
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

5-3-2007

Robot-In-The-Loop Simulation to Support Multi-Robot System Robot-In-The-Loop Simulation to Support Multi-Robot System

Development: A Dynamic Team Formation Example Development: A Dynamic Team Formation Example

Ehsan Azarnasab

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Azarnasab, Ehsan, "Robot-In-The-Loop Simulation to Support Multi-Robot System Development: A
Dynamic Team Formation Example." Thesis, Georgia State University, 2007.
doi: https://doi.org/10.57709/1059384

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @
Georgia State University. It has been accepted for inclusion in Computer Science Theses by an authorized
administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_theses
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/1059384
mailto:scholarworks@gsu.edu

ROBOT-IN-THE-LOOP SIMULATION TO SUPPORT

MULTI-ROBOT SYSTEM DEVELOPMENT: A DYNAMIC

TEAM FORMATION EXAMPLE

by

Ehsan Azarnasab

Under the direction of Xiaolin Hu

ABSTRACT

Modeling and simulation provides a powerful technology for engineers

and managers to understand, design, and evaluate a system under devel-

opment. Traditionally, simulation is only used in early stages of a system

design. However, with the advances of hardware and software technology,

it is now possible to extend simulation to late stages for supporting a full

life cycle simulation-based development. Robot-in-the-loop simulation,

where real robots work together with virtual ones, has been developed to

support such a development process to bridge the gap between simulation

and reality.

INDEX WORDS: Robot-in-the-Loop system design, DEVS, Real-time

simulation, Multi agent, Mobile robots, Mutual inhibition, Behavior,Pattern

recognition, Image processing

ROBOT-IN-THE-LOOP SIMULATION TO SUPPORT

MULTI-ROBOT SYSTEM DEVELOPMENT: A DYNAMIC

TEAM FORMATION EXAMPLE

by

Ehsan Azarnasab

A Thesis Submitted In Partial Fulfillment Of The Requirements For The Degree Of

MASTER OF SCIENCE

in the College of Arts and Sciences

Georgia State University

2007

c© Copyright by

Ehsan Azarnasab

2007

ROBOT-IN-THE-LOOP SIMULATION TO SUPPORT

MULTI-ROBOT SYSTEM DEVELOPMENT: A DYNAMIC

TEAM FORMATION EXAMPLE

by

Ehsan Azarnasab

Major Professor: Xiaolin Hu

Committee: Michael Weeks

Yanqing Zhang

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

May 2007

To My Mother Iran.

iv

Acknowledgements

I would like to thank Dr. Xiaolin Hu, my supervisor, for his kind support, new

ideas and teaching me new concepts especially in simulation area. I enjoyed being a

member of his active research group. I should also thank Professor Bernard Zeigler

for inventing DEVS and DEVS Java Package and also letting me use his office to

setup the robot environment.

I thank Dr. Weeks for giving really useful hints for writing any text such as this

thesis. Also, Professor Zhang gave me new perspectives in AI part of the project. I

should also mention that I have used ImageJ, a great free image processing package

written in Java, by National Institute of Health.

Of course, I am thankful to my parents for their love and for their constant support

in my studies.

Finally, I wish to thank the following: Dr. Sunderraman for his guidance during

my studies here; Tammie Dudley (for her kind help); my father to whom I owe my

way of thinking, and my sister Elham (for she is my only sister).

Atlanta, Georgia Ehsan Azarnasab

December 20, 2006

v

Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Background on Discrete Event System Specification (DEVS) 3

1.2 Context dependent Behavior-based modeling and mutual inhibition . 10

1.3 Contributions and the outline . 15

2 System architecture 17

2.1 Robot convoy hardware design . 17

2.2 Robot convoy software architecture 23

2.3 Agents System . 26

2.4 Localization . 28

2.5 Navigation . 29

2.6 Communication link . 31

3 Vision and Image Processing 34

3.1 Six angle circular patterns . 35

3.2 Pattern analysis . 37

3.3 Other patterns . 51

3.4 Image processing algorithm . 54

4 Robot-in-the-Loop 65

4.1 Dynamic team formation . 66

4.2 Test the design as fast as it can . 71

4.3 Bring one real robot, synchronize the pace 76

4.4 More real robots, face the reality . 81

vi

4.5 More on complexity . 83

4.6 Incremental simulation-based design process 84

4.7 System-in-the-loop . 86

4.8 Conclusion and future work . 89

Bibliography 92

vii

List of Tables

2.1 The communication protocol (incomplete), each command starts with

a letter (indicating its function) ,then a list of comma delimited pa-

rameters and finally a carriage return (CR) or line feed (LF) character. 33

3.1 Mutual circular cross covariance of 6 angular patterns 45

3.2 Mutual circular cross covariance of 8 angular patterns 53

3.3 Object to marker-ID similarity mapping in one frame data 58

3.4 A Fuzzy subset of similarities . 61

4.1 Excitation of the behaviors of the agent Rk (1 ≤ k ≤ T) 69

4.2 Team forming context, mutual inhibitory coefficients 71

4.3 Convoy context, mutual inhibitory coefficients 71

4.4 Initial task definition of the behaviors of Rk 72

4.5 Refined behavior-tasks of agent Rk 75

4.6 Refined behavior-tasks of agent Rk after bringing one real robot . . . 80

4.7 The intermediate results of incremental simulation based design . . . 85

viii

List of Figures

1.1 DEVS atomic model in action . 5

1.2 DEVS Time Segments . 7

1.3 DEVS Coupled Model . 8

1.4 Two layer behavior choice mechanism 13

2.1 Khepra II robots with mounted serial communication turret 18

2.2 System consisting of real robots and real environment 20

2.3 System architecture . 24

2.4 The control panel GUI . 25

2.5 Agents-system model . 27

2.6 Differential Drive; V is the speed vector of robot determined by the

speed of the left wheel (VL), right wheel speed (VR) and robot diameter

(D) . 30

2.7 Navigation and communication unit; The serial communication in this

figure is connected to an antenna (outside the block), representing the

wireless communication . 32

3.1 From left to right, a) The general six angular pattern b) Pattern tem-

plate for binary coding c) Pattern for the ID equal to 4=1 + 20 + 21 37

3.2 Ideal signals from top to bottom corresponding to IDs from 1 to 8 . . 40

3.3 From left to right, a) Building ideal signal (no rotation) b) Sampling

possibly rotated patterns . 41

3.4 From top to bottom, a) The ideal signal for ID = 6 b) Sampled signal

for ID = 6 (Both signals are normalized horizontally between 0 and

360 degrees.) . 42

3.5 The template pattern including the heading 44

3.6 Similarity membership function of 6UCP 46

ix

3.7 Sampling on wrong ring (ring2) instead of ring1 47

3.8 From top to bottom a)unit function ua(t) b)ua(t)− ub(t) 48

3.9 From left to right, a) ID equal to 1 b) ID equal to 3 c) ID equal to 6

The second row is self-similarity of first row (Z axis). X and Y axes

are ex and ey. 50

3.10 From left to right, a) ID equal to 2 b) ID equal to 4 c) ID equal to 8

The second row is self-similarity of first row (Z axis). X and Y axes

are ex and ey. 51

3.11 From left to right: a) Similarity membership function of for 8UCP b)

self-similarity of ID=2 (Z axis). X and Y axes are ex and ey. 54

3.12 Vision settings GUI . 56

3.13 Platform and Mapping . 59

4.1 From left to right, a) The behavioral context transitions b) Behaviors

and their inhibitory connectors . 67

4.2 Proximity sensors model of the agent 68

4.3 Excitations effective range . 70

4.4 A simple deadlock caused by limited space and lack of movement . . 73

4.5 A more complex deadlock . 74

4.6 One real robot in the loop . 78

4.7 Two real robots in the loop . 82

4.8 From left to right, a) First level, abstracted problem space b) Second

level, adding one dimension c) Third level, adding second dimension 86

4.9 Bringing the third dimension . 87

x

Chapter 1

Introduction

Digital computers are Simulating the code in the machine. Simulation generally is

known as the imitation of the reality. Alan Turing uses the word simulation to describe

the action of any discrete-state machine when running. These machines have changed

our lives because they interact with the outside world. Object oriented design is a

successful methodology perhaps partially because it better imitates the reality. As we

can see here, from the machine perspective it is hard to draw a distinction between

real and virtual objects. Put it in other words, as far as you behave like a character

in a computer game, you can be substituted in that role. This concept is utilized

in Virtual Reality, with many applications for example in flight simulators [1], bio-

informatics [2], realtime weather forecasting, business [3] and robotics [4, 5, 6, 7, 8].

The simulation and the models being simulated together are called modeling and

simulation (M&S). Modeling and simulation can be used as the feedback of the testing

phase during system development.

Building large and complex systems often require defining intermediate goals, with

conditions that should be satisfied before moving to the successive stages. Simulation

can be used for testing the system under development when some parts are missing.

1

2

Robot-in-the-loop simulation [9] is a step-wise method which is used in this text for

a system of multi robots, while many robots are supposed to collaborate in the final

system. The robots each is assigned an ID which specifies its position in a convoy so

that a robot with a greater ID should follow the robot with the lower ID. To develop

such mechanism, first the robots and environment are modeled and simulated (All

virtual robots).

When the transition from simulation to real system is considered, building the

system (completely) right after initial simulation is believed to be a big jump. Making

too many robots collaborate based on the initial robot (and environment) models for

instance is a complicated problem that so many parameters should be considered. On

the other hand, in a step-wise simulation-based system development the real robots

are added to the convoy in each step so that the real and virtual robots would work

together for a better system modeling. Increasing the number of real robots, at some

stage the virtual robots are eliminated and the final system would consist of many

real robots working together. In the central team formation, a computer is controlling

the robots while the results of distributed system (with all real robots running their

programs), measures the efficiency of current system design method.

In modeling current system, the robots are homogenous agents interacting based

on sensory input (distances to the neighboring agents). The decision making part (of

each agent) is based on a network of behavior models, so that behavior tasks define

the navigation of robots. The behavior network is modeled in DEVS (Discrete Event

System Specification) and can be used as a teaching tool for DEVS and modeling.

In this research we apply the method of robot-in-the-loop simulation to a case study

example; a dynamic team formation multi robot system. The research is based on the

3

DEVS modeling and simulation framework. The goal of this project is to implement

a robotic team formations (Robot Convoy) in which real and virtual agents interact

with each other. Real robots are added at each step to the convoy to analyze the

results for a better modeling and design. A Real-time simulation is performed for a

robot convoy of up to four Khepra Robots and many virtual robots.

In the first part of this project, a central multi-agent convoy, is developed so

that the environment is fully observable and the navigation is managed by the sim-

ulator. The next part consists of applying the resulted model to the distributed

autonomous robot convoy with and without virtual robots while the environment is

partially observable. At each step of this development process, design advances en-

abled by robot-in-the-loop simulation are presented and performance measurements

of the system are given. Finally, the localization of real robots is done by real-time

image processing on the specific patterns on top of each robot. The rest of this chap-

ter gives some background on DEVS and behavior network system, then the outline

of the remaining text comes.

1.1 Background on Discrete Event System Speci-

fication (DEVS)

Modeling and Simulation starts with modeling the real system and builds simulators

upon them. The event based nature of the real robotic system makes Discrete Event

System Specification (DEVS) a suitable environment with enough power and more

efficiency than time based modeling [10, 11]. Availability of the DEVSJava [10]

package (written in Java as a portable language with many features including easy

concurrency) made DEVSJava the prime choice for starting point. DEVSJava is

4

used in many simulation problems before, including the simulation of Robot Convoy

with behaviors [12], which is the current work too. DEVS is a theoretical modeling

which can describe hierarchial and modular systems. Based on the formal definition of

DEVS, it is able to model both time based and event based systems. In addition, other

modeling techniques which are suitable for the real-time world such as Petri nets,

Finite State Machines and Timed automata have DEVS equivalents. The structures

of a model may be expressed in a mathematical language called the formalism. This

formalism defines the way variables take values and the time these values should take

effect.

The basic elements in DEVS formalism are atomic and coupled models [11].

Definition 1.1.1. An atomic DEVS model is defined as

M = {X,S, Y, δint, δext, δcon, λ, ta}

where,

X: set of external input events;

S: set of sequential states;

Y : set of outputs;

δint : S −→ S :internal transition function

δext : Q×Xb −→ S :external transition function

δcon : Q×Xb −→ S :confluent transition function

Xb is a set of bags over elements in X

λ : S −→ Y b :output function generating external events at the output

ta : S −→ <+
0,∞ :time advance function

Q = {(s, e) |s ∈ S, 0 ≤ e ≤ ta(s)} is the set of total states and e is the elapsed

time since the last state transition

5

To describe the atomic model, suppose the system is in state s. If no external event

happens the system will remain in the same state for ta(s) (resting time). If ta(s)

is zero then the state would be transitory but if ta(s) is infinite the state is passive.

When the resting time expires (e = ta(a)), the system outputs λ(s) and changes to

the new state δint(s) (Fig. 1.1). In this figure, X and Y are incoming and generated

events respectively.

In the case an external event (x ∈ Xb) occurs before resting time elapses (system

is in total state (s, e) with e ≤ ta(s)), then the system changes to another new state

δext(s, e, x) (Fig. 1.1). The confluent transition function determines the new state if

both internal and external transition functions happen at the same time.

Figure 1.1: DEVS atomic model in action

The basic model contains the following information [10], which are useful to keep

in mind when writing the code for basic models:

• the set of input ports through which external events (X) are received.

• the set of output ports through which external events (Y) are sent.

6

• the set of state variables and parameters: two state variables phase and sigma

are often present, so that the system stays in the current phase for the time

given by sigma.

• the time advance function, value of sigma and state variable, if present.

• the internal transition function that specifies to which new state the system will

transit after expiration of time advance function.

• the external transition function: based on the port of new input, the value on

the port, current state and the time that system has elapsed in current state,

external transition function which puts the system in new state.

• the confluent transition function, which determines the new state if an external

input and an internal event occur at the same time. One approach in choos-

ing this function would be applying the internal transition function then the

external transition function.

• the output function which generates an output before each internal transition

function is executed.

This semantics of DEVS decouples inside of the model from outside by the concepts

of internal and external events, when both can be present. Figure 1.1 depicts the

time elapse concept behind this model. The input trajectory (noted by X) is a

series of external events occurring at times t0 and t2. There might be other internal

event times such as t1 in between with effect on state trajectory (noted by S) with

step-like series of states changing with each external and internal event. The elapsed

time trajectory (noted by e) (which has a saw-tooth shape), depicts the passing of

7

time between events and is reset by each event. Finally output trajectory shows

the output event produced by output function before applying each internal event.

Figure 1.2: DEVS Time Segments

As stated earlier, DEVS models can be coupled in DEVS formalism to build a

coupled model. Coupled models give a hierarchical structure to the system model in

order to form more complicated models.

Definition 1.1.2. A coupled model is defined as

DN = 〈X, Y,D, {Mi}, {Ii}, {Zi,j}〉

where,

X: set of external input events;

Y : a set of outputs;

D: a set of component names’ indices;

8

∀i ∈ D [Mi is a component model and Ii is the set of under-influence components

for i.]

∀j ∈ Ii [Zi,j is the i-to-j output mapping function.]

The coupled model keeps track of all the components, components’ influences, the

set of input ports receiving external events and output ports sending those events.

This model itself has input and output ports connecting to one or more of the compo-

nents. The formalism is closed under coupling, which means coupled models can be

used as a basic model building a hierarchical coupled modeling. Figure 1.1 shows the

coupling, in which the entities B,D and E are atomic models and two components A

and C are coupled models.

