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Functional Principal Component Analysis for Discretely Observed Functional

Data and Sparse Fisher’s Discriminant Analysis with Thresholded Linear

Constraints

by

Jing Wang

Under the Direction of Xin Qi, PhD

ABSTRACT

We propose a new method to perform functional principal component analysis (FPCA)

for discretely observed functional data by solving successive optimization problems. The

new framework can be applied to both regularly and irregularly observed data, and to both

dense and sparse data. Our method does not require estimates of the individual sample

functions or the covariance functions. Hence, it can be used to analyze functional data



with multidimensional arguments (e.g. random surfaces). Furthermore, it can be applied

to many processes and models with complicated or nonsmooth covariance functions. In our

method, smoothness of eigenfunctions is controlled by directly imposing roughness penalties

on eigenfunctions, which makes it more efficient and flexible to tune the smoothness. Efficient

algorithms for solving the successive optimization problems are proposed. We provide the

existence and characterization of the solutions to the successive optimization problems.

The consistency of our method is also proved. Through simulations, we demonstrate that

our method performs well in the cases with smooth samples curves, with discontinuous

sample curves and nonsmooth covariance and with sample functions having two dimensional

arguments (random surfaces), repectively. We apply our method to classification problems of

retinal pigment epithelial cells in eyes of mice and to longitudinal CD4 counts data. In the

second part of this dissertation, we propose a sparse Fisher’s discriminant analysis method

with thresholded linear constraints. Various regularized linear discriminant analysis (LDA)

methods have been proposed to address the problems of the LDA in high-dimensional settings.

Asymptotic optimality has been established for some of these methods when there are only

two classes. A difficulty in the asymptotic study for the multiclass classification is that for the

two-class classification, the classification boundary is a hyperplane and an explicit formula

for the classification error exists, however, in the case of multiclass, the boundary is usually

complicated and no explicit formula for the error generally exist. Another difficulty in proving

the asymptotic consistency and optimality for sparse Fisher’s discriminant analysis is that the

covariance matrix is involved in the constraints of the optimization problems for high order

components. It is not easy to estimate a general high-dimensional covariance matrix. Thus,

we propose a sparse Fisher’s discriminant analysis method which avoids the estimation of the



covariance matrix, provide asymptotic consistency results and the corresponding convergence

rates for all components. To prove the asymptotic optimality, we provide an asymptotic

upper bound for a general linear classification rule in the case of muticlass which is applied to

our method to obtain the asymptotic optimality and the corresponding convergence rate. In

the special case of two classes, our method achieves the same as or better convergence rates

compared to the existing method. The proposed method is applied to multivariate functional

data with wavelet transformations.

INDEXWORDS: Functional PCA, discretely observed functional data, successive op-
timization problems, roughness penalty, consistency, sparse Fisher’s
discriminant analysis, thresholded linear constraints, asymptotic consis-
tency, asymptotic optimality, convergence rate
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Chapter 1

INTRODUCTION

Principal component analysis (PCA) is one of the best known techniques in both

multivariate analysis and functional data analysis. Different from classical PCA, functional

principal component analysis (PCA) requires smoothing or regularizing of the estimated

principal component curves (see Chapter 9 in Ramsay and Silverman [33]). Readers can

find a general overview of many methods for computing the smoothed functional principal

components when the sample curves are fully observed in Ramsay and Silverman [33]. Ferraty

and Vieu [16] provides more discussions on nonparametric methods and developments for

functional data analysis. However, in practice, the sample functions are usually observed at

discrete points with measurement errors. The observation points might be irregular or sparse.

Several FPCA methods for discretely sampled functional data or longitudinal data have been

developed. Shi, Weiss and Taylor [38], Rice and Wu [35] and James, Hastie and Sugar [23]

proposed mixed effects approaches in which individual sample curves or eigenfunctions of

the covariance function are represented by basis function expansions. Staniswalis and Lee

[44] and Yao, Müller and Wang [54] used nonparametric methods to estimate covariance

functions and then obtained the eigenfunctions. Huang, Shen and Buja [22] proposed an

FPCA method for regularly observed discrete functional data based on penalized rank one

approximation to the data matrix. Peng and Paul [29] assumed a finite rank model for

the covariance function, represented the eigenfunctions as basis function expansions, and

proposed the restricted maximum likelihood method to estimate the parameters. Other

nonparametric approaches to this problem tend to fall into two classes. The approaches in the

first class smooth each individual curve by the smoothing spline method or other methods (see

section 9.5 in Ramsay and Silverman [33]). Then the smoothed principal component curves

can be obtained by the usual functional PCA or other methods. For example, motivated

by the duality relation between row and column spaces of a data matrix, Benko et al. [6]

proposed an FPCA method for regularly observed discrete functional data. The methods
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in the second class assume that covariance functions are smooth. Smoothing methods such

as kernel methods and free-knot spline smoothing are used to obtain smoothed estimates

of mean functions and covariance functions. Then the principal components curves can be

estimated by the eigenfunctions of the smoothed covariance function. However, some of these

methods (Huang et al. [22] and Benko et al. [6] ) cannot be applied to the discrete functional

data in which the observation points are irregular and sparse. Some of them (Staniswalis and

Lee [44] and Yao et al.[54]) need to estimate the covariance functions, hence it is hard to

apply these methods to functional data with two or three dimensional arguments since we

have to estimate four or six dimensional covariance functions.

In this dissertation, we first propose a new method to perform FPCA for discretely

observed functional data by solving successive optimization problems. The new framework

can be applied to both regularly and irregularly observed data, and to both dense and sparse

data. First, our method does not need to estimate the individual sample functions or the

covariance functions and we do not assume that they are smooth. Hence, it can be easily

applied to discretely observed functional data with two or three dimensional arguements and

to processes and models with complicated or nonsmooth covariance functions. Most of the

current methods assume that either the sample functions or the covariance functions are

smooth explicitly or implicitly. Some of them need to obtain the smoothed estimations of the

sample functions or the covariance functions. However, there are many important processes

and models with nonsmooth sample functions and nonsmooth covariance functions but with

smooth eigenfunctions. Our methods can be applied to these processes and models. Some

real functional data have complicated covariance functions in which we are not interested. In

this case , our methods avoid estimating the complicated covariance functions. Second, our

method controls the smoothness of eigenfunctions by directly imposing roughness penalties

on eigenfunctions and can use different smoothing parameters for different eigenfunctions.

Hence, it is efficient and flexible to tune the smoothness of eigenfunctions in this method.

Our methods can also be easily extended to analyze the discretely observed functions defined

on high-dimensional spaces, e.g. random surfaces. Section 5 in Müller (2005) listed some

open problems concern the application of FDA methods including analysis of random surfaces

and higher-dimensional functions. We applied our methods to a simulated discretely observed
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random surface data. For high-dimensional data, the covariance functions are defined on

higher dimension space with dimensions equal to two times of the dimensions of the sample

functions. Hence, it is very hard to obtain good estimations of covariance functions in this

case. Efficient algorithms for solving the successive optimization problems are proposed. We

provide the existence and characterization of the solutions to the successive optimization

problems. The consistency of our method is also proved. The following real example is used

to motivate and illustrate the method developed in this dissertation.

The linear discriminant analysis (LDA) has been a favored tool for supervised clas-

sification in the settings of small p and large n. However, it faces major problems for

high-dimensional data. In theory, Bickel and Levina [7] and Shao et al. [37] showed that the

usual LDA can be as bad as the random guessing when p > n. In practice, the classic LDA

methods have bad predictive performance in high-dimensional settings. To address these

problems, various regularized discriminant analysis methods have been proposed, including

Friedman [17], Krzanowski et al. [26], Dudoit et al. [13], Bickel and Levina [7], Guo et al.

[19], Xu et al. [53], Tibshirani et al. [47], Witten and Tibshirani [52], Clemmensen et al. [11],

Shao et al. [37], Cai and Liu [9], Fan et al. [15], Qi et al. [32] and many others. Asymptotic

optimality has been established in some of these papers when there are two classes. Shao

et al. [37] made sparsity assumptions on both the difference δ = µ2 − µ1, where µ1 and µ2

are the population means of the two class, and the within-class covariance matrix Σ. Then

thresholding procedures were applied to both the difference between the two sample class

means and the sample within-class covariance matrix Σ̂. The asymptotic optimality and the

corresponding convergence rate for their classification rule were obtained. Cai and Liu [9]

observed that in the case of two classes, the optimal classification rule depends on Σ only

through Σ−1δ. Hence, they assumed l1 sparsity for Σ−1δ, proposed a sparse estimate of it

through minimizing its l1 norm with an l∞ constraint, and provided asymptotic optimality of

their classification rule. Fan et al. [15] imposed l0 sparsity assumption on Σ−1δ, estimated it

through a minimization problem with an l1 constraint and derived the asymptotic optimality.

A major difficulty preventing the derivation of asymptotic optimality of the linear classification

rules for multiple classes is that for the two-class classification, the classification boundary

of LDA is a hyperplane and an explicit formula for the classification error exists, however,
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for the multiclass classification, the classification boundary is usually complicated and no

explicit formula for the classification error generally exist.

As a special case of LDA, the Fisher’s discriminant analysis projects the original variables

X to a low dimensional subspace to generate new predictor variables, Xα1,Xα2, . . . ,XαK−1,

where the coefficient vectors α1,α2, . . . ,αK−1 are sequentially calculated and K is the number

of classes. The coefficient vectors are found by maximizing the between class variation of the

new predictor variables relative to their within class variation and the new predictors are

orthogonal to each other, that is, the linear constraints αT
i Σαj = 0 for any 1 ≤ j < i < K

are satisfied. Once the coefficients are determined and the classification rule is to assign a new

observation to the class with the sample class mean closest to this observation in the projection

subspace. Besides the complicated classification boundary for multiclass, the linear constraint

αT
i Σαj = 0 poses additional difficulty in studying the asymptotic consistency and optimality

for the Fisher’s discriminant analysis in high dimensional setting for K > 2 because the

covariance matrix Σ is involved. It is not easy to find a consistent estimate for a general Σ in

the high-dimensional settings. Qi et al. [32] introduced a sparse Fisher’s discriminant analysis

method, an advantage of which is that the proposed algorithm is applicable to any linear

constraints imposed on the higher order components. In the second part of this dissertation,

instead of aiming to find a consistent estimate of Σ, we apply a soft-thresholding procedure

to obtain a consistent estimate of the subspace {Σα1, · · · ,Σαi−1} which defines the linear

constraints for αi, for any 1 < i ≤ K − 1. Then taking advantage of the algorithm in the

paper above, we propose the estimates of αi, for all 1 ≤ i ≤ K − 1, and an classification rule.

We study the theoretical properties of this method in high dimensional settings, including

the asymptotic consistency of the estimate of αi and the subspaces defining the orthogonal

constraints, the asymptotic optimality, and the corresponding convergence rates, where the

number K of classes can be any fixed positive integer. In the special case of K = 2, the

asymptotic optimality of the our method is compared to the existing method and our method

has the same or better convergence rate. We apply our method to the classification problems

for multivariate functional data through the wavelet transformations.

The remainder of the dissertation is organized as follow. In Chapter 2, we present our

new method to perform FPCA for discretely observed functional data by solving successive
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optimization problems. We first give some background, basic notations and our main

assumptions. The classic Silverman’s method to perform smoothed FPCA is also introduced.

We then present our method along with its theoretical properties, and an algorithm for

solving the successive optimization problems in practice. Simulation results with comparison

to other established method are reported to illustrate the effectiveness of our method. At

last, we apply our method on 2 real data sets: the RPE data set and the Longitudinal CD4

counts data set. In Chapter 3, we propose a sparse Fisher’s discriminant analysis method

with thresholded linear constraints which avoids the estimation of the covariance matrix. We

first introduce notations and briefly review the classic Fisher’s discriminant analysis. Then

our sparse Fisher’s LDA method with thresholded linear constraints are introduced. We

also present the main theoretical results along with simulation studies and applications. All

proofs of our theorems can be found in the Chapter 4 of the dissertation.
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Chapter 2

FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS FOR DISCRETELY

OBSERVED FUNCTIONAL DATA

In this chapter, we present our new method to perform function principal analysis

(FPCA) for discretely observed functional data by solving successive optimization problems.

We first give some background, basic notations and our main assumptions. The classic

Silverman’s method to perform smoothed FPCA is introduced in Section 2.2. We then

present our method along with its theoretical properties, and an algorithm for solving the

successive optimization problems in practice. Simulation results are reported to illustrate

the effectiveness of our method. At last, we apply our method on the RPE data set and the

Longitudinal CD4 counts data set in Section 2.5. The proofs of all theorems are provided in

Section 4.11 of Chapter 4.

2.1 Background and Notations

First, we introduce notations and definitions used in this chapter. Let N denote the

collection of all the positive integers. In this chapter, we will mainly consider functions

defined in a finite interval [a, b] in the following two spaces, the space L2([a, b]) of square

integrable functions

L2([a, b]) = {f : f is a measurable function on [a, b] and
∫ b

a
|f(t)|2dt <∞}

and the Sobolev space W 2
2 ([a, b]) of functions with square integrable second derivatives,

W 2([a, b]) = {f : f, f ′ are absolutely continuous on[a, b] andf ′′ ∈ L2([a, b])}
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where f ′ and f ′′ denote the first and second derivatives of f , respectively. For any f ,

g ∈ L2([a, b]), define the usual inner product

〈f, g〉 =
∫ b

a
f(t)g(t)dt

with corresponding squared norm ‖f‖2 = 〈f, f〉. Given a smoothing parameter α ≥ 0 , for

any f, g ∈ W 2
2 ([a, b]), define

[f, g] =
∫ b

a
f ′′(t)g′′(t)dt

and the inner product

〈f, g〉α = 〈f, g〉+ α[f, g]

with corresponding squared norm ‖f‖2
α = 〈f, f〉α. Here we use the same notations as those

in Silverman [41].

Let X(t), a ≤ t ≤ b be a measurable stochastic process (random function) on [a, b] and

X1(t), X2(t), · · · , Xn(t) be i.i.d sample functions from the distribution of X(t). Below we

give three basic assumptions on X(t) which are essentially the same as those in Silverman

[41].

Assumption 1. E [‖X‖4] = E
[(∫ b

a |X(t)|2dt
)2
]
<∞.

Under Assumption 1, X(t) ∈ L2([a, b]) a.s.. Assume that mean function EX(t) = µ(t).

Define the covariance function of X(t)

Γ(s, t) = E [(X(s)− µ(s)) (X(t)− µ(t))] ,∀s, t ∈ [a, b], (2.1)

Under Assumption 1, Γ has a sequence of nonnegative eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0 and the

corresponding eigenfunctions γ1, γ2, · · · . Every eigenfunction has been scaled to have L2-norm

1. The set of all the eigenfunctions forms an orthonormal basis of L2([a, b]). Furthermore, we

have decomposition

Γ(s, t) =
∞∑
j=1

λjγj(s)γj(t)

. Suppose that we are interested in estimating the first K eigenvalues and eigenfunctions of

the covariance function Γ.



8

Assumption 2. Any eigenvalue λj, 1 ≤ j ≤ K has multiplicity 1, so that λ1 > λ2 > · · · >

λK > λK+1.

This assumption is just the third assumption in Section 5.2 of Silverman [41]. If an

eigenvalue has multiplicity 1, then the corresponding eigenfunction is uniquely determined

up to a sign. If the multiplicity is larger than 1, the eigenfunctions can not be uniquely

determined up to a sign (Qi and Zhao [31]).

Assumption 3. The eigenfunctions γj, 1 ≤ j ≤ K belong to W 2
2 ([a, b]).

If the covariance function Γ is smooth, then Assumption 3 holds. However, there are many

important random processes whose covariance matrices are nonsmooth, but the eigenfunctions

belong to W 2
2 ([a, b]) (Qi and Zhao [31]). For example, the continuous parameter AR(1) model

in time series, Brownian motion, Poisson process and the stochastic differential equation

models driven by them.

Example 1. (Brownian motion and Poisson process). Consider the standard Brownian

motion and the Poisson process with rate 1 in time interval [0, 1]. Their covariance functions

are the same and equal to min(s, t), 0 ≤ s, t ≤ 1 (see Page 89 in the book Glasserman [18])

which is nonsmooth. The eigenvalues and eigenfunctions are

λj =
(

2
(2j − 1)π

)2

, γj =
√

2 sin
(

(2j − 1)πt
2

)
, j = 1, 2, · · · (2.2)

Example 2. (Stochastic differential equation models). SDE are widely used to model random

processes in may areas. One example is the famous Black-Scholes Model in finance. Let St
denote the price of a stock at time t. Then St satisfies the following SDE,

dSt = νStdt+ σStdWt

where ν is the instantaneous mean return, σ is the instantaneous return volatility and Wt is

a Brownian motion.

Another example is the counting processes model in survival analysis. Let Nt be the number
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of the occurrences of the event in [0, t]. Then Nt satisfies

dNt = λ(t)dt+ dMt

where λ(t) is a smooth intensity function and Mt is a martingale (Qi and Zhao [31]).

Example 3. (Continuous parameter models in time series). Consider the con-tinuous

parameter AR(1) model in time series. Its covariance function is

Γ(s, t) = e−α|s−t|

α

where α is a positive number (see Section 3.7 in Priestley [30]). This covariance function is

nonsmooth.

For these models, the covariance functions are nonsmooth but the eigenfunctions are

smooth. In addition to these processes and models, some real functional data have covariance

functions with complicated patterns.

2.2 Silverman’s approach to smoothed functional PCA

In this section, the independent sample curves from the distribution of X(t),

{X1(t), X2(t), · · · , Xn(t) : a ≤ t ≤ b}

are assumed to be entirely observed and t could be a continuum in [a, b], or in a two-

dimensional region [a, b]× [c, d], or in higher-dimensional regions. . The covariance function

is defined as 2.1 and covariance operator

(Γγ)(t) =
∫ b

a
Γ(t, s)γ(s)ds.

For any β, γ ∈ L2([a, b]),

Cov [〈β,X〉, 〈γ,X〉] = 〈β,Γγ〉
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FPCA is one of the key techniques in functional data analysis for patterns discovery and

dimension reduction in data sets. The first population functional principal component as a

one-dimensional projection of X

〈γ1, X〉 =
∫ b

a
γ1(t)X(t)dt, ‖γ1‖ = 1

which maximizes the variance of principal component scores

V ar(〈γ1, X〉) = max
‖γ‖=1

V ar(〈γ,X〉) = max
‖γ‖=1

〈γ,Γγ〉 = max
‖γ‖=1

〈γ,Γγ〉
‖γ‖2 (2.3)

for all nonzero linear functionals l in L2([a, b]) with the norm ‖l‖ = 1. γ1 is called the first

principal component weight function or the first PC curve. Let λ1 be the maximum value of

(2.3). The pair (λ1, γ1) are the first eigenvalue and eigenfunction of Γ (see Section 2, Chapter

3 in Weinberger [51]),

Γγ1 = λ1γ1

The second functional principal component (γ2, X): γ2 is the solution to

max
‖γ‖=1,〈γ,γ1〉=0

〈γ,Γγ〉
‖γ‖2 (2.4)

Let λ2 be the maximum value of (2.4). The pair (λ2, γ2) are the second eigenvalue and

eigenfunction of Γ,

Γγ2 = λ2γ2

Similary, the successive population functional principal components are defined.

