1 is a path. Note that P ′′[v2,v] ∪ P ′[v,x] = P [v2,x] and Q′[x,w1] ∪ Q[w1,w2] ∪ Q′′[w2,u2] = Q[x,u2].

Applying Lemma 1 to Θvx, we have P [v2,x] and Q[x,u2] are internally vertex-disjoint, so R2 is

also a path.

Following definition, we have

|R1|+ |R2| = |P |+ |Q|.

By Claim 1 and the fact that R1 ∩C = ∅, we know R1 is not a longest path, i.e. R1 /∈ L, so

|R2| > |P |, which also gives a contradiction.

y
x

v

P''

w1 = w2

v1

v2P'
u2

u1

Q''

Q'

Θvx

Figure (4.4) Illustration of the Θ-graph

Since Q′(x,u1]∩P ′(x,v1] 6= ∅, applying Lemma 1 to Θvx again, we get P ′(x,v1]∩Q′[w1,x) = ∅.

Since R(v,w1) and S(v,w1) belong to two different bridges of Gvw1 − {v, w1}, we may assume

that R(v,w1) is not in the bridge of {v, w1} containing x. Let
−→
C [w1,v] be the segment of

C − vw1. Clearly, |
−→
C (v,w1)| ≥ 1 since |C| ≥ 3.

Let R1 := P ′[v1,x] ∪Q′[x,w1] ∪
−→
C

[w1,v]
Π ∪ P ′′. Since (P ′[v1,x] ∪ P ′′(v,v2]) ∩Q′(x,w1) = ∅ and all

these three paths are internally vertex-disjoint from
−→
C

[w1,v]
Π , R1 is indeed a path.
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We now define a walk R2 as follows:

• If R(v,w1) ∩Q′′ = ∅, let R2 := Q′[u1,x] ∪ P ′[x,v] ∪R ∪Q[w1,w2] ∪Q′′[w2,u2];

• If R(v,w) ∩ Q′′ 6= ∅ (in this case, w2 = w1 is adjacent to v in C), let R2 := Q′[u1,x] ∪

P ′[x,v] ∪
−→
C

[w1,v]
Π ∪Q′′[w2,u2].

Note that Q[w1,w2] ∪Q′′[w2,u2] = Q[w1,u2], which are written separately in the definition of R2

for the purpose of emphasizing their locations. Since (Q′[u1,x) ∪Q[w1,u2]) ∩R(v,w1) = ∅ in the

first case and (Q′[u1,x) ∪ Q[w1,u2]) ∩
−→
C

[w1,v]
Π = ∅ in the second case and these corresponding

paths are internally vertex-disjoint from P ′[v,x], R2 is also a path.

By counting vertices in R1 and R2, we get

|R1|+ |R2| ≥ |P |+ |Q|+ |
−→
C (w1,v)| > |P |+ |Q|,

since |
−→
C (w1,v)| = |C| − 2 > 0, which gives a contradiction to assumption that both P and Q

are longest paths.

This contradiction completes our proof.
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PART 5

INTERSECTING SUBTREE LEMMA

The Helly property is based off Helly’s theorem [2] which, for 1-dimensional space, states

that a set of convex, pairwise intersecting subsets has a non-empty intersection. For a graph

G = (V (G), E(E(G)), a convex set can be defined as a set of vertices S ⊆ V (G) such that

for any pair of vertices u, v ∈ S, all vertices that lie on a shortest path between u and v

belong to S [6]. From here, it is clear that any set of pairwise intersecting subtrees of a tree

has the Helly property; however, for completeness and clarity, a proof is given below.

Lemma 7 (Intersecting Subtree Lemma). Let T be a tree, and let T be a set of connected

subtrees of T . If V (Ti) ∩ V (Tj) 6= ∅ for every Ti, Tj ∈ T , then
⋂

Ti∈T V (Ti) 6= ∅. That is, T

has the Helly property.

Proof. Let v be the root of T . We start by defining an ordering ≺ of V (T ) where x ≺ y if

and only if x is on the unique path connecting v and y in T .

With this definition, it is clear that x ≺ x for all x ∈ V (T ). If x ≺ y and y ≺ x, then it

must be that x = y because T is a tree. Additionally, if x ≺ y and y ≺ z, then we see that

x ≺ z. Thus, we can see that (T,≺) is a poset with v as the minimum element of T .

For any two subtrees, Ti, Tj, in T , let h(Ti, Tj) denote the minimum element of V (Ti)∩

V (Tj). Among all the distances h(Ti, Tj), let x be the maximal of all h(Ti, Tj). Without loss

of generality, we can assume that p ∈ V (T1) ∩ V (T2), so x = h(T1, T2).

It must be that x is a minimum point for T1 or for T2, otherwise contradicting our

choice of x. Assume that x is neither the minimum point for T1 nor for T2. Then, there

exists y ∈ V (T1) such that y ≺ x, and there exists z ∈ V (T2) such that z ≺ x. Because T is

a tree, there is only one path connecting v and x; therefore, it must be that either z ≺ y or

y ≺ x. Assume z ≺ y. Because T2 is connected and z ≺ y ≺ x, it must be that y ∈ V (T2),

contradicting the fact that x = h(T1, T2).
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Let x be the minimum point for T1. We claim that x ∈ V (Ti) for each Ti ∈ T .

Suppose that there exists Ti ∈ T such that x /∈ V (Ti), then because V (Ti) ∩ V (T1) 6= ∅

and x ≺ y for all y ∈ V (T1), it must be that x ≺ h(Ti, T1). Because x is the maximal of

these elements, it must be that x = h(Ti, T1). Hence, x ∈ V (Ti).

Recall that a chordal graph is the intersection graph of subtrees of some tree [63]. Let

G be a chordal graph whose vertices correspond to subtrees of a tree T . For a connected

subgraph H of G, we say that the support of H, denoted Supp(H), is the union of the

subtrees corresponding to the vertices in V (H). By Lemma 7, if H is a set of subgraphs, if

Supp(Hi∩Hj) 6= ∅ for all Hi, Hj ∈ H, then Supp(H) = {Supp(H)|H ∈ H} has a non-empty

intersection.
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PART 6

INTERVAL GRAPHS

Theorem 2. If G is a connected interval graph, then there is a vertex common to all longest

paths of G.

Proof. For every vertex v ∈ V (G), we denote the interval mapped to v by Iv = (av, bv). Let

P be the set of all longest paths of G. We note that for a path P , Supp(P ) =
⋃

v∈V (P ) Iv.

Because we know that for any two longest paths Pi and Pj, there is a common vertex,

i.e. V (Pi) ∩ V (Pj) 6= ∅, this implies that Supp(Pi ∩ Pj) 6= ∅. Thus, applying Lemma 7, we

know that R ⊇
⋂

P∈P Supp(P ) 6= ∅. For brevity, let S =
⋂

P∈P Supp(P ). Note that S is an

open interval as it is the intersection of open intervals.

