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ABSTRACT 

ESSAYS IN ENVIRONMENTAL ECONOMICS AND INTERNATIONAL TRADE 

By 

KENNETH AUSTIN CASTELLANOS 

AUGUST 2021 

Committee Chair: Dr. Garth Heutel 

Major Department: Economics 

 The essays in this dissertation discuss modeling techniques for international trade and 

their application to environmental policy. In addition, I present evidence of the effect of air 

pollution on worker sick leave. 

 Chapter 1 presents an application of computable general equilibrium (CGE) modeling in 

environmental policy evaluation. In most CGE models, researchers assume that goods are 

differentiated by their origin of production, known as the Armington model of international 

trade. In this chapter, I consider their application to carbon taxes, carbon leakage, and border 

carbon adjustments (BCAs). BCAs are designed to address carbon leakage, which is a 

phenomenon where areas not subject to an emissions tax increase their emissions in response to 

regulated areas decreasing emissions. I find that the non-Armington model predicts a higher 

carbon leakage rate compared to typical Armington models. I also find that border rebates are 

more effective than border tariffs at reducing leakage.  

 Chapter 2 presents an application of the non-Armington model to the North American 

Free Trade Agreement (NAFTA). Previous studies of free trade agreements have shown that the 



Armington model may underpredict changes in trade. In this chapter, I build a non-Armington 

model that still incorporates observable features of the international trade market. I then simulate 

the trade effects from NAFTA, and I compare these results to previous studies. I find that the 

non-Armington model can generate larger changes in trade than the Armington model. 

 Chapter 3 discusses how pollution might affect worker productivity, specifically the 

probability of taking sick leave from work. In this chapter, I evaluate these studies using a causal 

inference technique to quantify the impact of the CAAA on the number of days workers miss due 

to illness. I discuss the possible issues with using simple hazard rates for illness in making 

calculations of missed days and I also discuss how paid sick leave may influence results. Using a 

DiD framework, I find that the CAAA reduced the probability of taking a sick day in a given 

week by 0.1 percentage points. 
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Introduction 

 As research has shown the damages from climate change and air pollution, governments 

have begun creating policies to address these issues. In a global economy, the policies that one 

region enacts can have spillover effects on other regions. Additionally, determining the economic 

benefits from pollution reduction requires the use of empirical analysis. The first chapter of this 

thesis focuses on climate policy, the second chapter focuses on international trade modeling, and 

the last chapter focuses on policy evaluation of the Clean Air Act Amendments. I first discuss 

current questions in carbon policy and international trade. I then compare the predictions from 

my international trade model in the context of the North American Free Trade Agreement. I 

finish by using a causal inference model to analyze the effect of air pollution on sick leave. 

 When undertaking policy analysis, researchers in government and academia often make 

use of computable general equilibrium (CGE) modeling. This framework allows for 

counterfactual analysis and can incorporate rich data sources on industry supply chains. This can 

be especially useful in environmental and trade policy analysis, which often target specific 

industries. In environmental policies, emissions intensive sectors such as utilities, manufacturing, 

and construction are often heavily affected sectors. In trade policy, tariffs are generally targeted 

at highly traded manufacturing industries. CGE models provide tractable ways of evaluating 

policy impacts by industry and incorporating the supply chain structure in the analysis. 

 Most CGE models include international trade by using the Armington model. This model 

assumes that importers have preferences over the origin of production of goods (Armington 

1969). The Armington model provides a tractable framework for incorporating several 

observable features of trade that are typically not present in non-Armington models. However, 

some researchers have pointed out problems with the predictions from the Armington model. 
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One such issue is that Armington models will predict finite export supply curve elasticities. The 

export supply curve determines the quantity exporters will supply based on the price received 

from importers. Recent evidence has suggested that this curve is likely perfectly elastic, even for 

big countries like the United States and China (Amiti, Redding, and Weinstein 2019). This 

relationship can be replicated in a general equilibrium model using a non-Armington framework. 

The first two chapters of this dissertation develop the method of using a non-Armington model to 

analyze government policy. 

 In chapter 1, I use a non-Armington model to explore how international trade and 

environmental policy interact. When implementing taxes on carbon, many countries may worry 

about the phenomenon of carbon leakage. This occurs when areas outside of the regulated 

country increase production (and by extension emissions) in response to reduced production in 

the regulated country. Some have suggested using border carbon adjustments (BCAs) to reduce 

carbon leakage and improve the competitiveness of the taxed country in the world market. I 

show that a non-Armington model predicts that leakage rates are higher, and BCAs are less 

effective. The smaller effectiveness of BCAs is due to the perfectly elastic export supply curve. 

If the importing country is unable to push down the output price of the exporting region, 

producers will not have an incentive to cut production.  

Research has also shown that the Armington model predicts changes in trade volumes 

that are smaller than what is observed in the data, sometimes known as the “stuck on zero” 

problem (Kuiper and van Tongeren 2007). A well-known example of this is shown in Kehoe 

(2005), who directly compares predictions from Armington CGE models of the impacts of the 

North American Free Trade Agreement (NAFTA) against the data. Kehoe finds that the 

Armington model of trade severely underpredicted the changes in trade seen in the data. 
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In chapter 2, I use a non-Armington model to evaluate the impacts of NAFTA, and I 

compare my results against Kehoe (2005). The non-Armington model I build in this chapter 

incorporates many of the features in the Armington framework, and I show how these can be 

easily implemented using a novel algorithm that builds trade matrices. The Armington model 

predicts trade flows using the distribution of prices around the world, and a non-Armington 

model only has a single world price for each commodity. Thus, to predict trade flows in the non-

Armington model, I use the distribution of quantities around the world rather than the 

distribution of prices. I find that the non-Armington model can generate larger changes in trade 

that were more consistent with the data after the implementation of NAFTA. 

In chapter 3, I evaluate the effect of the Clean Air Act Amendment (CAAA) on the 

number of days that workers call in sick. I first discuss the difficulties in predicting the effects of 

less pollution on worker sick leave. Even if one can identify the reduction in days of illness (the 

hazard rate), other margins may make it difficult to correctly determine the impact on sick leave. 

For example, some workers may shift along the intensive margin and attend work while sick, or 

they may engage in some other mitigating behaviors. Additionally, if some workers are covered 

by paid sick leave policies, this relationship becomes even more confounded. To evaluate the 

accuracy of simulation models, I use a difference-in-difference model to determine the policy 

impact of the CAAA. Since, the CAAA only regulated some counties’ pollution levels, and I use 

this geographic heterogeneity to identify a causal impact. I find that the CAAA reduced the 

probability of taking a sick day by 0.1 percentage points. 

Using models is a wonderful way to understand complex interactions in the world and 

provide insight for policy. However, we must take our models to the data to ensure that we are 

providing a framework that can accurately describe those relationships. We must also be willing 
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to use different models for different purposes. An overarching theme in this dissertation is an 

attempt to do just that. In chapters 1 and 2, I show that relationships in international trade may be 

better described using a non-Armington model. In chapter 3, I discuss how to evaluate the 

empirical predictions of air pollution simulation models. All models have strengths and 

weaknesses and identifying when to use a model is a crucial part of research. 
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Chapter 1: Carbon Policy and International Trade 

 

1.1 Introduction 

 Carbon pricing initiatives have been growing, and policymakers often focus on how to 

implement carbon taxes efficiently. One concern has often been how international trade is 

affected by carbon taxes. Policymakers may be concerned from an environmental standpoint and 

want to know the amount of carbon leakage from implementing these policies. Leakage is a 

phenomenon where production (and emissions) shifts to an untaxed country. Policymakers may 

also be worried from an economic standpoint and look at variables such as employment and 

gross domestic product (GDP) impacts. When analyzing the economic impact of these policies, 

governments and researchers often use computable general equilibrium (CGE) modeling to 

predict how a domestic policy will impact trade. CGE models typically employ the Armington 

model of international trade, which assumes that goods are differentiated by origin of production. 

In this paper, I investigate how removing the Armington assumption affects predictions in CGE 

modeling of climate policy. 

 Recent carbon pricing proposals by politicians in the United States (US) and European 

Union (EU) have often included border carbon adjustments (BCAs), which are policies designed 

to increase the price of imports from countries without carbon prices and rebate domestic 

producers for carbon taxes paid in production when they export to countries without carbon 

prices (Morris, 2018; Hafstead, 2019). Some researchers have questioned their effectiveness 

from a welfare standpoint (Kortum and Weisbach, 2017; Fullerton, Baylis, and Karney, 2013). 

However, most CGE models have predicted that BCAs are effective at reducing carbon leakage. 

A survey of 11 CGE models found that models predicted BCAs reduce leakage for the United 
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States (US) by about 30% on average, with some predicting a more than 50% reduction 

(Böhringer, Balisteri, and Rutherford 2012).  

Most models used to study BCAs make use of the Armington model of international 

trade. The Armington model was developed by Paul Armington in 1969 and is still a popular 

way of modeling trade in environmental trade models half a century later (Armington 1969). The 

primary reason for using the Armington model is that it predicts three established features of 

international trade markets: imperfect specialization, home bias, and cross-hauling. Imperfect 

specialization is the observation that countries do not perfectly specialize like in the classical 

Ricardian comparative advantage model. Home bias is the observation that countries tend to buy 

more from domestic sources than international ones. Cross-hauling is the observation that 

countries import and export the same product category. These features were absent in the 

traditional trade models of Armington’s time, the Ricardian model, and its variant, the 

Heckscher-Ohlin (HO) model.  

While the Armington model is a useful model for incorporating real-world trade patterns, 

it also predicts a finite export elasticity. This means that when a country puts a tariff on an 

import, the exporting country will experience a decrease in the market price for their output. In 

other words, the exporter and importer share the burden of the tariff. Recent evidence from the 

trade war between the US and China, however, have shown that the entire burden of a tariff falls 

on the importer. This is consistent with a perfectly elastic export supply curve (Amiti, Redding, 

and Weinstein 2019). To incorporate this observation into my analysis, I specify a non-

Armington small economy model, which generates perfectly elastic supply curves (Clarete and 

Roumasset 1987). 
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Only a few papers have considered environmental policy using models other than 

Armington trade. A recent paper used two non-Armington models to examine carbon leakage: a 

HO model and an imperfect competition model (Balistreri, Böhringer, and Rutherford 2018). 

Another paper uses a similar imperfect competition model to look at BCAs (Balistreri and 

Rutherford 2012). In both papers, the authors find that non-Armington models predict higher 

leakage rates, which is a result I confirm in this paper. I extend this literature by considering 

BCA policies in a perfectly competitive non-Armington framework. This model also differs by 

including a gravity framework in explaining trade flows. I also explore why the Armington 

assumption may overstate production changes abroad due to how it allocates the burden of a 

tariff. 

The purpose of this chapter is to examine the effects of carbon policy under a model that 

does not invoke the Armington assumption or imperfect competition. To do this, I develop a 

CGE model that allows for goods to be homogenous by origin of production and predicts trade 

flows using a gravity model. I assume firms in each region have access to unique supply chain 

technology and labor markets. This approach is useful because data is readily available to 

calibrate the model; builders only need an environmentally extended social accounting matrix 

and parameter estimates from previous literature. My model employs a solution method based on 

a neoclassical Arrow-Debreu economy that allows markets to clear on global prices (Feltenstein 

and Plassmann 2008). I extend previous non-Armington CGE models to include trade flows 

predicted by a gravity equation, which allows me to incorporate essential features of trade in a 

homogeneous representative firm model.  

I find that leakage from carbon taxes is higher in my non-Armington model than in most 

previous Armington models, which confirms earlier work on this topic. I extend the literature to 
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show how the structure of BCAs become important for their impact on leakage. Specifically, a 

tariff increases leakage rates, and a rebate decreases them. A tariff does not decrease leakage 

rates because the tariff imposing country has very little effect on the world price. As a result, 

they are unable to incentivize foreign producers to reduce their output. A typical BCA is a 

combination of a tariff and a border rebate. The tariff is for carbon used to make an import in an 

untaxed country, and the rebate is for carbon taxes paid to make an export to an untaxed country. 

I find that these policies roughly offset each other so BCAs have a smaller effect on leakage than 

in Armington models. BCAs also have almost no effect on economic variables such as the 

aggregate labor supply, aggregate wage rate, and gross domestic product (GDP). I also explore 

how my assumptions about trade flows and parameters affect predictions about emissions and 

economic variables. However, even under many different calibrations, I still find that BCAs only 

modestly decrease carbon leakage on average. In general, I find that the Armington assumption 

is crucial to our predictions about the effects of carbon policy and border adjustments. 

In the next section, I show the model construction for production, households, and 

government. I also explain how the model predicts trade flows and how it differs from the 

traditional Armington framework. In section 1.3, I discuss the dataset and parameter choices for 

the model application. In section 1.4, I show results from policy simulations and then explore 

how my parameterizations may affect the results.  

 

1.2 Model Description 

 In this model, I use a Shoven and Whalley type general equilibrium structure (Shoven 

and Whalley 1984). One of the benefits of using CGE methodology is that common datasets, 

such as input-output matrices, and neoclassical functional forms allow for standardized 
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application (Hosoe, Gasawa, and Hashimoto 2010, Dixon and Jorgenson 2012). To begin the 

model, I assume there are 𝑁 regions, each with 𝐽 representative firms. Each firm makes a single 

type of output distinguished by its industry (e.g., agriculture goods). If this output is traded in the 

international market, it is homogeneous by origin, has a single world price, and can be sold to 

any region. If it is non-tradable, the output is only sold domestically to buyers in the region the 

firm is located in. 

Each region has a single representative household, a government that taxes and transfers, 

and a set of representative firms for each industry. I assume that utilities are the only non-

tradable good, so this service has a local market price in each region. I list all the industries I use 

in the application in Table 1.1. I assume that labor is the only factor that is immobile between 

regions. This assumption is typical of Ricardian models, and researchers have observed that 

labor markets are generally less mobile internationally than either capital or commodity markets 

(Freeman 2006). I also assume that labor is sticky between industries. This assumption prevents 

a region from entirely specializing and moving all labor to a single industry. 

 

1.2.a Production 

 I model production as a nested structure, which is common in CGE models. Figure 1.1 

shows a diagram of the production process. Production is assumed to be constant returns to scale, 

and all firms are price-takers. The firm receives the market price for the goods they sell, and they 

pay market prices for any inputs. If they sell a tradable good, they receive the world price; if the 

firm sells a non-tradable good, they receive the regional price. Buyers may pay a domestic price 

that is higher than the world price for a tradable good if tariffs are levied on the product. 
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Figure 1.1: Organization of Production Process 

 

 

Notes: This shows the production process for each firm. The process can be viewed from the 

bottom-up. First producers decide optimal inputs for fossil fuels and intermediate goods ad create 

the intermediate goods composite. This is combined with capital to create a materials composite, 

and finally materials and labor combine to produce a final output. 
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Table 1.1: List of Industries and Regions 

Industries/Commodities Regions 

Coal Extraction1 China 

Oil Extraction Europe 

Natural Gas Extraction1 North America 

Agriculture      (Canada & Mexico) 

Mining2 United States 

Goods Manufacturing2 Rest of the World 

Petroleum Refining1  

Chemical Manufacturing  

Other Manufacturing  

Utilities*  

Construction  

Consumer Services  

Transportation  

Business Services  

Social Services  

Notes: This is a list of industries and regions used in the model. The industries were chosen for 

their sensitivity to carbon taxes and aggregated from the world input-output database. Regions 

Europe, North America, and Rest of the World are aggregated regions from countries in the 

WIOD.  
1Grouped as a carbon emitting fuel and subject to carbon tax.  
2Considered a carbon rich production process and subject to a carbon tariff.  

*Utilities are a non-tradable commodity, so they receive a regional price. 

 

A firm solves a cost minimization problem for each nest and then uses that solution to 

determine optimal demands for upper nests. For example, a firm will determine the optimal mix 

of fossil fuels to create a fossil fuel composite. This input is an imaginary good that is simply a 

bundle of the optimal combination of fossil fuels in the previous nest. The fossil fuel composite 

is then combined with all other commodities to create the intermediate composite. The 

intermediate composite is then combined with capital to make the materials composite, and the 

materials composite is combined with labor to create a final product.  
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There are three nests combined using constant elasticity of substitution (CES) production 

functions. I define 𝑌𝑛ℎ
𝑗

 as the output of composite ℎ in region 𝑛 for industry 𝑗 and 𝑋𝑛𝑖
𝑗

 is input 𝑖 in 

the composite for industry 𝑗 in region 𝑛. The subscript ℎ indicates which nest the firm is 

optimizing fossil fuel, intermediate, or materials. The index 𝑖 can represent any industry in Table 

1.1 or any composite formed by the firm as an input to the upper nests. For the fossil fuel nest, 

inputs consist of coal, crude oil, and natural gas. For the intermediate composite, inputs are the 

remaining goods and services listed in Table 1.1, along with the fossil fuel composite good. The 

materials nest takes two inputs: capital and the intermediate composite good. The producer’s 

problem for each CES nest is defined as 

min ∑(𝑃𝑛𝑖
𝑗

+ 𝜏𝑛𝑖)𝑋𝑛𝑖
𝑗

𝐻

𝑖=1

 

𝑠. 𝑡. 

𝑌𝑛ℎ
𝑗

= 𝛾𝑛ℎ
𝑗

𝜎ℎ
𝜎ℎ−1 (∑ 𝛼𝑛𝑖

𝑗
𝑋𝑛𝑖

𝑗
𝜎ℎ−1

𝜎ℎ

𝐻

𝑖=1

)

𝜎ℎ
𝜎ℎ−1

 

Firms minimize the cost of the composite subject to a CES production function. The price vector 

𝑃𝑛𝑖
𝑗

 is the net price of input 𝑖 to firm 𝑗 in region 𝑛, which is augmented by the tax 𝜏𝑛𝑖 on good 𝑖 in 

region 𝑛. This tax is inclusive of any carbon taxes and tariffs. Since the composites are created 

within the firm, the price of a composite as an input to a higher nest can differ by industry 𝑗. 

However, for market goods, the firm pays the market price of the good. So, 𝑃𝑛𝑖
𝑗

= 𝑃𝑛𝑖
𝑘 ∀𝑗, 𝑘 if 𝑖 is 

a non-traded market good, i.e., all prices are the same for every buyer in a region for non-traded 

goods. If 𝑖 is a traded good, then 𝑃𝑛𝑖
𝑗

= 𝑃𝑚𝑖
𝑘 ∀𝑗, 𝑘, 𝑛, 𝑚, i.e., all firms in all regions see the same 

global price for traded goods. For each composite ℎ, there are 𝐻 number of inputs, so the term in 
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parentheses is a combination of all the inputs that go into composite ℎ. The share parameter is 

𝛼𝑛𝑖
𝑗

 for input 𝑖 and the shift parameter is 𝛾𝑛ℎ
𝑗

 for composite ℎ and both are unique by region and 

industry. The cost of any composite is the expenditure function evaluated at optimal demand 

quantities. Finally, the substitution parameter 𝜎ℎ is unique to each composite or nest. Estimates 

for 𝜎ℎ are taken from the literature, and the rest of the parameters are calibrated from a dataset on 

world production and trade. Equation 1 below is the input demand function for producers.   

 

 

𝑋𝑛𝑖
𝑗

𝑌𝑛ℎ
𝑗

=
𝛼𝑛𝑖

𝑗 𝜎ℎ
(𝑃𝑛𝑖

𝑗
+ 𝜏𝑛𝑖)

−𝜎ℎ

𝛾𝑛ℎ
𝑗

𝜎ℎ
1−𝜎ℎ (∑ 𝛼𝑛𝑖

𝑗 −𝜎
(𝑃𝑛𝑖

𝑗
+ 𝜏𝑛𝑖)

1−𝜎ℎ𝐻
𝑖=1 )

−𝜎ℎ
1−𝜎ℎ

 
(1) 

Here optimal input demand 𝑋𝑛𝑖
𝑗

 is expressed as a function per unit of output 𝑌𝑛ℎ
𝑗

. 

 Transportation costs are defined explicitly in this model. This captures emissions from 

transportation use and model changes in costs due to changes in trade volumes.  I assume that the 

demand for transportation services is a function of international shipping distance and a constant 

domestic cost. If a firm begins exporting to further distances, their demand for transportation 

services increases. The production function for the transportation composite is defined: 

 
𝑌𝑛(𝑡𝑐𝑜𝑚𝑝)

𝑗
=

𝑋𝑛(𝑡𝑟𝑎𝑛𝑠)
𝑗

exp (η1 ln (
∑ 𝐹𝑧𝑛

𝑗
𝐷𝑧𝑛

𝑁
𝑧=1

∑ 𝐹𝑧𝑛
𝑗𝑁

𝑧=1

) + 𝜂n
2j

)

 
(2) 

The left-hand side is the output of the transportation composite. The numerator of the right-hand 

side is the input demand for the transportation composite. In the denominator, the first term 

inside the exponentiation is the international shipping cost. The variable 𝐹𝑧𝑛
𝑗

 is the amount of 

good 𝑗 that is transported from origin 𝑛 to destination 𝑧, and the parameter 𝐷𝑧𝑛 is the distance 

between those regions. Taking the two summations together gives the average distance a 
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commodity travels weighted by trade flows. As the average shipping distance increases, the 

amount of transportation services required to make a unit of the transportation composite input 

also increases. This relationship is determined by the slope parameter η1. The second term in the 

denominator, ηn
2j

 represents the domestic cost, which I assume is constant with respect to 

distance. 

 Final production is a Cobb-Douglas combination of the materials composite and labor. 

The production function is specified as:  

𝑄𝑛
𝑗

= 𝛾𝑝𝑛
𝑗

𝑚𝑛
𝑗 𝜔𝑛

𝑗

𝐿𝑛
𝑗 1−𝜔𝑛

𝑗

 

Where 𝑄𝑛
𝑗
 , 𝑚𝑛

𝑗
, and 𝐿𝑛

𝑗
 represent total output, materials composite input, and labor input, 

respectively, for industry 𝑗 in region 𝑛. The share parameter 𝜔𝑛
𝑗
 and scale parameter 𝛾𝑝𝑛

𝑗
 are 

calibrated using my dataset and vary by industry and region. Using first-order conditions and the 

expenditure function gives the demands for materials based on input prices and the industry’s 

output price: 

 
𝑚𝑛

𝑗
= (

𝜔𝑛
𝑗

𝑃𝑛𝑚
𝑗

) (𝑃𝑛
𝑗

− 𝑆𝑛
𝑗
)𝑄𝑛

𝑗
 (3) 

 

 
𝐿𝑛

𝑗
= (

1 − 𝜔𝑛
𝑗

𝑤𝑛
𝑗

) (𝑃𝑛
𝑗

− 𝑆𝑛
𝑗
)𝑄𝑛

𝑗
 (4) 

These are common Cobb-Douglas expenditure share demand functions, where 𝑃𝑛𝑚
𝑗

 is the per-

unit cost of the materials composite and 𝑤𝑛
𝑗
 is the wage rate. The output price is 𝑃𝑛

𝑗
 and some 

firms may get a per-unit subsidy of 𝑆𝑛
𝑗
. If good 𝑗 is a tradable good, then 𝑃𝑛

𝑗
= 𝑃𝑚

𝑗
 ∀ 𝑛, 𝑚, i.e., all 
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regions have the same world output price. Note that this equality would not hold in an 

Armington model, as output prices are determined by the firm’s location. Market inputs (non-

composite inputs) have prices equal to the corresponding industry’s output price. If 𝑗 is a non-

tradable good, 𝑃𝑛
𝑗

= 𝑃𝑛𝑗
𝑘  ∀ 𝑗, 𝑘, i.e., the price of market input 𝑗 to firm 𝑘 in region 𝑛 is equal to 

the output price of industry 𝑗 in region 𝑛. If 𝑗 is a tradable good, 𝑃𝑗 = 𝑃𝑛
𝑗

= 𝑃𝑚𝑗
𝑘  ∀ 𝑗, 𝑘, 𝑛, 𝑚, so, 

all firms in all regions pay the world price of output from industry 𝑗. 

Equations 1-4 describe the production process for an arbitrary firm 𝑗 in region 𝑛. 

Together they give a system of input demand equations. Intermediate input and capital demands 

are determined from equations 1-3 and labor demands are determined by equation 4. This is a 

flexible and common structure used by CGE models, and the model can be easily calibrated to 

baseline data using existing methods. With these equations in hand, I now turn to the household 

sector.  

 

1.2.b Households 

 There is one representative household for each region, which owns initial endowments of 

capital and labor. Capital is internationally mobile, and all households can supply capital to the 

world market at the world price. I also make the common Ricardian assumption that households 

can only supply labor to the home region. Access to labor markets is partly how the model drives 

trade from comparative advantage.   