However, we usually do not know the true covariance function Γ and the population

principal component weight functions can not be obtained directly. We can use the sample

covariance function Γ̂n to estimate Γ and use the eigenvalues and eigenfunctions of Γ̂n to

estimate the eigenvalues and eigenfunctions of Γ, which are called non-smooth estimators.

It was pointed out that the non-smooth principal component curves can show substantial

variability (see Chapter 9 in Ramsay and Silverman [33]). Therefore, smoothing of the

estimated principal component weight functions is necessary.
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Silverman [41] (see also Chapter 9 in Ramsay and Silverman [33]) proposed an important

method which incorporates smoothing by replacing the usual L2 norm with a norm that takes

the roughness of the functions into account. Qi and Zhao [31] summarizes the theoretical

and practical advantages of Silverman’s approach as follows:

First, the weak assumptions underlying this method make it applicable to data

from many fields. Silverman [41] did not make any assumptions on the mean

curves and sample curves. Hence, in addition to data with smooth random curves,

this method can be applied to analyze data where the sample curves can be un-

smooth or even discontinuous, such as those encountered in financial engineering,

survival analysis and other fields. For covariance functions, Silverman [41] only

assumed that they have series expansions by their eigenfunctions without imposing

smoothing constraint. This is attractive because the covariance functions are

continuous but unsmooth in many important models such as stochastic differential

equation models in financial engineering and counting process models in survival

analysis. Second, Silverman’s method controls the smoothness of eigenfunction

curves by directly imposing roughness penalties on these functions instead of

on sample curves or covariance functions. Furthermore, this approach changes

the eigenvalue and eigenfunction problems in the usual L2 space to problems in

another Hilbert space, the Sobolev space (with a norm different from the usual

norm in the Sobolev space). Therefore, many powerful tools from the theory of

Hilbert space can be employed to study the properties of this method. Third, this

approach incorporates the smoothing step into the step for computing eigenvalues

and eigenfunctions. Therefore, this method is computationally efficient with the

same computational load as the usual unsmoothed functional PCA. Fourth, the

estimates produced by this method are invariant under scale transformations.

As pointed out by Huang et al. [22], the invariance property under scale trans-

formations should be a guiding principle in introducing roughness penalties to

functional PCA.

Let α be a nonnegative smoothing parameter. Silverman defines the smoothed estimators
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{(λ̂[α]
j , γ̂

[α]
j ) : j ∈ N}of {(λj, γj) : j ∈ N} to be the solutions of the following successive

optimization problems:

First,γ̂[α]
1 is the solution of the optimization problem

max
‖γ‖=1

〈γ, Γ̂nγ〉
〈γ, γ〉+ α[γ, γ] = max

‖γ‖=1

〈γ, Γ̂nγ〉
‖γ‖2

α

. (2.5)

Let γ̂[α]
1 be the maximum value of (2.5). For any k ∈ N, if we have obtained {γ̂[α]

j , j =

1, 2, · · · , k− 1} and {λ̂[α]
j , j = 1, 2, · · · , k− 1},γ̂[α]

k is the solution of the optimization problem

max
‖γ‖=1,〈γ,γ̂[α]

j 〉α=0,
1≤j≤k−1

〈γ, Γ̂nγ〉
‖γ‖2

α

(2.6)

and λ̂[α]
k is the maximum value of (2.6). Note that {(λ̂[α]

j , γ̂
[α]
j ) : j ∈ N} depends on both the

sample size n and the smoothing parameter α (Qi and Zhao [31]).

2.3 Functional PCA for discretely observed functional data

We consider two sample scenarios for sample functions observed at discrete points,

regular case and irregular case, respectively.

2.3.1 Regular case

In this case, we assume that the sample functions are observed at the same set

{t1, t2 · · · , tm} of discrete observation points across all the subjects with measurement errors,

where m is the total number of observation points for each sample function. After sorting

the observation points from the smallest to the largest, we get a = t(1) < t(2) < · · · t(m−1) <

t(m) = b. Let us consider the following model:

Ypq = Xp(t(q)) + εpq, p = 1, · · · , n, q = 1, · · · ,m, (2.7)

where Ypq is the observation of the sample function Xp at point t(q) with measurement error

εpq and n is the total number of sample curves. Our estimates {λ̂k, γ̂k}k≥1 of {λk, γk}k≥1 are

the solutions to the following successive optimization problems. The first pair of estimates
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{λ̂1, γ̂1} are the maximum value and the solution to the following optimization problem:

max
γ∈W 2

2 ([a,b]),‖γ‖=1

∑m
q=1

∑m
l=1 Σ̂qlγ(t(q))γ(t(l))wqwl
‖γ‖2 + α1 [γ, γ] , (2.8)

where α1 > 0 is a smoothing parameter, Σ̂ql = 1
n

∑n
p=1

(
Ypq − Ȳ·q

) (
Ypl − Ȳ·l

)
, 1 ≤ q, l ≤ m,

Ȳ·q = 1
n
(Y1q + · · ·+ Ynq), and

wq =



(
t(2) − t(1)

)
/2 q = 1(

t(q+1) − t(q−1)
)
/2 1 < q < m(

t(m) − t(m−1)
)
/2 q = m.

(2.9)

The higher order estimates {λ̂k, γ̂k}, k ≥ 2 are the solutions to the following optimization

problems:

max
‖γ‖ = 1, 〈γ, γ̂j〉 = 0,

j = 1, · · · , k − 1

∑m
q=1

∑m
l=1 Σ̂qlγ(t(q))γ(t(l))wqwl
‖γ‖2 + αk [γ, γ] , (2.10)

where αk is the smoothing parameter for the k-th estimates and the estimates of eigenfunctions

are orthogonal to each other. We can choose different smoothing parameters for different

principal components.

The idea behind our method is as follows. The true eigenvalues and eigenfunctions are

the solutions to the following successive optimization problems:

max
‖γ‖ = 1, 〈γ, γj〉 = 0,

j = 1, · · · , k − 1

〈γ,Γγ〉
‖γ‖2 .

where Γγ is the function defined by (Γγ)(t) =
∫ b
a Γ(t, s)γ(s)ds. These optimization problems

depend on the covariance function Γ only through the inner product 〈γ,Γγ〉. Hence, we

use the numerators in (4.95) and (2.10) to approximate 〈γ,Γγ〉. However, if there are no

penalty terms in the denominators in (4.95) and (2.10), the maximum values of (4.95) and

(2.10) are infinities. Since tuning αk does not affect the first k − 1 estimates, we can tune
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the parameters one by one. We give a theorem on the existence and characterization of

solutions of the successive optimization problems (4.95) and (2.10). Our methods solve the

optimization problems in the Sobolev space, hence many powerful tools from the theory of

Hilbert space can be used to study the asymptotic consistency of our method.

We give a theorem on the existence and characterization of solutions of the successive

optimization problems (4.95) and (2.10).

Theorem 2.3.1. The solutions {λ̂k, γ̂k : k ≥ 1} of the successive optimization problems

(4.95) and (2.10) exist for any {αk > 0, k ≥ 1}. Moreover, for each k, γ̂k has continuous

second derivatives on [a, b] and, on any subinterval {[t(q−1), t(q)], 1 ≤ q ≤ m− 1}, it can be

written as a linear combination of the following at most 4k functions,

exp

 t− a
√

2α
1
4
j

 sin

 t− a
√

2α
1
4
j

, exp

 t− a
√

2α
1
4
j

 cos

 t− a
√

2α
1
4
j


exp

− t− a
√

2α
1
4
j

 sin

 t− a
√

2α
1
4
j

, exp

− t− a
√

2α
1
4
j

 cos

 t− a
√

2α
1
4
j

,
where 1 ≤ j ≤ k.

Hence, the first solution γ̂1 is similar to smoothing splines except that the solutions to

the optimization problems in smoothing spline methods are cubic polynomials between any

two adjacent observation points.

2.3.2 Irregular case

In this case, we assume the observation time points are

{tpq : p = 1, · · · , n, q = 1, · · · , Np}

, where n is the number of sample curves and Np is the number of the observation points of

the p-th sample function Xp. The model is

Ypq = Xp(tpq) + εpq, p = 1, · · · , n, q = 1, · · · , Np, (2.11)



15

where Ypq is the observation of the random function Xp at time tpq and εpq is the measurement

error.

For irregular case, we assume that the mean function µ(t) is smooth and the observation

points tpq are random variables with a density function h(t) which is bounded below away

from zero on [a, b]. Our FPCA procedure for irregular case has three steps.

In the first step, we estimate the mean function µ(t) based on the pooled data from all

individuals by local linear smoother. This step is the same as the first step of the procedure

in Yao et al. [54]. We define the estimate µ̂(t) of µ(t) by solving the following optimization

problem

min
a,b

n∑
p=1

Np∑
q=1

κ

(
tpq − t
ηµ

)
{Ypq − a− b(t− tpq)}2 , (2.12)

where κ is the kernel, and ηµ is the bandwidth. Let â(t) and b̂(t) be the minimizers, then

µ̂(t) = â(t).

In the second step, we estimate the density function h(t) based on pooled observation

time points by the maximum penalized likelihood estimation method (see Silverman [40],

Silverman [42] and Chapter 6 in Ramsay and Silverman [33]). Let ĝ(t) be the minimizer of

the functional

− 1
N

n∑
p=1

Np∑
q=1

g(tpq) +
∫ b

a
eg(t)dt+ ηg[g, g], (2.13)

where N = ∑n
p=1Np and ηg is a smoothing parameter, then the estimate ĥ(t) = eĝ(t). Here

we use the maximum penalized likelihood estimation method instead of the kernel density

estimation method because the density estimate in this step will appear in the denominators

in the third step. Hence, the density estimate must be positive. In the maximum penalized

likelihood estimation, the log density is first estimated, then its exponential is calculated as

the density estimate. Hence, the maximum penalized likelihood density estimate is strictly

positive.

The third step is to solve the following successive optimization problems. The first pair

of estimates {λ̂1, γ̂1} of {λ1, γ1} are the maximum value and the solution to the optimization
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problem:

max
γ ∈ W 2

2 ([a, b]),

‖γ‖ = 1

1
n′

n∑
p=1

χ[Np>1]
1

Np(Np − 1)

Np∑
l 6=q:1

U
(p)
ql

‖γ‖2 + α1 [γ, γ]
, (2.14)

where α1 > 0 is a smoothing parameter, χ[Np>1] is the indicator function of Np > 1,

n′ = ∑n
p=1 χ[Np>1] is the total number of the sample functions with at least two observation

points and

U
(p)
ql = γ(tpq)(Ypq − µ̂(tpq))

ĥ(tpq)
· γ(tpl)(Ypl − µ̂(tpl))

ĥ(tpl)
.

The higher order estimates {λ̂k, γ̂k}, k ≥ 2 are the solutions to the following optimization

problems:

max
‖γ‖ = 1, 〈γ, γ̂j〉 = 0,

j = 1, · · · , k − 1

1
n′

n∑
p=1

χ[Np>1]
1

Np(Np − 1)

Np∑
l 6=q:1

U
(p)
ql

‖γ‖2 + αk [γ, γ]
, (2.15)

where αk is the positive smoothing parameter for the k-th estimates.

Now we intuitively explain (2.14) and (2.15). For each 1 ≤ p ≤ n, if Np > 1, then

1
Np(Np − 1)

Np∑
l 6=q:1

U
(p)
ql

is an approximation to the U-statistic

1
Np(Np − 1)

Np∑
l 6=q:1

γ(tpq)(Ypq − µ(tpq))
h(tpq)

· γ(tpl)(Ypl − µ(tpl))
h(tpl)

. (2.16)

For different p’s with Np > 1, (2.16) are independently and identically distributed random

variables if we assume that Np is a random variable independent of tpq and the random
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function X. Therefore, by the law of large numbers, the numerators in (2.14) and (2.15) are

approximation to 〈γ,Γγ〉. We give a similar theorem as Theorem 2.3.1 for the irregular case.

Theorem 2.3.2. The solutions {(λ̂k, γ̂k) : k ≥ 1} of the successive optimization problems

(2.14) and (2.15) exist for any {αk > 0, k ≥ 1}. Moreover, for each k, γ̂k has continuous

second derivatives on [a, b] and on the subinterval between any two adjacent pooled observation

points, it can be written as a linear combination of the following at most 4k functions,

exp

 t− a
√

2α
1
4
j

 sin

 t− a
√

2α
1
4
j

, exp

 t− a
√

2α
1
4
j

 cos

 t− a
√

2α
1
4
j


exp

− t− a
√

2α
1
4
j

 sin

 t− a
√

2α
1
4
j

, exp

− t− a
√

2α
1
4
j

 cos

 t− a
√

2α
1
4
j

,
where 1 ≤ j ≤ k.

2.3.3 Computational issues

Although Theorems 2.3.1 and 2.3.2 give the forms of the solutions to the successive

optimization problems in our FPCA procedure, it is not convenient to compute the exact

solutions in practice. Instead, we choose an appropriate basis and use the basis expansions to

approximate the solutions to the successive optimization problems as did [33] in Section 9.4.

We develop similar algorithms for computing the solutions to the successive optimization

problems in our method as those in Section 9.4 of [33]. We first choose an appropriate basis

{φν}Mν=1, where M is the number of basis functions. For example, we can choose the Fourier

series as our basis for the periodic case and the B-spline basis for the nonperiodic case.

Let γ̃k = ∑M
ν=1 ckνφν , k ≥ 1, be the solutions to (4.2) or (2.15) restricted to the linear

space spanned by the basis functions. They are the approximations to {γ̂k}k≥1. The coefficients

ck = (ck1, · · · , ckM)T are solutions to the following successive optimization problems,

max
c ∈ RM , cTJc = 1

cTj Jc = 0, j = 1, · · · , k − 1

cTVc
cTJc + αkcTKc

. (2.17)
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J and K areM×M matrices with elements Jνν′ =
∫ b
a φν(t)φν′(t)dt and Kνν′ =

∫ b
a φ
′′
ν(t)φ′′ν′(t)dt,

ν, ν ′ = 1, · · · ,M, where φ′′ν is the second derivative of φν . V is aM×M matrix with elements

Vνν′ =
m∑
q=1

m∑
l=1

Σ̂qlφν(t(q))φν′(t(l))wqwl, (2.18)

in regular case and

Vνν′ = 1
n′

n∑
p=1

χ[Np>1]

Np(Np − 1)

Np∑
l 6=q:1

φν(tpq)(Ypq − µ̂(tpq))
ĥ(tpq)

· φν
′(tpl)(Ypl − µ̂(tpl))

ĥ(tpl)
, (2.19)

in irregular case.

The algorithm for solving (2.17) is as follows:

• Perform a Cholesky factorization LT
1 L1 = J + α1K and calculate the inverse matrix

L−1
1 of L1.

• Let B1 = (L−1
1 )TVL−1

1 and compute the first eigenvector d1 of B1. Then c1 = L−1
1 d1
r1

,

where r1 is a real number chosen such that cT1 Jc1 = 1.

• For k > 1, suppose that we have obtained c1 · · · , ck−1. Perform the Cholesky factoriza-

tion LT
kLk = J + αkK and calculate the inverse matrix L−1

k of Lk.

• Let Ck−1 = [c1 · · · , ck−1], that is, Ck−1 is an M × (k − 1) matrix with the j-th column

equal to cj.

• Perform a QR-decomposition QkRk = (L−1
k )TJCk−1, where Qk is a M × (k− 1) matrix

with columns have norm 1 and orthogonal to each other and Rk is an upper triangular

matrix.

• Calculate the projection matrix Pk = I−QkQT
k onto the linear space orthogonal to the

linear space spanned by the columns of (L−1
k )TJCk−1, where I is the identity matrix of

M dimension.

• Let Bk = Pk(L−1
k )TVL−1

k Pk and compute the first eigenvector dk of Bk. Then ck =
L−1
k

dk
rk

, where rk is a real number chosen such that cTk Jck = 1.
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2.3.4 Consistency

We assume throughout this section that we want to estimates the first K principal

component curves, where K is any fixed positive integer number.

First, we consider the regular model (2.7). For this model, we consider the following two

cases for the distributions of tq:

Case 1 (Nonrandom Case). {tq, 1 ≤ q ≤ m} are nonrandom. Define

δm = max
2≤q≤m

(
t(q) − t(q−1)

)
. (2.20)

Case 2 (Random Case). {tq, 1 ≤ q ≤ m} are i.i.d. random variables having a density

functions h(t) in [a, b] with respect to Lebesgue measure and are independent of the random

functions Xp, 1 ≤ p ≤ n. Furthermore, h(t) has a positive lower bound c.

In order to give the consistency result for the regular model (2.7), we need the following

two more assumptions:

Assumption 4. The measurement errors εpq, 1 ≤ p ≤ n, 1 ≤ q ≤ m are independent random

variables and are independent of the random functions Xp, 1 ≤ p ≤ n and the observation

times tq, 1 ≤ q ≤ m. For each q, {ε1q, · · · , εnq} have the same distribution with mean 0 and

variance σ2
q . Furthermore,

sup
q
σ2
q ≤ σ2, sup

q,l
E|εql|3 ≤ ρ,

where σ and ρ are some positive numbers and do not depend on m.

Remark 2.3.3. We do not assume that all the measurement errors have the same distribu-

tions. Instead we only assume that the errors arising at the same observation time have the

same distribution, which is more general than the former.

Assumption 5. The covariance function Γ(s, t) is a continuous function in [a, b]× [a, b].

Define a function

$(δ) = sup
s,t∈[a,b],|s−t|≤δ

[Γ(t, t)− 2Γ(s, t) + Γ(s, s)] , (2.21)
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where 0 < δ ≤ b− a. Note that

Γ(t, t)− 2Γ(s, t) + Γ(s, s) = E
[
((X(s)− µ(s))− (X(t)− µ(t)))2

]
.

Under Assumption 5, we have limδ→0$(δ) = 0 and Γ is bounded. If G is smooth, then

$(δ) = O(δ). Although the covariance functions of Brownian motion and Poisson process

with rate 1 are not smooth, for both of them, we have

E
[
((X(s)− µ(s))− (X(t)− µ(t)))2

]
= |t− s|,

and therefore, $(δ) = δ

Theorem 2.3.4. Under Assumptions 1− 5, suppose that m,n→∞, max1≤k≤K αk → 0 and

max1≤k≤K αk
min1≤k≤K αk

= Op(1). (2.22)

If the following is satisfied that for Case 1,

1
min1≤k≤K αk

√$(δm) + δm +
√
δm
n

→ 0

and for Case 2,

1
min1≤k≤K αk

√$(3 logm
cm

) + logm
m

+
√

logm
nm

→ 0,

then the estimators {(λ̂k, γ̂k) : 1 ≤ k ≤ K} are consistent.