Let x = inf S. We take the vertex v to be such that inf Iv ≤ x < sup Iv with maximum

sup Iv. We know that such a v exists as x is the infimum of S, so there must be some interval

Iv satisfying these inequalities. We claim that v ∈ V (P ) for all P ∈ P . We also note that

for some R ∈ P , x = inf Supp(R) else x would be smaller.

Suppose there exists Q ∈ P such that v /∈ V (Q). As x = inf S, then inf Supp(Q) ≤ x.

To prove the claim, we consider two exclusive cases.

Case 1. There exists y ∈ V (Q) such that ay ≥ x.

Then there must exist two consecutive vertices y, z ∈ V (Q) such that we see ay ≤ x ≤ az.

As y and z are consecutive on Q, we know that Iy∩Iz 6= ∅, i.e. az < by. Because of our choice

of v, we know that by ≤ bv. Combining these inequalities, we see that ay ≤ x ≤ az < by ≤ bv.

As x ∈ Iv, we can see Iv ∩ Iy 6= ∅ and Iv ∩ Iz 6= ∅. Therefore, inserting v between y and

z in Q results in a path longer than Q, a contradiction.

Case 2. For all y ∈ V (Q), ay < x.

Then V (Q) ∩ V (R) = ∅ because for all z ∈ V (R), az ≥ x. However, as Q and R are

longest paths, it must be that V (Q) ∩ V (R) 6= ∅, a contradiction.
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PART 7

SUBTREES OF SPIDER GRAPHS

Theorem 3. If G is a connected intersection graph for a spider graph, then there is a vertex

common to all longest paths of G.

Proof. For every vertex v ∈ V (G), we denote the subtree mapped to v by Tv. Let P be the

set of all longest paths of G. Because we know that for any two longest paths Pi and Pj,

there is a common vertex, i.e. V (Pi)∩V (Pj) 6= ∅, this implies that Supp(Pi∩Pj) 6= ∅. Thus,

applying Lemma 7, we know that
⋂

P∈P Supp(P ) 6= ∅. For brevity, let S =
⋂

P∈P Supp(P ).

Note that S is a subtree as it is the intersection of subtrees.

Let T be the spider graph from which the subtrees corresponding to V (G) come. Let

c ∈ V (T ) be the center of the spider, the one vertex of T such that d(c) ≥ 3.

Case 1. We have c /∈ S.

As c /∈ S, then S is confined entirely to one leg, denoted L, of the spider graph T . Let

p be the point of S closest to c. We orient T so that p is the left-most point of S and so that

the other legs and c are to the left p and come ”before” it. We note that for some R ∈ P , p

is the left-most point of Supp(R) else p would be closer to c or c ∈ S.

We take the vertex v to be such that Tv contains vertices coming before p and |Tv ∩ S|

is maximum. We claim that v ∈ S. Suppose there exists Q ∈ P such that v /∈ V (Q). We

note that Supp(Q) either contains points before p or has its left-most point as p.

If there exists x ∈ V (Q) such that Tx contains no points coming before p, then there

must be two consecutive vertices y, z ∈ V (Q) such that Ty contains points coming before p

and Tz contains no points coming before p. Hence, as Ty ∩Tz 6= ∅, we know that Ty contains

points coming after p as well, so we also have Tv ∩ Ty 6= ∅ and Tv ∩ Tz 6= ∅. Therefore,

inserting v between y and z in Q results in a path longer than Q, a contradiction.

If for every x ∈ V (Q), Tx contains points coming before p, then V (Q) ∩ V (R) = ∅
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because for all y ∈ V (R), Ty contains no points coming before p. However, as Q and R are

longest paths, it must be that V (Q) ∩ V (R) 6= ∅, a contradiction.

Case 2. We have c ∈ S.

First, we define a tail of a path. Let Q be a subpath of a path P such that either Q is

an endpoint, v0, of P such that c ∈ V (Tv0) or Q contains an endpoint of P and the other

endpoint, vm, of Q is the only vertex of Q such that c ∈ V (Tvm). Each longest path P has

c ∈ Supp(P ), so each longest path has two tails.

Let R be a longest tail among all tails of longest paths. As only one endpoint of R

contains c, we assume that all “non-center” vertices of R are contained to one leg L of T .

Let v be a vertex of G such that c ∈ V (Tv) and |Tv ∩ L| is maximum. We claim that

v ∈ V (P ) for all P ∈ P . Suppose there exists Q ∈ P such that v ∈ V (Q). We consider two

cases.

Case 2.1 Q contains an “inverval vertex” of R but not c, i.e. there exists w ∈ V (Q)

such that Tw ⊆ L.

Then, we must have two consecutive vertices x, y ∈ V (Q) such that c ∈ Tx and Ty ⊆ L

since every longest path goes through the center. Then, Tv ∩ Tx 6= ∅ and Tv ∩ Ty 6= ∅.

Therefore, xv, vy ∈ E(G), and inserting v between x and y results in a path longer than Q,

a contradiction.

Case 2.2 Q does not contain an “interval vertex” of R, i.e. there does not exist

w ∈ V (Q) such that Tw ⊆ L.

Let R = z1, z2, ..., zm. Let Q∗ = q1, q2, ..., qk be a tail of Q with c ∈ Tq1 . We replace Q∗

in Q by q1, v, z2, z3, ..., zm to obtain Q′. We know that zi /∈ V (Q) for 2 ≤ i ≤ m because of

the assumption for the case. We also are assuming that v /∈ V (Q). Thus, Q′ is a path.

Now, we look at the length of |Q′|. Recall that by our choice of R, we have that

|R| ≥ |T |.

|Q′| = |Q| − (|T | − 1) + 1 + (|R| − 1) = |Q| − |T |+ |R|+ 1 ≥ |Q|+ 1 (7.1)

This is a contradiction.
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PART 8

CIRCULAR ARC GRAPHS

Let G be a circular arc graph whose vertices correspond to the open arcs of a circle C.

For every v ∈ V (G), let Av denote the open arc on C corresponding to v. If there exists

v ∈ V (G) such that Av = C, then clearly v is on every longest path, and the set of longest

paths of G has the Helly property. Therefore, assume no such v exists. We let C have an

orientation so that lv and rv are the two endpoints of arc Av, respectively. Again, we let P

denote the set of longest paths of G.

Lemma 8 (Balister, Győri, Lehel, Schelp [39]). Let X = {x1, x2, ..., xt+1} be a set of real

numbers, and let J1, J2, ..., Jt be a sequence of open real intervals with xk, xk+1 ∈ Jk for every

1 ≤ k ≤ t. If xi1 < xi2 < ... < xit+1 are the elements of X in increasing order, then the

intervals have a permutation Jj1 , Jj2 , ..., Jjt such that xik , xik+1
∈ Jjk for every 1 ≤ k ≤ t.

Lemma 9. Let P ∈ P and u, v ∈ V (G) with Au ⊆ Av. If u ∈ V (P ), then v ∈ V (P ).

Proof. Suppose that v /∈ V (P ). If u is an endvertex of P , then v can be appended to the

beginning or end of P , extending it, a contradiction. Thus, u is not an endvertex of P .