The utility function for the household is quasi-linear between consumption and leisure 

and defined for each region 𝑛. The variable 𝐶𝑛 is a Cobb-Douglas consumption composite of all 

goods and services, and the lowercase 𝑐𝑛
𝑗
 is consumption of good 𝑗 in region 𝑛. 𝑃̂𝑛 is a price 
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index representing the cost of a unit of aggregate consumption 𝐶𝑛. Note that prices are 

augmented by total taxes 𝜏𝑛𝑗, which like the producer’s problem, is inclusive of all carbon taxes, 

tariffs, and subsidies. The variable 𝑤𝑛 is the aggregate wage in the region, and 𝑟 is the global 

price of capital. Each household also receives an allocation of capital 𝐾̅𝑛 and a government 

transfer, 𝐺𝑛, which is determined by tax revenue.  

𝑈𝑛(𝐶𝑛, 𝑙𝑛) = 𝐶𝑛 + 𝜇𝑛

(𝐿̅𝑛 − 𝑙𝑛)1+
1
𝜈

1 +
1
𝜈

 

s.t. 

𝑃̂𝑛𝐶𝑛 = 𝑤𝑛𝑙𝑛 + 𝑟𝐾̅𝑛 + 𝐺𝑛 

where 

𝐶𝑛 = ∏(𝑐𝑛
𝑗
)

𝜃𝑛𝑗

𝐽

𝑗=1

 and 𝑃̂𝑛 = ∏ (
𝑃𝑛

𝑗
+ 𝜏𝑛𝑗

𝜃𝑛𝑗
)

𝜃𝑛𝑗𝐽

𝑗=1

 

Each household is allocated 𝐿̅𝑛 units of labor, of which they supply 𝑙𝑛 to the market and 

keep the rest as leisure. Taking FOCs and solving for the demand for leisure gives the market 

labor supply function. 

 
𝑙𝑛 = 𝐿̅𝑛 − (

𝑤𝑛

𝜇𝑛𝑃̂𝑛

)

𝜈

 (5) 

Demand for commodities is a Cobb-Douglas demand curve or fixed share of income. 

 
𝑐𝑛

𝑗
=

𝜃𝑛
𝑗

𝑃̂𝑛
𝑗

(𝑤𝑛 [𝐿̅𝑛 − (
𝑤𝑛

𝜇𝑛𝑃̂𝑛

)

𝜈

] + 𝑟𝐾̅𝑛 + 𝐺𝑛) (6) 
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 The equations above only model aggregate labor market and consumption behavior for a 

region. Households must also choose the industries to which they will supply labor. In many 

models, labor is assumed to be perfectly mobile between industries. If labor is perfectly mobile 

in this model, workers will all move to the industry with the highest wage, and the country will 

completely specialize. Perfect specialization is not observed in real-world data, so I impose that 

labor is sticky between industries. Feltenstein and Plassmann (2008) make a stronger assumption 

that labor is completely immobile between industries. I relax this requirement by using an 

exponential share function. Equation 7 shows how labor is distributed across industries based on 

wages. 

 
𝐿𝑛𝑖

𝑠 =
exp(𝜑𝑛𝑖𝑤𝑛𝑖

𝑟 + Φni)

∑ exp (𝜑𝑛𝑗𝑤𝑗
𝑟 + Φnj)

𝑁
𝑗=1

𝑙𝑛 
(7) 

𝐿𝑛𝑖
𝑠  is the labor supplied by the household in region 𝑛 to industry 𝑖. Labor supply for an industry 

is determined as a share of overall allocated labor, which is then multiplied by the aggregate 

labor supplied to the region, 𝐿̅𝑛
𝑠 . The variable 𝑤𝑛𝑖

𝑟  is the relative wage, which is the wage in 

industry 𝑖 divided by the average wage in region 𝑛. The first parameter is the sector elasticity, 

𝜑𝑛𝑖, and determines the change between industries in response to a change in relative wages. If 

the sector elasticity is set to zero, labor becomes completely immobile between industries. The 

second parameter Φ𝑛𝑖 is the share parameter and is calculated such that the base case equilibrium 

matches benchmark data. 

 

1.2.c Trade Flows, Tariffs, and Rebates 

 One issue with using a non-Armington model is incorporating empirically observed 

features of trade markets such as cross-hauling, home bias, and no perfect specialization. Part of 
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this is taken care of in the structure of the firm and household. Up to this point, I have closely 

matched the non-Armington model presented in Feltenstein and Plassmann (2008), which 

prevents complete specialization by restricting the labor market. One drawback of this model is 

that it does not generate trade flows. If I were to solve this model as is, I would know how much 

of a commodity each region produced and bought, but not how those buyers and sellers are 

matched. The two previous models, Balistreri et. al. (2018) and Feltenstein and Plassmann 

(2008), use regions’ net trade positions, production minus consumption, as a measure of trade. 

This may understate tariffs, however, if regions engage in cross-hauling. To account for this, I 

predict trade flows using information on previous trade flows and principles from the gravity 

trade model literature. 

 I define a function 𝑇(∙) that predicts trade flows given a vector of regions’ supply and 

demand shares and a set of parameters.  

 𝐅𝑗 = 𝑇 (𝐷𝑗 , 𝑆𝑗 , 𝐀(𝝉𝑗(𝑏𝑐); 𝜃1𝑗 , 𝜽2𝑗)) (8) 

This function outputs a trade matrix 𝐅𝑗 that describes the trade flows between the regions for a 

good 𝑗. Each element 𝐹𝑛𝑧
𝑗

 in the matrix 𝐅𝑗 is the share of world production that is sent from 

origin 𝑧 to destination 𝑛. I give an example of a trade matrix for the goods manufacturing 

industry in appendix Table A.7. Each row is the destination of a good, and each column is the 

origin. Intraregional trade is on the diagonal, so this is a measure of home bias. This function has 

three inputs: shares of world demand 𝐷𝑗(𝑛), shares of world supply 𝑆𝑗(𝑛), and a matrix 𝐀 which 

is calculated from the baseline parameters and border costs. The matrix 𝐀 contains the predicted 

shares of consumption based on government border costs such as import tariffs or export 
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subsidies, represented by 𝝉𝑗(𝑏𝑐). This matrix also uses a scalar parameter, 𝜃1𝑗, and an NxN 

matrix of parameters 𝛉2𝑗.  

 The function 𝑇(∙) does not have a closed-form expression when N > 2, instead it uses row 

operations to calculate the trade matrix. However, below is an approximation of the trade flow 

prediction to better explain this portion of the model. 

 
𝐹𝑛𝑧

𝑗
≈

𝑎𝑛𝑧
𝑗

𝐷𝑗(𝑛)

∑ 𝑎𝑛𝑖
𝑗

𝐷𝑗(𝑖)𝑁
𝑖=1

𝑆𝑗(𝑧) (9) 

 

𝑎𝑛𝑧
𝑗

= [
exp ((1 − 𝜃1𝑗) ln (1 + τ𝑛𝑧

j(br)
) + 𝜃𝑛𝑧

2𝑗)

∑ exp ((1 − 𝜃1𝑗) ln (1 + τ𝑛𝑧
j(br)

) + 𝜃𝑛𝑖
2 )𝑁

𝑖=1

] 

Equation 9 would hold with equality if N=2, i.e., a bilateral model with two regions – home and 

foreign. The full algorithm that calculates 𝑇(∙) for N>2 is used in the application and presented 

in chapter 2 section 2.3. Looking at equation 9, the importer’s demand 𝐷𝑗(𝑛) and the supplier’s 

production 𝑆𝑗(𝑧) are multiplied together as in the standard gravity equation. The variable 𝑎𝑛𝑧
𝑗

 is 

the effect of border (br) taxes such as import tariffs and export subsidies, which are denoted as 

τ𝑛𝑧
j(br)

. The effect of border costs depends on two parameters; the first is 𝜃1𝑗, which is a trade 

elasticity parameter. The second parameter is 𝜃𝑛𝑧
𝑗

, which is calculated to match the equilibrium 

to the baseline data. This differs from the traditional Armington model by using relative 

quantities of production and consumption instead of relative prices. 

 This framework is comparable to the Eaton and Kortum (2002) model that combines a 

Ricardian model with a gravity equation. In that paper, the authors assume a continuum of 
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heterogeneous goods made by firms with productivities determined by a Fréchet distribution. 

The model presented here is similar, except I do not make distribution assumptions about 

productivity. Instead, I assume representative firms create homogenous goods, factor availability 

and supply chain linkages determine comparative advantage, and then the gravity function 

determines trade flows. I compare my method of predicting trade flows to the traditional 

Armington model later in the paper after introducing and describing the dataset. 

 

1.2.d Government 

 The government performs two functions, levying taxes and transferring income. For this 

paper, the government taxes CO2 emissions and imports. Governments may also subsidize 

exports to other countries, which is given to the exporting firm. Taxes enter the model in the 

producer’s problem through equation 1 and in the consumer’s problem through equation 6 (the 

price index 𝑃̂𝑛 includes taxes).  I separate taxes into two parts, a carbon tax and a border cost. 

 𝜏𝑛
𝑗

= 𝜏𝑛
𝑗(𝑏𝑐)

+ 𝜏𝑛
𝑗(𝑐)

 (10) 

  

𝜏𝑛𝑗
(𝑏𝑐)

= 𝑃𝑗 ∑
𝐹𝑛𝑧

𝑗

∑ 𝐹𝑛𝑖
𝑗𝑁

𝑖=1

𝑇𝑎𝑟𝑖𝑓𝑓𝑛𝑧
𝑗

𝑁

𝑧=1

 (11) 

 

𝑆𝑛
𝑗

= 𝑃𝑗 ∑
𝐹𝑧𝑛

𝑗

∑ 𝐹𝑛𝑖
𝑗𝑁

𝑖=1

𝑅𝑒𝑏𝑎𝑡𝑒𝑛𝑧
𝑗

𝑁

𝑧=1

 (12) 

 𝜏𝑛
𝑗(𝑐)

= 𝑐𝑐𝑛
𝑗

× 𝑇𝑎𝑥$/𝐶𝑂2
 (13) 

 

Equation 10 is the total tax on a commodity in a region, which is the sum of tariffs and any 

applicable carbon taxes. Equation 11 calculates the tariff rate using the trade flows calculated 
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earlier. The term 
𝐹𝑛𝑧

𝑗

∑ 𝐹
𝑛𝑖
𝑗𝑁

𝑖=1

 is the share of good 𝑗 purchased in region 𝑛 that comes from region 𝑧. I 

multiply this by the sum of the tariff rate 𝑛 sets on goods from 𝑧, 𝑇𝑎𝑟𝑖𝑓𝑓𝑛𝑧
𝑗

. Trade flows are also 

partially determined by tariff rates, as shown in the previous section. This also assumes that the 

country is a price taker, sellers will not accept lower than the world price. So, the only affect a 

country has on the world price, 𝑃𝑗 , is through its effect on world demand and supply. Since this 

is small compared to the size of the tariff, the home country bears the burden of the tariff. 

Similarly, the subsidy to firms in equations 3 and 4 is calculated in equation 12. The subsidy is 

calculated using trade flows and the rebate rate for goods exported from origin 𝑛 to destination 𝑧, 

𝑅𝑒𝑏𝑎𝑡𝑒𝑛𝑧
𝑗

. Again, the country is a price taker, so firms can only affect the world price through 

their effect on world supply. The means the exporting firm gets the full benefit of the rebate. 

In equation 13, carbon taxes are calculated based on the content of carbon emissions 

released when a unit of fuel is consumed. The amount of carbon emissions released is calculated 

using a carbon coefficient 𝑐𝑐𝑛
𝑗
, which is the amount of CO2 released when a unit of good 𝑗 is 

consumed. As this tax is levied when the fuel is burned, it allows the cost of carbon to be fully 

integrated into upstream prices through the supply chain. This also assumes that firms are not 

able to abate carbon at the intensive margin with technology such as scrubbers or carbon capture 

devices. I should also point out that this is considered production-based accounting of emissions 

in contrast to consumption-based accounting. While neither is the “correct” way to measure 

emissions, this production-based method gives the geographic source of the emission by tying it 

to where the fuel was burned. A consumption-based method would assign emissions based on 

where the final product was consumed. 
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1.2.e Equilibrium Solution 

 Equations 1-4 determine input demands for production, and equations 5-7 determine 

factor supplies and household consumption demands. Trade flows are calculated using equation 

8, which determines transportation costs in equation 2 and border costs in equation 1 and 

equations 3 through 7. Equilibrium is defined as a point where these equations hold for all 

industries and households and where commodity and capital markets clear. 

 

𝑐𝑛
𝑗

+ ∑ 𝑋𝑛𝑗
𝑖

𝐽

𝑖=1

= 𝑄𝑛
𝑗
   ∀ 𝑛 ∈ {1, … , 𝑁} (14) 

 

∑ 𝑐𝑛
𝑗

𝑁

𝑛=1

+ ∑ ∑ 𝑋𝑛𝑗
𝑖

𝐽

𝑖=1

𝑁

𝑛=1

= ∑ 𝑄𝑛
𝑗

𝑁

𝑛=1

 (15) 

 

∑ ∑ 𝐾𝑛
𝑗

𝐽

𝑗=1

𝑁

𝑛=1

= ∑ 𝐾̅𝑛

𝑁

𝑛=1

 (16) 

Equation 14 is the market-clearing condition for non-tradables, which must clear for each 

region, and equation 15 is the market-clearing condition for all other tradable commodities. In 

both equations, the left-hand side is the sum of consumer and intermediate demand for the 

commodity, and the right-hand side is total output. Equation 16 clears the capital market. The 

left-hand side is the global demand for capital input across all firms in all regions, which is 

determined by equations 1 and 4. The right-hand side is the sum across all household capital 

allocations. 

To conduct policy experiments, I first simulate a base case scenario, which is the 

equilibrium with no carbon policy. I then introduce the new policies, such as carbon taxes and 

BCAs, and simulate the counterfactual scenario. This counterfactual is compared to the base case 

to determine the impact of the policies. Equilibrium is found numerically using a simplex 
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method based on Scarf’s algorithm (Scarf and Hansen 1973). Due to the numerical calculation of 

trade flows, the equation for this may not be differentiable at all points; for example, it may have 

kinks or sharp turns. The simplex method I employ proves useful over Newton methods in that it 

can handle these types of non-differentiable equations. 

 

1.2.f Differences Between Models 

 The most important difference between the non-Armington and Armington model, for the 

purposes of this paper, is how tariffs and rebates affect domestic prices. In an Armington model, 

tariffs and rebates both reduce carbon leakage, which is confirmed numerically by several studies 

mentioned previously. In the non-Armington model, a rebate may be able to reduce leakage, but 

a tariff likely will not. 

 To simplify the analysis, consider an Armington model with two regions, home and 

foreign. Suppose that the home country has already imposed a carbon tax and is trying to control 

leakage through border controls. This means they need to increase the home firm’s share of 

world production and decrease the share of the foreign firm. Figure 1.2 shows the effect of a 

tariff and rebate for an arbitrary polluting good in an Armington world. The left two panels show 

the market for goods produced by the home firm and the right column of panels show the market 

for goods produced by the foreign firm. Since these goods are differentiated by where they are 

produced, they face separate downward sloping demand curves. First, look at the top two panels, 

which show the impact of a carbon tariff. The home country imposes a tax on foreign produced 

goods, which shifts the demand curve for the foreign good inward. The price for the foreign good 

falls, and a movement along the supply curve leads to the foreign firm supplying less to the 

market.  
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Figure 1.2: Impact of a BCA in an Armington Model 

 

Notes: These four graphs show the effect of a tariff and a rebate for an arbitrary polluting good 

under the Armington assumption. The left panels show the market for goods produced at home 

and the right panels show the market for goods produced in a foreign country. In the top panels, 

the home country imposes a tariff on foreign goods. The demand curve for foreign goods shifts 

inward, and the demand for home goods shifts out due to the substitution effect. The supply 

curve for the home country also shifts inward since the tariff is on the home country’s inputs. 

The bottom two panels show the effect of a rebate to firms in the home country. The supply 

curve shifts out, and there is a movement along the demand curve. The new lower price causes 

consumers to substitute away from foreign goods, and the demand curve for foreign goods shifts 

inward.  
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Figure 1.3: Impact of a Tariff and Rebate in a Non-Armington Small Country Model 

 

Notes: This figure shows results the impact of a tariff and rebate for an arbitrary polluting good. 

The right panels show the world supply and demand, the center panels show the foreign firm 

supply, and the left panels show the home firm supply. Since home and foreign are price takers, 

they face a perfectly horizontal demand curve equal to the world price. In the top panels a tariff 

shifts world demand and supply inward. However, only the home firm’s inputs are taxed, so their 

supply curve shifts inward. In the bottom panels, a rebate shifts world supply out, lowering the 

world price, but only the home firm’s supply curve shifts outward. 

 

Through the substitution effect, the demand curve for the good produced at home shifts 

outward. Polluting goods often use other polluting goods as inputs in intermediate consumption, 

so the home firm’s inputs are being taxed, and their supply curve shifts inward. This leads to a 

higher price for the home good and an ambiguous effect on the quantity supplied. However, it is 

very likely that the quantity reduction for the home firm is smaller than that of the foreign firm. 

This leads to the home country producing about the same amount and the foreign firm producing 
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less. This brings back production to the home country, which reduces the amount of leakage 

from the carbon tax. 

Similarly, one can consider a rebate to the home firm for carbon taxes paid on goods 

exported to the foreign country. In this case, the home firm receives a subsidy, which shifts their 

supply curve outward. This causes a movement along the demand curve for the good produced at 

home and a subsequent price decrease. This price decrease causes buyers of the foreign good to 

substitute toward the home good and shifts the foreign good demand curve inward. This causes a 

movement along the supply curve, which lowers the price for the foreign good and reduces the 

amount supplied. Thus, we have the same basic effect as the tariff; the home country produces 

more of the polluting good and the foreign country produces less. This brings production back 

under the coverage of the carbon tax and reduces leakage. A full BCA would be a combination 

of these two effects, which leads to a larger reduction in carbon leakage. 

So, how does this analysis change under a non-Armington model? Consider the same 

setup, a bilateral model with a home and foreign firm. The big difference here is that the home 

and foreign firms are small and cannot influence the world market price very much. In the 

Armington model, we assume implicitly that both countries are “big” in the sense that they are 

the only ones who can produce their respective goods. Any change in their respective supplies 

will have strong effects on the market price of their output. In the non-Armington model, there is 

one world price which is determined by the interaction of world supply and demand. The home 

and foreign firms are price takers. 

Figure 1.3 shows the effects of a carbon tariff and rebate for an arbitrary polluting good 

in a non-Armington world. In the rightmost column, the world market shows how the world 

price is determined. The left two columns are the market diagrams for the home and foreign 
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firms. The home and foreign firms are price takers, so they face a perfectly horizontal demand 

curve equal to the world price. To see the effect of a tariff, first look at the world market 

diagram. Since there is a tax on consumption somewhere in the world, the demand curve shifts 

inward. The supply curve also shifts inward, since polluting firms use polluting goods as inputs, 

and taxes on these goods have increased. The quantity supplied falls and the world price stays 

roughly the same. The actual effect on price is ambiguous, but I have drawn the picture to end up 

with an increase in the world price, which corresponds to my results from the numerical 

simulation presented later. The foreign firm sees an increase in the world price and moves along 

the supply curve to produce a little bit more. The home firm also sees this increase in the world 

price, but their supply curve also shifts left due to the tariff on their inputs. The result is a 

decrease in production for the home country and an increase in production for the foreign 

country. This leads to increased carbon leakage since less of the world production of the 

polluting good is covered by home’s carbon tax. 

This is a stark difference from the Armington model. The primary reason for this 

difference is that the home country cannot separately influence the foreign firm’s price. This 

point was first made in a seminal paper on optimal tariffs by Markusen (1975). Since both firms 

receive the same world price, the supply shift in the home country dominates and leakage 

increases. Since buyers do not have preferences over the origin of goods, the foreign firm does 

not have to lower their price to encourage other buyers to purchase their goods. If the home 

country will not buy the foreign good at the world price, somebody else will. This means that the 

burden of the tariff falls primarily on the home country and the export supply curve is perfectly 

elastic. Some trade economists may argue that this analysis might hold for small countries, but 

not for big countries like the US. However, recent empirical studies of US tariffs on Chinese 
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imports show this is indeed the case. Import tariffs imposed by the US were not able to push 

down Chinese output prices, and the entirety of the tax incidence was borne by US buyers 

(Cavallo et. al. 2019, Amiti et. al. 2020, Fajgelbaum et. al. 2020, Flaaen et. al. 2020). 

Finally, I also look at the effect of a carbon rebate in a non-Armington world in the 

bottom panels of Figure 1.3. Again, starting with the world market, the world supply curve shifts 

out due to the subsidy the home firm receives on its exports. This causes a movement along the 

world market demand curve and quantity supplied increases and the world price falls. The new 

lower price causes a movement along the foreign firm’s supply curve, and they begin to produce 

less. The home firm also sees this price decrease, but they are receiving the subsidy, so their 

supply curve shifts out. This leads to more production in the home country, which is covered by 

a carbon tax. Thus, a rebate may be able to reduce leakage in a non-Armington model. A full 

BCA would likely include both policies, and the effect is some combination of the two 

competing forces. These simple diagrams show the intuition of the model, but to put numbers on 

these effects I now turn to numerical simulation. 

 

1.3 Data and Calibration 

 I calibrate the model using data from the World Input-Output Database (WIOD), which 

includes environmental satellite accounts1. The WIOD contains data on 35 industries across 40 

countries and creates a balanced world representative input-output matrix. I only need one year 

of data, so I use 2011, which is the most recent year available in the 2013 release. I aggregate the 

database to 15 industries and 5 regions, listed in Table 1.1. I combine the members of the 

European Union to create the Europe region, and I combine Canada and Mexico to form the 

 
1 Dataset may be downloaded from www.wiod.org.  

http://www.wiod.org/
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North America region. China and the United States are each their own regions, and all other 

countries are combined into the "Rest of the World" region. The Rest of the World region 

accounts for about half of global emissions, whereas China, Europe, North America, and the 

United States account for the other half. 

In the baseline data, fossil fuels are aggregated together in a single mining and resource 

extraction industry. I use the more detailed make-and-use tables from the WIOD database to split 

out fossil fuel extraction industries. This allows me to disaggregate coal, oil, and natural gas 

extraction from the mining industry. However, natural gas and crude oil are still aggregated in an 

"oil and gas" industry. I disaggregate this industry using energy use satellite accounts, which 

report detailed energy input use by region and industry. This leaves me with three fossil fuel 

industries: coal, crude oil, and natural gas.  

The WIOD also produces data on emissions by fuel source, which allows me to assign 

emissions content to different fuel types in my model. Crude oil, however, is used first as an 

input to the petroleum refining industry, which produces usable liquid fuels such as gasoline, 

diesel, and jet fuel. The WIOD does not report any emissions for crude oil but instead shows 

emissions from these downstream refined products. Since the data is structured in this way, it 

makes more sense to tie emissions from petroleum to the use of refined petroleum products 

rather than crude oil. This gives three fuel sources for CO2 emissions: coal, natural gas, and 

refined petroleum. More information on how I aggregated regions and disaggregated industries is 

discussed in Appendix A. 

To calibrate the model, I need to set elasticity parameters in the production functions to match 

estimates from the literature. After setting the elasticity parameters, I assume prices in the initial 

equilibrium are equal to unity, and I solve for the remaining parameters such that the base case 
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equilibrium is equal to data in the WIOD. The parameters needed for the model and 

corresponding values are listed in Table 1.2. All elasticity values come from the literature except 

the sector elasticity in equation 7 and the transportation elasticity in equation 2. Instead, I 

estimate both those elasticities using data from WIOD in the next section. The materials nest and 

intermediate nest elasticities are set at 0.97 and 0.88, respectively, which comes from Van der 

Werf (2008). The fuel nest has three papers with similar structures, so I take a central value 

across those studies and get a value of 1.07 (Xie and Hawkes 2015, Khalid and Jalil 2019; Smyth, 

Narayan, and Shi 2012). Consumption is assumed to be Cobb-Douglas, so parameters for the 

utility function are consumption shares reported in the WIOD. To calibrate the labor-leisure 

choice in equation 6, I match the Frisch elasticity of labor supply to estimates from the literature. 