Second, we consider the irregular model (4.130). For this model, we make the following

assumptions on the number of observation points, measurement errors, mean functions and

density functions. They are actually parts of assumptions in Yao et al. [54] and Hall et al.

[20].

Assumption 6. The numbers of the observation points Np, 1 ≤ p ≤ n, are i.i.d random

variables taking positive integer values with ENp <∞ and P (Np > 1) > 0. The measurement
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errors εpq, 1 ≤ p ≤ n, 1 ≤ q ≤ m are i.i.d random variables with mean zero and finite variance.

The random functions, the observation points, the number of the observation points and the

measurement errors are independent.

Assumption 7. Both the mean function and the density function have square integrable

second derivatives, that is, µ(t), h(t) ∈ W 2
2 ([a, b]). The kernel κ in (4.91) is compactly

supported, symmetric and Hölder continuous. The smoothing parameter ηµ in (4.91) satisfies

nρ1− 1
2 ≤ ηµ = o(1), ηµ = o(n− 1

4 ),

where ρ1 > 0 is some constant. There are two positive constants c < C such that c ≤ h(t) ≤ C

∀a ≤ t ≤ b and the smoothing parameter ηg satisfies

ηg → 0, n1−ρ2ηg →∞,

where ρ2 > 0 is some constant.

Now we present the consistency result for the irregular model.

Theorem 2.3.5. Under Assumptions 1−3 and 6−7, suppose that n→∞, max1≤k≤K αk → 0

and

max1≤k≤K αk
min1≤k≤K αk

= Op(1).

If the following is satisfied

1
min1≤k≤K αk

[
n−

1
2 (η−1 + η

− 1
2−ε

g ) + η
3
4−ε
g

]
→ 0,

for some ε > 0, then the estimators {(λ̂k, γ̂k) : 1 ≤ k ≤ K} are consistent.

2.3.5 Extensions to FPCA for functional data with multidimensional arguments

Functional data with multidimensional arguments are collected in a growing number

of fields. For example, in spatial data analysis, data are collected from different places
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and at different times. Such data can be view as discretely observed functional data which

are functions of both space and time. Analysis of such data is considered an important

direction of functional data analysis (see Section 22.2 in Ramsay and Silverman [33] and

Section 5 in Müller [28]). Our method can be easily extended in this context by defining

similar successive optimization problems in multidimensional spaces. The numerators in the

successive optimization problems (2.14) and (2.15) can be straightforwardly extended to the

multidimensional case and the penalty terms in the denominators can be replaced with

Jdm(γ) =
∑

j1+···+jd=m

m!
j1! · · · jd!

∫
Ω

 ∂mγ

∂tj11 · · · ∂t
jd
j

2

dt1 · · · dtd

where d is the dimension of the space of the arguments, Ω ∈ Rd is the region in which

the function is defined and we assume that the eigenfunctions have square integrable m-th

derivatives. Our method avoids the estimates of covariance functions which have 2d arguments

and are not very easy to estimate when d ≥ 2.

2.4 Simulation studies

To illustrate the performance of our method, we conduct three simulation studies. In the

first study, the sample curves are smooth with both equally and unequally spaced observation

time points, and we will compare our method with an alternative method (Method II) which

first obtains the smooth estimate of mean curve and covariance functions, and then compute

the eigenfunctions of the smoothed covariance function as the estimations of the PC curves.

We use the software package PACE for the second method, which was developed by Yao

et al, and downloaded the software from http://www.stat.ucdavis.edu/PACE/download. In

the second study, the sample curves are simulated with 3 true principle curves and we will

compare our mthod with Method II. In the third study, we simulate random surfaces and

perform FPCA in a two-dimensional space with our method.
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2.4.1 Smooth random curves with 2 PC curves

We first simulate 200 curves from the following random curve on [0, 1],

X(t) =
√

2 sin(2πU) sin(πt2 ) + cos(2πU) sin(3πt
2 ),

where U is a random variable with uniform distribution on [0, 1]. The covariance function of

X(t) has two nonzero eigenvalues and the corresponding eigenfunctions are
√

2 sin(πt2 ) and
√

2 sin(3πt
2 ). Figure 2.1 shows the plot of the first two principal component curves.
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Figure 2.1 The First Two Principal Component Curves
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Figure 2.2 Simulated Sample Curves for the simulations in Section 2.4.1

For discrete observations, we will consider two cases.

Regular case The observed data are generated from the following model

Ypq = Xp(tq) + εpq, tq = q − 1
100 , q = 1, · · ·n, p = 1, · · · , 200.
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where the measurement errors εpq ∼ N(0, 3), the observation points {tpq} are equally spaced

on [0, 1]. We consider n = 101, 51 and 21, that is, we sample different number of observation

points: 101 equally spaced with measurement errors; 51 equally spaced with measurement

errors; 21 equally spaced with measurement errors. Plots of the simulated sample curves are

shown in 2.2.

We will estimate the first two eigenfunctions by our method and Method II respectively.

We conducted 200 simulations and in each simulation, 200 observations are generated as

training sample and 500 observations as test sample. For our method, use the usual cross-

validation procedure to select the smoothing parameter α from {1e− 10, 1e− 09, 1e− 08, 1e−

07, 1e− 06, 1e− 05, 1e− 04, 1e− 03, 1e− 02, 1e− 01}, such that the total variance accounted

for by all the principal components on the test data is maximized. We obtain the smoothing

parameter α = 1e− 04. The parameters for Method II can be chosen by generalized cross-

validation (GCV) method. Table 2.1 lists the cumulative variance of selected principal

component scores. Under different settings, the first two estimated principle component

curves obtained by our method explain larger total variation in the data.

Table 2.1 The averages and standard deviations of cumulative variance of selected principal
component scores for the simulations in Section 2.4.1: Regular Case. For each sampling
strategy shown in column 1, the first row is the average and standard deviation of the first
estimated PC score variance; the second row is for the second esitmated PC score variance.

Our Method Method II (PACE)

Selected PCs Var.PC.Score Var.PC.Score Var.PC.Score Var.PC.Score
(Mean) (Variance) (Mean) (Variance)

101 Equally spaced
1st PC 0.005264516 0.0002149985 0.0053 0.0035
2nd PC 0.008040198 0.0001687864 0.0056 0.0035

51 Equally spaced
1st PC 0.01088641 0.0004329838 0.0108 0.0075
2nd PC 0.01695650 0.0004169770 0.0119 0.0075

21 Equally spaced
1st PC 0.03002970 0.001443941 0.0322 0.0164
2nd PC 0.04807245 0.001607120 0.0391 0.0164
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Irregular case In this case, the observed data are generated from the following model

Ypq = Xp(tq) + εpq, q = 1, · · ·n, p = 1, · · · , 200.

where the measurement errors εpq ∼ N(0, 3), the observation points {tpq} are i.i.d random

variables from Uniform[0, 1]. That is, we sample 200 curves and make different number of

observation points: 101 unequally spaced with measurement errors; 51 unequally spaced with

measurement errors; 21 unequally spaced with measurement errors.

We use the principal component curves estimated from both methods to approximate

the true principal component curves. We conducted 200 simulations. Similarly to the regular

case, we use the usual cross-validation procedure to obtain the parameters for our method

such that the total variance accounted for by all the principal components on the test data is

maximized. We obtain the smoothing parameter α = 1e− 04 and the cumulative variance of

selected PC scores are listed in Table 2.2. Under different settings, the estimated PC curves

obtained by our method explain larger total variation in the data.

Table 2.2 The averages and standard deviations of cumulative variance of selected PC scores
for the simulations in Section 2.4.1: Irregular Case. For each sampling strategy shown in
column 1, the first row is the average and standard deviation of the first estimated PC score
variance; the second row is for the second esitmated PC score variance.

Our Method Method II (PACE)

Selected PCs Var.PC.Score Var.PC.Score Var.PC.Score Var.PC.Score
(Avg.) (Std.) (Avg.) (Std.)

101 Unequally spaced
1st PC 0.005266157 0.0001979994 0.0053 0.0037
2nd PC 0.007900791 0.0001649976 0.0056 0.0037

51 Unequally spaced
1st PC 0.01037529 0.0004865600 0.0112 0.0061
2nd PC 0.01672025 0.0004334033 0.0123 0.0061

21 Unequally spaced
1st PC 0.02997724 0.001536284 0.0288 0.0171
2nd PC 0.04821568 0.001759098 0.0359 0.0170
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2.4.2 Smooth random curves with 3 PC curves

We consider the following random curve on [0, 1],

X(t) = 3β1 sin(πt2 ) + 2β2 sin(3πt
2 ) + β3 sin(5πt

2 ),

where βi, i = 1, 2, 3 are random variables with normal distribution on [0, 1]. The covariance

function of X(t) has three nonzero eigenvalues and the corresponding eigenfunctions are
√

2 sin(πt2 ),
√

2 sin(3πt
2 ) and

√
2 sin(5πt

2 ). Figure 2.3 shows the plot of the first three principal

component curves.
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Figure 2.3 The First Three Principal Component Curves
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Figure 2.4 Simulated Sample Curves for the simulations in Section 2.4.2
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Similar to the previous simulation, we will consider two cases.

Regular case The observed data are generated from the following model

Ypq = Xp(tq) + εpq, tq = q − 1
100 , q = 1, · · ·n, p = 1, · · · , 200.

where the measurement errors εpq ∼ N(0, 3), the observation points {tpq} are equally spaced

on [0, 1]. Plots of the simulated sample curves from one simulation are shown in 2.4.

We conducted 300 simulations with different number of observation points sampled:

101 equally spaced measurements; 51 equally spaced measurements; 21 equally spaced

measurements. In each simulation,200 observations are generated as the training sample and

500 observations as the test sample. For our method, we use the usual cross-validation to

obtain the smoothing parameter from {1e− 10, 1e− 09, 1e− 08, 1e− 07, 1e− 06, 1e− 05, 1e−

04, 1e− 03, 1e− 02, 1e− 01}, such that the total variance accounted for by all the principal

components on the test data is maximized. The smoothing parameter chosen under different

sampling strategies are listed in 2.3. We use the principal component curves estimated from

both methods to approximate the true principal component curves. The cumulative variance

of selected PC scores are listed in Table 2.4. We can see that the first three estimated

principle component curves obtained by our method acccount for larger variation in the data.

Table 2.3 Selected smoothing parameter with the usual cross-validation procedure for the
simulations in Section 2.4.2: Regular Case

Smoothing Parameter 101 Equally Spaced 51 Equally Spaced 21 Equally Spaced
α 1e-09 1e-06 1e-04

Irregular case In this case, the observated data are generated from the following

model

Ypq = Xp(tq) + εpq, q = 1, · · ·n, p = 1, · · · , 200.

where the measurement errors εpq ∼ N(0, 3), the observation points {tpq} are i.i.d random

variables from Uniform[0, 1]. We use the principal component curves estimated from both
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Table 2.4 The averages and standard deviations of cumulative variance of selected PC scores
for the simulations in Section 2.4.2: Regular Case. For each sampling strategy shown in
column 1, the first row is the average and standard deviation of the first estimated PC score
variance; the second row is for the second esitmated PC score variance.

Our Method Method II (PACE)

Selected PCs Var.PC.Score Var.PC.Score Var.PC.Score Var.PC.Score
(Avg.) (Std.) (Avg.) (Std.)

101 Equally spaced
1st PC 0.04248567 0.003085132 0.0452 0.0030
2nd PC 0.06662123 0.003577294 0.0456 0.0030

51 Equally spaced
1st PC 0.08836079 0.005708103 0.0894 0.0058
2nd PC 0.13893059 0.006298565 0.0909 0.0058

21 Equally spaced
1st PC 0.2178350 0.01486907 0.2221 0.0152
2nd PC 0.3435396 0.01646455 0.2313 0.0153
3rd PC 0.3506672 0.01646290 0.2344 0.0157

methods to approximate the true principal component curves with our method and Method

II. Similarly to the regular case, we conducted 300 simulations with different number of

observation points sampled: 101 unequally spaced measurements; 51 unequally spaced mea-

surements; 21 unequally spaced measurements. We use the usual cross-validation procedure

to obtain the parameters from for our method, such that the total variance accounted for

by all the principal components on the test data is maximized. The smoothing parameter

chosen under different sampling strategies are listed in 2.5 and the cumulative variance of

selected PC scores are listed in Table 2.6.

Table 2.5 Selected smoothing parameter with the usual cross-validation procedure for the
simulations in Section 2.4.2: Irregular Case

101 Unqually Spaced 51 Unqually Spaced 21 Unqually Spaced
α 1e-06 1e-04 1e-03
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Table 2.6 The averages and standard deviations of cumulative variance of selected PC scores
for the simulations in Section 2.4.2: Irregular Case. For each sampling strategy shown in
column 1, the first row is the average and standard deviation of the first estimated PC score
variance; the second row is for the second esitmated PC score variance.

Our Method Method II (PACE)

Selected PCs Var.PC.Score Var.PC.Score Var.PC.Score Var.PC.Score
(Avg.) (Std.) (Avg.) (Std.)

101 Unequally spaced
1st PC 0.04388102 0.002888812 0.0436 0.0029
2nd PC 0.06803005 0.003254693 0.0440 0.0029
3rd PC 0.06900475 0.003255002 0.0440 0.0029

51 Unequally spaced
1st PC 0.08348801 0.005615962 0.0757 0.0051
2nd PC 0.12794842 0.006420639 0.0772 0.0051
3rd PC 0.12948339 0.006429075 0.0772 0.0051

21 Unequally spaced
1st PC 0.2062827 0.01513302 0.2206 0.0140
2nd PC 0.3182653 0.01546205 0.2304 0.0140
3rd PC 0.3275431 0.01565964

2.4.3 Random surface

We sample 200 surfaces from the distribution of

X(s, t) = 1 + es cos (t) + (s− 1)2t+ ξ1 sin
(
π(s− t)

2

)
+ ξ2 sin

(
π(s+ t)

2

)
,

where 0 ≤ s, t ≤ 1, ξ1 ∼ N(0, 2), ξ2 ∼ N(0, 1). The summation of the first three terms is

the mean function. The covariance function of X(s, t) has two nonzero eigenvalues with

eigenfunctions

1√
2

(1− 2
π

) sin
(
π(s− t)

2

)
,

1√
2

(1 + 2
π

) sin
(
π(s+ t)

2

)
, 0 ≤ s, t ≤ 1.

For each sampled surface, we make 10 to 30 observations (irregular case) from a dis-

tribution with a truncated bivariate normal density with mean (0.4, 0.6) and covariance

matrix I restricted to the region [0, 1] × [0, 1]. The number of the observations for each

surface is a random variable with discrete uniform distribution on {10, 11, · · · , 30}. The
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measurement error ε ∼ N(0, 0.22). The eigenfunctions and their estimates in one simulation

are plotted in Figure 2.5. The smallest MISE of our method are 0.022 and 0.026 for the first

two eigenfunctions respectively.
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Figure 2.5 Eigenfunctions and their estimates in one simulation: The top left is the first

true eigenfunction; the top right is the estimate of the first eigenfunction; the bottom left is

the second eigenfunction; the bottom right is the estimate of the second eigenfunction.
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2.5 Applications

2.5.1 Retinal pigment epithelium (RPE) data

The retinal pigment epithelium (RPE) is the pigmented cell layer between the choroid

and the photoreceptor cell layer of eye. RPE is essential for visual function (see Strauss

Strauss [45]). It provides multiple functions that support normal photoreceptor function,

such as shielding the retina from excess incoming light, transporting water, nutrients and

metabolic end products between the subretinal space and the blood, as well as secreting a

variety of growth factors and signaling molecules (Zinn and Marmor Zinn and Marmor [55]).

RPE is a key site of pathogenesis of age-related macular degeneration (AMD) which is a

main source of vision loss even blindness in the elderly (Spaide and et al. Spaide and et al.

[43]). The data is the collection of images of RPE cells of 88 mouse eyes provided in Emory

Eye Center’s L. F. Montgomery Lab at Emory University (Jiang and et al. Jiang and et al.

[24]). The purpose of the study is to examine the relationship between the morphology of

RPE layer and the age and disease status of the eye. Specifically, it is desirable to construct a

classification rule based on the data so that the morphology of RPE of the eyes with different

genotypes and in different age groups can be separated. There are two genotypes: wild and

mutated, and two age groups: young (age≤ 60 days) and elderly (age > 60) groups in the

data. Hence, we have four classes (that is, four combinations of genotypes and age groups).

In each image, there are several thousands of cells. Several characteristics of each cell were

measured including area, perimeter, aspect ratio, and so on. Local regions of two images

with different genotypes, but having the same age equal to 60 days, are shown in Figure 2.6

(Chrenek and et al. Chrenek and et al. [10]). It can be seen that the distributions of the area

and the shape of cells in the two images are quite different. Hence, we use the distributions

of the area and the aspect ratio (a measure of shapes) of cells as classifiers respectively. The

density curves of the area and the aspect ratio for each eye are estimated using the penalized

likelihood method (see Section 5.4.3 in Ramsay, Hooker and Graves Ramsay et al. [34]),

respectively, and the principal component scores are calculated and used to construct the

classification rules. The eyes in different age groups can be separated using the distribution

of the area of cells which cannot distinguish the eyes with different genotypes in the same
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Figure 2.6 Local regions of two images with different genotypes, but same age equal to 60
days: (Left) RPE cells of the wild type and age 60 days; (Right) RPE cells of the mutated
type and age 60 days.

age groups. Conversely, the distribution of the aspect ratio of cells can separate the eyes

with different genotypes, but cannot distinguish those with the same genotypes in different

age groups. Hence, we will combine the information of the area and the aspect ratio of cells

together and apply our method to the joint density functions.

The data contains 88 images of mouse eyes. 27 are in the young age group with the

wild genotype, 13 are in the elderly age group with the wild genotype, 27 are in the young

age group with the mutated genotype and 21 are in the elderly age group with the mutated

genotype. We first estimate the joint density function of the area and the aspect ratio of

cells in each image using the kernel method (see Section 5.6 in Venables and Ripley [49]).

The values of the density functions are calculated on a grid of 731× 21 equally spaced points

in the two-dimensional space (the area of cells are distributed between 0 and 730 µm2 and

the aspect ratio between 0 and 1). The mean joint densities of the four categories are plotted

in Figure 2.7 which indicates the joint density curve is a good classifier of the genotype and

the age group. We apply our method to the 88 joint density functions. Most of variations in

the data are accounted for by the first four principal components which are plotted in Figure

2.8. Then we calculate four PC scores for each eye image, hence all the PC scores form a

88× 4 matrix which is used to construct classification rules. We apply three classification

methods, LDA (linear discriminant analysis), QDA (quadratic discriminant analysis) and

SVM (support vector machine), to the matrix. Leave-one-out cross validation is used to
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Figure 2.7 Mean joint densities of four categories.

assess the predictive accuracy. The PC scores of one eye image is selected as the test data

and the PC scores of the remaining eye images are used as training data to construct the

classification rule which is applied to the test data. This is repeated such that each eye image

is used once as the test data. The predictive accuracy are 96.6% (85 are correctly classified

among 88 eyes), 95.5%(84) and 95.5% (84) for LDA, QDA and SVM, respectively.