Let w be the vertex consecutively after u in P . As Au ⊆ Av, because Au ∩Aw 6= ∅, this

implies that Av ∩ Aw 6= ∅. Therefore, v can be inserted between u and w, extending P , a

contradiction.

Theorem 4. If G is a connected circular arc graph, then there is a vertex common to all

longest paths of G.

Proof. Let G be a circular arc graph, and let C be the circle from which the arcs that are

associated with V (G) come. For every vertex v ∈ V (G), we denote the arc mapped to v

by Av = (lv, rv). Let P be the set of all longest paths of G. We note that for a path P ,

Supp(P ) =
⋃

v∈V (P )Av.



36

As Balister, Győri, Lehel, and Schelp noted [39], if
⋃

v∈V (G) Av is not the entire circle,

then G can be thought of as an interval graph, so the proof is given by Theorem 2. If there

is a vertex v ∈ V (G) such that Av = C, then we are done as v must be on all longest paths.

Let Av = (lv, rv) be an arc such that the Av-dominated path PAv = vv2...vl is maximum

over all arc-dominated paths. As PAv is Av-dominated, this means that Avi ⊆ Av for

i = 2, 3, ..., l. We claim that v ∈ P for all P ∈ P . From our choice of Av, we know that there

does not exist an arc A such that A ⊇ Av by Lemma 9.

Suppose there exists Q ∈ P such that v /∈ V (Q). Let Q = q1q2...qm. We know that

V (Q) ∩ V (PAv) = ∅. If there exists vi ∈ V (PAv) such that vi ∈ V (Q), then by Lemma 9 it

must be that v ∈ V (Q), a contradiction.

We pick X = x1, x2, ..., xm+1 with X ⊆ C \ [lv, rv] = (rv, lv) such that xi, xi+1 ∈ Aqi

for i = 1, 2, ...,m. From Lemma 8, we can rearrange the elements of X so that xi1 < xi2 <

... < xim+1 and xik+1
is immediately clockwise from xik for k = 1, 2, ...,m. Then we can

rearrange the path Q = q1q2...qm to obtain Q∗ = qj1qj2 ...qjm so that V (Q) = V (Q∗) and

xik , xik+1
∈ Aqjk

for k = 1, 2, ...,m. We know that Aqj1
∩ Av = ∅ and Aqjm

∩ Av = ∅. We

consider two cases.

Case 1. There exists qjk ∈ V (Q∗) such that lv ∈ Aqjk
.

Let jk be the largest index such that lv ∈ Aqjk
. If jk = m, then Q∗v is a longer path,

so we assume that jk < m. As lv /∈ Aqjt
for all k < t ≤ m, we know that xik < xit < rjt <

lv < rjk for all t = k + 1, k + 2, ...,m. We claim that we may assume that Aqjt
⊆ Aqjk

for

t = k + 1, k + 2, ...,m.

Suppose there exists t ∈ k + 1, k + 2, ...,m such that Aqjt
* Aqjk

. Then, we can see

that lqjt < lqjk < xik < xik+1
≤ xit < xit+1 < rqjt < lv < rqjk . Hence, xik , xik+1

∈ Aqjt

and xit , xit+1 ∈ Aqjk
. This implies that xik ∈ Aqjk−1

∩ Aqjt
, xik+1

∈ Aqjk+1
∩ Aqjt

, and

xit ∈ Aqjt−1
∩ Aqjk

. Also, if t < m, we have xit+1 ∈ Aqjt+1
∩ Aqjk

. Therefore, we can switch

qjk and qjt to have a path that is a reordering of V (Q) satisfying the conditions of Lemma 8.

Thus, we have that Aqjt
⊆ Aqjk

for t = k + 1, k + 2, ...,m. Now, consider two subpaths

of Q∗, Q∗1 = qj1qj2 ...qjk−1
and Q∗2 = qjkqjk+1

...qjm . As we showed earlier, we know that Q∗2
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is a Aqjk
-dominated path. Based on our choice of v, this means that |Q∗2| ≤ |PAv |. As

Aqjk
∩ Av 6= ∅, consider the walk R = qj1qj2 ...qjkvv2...vl. Because V (Q∗) ∩ V (PAv) = ∅, R is

a path. We see that |R| = |Q∗1|+ 1 + |PAv | > |Q∗1|+ |PAv | ≥ |Q∗1|+ |Q∗2| = |Q∗|. This means

that |R| > |Q∗|, a contradiction.

Case 2. There does not exist qjk ∈ V (Q∗) such that lv ∈ Aqjk
.

Let jk be the largest index such that the distance from rqjk to lv going clockwise is

shortest. Now, as G is connected and
⋃

v∈V (G)Av is the entire circle, we know there is

a qjkv-path (a path connecting qjk and v) intersecting the entire closed arc [rqjk , lv]. Let

S = s1s2...sb be such a path of shortest length, so qjks1s2...sbv is a path. We note that

|S| ≥ 1.

Clearly, V (Q∗) ∩ V (S) = ∅ and V (PAv) ∩ V (S) = ∅, else S could be shorter.

If jk = m, then Q∗SPAv is a longer path, so we assume that jk < m. We claim that we

may assume that Aqjt
⊆ Aqjk

for t = k + 1, k + 2, ...,m.

Suppose there exists t ∈ k + 1, k + 2, ...,m such that Aqjt
* Aqjk

. Then, we can see

that lqjt < lqjk < xik < xik+1
≤ xit < xit+1 < rqjt < rqjk < lv. Hence, xik , xik+1

∈ Aqjt

and xit , xit+1 ∈ Aqjk
. This implies that xik ∈ Aqjk−1

∩ Aqjt
, xik+1

∈ Aqjk+1
∩ Aqjt

, and

xit ∈ Aqjt−1
∩ Aqjk

. Also, if t < m, we have xit+1 ∈ Aqjt+1
∩ Aqjk

. Therefore, we can switch

qjk and qjt to have a path that is a reordering of V (Q) satisfying the conditions of Lemma 8.

Thus, we have that Aqjt
⊆ Aqjk

for t = k + 1, k + 2, ...,m. Now, consider two subpaths

of Q∗, Q∗1 = qj1qj2 ...qjk−1
and Q∗2 = qjkqjk+1

...qjm . As we showed earlier, we know that Q∗2 is

a Aqjk
-dominated path. Based on our choice of v, this means that |Q∗2| ≤ |PAv |.

Consider the walk R = qj1qj2 ...qjks1s2...sbvv2...vl. Because V (Q∗)∩V (PAv) = ∅, V (Q∗)∩

V (S) = ∅, and V (PAv)∩ V (S) = ∅, R is a path. We see that |R| = |Q∗1|+ 1 + |S|+ |PAv | >

|Q∗1|+ |PAv | ≥ |Q∗1|+ |Q∗2| = |Q∗|. This means that |R| > |Q∗|, a contradiction.
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PART 9

PREDICTING VIDEO FACE RECOGNITION PERFORMANCE IN NEW

SETTINGS

9.1 PaSC Challenge and Data Set

The Point-and-Shoot Face Recognition Challenge (PaSC) was designed to advance the

development of face recognition algorithms on videos taken with digital point and shoot

cameras, particularly for handheld cameras found in cell phones [68]. A brief overview of

the PaSC is given in Section 9.1.1. The rest of this section introduces the factors discussed

in this dissertation: the location factor (Section 9.1.2), video-based factors (Section 9.1.3),

and demographic factors (Section 9.1.4).