This is an elasticity commonly estimated, which I set at 0.5 based on a survey of estimates from 

Chetty et. al. (2011). Two sets of parameters go into equation 8, which predicts trade flows. The 

first parameter 𝜃1𝑗 is a trade cost elasticity. The estimate of this parameter comes from Hertel et. 

al. (2007), which estimates trade elasticities using border costs such as tariffs. These elasticities 

are presented in appendix Table A.5. The second parameter in the trade equation is 𝜽2𝑗, which is 

a matrix of parameters calibrated so that trade flows in the baseline equilibrium match those in 

the WIOD.  

 

 

 

 

 



31 
 

Table 1.2: Parameter Values and Sources 

 Parameters Value Source 

Production:    

Fossil fuel elasticity 𝜎𝑓𝑓 1.07 

Xie and Hawkes, 2015; Khalid and 

Jalil, 2019; Smyth, Narayan, and 

Shi, 2012 

Fossil fuel scale and share 𝛼𝑐𝑜𝑎𝑙, 𝛼𝑛𝑔𝑎𝑠, 𝛼𝑜𝑖𝑙 , 𝛾𝑓𝑓 * Calibrated from WIOD 

Intermediate elasticity 𝜎𝑖𝑛𝑡 0.88 Van der Werf, 2008 

Intermediate scale and share 𝛼𝑓𝑓 , 𝛼𝑛, 𝛾𝑖𝑛𝑡 * WIOD 

Materials elasticity 𝜎𝑚𝑎𝑡 0.97 Van der Werf, 2008 

Materials scale and share 𝛼𝑓𝑓 , 𝛼𝑛, 𝛾𝑖𝑛𝑡 * WIOD 

Final product scale and share 𝜔, 𝛾𝑝𝑟𝑜𝑑 * WIOD 

    

Household:    

Sector elasticity 𝜑 1.22 Estimated in paper from WIOD 

Sector constant Φ * WIOD  

Consumption shares 𝜓 * Income shares from WIOD 

Labor elasticity 𝜈 0.5 Chetty et. al. (2011) 

    

Trade:    

Trade elasticity 𝜃1 ** Hertel et. al. (2007) 

Trade constant 𝜃2 * Calibrated from WIOD 

Transportation elasticity 𝜂 0.17 Estimated in paper 

    

Emissions:    

Carbon coefficient 𝑐𝑐 *** Calibrated from WIOD 

    

Notes: This table shows all parameter value choices and sources. An entry of "varies" indicates 

that the value varies over industry and region, making it unrealistic to report here. Values taken 

from the literature are presented and the sources of those values in the literature are also 

indicated. 

* These parameters are calculated for each industry and region, so there are too many to express 

here. I detail how the data from the WIOD is used with the chosen elasticity values to calibrate 

the model in appendix A. 

** Table A.5 in appendix shows trade elasticities used for each industry. 

*** Table A.6 in appendix shows carbon coefficients for all regions and fuel types. 
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1.3.a Estimation of Transportation and Sector Elasticities 

  I parameterize equation 2 by using regression analysis. The transportation 

elasticity in equation 2 is the elasticity between distance and transportation cost. This can be 

estimated in my data using the following regression equation: 

 ln(𝑠𝑛𝑡
𝑗

) = 𝛽1 ln(𝑑𝑛𝑡
𝑗

) + 𝜷2𝑛 + 𝜷3𝑗 + 𝜖𝑛𝑡
𝑗

 (17) 

𝑑𝑛𝑡
𝑗

= ∑ 𝐷𝑧𝑛 × 𝐹𝑧𝑛
𝑗

𝑁

𝑧=1

 

The outcome variable in equation 17 is the share of international trade costs in the transportation 

composite. The WIOD contains information on international trade costs for each industry for the 

years 1995 through 2011. I divide this by the total amount spent on transportation services to 

generate 𝑠𝑛𝑡
𝑗

. The explanatory variable in equation 17 is the average distance traveled by a unit of 

output. This is calculated the same way as in equation 2. The trade flows 𝐹𝑧𝑛
𝑗

 come from the 

WIOD and distance between countries, 𝐷𝑧𝑛, is calculated using the geosphere2 package from the 

statistical language R. The last two coefficients, 𝜷2𝑛 and 𝜷3𝑗, are vectors of region and 

commodity fixed effects, respectively. 

 The regression results are presented in Table 1.3. The coefficient of interest is in the top 

row. The columns differ by which fixed effects are included, but all specifications give the 

expected sign and are statistically significant. The elasticity estimates are between the range of 

0.17 and 0.55, which is close to a previous estimate of this elasticity, 0.26 (Novy 2013). I use the 

lowest estimate with both region and commodity fixed effects, 0.17, as my baseline 

specification, but I investigate the full range of estimated elasticities in my robustness checks.  

 
2 The R programming language has a repository available at www.cran.r-project.org, which can be accessed to 
obtain the geosphere package. Distance is measured as the miles between the center of two countries. 

http://www.cran.r-project.org/
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Table 1.3: Regression Results for Transportation Elasticity 

Coefficient log(𝑠𝑛
𝑗
) 

β1 0.52*** 

(0.0363) 

0.56*** 

(0.0388) 

0.26*** 

(0.0344) 

0.17*** 

(0.0407) 

     

Region FE No Yes No Yes 

Industry FE No No Yes Yes 

R2 0.136 0.166 0.675 0.726 

Obs. = 1,296; *** = significance at the <1% level; standard errors in parentheses 

Notes: These are the estimates for the coefficients in equation 13. The explanatory variable is the 

average distance a good is shipped, and the dependent variable is international trade costs. The 

top row is the elasticity between distance and trade costs. Region and industry FE indicate 

whether fixed effects were included in the regression. 

 

I also estimate the sector elasticity, which determines how labor is distributed across 

industries based on wages since this is not commonly reported in labor economics. To do this, I 

use income accounts from WIOD to construct a database of hourly earnings and employment 

shares by industry3. However, a simple regression between earnings and employment indicates a 

negative relationship. This is would indicate that workers move to industries with lower relative 

wages. This is because I only observe equilibrium outcomes, which is determined by both supply 

and demand curves. So, OLS will not be able to estimate the effect of relative wages on labor 

supply. This is due to the engogeneity of prices and quantities being simultaneously determined 

in a market (Manski 1993). To identify the supply curve, I use a simultaneous equations model 

(SEM). The structure of the equations in the model is: 

                                𝑆𝑢𝑝𝑝𝑙𝑦: log(𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖𝑟) = 𝑏10 + 𝑏11 log(𝑤𝑎𝑔𝑒𝑖𝑟) + 𝜖1 

                                𝐷𝑒𝑚𝑎𝑛𝑑: log(𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖𝑟) = 𝑏20 + 𝑏21 log(𝑤𝑎𝑔𝑒𝑖𝑟) + 𝐵𝑋 + 𝜖2 

 
3 This uses the supplemental files of Socio Economic Accounts 
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Where 𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖𝑟 and 𝑤𝑎𝑔𝑒𝑖𝑟 are the employment shares and wages of industry 𝑖 in region 

𝑟. These two variables are the same in both equations, which reflects the simultaneous nature of 

the market price and quantity. The first equation is the labor supply curve, and the second is 

labor demand curve. The second equation includes a vector of indices for capital inputs, 

intermediate inputs, value-added inputs, and the quantity of output. Identification in SEM 

requires that there is at least one variable in the demand equation that does not appear in the 

supply equation (Wooldridge 2010). The vector of indices in the second equation affects the 

demand for labor, but I assume that they do not affect labor supply. This allows me to use this 

vector of demand-side variables as a valid instrument for wage in the labor supply equation. 

I estimate this model using two-stage least squares (2SLS) and present the results from 

the second stage in Table 1.4. I show four specifications, increasing the number of instruments 

for each column from left to right. In the full specification, I use all four instruments, which 

means the system is over-identified. I get the lowest estimate when including all demand-side 

shifters as instruments. This estimate also has the best first stage fit, so I use 1.22 as my baseline 

estimate for the sector elasticity. This indicates that a 10% increase in the industry wage leads to 

a 12% increase in the share of labor supplied to that industry.  
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Table 1.4: Regression Results for Sector Elasticity 

 log (𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡) 

log (𝑤𝑎𝑔𝑒) 1.95*** 

(0.171) 

1.35*** 

(.087) 

1.36*** 

(0.092) 

1.22*** 

(0.075) 

Instruments:     

Value-Added Yes Yes Yes Yes 

Intermediate No Yes Yes Yes 

Output No No Yes Yes 

Capital No No No Yes 

Obs. = 6,929; *** = significance at the <1% level; standard errors in parentheses 

Notes: These are the results from a two-stage least squares estimate of a simultaneous equations 

model. The first stage regresses wages on a subset of the four supply side instruments. The 

second stage, presented here, estimates the labor supply response to a wage change.  

 

1.4 Results from Policy Simulations 

 The first scenario I consider is a carbon tax on three fuels: coal, natural gas, and refined 

petroleum4. This fee is a per-unit tax on fuel, defined in equation 13, that is charged based on the 

tons of carbon dioxide that are emitted upon consuming (i.e., burning) the fuel. I simulate a $50 

tax per ton of CO2 in the US. I then consider three types of border adjustment policies: a tariff 

only, an export rebate only, and a full BCA which includes both a tariff and an export rebate. 

Which goods to apply the tariffs and rebates to is an open question fraught with debate. 

However, the consensus seems to be carbon intensive and trade exposed (CITE) goods. I choose 

four industries that match these criteria: mining, goods manufacturing, chemicals manufacturing, 

and other manufacturing. Tariff and rebate rates are determined using data on emissions intensity 

by region and industry. Tariffs are calculated such that the price of the good is increased by how 

 
4 In emission satellite accounts from the WIOD, very few emissions result from refining crude petroleum, rather 
most of the emissions occur when the refined petroleum is consumed (burned). For this reason, using refined 
petroleum rather than crude oil gives a better match to global emissions.  
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much the foreign country would have spent on a carbon tax given their technology and emissions 

intensity. The rebate is based on how much home firms spend on the carbon tax for inputs. 

I present the impacts from these policies on emissions in Table 1.5. The first column 

presents the results from a $50 carbon tax in the US without any border adjustments. The first 

row shows the total abatement by the US, which was 3.8% of world emissions. The second row 

is the leakage in emissions outside the US, 1.1% of world emissions. Adding these two rows 

gives the net world abatement of 2.7%. Dividing the leakage by gross abatement calculates the 

leakage rate, which can be compared to previous studies. My non-Armington model calculates a 

leakage rate of almost 30%, which is more than twice as high as the 12% average leakage rate 

reported by the EMF survey of CGE models (Böhringer et. al. 2012). The only other paper that 

explores the effect of the Armington model finds similar results. Balistreri et al. find that leakage 

rates are 15.7% using the Armington model and 26.5% using a non-Armington model. 

These results are both expected and puzzling. On the one hand, carbon leakage would 

likely be higher in a non-Armington model due to highly elastic export supply curves. On the 

other hand, there is little empirical evidence of carbon leakage. The European Union Emissions 

Trading Scheme (ETS) had no effect on imports of cement and steel (Branger, Quirion, and 

Chevallier 2016), and, despite increasing environmental stringency, the US has not experienced 

carbon leakage in its manufacturing sectors (Brunel and Levinson 2021). This is puzzling since 

the previous trade literature has suggested that the Armington assumption generates changes in 

trade volumes that are too small (discussed in chapter 2). However, the carbon leakage literature 

suggests it generates changes that are too big. This could be due to my model not including 

enough frictions in the international capital market, which would limit offshoring of production.  
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Specifying a model of offshoring and international capital movements is beyond the scope of this 

paper, but this puzzle is an interesting avenue for future research. 

 

Table 1.5: Summary of Impact from $50/ton CO2 Carbon Tax in United States 

 
Carbon Tax 

Border Adjustment Policies 

 Tariff Rebate BCA 

Emissions:     
     Gross Abatement -3.81% -3.83% -3.76% -3.79% 

     +     
     Leakage 1.13% 1.20% 0.94% 1.03% 

     =     
     Net Abatement -2.68% -2.63% -2.82% -2.76% 

     
     Leakage Rate 29.6% 31.4% 25.1% 27.1% 

     
Economic Variables:    
     Aggregate Labor -0.63% -0.69% -0.58% -0.64% 

     

     Aggregate Wage -1.67% -1.83% -1.47% -1.64% 

     
     Real GDP -0.62% -0.66% -0.59% -0.62% 

Notes: This table shows carbon leakage under different carbon price policies. The first four rows 

show data on emissions and leakage. The first row is the gross abatement as a percent of world 

emissions by the United States. The second row shows the amount of leakage as a percent of 

world emissions, and the third row is the summation of row 1 and 2. The leakage rate is simply 

the negative of the second row divided by the first. Economic variables are expressed as percent 

changes from the baseline business-as-usual scenario.  

 

 Returning to the results in Table 1.5, columns two through four show leakage and 

economic impacts when including different border adjustment policies. The second column is the 

impact of a carbon tax with a tariff on carbon intensive inputs. As predicted in section 1.2.g, the 

tariff alone does not decrease carbon leakage. The supply shock in the home country dominates 

and carbon leakage increases to 31.4%. The US also sees more detrimental outcomes in 

economic variables. Compared to the scenario with only a carbon tax, aggregate labor supply 
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falls by 0.06 percentage points more, the aggregate wage falls by 0.15 percentage points more, 

and real GDP falls by 0.04 percentage points more. 

 Under a rebate only border adjustment, I do find leakage decreases to 25.1%, which is a 

15% reduction in leakage. Gross abatement (abatement by the US) is smaller than in the carbon 

tax only scenario. This is because the rebate increases US production of polluting goods to bring 

more production under the coverage of the carbon tax. However, leakage falls enough such that 

net abatement is higher. Economic conditions are also better under this policy, which is partly 

due to production being brought back to the US and partly due to the burden of the carbon tax 

being smaller, since the government is subsidizing polluting firms. Compared to scenario with 

only a carbon tax, aggregate labor supply is 0.06 percentage points higher, the aggregate wage is 

0.2 percentage points higher, and real GDP is 0.03 percentage points higher. 

 The full BCA policy is a tariff and rebate combined. The results are presented in the final 

column of Table 1.5. Carbon leakage decreases to 27.1%, which is an 8.6% reduction from the 

carbon tax only scenario. This number is a far cry from traditional Armington models that predict 

BCAs can reduce carbon leakage by about 30%. This difference is driven mainly by the fact that 

the tariff effect in this model increases carbon leakage, so the rebate is competing with the tariff. 

Economic outcomes are surprisingly similar to the carbon tax only scenario. Aggregate labor 

supply is slightly lower, the aggregate wage is slightly higher, and there is no discernable effect 

on GDP. 

 So, while a BCA policy does seem to reduce leakage without much harm to the economy, 

the predicted reduction is much smaller in this model. While the effect from the rebate can help 

reduce leakage by encouraging more production in the taxed region, the tariff effect works 

against the rebate. A rebate only policy may be preferable for leakage concerns, however it can 
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be costly. A full BCA policy pays for itself in government revenue. In my simulation a carbon 

tariff raises about $19 billion in revenue and the rebate costs about $15 billion, which is a net 

gain to the US treasury. Revenues from the carbon tax are $170 billion, so a rebate only policy 

would reduce carbon tax revenue by 9%. The question for policymakers is whether this revenue 

loss is worth the 15% reduction in leakage rates. 

 Aggregate labor market effects can be decomposed by industry as well, since carbon 

taxes disproportionately affect fossil fuel and manufacturing industries. Figure 1.4 shows two 

graphs breaking down labor market effects by industry. The top graph shows how the aggregate 

labor supply loss is distributed across industries. Under a carbon tax without border protections, 

CITE industries have the largest employment losses followed by fossil fuel industries and then 

service industries. Since CITE industries have very high exposure to the carbon tax, workers 

leave those industries and enter service industries which are relatively insulated from the tax. 

Including a tariff without a rebate leads to an even higher transfer of workers from CITE 

industries to services, again due to the supply shock for these firms.  

Interestingly, including a rebate switches this pattern. Services become the biggest losers, 

and CITE industries have a much smaller labor decline. While a full BCA may not increase 

aggregate employment very much, it does seem to redistribute the burden of the tax on labor to 

the service sector. The bottom panel of Figure 1.4 shows how labor losses are distributed within 

the service sectors (transportation and agriculture are excluded). A tariff gives a small 

employment increase to business, consumer, and social services. These industries hold large 

shares of the aggregate labor supply and, thus, they pull in workers fleeing the CITE industries 

due to the tariff. A rebate for CITE industries means fewer workers leave those industries, so 

they see larger decreases in employment under a rebate policy. Construction, however, has a 
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small share of the overall labor supply and is more exposed to the carbon tax since they often use 

emission intensive inputs. A tariff ends up causing a small decrease in construction employment. 

Again, a rebate causes more workers to stay in the CITE industries, so construction is not able to 

hire workers leaving those industries. 

 

Figure 1.4: Labor Market Impacts from a $50/ton CO2 Carbon Tax in United States 

 

Notes: This figure shows employment impacts of four different policies. From left to right: a 

carbon tax without border protections, a carbon tax with a tariff on carbon intensive trade 

exposed (CITE) goods, a carbon tax with an output rebate for CITE industries, and carbon tax 

with a border carbon adjustment which includes both the tariff and the rebate. The top graph 

shows employment effects for three large sectors of the economy and the aggregate labor supply. 

The impacts are expressed in percent change of total labor supply so that the sum of the three 

sectors equals the aggregate labor effect. The bottom graph performs the same exercise, but 

selects four sub-sectors from the Services and Agriculture industry in the top graph. 
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1.4.a Monte Carlo Simulation 

 In the baseline simulation, I assume that all elasticities are the same across regions. This 

was because I take these estimates from the literature, and I could not find consistent estimates of 

these elasticities for all regions in my dataset. To check how my results respond to different 

parameterizations, I perform a Monte Carlo simulation of a $50 per ton of CO2 carbon tax in the 

US with and without a BCA policy. For each elasticity parameter, I randomly select a value from 

a uniform distribution from a range around the baseline parameter. I randomly draw each of the 

three production elasticities: materials, intermediate, and fossil fuels, as well as the leisure 

elasticity and the sector elasticity. I also randomly draw values for carbon coefficients, which 

determine the amount of carbon released by different fuels. These were calculated for each 

region, and the difference of these numbers between regions may be important for carbon 

leakage if production moves to a region with more emission intensive technology. The ranges of 

these values I either take from the range of elasticities seen in the literature, or a range that I have 

estimated. More details on the process and ranges chosen are in Appendix B. Parameters are 

randomized among both region and industry, so this process allows for heterogeneity along both 

of those dimensions as well. After drawing a random set of elasticity parameters, the other 

parameters in the model are recalibrated to match the baseline data under the new specification. I 

then simulate a $50 per ton carbon tax with and without a BCA under the new calibration.   
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Figure 1.5: Results from Monte Carlo Simulations 

 

Notes: These graphs are created from 100 simulations of a $50 per ton carbon tax under four 

different policies. Each graph shows the effect of each policy listed on the vertical axis. From top 

to bottom the policies are: a carbon tax without border protections, a carbon tax with a tariff on 

carbon intensive trade exposed (CITE) goods, a carbon tax with an output rebate for CITE 

industries, and carbon tax with a border carbon adjustment which includes both the tariff and the 

rebate.  
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 The results discussed up to this point still hold under this exercise. The results from 100 

simulations are presented in Figure 1.5. Box plots are presented to show the range of outcomes 

from the simulations. As expected, a tariff only policy on average predicts a 2.5 percentage point 

higher leakage rate compared to a carbon tax alone. This is slightly higher than the baseline 

simulation which predicted tariffs increased the leakage rate by 1.8 percentage points. The 

highest increase in leakage rates across all simulations was 19%. In no simulation did a carbon 

tariff reduce leakage compared to the carbon tax only policy. A rebate only policy is predicted to 

lower leakage rates by 5.7 percentage points on average, which is an 18% leakage reduction. The 

largest leakage reduction across all simulations was 37%. Finally, a full BCA policy reduces 

leakage by 2.9 percentage points on average, which is an 8.5% reduction. The largest reduction 

in leakage from a BCA policy across all simulations was 15%. 

 Results on economic variables show the same pattern as well. Aggregate labor supply 

decreased by and average of 0.05 percentage points more under a tariff only policy compared to 

a carbon tax without border protections. This goes in the other direction for a rebate. Aggregate 

labor supply is 0.05 percentage points higher on average when a rebate only policy is added to a 

carbon tax. Aggregate wage declines were 0.15 percentage points higher on average when 

adding a tariff and 0.2 percentage points lower when adding a rebate. Real GDP declines were 

0.04 percentage points larger on average when adding a tariff and 0.04 percentage points lower 

when only adding a rebate. For all these variables, a BCA causes the tariff and rebate effects to 

cancel out, and the effects of a BCA are not discernably different from the carbon tax without 

border protections. 

 While this exercise shows that there can be considerable heterogeneity in the magnitudes 

of the outcomes of these policies, the broad conclusions of this paper still hold. Carbon tariffs 
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increase leakage, and export rebates decrease leakage. Additionally, reductions from border 

carbon adjustments seem to be smaller than what has been reported by other studies. The largest 

leakage reduction from a BCA I find is 15%, which is still only half the 30% average rate 

predicted by previous Armington models.  

   

1.5 Conclusion 

 International trade is a powerful force and important to consider when analyzing national 

tax policies. CGE modeling is often employed when determining how public policy will affect 

international trade. These models depend on the Armington assumption, which differentiates 

goods by the origin of production. In this paper, I build a CGE model that does not rely on the 

Armington assumption. This model differs from previous non-Armington CGE climate models, 

in that I introduce a method for predicting trade flows. I find that carbon leakage rates are higher 

using a non-Armington model. I find similar leakage rates to the only other non-Armington study 

of carbon leakage, despite different datasets and largely different model structures. However, I 

also find that if half of global emissions are covered, leakage rates drop to 16%.  

 The second result is that the typically suggested remedy, a BCA, is not as effective in 

reducing leakage in a non-Armington framework. In this non-Armington framework, firms in all 

regions face the same market demand curve. So, tariffs can redistribute trade flows, but they 

cannot reduce the production of carbon intensive goods in untaxed regions without reducing it in 

the taxed region as well. Many of the industries covered by carbon tariffs are inputs for domestic 

production, which means the home country experiences a supply shock. This causes production 

in the taxed region to fall and production in the untaxed region to expand, leading to higher 

carbon leakage rates under a carbon tariff. This finding is robust to several parameterizations. I 
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also find that tariffs lead to contractions in aggregate labor supply and GDP and a fall in the 

aggregate wage.  

When lawmakers are designing BCAs, it is crucial that they include an export rebate for 

it to have any effect. Even then, the effects may be small. One possible avenue for future 

research is determining how much effect a country can have on foreign output prices. If a 

country has enough influence on the world price, it may be possible for tariffs to reduce leakage. 

However, as globalization increases and countries begin trading more in intermediate goods, the 

role of the Armington assumption seems to be diminishing. Policymakers should be wary of this 

when enacting trade policy. 
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Chapter 2: Non-Armington Application to NAFTA 

 

2.1 Introduction 

 Governments have long held considerable influence over trade with the outside world, an 

observation made by Adam Smith back in 1776. Since Smith’s time, international trade has 

increased dramatically, relative to output, trade tripled during the last half of the 20th Century. 

However, it also the nature of trade that has changed, during that same time trade in 

manufacturing goods grew 50% faster than total trade (Hummels 2007). As supply chains 

become more integrated, many governments have pursued more open trade policies by entering 

into free trade agreements. When analyzing the effects of trade policies, modelers often use the 

Armington assumption. While this model is useful for incorporating important features of 

international trade, it has some weaknesses in policy analysis. 

In the first chapter, I discussed how the Armington assumption changes environmental 

trade policy outcomes. Two other issues arise with the Armington assumption. The first is that it 

predicts small changes in trade in response to changes in trade policy. This problem arises 

because parameterizing the Armington model for industries with little to no previous trade leads 

to predictions of trade volumes being “stuck on zero” (Kuiper and van Tongeren 2006). In other 

words, it is difficult to induce large changes in trade in policy applications. Secondly, the 

Armington assumption can give a large upward bias in optimal tariff calculations in comparison 

to homogeneous trade models. In response to some scenarios, the Armington assumption can 

generate optimal tariff rates over 100% (He, Li, Wang, and Whalley 2017). 