Figure 1.3: DEVS Coupled Model

So far, DEVS modeling does not convey the concept of passing real time, the time

which passes with the same pace as the real-world clock. Therefore simulation of

such models can be done without synchronization making use of the discrete nature

of DEVS for a fast simulation, which is called “as fast as it can” simulation (non

real-time). This fast simulation is useful in the first step of model continuity when no

9

real part is yet introduced to the system. By bringing real entities to the simulation

we need to use real-time simulations. Real-time systems have been a major research

area in DEVS [13]. Timeliness requirements of such systems is often the major part

in their definition regardless of being embedded or otherwise. Based on definition

by Krishna [14] “a real-time system is one whose logical correctness is based on both

the correctness of the outputs and their timeliness.” By this definition we mean the

actual clock, therefore a real-time simulation should have a time synchronous to real

clock.

Another characteristic of practical real-time systems is the ability to work with

concurrent real objects, having the outputs ready by a deadline and the ability of

decision making based on computational processing units. Having that in mind,

the real-time simulator objects in DEVSJava are implemented as concurrent threads.

Therefore the agents in this robotic project are running in separate threads, while the

real-time coordinator is responsible for managing the flow of data such as messages

passed between ports. However, not all of the real-time requirements can be satisfied

without a real-time operating system and a language supporting that. To model

real-time systems, based on classic DEVS formalism, real-time DEVS (RT-DEVS) is

defined [15].

Definition 1.1.3. An atomic RT-DEVS model is defined as

M = {X,S, Y, δint, δext, δcon, λ, ta, A, ψ}

where,

X,S, Y, δint, δext, δcon, λ: The same as classic atomic DEVS

ta : S −→ I+
0,∞: time advance function

10

where I+
0,∞ is the non-negative integers with ∞ adjoint.

A: A set of activities with the constrains.

ψ : S −→ A: an activity mapping function.

Note that unlike classic DEVS, in this definition, the time advance function is an

integer. This time also is synchronized with real clock time, because the simulation

clock is real-time not virtual-time. In DEVS real-time simulation each atomic model

is assigned to a real-time simulator that based on the current time decides handling

of internal and external events. Therefore unlike conventional object oriented design,

a DEVS object provides a mechanism for introducing time in the object [16].

Models discussed in DEVS are implemented in some different languages such as

DEVSC++ [17] (in C++) and DEVSJava [10] (in Java). In addition, based on the

DEVS concept, the designer just models the system and the simulator is built upon

each model automatically. Therefore, one must design the basic models, from which

larger models are built, then connect them together (add couplings) in a hierarchical

order. These models however, can change their structure and couplings dynamically

during the simulation if needed (variable structure DEVS [18]).

1.2 Context dependent Behavior-based modeling

and mutual inhibition

Behaviors are often used to model agents when some level of intelligence is required

including computer games, crowd behavior [19, 20, 21] or robotics [22, 23, 24, 25].

The behaviors often give the designer the ability to break the agents in simpler parts

that together describe a complex system. The interaction between these behaviors

can lay upon different architectures like subsumption architecture [22, 23, 24, 25]

11

in which modules in upper layers inhibit the lower layered behaviors. The mutual

inhibition architecture, that we based our modeling on it, is primarily designed for

crayfish as a simple animal [26]. This design has shown to be adaptive, robust and

with nondeterministic overall behavior for the model.

Animals decide their course of action on a momentary basis in their wild life [27].

Some neural circuits for different behaviors of crayfish are described and the relation

of particular behaviors to these circuits is investigated by mutual inhibition [26]. It

is important to choose specific set of behaviors, their selection mechanism and the

action of each behavior. For example for crayfish, mutually exclusive behaviors such

as forge, eat, retreat, defence, escape, hide and swim are suggested. The benefit of

breaking the model to these behaviors is that when speaking about the animal we

often use the natural language for example we say “The animal eats when hungry,

until the predator is near in that case it may defend or retreat while finding a place

to hide”.

To model the choice mechanism of behavior in mutual inhibition, each behavior

inhibits others according to the level of activity weighted by its inhibitory coefficient.

The weights model the overall precedence of each behavior. Each behavior in the

current design resembles a finite state machine (FSM), that changes its state based

on the sensory input. For example, the distance to the food is a parameter that

should affect the eat behavior’s excitation in BehaviorSim [27], which is a software

for simulating the crayfish based on the behaviors. The behaviors form a network

which acts as the decision making unit for the agent being modeled. Since there is no

goal defined in mutual inhibition, it is easier to think about the behaviors individually,

while the behavior network performs the decision making in an unsupervised manner.

12

When modeling a simple system by behaviors, considering each behavior like an

FSM, the total modeled system would have a predictable outcome (although hard to

figure out). For more intelligent agents, it is observed that the behavior pattern may

change according to the new situation or context. For example among the crayfish,

after forming a social dominance hierarchy the subordinate tends to retreat more

than before [12]. This phenomena is often described as the hormonal change among

the animals that changes the mood according to the context or motivation. Another

interpretion is that the animal has learned from the past, and this new knowledge

helps surviving in unpredictable future conditions. To indirectly model this learning

mechanism, Hu suggested a two layer architecture [12, 21], in which the top layer is

called the Behavioral Context layer.

When the simple behaviors provide the simple decisions (like navigational com-

mands), the behavioral context layer provides higher level of control. The top layer

performs the structure change by changing the mutual inhibition coefficients. Since

these coefficients specify the relative priority of the behaviors, the effect of behavioral

context decision would be an immediate change in the total behavioral pattern ob-

served. Based on the discussion above, a possible behavioral context for the crayfish

model would have two states of Dominance hierarchy forming state and Stabilized

dominance hierarchy state. For another example, when the modeling of crowd in a

building is concerned, two states of Normal and Emergency may reflect two distin-

guished moods among the people before and after hearing a fire alarm [21]. The

concept of context dependency often leads to more power, for example, a word may

have different meanings according to the context.

13

The general context dependent behavior network architecture is shown in fig-

ure 1.2. A behavior (b in behavioral layer) inhibits other behaviors through inhibitory

coefficients. The coefficient for each pair of behaviors is a real number between 0 and

1, so that a bigger number represents more weight applied for inhibition. Therefore

to describe the behavioral layer with n behaviors in a particular time we need an

n × n matrix of mutual inhibition coefficients. Each state (S) in the context layer

(top layer in Fig. 1.2), changes the mutual inhibition matrix at a time. Because of the

simplicity of action in context layer, it is often modeled as one atomic DEVS model

(definition 1.1) with internal states to represent different contexts changed by sensory

inputs as external inputs. A behavior (b = bi) reads external input (Ii) and changes

its internal state si.

Figure 1.4: Two layer behavior choice mechanism

The mutual inhibition behavior selection describes two mechanisms of excitation

14

and inhibition of behaviors. A behavior bi is excited because of si and Ii, the excitation

magnitude of the behavior is Ei = E (si, Ii). While excitation is external, the behavior

is inhibited by other behaviors in the same behavior network. The result of excitation

and inhibition determines the potential energy of the behavior to take action and is

called its activation level and is denoted as A. If the activation level of a behavior

reaches the threshold of Texe it is called an executable behavior. Since only one

behavior is the winner to be executed, if there are more than one executable behaviors,

the one with higher activation level (or has waited more to be executed) is chosen

to be active. The last active behavior remains active if no other behavior is set to

be active as the result of the selection mechanism. An active behavior performs its

actions. There are several ways to perform the behavior actions, one way which is

good for as-fast-as-it-can simulation would be to use task queues including resumable

and non-resumable tasks. The two kinds of tasks specify if a task should be performed

from the point it was left or if it should be restarted from the beginning of the queue.

Since the behavior selection is done for a small time scale, it is also possible to perform

only one small action at a time when the behavior is activated. Design of behavior

actions is further discussed in chapter 4 where based on model continuity the actions

are specified level by level.

The second part of mutual inhibition based behavior selection specifies the inhi-

bition mechanism in behavioral layer network. The behavior bi inhibits bj based on

the inhibitory coefficients (0 ≤ cij ≤ 1). If, for example ckl = 0, then there is no

inhibition from behaviors bk to bl. If ckl = clk = 0 for all during the simulation we can

say that there is no link between these two behaviors in the network, otherwise there

is a link between them which means a possible mutual inhibition. If the activation

15

level of a behavior (say bi) is greater than or equal to a threshold (Ai ≥ Tinhibit) it can

inhibit other neighboring behaviors in the behavioral layer. To calculate the amount

of inhibition that behavior bi imposes on behavior bj the activation level of the in-

hibiting behavior (Ai) is multiplied to the corresponding inhibitory coefficient (cij)

from bi to bj. The amount of inhibition from bi to bj is calculated by equation 1.2.1.

After being inhibited by many behaviors, the behavior bj would have a new activation

level Aj, which is calculated by subtracting all applied inhibitions (Equ. 1.2.2).

B (i, j) =

{
cij × Ai if Ai ≥ Tinhibit

0 if Ai < Tinhibit

(1.2.1)

Aj = E (sj, Ij)−
i6=j∑
i

B (i, j) (1.2.2)

The model is robust and gives adaptive patterns of behavior. The system starts

with an initial inhibitory coefficient matrix, but it may be changed by the context layer

or even some learning algorithm. To implement the behavior network one possible

design is to model each behavior individually as an atomic DEVS model [27] which

requires a selector model responsible for applying the mutual inhibition algorithm as

discussed. A more efficient way (which we chose) would be to model the behavior

network with one atomic DEVS model keeping the state of all behaviors and updating

them. Finally, the agents (as comes in the next chapter) in the multi-robot team

formation, each have a behavior network that is the main decision core of that agent.

1.3 Contributions and the outline

The robot team formation system (as a case study for the robot-in-the-loop simula-

tion) is built, this includes both hardware setup and control software implementation

16

(plus the image processing part). The behavior-based modeling of the robots in

the robot convoy (which was implemented before [12], without considering the real

robots) is improved step by step using the real-time simulation (in the central team

formation) and then applied to the distributed team formation by writing the code

for the robots’ microchips. The distributed team formation’s results will be published

in the future papers. Chapter 2 introduces the hardware and most of the software

architecture of the project, while the image processing part comes in the chapter 3

because of the more materials it covers. Chapter 4 includes the step-wise simulation

procedure of the robot-in-the-loop methodology and improvements of the models.

In addition, the idea of robot-in-the-loop is discussed as a general technic to build

complex systems.

Chapter 2

System architecture

The goal of this project is to design a collaborative system consisting of many agents,

to experiment with the idea of agent-in-the-loop, and here when we refer to agents it

means both real and virtual robots. All agents are treated the same, while they can

have different interfaces to other entities. Many projects related to robotics involve

mathematical solutions to deal with control aspects of a problem, which may result in

building a robot and efficiently controlling it. On the other hand, robots can be used as

a part of another project, like in our case the model continuity and behavior research.

Both problems are in fact engineering problems, involving design and implementation.

Tradeoffs should be made to achieve acceptable results, considering the budget and

defined goals. Before the beginning of this project the team formation simulation (in

as-fast-as-it-can mode consisting only virtual robots) was ready [12], this simulation

helped in choosing our design goals.

2.1 Robot convoy hardware design

To choose different items to buy and different strategies, the hardware design criteria

we chose in this project were:

17

18

1. The design should be inline with model continuity.

2. The system should be easy to use.

3. The system should be suitable for teaching purposes.

4. The design should make the hardware issues transparent.

5. The items should be powerful enough to handle their task.

6. the Items which can be used for different purposes are preferable.

7. We should spend resources on the items which are more central to the project.

Figure 2.1: Khepra II robots with mounted serial communication turret

In the current project we used four Kheprar Robots (Fig. 2.1) from K-Teamr

corporation. These robots are used in many research areas around the world and are

shown to be powerful enough for many robotic experiments [28, 4, 29].

In the team formation project, the agents should be able to know at least some

information about successive agents they want to follow. One way to achieve this

19

for real robots would be to establish a wireless link between them, and also between

real robots and virtual robots, if there are any virtual robots running there. Wire-

less communication was through the standard Kheprar serial base. These standard

modules also have the ability to be configured as both inter robot communication

and transparent serial communication with the central base (normally attached to

a PC). We also considered using another cheaper, and more powerful transceivers

which are named RF telemetry module and are available by Active Robotsr which

uses EasyRadior. These modules are more power efficient than standard wireless

solution, transmit faster and more reliably and also have a longer range (400 meters

compared to 10 meters standard wireless links). We could be able to successfully

change and use these modules with one robot, however working with the standard

communication is more clear and can be expanded more easily by people. In ad-

dition, little involvement of hardware design was more desirable, to make hardware

issues transparent and out of the software project which was the goal. The wireless

communication with real robots is a part of robot navigation and is implemented as

a separate class module, giving more transparency.

From all virtual simulation results the need for finding relative distances to some

other robots was arisen. The Kheprar II robots have eight infra red sensors which can

be used in localization and finding distances. However, these sensors are error prone

and also this approach for localization would add to the complexity of the control

aspect, which was not the major project goal. In addition this approach requires

local processing and had to be implemented with programming the robots locally,

consuming the small resources of robots (like memory and processing) while we need

them for our higher goal (when autonomous robot convoy) which was coding behaviors

20

inside the robots. In fact, localization of mobile robots based on multisensory inputs

(like using 8 infra red sensors on Khepra II) and building a map of the environment

is another research area and involves using Kalman Filtering and other data fusion

techniques [29, 30].

Figure 2.2: System consisting of real robots and real environment

Obviously, that research was not inline with our project design goals. There are

several methods for localization of robots such as using laser scanners, sonar sensors,

GPS, gyro, vision or a combination of them. Laser scanners are often big, expensive

and subject to the restrictions of local processing. The newer version of Kheprar

adds ultrasonic sensors to the infra sensors, which have the same usability. Global

21

Positioning System (GPS), if using available free service by satellites, needs an open

space to work but can lead to about one centimeter accuracy in positioning. On the

other hand, providing a local GPS is expensive and difficult. Using gyros (or step

wheels) for localization involves dead-reckoning thus is error prone. Dead-reckoning

is the algorithm of finding the new position based on previous position and other

parameters such as the speed. In fact Kheprar robots have a built-in Proportional-

Integral-Derivative (PID) controller (definition 2.1.1) which makes dead-reckoning

based localization feasible (equation 2.1.1). Although the extensive programming

capabilities of Kheprar (in which all parameters of PID controller can be tuned)

promises good accuracy, traveling long distances especially on a non uniform platform

(which is the real case) makes this method not practical for our purpose.

Definition 2.1.1. A PID controller is a controller with the following transfer func-

tion:

H (s) = KP ×
(
KDs

2 + s+KI

s+ C

)
where,

C: a constant which depends on the bandwidth of the controlled system.

KP : the proportional gain constant

KI : the integral gain constant

KD: the derivative gain constant

Equivalently in time domain we have:

Output = P + I +D

where,

P = KP .e (t)

I = KI .

∫ t

−∞
e(t)dt

D = KD.
de (t)

dt

22

In discrete time intervals, the PID controller can be written as:

Outputn+1 = Outputn +KP .en +KD. (en − en−1) (2.1.1)

The control features of Kheprar makes it an ideal teaching tool for any other

future project related to robotics, for example a more comprehensive DEVS model

for Kheprar robots including the PID parameters gives better results from agent

models because it better approximates the new position of real robots. This can be

implemented using available DEVS models for integral and derivation (Equ. 2.1.1)

both available in DEVSJava. Even a better model can be designed by considering

more physical characteristics of the platform as a part of the environment.