9.1.1 Data Set

A key feature of the PaSC is that the data was collected following a statistical exper-

imental design; we call this a designed data collection. With a designed data collection,

we can analyze how factors, such as location, pose, or face size, effect performance. In our

analysis, we focus on the effect of factors, e.g. location and sensor. This is possible because

videos in the PaSC are taken from six locations with six sensors, five of those being handheld.

In the video portion of the PaSC, 2802 videos of 265 subjects were taken over 7 different

weeks at the University of Notre Dame in the spring semester of 2011. The videos show people

carrying out tasks rather than looking into a camera. Collection was carried out according

to a plan–a script–in which generally a person entered a scene, approached some designated

spot, carried out an action, and then left the scene. The videos typically begin as the person

is moving into the scene and terminate as the person is leaving.

Out of seven total weeks of collection, each subject is present in videos for at least four of

the weeks, implying the differences in weeks’ performances is not due to the subjects. (Hand-
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held) Video length ranges roughly between 50 and 400 frames with most videos containing

between 200 and 250 frames, and the resolutions ranged between 640×480 to 1280×720.

There were six different locations with six different sensors. Five of the sensors were

handheld, and these varied by week. Additionally, data was collected by a tripod-mounted

sensor, and this sensor filmed the same actions at the same location and time as the handheld

sensor of the week.

Figure (9.1) Sampled portions of video frames from PaSC videos

These portions indicate some of the situations that make recognition challenging. Courtesy
of Beveridge et al. [69].

Figure 9.1 shows a sample of frames from PaSC videos from different locations. Charac-

terizing the videos are four primary factors: location, action being performed, video camera

(sensor), and person in the video (subject).

9.1.2 Location Factor

One aspect the design of this data set allows us to analyze is how an algorithm performs

when restricted to pairs of videos from certain locations. During each week, the videos

were collected with a new combination of location and action taking place, for example

picking up a newspaper in an office. No combination of location and action was repeated on

subsequent weeks. Table 9.1 shows a summary of the location, handheld camera, and action

combinations.

Each location and action combination was captured on a specific week by two different
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Table (9.1) Location, camera, and action combinations

The abbreviations for the location is in the right column.

Sensor Location Action Abbrev.

Flip Mino F360B canopy golf swing Ca
Kodak Zi8 canopy bag toss Ca
Samsung M. CAM office pickup newspaper Pa
Sanyo Xacti lab 1 write on easel Ea
Sanyo Xacti lawn blow bubbles Bu
Nexus Phone hallway ball toss Ba
Kodak Zi8 lab 2 pickup phone Ph

cameras, one being handheld. Consequently, each video depicts a single subject at a certain

location doing a specific action captured by one particular sensor, e.g. for a specific subject,

there is exactly one video depicting the subject on the lawn blowing bubbles captured by

a Sanyo Xacti. There is also a video of the subject blowing bubbles on the lawn captured

by the tripod-mounted sensor, a Panasonic HD700. From Table 9.1, it is clear that the

handheld sensors are confounded with the locations and actions.

In the findings below, the influence that location and action combinations exert over

performance is strong, and the abbreviations introduced in Table 9.1 will be used when

reporting results. Therefore here, briefly, is a bit more information about each. The canopy

(Ca) was a white pop-up material structure setup outside in bad weather. Two actions were

carried out on different days. The first was swinging a golf club, and the second was tossing

a bean bag. The office (Pa) was a large well-lit room where a subject picked up and looked

at a newspaper. In Lab 1 (Ea) each subject wrote on a large floor standing easel set out in

a large open lab space. The lawn (Bu) was an open grassy area in a plaza with bright sun.

Subjects approached a table and blew bubbles. The hallway (Ba) was an interior space of

an older building with relatively dark stone walls where subjects threw a toy basketball. In

lab 2 (Ph) a subject picked up a phone in a relatively cluttered lab area.

Figure 9.2 shows four zoomed-in clips from four different videos. The upper left clip is

from the office. The upper right is from the canopy. The lower left is from lab 2, and the

lower right is from the lawn. These frames are characteristic in several respects, for example
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Figure (9.2) Clips of two people sampled from four PaSC handheld videos

All four videos were taken at different locations: two outdoors and two indoors.

suggesting the range of lighting conditions and also the fact that in general subjects are not

attending to the camera.

As videos are compared in pairs, the location factor is defined by location-pairs, i.e. the

locations of the videos for a given pair. In total, there are 22 location-pairs. For 6 pairings

the videos are from the same location and collected in the same week; these only include

impostor pairs, i.e. pairs of videos of different people. However, we focus mainly on cross-

week comparisons, i.e. video-pairs in which the weeks of capture are different. There are 16

cross-week location-pairs. In 15 of the cross-week location-pairs, the videos were collected

at different locations from different weeks, but for one pair, the videos were collected at the

same location (canopy) on different weeks.

9.1.3 Video-Based Factors

Location, action, and sensor are not the only factors effecting performance. Another

class of factors effecting performance comes directly from the videos themselves; that is,
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these factors, called video-based factors, are dependent on the video from which they are

estimated. As we show later in Section 9.4, video-based factors can encode properties of a

location-pair. For our work, we measure this encoding by looking at aggregate statistics of

video-based factors from all video-pairs of the location-pair.

We consider three video-based factors: face size, face confidence, and yaw. The factors

come as extensions of image-based factors. Estimated by the Pittsburgh Pattern Recognition

(PittPatt) face recognition SDK 5.2.2, face size is the number of pixels between the eyes,

face confidence is PittPatt’s self-assessment of how certain the algorithm was in detecting

the true face, and yaw is the measurement of how far the face was turned to the left or right.

The image-based factors face size, face confidence, and yaw are estimated for the frames

of the videos. For each video, the mean of each factor is calculated. This provides the factors

for each video. However, we concentrate on comparing pairs of videos. As each video in a

pair has its own set of video factors, we need to combine these paired factors. For the face

size factor, we always use the smaller of the two values for each pair of videos; we do the

same for the face confidence factor. On the other hand, for the yaw factor, we always use

the difference of the two values.

The real-valued factors are converted to levels by ordering video-pairs from smallest to

largest factor value and then dividing them into n equal sized bins. The result is n levels

ranging from smallest to largest factor value. The PittPatt SDK 5.2.2 software estimated

these factors for the frames of the videos, and the generalizations to videos and video-pairs

follow the methods of Lee et al. [70]. For more details on the extension see Section A.

9.1.4 Demographic Factors

The demographic factors, specifically gender and race, are encoded based on the possible

entries for each subject in a pair of videos. For gender, each subject can be male or female,

so the levels are female-male (F/M), male-male (M/M), and female-female (F/F). For race,

the majority of subjects are Caucasian or Asian, and we do not have enough subjects of

any other race to perform analysis, so the levels are Caucasian-Asian (C/A), Caucasian-
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Caucasian (C/C), and Asian-Asian (A/A).