While this paper focuses on the first problem, the second problem is related to the issue 

brought up in chapter 1, if the country has little pricing power, then a tariff may not achieve the 

goals of the policymaker. However, in the past half century, many countries have pursued more 
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open trade policies, often forming free trade areas without any tariffs on trade. One notable 

example is the North American Free Trade Agreement (NAFTA). While most research agrees 

that this policy had overall positive welfare effects, the changes for individual industries were 

much larger than predicted by CGE models of the time (Caliendo and Parro 2015). Some have 

argued that this occurs because the Armington functional form does not effectively capture the 

introduction of new products in trade (Zhai 2008). Others argue that adding preferences on the 

export side may improve prediction of the Armington model (de Melo and Robinson 1989). 

There are also models that adjust the Armington parameters to amplify trade changes in 

industries with little trade (Kehoe, Rossbach, and Ruhl 2015). 

One paper, Kehoe (2005), shows the problem of small changes directly by comparing 

CGE predicted effects of the North American Free Trade Agreement (NAFTA) against observed 

data. Kehoe concludes that these CGE models were unable to generate the large changes that 

were seen in data. He further suggests that a non-Armington model may be able to generate those 

large changes. In this paper, I investigate this claim using a trade model that does not appeal to 

the Armington assumption. Instead, I model each industry as producing a commodity that is 

homogeneous across borders. I then go through an application of counterfactual analysis using 

this model. I compare my results to the data in a fashion similar to Kehoe to show when the non-

Armington model may be useful to researchers. 

 Several papers have used CGE models to analyze free trade agreements. The model 

Kehoe focuses on is the Brown-Deardorff-Stern CGE model (Brown, Deardorff, and Stern 

1992). This model uses a combination of the traditional Armington model and another model of 

imperfect competition derived from Krugman (1979). Other authors have used a Ricardian 

model derived from Eaton and Kortum (2002) to analyze the effects of NAFTA (Caliendo and 
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Parro 2015, Shikher 2012). These Ricardian models find larger trade impacts than Armington 

models, however they require modelers to impose a distribution of productivity across countries 

for each industry. In this paper, I do not impose any distributional productivity assumptions, 

which allows me to use standard input-output data that is a frequent resource used to calibrate 

CGE models. 

 The goal of this paper is to show how desirable features of the Armington model can be 

replicated in a non-Armington model. I then present a case study by applying this model to 

NAFTA and comparing my results to previous CGE models. To do this I begin with a non-

Armington CGE model from Feltenstein and Plassmann (2008), which allows goods to be 

homogeneous by origin by imposing that labor is immobile between industries and regions. I 

extend this model by allowing for imperfect mobility across sectors and including a new 

algorithm that predicts trade flows. I contribute to the literature in two ways. The first is 

providing an analysis of the effects of NAFTA using a CGE model where goods are 

homogeneous by origin. The second is providing a tractable solution for estimating trade flows 

in a homogeneous goods model. 

 This paper also helps improve our understanding of modern trade behavior. As trade 

volume increases and costs fall, the intuition of the Armington assumption may be weakening as 

well. Many final products have large international supply chains, so consumers may not even 

know where their product was produced. Additionally, intermediate inputs are now a large and 

still growing share of international trade, and firms can produce those inputs practically 

anywhere they have the infrastructure and labor available. By modeling trade without the 

Armington assumption, governments can better anticipate how policy will affect each sector in 

the economy. 
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2.2 CGE Models and the Armington Assumption 

Modelers formalize the Armington assumption by using aggregation functions that allow 

imperfect substitution between products of different origin. An aggregation function is simply a 

combination of two goods to form a single composite good. Typically, this function combines 

the domestic and foreign produced goods into a final composite good that is then used as final 

and intermediate consumption. The specification from Armington (1969) uses a constant 

elasticity of substitution form. This allows the modeler to estimate a substitution elasticity that 

can be taken directly to CGE models. Armington's 1969 paper was primarily econometric and 

focused on devising the algebraic underpinnings of estimating these trade elasticities. 

The Armington model was a useful innovation since it could generate equilibria where 

countries did not perfectly specialize. Recall that Ricardo's model of comparative advantage was 

entirely frictionless and resulted in each country producing the good it could make at the lowest 

opportunity cost. Since each region produces only one good, this implies trade will result in a 

corner solution, i.e., perfect specialization. This innovation helped economists to estimate the 

possible welfare improvements from international markets, but corner solutions are non-existent 

in the real world. By adding frictions in the commodity market, one can stay away from corner 

solutions. Using the Armington model, each country cannot specialize since they can only make 

the type of goods they produce (England could not specialize in French cloth, only English 

cloth). 

In this model, I use a framework that imposes frictions on the labor market to prevent 

perfect specialization. This can be done by imposing region specific labor supplies, so labor is 

not perfectly mobile across sectors and regions (Feltenstein and Plassmann). I restrict labor to be 

perfectly immobile between regions and sticky between industries. To have the model stay away 
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from corner solutions, one needs to impose frictions in either the commodity markets or factor 

markets. While the Armington model puts this friction in the commodity market, in the non-

Armington model, this friction is in the factor markets. This model is the same as the model used 

in Chapter 1, however the structure of production is much simpler. Instead of having 4 nests of 

production, I only use two in this paper. 

Another important feature of the Armington model is the ability to model cross-hauling 

or two-way trade. This means that a country can import and export the same product category. 

Suppose the modeler restricts factors to allow imperfect specialization so several countries 

produce the same good. If foreign goods are perfectly substitutable for domestic goods, any 

positive transport cost would mean that optimizing agents only buy foreign goods if they cannot 

produce those goods themselves. In other words, even with imperfect specialization, perfect 

substitution implies countries are either exporters or importers, but not both. The Armington 

assumption allows for differentiation, which, in turn, allows countries to import and export the 

“same” good. While imports and exports may be in the same product category, they are produced 

in different countries, so they are treated as different products in the Armington model. 

In this model, I extend current non-Armington models to include cross-hauling. While an 

Armington model uses the distribution of output prices to determine trade flows, the model I 

specify only creates a single world price for each commodity. Since there are no price 

differentials between countries, I instead use quantity differentials to predict trade flows. Each 

firm in each region sees the global price for their output and the domestic prices for inputs. Using 

this information, each region determines optimal output and consumption. Given the amounts 

that each region supplies and demands, I determine trade between regions using an algorithm 

that predicts trade flows based on historical trade flows and tariff rates. This method makes use 
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of the observation from the gravity literature that trade patterns tend to be related to economic 

size and distance between countries. Countries that are bigger and closer together tend to be 

stronger trade partners.  

This framework provides benefits from a modeling standpoint as well. The model can be 

calibrated with minimal data requirements. Trade elasticities are not needed to describe trade. In 

this model, I will include trade elasticities to determine the response to explicit trade costs – 

tariffs, however this is not necessary if trade costs do not change in the counterfactual. 

Estimating Armington elasticities often requires timeseries data on prices and trade volumes, 

which may not be available for some regions. Additionally, I do not need to estimate the 

distribution of productivity across firms. I assume a representative firm in each industry, which is 

a common assumption in CGE Armington models. This allows me to use widely available social 

accounting matrices (SAMs) from a single baseline year to calibrate the model.  

 

2.3 Model Description 

 The model description is organized into 4 parts: production, consumption, trade flows, 

and government. In the model, there are 𝐽 goods produced, bought, and sold by each of the 𝑁 

regions. Production is undertaken by a representative firm in industry in each region. Each region 

also has a representative household that supplies labor and capital to for firms to use in 

production. I assume that capital is internationally mobile, but labor is not. Labor is only 

supplied to the domestic market, and it is imperfectly mobile between industries. 

Goods are homogeneous by origin, so each good has a single world price. All firms 

receive the world price for their output; however, importers may pay a higher price due to the 

presence of tariffs. Firms use the set of world prices and the price of capital to determine the 
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optimal wage for workers in their industry and region. Workers then use posted wages to choose 

which industries to supply labor to. Using the distribution of labor supply and wages, I determine 

total production and consumption for each region. Then, using the production and consumption 

quantities for each region, I use an algorithm that builds a trade matrix based on baseline trade 

flows and tariffs. The equilibrium allocation is found by iterating on the vector of world 

commodity prices and the world price of capital until all goods and factor markets clear. 

 

2.3.a Production 

 I use a neoclassical production function to describe production. Each firm combines 

capital, labor, and intermediate goods to create a unit of final output. I specify a Cobb-Douglas 

production function as follows: 

 𝑄𝑗𝑟
𝑠 = 𝐹𝑗𝑟(𝐾𝑗𝑟 , 𝐿𝑗𝑟 , 𝑀𝑗𝑟) = 𝛾𝑗𝑟𝐾

𝑗𝑟

𝑎𝑗𝑟𝐿
𝑗𝑟

𝑏𝑗𝑟𝑀
𝑗𝑟

𝑐𝑗𝑟
 (1) 

 

 

𝑀𝑗𝑟 = 𝛾
𝑗𝑟

𝜎
𝜎−1 (∑(𝜌𝑗𝑟

𝑖 𝑥𝑗𝑟
𝑖 )

𝜎−1
𝜎

𝐽

𝑖=1

)

𝜎
𝜎−1

 (2) 

 

𝐾𝑗𝑟 , 𝐿𝑗𝑟 , and 𝑀𝑗𝑟 are capital input, labor input, and an intermediate composite input, respectively, 

for the firm that produces good 𝑗 in region 𝑟. Each firm’s intermediate composite is a 

combination of the 𝐽 input commodities sold on the world market. 𝑀𝑗𝑟 is a constant elasticity of 

substitution (CES) combination of intermediate commodity inputs, where the amount of 

commodity 𝑖 used by firm 𝑗 in region 𝑟 is 𝑥𝑗𝑟
𝑖 . The composite is defined in equation 2. The 

parameter 𝜎 is a substitution elasticity between inputs in the intermediate composite. The 
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parameters 𝛾 and 𝜌𝑗𝑟
𝑖  are the CES scale and share parameters, respectively. The production 

function exhibits constant returns to scale (CRS) so 𝑎𝑗𝑟 + 𝑏𝑗𝑟 + 𝑐𝑗𝑟 = 1 ∀ 𝑗, 𝑟. I assume a zero-

profit condition, so cost must equal revenues, or  

𝑃𝑗𝑄𝑗𝑟
𝑠 = 𝑃𝐾𝐾𝑗𝑟 + 𝑤𝑗𝑟𝐿𝑗𝑟 + 𝑃𝑗𝑟

𝑀𝑀𝑗𝑟 

Here, 𝑃𝑗 is the price of output for the firm, 𝑃𝐾 is the world price for capital, 𝑤𝑗𝑟 is the wage rate, 

and 𝑃𝑗𝑟
𝑀 is the intermediate composite price, in industry 𝑗 and region 𝑟. The price of the 

intermediate composite is calculated using optimal demands and input prices for each 

intermediate commodity.  

Setting up the cost minimization problem and taking first order conditions gives the 

following demand equations: 

 𝐾𝑗𝑟
∗ =

𝑎𝑗𝑟

𝑃𝐾
𝑃𝑗𝑄𝑗𝑟
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Equations 3-6 define optimal demands for each firm 𝑗 in region 𝑟. The variable 𝑃𝑖𝑟
𝐷 is the 

domestic price buyers pay for good 𝑖. Note this can differ from the output price, 𝑃𝑗, due to tariffs.  
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2.3.b Household 

 Each region has a representative household that makes income from supplying capital 

and labor to firms as well as a government transfer. They then spend this income on final goods 

and services produced by firms. I assume that labor is internationally immobile and that it is 

sticky between industries. This is necessary for a fully non-Armington model to prevent perfect 

specialization.  If employees could move between industries freely, all workers would simply 

move into the industry that paid the highest wages, and the country would completely specialize. 

Since we do not observe perfect specialization, I assume that workers have preferences over 

which industries they work in. The household problem is: 

 

max
𝐶𝑖𝑟

𝑈𝑟(𝐶1𝑟 , … , 𝐶𝐽𝑟) = ∏(𝐶𝑖𝑟)𝜃𝑖𝑟

𝐽

𝑖=1

 (7) 

𝑠. 𝑡. 

∑ 𝑃𝑖𝑟
𝐷𝐶𝑖𝑟

𝐽

𝑖=1

= 𝑤̅𝑟𝐿̅𝑟 + 𝑃𝐾𝐾𝑟 + Tr 

 

The consumer maximizes a utility function that is a Cobb-Douglas consumption function of 

goods from each industry 𝑖 = 1, … , 𝐽. The parameter 𝜃𝑖𝑟 is the income share for good 𝑖 in region 

𝑟. The household earns price 𝑃𝐾 on capital supplied, 𝐾𝑟, and an aggregate wage, 𝑤̅𝑟, on total 

labor supplied, 𝐿̅𝑟. In addition, households in each region receive a lump-sum transfer from the 

government, T𝑟. Shares of labor supplied to each industry are determined by the following 

exponential share equation.  

 
𝑙𝑟𝑗 =

exp(𝜂1ln (𝑤𝑟𝑗) + 𝜂2𝑟𝑗)

∑ exp(𝜂1ln (𝑤𝑟𝑖) + 𝜂2𝑟𝑖)
𝐽
𝑖=1

 (8) 
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𝑤̅𝑟 = ∑ 𝑤𝑟𝑗𝑙𝑟𝑗

𝐽

𝑗=1

     𝑎𝑛𝑑     𝐿𝑟𝑗
𝑠 = 𝑙𝑟𝑗 × 𝐿̅𝑟    ∀     𝑗 = 1, … , 𝐽 

Equation 8 is a reduced-form labor supply equation. This function takes in two parameters. The 

first parameter is 𝜂1, which is the elasticity of sector labor supply, 𝐿𝑟𝑗
𝑠 , with respect to the 

sectoral wage, 𝑤𝑟𝑗. The sectoral wage is determined in the production step using optimal 

demands given a set of world output prices and the world price of capital. After determining the 

sectoral wage from the firm’s problem, households determine labor supplies to each industry. 

 At this point, I have created a world Arrow-Debreu economy that can be solved to find 

consumption and production in each industry and region. Consumption quantities come from 

solving for intermediate demands in the production step and consumption demands from the 

household. The sum of these is the total quantity of goods demanded by the region. Production 

quantities can be found using the optimal labor supplies to each sector from equation 8, and 

firms’ optimal demand for labor from equation 4. In the next section, I use these quantities of 

production and consumption as inputs to an algorithm that estimates trade flows among the 

regions in the model. 

 

2.3.c Trade Flows 

 Goods in this model are homogeneous by origin. Each good has a world market price, 

and firms in all regions receive the world market price. When consumers and firms purchase 

goods, they pay the world price plus any mark-up from tariffs. The problem with this model 

framework is that regions have no incentive to engage in cross-hauling. This is the act of a region 

importing and exporting the same good. Since this is a well-documented feature of international 
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trade, I implement a new algorithm to predict trade flows between regions that incorporates this 

feature. I refer to the algorithm as a “gravity” model as it uses the observation from the gravity 

literature to predict trade flows. The gravity literature argues that trade integration between two 

countries tends to be correlated with their respective economic sizes and the distance between 

them (Deardorff 1998).  

To set up the model, I assume that the modeler has information on total consumption and 

production for each region, but not information on price differentials. I assume that for each 

industry output 𝑗, a buyer in region 𝑟 will meet a seller from region 𝑧 with probability 𝑎𝑟𝑧
𝑗

. In 

practice, this parameter is simply the share of imports from region 𝑧 in total consumption for 

region 𝑟. I use this probability to create a matrix of estimated trade flows. I estimate the trade 

flow between regions 𝑟 and 𝑧 by multiplying the probability that region 𝑟 is a buyer and the 

probability that 𝑟 meets 𝑧. 

 𝐹̂𝑟𝑧
𝑗

= 𝐷𝑗(𝑛) × 𝑎𝑟𝑧
𝑗

  

 

∑ 𝑎𝑟𝑧
𝑗

𝑅

𝑧=1

= 1 

The function 𝐷𝑗(𝑛) is simply the share of world consumption of good 𝑗 that region 𝑟 buys. Here, 

𝐹̂𝑟𝑧
𝑗

 represents the probability that a given unit of total world production of commodity 𝑗 is 

exported from origin region 𝑟 as an import to destination region 𝑧. This gives the estimated trade 

flow matrix: 
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𝑻𝑗 = (
𝐹̂11

𝑗
⋯ 𝐹̂1𝑅

𝑗

⋮ ⋱ ⋮

𝐹̂𝑅1
𝑗

⋯ 𝐹̂𝑅𝑅
𝑗

) 

The rows of this matrix represent demand, and the columns represent supply. Thus, the imports 

from region 1 to region 2 can be found by looking at column 1 and row 2. The matrix also 

represents intraregional trade. Entries along the diagonal, 𝐹̂𝑟𝑟
𝑗

, are the amounts that region 𝑟 

consumes of its own production. To find the total estimated trade flows, one can simply multiply 

the matrix by total world consumption (or production) of good 𝑗. When calculating trade flows in 

a new equilibrium, I use the market-clearing amounts of consumption by region, and the 

probability of meeting is exogenously specified from a baseline of trade flows. For this matrix to 

be balanced, the rows must sum to the shares of world consumption, and the columns must sum 

to world production:  

 

∑ 𝐹̂𝑟𝑧
𝑗

𝑅

𝑧=1

= 𝐷𝑗(𝑛) 

 

(9) 

 

∑ 𝐹̂𝑟𝑧
𝑗

𝑅

𝑛=1

= 𝑆𝑗(𝑧) 

 

(10) 

Here, 𝑆𝑗(𝑧) is the share of the world quantity of commodity 𝑗 that region 𝑧 produces. Since the 

probabilities I used to create the trade matrix sum to unity, the sum of row 𝑟 of 𝑻𝒋 is equal to 

𝐷𝑗(𝑟), and the sum of regional demand equals total demand by construction. Supply, however, 

may not equal demand. Thus, equation 9 holds, but equation 10 may not. If equation 10 does not 

hold, then it is not a feasible allocation, and I need to adjust my estimate of trade flows to create 

a new matrix. 
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 To redistribute trade flows and balance the trade matrix, I use an iterative method. When 

describing the sequential steps of the algorithm, I use a super script to denote which iteration the 

algorithm is on. For example, 𝐹̂𝑟𝑧
𝑗(𝑞)

 is the trade flow calculated on iteration 𝑞. To begin the 

algorithm, I take my initial transportation matrix and define a vector of excess demands. This is 

the sum of trade flows in column 𝑧 minus the production share in region 𝑧 given by the CGE 

model.  

 

𝜓𝑗(𝑞)(𝑧) = ∑ 𝐹̂𝑟𝑧
𝑗(𝑞)

𝑁

𝑧=1

− 𝑆𝑗(𝑧)  

Excess demand for goods from region 𝑧 is represented by 𝜓𝑗(𝑞)(𝑧), and is the amount the trade 

flows matrix is overstating production in region 𝑧. In other words, region 𝑧 does not produce 

enough to satisfy the trade flows estimated by the trade flows matrix in step 𝑞. Due to the 

construction of the matrix, the sum of excess demands is equal to zero at every step. This means 

that elements of excess production can be either positive or negative. For the matrix to be 

balanced and equation 10 hold, each element of excess production must be zero. To achieve this, 

I use a two-step updating process to redistribute trade flows. In the first step, I find the column 

with the largest positive excess production and update each element in the column by reducing it 

proportionally to trade flows calculated in the current iteration. The new column that replaces 

this column is calculated using the following formula. 

 
𝐹̂𝑟𝑧

𝑗(𝑞+1)
= 𝐹̂𝑟𝑧

𝑗(𝑞)
− 𝜓𝑗(𝑞)(𝑧) 

𝐹̂𝑟𝑧
𝑗(𝑞)

∑ 𝐹̂𝑖𝑧
𝑗(𝑞)𝑅

𝑖=1

 
(11) 

This recursive equation updates the trade flow matrix column elements. On the right-hand side, 

the first term is the trade flow I calculated in the current iteration. The second term subtracts the 

excess demands from the region proportional to trade flows in the current iteration. For example, 
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suppose 10% of production from region 1 went to region 2 according to the current trade matrix. 

If region 1 has positive excess demands, then I subtract 10% of excess demand for region 1 from 

the trade flows from region 1 to region 2, 𝐹̂12
𝑗

. 

The reduction of the excess demands in the first step means that some regions shift their 

consumption to other regions. Thus, I need to increase consumption of other regions such that 

regional demand still sums to total demand (equation 9). This is done in the second step by 

updating the row elements in the transportation matrix. 

 
𝐹̂𝑟𝑧

𝑗(𝑞+1)
= 𝐹̂𝑟𝑧

𝑗(𝑞)
+ 𝑃𝑗(𝑟, 𝑧; 𝜓𝑗(𝑞)(𝑧) < 0) (𝜓𝑗(𝑞)(𝑧) 

𝐹̂𝑟𝑧
𝑗(𝑞)

∑ 𝐹̂𝑖𝑧
𝑗(𝑞)𝑅

𝑖=1

) (12) 

 

This recursive equation updates the trade flow matrix row elements of the columns that were not 

replaced by equation 11. The second term on the right-hand side is the mirror to the equation that 

updates the columns. The first part of the second term is the probability that region r will meet a 

buyer from region 𝑧 given that region 𝑧 has negative excess demands. This can be calculated 

using the trade matrix in the current iteration. 

𝑃𝑗(𝑟, 𝑧; 𝜓𝑗(𝑞)(𝑧) < 0) =
𝐹̂𝑟𝑧

𝑗(𝑞)

∑ 𝐹̂𝑟𝑖
𝑗(𝑞)

𝑖

 , 𝑖 ∈ {𝜓𝑗(𝑞)(𝑧) < 0} 

This adjustment increases demands for regions that have negative excess demands, or demand 

that is less than their current production. The function increases quantity demanded from each 

other region proportionally to how much that region demands from regions that are 

overproducing. For example, suppose region 1 is the column adjusted using equation 11, which 

reduces the demand for goods from region 1. Suppose further that demand in region 2 for goods 

from region 1 is reduced by 1 unit due to this adjustment. If both region 2 and region 3 have 
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negative excess demands, I shift this extra demand from region 2 to regions 2 and 3. If region 2 

accounts for 90% of the demand from region 2 for output from regions 2 and 3, 0.9 units are 

shifted to region 2 and 0.1 units are shifted to region 3. 

 The last issue to confront here is how to incorporate explicit trade costs. This is an 

important question for this model because I am using it to determine the effect of changing tariff 

rates. I model the effect of trade costs by modeling the estimate of 𝛼𝑟𝑧
𝑗

 as a function of a baseline 

constant and tariffs.  

 
𝛼𝑟𝑧

𝑗
=

exp(𝑙𝑛(𝐵𝑟𝑧
𝑗

) − 𝜔 𝑙𝑛(1 + 𝜏𝑟𝑧
𝑗

− 𝜏̂𝑟𝑧
𝑗

))

∑ exp(𝑙𝑛(𝐵𝑟𝑖
𝑗

) − 𝜔 𝑙𝑛(1 + 𝜏𝑟𝑖
𝑗

− 𝜏̂𝑟𝑖
𝑗

))𝑅
𝑖=1

 
(13) 

This is the exponential share function again. The denominator is the sum of the elements in 

numerator to normalize 𝛼𝑟𝑧
𝑗

 into a ratio. The parameter 𝐵𝑟𝑧
𝑗

 is the baseline share of consumption 

in region 𝑟 that comes from region 𝑧. The second term in the exponential in the numerator is log 

of one plus the difference between tariff rates in the counterfactual 𝜏𝑟𝑧
𝑗

 and tariff rates in the base 

case, 𝜏𝑟𝑧
𝑗

. This is then multiplied by a trade cost elasticity 𝜔. If tariff rates in the counterfactual 

fall, then the 𝛼𝑟𝑧
𝑗

 will increase, indicating that buyers in region 𝑟 are more likely to meet sellers 

from region 𝑧. 

 The algorithm terminates in a fixed number of steps, 𝑅 − 1. This allows it to be 

implemented in a CGE model without fear of slowing down computational time. Additionally, 

the only parameters needed are baseline production quantities and trade flows to calculate 𝛼𝑟𝑧
𝑗

, 

which can be done given information on all production and trade flows. The other necessary 

parameter is 𝜔, which has several estimates in the literature. However, this parameter is only 

needed if one is modeling trade costs explicitly, such as tariffs. 
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2.3.d Comparison of Trade Models 

 The gravity algorithm generates empirically observed trade patterns using the distribution 

of supply and demand across regions. An example trade matrix for three regions is shown in the 

first panel of Table 2.1. Along the bottom row is the sum of the columns, which is the total share 

of world production for each region. Along the right-hand column are the sums of the rows, 

which are the total shares of world demand for each region. The elements of the matrix are the 

trade flows between regions. The question for the modeler is: given a new set of shares of world 

demand and supply, how do you estimate the elements of the matrix?  