2.5.2 Longitudinal CD4 counts data

This dataset is from the Multicenter AIDS Cohort Study, which includes repeated

measurements of physical exams, laboratory results, and CD4 percentages for 283 homosexual

men who became HIV-positive between 1984 and 1991. The CD4 cell level is one of the

important biomarkers to evaluate the disease progression of HIV infected subjects. All

individuals were scheduled to have their measurements made at semiannual visits. However,
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Figure 2.8 The first four principal component functions.

because many individuals missed scheduled visits and the HIV infections happened randomly

during study, the data are sparse. The number of observations per subject ranged from 1 to

14, with a median of 6. Plots of sample curves from the data are shown in 2.9. As we can

see, the CD4 count data are unbalanced, due to mistimed measurements and missing data

that resulted from skipped visits and dropout.

This dataset has been studied by many authors (see Yao et al. [54]). The plots of

all observed individual trajectories and the estimated mean curve can be found in Yao

et al. [54]. We apply our method to this dataset and plot the estimates of the first three

eigenfunctions in Figure 2.10. Our estimate of the first eigenfunction is similar to that in
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Figure 2.9 Sample curves from CD4 data: (Upper) 4 sample curves; (Lower)Sample curves
of 283 patients between 1984 and 1991

Yao et al. [54]. However, there are some differences between our estimates of the second

and third eigenfunctions and theirs. Our estimate of the second eigenfunction corresponds

to the contrast between the cd4 counts before year 2.5 and those after that. The third

estimate corresponds to the contrast between the cd4 counts during the middle course of the

observations and the summation of those at the beginning and towards the end of the study

period.
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Figure 2.10 Estimates of the first three eigenfunctions for CD4 data
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Chapter 3

SPARSE FISHER’S DISCRIMINANT ANALYSIS WITH THRESHOLDED

LINEAR CONSTRAINTS

This chapter is organized as follows. In Section 3.1, we introduce notations and briefly

review the classic Fisher’s discriminant analysis. Our sparse Fisher’s LDA method with

thresholded linear constraints are introduced in Section 3.2. In Section 3.3, we present

the main theoretical results. Sections 3.4 and 3.5 are simulation studies and applications,

respectively. The proofs of all theorems are provided in Section 4.11 of Chapter 4.

3.1 Fisher’s discriminant analysis

We first introduce the notations used throughout the chapter. For any vector v =

(v1, · · · , vp)T, let ‖v‖1, ‖v‖2, and ‖v‖∞ = max1≤i≤p |vi| denote the l1, l2, and l∞ norms of v,

respectively. For any p× p symmetric matrix M, we use λmax(M), λmin(M) and λ+
min(M) to

denote the largest eigenvalue, the smallest eigenvalue and the smallest positive eigenvalue of

M, respectively. Now suppose that M is symmetric and nonnegative definite. We define two

norms for M,

‖M‖ = sup
v∈Rp,‖v‖2=1

‖Mv‖2 = λmax(M), and ‖M‖∞ = max
1≤k,l≤p

|Mkl| , (3.1)

where Mkl is the (k, l)th entry of M. The first norm is the usual operator norm and is also

called the spectral norm. The second is the max norm.

Throughout this chapter, we assume that the number K of classes is any fixed positive

integer number. Suppose that the population in the i-th class has a multivariate normal

distribution Np(µi,Σ), where µi is the true mean of the ith class, 1 ≤ i ≤ K, and Σ is

the true common within-class covariance matrix for all classes. We assume that the prior

probabilities for all the classes are the same and equal to 1/K. It will be seen that when we

add a constant vector to all the observations (including all the training and the test data),
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the classification results are not changed under the classification rules involved in this paper,

therefore, without loss of generality, we assume that the overall mean of the whole population

is zero, that is,

µ1 + µ2 + · · ·+ µK = 0. (3.2)

Define a p × K matrix U = [µ1,µ2, · · · ,µK ], which is the collection of the class means.

Under the assumption (3.2), the between-class covariance matrix is defined as

B =
K∑
i=1

µiµ
T
i /K = UUT/K (3.3)

Then Fisher’s discriminant analysis method (when the true class means and the true covariance

matrix are known) sequentially finds linear combinations Xα1, · · · ,XαK−1 by solving the

following generalized eigenvalue problem. Suppose that we have obtained α1, · · · ,αk−1,

where 1 ≤ i ≤ K − 2, then αi is the solution to

max
α∈Rp

αTBα, subject to αTΣα = 1, αTΣαj = 0, 1 ≤ j ≤ i− 1. (3.4)

The Fisher’s classification rule is to assign a new observation x to the class i if

(x− µi)TD(x− µi) < (x− µj)TD(x− µj) (3.5)

for all 1 ≤ j 6= i ≤ K, where D = ∑K−1
k=1 αkα

T
k .

It is well known that under our setting, that is, the population in each class has a normal

distribution with the same covariance matrix and the prior probabilities for all classes are

the same, the optimal classification rule is to assign a new observation x to class i if

(x− µi)TΣ−1(x− µi) < (x− µj)TΣ−1(x− µj) (3.6)

for all 1 ≤ j 6= i ≤ K,(See Theorem 6.8.1 in Anderson [3] or Theorem 13.2 in Härdle and

Simar [21]). Moreover, the optimal rule (3.6) is equivalent to the Fisher’s discriminant rule
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(3.5).
In practice, the true class means and the covariance matrix Σ are unknown. Consider

a training data set, X = {xij : 1 ≤ i ≤ K, 1 ≤ j ≤ ni}, where xij is the jth observation
from the ith class and ni is the number of the observations of the ith class. The numbers
(n1, n2, · · · , nK) can be either random or nonrandom. Let n = ∑K

i=1 ni. Throughout this
paper, we use

x̄i = 1
ni

ni∑
j=1

xij , x̄ = 1
n

K∑
i=1

ni∑
j=1

xij , Σ̂ = 1
n−K

K∑
i=1

ni∑
j=1

(xij − x̄i)(xij − x̄i)T,

B̂ = 1
n

K∑
i=1

ni(x̄i − x̄)(x̄i − x̄)T, 1 ≤ i ≤ K, (3.7)

to denote the sample class means, the sample overall mean, the sample within-class covariance

matrix and the sample between-class covariance matrix, respectively. Then the classic Fisher’s

discriminant analysis is to sequentially obtain the estimates α̂1, · · · , α̂K−1 of α1, · · · ,αK−1

by solving

max
α∈Rp

αTB̂α, subject to αTΣ̂α = 1, αTΣ̂α̂j = 0, 1 ≤ j < i, (3.8)

where 1 ≤ i ≤ K − 1. The classification rule is to assign a new observation x to the class i if

(x− x̄i)TD̃(x− x̄i) < (x− x̄j)TD̃(x− x̄j), (3.9)

for all 1 ≤ j 6= i ≤ K, where D̃ = ∑K−1
k=1 α̂kα̂

T
k .

3.2 Sparse Fisher’s discriminant analysis with thresholded linear constraints

In the high-dimensional setting, the classic Fisher’s discriminant analysis has several

drawbacks. First, the sample within-class covariance matrix Σ̂ is not full rank, so the solution

to (3.8) does not exist. Second, the sample between-class covariance matrix B̂ and the sample

within-class covariance matrix Σ̂ as given in (3.7) are not consistent estimates in terms of

the usual operator norm. Hence, α̂k, 1 ≤ k ≤ K − 1, are not consistent. Third, suppose that

we have obtained an estimate α̃1 of α1, in order to estimate α2, we have to estimate the
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coefficient vector of the linear constraint in (3.4), Σα1. However, even if α̃1 is a consistent

estimate , Σ̂α̃1 is not a consistent estimate of Σα1 due to the inconsistency of Σ̂. In this

section, we describe our method and address these drawbacks. We will consider the cases

that K = 2 and K > 2 separately because when K = 2, there is only a component and no

linear constraints exist.

3.2.1 The case of K = 2

When there are two classes, there is only one component α1 and B = (µ1µ
T
1 +µ2µ

T
2 )/2 =

µ1µ
T
1 because µ1 = −µ2 . It is easily seen that

α1 = Σ−1δ/
√
δTΣ−1δ

, where δ = µ2−µ1. Cai and Liu [9] and Fan et al. [15] imposed l1 and l0 sparsity assumptions

on Σ−1δ, respectively. Equivalently, we assume that α1 is sparse in terms of l1 norm as in

Cai and Liu [9]. As in Qi et al. [32], we propose to get an estimate α̂1 of α1 by solving

max
α∈Rp

αTB̂α, subject to αTΣ̂α + τ‖α‖2
λ = 1, (3.10)

where ‖α‖2
λ = (1− λ)‖α‖2

2 + λ‖α‖2
1 and both τ ≥ 0 and 0 ≤ λ ≤ 1 are tuning parameters.

The introduction of ‖α‖2
2 overcomes the issue that Σ̂ is not full rank in high-dimensional

setting, and the term ‖α‖2
1 encourages the sparsity of the solution. A difference between our

penalty and the usual lasso or elastic-net penalty is that we use the squared l1-norm, which

leads to the following scale-invariant property. For any nonzero real number t, tα̂1 is the

solution to the penalized generalized eigenvalue problem,

max
α∈Rp

αTB̂α

αTΣ̂α + τ‖α‖2
λ

, (3.11)

because the objective function is scale-invariant. Note that the problem (3.11) is equivalent

to (3.10). This scale-invariant property is intensively used in our theoretical development.

Once we obtain α̂1, our classification rule is to assign a new observation x to class i if

(x− x̄i)TD̂(x− x̄i) < (x− x̄j)TD̂(x− x̄j) for 1 ≤ j 6= i ≤ 2, where D̂ = α̂1α̂
T
1 .
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3.2.2 The case of K > 2

If K > 2, more than one components need to be estimated. The α1 is estimated in

the same way as that when K = 2. Since the higher order component αi, 1 < i ≤ K − 1,

satisfies the constraints in (3.4), αi is actually orthogonal to the subspace spanned by

{Σα1, · · · ,Σαi−1} in Rp. Because αi is the eigenvector of the generalized eigenvalue problem

(3.4), Bαj and Σαj (1 ≤ j < K − 1) have the same direction and only differ by a scale

factor, which is the j-th eigenvalue. Hence, the subspace spanned by {Bα1, · · · ,Bαi−1} is

the same as that of {Σα1, · · · ,Σαi−1}.

Because neither Σ̂ nor B̂ are consistent estimates of Σ and B in terms of the op-

erator norm, respectively, neither of the subspaces spanned by {Σ̂α̂1, · · · , Σ̂α̂i−1} and

{B̂α̂1, · · · , B̂α̂i−1} is a consistent estimate of the subspace spanned by {Σα1, · · · ,Σαi−1}

(or by {Bα1, · · · ,Bαi−1}), even if α̂j, 1 ≤ j ≤ i− 1, are consistent estimates. Therefore, in

order to estimate these subspaces, in addition to the sparsity assumption on {α1, · · · ,αK−1},

we also make sparsity assumptions on the vectors, Bα1, · · · ,BαK−1, in terms of l1 norm,

which is equivalent to the sparsity on Σα1, · · · ,ΣαK−1. Lemma 2 in Section 3.3 shows that

making sparsity assumptions on Σα1, · · · ,ΣαK−1 is equivalent to assuming the sparsity of

{µi − µj, 1 ≤ i 6= j ≤ K − 1} in terms of l1 norm. This assumption has been made in Shao

et al. [37]. Bickel and Levina [7] assumes that µ1 and µ2 are sparse when K = 2, which

implies that µ1 − µ2 is sparse.

Under the above assumptions, suppose that we have obtained the estimate α̂j of αj,

1 ≤ j ≤ i− 1, then we propose to estimate Bαj by applying the soft thresholding to B̂α̂j.

This is equivalent to get the estimate ξ̂j of Bαj by solving the following optimization problem:

min
ξ∈Rp

[
‖ξ − B̂α̂j‖2

2 + κ‖ξ‖1
]
, (3.12)

where κ ≥ 0 is a tuning parameter. It can be shown that the l-th coordinate of ξ̂j is

(ξ̂j)l = sign((B̂α̂j)l)
[
|(B̂α̂j)l| − κ/2

]
I[|(B̂α̂j)l|≥κ/2], 1 ≤ l ≤ p, (3.13)

where I[|(B̂α̂j)l|≥κ/2] is the indicator function of [|(B̂α̂j)l| ≥ κ/2]. We will show that the
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subspace spanned by {ξ̂1, · · · , ξ̂i−1} is a consistent estimate of the subspace spanned by

{Bα1, · · · ,Bαi−1} and provide the convergence rate in Section 4. Now suppose that we have

obtained the estimates α̂1, · · · , α̂i−1 and ξ̂1, · · · , ξ̂i−1, then α̂i is the solution to

max
α∈Rp

αTB̂α, subject to αTΣ̂α + τ‖α‖2
λ = 1, αTξ̂j = 0, j < i. (3.14)

Once we obtain all the estimates α̂1, · · · , α̂K−1, we build the classification rule which assigns

a new observation x to class i if

(x− x̄i)TD̂(x− x̄i) < (x− x̄j)TD̂(x− x̄j), (3.15)

for all 1 ≤ j 6= i ≤ K, where

D̂ = (α̂1, · · · , α̂K−1) K̂−1 (α̂1, · · · , α̂K−1)T , (3.16)

and K̂ is a symmetric (K − 1) × (K − 1) matrix with the (i, j)-th entry equal to α̂T
i Σ̂α̂j.

The reason that we use the form (3.16) for D̂ will be explained in Section 3.3.

3.2.3 Computation

The optimization problems (3.10) and (3.14) are special cases of the the following

problem:

max
α∈Rp

αTΠα, subject to αTCα + τ‖α‖2
λ ≤ 1, Lα = 0, (3.17)

where Π and C are any two p × p nonnegative definite symmetric matrices, and L is any

matrix with p columns. For example, (3.14) is the special case of (3.17) with Π = B̂, C = Σ̂

and L = (ξ̂1, · · · , ξ̂i−1)T. In Qi et al. [32], (3.17) is solved by the following algorithm,

Algorithm 3.2.1. 1. Choose an initial vector α(0) with Πα(0) 6= 0.

2. Iteratively compute a sequence α(1),α(2), · · · ,α(i), · · · until convergence as follows: for
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any i ≥ 1, compute α(i) by solving

max
α∈Rp

(Πα(i−1))Tα, subject to αTCα + τ‖α‖2
λ ≤ 1, Lα = 0. (3.18)

The key step (3.18) of Algorithm 3.2.1 is a special case of the following problem with

c = Πα(i−1):

max
α

cTα, subject to αTCα + τ‖α‖2
λ ≤ 1, Lα = 0, (3.19)

where c is any nonzero vector. The algorithm and the related theory to solve (3.19) have

been developed and described in details in supplementary materials of Qi et al. [32].

3.3 Asymptotic consistency and asymptotic optimality

In this section, we study the asymptotic properties of the proposed method in Section 3.2.

We first consider two mechanisms of class label generation. The first is a random mechanism in

which sample observations are randomly drawn from any of K classes with equal probability

1/K. Hence, (n1, n2, · · · , nK) follows a multinomial distribution with parameters n and

(1/K, · · · , 1/K). In this case, we have the following result.

Lemma 1. Suppose that (n1, n2, · · · , nK) follows a multinomial distribution with parameters

n and (1/K, · · · , 1/K). Given any (K,n, p) satisfying that p ≥ 2, K ≤ p+ 1 and
√
K log p/n

is bounded by some constant d0, for any M > 0, we have

P

 max
1≤i≤K

∣∣∣∣nin − 1
K

∣∣∣∣ > C

√
log p
Kn

 ≤ p−M (3.20)

for all C ≥ (M + 3)(d0 + 1).

In the following Condition 1, we will assume that the distributions of xij is independent

of this random mechanism of class label generation. The second mechanism is nonrandom,

that is, (n1, n2, · · · , nK) are nonrandom numbers. In this case, we will impose the following

Condition 1 (a) on these numbers.

Condition 1.
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(a). If (n1, n2, · · · , nK) are nonrandom, then there exists a constant C0 (independent of n,

p and K), such that we have max1≤i≤K |ni/n− 1/K| ≤ C0

√
log p/(Kn) for all large

enough n. If (n1, n2, · · · , nK) are random as in Lemma 1, we assume that they and xij,

1 ≤ i ≤ K and 1 ≤ j ≤ ni, are independent.

(b). There exists a constant c0 (independent of n, p and K) such that

c−1
0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ c0, and max

1≤i≤K
‖µi‖∞ ≤ c0.

Lemma 1 and Condition 1 (a) ensure that the number of observations in different classes

do not differ greatly in each of the two mechanisms. The regularity condition for Σ in

Condition 1 (b) has been used by many authors. The condition about µi can be achieved by

scaling each of the p variables. Under Condition 1, we have the following two probability

inequalities about ‖Σ̂ − Σ‖∞ and ‖B̂ − B‖∞, which play basic roles in our theoretical

development. Recall that Σ̂ and B̂ are the sample within-class covariance matrix and the

sample between-class covariance matrix, respectively, as defined in (3.7).

Theorem 3.3.1. Suppose that Condition 1 holds, p ≥ 2, K ≤ p+ 1 and K log p/n→ 0 as

n→∞. Then for any M > 0, we can find C large enough and independent of n, p and K

such that

P

‖Σ̂−Σ‖∞ > C

√
K log p
n

 ≤ p−M , P

‖B̂−B‖∞ > C

√
K log p
n

 ≤ p−M

for all large enough n.

Remark 3.3.2. Theorem 3.3.1 holds even if K → ∞ as n → ∞ under the conditions

in the theorem. However, since we need the condition that K is bounded in the following

theorems, we fix K in this paper.

We next impose some conditions on the maximum values of the generalized eigenvalue

problem (3.4). Define

∆ = UTΣ−1U, Ξ = Σ−1/2BΣ−1/2, (3.21)
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where U = [µ1,µ2, · · · ,µK ], ∆ is K × K and plays the same role as that of ∆p in Shao

et al. [37] and Cai and Liu [9] when K = 2, and Ξ is a p × p nonnegative definite matrix.

Solving the generalized eigenvalue problem (3.4) is equivalent to computing the eigenvalues

and eigenvectors of Ξ. As αk, 1 ≤ k ≤ K− 1, are the generalized eigenvectors of the problem

(3.4), we have

Bαk = λkΣαk, and hence, ΞΣ1/2αk = Σ−1/2Bαk = λkΣ
1/2αk, (3.22)

for any 1 ≤ k ≤ K − 1, where λk is the corresponding generalized eigenvalue. Therefore,

γ1 = Σ1/2α1, γ2 = Σ1/2α2, · · · , γK−1 = Σ1/2αK−1, (3.23)

are the eigenvectors of Ξ with corresponding eigenvalues λ1, λ2, . . . , λK−1, respectively. So

they are orthogonal to each other. In the following, we will use λk(Ξ), 1 ≤ k ≤ K − 1, to

denote the eigenvalues of Ξ, which are also the generalized eigenvalues and the maximum

values of (3.4). Since Ξ has the same rank as B which is equal to K − 1 due to the constraint

(3.2), Ξ has at most K−1 positive eigenvalues. By the conditions αT
kΣαk = 1, 1 ≤ k ≤ K−1,

we have ‖γ1‖2 = ‖γ2‖2 = · · · = ‖γK−1‖2 = 1. Let

γ̂1 = Σ1/2α̂1, γ̂2 = Σ1/2α̂2, · · · , γ̂K−1 = Σ1/2α̂K−1, (3.24)

which are estimates of γ1, · · · , γK−1, respectively. Since −α̂k is also the solution to the

optimization problem in (3.10) or (3.14), without loss of generality, we choose the sign of α̂k

such that γ̂T
k γk ≥ 0, for 1 ≤ k ≤ K − 1. We impose the following regularity conditions on

the eigenvalues of Ξ.