Finally, after considering different options, we decided to use an overhead camera

connected to a Personal Computer (PC) to find the robots in the field. This overhead

camera is located so that the grabbed picture covers the entire filed on which the

robots move. By this choice we avoided the overhead processing inside each robots

and also using available techniques of image processing we could find the location

and direction of each robot. This camera is installed on top of the platform where

the robots are moving (1.2×1.5 square meters) in the height of about 1.5 meters

(Fig. 2.2).

Because vision might be replaced by another localization technique in the future

we decided to use a normal color camera and an ordinary frame grabber. On the

other hand, we compensated the low-quality image, with a robust image processing

method. Also, the frame grabber we used is Video Gala from PixelSmart. This frame

grabber can capture color images and comes with a software library. Unlike the part

of library written for other languages, the original library did not include a straight

23

forward method for Java (because of special properties of Java images) , it is managed

inside image processing class with using the Java native code.

Furthermore, it is better to place the camera (used for localization) on top of the

field in the center and not too high (Fig. 2.2), to minimize the distortion effect

of the lenses know as barrel distortion and avoid further overhead of correcting this

error. As we see in the next chapter, the image processing is done on gray scale

images and technically we could use black and white camera and frame grabber, but

having the color picture in hand might be useful for future project expansion (for

example to a three dimensional environment). In addition, a colorful image is better

for demonstration and teaching purposes.

The choice of image processing for localization suggests using a plain white-surface

platform where the robots are placed. Figure 2.2 shows the system consisting a

rectangular platform (field) with robots moving on the field and an overhead camera

on top of it. The wireless base is also visible at the bottom right of the picture. In

this picture, only three robots have a special pattern which is used for localization.

2.2 Robot convoy software architecture

The main focus of the project is the software engineering aspect. Software is like a

controller responsible for managing data flow and interacting with the outside world.

Software should be able to get some experimental parameters from the user, control

the robot convoy system and provide a monitoring system to display the current state

of the system to the user. Based on this criteria, the main components of the system

are devised (Fig. 2.3). In this design, the user can interact only with the control

panel through its Graphical User Interface (GUI in Fig. 2.4), therefore the internal

24

architecture of the application is transparent from user point of view.

When the software is run, control panel takes control of other components. User

can change parameters related to vision, localization and navigation. User can also

manually navigate real robots or change the speed parameters. In addition, the user

can switch to central or distributed automatic convoy mode (upper tabs in Fig. 2.4)

and start or stop the real-time simulation of the system. Vision and communication

can be present in manual navigation or in the realtime simulation modes named

above, therefore they are implemented in another part of the GUI (right hand side

tabs in Fig. 2.4). If vision is decided to be the localization means, user can start

vision and monitor the video taken from the platform, later the realtime simulation

adds virtual data to the video for more clarity of the system. These interactions are

shown in figure Fig. 2.3 by arrows starting from the initiators.

Figure 2.3: System architecture

25

Based on the functionality of each component and overall performance, object

design characteristics can be decided. DEVS modeling can be adopted as the entire

software engineering problem, but an efficient choice would be to use the pure object-

oriented for the parts which do not involve directly in system modeling process.

Therefore, control panel, vision and navigation units are treated as objects.

Figure 2.4: The control panel GUI

On the other hand, robot convoy control is based on the modeling of the whole

system. Control actions are taken by real-time simulation as the central component

of the software design. In order to achieve the model continuity design and imple-

mentation pattern, the software main DEVS model is basically a model for the real

26

system shown in the figure 2.2. This main model consists of the environment and

the agents and is called Agents System (AgentSys) even inside the software. Figure

2.3 shows AgentSys interaction with other components.

Finally, as a design goal the interactive GUI was designed (Fig 2.4) to enhance the

application. The user can start or stop real-time simulation, see the virtual and real

robots together, watch current behavior of agents, and also see the effect of changing

some parameters like robot speed or boundaries of the environment. This part should

be combined with the result of another project (now in progress) in which all behaviors

(as well as the behavior network and mutual inhabitation parameters) are defined

graphically. Then we would have a complete platform for testing the concepts of

DEVS modeling, simulation and behaviors. However, currently the behaviors are

hard coded.

2.3 Agents System

When the real-time robot convoy simulation starts, the real-time coordinator (main

simulator inside AgentSys) takes control of all real and virtual robots together. While

the localization unit supplies the real data (like the video taken from the field) to the

display GUI, AgentSys adds virtual data (like virtual robots and boundaries of virtual

environment) and current behaviors of all agents to the same GUI as a virtual layer

on top of the video (the right upper part of Fig. 2.4). Agents system consists of

the DEVS models for the real system (Fig. 2.2) including environment and agents.

Figure 2.5 illustrates this design.

The environment is a real-time atomic DEVS model for everything but the robots

in the system (Fig. 2.2). So logically it should be able to access all data and events

27

Figure 2.5: Agents-system model

of the system. The environment gets the result of the vision activity and dispatches

data to the related agents. It also builds the virtual layer on top of the real layer

in the control panel GUI. This virtual layer comprises the virtual robots (red circles

in Fig. 2.4), rectangular boundary of the virtual environment (green rectangle in

Fig. 2.4) and the names of current behaviors of agents. Some of these virtual data

can be turned off by the user. Furthermore, vision activity is a DEVS activity that

belongs to the real-time DEVS (definition 1.1.3) and closes the loop of the control

system. Any other localization sensor if added to the system, an activity regarding

the new sensor is needed. In the case of multiple input sensors, the result of all

activities should be fused to find knowledge about the system.

Agents, regardless of being real or virtual entities, are DEVS models each with a

set of behaviors in a behavior network (Fig. 1.2) as the decision making part. Robot

28

team formation (in central convoy) requires sending navigation commands to the

robots, also the distributed convoy may broadcast the information about the real

robots to them so that their behaviors change by new information. As a result, the

agents access the environment by appropriate interfaces. Virtual agents get access to

the virtual environment, while real robots interact with real environment. Therefore

in the central team formation, real and virtual interfaces are implemented and by

automating the robots in distributed convoy the virtual interface is replaced with the

real robot on-board software. For an example, in central convoy when a behavior of

an agent is activated the navigation commands are sent to the environment interface

of the agent. If the agent is a real robot, the navigation command is transmitted over

the communication link, but if the agent is virtual, the command is simulated and

possibly changes the position or heading of the virtual robot. In another words, if no

noise is added to the navigational commands of the virtual robots, they behave like

perfect real robots.

2.4 Localization

The answer to the question

Where am I?

is given by Localization.

Localization can be done on-board which means each robot finds its location by

some means, or an outside system can locate each robot and possibly inform them.

The latter acts as an onlooker outside the system and it is often easier to implement

especially for multi agent systems. Different methods for localization of robots exist

and it has always been an active research area in robotics and avionics [30, 29]. As

29

stated at the beginning of this chapter we use image processing for localization of real

robots (section 3.4). Obviously, the virtual robots do not need to be localized since

the computer already knows their position and direction.

As the diagrams in figures 2.5 and 2.3 suggest, the result of real-time localization

of real robots should update the environment. As environment is a real-time atomic

model(refer to the definition 1.1.3), it runs a DEVS activity (called vision activity)

to get the new position and heading of all real robots. This design is more efficient

than running a separate activity by each real agent model, especially based on our

design there is no distinction between real and virtual agents but in the environment

interface. Note that there is no localization for virtual robots and their position is

updated by agent model inside navigation. The vision technique as localization is

further discussed in the next chapter.

2.5 Navigation

The output of a controller should finally be converted to navigational commands to

move the robots in certain way satisfying some conditions (Fig. 2.7). A controller for

a robot is often designed to ensure criteria such as having desired speed, or position or

energy consumption. Different robots may have a variety of navigational commands,

a humanoid robot may have high level commands for robot to walk.

Kheprar is a mobile robot with two side wheels (Fig. 2.1 and Fig. 2.6). By

controlling the speed of these wheels robot can be navigated to different directions

and with different speeds. Equation 2.5.2 shows how both displacement velocity v

and angular velocity ω can be calculated. Where VR and VL are the speed of right

and left wheels and D is the diameter of the circular robot (Fig 2.6).

30

Figure 2.6: Differential Drive; V is the speed vector of robot determined by the speed
of the left wheel (VL), right wheel speed (VR) and robot diameter (D)

V = VR+VL

2

ω = VR−VL

D

(2.5.2)

Based on equation 2.5.2, for a robot to move forward with speed v0 both wheels

should have the same positive speed (or VL = VR = v0). The robot will move backward

if the speeds are the same but in the opposite direction (or VL = VR = −v0). By

changing the sign of VL and VR, but keeping them with the same magnitude, robots

rotate clockwise (CW) or counter clockwise (CCW) around the center of the circle.

This formula does not consider the effect of a non-uniform platform or difference of

fractional characteristics of the wheels. As a result although the virtual robots move

the same when receiving the same navigational command, it is not the case for real

robots because of the intrinsic heterogeneously of them.

For example, if a virtual robots receives the navigational command of 1 radian

clockwise rotation, the virtual environment interface increases the heading of that

31

agent for 1 radian. Receiving the same command, by an agent corresponding to a

real robot, the real environment interface calculates the speed of each wheel (VL and

VR) (based on Equ. 2.5.2 and desired rotation speed given in the control panel) and

transmits them to the real robots using the communication link.

2.6 Communication link

Communication among agents and the the simulator is performed by the message

passing mechanism of DEVS. Each DEVS entity can have some ports to send and

receive data. When integrating the virtual and real parts, there should be a means to

really transmit these messages for real entities, we call this part the communication

link. Communication link can be wired or wireless, for example Kheprar robots

can receive commands using a cable connected to the serial port of the computer.

The advantage of wired link is the perfect data transition, eliminating the need to

retransmit packets, thus more possible transmission rate. On the other hand by

explicit usage of wired link for more than one robot, many serial ports on the computer

side are needed, also the presence of many cables hinders the free movement of the

robots.

Based on extensibility design goal, we preferred using wireless links from the early

part of the project. The standard wireless communication of Kheprar comprises on-

robot wireless turrets (shown in Fig. 2.1 with the antenna) and one base transmitter

(bottom right in Fig. 2.2). The commands are sent to the base by a serial cable from

the computer, and the base dispatchs them according to the receiver robot. Figure 2.7

shows the navigation and communication unit. The navigation unit is responsible for

translating the navigational commands by interface from AgentSys. The standard

32

Figure 2.7: Navigation and communication unit; The serial communication in this
figure is connected to an antenna (outside the block), representing the wireless com-
munication

Kheprar serial communication protocol is called SerComm, this protocol specifies

the format of the commands as well as some standard navigational commands. The

final navigational commands are based on SerComm [31, 32] and are transmitted

through a serial communication link to the base then by antenna. By sticking to

these standards, the available on-board software of the robots can be used for the

central robot convoy.

In the central team formation the navigational commands are sent over the link,

while in the distributed team formation the positions and headings of the robots are

transmitted to the on-board software so that each robot can decide its own naviga-

tion based on the embedded behavior network. In the central team formation the

navigational commands should be sent to the specific robots. However, in the dis-

tributed team formation the locations (found by image processing) can be broadcasted

to all robots, making use of the available bandwidth. In addition, the implemented

on-board software of the robots does not echo back all the commands (unlike the

33

SerComm protocol), which leads to more channel utilization. Table 2.1 shows the

protocol for some of the commands which are written for the on-board software. Each

command starts with one letter indicating the its function and then the command

parameters are followed. At the end of each command a carriage return (CR) or line

feed (LF) follows, to indicate the end of the command. The parameters are delimited

by commas. For example, the command of “D,1,-1” sets the speed of the left and

right wheels to 1
127

and −1
128

meters per second respectively, in which the letter D is the

displacement command with a similar effect in the standard SerComm protocol. To

be consistent with the standard protocol, the unused commands in SerComm [32] are

expanded to support the new needed commands. As a result, the developed on-board

software can be used for the central team formation as well.

Command Explanation
X,x1,y1,x2,y2,...[CR or LF] Sets the (x, y) locations of the robots in the

field (in meters).
Y,h1,h2,...[CR or LF] Sets the headings of the robots (in radi-

ans).
D,s1,s2[CR or LF] Sets the speed for the left and right wheels

respectively (in meter per second).
S,c[CR or LF] If c = 123 the distributed team formation

starts, otherwise it stops. (Command has
an echo)

Table 2.1: The communication protocol (incomplete), each command starts with a
letter (indicating its function) ,then a list of comma delimited parameters and finally
a carriage return (CR) or line feed (LF) character.

Chapter 3

Vision and Image Processing

Image processing is used to find information of real robots on the field. Agents use

these information as if they are looking for other agent, thus image processing is

basically the vision of agents. As we consider the vision in the first part to capture

distances of the robots and informing them, one option would be to use vision on

robots themselves to make the simulation more natural. However on-board image

processing with all pixel data is time consuming and requires too much memory,

so people come up with complicated algorithms to tackle this problem for real-time

robotics [33]. To find robots more accurately, while not relying on robot processing

abilities, we can use an over-head camera to track the movement of robots [34]. For

simplicity of design, the latter method was chosen, so the problem changed to finding

particular objects (here robots) in the image taken from a field by overhead camera.

Current team formation requires each robot to follow another particular robot, there-

fore we should associate each of the robot objects with a number. In addition, the

mechanical structure of Kheprar (with two wheel drive) requires direction for each

robot for navigation. To solve the new problem, we needed to put different markers

(Fig. 3.1) on top of each robot (three robots in Fig. 2.2). These markers should be

34

35

informative enough to distinguish at least 4 robots (in current phase of the project)

from each other with accurate location and heading.

Another problem in image processing is called barrel distortion, which is the non-

linear effect of lenses to the image taken by camera (can be seen Fig. 3.13 where the

platform is not a perfect rectangle). This phenomenon is more visible for larger objects

in the image. One way to correct the image is to use non-linear transforms used in

rubber-fitting methods to restore the original shapes in the picture having some known

mapping of the pixel data and objects. A suggested method is to use a grid-image

on the field and mapping the grid to perfect rectangle which is desired. Although it

adds to the processing overhead, implementing this technique should be one of the

future tasks of the project. However, the robust method of image processing could

solve this image distortion problem especially for small scale objects. Furthermore,

because of the non-uniform nature of barrel-distortion when choosing the pattern for

markers these patterns should be robust enough. Also, when analyzing the patterns

(in order to get information), a shorter path seems better because it corresponds to

smaller objects, hence less error. Periodic nature of circular patterns was one of the

solutions with good robustness towards non-linear distortions. Taking into account

the circular shape of current robots we decided to use uniform circular patterns for

markers.

3.1 Six angle circular patterns

To identify a pattern on a marker, these patterns should be binary coded using the

shapes and colors (each code is named an ID). We can consider the image taken from

these patterns as digitized patterns. There is some error involving digitization which

36

is intrinsic to the nature of sampling. Also digitized patterns often contain noise which

comes from the poor quality of the camera or frame grabber. Different methods exist

to classify the taken images. To speed up the image processing techniques such as

Independent Component Analysis (ICA), Principal Component Analysis (PCA) and

recentlyOptimal Component Analysis (OCA) [35] are known to use the pixel data

to reduce dimension in an efficient way. However most of these techniques are time

consuming because they consider all of the pixel level data mainly because in general

the images to be classified are considered to be of any pattern. On the other hand

the periodic nature and uniformity of data towards one dimension in uniform circular

patterns make the two dimensional marker-image like one dimensional signals. to put

it in another words, although the whole image taken from the markers is a sampling,

we can perform sampling once more (along the non-uniform dimension). Figure 3.1(a)

shows the designed 6 angle pattern. This patterns consists of 6 pie slices, one inner

hole and two outer rings. To color code the pattern we use the pattern template

scheme in Figure 3.1(b), in which the largest pie slice is always white as well as the

outer ring, also the inner hole and two pie slices near the biggest pie are always black.