The following three panels in Table 2.1 show possible transportation matrices given a 

new distribution of supply and demand shares. In this case, I have simply flipped these vectors. 

The first panel shows the baseline matrix, which is the trade flows and total production and 

consumption in the baseline dataset. The following panels shows three different ways of 

estimating the trade flows (interior elements) using the supply and demand shares (row and 

column totals). The second panel shows the result from a net trade model. This means that there 

is no cross-hauling, and regions only engage in net trade. In this case, region 1 is the only net 

exporter, so region 1 satisfies all domestic demand and then exports any excess production. 

Regions 2 and 3 are net importers, so they export nothing to other industries and import the 

excess production from region 1. The net trade model is typically used by small open economy 

models, but it ignores cross-hauling, which is often most of international trade by volume. 

Panel 3 of Table 2.1 shows the same exercise, except I use a different model to predict 

trade flows. In some sense, the shares of demand and supply can be viewed as probability mass 

functions. The share of demand for region 1 is the probability that any arbitrary unit of a good is 

purchased by region 1. Likewise, the share of production for region 1 is the probability that any  
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Table 2.1: Example Trade Matrices 

Baseline Trade Matrix 
 R1 R2 R3 Demand 

R1 0.38 0.08 0.04 0.5 

R2 0.02 0.23 0.04 0.29 

R3 0.02 0.04 0.15 0.21 

Supply 0.42 0.35 0.23  

     

Counterfactual Matrix: Net Trade  
R1 R2 R3 Demand 

R1 0.42 0 0 0.42 

R2 0.06 0.29 0 0.35 

R3 0.02 0 0.21 0.23 

Supply 0.5 0.29 0.21 1      

Counterfactual Matrix: Naïve Model  
R1 R2 R3 Demand 

R1 0.21 0.12 0.09 0.42 

R2 0.18 0.10 0.07 0.35 

R3 0.12 0.07 0.05 0.23 

Supply 0.5 0.29 0.21 1 
     

Counterfactual Matrix: Gravity Trade 
 R1 R2 R3 Demand 

R1 0.35 0.05 0.02 0.42 

R2 0.08 0.21 0.06 0.35 

R3 0.08 0.03 0.12 0.23 

Supply 0.5 0.29 0.21  

     

Notes: These tables show different models predicting trade flows in a model using only the 

distributions of world supply and demand. For all matrices, the rows represent demand and the 

columns represent supply. The first panel is the baseline trade matrix, and the bottom three are 

models predicting trade flows with different demand and supply distributions. The net trade 

model only uses net exports and imports, the naïve model multiplies the two vectors, and the last 

panel uses the gravity trade algorithm. 
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arbitrary unit of a good was produced by region 1. One can then calculate the joint probability 

mass function by simply multiplying the marginal distributions together. I call this the naïve 

model. The matrix in panel 3 of Table 2.1 shows that this model generates a balanced matrix and 

cross-hauling, however it evenly distributes trade flows throughout the matrix. In contrast, the 

baseline matrix in panel 1 has much larger numbers along the diagonal. This is due to the 

phenomenon of home-bias, where countries tend to purchase more from domestic sources than 

foreign ones. I have not seen this model used in any trade models, however, it shows the main 

issue with including cross-hauling, which is how much to include. 

Finally, panel 4 shows the results from using the gravity algorithm put forth in this paper 

to estimate trade flows. This creates a balanced matrix, so the equilibrium conditions still hold. It 

also generates cross-hauling, which is shown by the non-zero entries for net importers. It is also 

able to accommodate home-bias since this phenomenon is observed in the baseline matrix. Thus, 

the algorithm generates empirical observations about trade only using the distribution of regional 

supply and demand. The point of this exercise is to show the differences in the models, and why 

certain assumptions were necessary to achieve observations seen in trade data. In section 2.4.a, I 

use partial equilibrium models of this trade model to validate the gravity approach empirically. 

 

2.3.e Government 

 There is a single government for each region that collects tariffs on imports and transfers 

all revenues lump-sum back to the household. I do not consider other tax policies such as taxes 

on labor and capital income, however any of these could be implemented with the correct data on 

tax rates and revenues. Governments also do not spend any money directly, however 

consumption shares in equation 7 are inclusive of government expenditures. Since the utility 
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function is Cobb-Douglas, this is equivalent to a model that uses a constant share to split 

government transfers and spending. 

Tariffs are charged on imports at the border so that the price the consumer pays is the 

world price plus the tariff. In a non-Armington model, the export supply curve is perfectly 

elastic, so importers bear the full burden of the tariff. To calculate the domestic markup on 

output from a particular industry, I use the trade flows from the previous section.  

𝑃𝑖𝑟
𝐷 = 𝑃𝑖 × (1 + ∑

𝐹̂𝑟𝑧
𝑗

∑ 𝐹̂𝑖𝑧
𝑗𝑅

𝑖=1

𝜏𝑟𝑧
𝑖

𝑅

𝑧=1

) 

The final price to domestic buyers of good 𝑖 in region 𝑟 is equal to the world price of that good, 

𝑃𝑖 times an ad valorem tariff markup. The second term in the parentheses on the right-hand side 

is the markup on the world price. For a given region 𝑟, the share of consumption subject to a 

tariff on goods from region 𝑧 is given by trade flows from 𝑧 to 𝑟, 𝐹̂𝑟𝑧
𝑗

expressed as a share of all 

trade flows to 𝑟, ∑ 𝐹̂𝑖𝑧
𝑗𝑅

𝑖=1 .  This share of consumption is then multiplied by the ad valorem tariff 

rate on goods imported into region 𝑟 from 𝑧, 𝜏𝑟𝑧
𝑖 . Recall that it is possible that 𝑧 = 𝑟, so all 

domestic consumption has a tariff rate of zero or 𝜏𝑟𝑟
𝑖 = 0. Finally, total revenues collected on 

tariffs are equal to 

 

𝑅𝑒𝑣𝑟 = ∑ 𝑃𝑖 × (∑
𝐹̂𝑟𝑧

𝑗

∑ 𝐹̂𝑖𝑧
𝑗𝑅

𝑖=1

𝜏𝑟𝑧
𝑖

𝑅

𝑧=1

) × (𝐶𝑖𝑟 + ∑ 𝑥𝑗𝑟
𝑖

𝐽

𝑗=1

)

𝐽

𝑖=1

 
(14) 

Each term of the summation on the right-hand side is simply the world price times the total tariff 

markup times the total consumption of good 𝑖. For each 𝑖 this is the total tariff bill collected on 

consumption of that good in region 𝑟. I then sum over all goods to find the total revenue from 

tariffs for region 𝑟. 
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2.3.f Equilibrium 

Equilibrium in this model is an allocation where all goods and factor markets clear given 

each agents’ optimal conditions, government transfers, and trade costs.  ormally, the equilibrium 

conditions are 

 

 

∑ 𝑄𝑖𝑟
𝑠

𝑅

𝑟=1

= ∑ (𝐶𝑖𝑟 + ∑ 𝑥𝑗𝑟
𝑖

𝐽

𝑗=1

)

𝑅

𝑟=1

      ∀      𝑖 = 1, … , 𝐽 (15) 

 

 𝐿𝑗𝑟
∗ = 𝐿𝑗𝑟

𝑠     ∀      𝑗 = 1, … , 𝐽    𝑎𝑛𝑑   𝑟 = 1, … , 𝑅 (16) 

 

 

∑ ∑ 𝐾𝑗𝑟
∗

𝐽

𝑗=1

𝑅

𝑟=1

= ∑ 𝐾𝑟

𝑅

𝑟=1

 (17) 

 

 T𝑟 = 𝑅𝑒𝑣𝑟     ∀     𝑟 = 1, … , 𝑅 (18) 
 

Optimal household demands for final consumption can be determined from equation (8) 

and intermediate demands for production can be determined from equations (5) and (6). Taking 

these together forms the goods market clearing condition in equation (15). Sectoral labor 

supplies from equation (8) are equal to sectoral labor demands from equation (4) for all regions. 

Capital is internationally mobile, so equation (17) clears the capital market by ensuring that the 

sum of all capital demands for all industries and regions is equal to the sum of all capital 

supplied by households. The last equation is the balanced budget constraint on the government. 

Equation (18) simply says that all government revenues are transferred to households. 

The model is solved in an iterative two step process. First, I make an initial guess for the 

transportation matrix and calculate trade flows and costs based on this guess. Second, I solve the 
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CGE model for a market clearing equilibrium using Merrill’s variant of Scarf’s algorithm. Once 

the algorithm has found the market clearing allocation, I run the transportation matrix algorithm 

presented in the previous section and check it against my guess. If the difference is larger than a 

preset tolerance, I use the updated transportation matrix as my new guess and return to the first 

step. The program terminates when an equilibrium is found that is sufficiently close to the 

“guessed” trade matrix. This implies that all agents have perfect knowledge of all trade flows and 

costs in the final equilibrium. 

 

2.4 Data and Calibration 

 To calibrate the model, I create social accounting matrices for each country using data 

from the World Input-Output Database (WIOD). I include four countries in my model: Canada, 

Mexico, the United States, and China. While China was not a member of NAFTA, they 

embraced a more open trade policy during this time and became a strong trade partner with all 

three member countries. The remaining countries are combined into a single region defined as 

the Rest of the World (RoW). The WIOD contains information on production over 35 industries 

and 40 countries. I take the disaggregated world input-output matrix and aggregate it to 20 

industries and the 5 regions mentioned above (3 member countries plus China and RoW). The 

aggregated industries are reported in Table 2.2, along with import and export information for 

each industry for the United States. I define the period of my study as the ten-year period after 

NAFTA was implemented, 1995 to 2005. While NAFTA was ratified the year prior to the start 

of this period (in January 1994), 1995 was the earlier year in my dataset.  
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Table 2.2: United States Trade Statistics for 1995 (in millions of $US 2013) 

Industry Imports Exports Net Exports 

Agriculture, Hunting, and Fishing $20,984.98 $27,256.18 $6,271.21 

Mining and Quarrying $48,006.81 $10,031.94 -$37,974.87 

Food Products $23,009.11 $32,342.49 $9,333.38 

Textiles and Clothing $53,416.78 $13,070.08 -$40,346.70 

Footwear and Leather $19,025.88 $967.37 -$18,058.51 

Wood $10,758.53 $4,805.96 -$5,952.57 

Paper and Pulp $24,676.88 $28,174.57 $3,497.69 

Fuels $9,946.21 $9,560.86 -$385.35 

Chemicals $52,476.24 $52,935.49 $459.25 

Plastic or Rubber $14,925.65 $10,915.90 -$4,009.75 

Stone and Glass $10,420.85 $5,235.23 -$5,185.62 

Metals $51,782.01 $29,378.16 -$22,403.84 

Machinery and Electrical Equipment $238,263.56 $188,550.82 -$49,712.74 

Transportation Equipment $120,382.65 $90,736.88 -$29,645.77 

Miscellaneous Manufacturing $33,373.04 $12,537.08 -$20,835.96 

Utilities and Construction $2,184.59 $443.54 -$1,741.05 

Consumer goods $6,413.18 $79,838.22 $73,425.04 

Transportation Services $21,553.41 $64,628.68 $43,075.26 

Business Services $5,971.33 $15,434.15 $9,462.83 

Consumer Services $68,681.13 $88,381.72 $19,700.58 

Total $836,252.81 $765,225.32 -$71,027.49 

Notes: This table shows all industries and their respective volumes of import and exports. The 

final column shows net exports. All values are in millions of $US. 

 

Tariff data comes from the World Integrated Trade Solution (WITS) database. 

Specifically, I use the weighted tariff measure by commodity, origin, and destination. The 

change in tariffs between 1995 and 2005 is shown in Figure 2.1. The left side of panels shows 

tariff rates for each commodity in 1995, and the right panel shows tariff rates for those same 

industries in 2005. Almost all tariff rates between the NAFTA countries have dropped to zero. 

This is expected, as all tariff rates for this Free Trade Area fell to zero by 2004 per the conditions 

of NAFTA. The commodity definitions between WITS and WIOD are not exactly direct, so I  



68 
 

Figure 2.1: Tariff Rate Changes 1995-2005 for Manufacturing Industries 

 

Notes: This figure shows all tariff changes for NAFTA member countries with their respective 

member partners and China. The left panel shows tariff rates in 1995, the start of my analysis, 

and the right panel shows the same rates in 2005, the end of my analysis. Agriculture tariffs in 

1995 were well over 40% for some countries so they are omitted for visibility. 
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create a crosswalk between WITS and WIOD. The mapping between industries are shown in 

appendix Table B.1. 

 The model is calibrated by first setting elasticity parameters using my estimates or taking 

estimates from previous literature. The elasticity of substation over intermediate goods, 𝜎, is set 

to 0.5. Parameters of the top level of the Cobb-Douglas production function, 𝑎, 𝑏, and 𝑐, are set 

according to expenditure shares in production. These are unique to each industry and region and 

based on social accounting matrices I built from WIOD data. The labor sector elasticity 

parameter is set to 1.22 according to the estimation in chapter 1. The impact of trade costs on 

trade flows in equation  is determined using the tariff elasticity, 𝜔, which partly determines 

changes in trade flows in the gravity algorithm. I use a value of 7.7, which is the average trade 

elasticity measured by Hertel, Hummels, Ivanic, and Keeney (2007). Other papers use a higher 

elasticity, such as Caliendo and Parro (2015), who also study NAFTA and use an average trade 

elasticity closer to 11. In the results section I run the simulation again under higher and lower 

elasticities to test the sensitivity of my results to these parameters. 

 

2.4.a Empirical Comparison of Armington and Gravity Model 

The gravity model I put forward in section 2.3.c is a new one, even though it has largely 

the same form as previous gravity models in the literature. In this section, I test it empirically in 

partial equilibrium to ensure it reliably predicts trade flows. I use data on production, 

consumption, prices, and trade flows among the 5 regions in my dataset for 20 commodity 

categories for the years 1995 to 2011. Using consumption and production quantities, I predict 

trade flows using the gravity model. Using prices, I predict the same trade flows using the 

Armington model. Information on how I estimated the models can be found in Appendix A. I 
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compare the two models with standard techniques to assess the goodness of fit. First, scatterplots 

of actual vs. predicted values is presented in Figure 2.2. The left column of panels show the  

Figure 2.2: Trade Flow Prediction Accuracy of Armington and Gravity Model 

 

 

Notes: This figure plots predicted trade flows against actual trade flows organized by model type 

and sample used. The top two panels show the prediction from the Armington model and the 

bottom panels show the prediction from the gravity model developed in this paper. This figure is 

intended to show that the gravity model I use is at least as accurate as the Armington model in 

predicting trade flows. 
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Armington and gravity models’ performance when I use the full dataset to estimate the 

parameters in the model. The right column shows the performance of predicted outcomes for 

only 2011 using data from before 2000. The purpose of these graphs is to see how the models 

perform in out-of-sample prediction. 

Visually, the gravity model performs better than the Armington model in predicting trade 

flows. This is confirmed by goodness-of-fit statistics: R-squared for the Armington in-sample 

model is 0.66 and for the gravity model it is 0.95. Additionally, the mean squared error (MSE) of 

the Armington in-sample prediction is 7.95 × 108 and for the gravity model MSE was 0.8 ×

108. This is not surprising as gravity models are often lauded for their accuracy in the trade 

literature. Employing the gravity model empirically may be difficult in some scenarios since 

information on production, consumption, and trade flows for the entire world is needed to 

parametrize and run the model. However, it works well with this CGE model and predicts trade 

flows at least as well as, or better than, the Armington model. 

 

2.5 Results 

 To simulate NAFTA, I use the typical practice in applied general equilibrium of 

simulating a baseline scenario where tariffs are kept at their 1995 levels. I then simulate a 

counterfactual scenario where tariffs are reduced to their 2005 levels. Note that I include all tariff 

reductions for the counterfactual scenario, so in some sense it is not a pure evaluation of 

NAFTA. However, tariff changes with partners outside of NAFTA were much smaller than those 

with partners inside. 
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 To compare these results to the simulations used in Kehoe (2005), I have recreated his 

methodology in comparing simulation results to the data. He does this by using simple linear 

regression between the data and the model. Specifically, the model he estimates is 

𝑑𝑎𝑡𝑎𝑖 = 𝑎 + 𝑏 × 𝑚𝑜𝑑𝑒𝑙𝑖 + 𝜖𝑖 

Where 𝑑𝑎𝑡𝑎𝑖 is the vector of changes observed in the data, and 𝑚𝑜𝑑𝑒𝑙𝑖 is the vector of changes 

predicted by the model. The parameter 𝑎 is the intercept and 𝑏 is the slope of the regression line 

between the results from the data and the results from the model. If the model perfectly predicted 

the data, then the slope would be one and the intercept would be zero. So, the deviation of these 

estimated parameters from those values indicates how well the model predicts the changes seen 

in the data. The slope shows how well the magnitudes in the data and model predictions match 

each other. The intercept shows how far the overall averages are from each other. Kehoe does 

not include which of these is the more important statistic, but they both contain information on 

prediction accuracy. 

 Table 2.3 presents the results on overall changes in trade flows between NAFTA 

members. The first column shows the changes that are observed in the data. These are expressed 

in terms relative to GDP. Since my model is not dynamic, I am not accounting for economic 

growth in the model. However, this follows directly from Kehoe’s methodology. The second 

column shows the changes in trade predicted by my CGE model. The model correctly predicts 

that the largest changes will be on Mexico. However, the model underpredicts changes in 

Canadian trade flows by about half. The model also underpredicts the large increase in US 

imports. However, this large change may have been due to large capital inflows into the US, 

which the model does not account for. 
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Table 2.3: Total Trade Flow Results from NAFTA Simulation 

Trade Flow Data 

Tariff Change 

Only 

Tariff Change &  

Tech. Change 

Brown-

Deardorff-

Stern 

Canada Imports 46 23 19 4 

Canada Exports 47 24 25 4 

Mexico Imports 88 59 61 34 

Mexico Exports 71 77 81 51 

USA Imports 71 24 25 2 

USA Exports 24 23 27 3 

China Imports 141 59 111 - 

China Exports 152 79 79 - 

     

 Slope 1.36 1.09 2.43 

 Intercept 17.41 21.90 23.20 

 Correlation 0.75 0.82 0.64 

Notes: This table shows trade flows changes for each of the directions listed in the left column. 

The second column is the changes in trade in the data relative to GDP growth. The third and 

fourth columns are predictions from the non-Armington model, and the last column is the 

prediction from the BDS model from Kehoe (2005). The regression statistics at the bottom 

indicate the how well the predictions fit the data. If the predictions perfectly fit the data, the 

slope would be 1, the intercept would be 0, and correlation would be 1. Deviations from these 

values determines how well the prediction matches the data. 

 

 The results on trade flows for China show that the perfect substitutes model does 

underpredict trade changes in China. Much of this is likely because I am not including any form 

of technological change during the sample period. China, however, went through a fast industrial 

revolution during this time. This is shown in Figure 2.3, where I plot the share of value-added 

income that went to capital in each year. While NAFTA members varied slightly over the period, 

on average, all of them ended up at roughly the same point in 2005 that they were at in 1995. The 

major exception is China, who experienced capital-biased growth in manufacturing sectors. This 

rapid change resulted in an increase of 10 percentage points in the share of income going to 

capital.  
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 To see how this affects my results, I run a second simulation where I change the tariff 

rates and parameters in the production function. In the counterfactual simulation, the parameter 

on capital is increased by 10 percentage points for and the other parameters are decreased to 

maintain constant returns to scale. This change is only for manufacturing firms in China. The 

results are presented in the second column of Table 2.3. Trade changes for China are much larger  

Figure 2.3: Capital Income Shares in Manufacturing Industries During NAFTA 

 

Notes: This figure shows the share of value-added income that went to capital in each year from 

1995-2005. This includes only select manufacturing industries; however, these were industries 

that experienced large changes in tariffs. While NAFTA member countries, Canada, Mexico, and 

the US ended in about the same place, China saw a general increase over this period. 
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under this specification, and the regression results indicate a slightly better fit to the observed 

trade changes. The slope of the regression line falls to 1.09, the intercept increases to 21.9, and 

the correlation coefficient increases to 0.82. Interestingly, trade flow changes in the NAFTA 

member countries are not heavily impacted by the technological change. Trade flow changes are 

about the same as they were when I only considered the change in tariffs.  

 To compare this to simulations used in Kehoe (2005), I also include his results from 

simulations of the Brown-Deardorff-Stern (BDS) CGE model analyzing the effects of NAFTA. 

While this model used a different time period, 1988 to 1999, the changes in trade were of similar 

magnitudes. To make a more direct comparison, I use the regression results from the original 

paper. The first observation that stands out is how much smaller the magnitudes are than the data 

and the perfect substitutes model. Mexico is the only country whose trade changes hit double 

digits. This is confirmed by the statistics from the regression model. The slope of the regression 

line for the perfect substitutes model is 1.34 and the intercept is 17.5. Compared to the results 

from the BDS model, which has a slope of 2.43 and an intercept of 23.2, the perfect substitutes 

model does a better job of capturing the magnitude of changes from NAFTA. We can also 

compare the fit of the model to the data using the Pearson correlation coefficient. The perfect 

substitutes model is able achieve a correlation coefficient of 0.75, which is slightly higher than 

the correlation for the BDS model of 0.64. 
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Table 2.4: Results on Exports from NAFTA Simulation 

  Exports to: 

  Mexico USA 

 Data 27.62 394.27 

Canada Non-Arm. 21.75 90.99 

 BDS -0.22 49.80 

    

  Canada USA 

 Data 128.08 2.90 

Mexico Non-Arm. 227.35 84.47 

 BDS 3.98 0.29 

    

  Canada Mexico 

 Data 70.70 38.37 

United States Non-Arm. 4.41 22.32 

 BDS 19.96 1.24 

    

  Slope Intercept 

 Non-Arm. 0.5 72.4 

 BDS 6.8 25.2 

    

Notes: This table shows exports between NAFTA members and their respective member 

partners. For each table, Data is the observed change in the data, Non-Arm. is the prediction 

from the non-Armington model, and BDS is the predicted changes from Kehoe (2005). The last 

two rows show the slope coefficients between the data and the model like in Table 2.3. 

 

 I can also compare specific trade relationships to those presented in Kehoe (2005). 

Exports for the NAFTA member countries and their member partners are presented in Table 2.5. 

There are three sections in the table that present trade changes for Canada, Mexico, and the 

United States. Note this differs from Table 2.3 by reporting changes with specific partners rather 

than overall trade. I use the results from the simulation only taking into account the tariff 

changes, and I am not including the technological change in China. The non-Armington model is 

able to generate large changes in trade here as well. While I overshoot changes in exports from 

Mexico to the US and changes in exports from the US to Canada, I am able to generate the large 
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changes in trade seen in Mexico and Canada. Results from the BDS model show the contrast of 

changes. The BDS model mostly predicts small, single-digit changes from Mexican exports (less 

than 10%), and the non-Armington model is able to generate changes of over 100%. On average, 

the non-Armington model under predicts the changes in trade by about 32% and the BDS model 

under predicts trade by 89%. The regression statistics confirm this, while the BDS model has a 

lower intercept than the non-Armington model, the slope is much higher, indicating a poor fit 

with the magnitudes observed in the data. 

 In the last set of results, I explore other effects of NAFTA to show how the model can be 

used to analyze the effects of NAFTA. In Table 2.4, I present changes in labor demands for each 

sector in the four countries of my study. Again, these results are from the simulation only 

including the change in tariffs and does not include the technological change from China. All 

countries see a decline in labor demand for the agriculture sector as production shifts to the Rest 

of the World region. The biggest changes are for Mexico and China in the manufacturing sectors. 