Condition 2. There exist positive constants c1, c2 and c3 which are all independent of n,

p and K such that

(a). λ1(Ξ) ≥ λ2(Ξ) ≥ · · · ≥ λK−1(Ξ) ≥ c1,

(b). min
{
λ1(Ξ)−λ2(Ξ)

λ1(Ξ) , λ2(Ξ)−λ3(Ξ)
λ2(Ξ) , · · · , λK−2(Ξ)−λK−1(Ξ)

λK−2(Ξ)

}
≥ c2,

(c). The ratio between the largest and the smallest eigenvalue: λ1(Ξ)/λK−1(Ξ) ≤ c3.
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Condition 2(b) prevents the cases that the spacing between adjacent eigenvalues is too

small. Condition 2(c) excludes the situations where the effects of higher order components

are dominated by those of lower order components and are negligible asymptotically.

Now we consider the choice of the tuning parameters, τ and λ, in the penalized opti-

mization problem (3.10) and (3.14). We will show that the choice of λ is not essential for

the asymptotic convergence rates as long as it is asymptotically bounded away from zero. In

the following, we will choose tuning parameters (τn, λn) (which depend on the sample size n)

satisfying

0 < λn < 1, lim inf
n→∞

λn > λ0, τn = Csn, where sn =
√
K log p
n

, (3.25)

λ0 > 0 and C are constants independent of n, p and K. The constant C is chosen based on
Theorem 3.3.1 such that for all large enough n,

P

(
‖Σ̂−Σ‖∞ >

C

C2
sn

)
≤ p−1, P

(
‖B̂−B‖∞ >

C

C2
sn

)
≤ p−1, (3.26)

where C2 = 2(1 + c−1
1 )/λ0 and c1 is the constant in Condition 2 (a). Define the event

Ωn =
{
‖Σ̂−Σ‖∞ ≤ τn/C2, ‖B̂−B‖∞ ≤ τn/C2

}
, then P (Ωn) ≥ 1− 2p−1 (3.27)

by (3.26). Since the probability of the complement of Ωn goes to zero as n, p→∞, we will

only consider the elements in Ωn.

We adopt the same definition of asymptotic optimality for a linear classification rule as

in Shao et al. [37], Cai and Liu [9], Fan et al. [15] and other papers. Let TOPT denote the

optimal linear classification rule (3.5) or (3.6) and ROPT represent its misclassification error

rate.

Definition 3.3.3. Let T be a linear classification rule with conditional misclassification rate

RT (X), given the training sample X. Then T is asymptotically optimal if

RT (X)
ROPT

− 1 ≤ op(1). (3.28)
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Note that (3.28) implies that RT (X)− ROPT ≤ op(1) because 0 ≤ RT (X) ≤ 1. Hence

we have RT (X)→ ROPT in probability and E[RT (X)]→ ROPT . If ROPT is bounded away

from 0, then RT (X) − ROPT ≤ op(1) also implies (3.28). However, if ROPT → 0, (3.28) is

stronger than the inequality RT (X)−ROPT ≤ op(1). In the following, we will consider the

asymptotic properties of our method for K = 2 and K > 2 separately because of the more

complicated classification boundary and the additional linear constraints when K > 2. In

both cases, we will assume that K is fixed, p→∞ and sn =
√
K log p/n→ 0 as n→∞.

3.3.1 The case of K = 2

In this case, there exists only one component α1. The following theorem provides an

upper bound for the sparsity (measured by the l1 norm) and the consistency of the estimator

α̂1 obtained from (3.10).

Theorem 3.3.4. Suppose that K = 2 and Conditions 1-2 hold. If sn → 0 and ‖α1‖2
1sn → 0

as n, p→∞, then for all large enough n, we have, in Ωn,

‖α̂1‖2
1 ≤ 6‖α1‖2

1/λ0, ‖γ̂1 − γ1‖2
2 ≤ C5‖α1‖2

1sn, ‖α̂1 −α1‖2
2 ≤ c0C5‖α1‖2

1sn, (3.29)

where C5 is a constant independent of n and p, and c0 is the constant in Condition 1 (b).

Therefore, α̂1 is a consistent estimate of α1.

Next, we provide explicit formulas for the misclassification errors of the optimal rule

and our rule in terms of D = α1α
T
1 and D̂ = α̂1α̂

T
1 , respectively, when K = 2. Then based

on Theorem 3.3.4, we can prove the asymptotic optimality of our method and provide the

corresponding convergence rate.

Theorem 3.3.5. Suppose that K = 2 and Conditions 1-2 hold. Then the misclassification

rate of the optimal rule (3.5) and the conditional misclassification rate of our sparse LDA

rule as given in Section 3.2.1 are

ROPT = Φ
(
− δTDδ

2‖δTDΣ1/2‖2

)
, (3.30)

R(X) = 1
2Φ

(
− δ̂TD̂(2µ2 − x̄1 − x̄2)

2‖δ̂TD̂Σ1/2‖2

)
+ 1

2Φ
(
− δ̂TD̂(x̄1 + x̄2 − 2µ1)

2‖δ̂TD̂Σ1/2‖2

)
,
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respectively, where Φ is the cumulative distribution function of the standard normal distribution,

δ = µ2 − µ1 and δ̂ = x̄2 − x̄1. Moreover, if sn → 0 and λ1(Ξ)‖α1‖2
1sn → 0 as n, p → ∞,

our method is asymptotically optimal and we have

R(X)
ROPT

− 1 ≤ Op

(
λ1(Ξ)‖α1‖2

1sn
)
. (3.31)

Remark 3.3.6.

(1). The misclassification rate of the optimal rule is expressed in terms of Σ−1, that is,

ROPT = Φ
(
−
√
δTΣ−1δ/2

)
in Equation (1) in Shao et al. [37] and Equation (5) in

Cai and Liu [9]. Since it is established that Σ−1δ = Dδ in (4.153) (Supplementary

Material) in the proof of Lemma 8, the ROPT in (4.54) is the same as in those papers.

(2). Cai and Liu [9] assumed sparsity on Σ−1δ (where they used the notation Ω rather than

Σ−1), and obtained the convergence rate

R(X)
ROPT

− 1 ≤ Op

(‖Σ−1δ‖1

√
∆p + ‖Σ−1δ‖2

1

)√ log p
n

 , (3.32)

(see Theorem 3 in Cai and Liu [9]), where ∆p = δTΣ−1δ. When K = 2, α1 =

Σ−1δ/
√
δTΣ−1δ. By (4.65) (Supplementary Material) in the proof of Theorem 3.3.5,

we have δTDδ = δTΣ−1δ = 4λ1(Ξ). Hence, our convergence rate on the right hand

side of (4.55) is

Op

(
λ1(Ξ)‖α1‖2

1sn
)

= Op

(δTΣ−1δ)
∥∥∥∥∥ Σ−1δ√

δTΣ−1δ

∥∥∥∥∥
2

1

√
K log p
n


= Op

‖Σ−1δ‖2
1

√
log p
n

 .
Compared to the convergence rate in (3.32), our convergence rate does not have the

first term in (3.32). Hence, the convergence rate of our method is the same as or better

than that in Cai and Liu [9].
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3.3.2 The case of K > 2

In this subsection, we study the asymptotic properties of our method when K > 2.

We first show that making sparsity assumptions on {Σα1, · · · ,ΣαK−1} is equivalent to or

weaker than assuming the sparsity of {µi − µj, 1 ≤ i 6= j ≤ K}.

Lemma 2. Suppose that Conditions 1-2 hold. Then

1
(K − 1)c0

√
2Kλ1(Ξ)

(
max

1≤i 6=j≤K
‖µi − µj‖1

)
≤ max

1≤i≤K−1
‖Σαi‖1

≤
√
c3√

λ1(Ξ)

(
max

1≤i 6=j≤K
‖µi − µj‖1

)
.

By Lemma 2, since λ1(Ξ) ≥ c1 by Condition 2, if λ1(Ξ) is bounded from the above,

then max1≤i≤K−1 ‖Σαi‖1 has the same order as max1≤i 6=j≤K ‖µi − µj‖1. If λ1(Ξ) → ∞,

then we have max1≤i≤K−1 ‖Σαi‖1/max1≤i 6=j≤K ‖µi − µj‖1 → 0. We define the following

measurement of sparsity on αi and Σαi, 1 ≤ i ≤ K − 1:

Λp = max
1≤i≤K−1

{‖αi‖1, ‖Σαi‖1}. (3.33)

In the following theorem, we show that for each 1 ≤ i ≤ K − 1, the sparsity of the estimate

α̂i (measured by the l1 norm) is bounded by Λp multiplied by a constant which does not

depend on n and p, and α̂i is a consistent estimate. Moreover, we show that the subspace

spanned by {ξ̂1, · · · , ξ̂i} is a consistent estimate of the subspace spanned by {Bα1, · · · ,Bαi}

(or equivalently the subspace spanned by {Σα1, · · · ,Σαi}) and provide the convergence

rates. In this paper, to measure whether the two subspaces with the same dimensions in Rp

are close to each other, we use the operator norm of the difference between the projection

matrices on the two subspaces.

Theorem 3.3.7. Suppose that Conditions 1-2 hold. Let the tuning parameter in the optimiza-

tion problem (3.12), κn = C̃λ1(Ξ)Λpsn, where C̃ is a constant large enough and independent

of n and p. For any 1 ≤ i ≤ K − 1, let Qi and Q̂i be the orthogonal projection matrices onto
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the following subspaces of Rp, respectively,

Wi = span{ξ1, ξ2, · · · , ξi}, Ŵi = span{ξ̂1, ξ̂2, · · · , ξ̂i}, (3.34)

where ξi = Bαi = λi(Ξ)Σαi. If sn → 0 and Λ2
psn → 0 as n, p → ∞, then for each

1 ≤ i ≤ K − 1, there exist constants Di,1, Di,2 and Di,3 independent of n and p such that in

Ωn,

‖α̂i‖1 ≤ Di,1Λp, ‖α̂i −αi‖2
2 ≤ Di,2Λ2

psn, ‖Qi − Q̂i‖2 ≤ Di,3Λ2
psn. (3.35)

Hence, for each 1 ≤ i ≤ K − 1, α̂i is a consistent estimate of αi, and the projection matrix

Q̂i is a consistent estimate of Qi.

Based on Theorem 3.3.7, we will prove the asymptotic optimality of our classification

rule and provide the corresponding convergence rate. However, because the classification

boundary is usually complicated and no explicit formula for the classification error generally

exist when K > 2, we first prove a theorem which provides the asymptotic optimality

and the corresponding convergence rate for a general linear classification rule. Then by

applying the general result to our sparse Fisher’s discriminant analysis method, we obtain

the corresponding asymptotic optimality results. Define

aji = Σ1/2D(µj − µi), bji = 1
2(µj + µi), (3.36)

where 1 ≤ i, j ≤ K. The Fisher’s optimal rule TOPT in (3.5) assigns a new observation x to

the ith class if aT
jiΣ

−1/2(x − bji) < 0 for all j 6= i. Consider a general linear classification

rule T which assigns a new observation x to the ith class if

âT
jiΣ

−1/2(x− b̂ji) < 0, for all j 6= i, (3.37)

where âji and b̂ji are estimates of aji and bji, respectively. Let RT (X) denote the conditional

misclassification rate of the rule T given the training sample X. The following theorem

studies the asymptotic property of the general linear classification rule T . In fact, many
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linear classification rules in practice can be written in this form. For example, the classic

Fisher’s rule (3.9) is of the form (3.37) with âji = Σ1/2D̃(x̄j − x̄i) and b̂ji = 1
2(x̄j + x̄i). The

rule of our sparse Fisher’s discriminant analysis method is also a special case of (3.37) with

âji = Σ1/2D̂(x̄j − x̄i), b̂ji = 1
2(x̄j + x̄i), (3.38)

where D̂ is defined in (3.16).

Theorem 3.3.8. Suppose that Conditions 1 and 2 hold and the general classification rule T

in (3.37) satisfies: âji = −âij and b̂ji = b̂ij. Let {δn : n ≥ 1} be a sequence of nonrandom

positive numbers with δn → 0 and λmax(∆)δn → 0 as n→∞. For any 1 ≤ j 6= i ≤ K, let

aji = tjiâji + (aji)⊥

be an orthogonal decomposition of âji, where tjiâji is the orthogonal projection of aji along

the direction of âji, tji is a real number, and (aji)⊥ is orthogonal to tjiâji. Let

d̂ji = âT
jiΣ

−1/2(b̂ji − µi) , dji = aT
jiΣ

−1/2(bji − µi) = 1
2‖aji‖

2
2. (3.39)

If the following conditions are satisfied,

‖aji‖2
2 − ‖âji‖2

2 = ‖aji‖2
2Op(δn), tji = 1 +Op(δn), dji − d̂ji = ‖âji‖2

2Op(δn), (3.40)

where Op(δn) are uniform for all 1 ≤ j 6= i ≤ K, then we have

RT (X)
ROPT

− 1 ≤ Op

(
K2
√
λmax(∆)δn log [{λmax(∆)δn)}−1]

)
. (3.41)

The convergence rate in Theorem 3.3.8 is given in terms of λmax(∆)δn. By Lemma 9

(Supplementary Material), there is a simple relationship: λmax(∆) = Kλmax(Ξ) = Kλ1(Ξ).

Moreover, in this paper, we assume that K is fixed. Then the inequality in (4.142) can be
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given in terms of λ1(Ξ)δn as follows,

RT (X)
ROPT

− 1 ≤ Op

(√
λ1(Ξ)δn log [{λ1(Ξ)δn}−1]

)
.

Applying Theorem 3.3.8 to our classification rule (3.15), which is a special case of the general

classification rule (3.37) with âji and b̂ji as given in (3.38), we get the asymptotic optimality

of our classification rule as stated in the following theorem.

Theorem 3.3.9. Suppose that Conditions 1-2 hold, sn → 0 and λ1(Ξ)Λ2
psn → 0 as n, p→∞.

Then the classification rule (3.15) of our sparse Fisher’s discriminant analysis method is

asymptotically optimal. Moreover, we have

RT (X)
ROPT

− 1 ≤ Op

(√
λ1(Ξ)Λ2

psn log
[
{λ1(Ξ)Λ2

psn}−1
])
. (3.42)

Remark 3.3.10. Now we explain why we choose the particular form (3.16) of D̂ in our

classification rule (3.15). By (4.106) in the proof of Theorem 3.3.9, Σ−1/2DΣ−1/2 is equal to

the projection matrix onto the subspace spanned by {γ1, · · · ,γK−1}. By (4.103), (4.104) and

(4.109) in the proof of the theorem, one can see that Σ−1/2D̂Σ−1/2 is a consistent estimate of

the projection matrix onto the subspace spanned by {γ̂1, · · · , γ̂K−1} and hence it is a consistent

estimate of the projection matrix Σ−1/2DΣ−1/2.

3.4 Simulation studies

In this section, we compare the proposed sparse Fisher’s discriminant analysis with

thresholded linear constraints (SFDA-threshold) with the sparse Fisher’s discriminant analysis

without thresholding (SFDA) (Qi et al. [32]), regularized discriminant analysis (RDA) (Guo

et al. [19], R package “rda”) and penalized discriminant analysis (PDA) (Witten and Tibshirani

[52], R package “penalizedLDA”). Three simulation models are considered. In each simulation,

50 independent data sets are simulated each of which has 1500 observations and three classes.

In each dataset, for each observation, we randomly select a class label and then generate

the value of x based on the distribution of that class. Then the 1500 observations in each

dataset are randomly split into the training set with 150 observations and the test set
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with 1350 observations. There are 500 features (that is, p=500) in these datasets. For our

methods, SFDA-threshold and SFDA, we use the usual cross-validation procedure to select

tuning parameters τ from {0.5, 1, 5, 10}, and µ from {0.01, 0.05, 0.1, 0.2, 0.3, 0.4}. For SFDA-

threshold, we choose κ in (3.12) from the three values which are equal to ‖α̂j‖1 multiplied by

0, 0.001 and 0.01, respectively. For RDA and PDA, the default cross-validation procedure in

the corresponding packages are used. The details of the three simulation studies are provided

below.

(a). Simulation 1: There is no overlap between the features for different classes, but there

are correlations among some feature variables. Specifically, let xij be the ith observation

on the jth variable, 1 ≤ j ≤ 500 and 1 ≤ i ≤ 1500. If the ith observation is in class

k(= 1, 2, 3), then xij = µkj + Zi + εij if 1 ≤ j ≤ 30, and xij = µkj + εij if j ≥ 31, where

Zi ∼ Normal(0, 1) and εij ∼ Normal(0, σ2) are independent. Here µ1j ∼ Normal(1, 0.82)

if 1 ≤ j ≤ 20, µ2j ∼ Normal(4, 0.82) if 21 ≤ j ≤ 30, µ3j ∼ Normal(1, 0.82) if 31 ≤ j ≤ 50

and µkj = 0 otherwise. We consider the cases that σ2 = 1, 1.52 and 4, respectively.

(b). Simulation 2: There are overlaps between the features for different classes and the

variables are correlated. The ith observation, xi = (xi1, xi2, · · · , xi,500) ∼ Normal(µk,Σ),

where µk = (µk,1, µk,2, · · · , µk,500), if it is in class k, 1 ≤ k ≤ 3. The covariance matrix

Σ is block diagonal, with five blocks each of dimension 100×100. The five blocks are the

same and have (j, j′) element 0.6|j−j′|×σ2. Also, µ1j ∼ Normal(1, 1), µ2j ∼ Normal(2, 1)

and µ3j ∼ Normal(3, 1) if 1 ≤ j ≤ 10 or 101 ≤ j ≤ 110 and µkj = 0 otherwise. We

consider σ2 = 1, 2 and 3.

(c). Simulation 3: Observations from different classes have different distributions about the

class means. If the ith observation is in class k, xi ∼ Normal(µk,Σk). We take µ1j = 3

if 1 ≤ j ≤ 10, µ2j = 2 if 1 ≤ j ≤ 20, µ3j = 1 if 1 ≤ j ≤ 30, and µkj = 0 otherwise.