Therefore by considering white as 1 and black as 0, three remaining pie slices can be

used to identify 23 or 8 different IDs for robots.

Since in the current stage of the project we have only 4 real robots this pattern

can identify all of the robots. The biggest pie slice (always white) together with its

two neighboring black slices can be used to find the direction of robots (heading).

Because the platform in the system (Fig. 2.2) has a white surface and black walls,

by choosing the outer ring to be white and inner ring to be black, markers (which

cover the robots in top view of overhead camera) can be identified well when robots

37

Figure 3.1: From left to right, a) The general six angular pattern b) Pattern template
for binary coding c) Pattern for the ID equal to 4=1 + 20 + 21

are inside the field and even when they go near the wall. Refer to pattern analysis

(section 3.2), the inner hole is decided to be black to get a sharper image near the

center (which is near the sampling ring) this choice also helps in better blob detection

(section 3.4).

3.2 Pattern analysis

We can define a uniform circular pattern having the number of pie slices in the

pattern together with the magnitude of each angle of associated pie slice, and the

binary coding scheme.

Definition 3.2.1. A 6-angle-uniform-circular-pattern (6UCP) is defined by three

vectors and one coding formula:

P6 = {θ = [θ1, θ2, · · · , θ6] , β = [β1, β2, · · · , β6] , α = [α1, α2, · · · , α6] , φ, r1, r2}

where,

θ is a vector of angles of 6 pie slices. such that:

6∑
1

θi = 360◦ (3.2.1)

38

βi ∈ {0, 1} for i = 1, 2, 3, 4, 5, 6. β is the color vector so that if βi=1 the ith pie

slice is white otherwise it is black.

α is the vector of position exponents(αi are natural numbers or zero, for i =

1, 2, 3, 4, 5, 6)

φ is the code (or ID) of the pattern such that:

φ =
6∑
1

βi × 2αi (3.2.2)

r1 and r2 are the radii of inner hole and inner ring respectively.

Obviously 0 < r1 < r2. Also because this definition corresponds to the polar

coordinate system then all angles are counted in counter clockwise (CCW).

Note that equation 3.2.1 is needed for the pattern to be periodic. Also because

the data is coded only on the angular dimension of the polar coordinate system of

the pattern. The pattern is uniform in magnitude dimension (towards the radius of

the circle). Based on this definition, one possible instance for the 6UCP with which

we made our pattern (and is shown in Fig. 3.1) is as follows:

θ = [85, 55, 55, 55, 55, 55] = 55× [1.5, 1, 1, 1, 1, 1]

β = [1, 0, x1, x2, x3, 0]

α = [0, 0, 1, 2, 3, 0]

(3.2.3)

Note that x1,x2 and x3 refer to the three labeled pies in Fig. 3.1, they can be 0

representing black or 1 representing white. Also for convenience the biggest angle in

the pattern should be the first in vector θ. The color corresponding to this angle is

always white (because β1 = 1), this results in an offset in building the codes therefore

the code sequence begins with 1 (φ ∈ {1, 2, 3, 4, 5, 6, 7, 8}). One observation is that

although this instance can describe the pattern we chose, it is not the only possible

instance of 6UCP. Another observation is that if we shift all three vectors circularly

we would have the same result, and it is due to the fact that if a robot turns it still

39

will have the same ID. Therefore the algorithm to identify this pattern also should

overlook the rotation. That is why a Circular Cross Covariance (CXCov) can detect

this pattern because it minimizes the phase. The very first angle is chosen to be 1.5

times other angles, to distinguish this pie as beginning, and maximize the penalty if

it is misplaced as another pie when matching patterns. However, a careful choice of

the angles can lead to better results in practice.

As stated earlier the ID is coded on the color in angular manner. Assume the circle

containing the pattern is known (for example by blob detection in section 3.4), there-

fore we have the center of the pattern. Now we take our samples counter clockwise on

a circle to build the sampled signal. The circle at which we build our sampled signal

is called sampling ring. The ideal signal built in this way will consist of 6 horizontal

slots (on horizontal axis) each with a length proportional to elements of θ vector,

the sampled value (on vertical axis) will be 0 or 1 depending on the elements of β.

Because of pattern uniformity, ideally there should be no difference at which radius

we start sampling, however as mentioned earlier because of the barrel distortion a

smaller rs is better (r1 < rs < r2). On the other hand if rs is too small the number

of samples do not suffice to build a near ideal signal, thus the radius sampling ring

should be tuned. This parameter is one of the factors that can be modified as vision

settings (Fig. 3.12). Also we should consider that we compare the sampled signals to

the ideal signals, each time the sampling radius changes a new ideal signal for all of

the 8 possible IDs is built. By increasing rs ideal and sampled signals expand in time

with the same proportion.

We are sampling at the ring with radius equal to rs from a circle previously

sampled as an image (2D sampled). To cover all pixels of the circle with perimeter

40

equal to 2πrs we need to sample with interval of δt:

δt =
1

2rs

(3.2.4)

As a result the total number of pixels sampled would be 4πrs. It is easy to show

that the length of the signal corresponding to n degrees would have the total of 2nπrs

180

pixels. For instance, in the ideal signals based on conventional notation (Equ. 3.2.3),

the first segment (of total 6 segments) of the signal has the length 2(85)πrs

180
. Figure 3.2

depicts the ideal signals normalized in horizontal axis between 0 and 360 degrees. The

first segment, which has the length 85, corresponds to θ1 and is 1 because β1 = 1.

All other 5 segments are 55 in length. Also the second and sixth segments have

magnitude of 1 (β2 = 0 and β6 = 0).

Figure 3.2: Ideal signals from top to bottom corresponding to IDs from 1 to 8

Sampling starts with 0 degrees (in polar coordinate) and adds δt in each step.

41

In building the ideal signals, we start with the β1 and sampling also starts at the

beginning of this segment (we assumed the pattern has not turned around the center)

(Fig. 3.3(a)). In addition, there is no noise in the ideal signal.

Figure 3.3: From left to right, a) Building ideal signal (no rotation) b) Sampling
possibly rotated patterns

However, the pattern might be rotated (Fig 3.3(b)) causing the signal to be

shifted. In practice some noise is also added to the signal. To improve the signal

being sampled the brightness of captured frames can be changed in vision setting

(Fig. 3.12). Figure 3.4 shows the effect of rotation and noise, as we can see in

horizontal axes of this figure the ideal signal is between 0 and 1 but the sampled

signal has a range of about 250. Both horizontal axes are normalized between 0 and

360 degrees.

Fig. 3.4 shows the ideal and sampled signal for ID equal to six. The codomain

range of the sampled signal (Fig. 3.4(b)) corresponds to the maximum amount that

one byte can hold. Although this one byte could be the span of gray scale image,

we used the red-band of RGB image with almost similar result. There are two but-

tons in vision setting GUI with which both ideal and sampled signals can be viewed

42

Figure 3.4: From top to bottom, a) The ideal signal for ID = 6 b) Sampled signal for
ID = 6 (Both signals are normalized horizontally between 0 and 360 degrees.)

(Fig. 3.12), this can help choosing efficient parameters such as brightness, saturation,

contrast, hue and also the average red-band value for white and black colors (all tun-

able in the same GUI in the middle). In addition, the user can zoom in and out of the

image taken from the pattern (Fig. 3.12 top-left), and by moving the mouse cursor

on this image, the user can see the values for red, green and blue bands.

So far we have built ideal signals for 8 possible patterns to be identified (Fig. 3.2)

and saved them inside a bank, in the next stage by sampling the real marker around

the circle we made the test signal (Fig. 3.4 (b)). Now the identification method would

be this; the test signal should be compared with all available ideal signals (in the bank)

to find the one with more correlation. For example by correlating the sampled signal

in (Fig. 3.4 (b)) with signals in (Fig. 3.2) we should come to (Fig. 3.4 (a)). The

comparison method should eliminate the effect of different gains and rotation, also

it should be robust enough against the noise. To satisfy these conditions we used

the Circular Cross Covariance (CXCov) criterion and applied it for each two pairs

of sampled (or test) signal and signals in the bank. The circular cross covariance is

the normalized circular cross correlation function of two vectors (x and y) with their

43

means removed:

CX(d) =

N∑
i=1

[(x(i)−mx) (y(i− d)−my)]√
N∑

i=1

(x(i)−mx)
2 ×

√
N∑

i=1

(y(i)−my)
2

(3.2.5)

where N is the length of the vectors, also mx and my are the mean of the vectors x

and y respectively.

y (−k) = y (N − k) (3.2.6)

Because d in this formula is the applied lag of one signal, by maximizing correlation

(CX(d)) over d, we get the signal with minimum shifting (Equ. 3.2.8). Also, because

of the normalization part (division by the norms), the gain of the sampling and also

the gain of θ vector (55 in Equ. 3.2.3) are eliminated. Equation 3.2.6 emphasizes

on the circularity of CX(d). It can be proved that equation 3.2.5 gets its maximum

value (which is 1) when two identical signals (x and y) match the same. Therefore

we expand this criteria to be used to compare similarity of two possibly non identical

signals.

η (x, y) = maxd (CX(d)) (3.2.7)

It can be proved that similarity (η) is a real number always between 0 and 1.

Furthermore, back to the Figure 3.4 and Figure 3.3, the amount of shifting we need

to get maximum similarity corresponds to the rotation of the pattern.

λ (x, y) = argmaxd (CX(d)) is the d which maximizes the CX(d) (3.2.8)

By applying equation 3.2.4 the rotation can be calculated as:

r(x, y) =
360λ

4πrs

=
90λ

πrs

(3.2.9)

44

The rotation (r) is calculated in degrees, and points to the zero degree in polar

coordinate of non-rotated marker (red arrow in Fig. 3.3 (a) pointing to the beginning

of the largest pie slice). By definition the heading of the pattern (thus the heading of

the robot) is defined as the arrow heading to the middle of the largest pie slice(β1 in

Equ. 3.2.3) therefore heading of pattern p with ideal signal of y and sampled signal

x is :

Definition 3.2.2. h(p) = r (x, y) + β1

2

Figure 3.5: The template pattern including the heading

Figure 3.5 shows the heading for the particular instance of 6UCP in equation

3.2.3. Also, Figure 3.13 shows three robots and the heading of which all pointing

towards the middle of pie slice of β1 degrees, the heading is illustrated by a red

line beginning the center. It can be seen that when computing η, both r and h are

automatically calculated, therefore we can focus on the equation 3.2.7. In general

there might be more than one pattern on the field (for example n) for all of which η

should be calculated for all 8 possible signals in the bank, resulting in 8n different η

(for 8n comparisons). Suppose there would be no noise involved, the result would be

45

a table of similarity between ideal signals mutually (Table 3.1).

ID 1 2 3 4 5 6 7 8
1 1.0000 0.7759 0.7799 0.6587 0.7799 0.6587 0.6611 0.5823
2 0.7759 1.0000 0.6051 0.8489 0.7898 0.8489 0.8346 0.7505
3 0.7799 0.6051 1.0000 0.8445 0.6186 0.5224 0.8477 0.7466
4 0.6587 0.8489 0.8445 1.0000 0.8445 0.7206 0.8709 0.8841
5 0.7799 0.7898 0.6186 0.8445 1.0000 0.8445 0.8477 0.7466
6 0.6587 0.8489 0.5224 0.7206 0.8445 1.0000 0.7159 0.8841
7 0.6611 0.8346 0.8477 0.8709 0.8477 0.7159 1.0000 0.8808
8 0.5823 0.7505 0.7466 0.8841 0.7466 0.8841 0.8808 1.0000

Table 3.1: Mutual circular cross covariance of 6 angular patterns

Each cell (in row i and column j) in this table is the η between ideal signals of

6UCP with IDs i and j respectively. To put it in other words, it shows the similarity

between these patterns. As can be seen in this table, the main diagonal of the matrix

is 1 which means that each signal is 100% similar to itself. Another observation is

that the similarity between two non-similar signals is not zero. As a result this table

gives a criterion to find the distinctness of two patterns. For example, the distinctness

between IDs 8 and 1 is more than distinctness between IDs 8 and 7. Therefore if there

are only two robots and three markers (with IDs 1,7 and 8,) logically we choose the

IDs 8 for the first robot and 1 for the other. Basically we are trying to maximize the

distinctness. Another approach to deal with numbers is to look at them as a Fuzzy

relation with universe U and membership function µF .

Definition 3.2.3. The Fuzzy relation corresponding to the pattern is:

F = {((i, j) , µF (i, j)) |(i, j) ∈ U }

where,

U={1, 2, 3, 4, 5, 6, 7, 8} × {1, 2, 3, 4, 5, 6, 7, 8} is the universe

46

µF (i, j)=η (Sideal(i), Sideal(j)) is the membership function.

Sideal(k) is is the ideal signal with ID equal to k

η is the similarity function defined in equation 3.2.7

So the universe is the relation of 1 to 8 with itself, and the membership function

would be the similarity of ideal signals. Figure 3.6 shows the membership function

(the same as Table 3.1). This figure helps more when choosing distinct patterns,

because we simply should choose those cells which are darker.

Figure 3.6: Similarity membership function of 6UCP

The final step in analyzing 6UCP is to see the effect of noise (unwanted error).

One part of the error might be because of the barrel distortion but as we discussed

by choosing an appropriate sample ring it can be to some extent eliminated. Fur-

thermore so far we assumed the center of the pattern is known and is exactly the

same as the measured center. Refer to section 3.4, the center of patterns are found

in blob detection part (using the centroid measurement). This method is to some

extent robust towards the unwanted transformation of the image because usually the

transformation is near linear for one marker (Fig. 3.13 shows that the markers are

47

small compare to the field). The other factor which has a major contribution to the

error is error in estimating the center. Figure 3.7 depicts the effect of sampling with

erroneous center for a particular pattern. To find out the effect of erroneous center

we first formulate the sampling around the circle then we see the effect of the center

shifting. The error (shown as a vector e in Fig. 3.7) specifies the shift from the true

center to the wrong center. Error (e) can be written in the polar coordinate system

as:

e =
√
e2x + e2y (3.2.10)

Where ex and ey are two horizontal and vertical components of error.

ex = e× cos(ε) (3.2.11)

ey = e× sin(ε) (3.2.12)

Where, e is the magnitude of the error and ε is the direction of the error. Note that

in practice e < r1 (r1 is the inner hole radius defined in definition 3.2.1).

Figure 3.7: Sampling on wrong ring (ring2) instead of ring1

To do sampling we should break the signal into units. The unit function is a step

like function.

48

Definition 3.2.4. The unit function is:

ua(t) =
sgn(t− a) + 1

2

where,

sgn is the sign function.

The output of unit function ua(t) will be 1 if t is greater than a otherwise it returns

0 (Fig 3.8(a)). One natural result of this function is that if b > a then ua(t) − ub(t)

is 1 between a and b, otherwise it is zero.(Fig 3.8(b))

Figure 3.8: From top to bottom a)unit function ua(t) b)ua(t)− ub(t)

By eliminating the need to conditional functions, the difference (ua(t)−ub(t)) can

be used to build our sampling formula.