Both see large increases in labor demand for clothing manufacturing like Textiles and Clothing 

and Footwear and Leather. However, there are also large increases in demand in Mexico for 

Metals, Machinery and Electrical Equipment, and Transportation equipment. The US sees the 

smallest changes in labor demands across all countries. Overall, the US sees a 0.04% reduction 

labor demand in the manufacturing sectors and a 0.01% increase in the services sectors. This is 

likely because the US already had low tariffs in 1995 compared to Mexico and Canada, which 

can be seen in Figure 2.1. So, gains from reducing tariffs are likely smaller in the US than 

Canada and Mexico. 
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Table 2.5: Labor Demand Impacts from NAFTA Simulation 

Industry China Canada Mexico USA 

Agriculture, Hunting, and Fishing -3.0% -3.1% -1.8% -0.2% 

Mining and Quarrying -0.3% 0.3% -2.2% 0.2% 

Food Products -4.1% -3.8% 13.4% 0.1% 

Textiles and Clothing 18.1% 6.7% 44.6% -0.2% 

Footwear and Leather 34.5% 3.6% 13.3% -1.1% 

Wood 4.6% -6.2% 6.3% 0.1% 

Paper and Pulp 1.8% 0.8% 6.8% 0.0% 

Fuels 1.2% 4.3% -1.0% 0.3% 

Chemicals 1.7% 4.3% 0.2% 0.1% 

Plastic or Rubber 9.0% 3.6% 6.4% -0.2% 

Stone and Glass 0.2% 1.0% -2.6% 0.1% 

Metals 1.3% 5.0% 17.3% 0.2% 

Machinery and Electrical Equipment 9.7% 5.2% 37.6% -0.2% 

Transportation Equipment 14.3% 14.7% 33.5% -0.3% 

Miscellaneous Manufacturing 10.0% 1.9% 15.0% 0.0% 

Utilities and Construction -0.5% 1.0% -0.3% 0.0% 

Consumer goods -0.8% -0.5% -2.6% 0.0% 

Transportation Services -0.6% -0.8% -3.2% 0.0% 

Business Services -1.9% -1.1% -4.8% 0.0% 

Consumer Services -0.7% -1.1% -4.1% 0.0% 

     

Total Manufacturing 5.77% 3.96% 16.47% -0.04% 

Total Services -1.01% -0.77% -3.63% 0.01% 

     

Notes: This table shows the changes in labor demand predicted by the non-Armington model. All 

values represent changes between the baseline equilibrium and the counterfactual equilibrium. 

Note that total labor supply is set in this model, so total labor demand changes are zero. 

 

 Changes in capital demands tell a similar story. Capital use by firms in the US drop 

across all sectors. Mexico, on the other hand, experiences huge capital inflows, particularly in the 

manufacturing sectors. Textiles and Clothing doubles its capital use and Machinery and 

Electrical Equipment increases capital by 87%. Overall, capital demand for manufacturing 

industries jumps by 32%. Canada also experiences an increase in capital use, albeit smaller than 

Mexico at 7.9%. Lastly, China also experiences large capital inflows. While other countries 
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experienced a marked shift of capital from services to manufacturing, both sectors increase 

capital use in China. The manufacturing sectors increase capital demand by 11.2% and demand 

for capital in service industries increases by 1.1%. 

 The model presented here is highly abstract, and it is only presented in a static context. 

However, in future research, a dynamic portion could be added to adjust factors over time. This 

would provide a more realistic evolution of capital by including a market for savings and 

investment. In addition, more realism could be added to the labor market. In this model, I assume 

that total labor is supplied inelastically and workers use sectoral wages to decide how to allocate 

labor across sectors. This could be altered to include a labor-leisure choice or even possibly 

involuntary unemployment. While this would provide a better theoretical foundation for the 

model, several aspects of free trade agreements can be generated even using this simple model.  

  

2.5.a Sensitivity 

 I now turn to sensitivity checks to see how robust the model is to changes of parameters 

that I either estimated or took from the literature. To test the model under these changes, I select 

a new parameter value and recalibrate the model changing only that parameter. I choose three 

parameters, the tariff elasticity, the substitution elasticity in the intermediate composite, and the 

labor sector elasticity. While the model technically uses hundreds of parameters in the 

production functions, consumption composites, and trade flow matrices, these are all pinned 

down by the dataset. The model is built such that I choose a set of elasticity parameters and then 

solve for the remaining parameters assuming that the baseline dataset represents an equilibrium 

allocation.  
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 The results from the sensitivity analysis are shown in Table 2.6. This table recreates the 

main results in Table 2.3. The first two columns are the changes observed in the data and the 

baseline specification. The next two columns show the changes when the trade elasticity is set to 

5.5 and 11. The lower value 5.5 is taken from Hertel (2007). The authors argue that this value is 

average elasticity that previous versions of the CGE model GTAP used, as compared to the 

updated model that uses an average value of 7.7.  The second value of 11 comes from Caliendo 

and Parro (2015), who use an Eaton-Kortum model to estimate trade elasticities.  

The results from these two specifications indicate that my model is the most sensitive to 

these parameter values. Trade changes are muted when the trade elasticity is set to 5.5 and much 

higher when the elasticity is set to 11. However, the magnitudes of the changes are still higher 

than those predicted by the BDS model, even when using the lower trade elasticity value. The 

relative distribution of changes remains largely the same – Mexico and China experience the 

largest trade impacts. The proportional change in trade changes is about the same as the 

proportional change in trade elasticities. Doubling the trade elasticity from 5.5 to 11 causes about 

a doubling of the magnitudes of the predicted changes. 

The next three columns show the results from simulations where the elasticity on the 

intermediate composite is changed. I consider three values: 0.25, 0.75, and 1.25. Although 

smaller values of this elasticity give more muted changes, the differences between the 

specifications are very small. The final two columns show results from changing the labor sector 

elasticity. While access to labor markets and movements between them drive a lot of the 

comparative advantage in this model, the differences between the two models are surprisingly 

small. Additionally, a smaller labor sector elasticity leads to a slightly different distribution of  
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Table 2.6: Sensitivity Results 

 
  Tariff Elasticity        Production Elasticity  Labor Elasticity  

Data Baseline 5.5 11  0.25 0.75 1.25  0.25 2.5  
           

Canada Imports 46 23 15 30  23 24 23  21 23 

Canada Exports 47 24 16 31  24 25 25  23 25 

Mexico Imports 88 59 34 86  58 59 63  60 58 

Mexico Exports 71 77 49 105  74 78 82  79 77 

USA Imports 71 24 16 28  21 22 23  22 22 

USA Exports 24 23 15 28  21 21 22  22 22 

China Imports 141 59 23 100  61 65 69  67 63 

China Exports 152 79 39 124  82 85 86  87 78 

 
           

Slope 1.36 1.63 0.92  1.36 1.31 1.24  1.26 1.37 

Intercept 17.41 37.64 18.67  17.73 17.71 18.76  19.58 16.84 

Correlation 0.75 0.48 0.83  0.78 0.79 0.78  0.79 0.77 

Notes: This table presents sensitivity analysis for the model. For each column, the columns in Table 2.3 are replicated under different 

elasticity assumptions. The first two columns come from Table 2.3. Columns 3 and 4 vary the tariff elasticity, columns 5-7 vary the 

production elasticity, and columns 8 and 9 vary the labor sector supply elasticity. Regression statistics are calculated for each column 

as in Table 2.3.
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trade changes. Increases in trade for Mexico and China are smaller and increases for Canada are 

slightly higher. 

For the most part, the conclusion that we see larger changes in trade from a non-

Armington model seems robust to most parameter choices. However, much like Armington 

models, the changes in trade are most sensitive to the choice of trade elasticity. Getting estimates 

of trade elasticities is inherently difficult. Some researchers have argued that the use of price 

differentials instead of trade costs have led to smaller elasticities. Going forward, I may be able 

to use tariff changes to estimate trade elasticities rather than price differentials to fit this model. 

If tariff changes are assumed to be exogenous, then the impact on trade flows can possibly be 

identified. However, the trade elasticity question seems to remain a difficulty of trade model 

calibration. 

 

2.6 Conclusion 

 As more countries continue to embrace free trade, governments will want to analyze the 

effects of such agreements. CGE modeling is a natural choice for this work since it can be used 

to perform counterfactual policy analysis. In addition, CGE analysis can be used to analyze the 

distribution of effects across sectors. When applied to international trade, many CGE models use 

the Armington assumption to model trade. Recent evaluations of the Armington model have 

identified some questions about its applicability to policy changes, especially free trade 

agreements. The use of the Armington assumption in analysis of free trade agreements may lead 

to muted changes in trade. 
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 In this paper, I create a non-Armington CGE model with homogeneous goods that 

includes trade flows. I prevent perfect specialization by including frictions in the labor market, as 

previous models have done. I extend the literature by including an algorithm that predicts trade 

flows using the distribution of regional consumption and production instead of price 

differentials. This allows me to include empirically observed trade phenomena such as cross-

hauling and home-bias in a homogeneous goods model. The model I specify is highly abstract, 

production and utility functions are Cobb-Douglas and government interactions are minimal. 

Even using this model, I can generate larger changes in trade than CGE models using the 

traditional Armington assumption.  

The non-Armington model has several desirable features that may make it useful in 

policy analysis in other areas of research. One extension is creating a state-level model for the 

US. This would allow analysis how policy impacts are distributed geographically. In addition, 

models of regional migration could be included to determine the impact of labor mobility 

between states. Other applications could be for situations where the modeler has reason to 

believe the region in question has very little impact on world prices. The non-Armington model 

is a useful framework in these cases, and using the algorithm developed in this paper, multi-

lateral trade flows can be included in such a model. In future research, I plan to look for new 

policy applications and improve the empirical strength of the algorithm predicting trade flows. 
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Chapter 3: The Clean Air Act Amendment and Missed Work 

3.1 Introduction 

In 1963 the Clean Air Act was signed into law by Lyndon B. Johnson. It was one of the 

first regulations of air pollution at the federal level in the United States. Researchers have since 

worked to examine the impacts on the labor market. Typically, this is framed in a simple benefit-

cost analysis. Labor costs are employment losses and sectoral reallocations from production 

restrictions. However, labor supply can also increase on the intensive margin. Improved health 

for workers could mean higher productivity at work. Workers may increase attendance, or they 

may be more productive while on the job.  

The literature on the effect of the Clean Air Act on employment shows a consistently 

negative impact on the quantity of labor supplied and demanded in affected industries. 

Greenstone (2002) used the initial Clean Air Act Amendment of 1970 to identify an 

environmental policy impact and found that regulated counties lost 590,000 jobs in comparison 

to unregulated counties. Another study by Walker (2013) looks closer at the transitional costs 

employees face when regulation destroys jobs in the polluting sector. He finds that workers who 

leave the industry after regulation receive a lower wage in their new industry, on average. The 

present value of total forgone earnings for those separated from their firm is equal to 1.2 times 

one year of pre-regulatory earnings. 

Other studies have explored the public health impacts of the Clean Air Act using various 

measures. One of the first studies to do this was Greenstone (2003) which looked at the effect on 

infant mortality rates. He found that a 1% reduction in total suspended particles led to a 0.3% 

reduction in infant mortality rates. A working paper from Bishop et al. (2018) analyzed the effect 

of PM 2.5 on Alzheimer's disease using the 2004 Clean Air Act Amendment to identify the 
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policy effect. They find that a 1 microgram per cubic meter increase in particulate matter 

exposure led to a 3% increase in dementia cases. 

Recently there has also been work on how pollution affects labor supply and productivity. 

If pollution damages health status, then workers may need to take more sick days, or it could 

make their jobs more difficult. One recent study found that exposure of 25 days or more to 10 

ppb increased PM 2.5 reduced the productivity of manufacturing workers in China by about 1% 

(He et al., 2019). Another earlier study found slightly larger effects when focusing on 

agricultural workers; increased ozone levels contributed to a 4% loss in productivity (Zivin and 

Neidell, 2012). Another paper used data on German football players and air pollution at matches 

and found a negative impact on measures of player productivity (Lichter et al. 2017). 

Previous research on the connection between air pollution and labor supply have looked 

at short term changes in pollution and "restricted activity days" or RADs. This term encompasses 

work lost due to air pollution and days spent in bed. Most of these studies use the National 

Health Interview Survey (NHIS) conducted by the Center for Disease Control (CDC). Ostro and 

Rothschild (1989) and Ostro (1987) are commonly cited studies in discussions about RADs. 

These papers have also commented on at-work productivity in the form of "minor restricted 

activity days" or MRADs. MRADs are when a worker can attend work but reports limitations in 

being able to perform tasks. Other studies such as Hausman and Ostro (1984) have considered 

the impact of pollution on missed days at work using Poisson modeling.  

More recently, a paper estimated the causal effect of pollution on labor supply by 

examining workers in Mexico City. The subjects lived near a polluting factory that closed 

suddenly and led to a decrease in pollution in the nearby area. Using this quasi-experiment, the 

author was able to estimate that a 20% decline in sulfur dioxide concentrations led to a 1.3-hour 
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increase in work attendance the following week (Hanna and Oliva 2015). Another paper 

considers long term effects by exploiting variation in the Clean Air Act Amendment. The authors 

find that earnings and labor force participation are reduced later in life for people born in higher 

pollution areas (Isen, Rossin-Slater, and Walker 2017). 

Researchers have not estimated the effect of the CAAA on labor supply directly; 

however, the EPA has considered this benefit in their report on the CAAA. They estimate that 

without the CAAA 17 million workdays would have been lost due to illness in 2010 for which 

they assessed the value at $2.7 billion. This number was reached by looking at income losses due 

to diseases caused or exacerbated by air pollution. Using BenMAP, an air pollution simulation 

model, they predict the effect of regulation on pollution and the incidence of respiratory diseases. 

The EPA converts this income loss into days of work missed using average wage rates. 

However, no direct empirical measure of the impact of CAAA on lost workdays due to illness 

exists to my knowledge. 

In this paper, I first discuss the decision to take sick leave by workers, and how this 

decision is impacted if a worker has paid sick leave. I show that estimates of productivity gains 

could be biased upwards if only illness hazard rates are used. I then estimate the impact of the 

2004 CAAA ozone regulations on missed workdays. I do this by specifying a Difference-in-

Difference model, which estimates the causal impact of the policy by comparing a treatment 

group to a control group. Since the CAAA only affected certain counties that had historically 

high levels of pollution, I identify the treated group by location. I find that the Clean Air Act 

Amendment reduced the probability of missing work due to illness by about 0.1 percentage 

points. 
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3.2 Clean Air Act Amendment of 2004 

The policy I consider is the Clean Air Act Amendment of 2004. These amendments 

updated the National Ambient Air Quality Standards (NAAQS) for ozone and PM2.5 (particulate 

matter) concentrations. The policy was first proposed in 1997, and, after several years in court, 

was enacted in 2003 and began enforcement in summer of 2004. As a result, 436 counties were 

designated as "nonattainment" for not meeting ozone concentration standards. States with 

nonattainment areas were then required to submit a State Implementation Plan (SIP) which 

details how governments will reduce ambient pollutant concentrations. The plans were due back 

to the EPA in 2004, which was when states began implementing restrictions on air pollution. 

In this paper, I focus on ozone concentration which is known to be harmful to respiratory 

health. I am currently working on mapping PM 2.5 counties as well, and there is likely a large 

overlap. The comparison of these pollutants is important, and it could provide a useful second 

source of variation. For now, the empirical portion of this paper only includes nonattainment 

areas for ozone concentration. Figure 3.1 shows the effect of the NAAQS on ozone pollution 

using data from the EPA. This figure shows the average of the second highest daily one-hour 

ozone reading in attainment and non-attainment counties in each year. The underlying data has 

an observation for each county using and each year, yielding 13,255 observations. I then take the 

simple average by attainment status and plot this statistic over the years 1996-2009. Counties in 

the control group who retained attainment status are shown by the broken red line and circle 

points. Counties in the treatment group that were classified as non-attainment are shown in blue 

solid line with triangle points. All points are shown relative to the first pre-treatment year 2003. 

The figure shows that ozone levels were trending downward in general during the total sample 

period. However, after the implementation of the NAAQS in 2003, the non-attainment counties 
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decrease ozone by a greater amount than counties that were designated attainment status. It is 

important to note that these statistics do not consider strategic monitor placement. If non-

attainment counties simply moved monitors to cleaner areas or only operated them on low 

pollution days, these results will be biased. Using satellite imagery to measure air pollution may 

be a possible solution to this, but the images needed to make these datasets may not be available 

for the early 2000s. 

Figure 3.1: Average of 2nd Highest Ozone Readings in Attainment vs. Non-Attainment 

Counties 

 

Notes: This figure shows the average of the 2nd highest reading across all counties in the 

attainment area. The 2nd highest reading of ozone in a county is an index of ozone pollution 

produced by the EPA. For each year, observations for each county and year are obtained from 

the EPA air quality index annual records. I then group all counties as Attainment and Non-

Attainment and take a simple average across them to produce the point estimates in each year. 

The vertical dashed line at 2003 indicates the last pre-period year. 
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3.2.a Hazard Rate for Illness and Sick Days 

 In this paper by “sick days,” I am referring to short term leave due to temporary illness. I 

am not considering long term illness that may push somebody out of the labor market for an 

extended period.  

An increase in the labor supply (decrease in sick days) is often put into the benefits 

column when judging environmental policy. The argument is clear: less pollution means less sick 

time and more production. So even if policy makers were only using gross domestic product or 

some similar measure as a goal, there would still be a reason to enact pollution regulation. For 

example, lost productivity (LP) might be expressed as the number of sick days taken in a year 

such as the following. 

𝐿𝑃 = 𝜃(𝑞) × 𝑤𝑎𝑔𝑒 × 260 

Where 𝜃(𝑞) is the probability of getting sick given some level of environmental quality q. So, 

the gain in productivity (reduction in lost productivity) would be 

𝐺𝑎𝑖𝑛 = −
𝜕𝐿𝑃

𝜕𝑞
= −

𝜕𝜃

𝜕𝑞
× 𝑤𝑎𝑔𝑒 × 260 

𝑎𝑛𝑑               
𝜕𝜃

𝜕𝑞
< 0 

One problem researchers have noted is that this measure does not include the possibility of 

averting or mitigating behavior. So, assuming the probability of taking a sick day is 𝑠(𝜃) a more 

proper measure of a gain in productivity might be 

𝐺𝑎𝑖𝑛 = −
𝜕𝑠

𝜕𝜃
×

𝜕𝜃

𝜕𝑞
× 𝑤𝑎𝑔𝑒 × 260 
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The new term on the right-hand side reflects the possibility of attending work while sick or other 

mitigating behavior. If researchers simply use the first equation, then they implicitly assume 

𝜕𝑠

𝜕𝜃
= 1 and the results will be biased upward. However, even if researchers account for 

mitigation, results may be biased upward if some workers have unpaid sick leave. Workers may 

strategically go to work sick and save their banked sick day. This choice means that even if the 

government policy lowers the probability of getting sick, the presence of paid sick leave may 

reduce the number of people who attend work while sick. If the government can credibly commit 

to the policy, then the probability of getting sick is lower, but it is also lower in the future. Since 

part of the opportunity cost of taking a sick day today is the inability to take a sick day 

tomorrow, a lower probability of getting sick tomorrow means a lower opportunity cost to taking 

a sick day today. A simple model of paid sick leave and pollution is presented in Appendix C. 

While this is an interesting avenue of research, due to data limitations, this paper does not 

include empirical estimates of this effect. 

 

3.3 Data and Empirical Strategy 

I use the current population survey (CPS) basic monthly questionnaire to create the 

sample to estimate my model. Summary statistics are presented in Table 3.1, where all 

observations are separated by attainment status. Table 3.2 the same except the sample is 

restricted to only employed persons. Using geographic variables, I can identify whether a 

household was in a non-attainment area. I use demographics to create a vector of person-specific 

variables. Survey respondents indicate how many hours each household member worked last 

week. They also report how many hours each household member usually works per week. If 

somebody worked part-time in the previous week, they also note why they worked part-time or  
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Table 3.1: Summary Statistics for All Observations 

Attainment 

Variable Obs Mean Std. Dev. Min Max 

Employed 6,561,067 0.65 0.48 0 1 

Hourly Wage 556,757 13.49 7.23 5.15 99.5 

Hours Worked 3,820,211 40.63 11.76 0 120 

Age 6,561,067 47.51 16.88 20 90 

Female 6,561,067 0.52 0.50 0 1 

White 6,561,067 0.87 0.34 0 1 

Married 6,561,067 0.61 0.49 0 1 

High School 6,561,067 0.53 0.50 0 1 

College 6,561,067 0.34 0.47 0 1 

      

Non-Attainment 

Variable Obs Mean Std. Dev. Min Max 

Employed 2,778,904 0.65 0.48 0 1 

Hourly Wage 214,927 14.25 8.26 5.15 99.5 

Hours Worked 1,657,315 40.53 10.92 0 120 

Age 2,778,904 46.43 16.64 20 90 

Female 2,778,904 0.53 0.50 0 1 

White 2,778,904 0.79 0.41 0 1 

Married 2,778,904 0.57 0.49 0 1 

High School 2,778,904 0.48 0.50 0 1 

College 2,778,904 0.38 0.48 0 1 

Notes: This table presents summary statistics for observations in attainment and non-attainment 

counties. The top panel shows the mean, standard deviation, minimum, and maximum for each 

variable. All observations are included, however only observations recorded on the supplemental 

survey in March include hourly wages. Hours worked are listed in the CPS data as “usual hours 

worked”. The maximum hourly wage is $99.5 per hour and the maximum hours worked per 

week is 120.  
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Table 3.2: Summary Statistics for Sample Restricted to Employed Individuals 

Attainment 

Variable Obs Mean Std. Dev. Min Max 

Employed 4,247,386 1 0 1 1 

Hourly Wage 556,475 13.49 7.23 5.15 99.5 

Hours Worked 3,816,402 40.67 11.70 1 120 

Age 4,247,386 42.27 12.77 20 90 

Female 4,247,386 0.48 0.50 0 1 

White 4,247,386 0.87 0.33 0 1 

Married 4,247,386 0.63 0.48 0 1 

High School 4,247,386 0.52 0.50 0 1 

College 4,247,386 0.39 0.49 0 1 

Non-Attainment 

Variable Obs Mean Std. Dev. Min Max 

Employed 1,807,804 1 0 1 1 

Hourly Wage 214,830 14.25 8.26 5.15 99.5 

Hours Worked 1,656,058 40.56 10.86 1 120 

Age 1,807,804 41.66 12.54 20 90 

Female 1,807,804 0.47 0.50 0 1 

White 1,807,804 0.80 0.40 0 1 

Married 1,807,804 0.59 0.49 0 1 

High School 1,807,804 0.46 0.50 0 1 

College 1,807,804 0.44 0.50 0 1 

Notes: This table presents summary statistics for observations in attainment and non-attainment 

counties. The top panel shows the mean, standard deviation, minimum, and maximum for each 

variable. Only observations that report some form of employment are included, however only 

observations recorded on the supplemental survey in March include hourly wages. Hours worked 

are listed in the CPS data as “usual hours worked”. The maximum hourly wage is $99.5 per hour 

and the maximum hours worked per week is 120.  

 

were absent from work. These two variables allow me to observe hours missed due to illness for 

a national sample.  

There are two primary issues with the data. The first is matching the geography to 

households. The CPS censors some of this information for privacy concerns, which can lead to 

some issues. The primary problem is that geographic variables do not exactly line up to 

regulation boundaries. The Current Population Survey does not report counties for all 
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observations to maintain privacy. Instead, data on county or metropolitan area are indicated 

depending on the size of the county or metro area. However, since most non-attainment areas 

were urban, it is possible to identify most non-attainment areas. Using a combination of county 

and metropolitan areas I create a mapping of CPS observations to non-attainment and attainment 

areas. Using this matching strategy, I end up with some overlap between areas. So, some 

households that are in non-attainment areas may be mislabeled as being in an attainment area and 

vice-versa. Counties that are not identified in the CPS represent less than 7% of the regulated 

counties.  

Tying a concentration of ozone to locations identified is difficult for two reasons. The 

first is because the household may simply be part of a larger metropolitan area. Suppose I have a 

single state such as Georgia which has some counties that switched to non-attainment status 

because of the CAAA. The map in Figure 3.2 shows the non-attainment areas in blue and other 

attainment areas identified by the CPS in red. The CPS identifies some of the non-attainment 

counties directly, and some are included in larger metropolitan areas such as the Atlanta area. So, 

it is possible that some entire metro areas are identified as non-attainment even though they 

contain some counties identified as attainment. So, it is unclear how to assign pollution monitors 

since there will likely be several in a large metro area. Additionally, if a person is not in a non-

attainment (blue filled) area, then I know they are in Georgia and not in a regulated county. This 

means they are somewhere in the white area, but I cannot tell where so assigning a pollution 

monitor is even more difficult. One possibility is using an average weighted by population 

measured by the ACS. This will assign a state-wide average pollution level for attainment 

counties, so it is unclear how closely this matches local conditions.   
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The second major limitation of the data is the lack of an hourly wage variable. The CPS only 

asks detailed information about earnings for the outgoing rotation groups, so including an hourly 

wage measure cuts the sample by 90%. However, I may be able to overcome this with my 

difference in difference approach. While wages were higher in the non-attainment areas, we need 

to compare the difference in changes over time. For the sample that I have, the change in wages 

was largely the same between the two attainment and nonattainment areas. However, wages in 

the non-attainment areas fell slightly during the regulation period relative to the attainment areas. 