9.2 Algorithms

Our analysis is performed on the four top performers in the Face and Gesture 2015

Person Recognition Evaluation [65]. The algorithms were state of the art and developed

independently by four different research groups from four different countries on four different

continents. Each algorithm is very different in how it computes a similarity score (the degree

of similarity between two faces in two videos). This independence provides evidence that

our conclusion will generalize to algorithms not included in this study.

Several other conditions were adopted to make sure the results were not tuned to the

PaSC data set. First, the algorithms were not trained on subjects in the PaSC. Second, the

algorithms were not trained on imagery from locations that are included in the PaSC. Third,

cohort or gallery normalization using the PaSC imagery was not allowed.

The algorithms were developed by the Chinese Academy of Science (CAS), the Stevens

Institute of Technology (SIT), The University of Ljubljana (Ljub), and the University of

Technology Sydney (UTS).

9.3 Impostor-Pair Analysis for Location-Pairs

9.3.1 Range of Marginal FARs over Location-Pairs

It is well known that location significantly effects algorithm performance. The design

of the PaSC data set enabled us to characterize the impact of location on performance.

Previous studies have investigated the effect of location on verification rates [58], [70]. We

proceed by examining the effect of location on the FAR and then look at the relationship

between FAR and VR.

Since comparisons are between two videos, we look at performance for location-pairs.

For the four algorithms in our study, we computed the FAR for the 22 location-pairs as

described in Section 2.2. Figure 9.3 demonstrates how location factors effect FAR (upper
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Figure (9.3) FAR and VR of each location-pair on handheld video-pairs for each algorithm

The FAR and VR are ordered by the mean rate over all the algorithms. The top graph is
on FAR. The horizontal line corresponds to the global FAR = 0.10, and the vertical line
between pairs CaDW-CaDW and Bu-Bu separates the pairs into cross-week (left) and same
week. The bottom graph is on VR. The horizontal lines correspond to the global VR for
each algorithm when the global FAR = 0.10. There are no same-week pairs for matches.
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graph) and VR (lower) for the four algorithms on handheld video-pairs when the global FAR

is set to 0.10. Along the horizontal axes are the pairs of locations described in Section 9.1.2.

All 22 pairs are present in the upper graph, but only the 16 cross-week pairs are present in the

lower graph because the same-week comparisons only contain impostor pairs. The vertical

axes show the marginal FAR and VR values, respectively, using a τg that corresponds to a

global FAR of 0.10. The location pairs are ordered by the mean rate over all the algorithms

for both graphs. In the top graph, all location pairs to the left of the vertical line (from

pairs Ba-Ca to CaDW-CaDW) are cross-week pairs; CaDW signifies canopy videos taken

in different weeks. All pairs to the right consist of video-pairs taken in the same week.

Figure B.1 in Section B demonstrates a similar effect in the tripod video-pairs.

The principal finding is that location exerts a dramatic influence over the impostor

distribution and hence the marginal FAR. For handheld video-pairs, Algorithm Ljub has

the greatest range in FAR from 0.01 to 0.42, and CAS has the smallest range from 0.05 to

0.24; for tripod video-pairs, Ljub still has the greatest range in FAR from 0.02 to 0.39, and

CAS has the smallest range from 0.03 to 0.22. Table 9.2 shows the ranges for the cross-

week location-pairs over both sets of video-pairs. For the handheld video-pairs, the FAR for

the four algorithms CAS, UTS, Ljub, and SIT varies by a factor of 3.6, 7.33, 21, and 11.5,

respectively. For the tripod video-pairs, the FAR for the algorithms CAS, UTS, Ljub, and

SIT varies by a factor of 4.33, 7.67, 9, and 7, respectively. Prior work has already suggested

the importance of location [58], [70]; this is the first clear evidence of how significantly it

effects the impostor distribution.

Table (9.2) The cross-week ranges of location-pair marginal FAR location-pairs over both
sets of video-pairs

Algorithm Handheld Tripod

CAS 0.05− 0.18 0.03− 0.13
UTS 0.03− 0.22 0.03− 0.23
Ljub 0.01− 0.42 0.02− 0.18
SIT 0.02− 0.23 0.03− 0.21
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A related finding is the importance of the cross-week versus same-week distinction. For

both sets of video-pairs, the mean cross-week marginal FAR averaged over the algorithms

was 0.09 compared to 0.21 for same-week pairs. A recent related result on still face image

by Sgori et al. [57] also showed higher FAR values for same day image-pairs compared to

different day image-pairs. One important conclusion is that the presence of impostor pairs

in a data set taken at the same time biases upward the expected FAR for the data set as a

whole.

9.3.2 Do VR and FAR Track Together?

We will now look at the relationship between the location-pair FARs and VRs for the

cross-week pairs. From Figures 9.3 and B.1, we can see that their appears to be some

correlation between the marginal FARs and VRs. In both figures, most of the location-

pairs do not change their placements in the orderings by more than three. Scatterplots in

Figure 9.4 relate marginal VR to marginal FAR, eqs. 2.3 and 2.4, for the 16 cross-week

location-pairs over the different sensor-pairs. The horizontal axis is the FAR on a log-scale,

and the vertical axis is the VR on a linear scale. The points represent location-pairs over

different sensor-pairs, and the line is a linear regressor. For all four algorithms, the regression

line suggests a linear relationship between log(FAR) and VR. In other words, a location-pair

that has a higher marginal VR will likely have a higher marginal FAR. Unfortunately, this

linear relationship suggests that finding a location-pair that is easier than others is unlikely.

We say a location-pair is easier if it has both a higher VR and a lower FAR than other pairs.

9.4 Impostor-Pair Analysis for Video-Based Factors

The impact of image- and video-based factors on verification rates has been extensively

studied; however, their impact on the FAR has not been examined. We first look at the

relationship between FAR and VR for three video-based factors and then investigate if there

is an interaction between location-pairs and the video-based factors.

Figure 9.5 shows the trade-off between FAR and VR for face size. The procedure
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Figure (9.4) Scatterplots of VR vs log(FAR) of location-pairs over different sensor-pairs

The legend in the first graph applies to all.

described at the end of Section 9.1.3 for creating factor levels through sorting and binning

was used to create 10 face size factor levels: smallest faces to largest faces. Each point in

Figure 9.5 is plotted according to the average marginal VR and FAR for all those video-pairs

at one face size level. A trend similar to that seen for location factors is evident, changes in

face size associated with higher marginal VR correlate with higher marginal FAR. There is a

similar relationship for yaw and face size; see Figure B.2 in Section B for the corresponding

scatterplots.
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Figure (9.5) Scatterplots of VR vs FAR for Face Size over different sensor-pairs, divided into
10 bins, fitted with a linear regressor for each algorithm

Thresholds set to global FAR = 0.10.
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Figure 9.6 highlights possible interactions between location and video factors for Algo-

rithm Ljub. Like the scatterplots in Figure 9.4, each point corresponds to a location-pair

and sensor-pair. Unlike in Figure 9.4, in Figure 9.6 circle size varies and is proportional the

mean video factor for a location-pair. For the yaw-factor, all the circles are about the same

size, which means that yaw does not interact with the location-pair. In contrast, a clear

interaction effect between location and face size is evident: location-pairs with smaller VR

and FAR tend to have small circle sizes and hence smaller mean face sizes. Figure 9.6 also

suggests some interaction between location and face confidence.
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Figure (9.6) Interactions between Algorithm Ljub location-pairs from Figure 9.4 and each of
the three video-based factors: yaw, face confidence, and face size. Each panel looks at the
interaction for the factor in its title. The size of each circle is proportional to the mean of
the factor for each location-pair.