B(r, t) = (Ur1(r)− Ur2(r)) [B1(t), B2(t), B3(t), B4(t), B5(t), B6(t)] (3.2.13)

Bi(t) = βi

Ui−1P

j=1
θj

(t)− U iP

j=1
θj

(t)

 where i ∈ {1, 2, · · · , 6} (3.2.14)

Where r1,r2, θj and βi are defined in definition 3.2.1 and B is the sampling vector.

One result from equation 3.2.13 is:

Sideal(k, t) = B(rs, t) (3.2.15)

49

Where Sideal(k, t) (also defined in definition 3.2.3) the is kth ideal signal sampled at

the angle equal to t. (Also consider that pattern parameters such as β and θ depend

to k). To find the sampled signal in presence of error Ssampled we consider the shifting

of center (Fig. 3.7) in the polar coordinate system.

Ssampled(k, t) = B

(√
r2
x (ex, t) + ry (ey, t)

2, atn2 (ry (ey, t) , rx (ex, t))

)
(3.2.16)

Where, atn2(y, x) returns the angle (between 0 and 2π) of a vector with components

x and y. The transformed radius components rx and ry can be calculated by:

rx(ex, t) = ex + rs × cos(t) (3.2.17)

ry(ey, t) = ey + rs × sin(t) (3.2.18)

Where, ex and ey are horizontal and vertical components of the error vector (Equations

3.2.11 and 3.2.12) while rs is the sampling radius (a constant). By allowing the angle

to be any number in its domain, the sampled signal is found.

Ssampled(k) = Ssampled(k, t) (3.2.19)

where, t ∈ [0, 2π].

Finally, having both ideal and deformed signals of a particular pattern (with ID

equal to k), by computing the similarity the effect of error in center of pattern can be

seen. The error is a two dimensional vector therefore the self-similarity is a function

of ex and ey:

ss(k, ex, ey) = η (Sideal(k), Ssampled(k)) (3.2.20)

Where η is defined in equation 3.2.7 and k is the ID of pattern.

Figures 3.9 and 3.10 depict the self-similarity criteria of some IDs. In these

figures, (ex, ey) ∈ [−5, 5] × [−5, 5] is the domain (horizontal plane) and the value of

50

self-similarity function is shown on the third dimension. The range [−5, 5] corresponds

to [−r1, r1] while in practice e < r1, also in our case r1 is equal to 5 pixels. In addition,

as we expected before, for (ex, ey) = (0, 0) the self-similarity is 1, because there is

no error. However by introducing error, the similarity decreases with different rates

based on the direction in which the center is shifted. This figure changes from ID to

ID, and can be used as a criteria to find the sensitivity of that particular ID towards

central shift error. For example, a sharper slope means more sensitivity to error.

Figure 3.9: From left to right, a) ID equal to 1 b) ID equal to 3 c) ID equal to 6 The
second row is self-similarity of first row (Z axis). X and Y axes are ex and ey.

Some conclusions can be achieved by looking at these 3D pictures; as Figure 3.9

shows for ID equal to 1, shifting of the center in a particular condition does not deform

the signal, this can justify the robustness of this ID in practice and together with the

distinctness of this ID (seen in Fig 3.6) candidates this ID as one marker. Although

Figures 3.9 and 3.10 give some information about robustness of IDs, the robustness

of heading is not conveyed. For example for the ID equal to 3 in (Fig. 3.9(b)) when

the center is shifted towards the small white pie slice (β4), self-similarity rises (to near

51

1) again, but in that case the heading is reversed. Furthermore, the self-similarities

of IDs equal to 5 and 7 (not shown in this text), resemble those of IDs 1 and 4

respectively (only with some rotation).

Figure 3.10: From left to right, a) ID equal to 2 b) ID equal to 4 c) ID equal to 8
The second row is self-similarity of first row (Z axis). X and Y axes are ex and ey.

3.3 Other patterns

We implemented the technique described for pattern identification in section 3.2,

however the current system enables applying another methods as well. We used Im-

ageJ as a standard package written for Java that has many features. We used this

image processing package in blob detection (known as particle analyzer in ImageJ),

enhancing the contrast and features such as zooming on the picture. Alternatively,

we could for example reapply the blob detection algorithm within each found blob

by applying region of interest (ROI) and find ID of the patterns by number or size

of the inner blobs. The advantage of this approach would be more robustness to-

wards deformation error, however finding headings will not be straight forward. By

52

looking at distinctness of IDs (Fig. 3.6) and also the self-similarity measurement

(Fig. 3.9) some useful information could be achieved, for example, IDs 3 and 6 can

be distinguished well but IDs 2 and 4 look similar. This leads to the assumption that

because there is some overlap in the graphic of the latter group they might have a

closer similarity. Based on this assumption another pattern that came into mind was

8 angle uniform circular pattern (8UCP). In the new design we place two always-black

pie slice in between the angles x1,x2 and x3 in the equation 3.2.3 . Note that the

dimension 6 of vectors in the definition 3.2.1 is not empirical and we can expand it

to define 8UCP.

Definition 3.3.1. An 8-angle-uniform-circular-pattern (8UCP) is defined by three

vectors and one coding formula:

P8 = {θ = [θ1, · · · , θ8] , β = [β1, · · · , β8] , α = [α1, · · · , α8] , φ, r1, r2}

where,

θ is a vector of angles of 8 pie slices. such that:

8∑
1

θi = 360◦ (3.3.21)

βi ∈ {0, 1} for i = 1, 2, 3, 4, 5, 6, 7, 8. β is the color vector so that if βi=1 the ith

pie slice is white otherwise it is black.

α is the vector of position exponents(αi are natural numbers or zero, for i =

1, 2, 3, 4, 5, 6, 7, 8)

φ is the code (or ID) of the pattern such that:

φ =
8∑
1

βi × 2αi (3.3.22)

r1 and r2 are the radii of inner hole and inner ring respectively.

Obviously 0 < r1 < r2. Also because this definition corresponds to the polar

coordinate system then all angles are counted in counter clockwise (CCW).

53

The improved instance of the equation 3.2.3 now is based on definition 3.3.1 as

follows:
θ = [80, 55, 45, 5, 45, 5, 45, 65]

β = [1, 0, x1, 0, x2, 0, x3, 0]

α = [0, 0, 1, 0, 2, 0, 3, 0]

(3.3.23)

This instance of pattern is basically expanding the equation 3.2.3 by adding two

5 degrees black positions between the informative part (which builds the code). In

the next step since the definition of η would remain the same (Equ. 3.2.7) we can

build a similar table of mutual similarities of the new IDs made by this pattern.

ID 1 2 3 4 5 6 7 8
1 1.0000 0.7354 0.7418 0.5707 0.7418 0.5707 0.5753 0.4448
2 0.7354 1.0000 0.4821 0.7761 0.4569 0.7761 0.3153 0.6048
3 0.7418 0.4821 1.0000 0.7694 0.4878 0.3276 0.7755 0.5996
4 0.5707 0.7761 0.7694 1.0000 0.4873 0.5074 0.5324 0.7793
5 0.7418 0.4569 0.4878 0.4873 1.0000 0.7694 0.7755 0.5996
6 0.5707 0.7761 0.3276 0.5074 0.7694 1.0000 0.4994 0.7793
7 0.5753 0.3153 0.7755 0.5324 0.7755 0.4994 1.0000 0.7731
8 0.4448 0.6048 0.5996 0.7793 0.5996 0.7793 0.7731 1.0000

Table 3.2: Mutual circular cross covariance of 8 angular patterns

Again the main diagonal of the table are all 1 because each ID has 100% self-

similarity when there is no noise. The criteria in choosing distinguishable IDs is

the same as before. The Fuzzy relation defined in 3.2.3 remains the same and fig-

ure 3.11(a) shows the new membership function based on 8UCP. Again darker cells in

this figure are better options to choose because of more distinctness. By comparing

figure 3.11(a) with 3.6, we can see more number of darker cells in the new pattern

(8UCP). That suggests an improvement over the previous pattern, however the im-

provement is not significant. Especially the sensitivity to error in finding the center

54

remains the same(Fig 3.11(b)). In addition, using some techniques in image process-

ing (like enhancing the contrast before blob detection and intelligent decision making)

resulted in an acceptable and robust pattern recognition of 6UCP and eliminated the

need to implement new patterns.

Figure 3.11: From left to right: a) Similarity membership function of for 8UCP b)
self-similarity of ID=2 (Z axis). X and Y axes are ex and ey.

3.4 Image processing algorithm

Looking into the modeling aspect of the project, image processing is the vision of the

robots, it should get information about the robots separately, and pass it to the real-

time simulation being in progress. Image processing is implemented in a class called

Vision which is the name of its functionality. Using the Control Panel it is possible

to perform vision task only once or consecutively, the latter is done inside a thread.

One important aspect in control is the sampling rate of the sensory input, when the

input is in the form of captured images this is known as frame per second (FPS).

Desired FPS is one of the settings associated with the interval of the vision thread,

55

and can be changed (Fig. 3.12). Note that because the vision task is time consuming,

satisfying the desired FPS is based on the system resources such as speed and available

cache. In addition, we perform vision in an efficient way, for example, the GUI (in

which the on-line processed video stream is shown) is another thread which decouples

the vision task from demonstrating the results. The result was about 10 FPS for

a 1.8GHz Intel processor, for better results a good solution would be implementing

image processing in a faster language (like C++) and connect it to Java using native

codes. Furthermore, we assume parameters such as brightness, contrast, saturation

and hue are fine tuned by the user in the GUI implemented for vision settings (Fig.

3.12). The vision algorithm consist of the following steps:

1. Build the image.

2. Convert the image to gray scale.

3. Enhance the contrast.

4. Find objects by Blob Detection.

5. Analyze object patterns.

6. Decision and mapping.

The first step of vision is responsible for preparing the image to be processed. First

of all, the raw image data is in the form of a byte array representing the standard

bitmap of the frame taken. This format is incompatible with standard Java image,

therefore each element of the raw array is converted to a four byte integer (for Alpha

Red Green Blue (ARGB) format). In addition, the sequence of the rows in the image

is taken care of, if not the image will look upside down. Another additional conversion

56

is done to build the image compatible with ImageJ (known as ImagePlus) because

the second, third and fourth steps of Vision are done using ImageJ. Apart from being

available in Java, optimized, open-source and widely used, an advantage of ImageJ

is the stand-alone software containing all of its features. It is easier to test applying

different operations on still images (which can be saved as JPG and BMP format

inside the control panel (Save as BMP and save as JPG buttons in Fig 2.4)), and

after coming to a good method, write the necessary code to do the same procedures.

Figure 3.12: Vision settings GUI

In the second step of Vision, the RGB image is converted to gray-scale format

(internally by averaging three bands and adding a constant offset of 0.5 to the result).

57

To have a sharper image in blob detection, the histogram of the image is stretched

first. The saturation is controlled by Enhanced Pixel Saturated parameter (inside

other-settings panel in Fig. 3.12) which is normally set to the half.

The fourth stage of Vision uses particle analyzer of ImageJ to find the blobs in

the already prepared gray-scale image. The internal algorithm of particle analyzer

works as follows. For each line of the image and each pixel, if the pixel value is

inside the threshold range (given in Fig. 3.12 under Min Blob Threshold and Max

Blob Threshold), the algorithm traces the edge to mark the blob (while calculating

measurements such as centroid of the blob) with a special color outside the threshold.

The algorithm continues to find all blobs. The centroid is calculated by averaging

the x and y coordinates of all of the pixels in the selection (here circular blobs), thus

it is to some extent robust against lenses effect. Another filtering then is applied

to opt out the objects which are not of preferred size (given in Fig. 3.12 under Min

Object Size and Max Object Size). This filters some noise particles because we have

some estimation about the expected objects’ sizes in the field. We denote the total n

objects with {o1, o2, · · · , on}. Note that in general case n can be zero or more. Figure

3.13 shows totally five objects (n = 5) in the field, three of which are robots.

The result centroid measurement is then used as the center of possible 6UCP

patterns in the place of each object (using the technique discussed in section 3.2).

The result of pattern analysis is a table with each row representing an object mapping

the similarity of that object to the markers (each with a specific ID) available in the

field (object to ID similarity mapping). The similarity is measured by equation 3.2.7

for sampled signals and ideal signals.

58

As stated earlier, we can have up to 8 different markers in 6UCP but not all of them

are generally in the field (not all of them are available markers). As a result we have

m available markers (1 ≤ m ≤ 8) with associated IDs of {ID1, · · · , IDm}. Figure

3.12 shows a panel named “Real robots available”, we call this panel, mapping panel.

By selecting from the checkboxes in this panel user defines the available markers on

the field, so that the object to ID similarity mapping would have fewer columns, this

restriction proved to be very useful in the decision step (next step of algorithm). For

example in Figure 3.12 only three markers are selected (m = 3) with IDs equal to 1,3

and 6 for three real robots in the field. These marker IDs are chosen based on criteria

such as distinctness discussed in previous section (section 3.2). Table 3.3 shows the

mapping of the five objects in figure 3.13 to three (m = 3) available marker IDs

(named ID1, ID2 and ID3 so that ID1 = 1, ID2 = 3 and ID3 = 6) in one example

frame of the video stream. Note that these values change based on many parameters

such as error or ambient light over consequential frames.

ID1 = 1 ID2 = 3 ID3 = 6
o1 0.27433464 0.3336813 0.40391427
o2 0.6221739 0.93153024 0.16337222
o3 0.5072501 0.19723846 0.9139368
o4 0.3381496 0.47814554 0.36910614
o5 0.9299889 0.65918684 0.51369625

Table 3.3: Object to marker-ID similarity mapping in one frame data

In the final step of image processing we should assign each ID to an object (the

reverse of the mapping). Note that we assumed all of these IDs exist in the field, then

we should find the objects which are more likely to be a particular ID, while each

object can be used only once. The object to ID assignment algorithm should find the

59

solution set Sol that:

Sol = {(IDi, oj)| i ∈ {1, · · · ,m}}
if (IDk, ol) ∈ Sol then (@j 6= k; (IDj, ol) ∈ Sol)

Figure 3.13: Platform and Mapping

There is a parameter known as Min acceptable Correlation also changeable in

vision setting (Fig. 3.12), this parameter is the acceptable similarity threshold so

that no object with similarity less than this threshold is assigned as valid robot in

the algorithm that follows. Also note that for example table 3.3 a threshold of 69

percent is enough to eliminate two non-robot objects.

Since each object has a sampled signal, the similarity in the table is a result of

maximizing cross covariance function, and η(oi, IDj) is the similarity (η being defined

60

in equation 3.2.7). The search builds the solution set (Sol) iteratively by adding or

removing some member elements. At first no object is related to any robots. Starting

from i = 1, in each iteration for oi, for all possible j the ID with maximum similarity

is found (IDg) if it is not related to previous objects, the algorithm assigns the ID

(=IDg) to the object (oi) and goes to the next iteration by increasing i. If IDg on

the other hand is previously related to another object ol (l < i) with more mutual

similarity than new pair (η(ol, IDg) ≥ η(oi, IDg)) this algorithm is repeated (without

increasing i) with the next similar ID (searching while ignoring IDg). The remaining

case occurs when the newly found pair-similarity is more than among previously

related pairs (η(ol, IDg) < η(oi, IDg)) in this case the algorithm removes (ol, IDg)

from the solution and tries to relate the object ol to possibly another ID. The steps

of the decision algorithm which is done for each captured frame follows:

1. start by i = 1

2. (oi, IDg) = argmaxj (η (oi, IDj))

3. if @j ∈ {1, · · · , i− 1} that (oj, IDg) ∈ Sol

then add (oi,IDg) to Sol,

if i < n then terminate the algorithm else increase i and goto step 2 (n is the

number objects).