I show the change in wages relative to 2003 in Figure 3.3. My simple model of sick leave in the 

previous section predicts that, in general, workers are less likely to miss work as wages increase. 

Although, the effect could go the other way if higher wages mean more access to sick leave 

benefits. Keeping this in mind I now turn to the model using the full sample and dropping hourly 

wages from my analysis. 
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Figure 3.2: Map of Attainment, Non-Attainment, and CPS Identified Areas in Georgia 

 

Notes: This figure shows attainment and non-attainment counties in Georgia, along with the 

counties that are identified by the CPS. Blue counties were designated as non-attainment 

counties by the 2004 CAAA ozone regulations. All blue counties are identified in the CPS. Red 

counties were designated attainment counties and are also identified in the CPS data. White 

counties are attainment counties that are not identified in the CPS data due to censoring of low-

population areas. This map was created using software from www.diymaps.net. 
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Figure 3.3: Hourly Wages Over Time 

 

Notes: This graph shows the hourly wage relative to 2003 (vertical axis) over the years in the 

sample period (horizontal axis). The dashed line with red circle points represents the areas 

designated as attainment, and the blue solid line with triangle points represents the hourly wage 

in non-attainment areas. The vertical dashed line at 2003 indicates the last pre-period year. 

 

3.3.a Model Description 

I study the impact of the CAAA on lost workdays using a difference-in-difference (DiD) 

model. Using data from states with at least one non-attainment area I compare households that 

lived in a non-attainment area and those that lived in an attainment area. The assumption is that 

areas that were designated non-attainment saw a decline in pollutants regulated under the CAAA. 

I use this variation to identify the effect of air pollution regulation on sick leave. I define the 

following econometric model: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑁𝑜𝑛𝐴𝑡𝑡𝑎𝑖𝑛𝑖 + 𝛽2𝑃𝑜𝑠𝑡𝑖 + 𝛽3𝑁𝑜𝑛𝐴𝑡𝑡𝑎𝑖𝑛𝑖 × 𝑃𝑜𝑠𝑡𝑖 + 𝑆𝑡𝑎𝑡𝑒𝑖 + 𝑀𝑜𝑛𝑡ℎ𝑖 + 𝑿𝒊 + 𝜇𝑖 
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The above equation is the central research question for this paper. The outcome variable is a 

binary variable indicated whether or not person 𝑖 took at least one day of leave in the reference 

week. The reason for leave can vary for the specification. In the main analysis, I include whether 

or not the person took leave giving the reason “sick leave,” but I also include specifications 

where the worker took leave for other given reasons, such as vacation. NonAttain is a binary 

variable equal to 1 if the respondent is in a non-attainment area, and Post is equal to 1 if the 

observation is after 2003. The coefficient on the interaction of these two variables is the result of 

interest. Variables 𝑆𝑡𝑎𝑡𝑒 and 𝑀𝑜𝑛𝑡ℎ are state and month fixed effects. I use state fixed effects to 

account for unobserved heterogeneity by location. Month fixed effects are included to account 

for unobserved heterogeneity over the year, since sick days are clearly correlated with seasons. 

The variable 𝜇 is an idiosyncratic disturbance term assumed to be distributed normally with 

mean zero. The matrix 𝑿 is a collection of demographic variables: age, sex, marital status, race, 

education, and usual hours worked. 

This method is like that used by Walker (2013), whereas Greenstone and Chay (2003) 

use an instrumental variable (IV) approach. Using an IV approach is appealing because it gives 

the marginal effect of pollution concentration changes on outcome variables. Greenstone and 

Chay utilize datasets with fine geographic detail, which allows them to use attainment status to 

instrument a local pollution level. Due to the nature of CPS data restrictions, this may be 

unfeasible for this study. As I discussed before, given that a person is in an attainment area, I am, 

in many cases, unable to determine which county they are in. Therefore, I am unable to reliably 

assign a specific pollution concentration monitor to households in attainment areas. Additionally, 

it is not clear which pollution measure to use. For Greenstone and Chay, they investigate Total 

Suspended Particles (TSP), and simply use an average concentration level. For ground level 
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Ozone, however, temperature and time of day are important determinants of the impact of this 

pollutant. I leave these questions for future research, and instead focus on the estimates from my 

DiD design. 

 

3.4 Results 

 Table 3.3 provides the raw DiD results from the data using no controls. The data is 

divided into four samples, attainment areas before and after 2003 and non-attainment areas 

before and after 2003. The percent of workers who reported they worked part-time last week 

because of illness or other health limitations are reported in each cell. The columns are 

observations for before and after the treatment period (regulation began in 2004) and the rows 

are observations in attainment and nonattainment areas. The first difference is the difference over 

time which is shown in the third column. The difference between attainment and nonattainment 

areas is the second difference, which is reported in the third row. The difference between these 

numbers is the raw DiD estimate. This indicates that the Clean Air Act reduced the probability of 

missing work due to illness by about 0.14 percentage points. 

Table 3.3: Difference-in-Difference for Probability of Missing Work Due to Illness 

 Pre-

2003 

Post-

2003 

Time 

Diff. 

Attainment 2.72 2.33 -0.39 

Nonattainment 2.34 1.81 -0.53 

Group Diff. -0.38 -0.52 -0.14 

Notes: This table shows the uncontrolled DiD estimate for the effect of the 2004 CAAA ozone 

restrictions on missed work. The elements inside the borders are each the percent of workers that 

indicated that they missed at least one day of work in the previous week due to illness. The far 

right column shows the difference before and after the treatment period, and the bottom row 

shows the difference between groups in both periods. The difference between these differences is 

the raw DiD estimate, which is bolded in the bottom right corner. 
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 Figure 3.4 also shows the raw DiD estimate by year. For each panel in Figure 3.4, the 

horizontal axis is the year and the vertical axis reports the percent of people who reported they 

missed work in the reference week. Note that this percentage is expressed relative to 2003 such 

that the value in 2003 is zero. The top panel of this figure uses work missed for the given reason 

that the respondent was sick. The first interesting observation about both graphs is that the 

probability of missing work for either reason seems to have generally trended down during the 

sample period. However, the top panel shows that after 2003, non-attainment areas saw a bigger 

decrease in the probability of taking a sick day than workers in attainment areas. Additionally, 

this effect seems to be absent in the bottom panel, which shows the same calculation using 

missed work where the stated reason was vacation time. The bottom panel is something of a 

placebo test but not quite. An initial reaction may be that vacation days should not be correlated 

with a reduction in pollution. However, workers may take vacations to get away from polluted 

areas, so a reduction in pollution may reduce mitigating behavior. However, it seems from this 

figure that this is not the case. 

 In Table 3.4, I present the results from the full DiD regression. The outcome variable is 

binary, indicating whether the respondent missed work at all in the reference week. From left to 

right, the columns show the results using different reasons given for missing work. The first 

column uses all missed days, the second uses missed days because the respondent was sick, and 

the third uses missed days because the respondent was on vacation. These are linear probability 

models so coefficients can be interpreted as a percentage point change in the probability of 

missing work last week. The first column shows the results using all missed days regardless of 

their classification by the respondent. This could include missed days due to child care, civic 

duties, illness, and vacation days. The results suggest that the policy lowered the probability of 
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missing work for any reason by about .5 percentage points. The result for only sick days is 

reported in the second column. Here the coefficient is smaller but still statistically significant. 

Figure 3.4: Event Study for DiD Results 

 

Notes: This graph shows the raw DiD estimates for each year over the sample period. The 

dashed line with red circle points represents the areas designated as attainment, and the blue solid 

line with triangle points represents the hourly wage in non-attainment areas. The vertical dashed 

line at 2003 indicates the last pre-period year. The top panel uses only days missed where the 

respondent indicated that they missed work due to illness. The bottom panel uses only days 

missed where the respondent indicated that they missed work due to taking vacation time. 
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Table 3.4: Results for Effect of CAAA on All Missed Days, Sick Days, and Vacation Days 

 (1) (2) (3) 

VARIABLES All Days Sick Days Vacation Days 

    

Non-Attainment X Post -0.00497 -0.00110 -0.00025 

 (0.00263) (0.00053) (0.00073) 

    

Usual Hours -0.0193 -0.000922 -6.04e-05 

 (0.000268) (2.54e-05) (1.27e-05) 

Age 0.000956 0.000566 0.000488 

 (5.59e-05) (1.29e-05) (2.03e-05) 

Female 0.0474 0.00566 0.00979 

 (0.00177) (0.000358) (0.000526) 

White 0.0341 -0.00240 0.00873 

 (0.00237) (0.000521) (0.000577) 

Married 0.00233 -0.00930 0.00533 

 (0.00150) (0.000415) (0.000318) 

High School 0.00353 -0.00657 0.0140 

 (0.00586) (0.00187) (0.000968) 

College 0.0150 -0.0144 0.0310 

 (0.00727) (0.00201) (0.00113) 

Non-attainment -0.00619 -0.00213 -0.000830 

 (0.00374) (0.000995) (0.00120) 

Post -0.00414 -0.00163 -0.00236 

 (0.00140) (0.000384) (0.000457) 

    

Observations 5,472,460 5,472,460 5,472,460 

R-squared 0.284 0.009 0.016 

Notes: This table reports results from a DiD regression. The coefficient of interest is the 

coefficient on the interaction of variables Non-Attainment X Post. This is the difference in 

difference treatment effect of the CAAA on the outcome variable. The outcome variable is 

binary indicating whether the respondent missed work in the reference week. Three types of 

missed work are used: all days, sick days, and vacation days. Standard errors are reported in 

parentheses. 

 

These results indicate that the policy reduced the probability of taking a sick day by about .1 

percentage points. The final column is the same regression, except I use work missed for the 

stated reason of vacation time. The last column confirms the visual evidence in Figure 3.4, the 

coefficient on the treatment effect for vacation days is small and statistically insignificant, 
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indicating that the CAAA had no effect on the probability of taking a vacation day in the 

reference week. 

 I now use an event study framework to probe the robustness of the results in the earlier 

section. Results from this exercise are shown in Figure 3.5. For each of the regressions in the 

previous section, I interact the difference in attainment status with the year. So, each graph 

shows the conditional difference between attainment and non-attainment areas for each year in 

comparison to the year 2000. The black line in the middle blue shaded areas is the coefficient, 

and the outer shaded areas are the 95% confidence bounds. The top panel shows the change in all 

missed days. The results of the previous table are confirmed; after 2003 the coefficient becomes 

statistically significantly negative until it begins to trend upward in 2006. The second panel 

shows a similar pattern for sick days, except the measure is a bit noisier. In the final years of the 

sample, the 95% confidence bounds cross the 0 threshold. The last panel shows the event study 

for vacation days. No clear pattern emerges here, and the estimate simply bounces around zero 

over the regulation period. There does seem to be a statistically significant rise in vacation time 

directly at the beginning of the sample for the years 2001 and 2002. However, the coefficients 

quickly revert back to zero for the rest of the sample period. Again, confirming the results found 

in Table 3.4 and Figure 3.4. 
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Figure 3.5: Event Study for DiD Coefficients 

 

Notes: This figure shows the regression results from interacting the difference in attainment 

status with each year in my sample period. 2000 is dropped and used as the reference year. The 

top panel uses work missed for any reason, the second panel uses work missed due to illness, and 

the third panel uses work missed for vacation time. The black line and points are the estimated 

coefficients and the blue shaded areas show the 95% confidence bands. The vertical dashed line 

at 2003 indicates the last pre-period year. 
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 Lastly, I also consider some other specifications of my econometric model. In Table 3.5, I 

remove month fixed effects and add year fixed effects. The results are largely the same across all 

specifications. The coefficient on the interaction term is slightly smaller for column 3, but this 

has the most restrictions, so I am losing a lot of variation between groups. Additionally, the r-

squared remains quite small, so I am likely not gaining much explanatory power from adding in 

year fixed effects. The final regression results I show are for the sample including hourly wages. 

The results of regressions including hourly wages are reported in Table 3.6. The estimates of the 

interaction effect on all days and sick days are smaller, but they are going the same direction as 

in Table 3.4.  These estimates are much noisier due to having to drop most of the sample to 

account for missing wages. Additionally, the CPS includes the supplemental questions on 

earnings only in March. However, ground level ozone is often created with volatile compounds 

combine in hot weather. This makes summer months the most likely times when ozone would 

cause respiratory problems. Due to these issues, it is unlikely that I would be able to pick up 

effects using only observations during the month of March. 

 From my preferred specifications, my estimates predict that the probability of missing 

work was reduced by about 0.1 percentage points due to the CAAA 2004 Ozone restrictions. 

According to CPS data, counties that switched attainment status covered about 30% of the 

population in the United States. Since workers missed one day when they did miss work in a 

given week, a 0.1 percentage point increase is an decrease of about 2 million sick days. Using an 

average daily wage of $114, the benefits from decreased sick leave is approximately $248 

million. In their second prospective of the benefits of the CAAA, the EPA estimated that the PM 

2.5 and Ozone restrictions of the CAAA decreased sick days by about 13 million in 2010. This is 

larger than my estimate, however, it includes all previous Ozone restrictions as well as PM 2.5  
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Table 3.5: Sensitivity Analysis 

 (1) (2) (3) 

 Sick Days Sick Days Sick Days 

    

NonAttain X Post -0.00110 -0.00116 -0.00103 

 (0.000533) (0.000537) (0.000528) 

    

Usual Hours -0.000922 -0.000925 -0.000924 

 (2.54e-05) (2.56e-05) (2.54e-05) 

Age 0.000566 0.000566 0.000568 

 (1.29e-05) (1.29e-05) (1.29e-05) 

White -0.00240 -0.00238 -0.00243 

 (0.000521) (0.000521) (0.000521) 

Female 0.00566 0.00568 0.00564 

 (0.000358) (0.000358) (0.000358) 

Married -0.00930 -0.00926 -0.00932 

 (0.000415) (0.000412) (0.000416) 

HS -0.00657 -0.00654 -0.00656 

 (0.00187) (0.00188) (0.00187) 

CO -0.0144 -0.0144 -0.0144 

 (0.00201) (0.00201) (0.00201) 

NonAttain -0.00213 -0.00207 -0.00221 

 (0.000995) (0.000999) (0.000985) 

Post -0.00163 -0.00163 -0.00492 

 (0.000384) (0.000383) (0.000498) 

    

Year Fixed Effects   X 

Month Fixed Effects X  X 

Constant 0.0638 0.0584 0.0664 

 (0.00321) (0.00305) (0.00320) 

    

Observations 5,472,460 5,472,460 5,472,460 

R-squared 0.009 0.009 0.009 

Notes: This table reports results from a DiD regression. The coefficient of interest is the 

coefficient on the interaction of variables Non-Attainment X Post. This is the difference in 

difference treatment effect of the CAAA on the outcome variable. The outcome variable is 

binary indicating whether the respondent missed work in the reference week. For this table I 

considered other specifications including year and month fixed effects. 
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Table 3.6: Regressions Including Hourly Wage 

 (1) (2) (3) 

VARIABLES All Days Sick Days Vacation Days 

    

NonAttain X Post -0.00310 -0.000188 0.000642 

 (0.00184) (0.000932) (0.00101) 

    

Usual Hours -0.0263 -0.000945 8.64e-05 

 (4.51e-05) (2.28e-05) (2.48e-05) 

Hourly Wage -0.000831 -0.000126 0.00104 

 (6.26e-05) (3.16e-05) (3.43e-05) 

Age 0.000518 0.000776 0.000509 

 (3.45e-05) (1.74e-05) (1.89e-05) 

Female 0.0438 0.00603 0.00803 

 (0.000879) (0.000444) (0.000483) 

White 0.0255 -0.00116 0.00598 

 (0.00110) (0.000555) (0.000604) 

Married -0.00114 -0.00977 0.00321 

 (0.000885) (0.000447) (0.000486) 

High School 0.0135 -0.00393 0.0109 

 (0.00128) (0.000649) (0.000706) 

College 0.0287 -0.0104 0.0171 

 (0.00150) (0.000760) (0.000826) 

NonAttain -0.00317 -0.00183 -0.00129 

 (0.00135) (0.000682) (0.000741) 

Post -0.00252 -0.00227 -0.00397 

 (0.00179) (0.000535) (0.000582) 

    

Constant 1.178 0.0609 -0.0383 

 (0.00469) (0.00231) (0.00251) 

    

Observations 715,894 715,894 715,894 

R-squared 0.355 0.008 0.013 

Notes: This table reports results from a DiD regression. The coefficient of interest is the 

coefficient on the interaction of variables Non-Attainment X Post. This is the difference in 

difference treatment effect of the CAAA on the outcome variable. The outcome variable is 

binary indicating whether the respondent missed work in the reference week. These regressions 

are the same as Table 3.4, except I include the hourly wage. This is only included for the sample 

answering questions in March, however, so it drops a great deal of the sample. 
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restrictions. Given that restrictions in 1990 were likely larger and particulate matter may have 

larger heath effects, I would argue that my results support the EPA estimates of lost work days 

from air pollution. 

 

3.4.a Further Research 

 I am currently focused on three main objectives for future research. The first is including 

the PM 2.5 non-attainment counties. Using this policy could help improve my estimates as it 

provides more policy variation. The second area of continued research is using an instrumental 

variables approach to get point estimates based on some measure of pollution. This may require 

more detailed survey data if pollution maps poorly to the data. I will also likely need to use 

several measures of Ozone, since it is unclear which is most hazardous for human health. The 

third area of continued research is attempting to include hourly wages in the model. It may be 

possible to increase my sample size by increasing the number of years. However, this means that 

I would have to include years from the Great Recession, which has confounding effects. This 

might be able to be mitigated by using CPS datasets that match observations across surveys. If I 

assume that a person’s wage does not change over the year, then I can simply assign the wage 

observed each March to all other observations for that person. 

 

3.5 Conclusion 

 There are many potential gains to studying missed work and environmental quality. In 

this paper, I have explored the choice a worker faces when deciding whether to take a sick day. 

This is important because it can affect how we measure productivity gains from environmental 
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regulation. Less sick leave time is often included in government benefits analysis for pollution 

control policies; however, it has not been studied in the causal literature. This effect is effect is a 

broader benefit, in that the individual benefits are small, but it effects many more people. 

Mortality effects, for example, are a narrow benefit in that it only affects a few people, but the 

individual benefits are large. 

My results indicate that there is some effect from the CAAA on sick leave from work, 

confirming earlier work on pollution and missed work. I find that the CAAA ozone regulations 

of 2004 reduced the probability of taking a sick day by 0.1 percentage points. This indicates that 

there is some productivity to be gained from environmental regulation. According to the BLS, 

there were 139 million employed person in the US in 2004. Using my DiD estimate and the fact 

that on average workers missed one day in the previous week when they missed work, the 

CAAA decreased sick leave by 3 million days in 2004.  

I can also use the estimates from this study to evaluate the predictive ability of the EPA’s 

simulation model. The effect I measure in this paper is just from one regulation of the CAAA. If 

previous actions had similar effects, then the EPA’s estimate of 17 million fewer sick leave days 

seems reasonable. Evaluating the simulation methods used to determine policy impacts is a 

necessary endeavor. Computational models are important influences on policy, and researchers 

should evaluate how well they perform in predicting policy effects. Using causal empirical 

techniques can provide a good framework for doing so. 
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Appendix A: Data and Calibration 

 I use data from the World Input-Output Database to calibrate the model. This data 

includes 35 industries, which I aggregate to 15 industries. The WIOD also includes emission data 

and energy use by industry, so I can also calibrate emissions. In this section, I first detail how I 

aggregate or disaggregate the industries and create the input-output tables used to calibrate the 

economic portions of the model. I then detail how I connect data on emissions to the economic 

data. 

 The first task is to create a worldwide input-output table. This is a matrix that shows the 

circular flow of goods in an economy. Each row represents an input to the industry listed in the 

column. To start, I use the 2011 World Input-Output Table, which represents 35 industries across 

40 countries. All other countries are included in a final region termed “rest of the world,” so the 

data represents a balanced input-output matrix for the whole world.  The 35 original industries 

are listed in Table A.1. A code is provided for each industry; those that start with “c” are the 

original industries from the WIOD that I start with. The industries with codes that start with “a” 

are the added fossil fuel industries. The goal of the process outlined here is to create a balanced 

input-output matrix with these three fossil fuel industries separated from the mining industry. 

To capture emissions accurately, I need to separate the fossil fuel extraction industries 

from the rest of the mining industry. I first disaggregate the “Mining and Quarrying” industry, 

which contains the extraction of fossil fuels and all other mined resources. I can do this using a 

“use table,” which is available for each country in my data from WIOD. The use table reports 

how much of each commodity an industry uses in production. The use tables in the WIOD report 

much more detailed subcategories for the mining industry, which are listed in Table A.2. For 

each industry, I find the amount of each commodity input as a share of the total mining inputs.  
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Table A.1: Industry Aggregation 

Code Detail Name Agg. Industry 

a1 Coal Mining Coal Extraction 

a2 Oil Extraction Oil Extraction 

a3 Gas extraction Natural Gas Extraction 

c1 Agriculture, Hunting, Forestry and Fishing Agriculture 

c2 Mining and Quarrying Mining 

c3 Food, Beverages and Tobacco Goods Manufacturing 

c4 Textiles and Textile Products Goods Manufacturing 

c5 Leather, Leather and Footwear Goods Manufacturing 

c6 Wood and Products of Wood and Cork Goods Manufacturing 

c7 Pulp, Paper, Paper , Printing and Publishing Goods Manufacturing 

c8 Coke, Refined Petroleum and Nuclear Fuel Petroleum Refining 

c9 Chemicals and Chemical Products Chemical Manufacturing 

c10 Rubber and Plastics Chemical Manufacturing 

c11 Other Non-Metallic Mineral Chemical Manufacturing 

c12 Basic Metals and Fabricated Metal Other Manufacturing 

c13 Machinery, Nec Other Manufacturing 

c14 Electrical and Optical Equipment Other Manufacturing 

c15 Transport Equipment Other Manufacturing 

c16 Manufacturing, Nec; Recycling Other Manufacturing 

c17 Electricity, Gas and Water Supply Utilities 

c18 Construction Construction 

c19 Sale, Maintenance and Repair of Motor Vehicles and 

Motorcycles 

Consumer Services 

c20 Wholesale Trade and Commission Trade, Except of Motor 

Vehicles 

Consumer Services 

c21 Retail Trade, Except of Motor Vehicles; Household Repair Consumer Services 

c22 Hotels and Restaurants Consumer Services 

c23 Inland Transport Transportation 
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c24 Water Transport Transportation 

c25 Air Transport Transportation 

c26 Other Supporting and Auxiliary Transport Activities Transportation 

c27 Post and Telecommunications Business Services 

c28 Financial Intermediation Business Services 

c29 Real Estate Activities Business Services 

c30 Renting of Equipment and Other Business Activities Business Services 

c31 Public Admin and Defence; Compulsory Social Security Social Services 

c32 Education Social Services 

c33 Health and Social Work Social Services 

c34 Other Community, Social and Personal Services Social Services 

c35 Private Households with Employed Persons Social Services 

 

 

Table A.2: Sub-Components of Mining Industry 

Coal and lignite; peat 

Crude petroleum and natural gas 

Uranium and thorium ores 

Metal ores 

Other mining and quarrying 

products 
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To give a concrete example, we can look at the US’s non-metallic manufacturing industry. This 

industry uses $20.5 billion worth of mining inputs. The use table tells us that 32% of mining 

inputs are coal, and the rest are metal ores. So, for the non-metallic industry in the US, I assign 

32% of mining inputs as coal and the rest as other mining. Using this method, I split inputs for 

each industry into coal, oil and gas extraction, and other mining.  or the “rest of the world” 

region, I use the average shares from all other countries. Once each mining industry is split, I 

have essentially created two more industries: coal mining and oil and gas extraction. Now, I turn 

to separating natural gas and crude oil. 

The use tables can define coal mining and oil and gas extraction, but this is as detailed as 

the tables get. So, to separate natural gas from crude oil, I must use the energy use accounts. The 

energy use tables are included with WIOD and matched to world input-output tables. The tables 

show fuel use by each industry for every country in the dataset. Fuel use is quoted in joules, so I 

need to convert these quantities to the units in the input-output matrix, dollars. To do this, I 

create a ratio of prices for oil and natural gas per joule. I use data from the Energy Information 

Agency (EIA) in the US and the International Energy Agency (IEA) in France. These agencies 

give price indices for natural gas and crude oil in standard units. To find a price per joule, I first 

calculate average worldwide prices for natural gas and oil in their respective units. For natural 

gas, the price is about $3.40 per million British thermal unit (Btu), and for oil the price is $102 

per barrel. Using the energy conversion calculators from the EIA, a barrel of oil contains about 6 

times as many joules as a Btu of natural gas. Using this, we get that crude oil is about 4.9 times 

more expensive than natural gas per joule.  