This analysis was repeated for Algorithms SIT, UTS, and CAS, and the conclusions

were the same. A complete set of plots for this analysis are in Figure B.3 in Section B.

Across all four algorithms for all three video factors, we saw a trade-off between VR and

FAR for different levels of each factor. Further analysis suggested an interaction between

location and both face size and face confidence with face size having a larger interaction.
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9.5 Impostor-Pair Analysis for Demographic Factors

It is known that gender and race effect the performance of algorithms [71], [72]. Fig-

ure 9.7 shows the effect of gender and race on the marginal FAR for Algorithm Ljub for

handheld (top row) and tripod (bottom row) video-pairs. The corresponding results for all

four algorithms are reported in Figure B.4 in Section B. The results show that cross-gender

and cross-race impostor-pairs have a lower FAR. This is consistent with O’Toole et al. [71].
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Figure (9.7) FAR for demographic factors for Ljub

The top graph is on handheld video-pairs, and the bottom graph is on tripod video-pairs.
The FAR for each factor-level is reported for a global FAR = 0.10. For gender, there are
three factor levels: female-male (F/M), male-male (M/M), and female-female (F/F). For
race, there are three factor-levels: Caucasian-Asian (C/A), Caucasian-Caucasian (C/C),

and Asian-Asian (A/A).

9.6 Impostor-Pair Analysis for Subject Identities

Subject identity as a factor has been studied fairly extensively, often under the head-

ing “The Biometric Zoo” [73], [74]. However, defining factor levels based upon identity is

problematic, so instead we move to the more interesting question of whether the marginal

VR for a person correlates with the marginal FAR. In other words, do we see for people

the same connection between VR and FAR as found for the other factors addressed above?

To answer this question, for each algorithm, the 265 subjects are rank ordered by marginal
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FAR and marginal VR. Spearman’s rank correlation coefficient for these tests on handheld

video-pairs are 0.14, 0.17, 0.24 and 0.35 for Algorithms CAS, UTS, Ljub, and SIT, respec-

tively. Spearman’s rank correlation coefficient for these tests on tripod video-pairs are 0.30,

0.32, 0.23 and 0.33 for Algorithms CAS, UTS, Ljub, and SIT, respectively. In short, unlike

the other factors studied, VR and FAR are not strongly correlated for people. This finding

is consistent with previous zoo studies on unconstrained face recognition [75].

9.7 Predicting Performance

9.7.1 Models

From all that we have learned from the marginal FAR of location pairs, a natural

question to ask is if this knowledge would help in predicting performance of a new location.

Given a location pair such that no knowledge of performance is known for one of the locations,

how well can performance (marginal VR) be predicted? We know that there is a wide range

of potential marginal VR as seen in the bottom graphs of Figures 9.3 and B.1. If we merely

take the global VR as a predictor of performance, these figures demonstrate just how much

error there can be.

Figure 9.4 also illustrates the range of potential marginal VR, showing scatterplots of

VR vs log(FAR) of location-pairs over different sensor-pairs. Recall that additionally, a

linear regressor is fit to the points for each algorithm. Observe the ranges of the marginal

VR for the location-pairs of the four algorithms. For the algorithm SIT, the range is from

0.32 to 0.99 when the global FAR is set to 0.10 by eq. 2.2.

What if, instead of one new location, two locations are new and compared against each

other? How well can we accurately predict performance of this entirely new pair? Is it even

possible to predict the performance with the same technique used when only one location is

new? Which factors should be included in a model?

We started with a very simple model. As explained below, Linear Model 1 uses only

the FAR of a location-pair to predict what the observed VR will be. Simply knowing how
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many false positives are in the set of video-pairs for a location-pair can indicate how well the

algorithm will perform for those video-pairs. Additionally knowing some more information

on the video-pairs, i.e. the video-based factors from Section 9.1.3, a better prediction can

be made using Linear Model 2.

In Figure 9.4, a simple linear regressor is fit solely to the marginal verification and false

accept rates of the location-pairs. The linear regressor is given by

vr = α + β log(far). (9.1)

This is Linear Model 1.

Video-based factors are not incorporated into Linear Model 1. However, as we noted

earlier, there is interaction between location and two video-based factors. There is interaction

between location and face size, there is less interaction between location and face confidence,

but there is no interaction seen between location and yaw.

To find a second model that utilizes video-based factors, we removed each location and

partitioned the subjects into training and testing sets. On the remaining video-pairs that

had both subjects in the training set, we fit models on the marginal VR (eq. 2.3) using

marginal FAR (eq. 2.4) as well video-based factors from Section 9.1.3 and any relevant

two-way interaction terms for each location-pair; we only kept terms that were significant

(p < 0.05).

Many models resulted, and they performed robustly the same across the algorithms

indicating that specifically which terms are in the model is not highly significant. With a

set of second models being robustly the same in terms of prediction performance, we chose

for Linear Model 2 to be given by

vr = α + β1 log(far) + β2 Yaw +β3 FC +β4 Yaw ∗ log(far) (9.2)

where Yaw is the mean yaw and FC stands for the mean face confidence for the video-pairs

of the location-pair. We use these models in the method described below in Section 9.7.2 for
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predicting performance.

9.7.2 Prediction Procedure

In order to predict how well a set of videos of a location-pair might perform, we do the

following. There are sixteen cross-week location-pairs over different sensor-pairs. For each

location-pair Li, one of the locations is randomly dropped. There will be no location-pair

(no video) containing the dropped location; this location will be new. On the video-pairs of

the remaining cross-week location-pairs, the subjects are partitioned into two sets: training

and testing. Only video-pairs with both subjects in the training set are used.

With the video-pairs of the training set subjects, the global threshold τg is set so that

the global FAR (eq. 2.2) is 0.10. The global VR (eq. 2.1) is calculated; this is denoted as

VRg. For the extant location-pairs, none of which use the new location, the marginal values

are calculated over the different sensor-pairs, and these are used to fit the regression models

from Section 9.7.1.

Using τg, the observed marginal VRs of the location-pair Li are calculated over sensor-

pairs, using eq. 2.3; we denote this by vri. Furthermore, the marginal FARs, fari, are also

calculated, using eq. 2.4. With the marginal values, a regression line can predict the observed

verification rate. This predicted VR is v̂ri = f(fari) where the function f is Linear Model 1

(eq. 9.1) or Linear Model 2 (eq. 9.2).