4. if ∃l ∈ {1, · · · , i− 1} that (ol, IDg) ∈ Sol and η(ol, IDg) ≥ η(oi, IDg)

then set η(oi, IDg) = 0, and goto step 2

5. if ∃l ∈ {1, · · · , i− 1} that (ol, IDg) ∈ Sol and η(ol, IDg) < η(oi, IDg)

then remove (ol, IDg) from Sol,

61

set η(ol, IDg) = 0, set i = l and goto step 2

The solution set for the example table given in Figure 3.3 is {(o2, 3), (o3, 6), (o5, 1)}.

Furthermore, we should mention that, all of the vision steps except the two last steps

are implemented as separate functions. So far we have not used other off-line data

such as the similarity between IDs themselves (Table 3.1), a good future research

problem would be to consider this data as follows. Based on the definition 3.2.3 we

can use only a subset of F (definition. 3.2.3) but only for the available IDs.

Definition 3.4.1. The Fuzzy subset for m specific IDs is defined as:

Fa = {((i, j) , µ(i, j)) ∈ F |(i, j) ∈ Ua}

where,

Ua={ID1, · · · , IDm} × {ID1, · · · , IDm} is the universe (Ua ⊆ U)

µ (i, j)=µF (i, j) is the membership function.

F , µF and U are defined in definition 3.2.3

For example the Fuzzy subset of IDs in {1, 3, 6, 7} is shown in the table 3.4 (which

can also represent a matrix).

ID 1 3 6 7
1 1.0000 0.7418 0.5707 0.5753
3 0.7418 1.0000 0.3276 0.7755
6 0.5707 0.3276 1.0000 0.4994
7 0.5753 0.7755 0.4994 1.0000

Table 3.4: A Fuzzy subset of similarities

By observing the tables 3.1 and 3.4, and also Figure 3.6 and also recalling the

pattern analysis, we can see that for example the ID pairs (3,7) are much more similar

than any pair of (1,7) and (6,7). This information can be used as another distinctive

62

feature for ID equal to 3. Here ID equal to 7 is not an available ID, however we can

assume it is available and build a table similar to Table 3.3. The result extended table

is like Table 3.3 with an additional column (the left matrix in Equ. 3.4.24). (Here in

this example, we call 7 a support ID for 3 while 3 is the owner of 7). This extended

matrix is a Fuzzy relation between objects and available IDs (union with the support

IDs), where the membership function gets its values from the object-ID mapping

table cells, and the universe is the possible combination of objects and available IDs

union support IDs. If we call this extended Fuzzy set Fo, after replacing the support

IDs with their owners, the solution set is Sol ⊆ UFo while Fo (with universe UFo) is

the search space of the mapping decision algorithm in image processing. To further

utilize these mutual similarities we can combine the relations Fa with Fo as a filter.

Fo ← Fo ◦ Fa

Fo ←

0.2743 0.3336 0.4039 0.3703

0.6221 0.9315 0.1633 0.6984

0.5072 0.1972 0.9139 0.4102

0.3381 0.4781 0.3691 0.5073

0.9299 0.6591 0.5136 0.5149

1.0000 0.7418 0.5707 0.5753

0.7418 1.0000 0.3276 0.7755

0.5707 0.3276 1.0000 0.4994

0.5753 0.7755 0.4994 1.0000

(3.4.24)

The composition can be done using the S-Norm (⊥max) and T-Norm (Tprod) for

Equation 3.4.24. Now the same 5 step decision algorithm can be applied on the new

Fo (Equ. 3.4.25) to find the solution set and then finally substituting the support IDs

(here only 7) with their owners (here just 3), if they appear in the solution set.

63

Fo ←

0.2743 0.3336 0.4039 0.3703

0.6910 0.9315 0.3550 0.7224

0.5216 0.3762 0.9139 0.4564

0.3547 0.4781 0.3691 0.5073

0.9299 0.6898 0.5307 0.5350

(3.4.25)

The result of image processing is a set of robot objects with tags such as position,

IDs, heading and similarity to ideal robot. These IDs are numbers associated with

real robots based on the markers put on top of them. These real IDs therefore can be

any number between 1 and 8 (IDr ∈ {1, 2, · · · , 8}) , on the other hand in the robot

convoy problem when real robots and virtual robots work together we need a set of

increasing numbers given to a mixture of real and virtual robots (which are called

agents together). Agents’ IDs can be a set of natural numbers, of course having more

elements than number of real robots in the field, to cover real and virtual robots

(IDv ∈ {1, 2, · · · , T} T being the number of agents). The mapping of real IDs (IDr)

to their virtual counterparts (IDv) can be done in vision setting GUI (Fig. 3.12) in

mapping panel because this mapping is only valid for available IDs which is defined

in the same place using checkboxes.

In this mapping, the desired virtual IDs for given available real IDs are given

(in the GUI), the mapping function tries to associate the virtual robots to the other

virtual IDs available to satisfy the desired virtual IDs of real robots, for those IDs

for which desired mapping is not possible an automatic mapping is performed. The

numbers shown in figure 3.13 are the agents’ IDs, agents with the same virtual and

real ID (3 and 1 in this figure) are shown in the same colors and different from other

agents. We can say that the IDs 1 and 3 are mapped to themselves, but 6 is mapped

64

to number 2. We have the condition 1 < 2 < 3 satisfied among the result of this

mapping, therefore the order in which the agents follow each other is specified.

Finally, based on the modularity, IDr is used for vision related side of the applica-

tion, while the real-time simulation works with IDv. Finally, the decision making part

is an open research problem, where many techniques such neural networks, Kalman

filtering and Bayesian networks can be used. Especially since we did not use the

localization results of previous frames when localizing robots in current frame.

Chapter 4

Robot-in-the-Loop

The software development methodology if based on the simulation, can solve the

incoherence problem between different stages of the process by applying the model

continuity. This technique makes use of simulation to test the real-time embedded

software effectively, where virtual models replace some physical objects and sensors

during the test phase. The step-wise simulation based software testing and develop-

ment, enhances the technique to examine the logic and temporal characteristics of

the real-time system [13]. The dynamic team formation is a test-bed to further in-

vestigate the step-wise refinement of the software by simulation (Robot-in-the-loop).

Whatever architecture chosen for problem solving of the distributed software, this

methodology can help greatly in fine turning of smallest units and building blocks.

Choosing behaviors as the building blocks is a common technique yielding robustness

in the dynamic environment of multi-agent team formation [25, 36].

Considering the robot swarm problem [24, 37, 25] where many micro-robots (like

ants) are deployed for a mission, to decompose the mission goal into simple behavior

tasks is often challenging [24]. On the other hand, behaviors provide a bottom-up

solution with an easy way to think of the problem. Unlike the common subsumption

65

66

behavior structure (with hierarchical behaviors) which is often used in multi-robotics,

we base our architecture on mutual inhibition and DEVS (introduced in introduction

section). While the context layer gives the desired effect of multi-layer hierarchy,

putting the behaviors in the same level, by applying the Robot-in-the-loop software

design, it is possible to systematically revise the behavior tasks. In addition, unlike

most of the previous works involving simulation and multi-robot [25], the computer

code used to drive the simulation is the same as one used for real robots. Like Human-

in-the-loop interactive simulation [38, 39], the idea of Robot-in-the-loop as a paradigm

of model continuity is to close the gap between reality and simulation by solving the

incoherence problem between several stages of development [13, 40, 41].

4.1 Dynamic team formation

To help the convoy to form, the agents (including real and virtual robots) are assigned

IDs consecutively from 1 to N , where N is the total number of agents. A formed

team is a convoy in which the kth agent (Rk) should follow the agent Rk−1 for k ∈

{2, 3, · · · , N}. The final team would be {R1, R2, · · · , RN}. By removing the ordering

of the agents, emergent behaviors also can be investigated in the future research. Each

agent should follow the next agent or search for it, while waiting for the previous

agent. The team formation is dynamic; during the process; sub-teams may form

({Rl, Rl+1, · · · , Rm} that 1 ≤ l < m ≤ N) that later on this chain is broken because

of other phenomena. For example another agent which does not belong to this sub-

team may try to cross the line between Ro and Rp (l ≤ o < p ≤ m), the chain

is widened at that point not to collide with the crossing agent, therefore the agent

Ro may decide not to wait for Rp anymore and continue its convoy. This active

67

environment especially when real objects are in the simulation, make the predefined

path planning for team formation very hard. Furthermore, the first agent R1 is unique

because it does not have to search for any other agent, and leads the entire group.

In addition, R1 does not follow any specific pre-defined path which gives it more free

movement. To model the agents, we assume the agents are homogenous (which is true

for virtual robots but not completely true for real robots even of the same brand).

Figure 4.1: From left to right, a) The behavioral context transitions b) Behaviors and
their inhibitory connectors

The behavioral context (Fig. 4.1(a)) of the robot-convoy problem has two states

for each agent; Team forming (which is during the team formation) and Convoy (after

sub team formed) these states transit to each other according to D back (D back =

min(d5, d6) where d5 and d6 in Fig. 4.2 are defined later). By considering the pos-

sible behavior functionalities such as motion, orientation, navigation, clustering and

dispersion [24] we chose four behaviors; Follow, Avoid, Wait and Search.

Figure 4.1 shows the behavioral and context layers of the team formation prob-

lem. Having these behaviors we only need to define the excitation of each behavior

(Equ. 1.2.2) and the inhibitory coefficient matrices corresponding to each context to

68

find the inhibition applied (Equ. 1.2.1). Afterwards, the task of each behavior would

be defined and decision making algorithm is complete. The constant thresholds for

firing actions are Tinhibit = 0.1 and Texe = 0.2. The excitation and actions are based

on the sensory input from virtual sensors.

Figure 4.2: Proximity sensors model of the agent

Figure 4.2 shows the typical plan for 6 out of 8 Kheprar infra red proximity

sensors [32], their relative positions and functionality in sensing front and back side

of the robot. These sensors give a straight distance of the objects found in front of

them; which for the sensors 1, 2, 5 and 6 it would be {d1, d2, d5, d6}. As shown in this

figure, the measurement is done parallel to agent’s heading (h) to find the objects

in the course of the agent (as obstacles). Therefore the measurements of the sensors

3 (= DL) and 4 (= DR) are projected to h vector to find d3 and d4 only if there is

any object between the dotted lines. In another words, if the object is placed further

than LR it is not detected by sensor 4 and as a result d4 would be infinity, measuring

d3 is done similarly.

69

d3 = DL × cos(45) if DL ≤ LL otherwise ∞
d4 = DR × cos(45) if DR ≤ LR otherwise ∞

Table 4.1 shows the excitation formula for each behavior of the the agent Rk

(1 ≤ k ≤ T), the actions of behaviors come in the following sections. The explanation

of the Avoid behavior is based on figure 4.2 which is the extended model of the agent

sensors, required in section 4.4, before that stage only two sensors were considered

in modeling, one in front of the agent and one at the back, each calculating d as the

distance to the obstacle.

Excitation Explanation

Avoid Eavoid = min
(
e−

d−20
10 , 1

)
d = min (d1, d2, d3, d4)

Follow Efollow =

{
0.9 if k = 1

min
(
0.4 + 0.6× e d−100

10 , 1
)

o.w.
d=Distane to Rk−1

Search Esearch =

{
0.8 if d > 150 and k 6= 1
0 o.w.

d=Distane to Rk−1

Wait Ewait =

{
0 if k = T

min
(
e

d−120
10 , 1

)
o.w.

d=Distane to Rk+1

Table 4.1: Excitation of the behaviors of the agent Rk (1 ≤ k ≤ T)

Figure 4.3 shows the effective range of different behaviors in general, whereEA,EW ,ES

and EF represent the excitation of the behaviors Avoid, Wait, Search and Follow re-

spectively (in table 4.1). According to the original design [12], each agent has two

stages; at the beginning of the team formation it should search for the front agent

more aggressively then follow it without waiting much for the back robot. However,

after the back robot comes to a certain distance, the agent should favor waiting over

searching and following. The former phase is the Team forming context and the latter

70

Figure 4.3: Excitations effective range

is the Convoy context.

Tables 4.3 and 4.2 show the inhibitory coefficients of the behavioral network

in two different contexts [12]. In these tables, the behavior in the upper row is

inhibiting the behavior in the left column. Furthermore as can be seen in among

the inhibitions, the priority of search and wait is reversed during the context change;

in the convoy context wait behavior inhibits search (with coefficient of 0.6) while in

the team forming context search behavior inhibits wait with the same power. The

relative priorities of the behaviors follow and wait also change to some extent, but the

behavior avoid still inhibits all other behaviors with the highest degree (1.0) because

it should always avoid the collisions.

Finally, because of the robustness of the algorithm it is observed that most of

the constants used for inhibitory coefficients (Tables 4.3 and 4.2) and also excitation

formulas (Table 4.1), are not empirical values and can be changed within a large range

as long as they conserve the concepts such as relative priorities of the behaviors and

the time they should be fired.

71

Inhibiting
Follow Wait Search Avoid

Inhibited

Follow x 0.5 1.0 1.0
Wait 0.6 x 0.6 1.0
Search 0.0 0.0 x 1.0
Avoid 0.0 0.0 0.0 x

Table 4.2: Team forming context, mutual inhibitory coefficients

Inhibiting
Follow Wait Search Avoid

Inhibited

Follow x 0.7 1.0 1.0
Wait 0.4 x 0.0 1.0
Search 0.0 0.6 x 1.0
Avoid 0.0 0.0 0.0 x

Table 4.3: Convoy context, mutual inhibitory coefficients

4.2 Test the design as fast as it can

The architecture of the system is described in previous sections. The iterative testing

of the design is done using simulation. As stated earlier the real and virtual robots

are modeled to work together in simulation framework. However, before bringing

the real objects in the simulation there is no need for real-time simulation because

the convoy can consist of only virtual robots which try to form a team based on the

behavior based modeling architecture.

Since this phase of the robot-in-the-loop, involves non real-time simulation, the

simulation is done as fast as the computer speed allows. In another words, because

the virtual time does not need to be synchronized with world clock, the sequence

of events occur sooner than expected time. Another result is that the virtual time

72

interval between two consequential events does not need to be consistent during the

simulation. The latter result often will not have a tangible effect if the amount of

calculations between two consecutive events is not too much, which is often the case.

Task
Avoid move backward for [10, 20]→ rotate clock wise for [60, 80]

degrees. Using non resumable task queue.
Follow turn to agent Rk−1 → move forward or backward to keep

desired distance (ddesired) of 20. Using non resumable
task queue.

Search move forward for [30, 50] → rotate counter clockwise for
[70, 80] → move forward for [30, 50] → rotate clockwise
[70, 80]. Using resumable task queue.

Wait Null

Table 4.4: Initial task definition of the behaviors of Rk

The speed we buy in this way helps to find the logical design flaws and the conflicts

very soon, which is one of the primary use of simulation in old simulation-based design

without exploiting the model continuity. The result of this step yields a statistically

correct architecture with effect of accuracy and reliability of the system in the long

run or under different conditions. Because of the fast simulation, the general attitude

of the system is investigated and the final goal (which may take time in reality) is

tested if it is achieved at all or not. For example for the robot convoy problem it

is tested if the agents finally form a team under different initial conditions such as

different size, number, position and heading for the agents.