After getting the price ratio, I can then estimate input volumes for oil and natural gas 

separately. This process is like the previous separation of coal and oil and gas extraction. For 
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each industry, I multiply the joules of crude oil used in production by my price ratio, 4.9, and 

take the corresponding shares. So, if an industry in the US used 3,000 Terajoules of crude oil and 

5,000 Terajoules of natural gas, then I would estimate 75% of their oil and gas extraction inputs 

were crude oil. So, if this spends $20 billion on oil and gas extraction inputs, I would estimate 

$15 billion was spent on crude oil and the rest spent on natural gas. This process needs to then be 

done for every industry in every country.  

Here it is important to note that most crude oil is only used by one industry: petroleum 

refining. This makes sense as oil is not really useful until it is refined into a stable petroleum 

product. Additionally, the major buyer of natural gas is the electricity and utilities industry. This 

essentially means that the price ratio is not a strong determinant of the final data. When I use 

other price ratios to check the robustness of the procedure, I get a very similar input-output 

matrix. Using the final data and an average price per barrel of $100, my estimates indicate that 

the US consumed 17.4 million barrels of oil per day in 2011. This is close to the estimate from 

the EIA of 18.8 million barrels per day. 

At this point, I have separated the rows of the input-output matrix, and now I need to 

construct the columns. To disaggregate the columns of the IO matrix, I would need 

disaggregated production data for each of the fossil fuel extraction industries. The energy use 

tables show how much of each fossil fuel is used by each industry. WIOD does not show how 

much of each industry output is used by each fossil fuel industry. Recall that this is all 

aggregated in the “mining” industry in the original data. To separate the columns of the input-

output matrix, I sum the elements of each row to get the total output for each fossil fuel industry. 

I then use the shares of total output to disaggregate the columns. This makes the assumption that 

production processes are similar between mining industries.  
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This process yields a balanced input-output matrix that includes fossil fuel industries. 

This can then be linked to emission data to calibrate the environmental portion of the model. A 

visual overview of a simple example is shown in Figure A.1. This figure shows a fabricated 

input-output matrix for one country with two industries: agriculture and mining. The mining 

industry is then disaggregated into 3 fossil fuel industries and 1 mining industry.  

 

Figure A.1: Example Energy Decomposition of Input-Output Matrix 

 

 

A.1 Region and Industry Aggregation 

I now have a balanced input-output matrix for the world economy that includes fossil 

fuels. Table A1 shows the 35 original industries plus the 3 added fossil fuel industries, for a total 
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of 38 industries. I now aggregate some of the other 35 industries to create 12 broad economic 

industries and 3 fossil fuel industries. The final aggregated group for each industry is listed in the 

third column of Table A.1. Aggregation at this point is simple; for each new industry, the rows 

and columns are summed to create a new element for the matrix. For example, to create he 

“Chemical Manufacturing” industry, I sum the rows for industries c9, c10, and c11 to create one 

row for the new aggregated industry group. I then sum the columns for c9, c10, and c11 to create 

a new column.  

This process creates a new 15 industry input-output matrix for the world. From the 40 

countries in the WIOD, I aggregate them into 2 countries and three regions. The first two 

countries are the United States (US) and China. The three regions are North America, Europe, 

and the Rest of the World. The North America region is the combination of Canada and Mexico, 

since these are big trading partners for the US. The second region, Europe, is a combination of 

the countries in my data that are a European Union member. The final region, Rest of the World, 

is a combination of all the countries left and the world component of the original WIOD matrix. 

Each country and its associated group are listed in Table A.3. The second column shows the 

name of the country, and the third column shows the region. To create the final dataset, I sum all 

the columns and rows by industry across all countries in a region. So, the column for a given 

industry in the Europe region would be the sum of the columns for that industry across all 

countries in the Europe region.  

 

A.2 Calibration Process 

Once the data sources are correctly aggregated, a balanced SAM is produced. This gives 

the values of inputs and outputs for each industry as well as final demand for goods and factors. 



116 
 

To calibrate the model, I adopt a common strategy of choosing parameters from the literature and 

solving for the other parameters to match my SAM. To do this, I assume the SAM economy is in 

equilibrium with each price equal to unity. 

For the production nests, I first choose the substitution elasticity 𝜎ℎ and I use the input 

shares to create the alpha parameters for the CES equation. Define 𝑋̂𝑛𝑖
𝑗

 as the share of input 𝑖 in 

the production process of firm 𝑗 in region 𝑛. The share parameters are calibrated as 𝑋̂𝑛𝑖
𝑗

1

𝜎ℎ
. Once 

these are set, I set prices to unity and solve for the gamma parameter in equilibrium using an 

arbitrary good 𝑘 such that 𝑋̂𝑛𝑘
𝑗

> 0.  

𝛾𝑛ℎ
𝑗

= (
𝑋̂𝑛𝑘

𝑗
(∑ 𝛼𝑛𝑖

𝑗 𝜎ℎ𝐻
𝑖=1 )

−𝜎ℎ
1−𝜎ℎ

𝛼𝑛𝑘
𝑗

)

1−𝜎ℎ
𝜎ℎ

 

This process is repeated for all industries and regions for the fossil fuel, intermediate, and 

materials nests. The top production nest is calibrated in a similar fashion. There is no need to set 

an elasticity for this nest since it is Cobb-Douglas. The 𝜔𝑛
𝑗
 parameter is set as the share of 

materials input in production for industry 𝑗 in region 𝑛. I then set prices to unity and solve for the 

scale parameter: 

𝛾𝑛𝑝
𝑗

= 𝜔𝑛
𝑗

(
𝜔𝑛

𝑗

1 − 𝜔𝑛
𝑗
)

𝜔𝑛
𝑗

−1

 

 

 

 

 



117 
 

Table A.3: Countries and Associated Regions 

Abbreviation Name Region 

AUS Australia Rest of the World 

AUT Austria Europe 

BEL Belgium Europe 

BGR Bulgaria Europe 

BRA Brazil Rest of the World 

CAN Canada North America 

CHN China China 

CYP Cyprus Europe 

CZE Czech Republic Europe 

DEU Germany Europe 

DNK Denmark Europe 

ESP Spain Europe 

EST Estonia Europe 

FIN Finland Europe 

FRA France Europe 

GBR United Kingdom Europe 

GRC Greece Europe 

HUN Hungary Europe 

IDN Indonesia Rest of the World 

IND India Rest of the World 

IRL Ireland Europe 

ITA Italy Europe 

JPN Japan Rest of the World 

KOR Republic of Korea Rest of the World 

LTU Lithuania Europe 

LUX Luxembourg Europe 

LVA Latvia Europe 

MEX Mexico Rest of the World 

MLT Malta Europe 

NLD Netherlands Europe 

POL Poland Europe 

PRT Portugal Europe 

ROU Romania Europe 

RUS Russia Rest of the World 

SVK SlovakRepublic Europe 

SVN Slovenia Europe 

SWE Sweden Europe 

TUR Turkey Rest of the World 

TWN Taiwan Rest of the World 

USA UnitedStates United States 
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The first set of household parameters are those that govern consumption of goods, 𝜃𝑛
𝑗
, 

which is the share parameter on good 𝑗 for the household in region 𝑛. These are simply 

consumption shares from the WIOD. Define 𝑐̂𝑛
𝑗
 as the observed real consumption level of good 𝑗 

by region 𝑛. Then set the share parameter 

𝜃𝑛
𝑗

=
𝑐̂𝑛

𝑗

∑ 𝑐̂𝑛
𝑖𝐽

𝑖=1

 

The labor-leisure elasticity parameter 𝜈 is set exogenously from the literature. To get the scale 

parameter I first need to set a total labor supply. For this, I set the labor supply as equal to total 

income for the region. Then using the supply of labor observed in the data, 𝑙𝑛, I set the scale 

parameter as: 

𝜇𝑛 =
1

(𝐿̅𝑛 − 𝑙𝑛)
1
𝜈

 

While I use a single elasticity value for the world in this example, in the application these can 

vary by industry and region. I do this in the last section of the robustness checks. 

 The last step is to calibrate the table of carbon coefficients. This is done by first 

connecting emissions data from the environmental satellite accounts to fuel consumption data. 

Define 𝑄̂𝑛
𝑓
 as the total amount of fuel 𝑓 consumed by region 𝑛 measured in billions of $US, and 

define 𝐸̂𝑛
𝑓
 as the total emissions by region 𝑛 from fuel source 𝑓 measured in gigatons (one 

million tons) of CO2. The carbon coefficient for this region’s fuel is defined as  

𝑐𝑐𝑛
𝑓

=
𝐸̂𝑛

𝑓

𝑄̂𝑛
𝑓
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This gives the gigatons of CO2 that are emitted on average when one unit of fuel 𝑓 is consumed. 

Carbon coefficients are reported in Table A.6. 

 

A.3 Monte Carlo Simulation 

 In the robustness section of the paper, I randomly draw parameter values to create a grid 

to search over. For each variable, I draw a value from a uniform distribution within a specified 

range. For production elasticities and the leisure elasticity, I choose a range between -50% and 

+50% of the baseline value. This covers most of the estimates that have been found in the 

literature. The sector elasticity is varied between 0 and 2. This covers the range of estimates I 

found using regression, as well as the possibility of 0, which is perfectly immobile labor. The 

carbon coefficients are varied by fuel type, and the range of possible values is between the 

maximum and minimum values for each fuel type. The parameters chosen and their respective 

ranges are reported in Table A.4. 

Table A.4: Ranges for Randomization of Parameter Values 

Parameter Range 

Min 

Range 

Max 

Materials elasticity 0.485 1.455 

Intermediate elasticity 0.44 1.32 

Fossil fuel elasticity 0.535 1.605 

Sector elasticity 0 2 

Leisure elasticity 0.25 0.75 

Coal carbon coefficient 0.0200 0.0310 

Natural gas carbon coefficient 0.0030 0.0073 

Refined Petroleum carbon coefficient 0.0024 0.0050 
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Table A.5: Trade Elasticities 

Industry 
Hertel et. al. 

(2007) 

Caliendo and Parro 

(2015) 

Coal Extraction 6.0 15.7 

Oil Extraction 10.4 15.7 

Natural Gas Extraction 34.4 15.7 

Agriculture 5.7 8.1 

Mining 1.8 15.7 

Goods Manufacturing 6.4 7.0 

Petroleum Refining 4.2 51.1 

Chemical Manufacturing 6.6 3.2 

Other Manufacturing 7.4 6.3 

Utilities 7.0 4.6 

Construction 7.0 4.6 

Consumer Services 7.0 4.6 

Transportation 7.0 4.6 

Business Services 7.0 4.6 

Social Services 7.0 4.6 

 

 

 

 

 

Table A.6: Carbon Coefficients 

Region 
Coal Petroleum 

Natural 

Gas 

China 0.03098 0.00365 0.00344 

Europe 0.02071 0.00236 0.00723 

North America 0.02389 0.00385 0.00731 

United States 0.02986 0.00368 0.00495 

Rest of the World 0.01997 0.00505 0.00295 
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Table A.7: Example of a Transportation Matrix for Goods Manufacturing Industry 

 
China Europe 

North 

America 

United 

States 

Rest of the 

World 

Total 

Demand 

China $2,555.96 $20.64 $5.05 $10.87 $57.91 $2,650.43 

Europe $74.66 $1,992.65 $4.22 $18.22 $201.08 $2,290.84 

North America $14.06 $10.61 $358.21 $47.27 $24.37 $454.52 

United States $64.10 $37.38 $46.90 $1,343.19 $125.74 $1,617.31 

Rest of the 

World 
$211.02 $246.37 $15.33 $59.65 $4,126.08 $4,658.44 

Total Supply $2,919.80 $2,307.66 $429.71 $1,479.20 $4,535.17  

Notes: Each row presents the demand from the region in the first column that is supplied by the 

region in the header row. All entries are in Billions of $US. 
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Appendix B: Empirical Validation of the Gravity Algorithm 

The question might now be asked, how well does my gravity algorithm fit the data? In 

this section I use the dataset from the WIOD to test how well the model predicts trade flows 

given data on consumption and production. Note that in this section I will not be using the full 

CGE model described. Instead, I am using production and consumption amounts observed in the 

data to predict trade flows between countries. When I run the policy simulations later in the 

paper, these numbers will come from the CGE model to predict trade flows in the counterfactual 

equilibrium. 

The gravity model I describe outputs a transportation polytope, which by construction 

also describes a joint probability function. If I use the marginal probabilities of consumption and 

production, then the function is such that it takes in two marginal probability density functions 

(PDF) and outputs a discrete joint probability function. 

𝑃𝑖𝑛
𝑗

= 𝐶(𝑓𝑗(𝑑𝑖
𝑗
), 𝑓𝑗(𝑠𝑛

𝑗
); 𝐀j) 

Here 𝑃𝑖𝑛
𝑗

 is the probability that a given good 𝑗 is traded between origin 𝑛 and destination 𝑖. This 

probability is a function of the PDF of demand in the destination 𝑓𝑗(𝑑𝑖), the PDF of supply in 

the origin 𝑓(𝑠𝑛), and a matrix of parameters 𝐀𝑗. Each element of the matrix is calculated as: 

𝑎𝑛𝑧
𝑗

=
𝑋𝑖𝑛

𝑗(𝑡)

𝑋̅𝑖
𝑗(𝑡)

 

Which is just the share of destination 𝑖’s consumption of good 𝑗 that comes from origin 𝑛. I 

calculate this parameter using data for a given year 𝑡. For the primary specification, I use the 

year prior to the year I am estimating (i.e., if I was predicting trade flows in year 𝑡, I use a matrix 

parameterized in year 𝑡 − 1). Using this setup, I predict 𝑃𝑖𝑛
𝑗

 and multiply the predicted 
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probabilities by total consumption (or production), which gives the predicted trade flow from 

region 𝑛 to region 𝑖. 

𝑋̂𝑖𝑛
𝑗

= 𝑃̂𝑖𝑛
𝑗

× ∑ 𝑑𝑞
𝑗

𝑁

𝑞=1

 

 The Armington model is specified as the following regression equation from Feenstra et 

al. (2018), which is essentially the same form used in Armington (1969).  

ln (
𝑋𝑖𝑛

𝑗

𝑋𝑖(ℎ𝑜𝑚𝑒)
) = 𝑌𝑖𝑛

𝑗
= 𝛽0 + ∑ ∑ 𝛽𝑖

𝑗 (
𝑃𝑛

𝑗

𝑃
𝑖(ℎ𝑜𝑚𝑒)
𝑗

)

𝑁

𝑖=1

𝐽

𝑗=1

+ 𝛾𝑖 + 𝜙𝑛 + 𝜃𝑗 + 𝜖 

Here 𝑋𝑖𝑛
𝑗

 is the trade flow of good 𝑗 from origin 𝑛 to destination 𝑖 and 𝑋𝑖(ℎ𝑜𝑚𝑒)
𝑗

 is total 

consumption of good 𝑗 from home in destination 𝑖. 𝑃𝑛
𝑗
 is the price of good 𝑗 from origin 𝑛, and 

𝑃𝑖(ℎ𝑜𝑚𝑒)
𝑗

 is the home price of good 𝑗 in destination 𝑖. The remaining terms, 𝛾𝑖,  𝜙𝑛 , and 𝜃𝑗  are 

fixed effects by destination, origin, and good type, respectively. The Armington elasticity, 𝜎𝑖
𝑗
, 

can be calculated as 𝜎𝑖
𝑗

= 1 − 𝛽𝑖
𝑗
. 

 The equation above is estimated using regression and, then using the same data, I predict 

𝑌̂𝑖𝑛
𝑗

 and use this to predict trade flows. 

𝑋̂𝑖𝑛
𝑗

= exp(𝑌̂𝑖𝑛
𝑗

) 𝑋𝑖(ℎ𝑜𝑚𝑒) 

𝑋̂𝑖𝑛
𝑗

 is the predicted trade flow and 𝑋𝑖(ℎ𝑜𝑚𝑒) is the home consumption observed in the dataset. 

 To create Figure 2.2, I use the Armington model set forth here to predict the trade flows 

in the data. In the in-sample panel, this uses all years included in the dataset. In the out-of-sample 

panel, I use data from 1995 through 2000 to estimate the coefficients in the model. I then used 
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these estimates to predict trade flows in 2011. The gravity model is the same. I use the empirical 

version of the gravity model I developed above to predict trade flows. In the in-sample model, I 

use the data from the year directly prior to generate 𝐀j and predict a given year’s trade flows. To 

create the out-of-sample model, I use data from 2000 to generate 𝐀j and predict trade flows in 

the year 2011. 
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Table B.1: Mapping Between WIOD Industries and WITS Commodities 

WIOD Industry WITS Industry 

Agriculture, Hunting, Forestry and Fishing Animal 

Mining and Quarrying Minerals 

Food, Beverages and Tobacco Food Products 

Textiles and Textile Products Textiles and Clothing 

Leather, Leather and Footwear Footwear 

Wood and Products of Wood and Cork Wood 

Pulp, Paper, Printing and Publishing Miscellaneous 

Coke, Refined Petroleum and Nuclear Fuel Fuels 

Chemicals and Chemical Products Chemicals 

Rubber and Plastics Plastic or Rubber 

Other Non-Metallic Mineral Stone and Glass 

Basic Metals and Fabricated Metal Metals 

Machinery, Nec Mach and Elec 

Electrical and Optical Equipment Mach and Elec 

Transport Equipment Transportation 

Manufacturing, Nec; Recycling Miscellaneous 

Electricity, Gas and Water Supply Utilities and Construction 

Construction Utilities and Construction 

Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; 

Retail Sale of Fuel 
Consumer goods 

Wholesale Trade and Commission Trade, Except of Motor Vehicles 

and Motorcycles 
Consumer goods 

Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of 

Household Goods 
Consumer goods 

Hotels and Restaurants Consumer Services 

Inland Transport Transportation 

Water Transport Transportation 

Air Transport Transportation 

Other Supporting and Auxiliary Transport Activities; Activities of 

Travel Agencies 
Transportation 

Post and Telecommunications Transportation 

Financial Intermediation Business Services 

Real Estate Activities Business Services 

Renting of M&Eq and Other Business Activities Business Services 

Public Admin and Defence; Compulsory Social Security Consumer Services 

Education Consumer Services 

Health and Social Work Consumer Services 

Other Community, Social and Personal Services Consumer Services 

Private Households with Employed Persons Consumer Services 

Notes: This table shows how industry categories in WIOD were matched to commodity 

categories in WITS. 
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Appendix C: Model of Sick Leave 

Suppose a sick leave program works like this: each year a worker is allocated a specified 

number of paid sick days (possibly based on seniority) which often accrue year over year. 

Allowing employees to bank their sick days is sometimes called “carry-over.” If the employee 

gets sick, they can still get their wage, but it reduces the number of sick days in their sick leave 

bank. When the employee quits or retires, then the employer might pay them for unused days in 

their sick leave bank. This policy likely varies widely by company and is called a “cash-out” 

rule. I do not know how many sick leave programs allow carry-over and cash-out since I have 

not found statistics of the specific clauses of companies. I am mainly using anecdotal evidence to 

derive these rules. However, there may be an employer incentive to set up sick leave in this 

manner. If employees have several sick days and were about to lose them, then they have a 

strong incentive to take them all at one time before leaving. Employers might prefer to avoid this 

clumping of absenteeism, and may offer some benefit to be paid for sick days. 

Now I turn to the strategic decision of an agent facing the above paid sick leave regime. 

Suppose a worker works for two periods and has one period of paid sick leave. He wakes up the 

first period and is given a draw - healthy (H) or sick (S), and he is sick with some probability 𝜃. 

He can then choose to attend (A) work anyway, or he can choose to take his sick day (D). If he 

attends work sick ,he pays some cost (P) which could include utility loss from being miserable at 

work or some medical intervention. If he chooses to stay home from work in period 1, he uses 

his sick day. If he gets sick again in period two and stays home, he receives no wage for that 

period. Finally, if he goes to work in period one he receives 𝑤1. In period two he receives 𝑤2, 

and If he has not used his sick day, then he will cash it out for an additional benefit b.  
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I can solve this simultaneous game by first finding the optimal decision in period 2. First 

I assume that a healthy worker always attends (he does not shirk/play hooky). Consider a worker 

who gets sick in period 1. If he uses his sick day, he arrives in period 2 with no sick day banked. 

If he gets sick again, he will only attend work if Eq. 1 is true. 

 𝑤2 > 𝑃2 (1) 

If he attended work while sick in period 1 then he arrives in period 2 with a sick day banked. If 

he gets sick again, he only attends work if it is worth it to get the benefit or if Eq. 2 is true. 

 𝑏 > 𝑃2 (2) 

Note that if 𝑏 = 0 then he will always take his sick day if he is sick. Additionally, notice that a 

worker without paid sick leave will attend work if Eq. 1 is true regardless of what happened in 

period 1. Now assume that 𝑏 < 𝑤2 and that 𝑃2~𝑈(𝑃, 𝑃). So, I can divide up the distribution of 

costs like this 

Pr(𝑏 < 𝑤2 < 𝑃2) = 𝛽𝐻 

Pr(𝑏 < 𝑃2 < 𝑤2) = 𝛽𝑀 

Pr(𝑃2 < 𝑏 < 𝑤2) = 𝛽𝐿 

𝛽𝐻 + 𝛽𝑀 + 𝛽𝐿 = 1 

These are the probabilities of getting high (H), middle (M), and low (L) costs respectively. So, a 

person with paid sick leave in the second period has a lower probability of attending work than a 

worker without paid sick leave. If a worker with paid sick leave gets sick in the first period and 

attends work, his expected payoff from getting sick in the second period is: 



128 
 

 (𝑤1 − 𝑃1) + 𝑤2 + 𝛽𝐿(𝑏 − 𝑃2) 

 

(3) 

If he is healthy in the second period he gets 

 𝑤1 − 𝑃1 + 𝑤2 + 𝑏 (4) 

 So, the expected payout from attending work in period 1 is found by taking the expectations of 

the payouts in equations 3 and 4. This reduces to: 

 𝐸(𝐴) = 𝑤1 − 𝑃1 + 𝑤2 + 𝑏 + 𝜃[𝛽𝐿(𝑏 − 𝑃2) − 𝑏] (5) 

Now consider the same worker decides to take his sick day in period 1. If he gets sick in period 2 

again, then his expected value from being sick is: 

 𝑤1 + (1 − 𝛽𝐻)(𝑤2 − 𝑃2) 

 

(6) 

If he is healthy he gets his wages for both periods: 

 𝑤1 + 𝑤2 (7) 

The expected payout from taking a sick day in period one is then the expectation over payouts in 

equations 6 and 7.  

 𝐸(𝐷) = 𝑤1 + 𝜃[(1 − 𝛽𝐻)(𝑤2 − 𝑃2)] (8) 

I can now find the optimal decision for a sick worker in period 1. This worker will attend work in 

period 1 if equation 5 minus equation 8 is greater than zero. Using this I get the rule that a sick 

worker will attend work in period 1 if 

 𝑃1 < 𝑤2 + 𝑏 + 𝜃[𝛽𝐿(𝑏 − 𝑃2) − (1 − 𝛽𝐻)(𝑤2 − 𝑃2) + 𝑤2 − 𝑏] (9) 
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I again assume that 𝑃1~𝑈(𝑃, 𝑃), so that the probability of attending work is the probability that 

the worker in the first period gets a cost lower than the right-hand side of equation 9. Since this is 

drawn from a uniform distribution, the probability of attending work sick falls as the right-hand 

side decreases. 

 To simplify equation 9, I will look at the limiting case where there is no cash-out option 

(b = 0). So now equation 9 becomes 

 𝑃1 < 𝑤2 + 𝜃[𝑤2 − (1 − 𝛽𝐻)(𝑤2 − 𝑃2)] (10) 

Now consider a policy that decreases 𝜃. In the context of this paper ,this is a policy that reduces 

pollution and the likelihood of getting sick. The term in brackets on the right-hand side is 

positive since the worker will only attend work if they get 𝑃2 < 𝑤2. However, this means that a 

decrease in 𝜃 leads to a decrease in the probability of attending work in period 1. This conclusion 

is the thrust of my argument. If the risk of getting sick in the future is lower, then the benefit to 

attending work and saving a sick day is lower as well. So, workers with paid sick leave may be 

more likely to take sick days if the probability of getting sick in the future falls. 
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