The covariance matrix Σ1 is diagonal with the diagonal elements generated from the

uniform distribution in (0.5, 2) × σ2. Σ2 is block diagonal, with five blocks each of

dimension 100 × 100. The blocks have (j, j′) element 0.9|j−j′| × σ2. And Σ3 is block

diagonal, with five blocks each of dimension 100× 100. The blocks have (j, j′) element

0.6× σ2 if j 6= j′ and σ2 otherwise. We consider σ2 = 1, 2 and 3.
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The mean misclassification rates (percentages) of 50 data sets for each simulation are shown in

Table 3.1, with standard deviations in parentheses. SFDA-threshold performs similarly with

SFDA and both methods have good prediction accuracies in all the simulations. Therefore,

in addition to the theoretical advantages, the newly proposed method has good empirical

performance.

Table 3.1 The averages and standard deviations of misclassification rates (%) for the
simulations in Section 3.4.

σ2 SFDA-threshold SFDA RDA PDA
Simulation 1 1 0.21(0.26) 0.24(0.26) 0.32(0.39) 2.37(1.46)

1.52 1.52(0.77) 1.54(0.71) 1.75(0.96) 5.40(2.07)
4 8.78(4.06) 8.60(3.71) 10.20(4.41) 12.73(4.32)

Simulation 2 1 0.48(0.43) 0.48(0.47) 0.79(0.73) 0.86(0.57)
2 3.15(2.40) 3.29(2.38) 3.61(2.15) 4.84(2.45)
3 5.05(2.57) 5.10(2.43) 6.05(2.99) 8.55(3.52)

Simulation 3 1 4.86(1.12) 4.85(1.12) 7.71(2.03) 9.51(4.20)
2 13.02(2.73) 12.84(2.79) 18.74(2.84) 20.42(5.72)
3 21.49(3.45) 21.48(3.35) 26.56(3.58) 29.74(7.61)

3.5 Application to multivariate functional data

With the advance of techniques, multiple curves can be extracted and recorded simulta-

neously for one subject in a single experiment. In this section, we consider two real datasets

where observations are classified into multiple categories and for each subject, multiple curves

were measured. We first apply the wavelet transformation to those curves, and then apply

our method to the obtained wavelet coefficients. The setting for the tuning parameters is the

same as that in the simulation studies.

3.5.1 Daily and sports activities data

The daily and sports activities data set, available in UCI Machine Learning Repository

Bache and Lichman [4], recorded motion sensor data of 19 daily and sports activities each

performed by 8 subjects (4 female, 4 male, between the ages 20 and 30) in their own style for
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5 minutes. Five Xsens MTx units are used on the torso, arms, and legs Altun and Barshan

[1], Altun et al. [2], Barshan and Yüksek [5]. Nine sensors (x, y, z accelerometers, x, y, z

gyroscopes, x, y, z magnetometers) were placed on each of five body parts (torso, right arm,

left arm, right leg, left leg) and calibrated to acquire data at 25 Hz sampling frequency. The

data from each sensor were recorded as 60 segments with each segment contained 125 discrete

time points. Each segment was considered as a sample observation from a sensor and a

subject for an activity. There are totally 8× 60 = 480 observations for each activity and a

sensor. The purpose of the study is to classify the activities based on these observations each

of which has 45 curves recorded by 45 sensors at 125 time points. We first apply the Fast

Fourier Transformation to each of 45 curves to convert it from time domain to the frequency

domain and get its spectrum curve. After filtering the higher frequency, we use the first 64

frequency points for each of 45 frequency curves. Then we apply wavelet transformation

with 64 wavelet basis functions to the 64 frequency points for each curve and obtain 64

wavelet coefficients. In this way, for each observation, a vector with 64× 45 = 2880 wavelet

coefficients is obtained as the features to make classifications.

We focus on nine activities which can be divided into three groups. Group 1 includes

three activities: walking in a parking lot, ascending and descending stairs; Group 2 has

three activities: running on a treadmill with a speed of 8 km/h, exercising on a stepper and

exercising on a cross trainer; Group 3 includes rowing, jumping and playing basketball. We

will consider seven classification problems. In each of the first three problems, we consider

the classification of the three activities in each of the three groups. In each of the next three

problems, we combine any two of the thee groups and consider the classification of the six

activities in the combined groups. The last problem is the classification of all nine activities.

In each problem, for each class, we randomly select 30 observations as the training sample

and all other 450 observations as the test sample. The procedure is repeated 50 times for

each of the seven problems and the averages and standard deviations of misclassification

rates are reported in Table 3.2.
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Table 3.2 The averages and standard deviations of the misclassification rates (%) for the
daily and sports activities data. For each classification problem shown in column 1, the first
row is the average of misclassification rates, and the second row is the standard deviations.

Classes included SFDA-threshold SFDA RDA PDA
Group 1 0.23(0.23) 0.23(0.23) 1.94(1.91) 1.96(2.10)
Group 2 0.14(0.43) 0.14(0.44) 0.58(0.66) 0.21(0.58)
Group 3 0.12(0.07) 0.12(0.08) 0.58(1.08) 0.23(0.36)

Group 1+2 0.45(0.44) 0.46(0.43) 1.13(0.79) 2.39(1.52)
Group 1+3 1.50(0.84) 1.54(0.96) 1.92(0.99) 4.79(2.33)
Group 2+3 0.53(0.26) 0.54(0.24) 1.06(0.72) 0.80(0.37)

Group 1+2+3 1.63(0.60) 1.53(0.63) 1.78(0.65) 4.20(2.01)

3.5.2 Australian sign language data

The data is available in UCI Machine Learning Repository and the details of the

experiments can be founded in Kadous [25]. This data consists of sample of Auslan (Australian

Sign Language, it is the language used by the Deaf in Australia) signs. Twenty seven examples

of each sign were captured from a native signer using high-quality position trackers and

instrumented gloves. This was a two-hand system. For each hand, 11 time series curves

were recorded simultaneously, including the measurements of x (left/right),y (up/down),

z (backward/forward) positions, the direction of palm(is the palm pointing up or down?)

and five finger bends. The frequency curve of each of the 22 curves were extracted by

the Fast Fourier Transformation and then were transformed by 16 wavelet basis functions.

Hence, for each sign, we obtained 352 features. We choose nine signs and divide them into

three groups: Group 1 contains the three signs with meanings “innocent”, “responsible”

and “not-my-problem”, respectively; Group 2 contains “read”, “write” and “draw”; Group

3 contains “hear”, “answer” and “think”. As in the previous example, we consider seven

classification problems. For each class, we randomly choose 20 observations as the training

sample and the other 7 as the test sample. The procedure is repeated 50 times and the

averages and standard deviations of misclassification rates are reported in Table 3.3.
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Table 3.3 The averages and standard deviations of the misclassification rates (%) for the
Australian sign language data. For each classification problem shown in column 1, the first
row is the average of misclassification rates, and the second row is the standard deviations.

Classes included SFDA-threshold SFDA RDA PDA
Group 1 0(0) 0(0) 1.24(2.32) 0.19(0.94)
Group 2 0(0) 0(0) 1.43(2.76) 4.57(5.61)
Group 3 1.24(2.11) 1.14(2.05) 3.05(3.94) 3.9(6.5)

Group 1+2 0.19(0.65) 0.62(1.26) 0.76(1.31) 3.81(2.93)
Group 1+3 0.81(1.71) 0.62(1.16) 1.29(1.94) 2.24(2.38)
Group 2+3 0.93(1.45) 1.06(1.68) 1.72(2.13) 5.16(4.34)

Group 1+2+3 0.73(1.02) 0.57(0.95) 1.14(1.11) 6.0(2.78)
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Chapter 4

PROOFS OF THEOREMS

Here we provide the proofs of all our theoretical results. The proofs of some technical

lemmas can be founded in Section 4.11.

4.1 Proof of Theorem 2.3.1

Theorem (Theorem 2.3.1). The solutions {λ̂k, γ̂k : k ≥ 1} of the successive optimization

problems (4.95) and (2.10) exist for any {αk > 0, k ≥ 1}. Moreover, for each k, γ̂k has

continuous second derivatives on [a, b] and, on any subinterval {[t(q−1), t(q)], 1 ≤ q ≤ m− 1},

it can be written as a linear combination of the following at most 4k functions,

exp
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where 1 ≤ j ≤ k.

Proof of Theorem 2.3.1. Consider the Sobolev spaceW 2
2 ([a, b]). Given a smoothing parameter

α > 0, for any f, g ∈ W 2
2 ([a, b]), we define an inner product,

〈f, g〉α = 〈f, g〉+ α [f, g] (4.1)

and the corresponding norm

‖f‖α =
√
〈f, f〉+ α [f, f ]

. Under this inner product, W 2
2 ([a, b]) becomes a reproducing kernel Hilbert space. For an

introduction on the reproducing kernel Hilbert space, we refer the reader to Wahba [50]. For

the reproducing kernel Hilbert space (W 2
2 ([a, b], 〈·〉α), the reproducing kernel has the following
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form (see Thomas-Agnan [46]):

K(α)(s, t) =



∑4
j=1

∑4
k=1 ljkb

(α)
j (s)b(α)

k (t) for t ≤ s

∑4
j=1

∑4
k=1 lkjb

(α)
j (s)b(α)

k (t) for t ≥ s,
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.
The coefficients matrix (ljk)4

j,k=1 is nonsymmetric. Hence, K(α)(s, t) has different forms for

s ≤ t and s ≥ t. Given any fixed s, K(α)(s, t) is a function of t with continuous second

derivatives and is the linear combinations of b(α)
1 , b(α)

2 , b(α)
3 and b(α)

4 in the intervals a ≤ t ≤ s

and s ≤ t ≤ b respectively, but the coefficients of the linear combinations may be different in

these two intervals. For any given s, define K(α)
s (t) = K(α)(s, t).

Because the numerators in

max
‖γ‖ = 1, 〈γ, γ̂j〉 = 0,

j = 1, · · · , k − 1

∑m
q=1

∑m
l=1 Σ̂qlγ(t(q))γ(t(l))wqwl
‖γ‖2 + αk [γ, γ] , (4.2)

depend on γ only through their values at {tq}mq=1, we denote the numerators by

f(γ(t(1)), · · · , γ(t(m)) where f is a function on Rm. By the properties of reproducing kernel,

we have

γ(t(q)) =
〈
K

(α1)
t(q) , γ

〉
α
, q = 1, · · · ,m.

We first consider γ̂1 which is the solution to (4.2) for k = 1. Let V1 be the finite-

dimensional space spanned by {K(α1)
t(q) : 1 ≤ q ≤ m} in W 2

2 ([a, b]) and let V⊥1 be the

orthogonal complement of V1 in (W 2
2 ([a, b], 〈·〉α1

). For any γ ∈ W 2
2 ([a, b]), it has unique
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decomposition γ = γ1 + γ2, where γ1 ∈ V1 and γ2 ∈ V⊥1 . We have

γ(t(q)) =
〈
K

(α1)
t(q) , γ

〉
α1

=
〈
K

(α1)
t(q) , γ1

〉
α1

+
〈
K

(α1)
t(q) , γ2

〉
α1

=
〈
K

(α1)
t(q) , γ1

〉
α1

= γ1(t(q)).

Hence,

f(γ(t(1)), · · · , γ(t(m)))
‖γ‖2

α1

= f(γ1(t(1)), · · · , γ1(t(m)))
‖γ1‖2

α1 + ‖γ2‖2
α1

≤
f(γ1(t(1)), · · · , γ1(t(m))

‖γ1‖2
α1

,

where the second term and the third term are equal if and only if γ2 = 0. Therefore,

max
γ∈W 2

2 ([a,b]),‖γ‖=1

f(γ(t(1)), · · · , γ(t(m))
‖γ‖2

α1

= max
γ∈W 2

2 ([a,b]),‖γ‖6=0

f(γ(t(1)), · · · , γ(t(m))
‖γ‖2

α1

≤ max
γ1∈V1,‖γ1‖6=0

f(γ1(t(1)), · · · , γ1(t(m))
‖γ1‖2

α1

= max
γ1∈V1,‖γ1‖=1

f(γ1(t(1)), · · · , γ1(t(m))
‖γ1‖2

α1

.

We have that the solution to the optimization problem

max
γ1∈V1,‖γ1‖=1

f(γ1(t(1)), · · · , γ1(t(m)))
‖γ1‖2

α1

(4.3)

is also the solution to

max
γ∈W 2

2 ([a,b]),‖γ‖=1

f(γ(t(1)), · · · , γ(t(m)))
‖γ‖2

α1

and does not have other solutions. Since V1 is a finite-dimensional space, the solution to

(4.3) exists. Hence, the solution to (4.2) with k = 1, γ̂1, exists and belongs to V1. Since

V1 is spanned by {K(α1)
t(q) : 1 ≤ q ≤ m} in W 2

2 ([a, b]), it follows from the properties of

{K(α1)
t(q) : 1 ≤ q ≤ m} that γ̂1 has continuous second derivatives and is a linear combination of

b
(α1)
1 , b(α1)

2 , b(α1)
3 and b(α1)

4 on each of the intervals [t(q), t(q+1)], q = 1, · · · ,m− 1.

Now suppose that γ̂1, · · · , γ̂k−1 satisfy Theorem 2.3.1. We prove that γ̂k also satisfies

Theorem 2.3.1. Let Vk be the finite-dimensional space spanned by {K(αj)
t(q) : 1 ≤ q ≤ m, 1 ≤

j ≤ k} in W 2
2 ([a, b]) and let V⊥k be the orthogonal complement of Vk in (W 2

2 ([a, b], 〈·〉αk).

We have γ̂1, · · · , γ̂k−1 ∈ Vk. For any γ ∈ W 2
2 ([a, b]), it has unique decomposition γ = γ1 + γ2,
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where γ1 ∈ Vk and γ2 ∈ V⊥k . Then the optimization problem (4.2),

max
‖γ‖ = 1, 〈γ, γ̂j〉 = 0,

j = 1, · · · , k − 1

f(γ(t(1)), · · · , γ(t(m)))
‖γ‖2 + αk [γ, γ]

= max
γ = γ1 + γ2, γ1 ∈ Vk, γ2 ∈ V⊥k ,

〈γ1, γ̂j〉 = 0, j = 1, · · · , k − 1

f(γ1(t(1)), · · · , γ1(t(m)))
‖γ1‖2

αk
+ ‖γ2‖2

αk

≤ max
γ1 ∈ Vk, 〈γ1, γ̂j〉 = 0,

j = 1, · · · , k − 1

f(γ1(t(1)), · · · , γ1(t(m)))
‖γ1‖2

αk

Now by the same arguments as those for γ̂1, γ̂k satisfies Theorem 2.3.1.

4.2 Proof of Theorem 2.3.2

Theorem (Theorem 2.3.2). The solutions {(λ̂k, γ̂k) : k ≥ 1} of the successive optimization

problems (2.14) and (2.15) exist for any {αk > 0, k ≥ 1}. Moreover, for each k, γ̂k has

continuous second derivatives on [a, b] and on the subinterval between any two adjacent pooled

observation points, it can be written as a linear combination of the following at most 4k

functions,
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,
where 1 ≤ j ≤ k.

Proof of Theorem 2.3.2. The proof is the same as the proof of Theorem 2.3.1.
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4.3 Proof of Theorem 2.3.4

Theorem (Theorem 2.3.4). Under Assumptions 1 − 5, suppose that m,n → ∞,

max1≤k≤K αk → 0 and

max1≤k≤K αk
min1≤k≤K αk

= Op(1). (4.4)

If the following is satisfied that for Case 1,

1
min1≤k≤K αk

√$(δm) + δm +
√
δm
n

→ 0

and for Case 2,

1
min1≤k≤K αk

√$(3 logm
cm

) + logm
m

+
√

logm
nm

→ 0,

then the estimators {(λ̂k, γ̂k) : 1 ≤ k ≤ K} are consistent.

Proof of Theorem 2.3.4. Without loss of generality, we assume that the mean function µ(t)

of X(t) is zero. We still consider the Hilbert space W 2
2 ([a, b]) equipped with the inner product

〈·, ·〉α and the corresponding norm ‖ · ‖α (see the definition (4.1)). For any f ∈ W 2
2 ([a, b]) we

have the following Taylor expansion

f(t) = f(a) + (t− a)f ′(a) +
∫ b

a
G(t, s)f ′′(s)ds, (4.5)

where

G(t, s) = (t− s)+ = max {(t− s), 0}.

We first give upper bounds for |f(a)| and |f ′(a)| in terms of ‖f‖α.

Lemma 3.

|f(a)| ≤
1 + ‖G‖√

α

(
√

2− 1)
√
b− a

‖f‖α, |f ′(a)| ≤
2(
√

2 + 2)(1 + ‖G‖√
α

)
(b− a)

√
b− a

‖f‖α,
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where ‖G‖ =
[∫ b
a

∫ b
a |G(s, t)|2dsdt

] 1
2 .

The proof of Lemma 3 is in Section 4.11. Given any α > 0, for any β1, β2 ∈ W 2
2 ([a, b]),

by (4.97),

m∑
q=1

m∑
l=1

Σ̂qlβ1(t(q))β2(t(l))wqwl (4.6)

=Ã00β1(a)β2(a) + Ã10β
′
1(a)β2(a) + Ã01β1(a)β′2(a) + Ã11β

′
1(a)β′2(a)

+ β1(a)
∫ b

a
ξ̃0(t)β′′2 (t)dt+ β2(a)

∫ b

a
ξ̃0(t)β′′1 (t)dt+ β′1(a)

∫ b

a
ξ̃1(t)β′′2 (t)dt

+ β′2(a)
∫ b

a
ξ̃1(t)β′′1 (t)dt+

∫ b

a

∫ b

a
Ξ̃(s, t)β′′1 (s)β′′2 (t)dsdt,

defines a bounded symmetric bilinear form in

(W 2
2 ([a, b]), 〈·, ·〉α), where

Ã00 =
m∑
q=1

m∑
l=1

Σ̂qlwqwl, Ξ̃(s, t) =
m∑
q=1

m∑
l=1

Σ̂qlG(t(q), s)G(t(l), t)wqwl, (4.7)

Ã01 = Ã10 =
m∑
q=1

m∑
l=1

Σ̂ql(t(l) − a)wqwl, ξ̃0(t) =
m∑
q=1

m∑
l=1

Σ̂qlG(t(l), t)wqwl

Ã11 =
m∑
q=1

m∑
l=1

Σ̂ql(t(q) − a)(t(l) − a)wqwl, ξ̃1(t) =
m∑
q=1

m∑
l=1

Σ̂ql(t(q) − a)G(t(l), t)wqwl.