For the current problem the robot-in-the-loop is required to help us design the

tasks of the behaviors. Table 4.4 shows the initial design for the tasks of each be-

havior [12]. Most of the constant numbers are not empirical and can vary as long

73

as they preserve the meaning of the behaviors, also the angles are in degrees but

the distances do not have any unit now (later in the real-time simulation the dis-

tances are considered as the number of pixels and converted to the actual distances

in meter). In addition, navigational commands such as turn to, rotate and move are

considered to be available as well as the distance sensor data. In this notation the

task is defined for the kth agent Rk. The notation [n1, n2] means a random number

between n1 and n2 and arrows show the sequence. The tasks in this design are con-

sidered to be run in task queues, resumable or non-resumable. Furthermore, we have

ddesired = min (d1, d2, d3, d4), but the individual distances are not exploited yet. Now

the simulation on all virtual agents (in Fig 2.5) is used to test this behavior task

design, for validity in the long run.

Figure 4.4: A simple deadlock caused by limited space and lack of movement

As discussed earlier the behaviors individually act like finite state machines, thus

certain configurations may lead to deadlocks without a mechanism to bring the system

out of the deadlock. In earlier designs of the sensor model of the agents, only two

sensors were considered; one in front and one at the back side of the robot. This

leads to over abstraction by ignoring the space one robot takes and as a result agents

may collide and even pass over each other while in reality this is not possible. On the

other hand the more realistic sensor model (Fig. 4.2) restricts the free movement of

74

agents as is common in reality. This restriction together with the FSM-like behavior-

tasks cause the simulation to freeze in a certain cases after running the simulation

for certain period of time and certain number of agents. Figure 4.4 shows one of the

simplest forms of this area-bounded deadlocks.

The deadlock in figure 4.4 is caused by arrangement of the agents so that the agent

R1 is waiting for R2 and R2 is waiting for R3, but R3 can not move forward, since R4 is

placed in its desired distance with R3 and does not like to move. Also R3 is constrained

by a wall in the bottom side. This deadlock is not stable and can be solved easily by

adding more activity (or temperature) to the tasks, the required energy can be added

by applying more randomness and freedom of degree to the behaviors. It acts like

heating the molecules of gas so they tend to widen in space. To achieve this, wherever

there was an explicit rotation (clockwise or counter clockwise) we randomly change

the direction therefore the commands rotate clockwise and rotate counter clockwise

are replaced with the command rotate which has no explicit direction. Note that

adding too much temperature (for example by increasing the span of the random

rotation from [70, 80] to [0, 360]) can result in erratic movements.

Figure 4.5: A more complex deadlock

The new design could solve much of the deadlocks, for instance R2,R3 and R4 (in

75

Fig 4.4) now move more aggressively and finally find a way to continue. However,

Because of the realistic design of the sensors, it is more likely to face deadlocks when

the number of agents is increased, because the free movement is hindered by lack of

space for maneuver. Having run the simulation for different configurations another

non-resolvable deadlock was discovered (Fig. 4.5).

Task
Avoid move backward for [10, 20] → rotate for [60, 80] degrees.

Using non resumable task queue.
Follow turn to agent Rk−1 → move forward or backward to keep

desired distance (ddesired) of 20. Using non resumable
task queue.

Search move forward for [30, 50] → rotate for [70, 80] degrees →
move forward for [30, 50]→ rotate [70, 80] degrees. Using
resumable task queue.

Wait increase suspended time (tsus) if behavior has not
changed

Table 4.5: Refined behavior-tasks of agent Rk

The added free maneuvering could not solve the deadlock in Figure 4.5. This

deadlock is between the agents in the set {R1, R2, R3, R4, R5, R6} while other agents

such as R7 act as barriers. By analysis of this deadlock again we see the combination

of avoid and wait behaviors to be involved. R5 is in its desired distance with R4,

thus not moving much, unless a little movement when R6 approaches to pass it.

The black lines are the environment boundary that agents can not pass. Since the

deadlock happened as a consequence of unlimited waiting for previous agents, we

added another parameter to the waiting behavior so that each agent has a limited

patience while waiting for the follower agent.

76

Ewait =

 0 if k = T

P ×min
(
e

d−120
10 , 1

)
otherwise

P = e−
tsus−15

5 where e is the the base of the natural logarithm

(4.2.1)

By decreasing the patience (P) over the time the agent which has waited more

(in deadlock) tends to break the chain. For example R3 in the latter deadlock starts

moving forward running out of the patience. The excitation of the wait behavior thus

changes (from what was defined in table 4.1) to what is defined by equation 4.2.1

for agent Rk. The tsus used in calculation of patience (P) is the time agent (Rk)

has been in waiting behavior (suspended time). When suspended time reaches about

15 seconds, the patience is decreased. If no other agent intrudes the waiting agents,

the chain is more likely to break in the point of the deadlock thus still keeping some

agents in the resulting sub teams (like {R1, R2, R3}). The sub-teams continue their

convoy, while agents try to form the complete team again. During the simulation

agents may form a team then it is broken and formed again in a dynamic way, but

simulation helped solving the deadlock problem.

4.3 Bring one real robot, synchronize the pace

In the next step in robot-in-the-loop, one real robot is added to the all-virtual convoy,

this is the case when only one agent in AgentSys (Fig. 2.5) is a real robot and the

rest are virtual. This step is a big change as compared to previous phase because we

are adding to the dimensionality of the problem. One instant result is that because

of the real object we need to switch to the real-time simulation, make changes to the

design then go back to the previous phase test the overall logic and iterate this until

a desired outcome is achieved.

77

In the case of robot-in-the-loop, the very first issues to solve was the virtuality

of the units and scales in the DEVS simulation design. While the virtual robots

can have any size, moving speed, and angular speed (as long as these parameters

are relatively meaningful among the virtual robots), the equivalent scales must have

some physical meaning for real robots. For example the speed should be in terms

of meter per second so that real objects behave correctly. So far, it was possible to

scale the environment and robot size for instance, and the simulation result was the

same because the relative scales were held. To make the virtual and real objects work

harmonically, we decided to apply the physical units like meter,meter per second, and

radian per second for measurements and navigational commands (sice real robots

can understand them). Having the actual size of the real robots and the platform,

by considering a constant called Pixels per meter (which can be changed in vision

setting (Fig. 3.12)), the scales and units were converted inside the interface (Fig. 2.5)

for real robots.

After the units have meaning in real world, by choosing an appropriate time

step for DEVS realtime simulation (so that events can be handled within each time

frame), the DEVS real-time simulation can be started. The simulation time step can

be changed in the main GUI (Fig. 2.4). After this correction, all agents should move

with the same speed if they receive the same navigational command in the similar

context.

While the as-fast-as-it-can simulation in DEVS does not require synchronization

with real world clock, the real objects need this clock to function correctly, when

interacting with other models. From the control aspect of the problem, the finer the

78

Figure 4.6: One real robot in the loop

time interval, the more controllability of the system is expected. However the com-

putational power of the machine limits the time resolution selection, especially when

heavy calculations such as real-time video processing of the input data is required.

When the first real robot comes to the simulation loop (robot-in-the-loop), the

reality changes some design concepts that were taken for granted before, for examples

the task of the behavior wait did not have any navigational commands (Tables 4.4

and 4.5) because doing nothing meant to stop and keep the previous place. For real

robots on the other hand, if the navigational command does not change, the robot

keeps running the previous command. To actually stop the robot another navigational

command (stop) was added to the tasks of waiting. Using equation 2.5.2 to stop the

robot we need to adjust the speed of both wheels to zero (VL = VR = 0), this is also

done in the interface of agent with the environment (Fig. 2.5).

79

Other behavior tasks also were redefined to get more efficiency. The all-virtual

case of robotic convoy simulation takes the DEVS inherent advantage (of being event

based) to remove the actual time between events for a faster result. This is useful

to observe the system’s behavior in a long time and by ignoring the details, however

it cannot help much in designing an efficient system because of virtually eliminating

the effect of the speed of convergence. What may take hours in reality may pass in

minutes during the virtual-time simulation because only the sequence and precedence

of the events are taken into account. On the other hand, a faster team formation is

required, because not only it is more desirable (in terms of efficiency) but also the

real robots have limited battery charge and limited speed. Table 4.6 shows the new

design for behavioral tasks fitting the case with one real and many virtual robots. The

distances d1, d2, d3, d4, d5 and d6 are the sensory inputs of the extended sensor model

of Rk having the heading of h (Fig. 4.2), In addition dmin ∈ {d1, d2, d3, d4, d5, d6} is

the distance to the nearest object.

The new design is tested in the DEVS realtime simulation (Fig. 4.6). As can be

seen in this picture, one real and one virtual robot formed a convoy and both are in

behavior follow, where the real robot (R2) is following R1. By changing the mapping

of real to virtual IDs (as discussed in vision), the inverse case is also simulated where

the virtual robot follows the real robot. In addition, the case with one real robot and

many virtual one is simulated, too. During these experiments, new behavior tasks for

avoid and follow were suggested (Table 4.6).

In previous best design (Table 4.5) every task was enqueued in a task queue,

during the time a behavior was active this queue was used to get the next navigational

command. The effect of these queues, regardless of being resumable or not, was a

80

Task

Avoid

if dmin ∈ {d1, d2}
{

rotate clockwise if d1 < d2

rotate counter clockwise otherwise

if dmin ∈ {d3, d4}
{

rotate clockwise if d3 < d4

rotate counter clockwise otherwise
else move forward

Follow turn to agent Rk−1 if the angle between h and position of
Rk−1 is more than π

6
otherwise move forward or backward

to keep desired distance (ddesired) of 20.
Search move forward for [30, 50] → rotate for [70, 80] degrees →

move forward for [30, 50]→ rotate [70, 80] degrees. Using
resumable task queue.

Wait Stop, increase suspended time (tsus) if behavior has not
changed

Table 4.6: Refined behavior-tasks of agent Rk after bringing one real robot

series of navigational commands each having a specific duration. This design, was

good as long as the simulation was fast and with virtual robots. During the real-time

simulation on the other hand it was not efficient. With queuing, for example if R1

was in P1 and R2 was in follow behavior, R2 might have received a mission to go near

P1 while R1 had changed the position to P2 still in a range far enough to invoke and

keep R2 in behavior follow.

The problem which is discussed in the previous paragraph is the result of out-

dated knowledge about the environment. Although this semi off-line decision making

did not show up in the as-fast-as-it-can simulation, with slow real robots and real-

time simulation this inefficient decision-making was revealed. The problem was more

evident with the avoid behavior where immediate decisions were needed to avoid

obstacles and virtual walls (the green border in the simulated area (Fig. 4.6)). There-

fore the behaviors avoid and follow changed to the on-line version, while the behavior

81

search remains the same (Table 4.6). Using the individual sensor inputs, helps mak-

ing a more accurate decision, while executing few navigational commands each time

(instead of queuing them) gives the follow and avoid behaviors faster response to the

dynamic changes, thus better performance and faster team formation. New behavior

avoid for example is an online combination of turning and moving forward which is

completely different from previous design.

4.4 More real robots, face the reality

The virtual robots do not crash if they collide with each other, the same is true with

a real and a virtual robot collision. This is an obvious fact that makes the experiment

with more real robots a need to test the system before accepting the model. With

only two proximity sensors at the front and back side of the robots it is hard to avoid

all collisions, therefore a new sensor model was taken into account to avoid agents

collision (Fig. 4.2). Because of this drastic change to the control logic, based on the

incremental design methodology, the simulation-based design should start from the

all-virtual simulation again, leading to new results, that is why the previous behavior

tasks are expressed in terms of the extended sensor model which is actually designed

in this phase. Figure 4.7 shows two real and some virtual robots, in a following convoy

(all in behavior follow).

In addition, the virtual robots are well behaved and identical (homogenous) but

real robots are intrinsically heterogenous. While we can expect the same behavior

from two virtual robots (when receiving the same command in the same context), real

robots may behave differently because they may have different mechanical character-

istics or be located in different positions of real environment. The real environment

82

Figure 4.7: Two real robots in the loop

in our case is just a simple platform which can be assumed to be uniform in different

locations (Fig. 2.2). For example by receiving the navigational command of rotation

(which should ideally rotate the robot around its center based on equation 2.5.2),

a real robot may have some displacement which is even different from another real

robot. It should be mentioned that the real robots are homogenous in shape how-

ever (all rounded with the same radius), which justifies the equivalent modeling and

simulation.

To reduce the effect of unexpected behaviors (thus having more robust models)

of real robots. One way to handle this is to send compensatory commands in a

closed loop manner, for example after sending a rotational commands if the robot

has an unexpected displacement and the displacement is not in line with the course

of robot another movement may correct it. If a robot, in behavior follow, is moving

83

away from the leader robot, then a displacement command (like moving forward

or backward) can correct the rotational command’s unwanted effect. On the other

hand, sending corrective commands over the link increases the complexity of design

(and also consumes more bandwidth as will be discussed in the next section). In the

distributed team formation in which a robot itself is running an embedded application,

this problem can be solved by a separate task of alignment while Kheprar can be

programmed for several concurrent tasks [31]. Implanting the alignment task (to

solve the unwanted displacement by rotation command), inside the on board program

reduces the complexity of the modeling caused by heterogeneity.

4.5 More on complexity

The final system is a team formation with all real robots without being controlled by

central DEVS simulation on a PC. It is the distributed team formation which is the

next step of the project and is still under development in the time this text is being

written. To move to that stage however, we needed to further bring real robots and

simulate them to see if new concepts lead to new architecture (behavior tasks in this

problem). Figure 2.4 shows the DEVS real-time simulation with three real robots

after passing previous design phases.

Another issue, which becomes more obvious as more and more real objects are

introduced to the real-time simulation, is the mutual effect of these objects on each

other, the hidden effects and what was not predicted beforehand. The communica-

tion of DEVS models is through the ports of coupled models (Definition 1.1.2), as

a result the virtual robots receive all of the commands on time independently. On

the other hand to send the messages to the real robots we use a communication link

84

(Fig. 2.7), this imposes some restriction on the bandwidth of communication which

is high enough to ignore its presence when sending command to few robots. Tak-

ing into account the inefficient wireless communication of the standard Kheprar, the

interference of communication links of real robots and the packet loss, the more we

bring real robots the more this problem shows up. This phenomena among the real

objects illustrate the dependency of new steps in the design.

One way to tackle the bandwidth problem is to use a better wireless communi-

cation link or to avoid sending unnecessary information. To achieve the latter, the

communication unit was changed to send a navigational command to a robot only if it

has changed (although removing the redundant packets may ignore some commands

in a noisy environment). In addition, the distributed software (which is supposed to

work in distributed team formation), should also support the standard communica-

tion of Kheprar (SerComm) so that it can be used in central team formation too,

while it will not send the echo of the commands (unlike the available software). By

avoiding to send the echoes of the commands, the effective bandwidth will be doubled

and also less interference will occur.

4.6 Incremental simulation-based design process

The incremental system development method discussed here has some partial out-

comes in each phase, Table 4.7 shows the product of each step and what is expected

to be achieved in that step. The design is incremental starting from the basic all-

virtual simulation and incrementing the complexity of the system gradually. Some

times introducing a new object in the simulation changes the system logic, in that

case the simulation-based process should start from the beginning.

85

Achievements
As-fast-as-it-can simulation Fast, Coarser perspective of the system, Sys-

tem Long-run behavior, Logic test, System goal
achievement.