The root mean square error (RMSE) is used to determine the standard deviation be-

tween the predicted VR and the observed VR (vri). When using the global rate, VRg, to

predict the observed VR, the RMSE is denoted by G. When using the VR predicted by a

regression line, v̂ri, the RMSE is denoted by E . Equations 9.3 and 9.4 formally express the

definitions, respectively.

G =

√∑n
i=1(VRg− vri)2

n
(9.3)

E =

√∑n
i=1(v̂ri − vri)2

n
(9.4)
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9.8 Results of Prediction

Are these models better than using the global VR? In order to test the models from

Section 9.7.1, we implemented the procedure from Section 9.7.2 100 times with one location

being new for each location-pair. Then, in order to test if the method was valid for two

new locations, we ran the procedure another 100 times, but this time, both locations of a

location-pair were new.

Figure 9.8 shows scatterplots of VR vs log(FAR) of location-pairs, the results of one

iteration of the process of Section 9.7.2 with only one location new. To aid with legibility, only

half the sensor-pairs are plotted. In both columns, the solid points represent the observed

VR. The open squares, seen in the left column, represent the VR predicted from Linear

Model 1 while the asterisks in the right column represent the VR predicted from Linear

Model 2. In each scatterplot, vertical lines connect verification rates belonging to the same

location-pair. In general, the VR predicted by Linear Model 2 is much closer to the observed

VR than the VR predicted by Linear Model 1.

After 100 iterations of the Section 9.7.2 process, Figure 9.9(a) displays the mean RMSEs,

equations 9.3 and 9.4, of predicting the observed VR with the previous global VR, with the

VR produced from Linear Model 1, and with the VR produced from Linear Model 2 over

all location-pairs and sensor-pairs. The bars extend one standard deviation. For Algorithms

Ljub and SIT, the mean RMSEs from forecasting using Linear Model 1 are much lower than

using the global VR, which are over 0.21. For the algorithms CAS and UTS, using Linear

Model 1 is still better than using the global VR, which have mean RMSEs over 0.12, but

the gap is not as large as it is for the other two algorithms.

The second linear model predicts the observed VR even better than the first linear

model. The RMSEs from Linear Model 2 are much smaller than those from Linear Model

1 and definitely from those using the global VR. In fact, the means from Linear Model 2

are below 0.05 across three of the algorithms: CAS, Ljub, and SIT. The mean RMSE of

Algorithm UTS is under 0.09, which is much smaller than it was from using the global VR



54

log(FAR)

V
R

0
0.
25

0.
5
0.
75

1

0.01 0.04 0.1 0.3

Observed VR
Predicted VR

CAS

log(FAR)

V
R

0
0.
25

0.
5
0.
75

1

0.01 0.04 0.1 0.3

UTS

log(FAR)

V
R

0
0.
25

0.
5
0.
75

1

0.01 0.04 0.1 0.3

Ljub

log(FAR)

V
R

0
0.
25

0.
5
0.
75

1

0.01 0.04 0.1 0.3

SIT

log(FAR)

V
R

0
0.
25

0.
5
0.
75

1

0.01 0.04 0.1 0.3

Observed VR
Predicted VR

log(FAR)

V
R

0
0.
25

0.
5
0.
75

1

0.01 0.04 0.1 0.3

log(FAR)

V
R

0
0.
25

0.
5
0.
75

1

0.01 0.04 0.1 0.3

log(FAR)

V
R

0
0.
25

0.
5
0.
75

1

0.01 0.04 0.1 0.3

Figure (9.8) Scatterplots of VR vs. log(FAR) with the observed VR of location-pairs and
the predicted VR from Linear Models 1 (left) & 2 (right), only half the sensor-pairs plotted
for legibility. The legend for the top scatterplot of each column (for CAS) applies to all the
scatterplots for the column.
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Figure (9.9) Bar plots of the mean RMSEs with standard deviation bars

In (a), one location is new. In (b), two locations are new.

or Linear Model 1 VR.

After 100 iterations, Figure 9.9(b) displays the mean RMSEs of predicting the observed

VR with the global VR, with the VR produced from Linear Model 1, and with the VR

produced from Linear Model 2 as in Figure 9.9(a), but in Figure 9.9(b), instead of one

location being new, now both locations are new. Again, in general forecasting with Linear

Model 1 is better than simply using the global VR. Using the global VR, Algorithm CAS

has a mean RMSE of 0.15, and UTS has a mean RMSE of over 0.20. Algorithms Ljub and

SIT have mean RMSEs over 0.25. For the algorithm SIT, the mean RMSE of Linear Model

1 less than half the mean RMSE of the global VR prediction. For Algorithms CAS, UTS,

and Ljub, Linear Model 1 is still better than the previous global VR, but the differences are

not as large as it is for SIT.

The second linear model still does even better than the first. There is a little more

variability than before, but that is not surprising as now both locations are new. The mean
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RMSEs are under 0.12 for Algorithms UTS and Ljub, and the mean RMSEs are below 0.08

for Algorithms CAS and SIT.
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PART 10

CONCLUSIONS

We have proven that the set of longest paths in K4-minor-free graphs, interval graphs,

intersection graphs of spider graphs, and circular arc graphs have the Helly property. In

proving that K4-minor-free graphs have a vertex common to all longest paths, we proved the

property for series-parallel graphs and outerplanar graphs, affirmatively answering a question

in [45]. We used Lemma 7 for the supports of chordal graphs subclasses. In the future, we

would hope that Lemma 7 for other subclasses of chordal graphs or perhaps even the entire

class of chordal graphs.

We have shown that location and video factors effect the FAR for four algorithms on

the video portion of the PaSC face recognition challenge. Surprisingly, for location and

video-based factors there was a clear relationship between VR and FAR. For these factors,

one level is not better than another; there is a trade-off between VR and FAR. An increase

(resp. decrease) in the FAR results in an increase (resp. decrease) in the VR. Our results

illuminate a path for better understanding the performance of face recognition algorithms

in unconstrained scenarios. The results underscore a need to better control a tendency of

current algorithms to increase impostor scores in favorable settings as defined by higher true-

match scores. These results also establish a foundation for better modeling of distributional

changes conditioned on measurable, knowable, attributes of target application locations, and

consequently bring us closer to the goal of predicting performance in new settings.

Using these results, we were able to suggest two models for predicting the marginal

VR when a new location is introduced. Previously, the global VR was sometimes used to

predict the observed VR of a new location-pair, but as we showed, it does not predict the VR

very well. There is a lot of variability in marginal VR across location-pairs, the RMSEs of

prediction using global VR are quite large. When both locations are new, the RMSEs using
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global VR are even larger. Better models than using the global VR are needed to capture

the variability of the marginal VRs.