Hence, there is a unique bounded symmetric operator R̂(m)
α in (W 2

2 ([a, b]), 〈·, ·〉α), such

that for any β1, β2 ∈ W 2
2 ([a, b]), (4.6) is equal to

〈
β1, R̂

(m)
α β2

〉
α
(see Section 84 in Riesz and

Sz.-Nagy [36]). Similarly, let

Γ̂n(s, t) = 1
n

n∑
p=1

(Xp(s)− X̄(s))(Xp(t)− X̄(t)), a ≤ s, t ≤ b

be the sample covariance function, then there exists unique bounded symmetric operators

R̂α and Rα in (W 2
2 ([a, b]), 〈·, ·〉α) for Γ̂n and the true covariance function Γ respectively, such

that for any β1, β2 ∈ W 2
2 ([a, b]),

〈
β1, R̂αβ2

〉
α

=
〈
β1, Γ̂nβ2

〉
, 〈β1, Rαβ2〉α = 〈β1,Γβ2〉 , (4.8)
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where Γ̂nβ2 denotes the function
∫ b
a Γ̂n(t, s)β2(s)ds. It is easy to see that

‖R̂α −Rα‖α ≤ ‖Γ̂n − Γ‖,

where ‖ · ‖α and ‖ · ‖ are operator norms in (W 2
2 ([a, b]), 〈·, ·〉α) and L2 space, respectively. By

the central limit theorem in Hilbert space (see Chapter 10 in Ledoux and Talagrand [27])

and Assumption 1, we have

‖R̂α −Rα‖α ≤ ‖Γ̂n − Γ‖ = Op(
1√
n

). (4.9)

We derive an upper bound for ‖R̂(m)
α − R̂α‖α.

Lemma 4.

‖R̂(m)
α − R̂α‖α ≤

1
α

Op(
√
$(δm)) +Op(δm) +Op(

√
δm
n

)
 , (4.10)

in Case 1 (nonrandom case), and

‖R̂(m)
α − R̂α‖α ≤

1
α

Op(
√
$(3 logm

cm
)) +Op(

logm
m

) +Op(
√

logm
nm

)
 . (4.11)

in Case 2 (random case).

The proof of Lemma 4 is in Section 4.11. Define {ˆ̂λk, ˆ̂γk}, k ≥ 1 to be the solutions to

the following successive optimization problems:

max
‖γ‖ = 1,

〈
γ, ˆ̂γj

〉
= 0,

j = 1, · · · , k − 1

〈
γ, R̂αkγ

〉
αk

‖γ‖2
αk

= max
‖γ‖ = 1,

〈
γ, ˆ̂γj

〉
= 0,

j = 1, · · · , k − 1

〈
γ, Γ̂nγ

〉
‖γ‖2

αk

,
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and {λ[αk]
k , γ

[αk]
k }, k ≥ 1 to be the solutions to the following successive optimization problems:

max
‖γ‖ = 1,

〈
γ, γ

[αk]
j

〉
= 0,

j = 1, · · · , k − 1

〈γ,Rαkγ〉αk
‖γ‖2

αk

= max
‖γ‖ = 1,

〈
γ, γ

[αk]
j

〉
= 0,

j = 1, · · · , k − 1

〈γ,Γγ〉
‖γ‖2

αk

.

Note that {λ[αk]
k , γ

[αk]
k }, k ≥ 1 are nonrandom. Now we consider the first pair of estimates

{λ̂1, γ̂1} which are the first eigenvalue and eigenfunction of R̂(m)
α1 . Since {ˆ̂λ1, ˆ̂γ1} are the first

eigenvalue and eigenfunction of R̂α1 , by Corollary 4 in Section XI.9 of Dunford and Schwartz

[14],

|λ̂1 − ˆ̂
λ1| ≤ ‖R̂(m)

α1 − R̂α1‖α1 ,

|ˆ̂λ1 − λ[α1]
1 | ≤ ‖R̂α1 −Rα1‖α1 . (4.12)

Hence, under the conditions in Theorem 2.3.4, it follows from (4.9), Lemma 4, (4.12) and the

following Lemma 5 that λ̂1 is consistent.

Lemma 5. Under Assumptions 1-3, for any 1 ≤ k ≤ K and 0 ≤ α ≤ α0,
[
γ

[α1]
1 , γ

[α1]
1

]
≤ 2kL2

k

and

0 ≤ λk − λ[α]
k ≤

√
2
√
kL2

kλkα + o(α),

‖γ[α]
k − γk‖ ≤

√
α

√√√√4
√

2
√
kL2

kλk
λk − λk+1

+ o(
√
α),

where Lk = max1≤j≤k
√

[γj, γj] and

α0 = min
1≤k≤K

min
{√1 + 2k(λk−1−λk)2

(k−1)λk‖Γ‖
− 1

2kL2
k

,
λk − λk+1

(8
√
k + 16k)L2

kλk
,

(λk−1 − λk)
{

1 + 2‖Γ‖
λk−λk+1

}− 1
2

4
√

2k(k − 1)L2
kλk

}. (4.13)

Lemma 5 is just Theorem 4.1 in Qi and Zhao [31]. In order to compute ‖γ̂1 − ˆ̂γ1‖α1 ,
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we define Ê1 and ˆ̂
E1 to be the orthogonal projections onto the space spanned by γ̂1 and ˆ̂γ1,

respectively. When ‖R̂(m)
α1 − R̂α1‖α1 is small enough, we can carry a similar calculation as

that in Section 2.1.1 of Dauxois et al. [12] and obtain the inequality

‖Ê1 − ˆ̂
E1‖α ≤ Op(‖R̂(m)

α1 − R̂α1‖α1).

Define

ê1 = γ̂1

‖γ̂1‖α1

, ˆ̂e1 =
ˆ̂γ1

‖ˆ̂γ1‖α1

.

Then we have

‖ê1‖ = 1
‖γ̂1‖α1

, ‖ˆ̂e1‖ = 1
‖ˆ̂γ1‖α1

,

since ‖γ̂1‖ = 1 and ‖ˆ̂γ1‖ = 1. Now

‖ê1 − ˆ̂e1‖2
α1 = ‖ê1‖2

α1 − 2
〈
ê1, ˆ̂e1

〉
α1

+ ‖ˆ̂e1‖2
α1 = 2

(
1−

〈
ê1, ˆ̂e1

〉
α1

)
≤2

(
1−

〈
ê1, ˆ̂e1

〉
α1

)(
1 +

〈
ê1, ˆ̂e1

〉
α1

)
= 2|

〈
ê1, ˆ̂e1

〉2

α1
− 1|

=2
∣∣∣∣∣
〈

ˆ̂e1, (Ê1 − ˆ̂
E1)ˆ̂e1

〉
α1

∣∣∣∣∣ ≤ 2‖Ê1 − ˆ̂
E1‖α1

≤Op(‖R̂(m)
α1 − R̂α1‖α1).

Hence,

‖γ̂1 − ˆ̂γ1‖α1 = ‖ ê1

‖ê1‖
−

ˆ̂e1

‖ˆ̂e1‖
‖α1 = ‖ ê1

‖ê1‖
− ê1

‖ˆ̂e1‖
+ ê1

‖ˆ̂e1‖
−

ˆ̂e1

‖ˆ̂e1‖
‖α1

≤2‖ê1 − ˆ̂e1‖α1

‖ˆ̂e1‖
= ‖ˆ̂γ1‖α1‖ê1 − ˆ̂e1‖α1 ≤ ‖ˆ̂γ1‖α1Op(‖R̂(m)

α1 − R̂α1‖
1
2
α1). (4.14)

A similar calculation leads to the following inequality

‖ˆ̂γ1 − γ[α1]
1 ‖α1 ≤ ‖γ

[α1]
1 ‖α1Op(‖R̂α1 −Rα1‖

1
2
α1). (4.15)
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By Lemma 5,
[
γ

[α1]
1 , γ

[α1]
1

]
= O(1) as α1 → 0, hence, ‖γ[α1]

1 ‖α1 → 1. Then by (4.15),

‖ˆ̂γ1 − γ[α1]
1 ‖α1 → 0 and hence ‖ˆ̂γ‖α1 → 1 in probability. Now by (4.14), ‖γ̂1 − ˆ̂γ1‖α1 → 0 in

probability. Moreover, by Lemma 5,

‖γ[α1]
1 − γ1‖ ≤ O(√α1).

Hence, γ̂1 is consistent. Then for any 1 ≤ k ≤ K, the consistent results follow from the

following lemma by induction.

Lemma 6. Under the conditions in Theorem 2.3.4, if for all 1 ≤ j ≤ k − 1,

‖γ̂j − ˆ̂γj‖αj → 0, ‖ˆ̂γj − γ[αj ]
j ‖αj → 0, ‖γ[αj ]

j − γj‖ → 0, ‖γ[αj ]
j ‖αj → 1, (4.16)

then (4.16) is also true for k, moreover, λ̂k is consistent.

4.4 Proof of Theorem 2.3.5

Theorem (Theorem 2.3.5). Under Assumptions 1 − 3 and 6 − 7, suppose that n → ∞,

max1≤k≤K αk → 0 and

max1≤k≤K αk
min1≤k≤K αk

= Op(1).

If the following is satisfied

1
min1≤k≤K αk

[
n−

1
2 (η−1 + η

− 1
2−ε

g ) + η
3
4−ε
g

]
→ 0,

for some ε > 0, then the estimators {(λ̂k, γ̂k) : 1 ≤ k ≤ K} are consistent.
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Proof of Theorem 2.3.5. Under the assumptions in this theorem, we have

sup
a≤t≤b

|µ̂(t)− µ(t)| = Op(
1√
nηµ

),

sup
a≤t≤b

∣∣∣ĥ(t)− h(t)
∣∣∣ = Op(n−

1
2η
− 1

2−ε
g + η

3
4−ε
g ), (4.17)

where ε is any positive constant. For the proof of the first equality in (4.17), we refer the

reader to Theorem 1 in Yao et al. [54] or the proofs of the main results in Hall et al. [20].

The second equality in (4.17) is Theorem 8.1 in Silverman [40].

Similar to the proof of Theorem 2.3.4, for any α > 0, we define a bounded symmetric

operator Ŝα in (W 2
2 ([a, b]), 〈·, ·〉α), such that for any β1(t), β(t)2 ∈ W 2

2 ([a, b]),

〈
β1, Ŝαβ2

〉
α

= 1
n′

n∑
p=1

χ[Np>1]
1

Np(Np − 1)

Np∑
l 6=q:1

β1(tpq)(Ypq − µ̂(tpq))
ĥ(tpq)

· β2(tpl)(Ypl − µ̂(tpl))
ĥ(tpl)

=B̃00β1(a)β2(a) + B̃10β
′
1(a)β2(a) + B̃01β1(a)β′2(a) + B̃11β

′
1(a)β′2(a)

+ β1(a)
∫ b

a
ψ̃0(t)β′′2 (t)dt+ β2(a)

∫ b

a
ψ̃0(t)β′′1 (t)dt+ β′1(a)

∫ b

a
ψ̃1(t)β′′2 (t)dt

+ β′2(a)
∫ b

a
ψ̃1(t)β′′1 (t)dt+

∫ b

a

∫ b

a
Ψ̃(s, t)β′′1 (s)β′′2 (t)dsdt,

defines a bounded symmetric bilinear form in (W 2
2 ([a, b]), 〈·, ·〉α), where

B̃00 = 1
n′

n∑
p=1

χ[Np>1]
1

Np(Np − 1)

Np∑
l 6=q:1

(Ypq − µ̂(tpq))
ĥ(tpq)

· (Ypl − µ̂(tpl))
ĥ(tpl)

, (4.18)

B̃01 = B̃10 = 1
n′

n∑
p=1

χ[Np>1]
1

Np(Np − 1)

Np∑
l 6=q:1

(tpq − a)(Ypq − µ̂(tpq))
ĥ(tpq)

· (Ypl − µ̂(tpl))
ĥ(tpl)

B̃11 = 1
n′

n∑
p=1

χ[Np>1]
1

Np(Np − 1)

Np∑
l 6=q:1

(tpq − a)(Ypq − µ̂(tpq))
ĥ(tpq)

· (tpl − a)(Ypl − µ̂(tpl))
ĥ(tpl)

,

ψ0(t) = 1
n′

n∑
p=1

χ[Np>1]
1

Np(Np − 1)

Np∑
l 6=q:1

G(tpq, t)(Ypq − µ̂(tpq))
ĥ(tpq)

· (Ypl − µ̂(tpl))
ĥ(tpl)

,

ψ1(t) = 1
n′

n∑
p=1

χ[Np>1]
1

Np(Np − 1)

Np∑
l 6=q:1

G(tpq, t)(Ypq − µ̂(tpq))
ĥ(tpq)

· (tpl − a)(Ypl − µ̂(tpl))
ĥ(tpl)

,
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Ψ(t) = 1
n′

n∑
p=1

χ[Np>1]
1

Np(Np − 1)

Np∑
l 6=q:1

G(tpq, t)(Ypq − µ̂(tpq))
ĥ(tpq)

· G(tpl, s)(Ypl − µ̂(tpl))
ĥ(tpl)

.

Similarly, we define a bounded symmetric operator Sα in (W 2
2 ([a, b]), 〈·, ·〉α), such that for

any β1(t), β(t)2 ∈ W 2
2 ([a, b]),

〈β1, Sαβ2〉α = 〈β1,Γβ2〉 .

Lemma 7. Under the assumptions in the theorem,

‖Ŝα − Sα‖α ≤
1
α

[
Op(

1√
nηµ

) +Op(n−
1
2η
− 1

2−ε
g + η

3
4−ε
g ) +Op(

1√
n

)
]
.

as α→ 0 and n→∞.

Then by the same arguments as in the proof of Theorem 2.3.4, the theorem follows

Lemma 7.

4.5 Proof of Theorem 3.3.1

We first provide several lemmas whose proofs can be found in Section 4.11 Section.

Lemma 8. For any 1 ≤ i 6= j ≤ K − 1, we have

Σ−1δij = Dδij,whereδij = µj − µi.

Lemma 9. Define a K ×K matrix,

∆ = UTΣ−1U.

Under Condition 2, ∆ has K − 1 positive eigenvalues denoted by

λ+
min(∆) = λK−1(∆) ≤ · · · ≤ λ2(∆) ≤ λ1(∆) = λmax(∆).

Then we have

λ1(∆) = Kλ1(Ξ), · · · , λK−1(∆) = KλK−1(Ξ),
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and

2Kc1 ≤ 2λ+
min(∆) ≤ min

i 6=j
(µi − µj)TΣ−1(µi − µj)

≤max
i 6=j

(µi − µj)TΣ−1(µi − µj) ≤ 2λmax(∆).

Lemma 10. Suppose that Condition 1 holds, p ≥ 2, K ≤ p + 1 and K log p/n → 0 as

n→∞. Then for any M > 0, we can find a constant C large enough and independent of n,

p and K, such that

P

 max
1≤j≤K

‖x̄j − µj‖∞ > C

√
K log p
n

 ≤ p−M , (4.19)

for all n large enough.

Now we prove the main theorems.

Theorem (Theorem 3.3.1). Suppose that Condition 1 holds, p ≥ 2, K ≤ p + 1 and

K log p/n → 0 as n → ∞. Then for any M > 0, we can find C large enough and in-

dependent of n, p and K such that

P

‖Σ̂−Σ‖∞ > C

√
K log p
n

 ≤ p−M ,

P

‖B̂−B‖∞ > C

√
K log p
n

 ≤ p−M

for all large enough n.

Proof of Theorem 3.3.1. We only consider the case that (n1, n2, · · · , nK) follows a multino-

mial distribution. For the nonrandom case, a similar argument can prove the theorem. Let

σ̂kl and σkl be the (k, l) element of Σ̂ and Σ, respectively, 1 ≤ k, l ≤ p. By the definition of
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Σ̂ in (3.7),

(
n−K
n

)
|σ̂kl − σkl| =

∣∣∣∣∣∣ 1n
K∑
i=1

ni∑
j=1

(xkij − x̄ki )(xlij − x̄ki )− (1− K

n
)σkl

∣∣∣∣∣∣ (4.20)

=

∣∣∣∣∣∣ 1n
K∑
i=1

ni∑
j=1

(xkij − µk
i )(xlij − µl

i)−
1
n

K∑
i=1

ni(x̄ki − µk
i )(x̄li − µl

i)− (1− K

n
)σkl

∣∣∣∣∣∣
≤ 1
n

∣∣∣∣∣∣
K∑
i=1

ni∑
j=1

[
(xkij − µk

i )(xlij − µl
i)− σkl

]∣∣∣∣∣∣+ 1
n

∣∣∣∣∣
K∑
i=1

[
ni(x̄ki − µk

i )(x̄li − µl
i)− σkl

]∣∣∣∣∣ ,
where xkij and µk

i denotes the k-th coordinate of xij and µi, respectively. Note that both

xij − µi and
√
ni(x̄i − µi) have the distributions N(0,Σ). By Lemma A.3. in Bickel and

Levina [8], we have

P

∣∣∣∣∣∣
K∑
i=1

ni∑
j=1

[
(xkij − µk

i )(xlij − µl
i)− σkl

]∣∣∣∣∣∣ > nν1

 ≤ C1 exp(−C2nν
2
1),

and hence

P

max
k,l

∣∣∣∣∣∣
K∑
i=1

ni∑
j=1

[
(xkij − µk

i )(xlij − µl
i)− σkl

]∣∣∣∣∣∣ > nν1

 ≤ C1p
2 exp(−C2nν

2
1),

(4.21)

for any ν1 less than a constant δ, where C1, C2 and δ are constants only depending on the

upper bound c0 of the eigenvalues of Σ. For any C > 0, taking ν1 = C
√

log p
n

, we can obtain

P

max
k,l

1
n

∣∣∣∣∣∣
K∑
i=1

ni∑
j=1

[
(xkij − µk

i )(xlij − µl
i)− σkl

]∣∣∣∣∣∣ > C

√
log p
n

 ≤ C1p
2p−C

2C2 . (4.22)

For any M > 0, we can find C large enough such that the right hand side of (4.22) is less than

p−M for all p > 1. For the second term in in the last line of (4.20), define Zik = √ni(x̄ki −µk
i ),
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for any 1 ≤ i ≤ K and 1 ≤ k ≤ p. Then

K∑
i=1

[
ni(x̄ki − µk

i )(x̄li − µl
i)− σkl

]
=

K∑
i=1

[ZikZil − σkl] (4.23)

= 1
4

K∑
i=1

[(Zik + Zil)2 − (σkk + σll + 2σkl)]

−1
4

K∑
i=1

[(Zik − Zil)2 − (σkk + σll − 2σkl)].

We will derive the upper bound for the first sum in the last line of (4.23). Let

Yi = (Zik + Zil)2/(σkk + σll + 2σkl)− 1.

Then Y1, · · · , YK , are i.i.d. random variables with the distribution χ2
1 − 1. We will apply the

Bernstein’s inequality (see Lemma 2.2.11 in Van Der Vaart and Wellner [48] or page 855 of

Shorack and Wellner [39]) for unbounded random variables to Y1 + · · ·+ YK . We first verify

the moment condition required by the Bernstein’s inequality. For any positive integer m ≥ 3,

noting that V ar(Yi) = 2, we have

E[|Yi|m] = E[|χ2
1 − 1|m] ≤ 2m−1

(
E[|χ2

1|m] + 1
)
≤ 2mE[|χ2

1|m]

=2m[1 · 3 · 5 · · · (2m− 1)] ≤ 2m[2 · 4 · 6 · · · (2m)] = 2m[2mm!]

=4mm!V ar(Yi)/2 ≤ Dm−2m!V ar(Yi)/2,

where D = 64. When m = 2,

E[|Yi|m] = V ar(Yi) = Dm−2m!V ar(Yi)/2.