One real robot Design consistency, Design efficiency, Design the
interface with real objects

Two real robots Exploring the dimensionality and heterogeneity,
Robustness

More real robots Resource management, Exploring the complexity
of new objects and their common factors

Distributed convoy Test the effect of the design in practice, Design
reliability

Table 4.7: The intermediate results of incremental simulation based design

The overall design of the software here was based on supervised development and

simulated test. The simulation was used not only to fill the gap of the to-be-expected

objects but also as a feedback loop helping the designer to overcome the problems.

The result of this step-wise development is a system along with its model being

simulated. This code written for the simulated model can be directly applied to the

real objects now (as we plan to do for the distributed team formation), and since a

near perfect model is in hand, it can be used as a substitute of the system in building

a bigger system. The model can also be consulted, if the real system is no longer

available or hard to manage or control. The latter benefit can be used for example

in emergency decision makings of an aircraft when an engine stops. Since the system

runs the same code written for the model, the model can best describe the system,

therefore it helps predicting the behavior of the system or even finding the defective

part.

86

4.7 System-in-the-loop

The problem solving mechanism in robot-in-the-loop, as discussed in this thesis, is a

test-bed for investigating the model continuity as a technology for iterative software

test and development. A more general case is to look the problem as a scientific

problem solving method for developing any complex system using modeling and sim-

ulation. The very first phase starts with modeling objects in an abstract way to

test the overall logic of the problem from a coarser perspective. In another words to

explore the problem space to find the conflicts as fast as possible using simulation.

In each step, by introducing a new dimension to the problem, a finer resolution is

investigated which leads to less abstraction of the model. The model is developed

along with the system while keeping the logic and design goals.

Figure 4.8: From left to right, a) First level, abstracted problem space b) Second
level, adding one dimension c) Third level, adding second dimension

To visualize this technique, assume the objects as forces F which try to move a box

placed in o to the specific distance of r. As shown in Figure 4.8(a), there are infinite

solutions to the problem, which one solution is shown. Because of the abstraction of

the objects, all forces are put in one dimension (assimilating the case of all identical

87

virtual robots). The barrier b is a logical conflict (as the deadlocks in robot problem),

and can be found by exploring the problem space of polar coordinate system.

To further discover the problem, we apply another force in a new dimension R1

(Fig. 4.8(b)) not inline with the first dimension. This case assimilates the step in

which we added only one real robot to the convoy, when reality brings a new dimension

to the problem with unchangeable force. By changing the object models (F) the

search is again performed for a new solution, of course more limited than before.

Going to the next phase, the heterogeneity of real objects adds new dimensions to

the problem (shown by R2 in Fig 4.8(c)) in the course of the problem solving, while

further restricting the solution domain. Figure 4.9 illustrates the problem space after

bringing a third real object. The forces and also the barrier (b) now have more

dimensions in a way that the older abstract is the top view of the new problem space.

Figure 4.9: Bringing the third dimension

Unfortunately when bringing more and more dimensions however, they are not

always independent from each other. The problem is dynamic in a sense that its

88

dimensions have some common factors. For example, some real objects may have a

common limited source that is shared among them (like the bandwidth communica-

tion with real robots). There are also some unknown effects of dimensions on each

other, requiring further investigating each dimension before moving to the next steps.

89

4.8 Conclusion and future work

How to design and implement a multi agent system is a complex task, that requires

a precise modeling of the system and a suitable decision making part. We used the

simulation (real-time and non real-time) to test and refine the system model, in order

to improve the decision making part. To further simplify this job, we used robot-in-

the-loop simulation methodology, and increased the complexity of the system step by

step. As we chose the mutual inhibition based behavior mechanism for our decision

making part, the simple behaviors are built by each step of the simulation. These

behaviors are modeled (in DEVS) as a behavior network which decides the next

navigational movement of the robot. The robot team formation, as a case study for

robot-in-the-loop simulation, is implemented with a central computer (running the

real-time simulation). The next phase of the project comprises the distributed team

formation in which the behaviors (which are already defined) are programmed on

each robot individually to see the effect of the step-wise design pattern. In both parts

of the project, the robots each is assigned an ID which determines its position in the

convoy.

In chapter 2, the developed system architecture (including hardware and software)

is presented. The hardware setup includes the the overhead camera, wireless com-

munication with the computer, a field (for robots to move) and robots. The several

software units of the system and their interactions are also introduced. Most of these

components are configured by an interactive GUI to see the result of different pa-

rameters on the system. The software, in the central team formation, is in charge of

controlling and monitoring the team formation. In the distributed team formation

however, the software would be used only for team formation monitoring, analyzing

90

and broadcasting the locations of robots to the distributed on-board software of the

robots.

In chapter 3 the localization of the robots (based on image processing), which is

actually another unit of the software architecture, is introduced. A circular pattern is

used in the image processing to find the ID and heading of each robot. This pattern

uses a color coding scheme which is then identified in the grabbed image of the field.

The image processing algorithm, the effect of noise and the criteria to choose certain

marker patterns (to place on top the robots) are discussed. The localization result is

used as the sensory input of the behavior choice mechanism.

In chapter 4, we give the simulation results. The agents (virtual and real robots)

are simulated (bringing one real robot at a time), to further characterize the behavior

tasks and build better robot models. To improve the performance and solve some

issues which are discovered during the simulations, the tasks are defined by a com-

bination of simple navigational commands. In the modeling of the behavior network

we do not take into account any specific parameter for individual robots, therefore

dealing with the intrinsic heterogeneity of the real robots requires more robust mod-

els (which does not depend on the individual robots). The robotic collaboration is

an example of the robot-in-the-loop simulation technique, but this technique can be

extended to be used in other system developments as well.

As the future work, we will complete the second part of the project (which is the

distributed team formation) to analyze the models in a team of all real robots each

navigating based on its own embedded behavior network. Various possibilities exist

for further study and use the current system in hand. The system is engineered so

that the main components can be used in (or combined with) other applications (with

91

robotics as a tool) such as a behavior simulator for the robots (the behavior network is

built interactively by a GUI connecting the inhibition links), to teach the concepts of

robotics, behavior mechanism, DEVS modeling and simulation. Finally, the control

aspects of the robotics (such as PID controllers), applying other multi robot missions

rather than the team formation (such as the search and rescue missions), improving

the image processing algorithm, fusing localization data with the infra red proximity

distances of the robots, design for fault tolerance, and emergent behavior design (for

example by eliminating the absolute order of the team formation) are other potential

future researches.

Bibliography

[1] R.G. Menendez and J.E. Bernard. “Flight simulation in synthetic environments”.

Proc. of Digital Avionics Systems Conferences (DASC), 1:2A5/1–2A5/6, 2000.

[2] E. Moritz and J. Meyer. “Interactive 3D protein structure visualization using

virtual reality”. Proc. Bioinformatics and Bioengineering (BIBE), May 2004.

[3] Soha Maad and Saida Bouakaz. “From Virtual to Augmented Reality in Financial

Trading: A CYBER-II Application”. European Conference on Combinatorial

Optimization ECCO XVII, 2004.

[4] O. Michel, P. Saucy, and F. Mondada. “KhepOnTheWeb: An experimental

demonstrator in telerobotics and virtual reality”. Proc. of International Confer-

ence on Virtual Systems and MultiMedia (VSMM), pages 90–98, 1997.

[5] E. Freund and J. Rossmann. “How to control a multi-robot system by means of

projective virtual reality”. Proc. of 8th International Conference on Advanced

Robotics (ICAR), pages 759–764, 1997.

[6] D. Gracanin, K. Matijasevic, N.C. Tsourveloudis, and K.P. Valavanis. “Virtual

reality testbed for mobile robots”. Proc. of IEEE International Symposium on

Industrial Electronics (ISIE), 1:293–297, 1999.

[7] Cao Bailin, G.I. Dodds, and G.W. Irwin. “An event driven virtual reality system

for planning and control of multiple robots”. Proc. of IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2:1161–1166, 1999.

92

93

[8] E. Freund and J. Rossmann. “Projective virtual reality: bridging the gap between

virtual reality and robotics”. IEEE Transactions on Robotics and Automation,

15(3):411–422, 1999.

[9] X. Hu and N. Ganapathyand B.P. Zeigler. “Robots in the loop: supporting an

incremental simulation-based design process”. IEEE International Conference

on Systems, Man and Cybernetics, 3:2013–2018, 2005.

[10] Bertrand P. Zeigler and Hessam S. Sarjoughian. “Introduction to DEVS Modeling

and Simulation with JAVA: Developing Component-Based Simulation Models”.

jan 2005.

[11] Bertrand P. Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory of Modeling

and Simulation: Integrating Descete Event and Continious Complex Dynamic

Systems. Academic Press, 2 edition, 2000.

[12] X. Hu and D. H. Edwards. “Context-Dependent Control of Adaprive Behavior

Selection”. Proc. Workshop on Bio-inspired Cooperative and Adaptive Behav-

iors in Robots, in co-operation with The Ninth International Conference on the

Simulatio of Adaptive Behavior (SAB06), 2006.

[13] X. Hu. A Simulation-Based Software Developement Methodology for Distributed

Real-time Systems. PhD thesis, University of Arizona, Department of Electrical

and Computer Engineering, 2004.

[14] C.M. Krishna and K.G. Shin. Real-time Systems. McGraw-Hill, New York, 1997.

[15] J.S. Hong and T.G. Kim. “Real-time Discrete Event System Specification For-

malism for Seamless Real-time Software Development”. Discrete Event Dynamic

Systems: Theory and Applications, 7:355–375, 1997.

94

[16] X.Hu, B. P. Zeigler, and J. Couretas. “DEVS-on-a-Chip Implementing DEVS

in Real-time Java on a tiny Internet Interface for Scalable Factory Automa-

tion”. IEEE International Conference on Systems, Man, and Cybernetics, Oc-

tober 2001.

[17] Bertrand P. Zeigler, Yoonkeon Moon, Doohwan Kim, and Jeong Geun Kim.

“DEVS-C++ : A High Performance Modeling and Simulation Environment”.

HICSS (1), 7:350–359, 1996.

[18] X. Hu, B. P. Zeigler, and S. Mittal. “Variable Structure in DEVS Component-

Based Modeling and Simulation”. SIMULATION: Transactions of The Society

for Modeling and Simulation International, 81(2):91–102, 2005.

[19] X. Pan. Computational Modeling of Human and Social Behaviors for Emergency

Egress Analysis. PhD thesis, Stanford University, Civil and Environmental En-

gineering Dept, 2006.

[20] Nigel Gilbert. “Agent-Based Social Simulation: Dealing with Complexity”. Cen-

tre for Research on Social Simulation, University of Surrey, December 2004.

Guildford, UK.

[21] Xiaolin Hu. “Context Dependent Adaptability in Crowd Behavior Simula-

tion”. IEEE International Conference on Information Reuse and Integration

(IRI 2006), 2006.

[22] Samuel H. Kenyon. “Behavioral software agents for real-time games”. IEEE

Potentials, 25(4):19–25, July 2006.

[23] J. K. Rosenblatt and D. W. Payton. “A Fine-Grained Alternative to the Sub-

sumption Architecture for Mobile Robot Control”. In Proc of the IEEE Int.

Conf. on Neural Networks, volume 2, pages 317–324, Washington, DC, 1989.

IEEE Press.

95

[24] James McLurkin. Stupid Robot Tricks: A Behavior-Based Distributed Algorithm

Library for Programming Swarms of Robots. M.sc., M.I.T., May 2004.

[25] D. D Dudenhoeffer and M.P. Jones. “A Formation Behavior For Large-Scale

Micro-Robot Force Deployment”. Proceedings of the 2000 Winter Simulation

Conference (WSC ’00), December 2000.

[26] Donald H. Edwards. “Mutual inhibition among neural command systems as a

possible mechanism for behavioral choice in crayfish”. Journal of Neuroscience,

11:1210–1223, 1991.

[27] X. Hu and D. H. Edwards. “BehaviorSim: A Simulation Environment to Study

Animal Behavioral Choice Mechanisms”. Proc. of the 2005 DEVS Integrative

M&S Symposium, 2005. San Diego CA.

[28] Fredrik Lin̊aker. Unsupervised On-line Data Reduction for Memorisation and

Learning in Mobile Robotics. PhD thesis, University of Sheffield, Department of

Computer Science, 2003.

[29] Charles Barrasso. Vision Based Monte Carlo Localization on the Khepera II.

Master’s thesis, Rochester Institute of Technology, Department of Computer

Science, 2005.

[30] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, and B. Stewart. “Distributed

Multi-robot Exploration and Mapping”. Proceedings of the IEEE, 94(7):1325–

1339, 2006.

[31] Pierre Bureau for K-Team S.A. Khepra2 programming manual. K-Team, Ch. de

Vuasset, CP 111, 1028 Prverenges,Switzerland, 0.2 edition, June 2002.

[32] K-Team S.A. Khepra2 user manual. K-Team, Ch. de Vuasset, CP 111, 1028

Prverenges Switzerland, 1.1 edition, March 2002.

96

[33] Bryan Scotney, Sonya Coleman, and Dermot Kerr. “A Graph Theoretic Ap-

proach to Direct Processing of Sparse Unwarped Panoramic Images”. IEEE

Internationl conference on Image Processing, October 2006.

[34] H. Bastani, H. M.M. Sadeghi, A. Shariatmadari, E. Azarnasab, and

M. Davarpanah-Jazi. “Design and Implementation of a Full Autonomous Mine

Detecting Robot”. 5th IFAC/EURON Symposium on Intelligent Autonomous

Vehicles, 2004.

[35] Wu Yiming and Liu Xiuwen. “Two-Stage Optimal Component Analysis”. IEEE

Internationl conference on Image Processing, October 2006.

[36] D. J. Bruemmer, D. D. Dudenhoeffer, and J. Marble. “Mixed-Initiative Remote

Characterization Using a Distributed Team of Small Robots”. AAAI Mobile

Robot Workshop, 2001. Seattle, WA.

[37] James McLurkin and Jennifer Smith. “Distributed Algorithms for Dispersion in

Indoor Environments using a Swarm of Autonomous Mobile Robots”. Distributed

Autonomous Robotic Systems Conference, 2004.

[38] P.M. Downes, M.J. Kwinn, and D.E. Brown. “Using agent-based modeling and

human-in-the-loop simulation to analyze army acquisition programs”. Proc. of

the 2004 Winter Simulation Conference, 1, 2004.

[39] Parimal Kopardekar, V. Battiste, W. Johnson, R. Mogford, E. Palmer, N. Smith,

J.F. D’Arcy, K. Helbing, P. Mafera, P. Lee, J. Mercer, T. Prevot, and S. Shelden.

“Distributed air/ground traffic management: results of preliminary human-in-

the-loop simulation”. The 22nd Digital Avionics Systems Conference, 1:5D3–

51–12, 2003.

97

[40] X. Hu and B. P. Zeigler. “Model Continuity in the Design of Dynamic Distributed

Real-time Systems”. IEEE Transaction on Systems Man and Cybernetics, pages

867–878, November 2005. Part A.

[41] X. Hu and B. P. Zeigler. “Model Continuity to Support Software Development

for Distributed Robotic Systems: a Team Formation Example”. Journal of In-

telligent and Robotic Systems, Theory and Application, pages 71–87, January

2004.

	Robot-In-The-Loop Simulation to Support Multi-Robot System Development: A Dynamic Team Formation Example
	Recommended Citation

	tmp.1257870074.pdf.uULsH