We have presented two models for predicting the marginal VR of a new location. The

first model uses only the marginal FAR, and the second uses the marginal FAR as well as two

video-based factors: yaw and face confidence. Both methods are better than simply using

the previous global VR, but the second model came the closest to predicting the observed

VR. Even with two new locations, the second model is much better than using the global

VR. The algorithms on which we tested were from four different groups on four different

continents, implying that our results will generalize well. Future work would include testing

the models on new data separate from the PaSC dataset.
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[29] B. Grünbaum, “Vertices missed by longest paths or circuits,” J. Combinatorial Theory

Ser. A, vol. 17, pp. 31–38, 1974.

[30] F. Nadeem, A. Shabbir, and T. Zamfirescu, “Planar lattice graphs with gallai’s

property,” Graphs and Combinatorics, vol. 29, no. 5, pp. 1523–1529, 2012. [Online].

Available: http://dx.doi.org/10.1007/s00373-012-1177-8

[31] Y. Bashir and T. Zamfirescu, “Lattice graphs with gallai’s property,” vol. 56, pp.

65–71, 2013. [Online]. Available: http://ssmr.ro/bulletin/volumes/56-1/node8.html

[32] A. D. Jumani and T. Zamfirescu, “On longest paths in triangular lattice graphs,” vol. 89,

pp. 269–273, 2012.

http://www.sciencedirect.com/science/article/pii/S1571065305052583
http://www.sciencedirect.com/science/article/pii/S1571065305052583
http://dx.doi.org/10.1007/s00373-012-1177-8
http://ssmr.ro/bulletin/volumes/56-1/node8.html


63

[33] F. Nadeem, A. Shabbir, and T. Zamfirescu, “Planar lattice graphs with gallais

property,” Graphs and Combinatorics, vol. 29, no. 5, pp. 1523–1529, 2013. [Online].

Available: http://dx.doi.org/10.1007/s00373-012-1177-8

[34] A. Shabbir, “Fault-tolerant designs in lattice networks on the klein bottle,” vol. 2,

no. 2, pp. 99–109, 2014. [Online]. Available: http://www.ejgta.org/index.php/ejgta/

article/view/52

[35] Y. Bashir, F. Nadeem, and A. Shabbir, “Highly non-concurrent longest paths in

lattices,” vol. 40, pp. 21–31, 2016. [Online]. Available: http://journals.tubitak.gov.tr/

math/abstract.htm?id=17802

[36] C. Thomassen, “Hypohamiltonian and hypotraceable graphs,” Discrete Mathematics,

vol. 9, no. 1, pp. 91 – 96, 1974. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/0012365X74900740

[37] M. Araya and G. Wiener, “On cubic planar hypohamiltonian and hypotraceable

graphs,” vol. 18, 2011. [Online]. Available: http://www.combinatorics.org/ojs/index.

php/eljc/article/view/v18i1p85/0

[38] S. Klavžar and M. Petkovšek, “Graphs with nonempty intersection of longest paths,”

Ars Combin., vol. 29, pp. 43–52, 1990.
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Appendix A

COMPUTING VIDEO-BASED FACTORS

The image-based factors face size, face confidence, and yaw are well established, but

defining these factors for a video is not obvious. To extend these factors for an entire video,

we follow the method of Lee et al. [70], which has been shown to be effective.

To explain, let gFS(f) be the face size for image f ; the following method applies

to face confidence and yaw. Suppose that video x has the frames {f1, f2, . . . , fm}, hav-

ing face size values {gFS(f1), gFS(f2), . . . , gFS(fm)}. To find the face size as a video fac-

tor, we take the mean value of the frames. Therefore, the face size for video x is

hFS(x) = mean{gFS(f1), gFS(f2), . . . , gFS(fm)}.

For the video-based factors for video-pairs, we have the following. Let (x, y) be the video-

pair. For both face size and face confidence, the minimum value of the two videos is taken

under the assumption that the smaller value is more indicative of recognition impediments.

Hence, we have the video-based factors are kFS(x, y) = min{hFS(x), hFS(y)} for face size

and kFC(x, y) = min{hFC(x), hFC(y)} for face confidence. For yaw, the absolute difference is

taken so that larger factor values result for video-pairs in which the faces generally have less

similar viewpoints. Therefore, we have kYaw(x, y) = |hYaw(x) − hYaw(y)| as the video-based

factor for yaw.
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LARGE GRAPHS
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Figure (B.1) FAR and VR of each location-pair on tripod video-pairs for each algorithm

The FAR and VR are ordered by the mean rate over all the algorithms. The top graph is
on FAR. The horizontal line corresponds to the global FAR = 0.10, and the vertical line
between pairs CaDW-CaDW and Bu-Bu separates the pairs into cross-week (left) and same
week. The bottom graph is on VR. The horizontal lines correspond to the global VR for
each algorithm when the global FAR = 0.10. There are no same-week pairs for matches.
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Figure (B.2) Scatterplots of VR vs FAR for video-based factors over different sensor-pairs,
fitted with a linear regressor for each algorithm

There are twelve scatterplots, one for each algorithm and video-based factor. One column
for each video factor and one row for each algorithm. All video-based factors are divided

into 10 bins. Thresholds set to global FAR = 0.10.



72

Yaw

log(FAR)

V
R

0.
0

0.
4

0.
8

0.05 0.2

C
A
S

Face Confidence

log(FAR)

V
R

0.
0

0.
4

0.
8

0.05 0.2

Face Size

log(FAR)

V
R

0.
0

0.
4

0.
8

0.05 0.2

Yaw

log(FAR)

V
R

0.
0

0.
4

0.
8

0.05 0.2

U
TS

Face Confidence

log(FAR)

V
R

0.
0

0.
4

0.
8

0.05 0.2

Face Size

log(FAR)
V
R

0.
0

0.
4

0.
8

0.05 0.2

Yaw

log(FAR)

V
R

0.
0

0.
4

0.
8

0.05 0.2

Lj
ub

Face Confidence

log(FAR)

V
R

0.
0

0.
4

0.
8

0.05 0.2

Face Size

log(FAR)

V
R

0.
0

0.
4

0.
8

0.05 0.2

Yaw

log(FAR)

V
R

0.
0

0.
4

0.
8

0.05 0.2

S
IT

Face Confidence

log(FAR)

V
R

0.
0

0.
4

0.
8

0.05 0.2

Face Size

log(FAR)

V
R

0.
0

0.
4

0.
8

0.05 0.2

Figure (B.3) Interactions between location-pairs and video-based factors

There are twelve scatterplots, one for each algorithm and video-based factor. One column
for each video factor and one row for each algorithm. Each panel looks at the interaction

for an algorithm between location-pairs and the factor in its title. The size of each circle is
proportional to the mean of the video factor for each location-pair.
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Figure (B.4) FAR for demographic factors for Algorithms CAS, UTS, Ljub, and SIT

The left column is on handheld video-pairs, and the right column is on tripod video-pairs.
The FAR for each factor-level is reported for a global FAR = 0.10. For gender, there are
three factor levels: female-male (F/M), male-male (M/M), and female-female (F/F). For
race, there are three factor-levels: Caucasian-Asian (C/A), Caucasian-Caucasian (C/C),

and Asian-Asian (A/A).
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