Hence, the moment condition for the Bernstein’s inequality holds for Yi. Now by the
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Bernstein’s inequality, for any ν2 > 0, let x = nν2/(σkk + σll + 2σkl), then we have

P

(∣∣∣∣∣
K∑
i=1

[(Zik + Zil)2 − (σkk + σll + 2σkl)]
∣∣∣∣∣ > nν2

)

=P
(
|Y1 + · · ·+ YK | >

nν2

σkk + σll + 2σkl

)
=P (|Y1 + · · ·+ YK | > x)

≤2 exp (−1
2

x2

KV ar(Y1) +Dx
)

=2 exp (−1
2

x2

2K +Dx
).

Note that −x2/(2K +Dx) is a decreasing function for x > 0, and that

σkk + σll + 2σkl = vT
klΣvkl ≤ λmax(Σ)‖vkl‖2

2 = 2λmax(Σ) ≤ 2c0, (4.24)

where vkl is the p-dimensional vector with all coordinates equal to 0 except the k-th and l-th

coordinates which are equal to 1 and the last inequality is due to Condition 1 (b). Then we

have x ≥ nν2/(2c0) and

exp (−1
2

x2

2K +Dx
) ≤ exp (−1

2
(nν2)2

8c2
0K + 2c0Dnν2

) .

Hence,

P

(
max
k,l

∣∣∣∣∣
K∑
i=1

[(Zik + Zil)2 − (σkk + σll + 2σkl)]
∣∣∣∣∣ > nν2

)

≤2p2 exp
(
−1

2
(nν2)2

8c2
0K + 2c0Dnν2

)
.

For any C > 0, let ν2 = C
√

log p
n

. Since log p/n → 0, when n is large enough, we have
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log p ≤ n, and hence

2p2 exp
(
−1

2
(nν2)2

8c2
0K + 2c0Dnν2

)

=2p2 exp
−1

2
C2n log p

8c2
0K + 2c0DC

√
n log(p)


≤2p2 exp

(
−1

2
C2n log p

8c2
0n+ 2c0DC

√
nn

)

=2p2p
− 1

2
C2

8c2
0+2c0DC , (4.25)

where we use K ≤ n as n is large enough due to the condition K log p/n→ 0. Now for any

M > 0, we can find C large enough such that the right hand side of (4.25) is less than p−M

for all p ≥ 2. We can obtain the similar result for the second sum in the last line of (4.23).

Hence, for any M > 0, we can find C large enough such that

P

max
k,l

1
n

∣∣∣∣∣
K∑
i=1

[
ni(x̄ki − µk

i )(x̄li − µl
i)− σkl

]∣∣∣∣∣ > C

√
log p
n

 ≤ p−M . (4.26)

It follows from (4.20), (4.22) and (4.26), for any M > 0, we can find C large enough and

independent of n, p and K, such that

P

max
k,l
|σ̂kl − σkl| > C

√
K log p
n


≤P

max
k,l
|σ̂kl − σkl| > C

√
log p
n

 ≤ p−M ,

for all n large enough, where we use K/n→ 0 due to the condition K log p/n→ 0.
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In order to estimate ‖B̂−B‖∞, we first calculate the (k, l) element of B̂−B.

∣∣∣∣ 1n
K∑
i=1

ni(x̄ki − x̄k)(x̄li − x̄l)− 1
K

K∑
i=1

µk
iµ

l
i

∣∣∣∣
=
∣∣∣∣ 1n

K∑
i=1

nix̄ki x̄li − x̄kx̄l − 1
K

K∑
i=1

µk
iµ

l
i

∣∣∣∣
=
∣∣∣∣ 1n

K∑
i=1

ni(x̄ki − µk
i )(x̄li − µl

i) + 1
n

K∑
i=1

ni(x̄ki − µk
i )µl

i + 1
n

K∑
i=1

niµ
k
i (x̄li − µl

i)

+ 1
n

K∑
i=1

niµ
k
iµ

l
i − x̄kx̄l − 1

K

K∑
i=1

µk
iµ

l
i

∣∣∣∣
≤K
n
|σkl|+

∣∣∣∣ 1n
K∑
i=1

[ni(x̄ki − µk
i )(x̄li − µl

i)− σkl]
∣∣∣∣+ ∣∣∣∣ 1n

K∑
i=1

ni(x̄ki − µk
i )µl

i

∣∣∣∣
+
∣∣∣∣ 1n

K∑
i=1

niµ
k
i (x̄li − µl

i)
∣∣∣∣+ ∣∣∣∣ K∑

i=1

(
ni
n
− 1
K

)
µk
iµ

l
i

∣∣∣∣+ |x̄kx̄l|
=K
n
|σkl|+ I + II + III + IV + V

≤K
n
c0 + I + II + III + IV + V. (4.27)

Note that the term I is just that in (4.26). By Condition 1 (b),

max
k,l

II ≤ 1
n

K∑
i=1

ni max
1≤j≤K

‖x̄j − µj‖∞ max
1≤j≤K

‖µj‖∞ ≤ c0 max
1≤j≤K

‖x̄j − µj‖∞,

which combined with Lemma 10 gives that for any M > 0, we can find a constant C large

enough and independent of n, p and K, such that

P

max
k,l

II > C

√
K log p
n

 ≤ p−M , (4.28)

for all n large enough. The same bound can be obtained for the term III. As to the term
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IV , by Lemma 1 and Condition 1 (b), for any M > 0, we can find a constant C such that

P

 max
1≤k,l≤p

∣∣∣∣∣
K∑
i=1

(
ni
n
− 1
K

)
µk
iµ

l
i

∣∣∣∣∣ > C

√
K log p
n

 (4.29)

≤ P

Kc2
0 max

1≤i≤K

∣∣∣∣nin − 1
K

∣∣∣∣ > C

√
K log p
n


= P

 max
1≤i≤K

∣∣∣∣nin − 1
K

∣∣∣∣ > C

c2
0

√
log p
Kn

 ≤ p−M

for all n large enough. For the term V , because

x̄ = 1
n

K∑
i=1

ni∑
j=1

xij = ȳ + 1
n

K∑
i=1

niµi = ȳ +
K∑
i=1

(
ni
n
− 1
K

)
µi, (4.30)

where ȳ = 1
n

∑K
i=1

∑ni
j=1(xij − µi) and the last equality is due to (3.2). Then we have

x̄kx̄l = ȳkȳl +
K∑
i=1

(
ni
n
− 1
K

)
µl
iȳk +

K∑
i=1

(
ni
n
− 1
K

)
µk
i ȳl (4.31)

+
[
K∑
i=1

(
ni
n
− 1
K

)
µl
i

] [
K∑
i=1

(
ni
n
− 1
K

)
µk
i

]
.

We will consider the four terms on the right hand side of (4.31), respectively. Note that ȳ has

the normal distribution with mean zero and covariance matrix Σ/n. ȳkȳl = (ȳk + ȳl)2/4−

(ȳk − ȳl)2/4. Note that ȳk + ȳl has a normal distribution with mean zero and variance

(σkk + σll + 2σkl)/n ≤ 2c0/n by (4.24). By the same arguments as in the proof of Lemma 10,

we can show that for any M > 0, we can find C large enough such that

P

max
k,l

1√
Kc2

0

∣∣∣∣∣ ȳk + ȳl

2

∣∣∣∣∣ > C

√
log p
n

 ≤ p−M ,
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for all n large enough. Since when n is large enough, we have Cc0

√
K log p/n ≤ 1, then,

P

max
k,l

∣∣∣∣∣(ȳl + ȳl)2

4

∣∣∣∣∣ > Cc0

√
K log p
n


≤P

max
k,l

∣∣∣∣∣(ȳl + ȳl)2

4

∣∣∣∣∣ >
Cc0

√
K log p
n

2


=P
max

k,l

1√
Kc2

0

∣∣∣∣∣ ȳk + ȳl

2

∣∣∣∣∣ > C

√
log p
n

 ≤ p−M . (4.32)

and the same inequality for (ȳk − ȳl)2/4. Therefore, we have that for any M > 0, we can

find C large enough and independent of n, p and K, such that

P

max
k,l

∣∣∣ȳkȳl∣∣∣ > C

√
K log p
n

 ≤ p−M . (4.33)

Using the same arguments as in (4.29), we can obtain the same probability bounds for the

last three terms on the right hand side of (4.31). Then by combining (4.27)-(4.33) and using

Lemmas 1 and 10, for any M > 0, we can find C large enough such that

P

‖B̂−B‖∞ > C

√
K log p
n

 (4.34)

= P

max
k,l

∣∣∣∣∣ 1n
K∑
i=1

ni(x̄ki − x̄k)(x̄li − x̄l)− 1
K

K∑
i=1

µk
iµ

l
i

∣∣∣∣∣ > C

√
K log p
n

 ≤ p−M ,

for all n large enough.

4.6 Proof of Theorem 3.3.4

Theorem (Theorem 3.3.4). Suppose that K = 2 and Conditions 1-2 hold. If sn → 0 and

‖α1‖2
1sn → 0 as n, p→∞, then for all large enough n, we have, in Ωn,

‖α̂1‖2
1 ≤ 6‖α1‖2

1/λ0, ‖γ̂1 − γ1‖2
2 ≤ C5‖α1‖2

1sn, ‖α̂1 −α1‖2
2 ≤ c0C5‖α1‖2

1sn, (4.35)
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where C5 is a constant independent of n and p, and c0 is the constant in Condition 1 (b).

Therefore, α̂1 is a consistent estimate of α1.

Proof of Theorem 3.3.4. In this proof, we only consider elements in the event Ωn. First, note

that α1 and α̂1 are the solutions to

max
α∈Rp,α 6=0

αTBα

αTΣα
, and max

α∈Rp,α 6=0

αTB̂α

αTΣ̂α + τn‖α‖2
λn

, (4.36)

respectively, with

αT
1 Σα1 = 1, α̂T

1 Σ̂α̂1 + τn‖α̂1‖λn = 1, (4.37)

Hence, we have

α̂T
1 Bα̂1

α̂T
1 Σα̂1

≤ αT
1 Bα1

αT
1 Σα1

= αT
1 Bα1,

α̂T
1 B̂α̂1 = α̂T

1 B̂α̂1

α̂T
1 Σ̂α̂1 + τn‖α̂1‖2

λn

≥ αT
1 B̂α1

αT
1 Σ̂α1 + τn‖α1‖2

λn

. (4.38)

The first inequality in (4.38) leads to

α̂T
1 Bα̂1 ≤ (αT

1 Bα1)(α̂T
1 Σα̂1). (4.39)

By the definition of Ωn in (3.27),

|α̂T
1 B̂α̂1 − α̂T

1 Bα̂1| ≤ ‖B̂−B‖∞‖α̂1‖2
1 = 1

C2
τn‖α̂1‖2

1,

and similarly,

|α̂T
1 Σ̂α̂1 − α̂T

1 Σα̂1| ≤
1
C2
τn‖α̂1‖2

1,

|αT
1 B̂α1 −αT

1 Bα1| ≤
1
C2
τn‖α1‖2

1,

|αT
1 Σ̂α1 −αT

1 Σα1| ≤
1
C2
τn‖α1‖2

1. (4.40)
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By Condition 2 (a),

αT
1 Bα1 = λ1(Ξ) ≥ c1. (4.41)

Moreover, we have

λn‖α̂‖2
1 ≤ ‖α̂1‖2

λn = (1− λn)‖α̂‖2
2 + λn‖α̂‖2

1 ≤ ‖α̂‖2
1. (4.42)

Then by (4.37) , (4.39), (4.40), (4.41) and (4.42),

α̂T
1 B̂α̂1 ≤ α̂T

1 Bα̂1 + 1
C2
τn‖α̂1‖2

1 ≤ (αT
1 Bα1)(α̂T

1 Σα̂1) + 1
C2
τn‖α̂1‖2

1 (4.43)

≤(αT
1 Bα1)

(
α̂T

1 Σ̂α̂1 + 1
C2
τn‖α̂1‖2

1

)
+ αT

1 Bα1

c1

1
C2
τn‖α̂1‖2

1

=(αT
1 Bα1)

(
1− τn‖α̂1‖2

λn + 1 + c−1
1

C2
τn‖α̂1‖2

1

)

≤(αT
1 Bα1)

(
1− τnλn‖α̂1‖2

1 + 1 + c−1
1

C2
τn‖α̂1‖2

1

)

=(αT
1 Bα1)

[
1− τn(λn − λ0/2)‖α̂1‖2

1

]
,

where the last equality is due to the definition of C2 in (3.26). By (4.38) and (4.40),

α̂T
1 B̂α̂1 ≥

αT
1 B̂α1

αT
1 Σ̂α1 + τn‖α1‖2

λn

≥
αT

1 Bα1 − 1
C2
τn‖α1‖2

1

αT
1 Σα1 + 1

C2
τn‖α1‖2

1 + τn‖α1‖2
1

≥
αT

1 Bα1 − αT
1 Bα1
c1

1
C2
τn‖α1‖2

1

αT
1 Σα1 + 1

C2
τn‖α1‖2

1 + τn‖α1‖2
1

=
αT

1 Bα1

[
1− c−1

1
C2
τn‖α1‖2

1

]
1 + 1

C2
τn‖α1‖2

1 + τn‖α1‖2
1
, (4.44)

which together with (4.43) leads to

τn(λn − λ0/2)‖α̂1‖2
1 ≤

(
1 + 1+c−1

1
C2

)
τn‖α1‖2

1

1 +
(
1 + 1

C2

)
τn‖α1‖2

1
=

(1 + λ0
2 )τn‖α1‖2

1

1 +
(
1 + 1

C2

)
τn‖α1‖2

1
. (4.45)

By (3.25) and the conditions in the theorem, when n is large enough, we have λ0 < λn < 1
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and τn‖α1‖2
1 = C‖α1‖2

1sn → 0. Therefore, for all n large enough, by (4.45), we have

‖α̂1‖2
1 ≤ 6‖α1‖2

1/λ0, (4.46)

which together with (4.43) give

α̂T
1 B̂α̂1

αT
1 Bα1

≤ 1− τn(λn − λ0/2)‖α̂1‖2
1 ≤ 1− 1

2λ0τn‖α̂1‖2
1 ≤ 1. (4.47)

On the other hand, (4.44) implies

α̂T
1 B̂α̂1

αT
1 Bα1

≥
1− c−1

1
C2
τn‖α1‖2

1

1 + ( 1
C2

+ 1)‖α1‖2
1
≥
(

1− c−1
1
C2

τn‖α1‖2
1

)(
1− (1 + 1

C2
)τn‖α1‖2

1

)

≥ 1−
(

1 + 1 + c−1
1

C2

)
τn‖α1‖2

1 = 1− (1 + λ0/2) τn‖α1‖2
1 ≥ 1− 3τn‖α1‖2

1/2,

which together with (4.47) leads to

∣∣∣∣∣α̂T
1 B̂α̂1

αT
1 Bα1

− 1
∣∣∣∣∣ ≤ 3τn‖α1‖2

1/2 = 3C‖α1‖2
1sn/2. (4.48)

It follows from (4.40) and (4.46),

|α̂T
1 B̂α̂1 − α̂T

1 Bα̂1| ≤
1
C2
τn‖α̂1‖2

1 ≤
(αT

1 Bα1)
c1

1
C2
τn‖α̂1‖2

1

≤(αT
1 Bα1)6Cc−1

1
λ0C2

‖α1‖2
1sn,

which together with (4.48) imply

|αT
1 Bα1 − α̂T

1 Bα̂1| ≤ (αT
1 Bα1)C3‖α1‖2

1sn, (4.49)

where C3 = 3C/2 + 6Cc−1
1 /(λ0C2). Recall that γ̂k = Σ1/2α̂k, 1 ≤ k ≤ K − 1, defined in

Section 3.3. Let γ̂1 = d1γ1 + d2γ2 + · · · + dK−1γK−1 + ĉβ̂ be the orthogonal expansion of

γ̂1, where β̂ is an vector orthogonal to each of γ1, · · · , γK−1, with ‖β̂‖2 = 1. Because Ξ has

only K − 1 nonzero eigenvalues with the corresponding eigenvectors, γ1, · · · , γK−1, we have



83

Ξβ̂ = 0. Then

α̂T
1 Bα̂1 = γ̂T

1 Ξγ̂1 = d2
1λ1(Ξ) + d2

2λ2(Ξ) + · · ·+ d2
K−1λK−1(Ξ).

By (4.49) and (4.41),

λ1(Ξ)C3‖α1‖2
1sn = (αT

1 Bα1)C3‖α1‖2
1sn ≥ |α̂T

1 Bα̂1 −αT
1 Bα1|

=
∣∣∣∣∣d2

1λ1(Ξ) + d2
2λ2(Ξ) + · · ·+ d2

K−1λK−1(Ξ)− λ1(Ξ)
∣∣∣∣∣

≥
∣∣∣∣∣d2

1 − 1
∣∣∣∣∣λ1(Ξ)− λ2(Ξ)

K−1∑
i=2

d2
i

≥
∣∣∣∣∣d2

1 − 1
∣∣∣∣∣λ1(Ξ)−

∣∣∣∣∣d2
1 − 1

∣∣∣∣∣λ2(Ξ)− (d2
1 − 1)λ2(Ξ)− λ2(Ξ)

K−1∑
i=2

d2
i

=
∣∣∣∣∣d2

1 − 1
∣∣∣∣∣[λ1(Ξ)− λ2(Ξ)]− λ2(Ξ)

[
K−1∑
i=1

d2
i − 1

]

≥
∣∣∣∣∣d2

1 − 1
∣∣∣∣∣[λ1(Ξ)− λ2(Ξ)]− λ2(Ξ)

(
‖γ̂1‖2

2 − 1
)

≥
∣∣∣∣∣d2

1 − 1
∣∣∣∣∣[λ1(Ξ)− λ2(Ξ)]− λ1(Ξ)

∣∣∣‖γ̂1‖2
2 − 1

∣∣∣ . (4.50)

By (4.46) and (4.40),

∣∣∣∣∣‖γ̂1‖2
2 − 1

∣∣∣∣∣ =
∣∣∣∣∣γ̂T

1 γ̂1 − 1
∣∣∣∣∣ =
∣∣∣∣∣α̂T

1 Σα̂1 − 1
∣∣∣∣∣ ≤

∣∣∣∣∣α̂T
1 Σ̂α̂1 − 1

∣∣∣∣∣+ ‖Σ̂−Σ‖∞‖α̂1‖2
1

≤τn‖α̂1‖2
λn + 1

C2
τn‖α̂1‖2

1 ≤ (1 + 1
C2

)τn‖α̂1‖2
1 = 6(1 + C−1

2 )C‖α1‖2
1sn/λ0. (4.51)

Then by (4.50), (4.51) and Condition 2 (b),

∣∣∣∣∣d2
1 − 1

∣∣∣∣∣ ≤
(
λ1(Ξ)− λ2(Ξ)

λ1(Ξ)

)−1

[C3 + 6(1 + C−1
2 )C/λ0]‖α1‖2

1sn ≤ C4‖α1‖2
1sn, (4.52)

where C4 = c−1
2 [C3 + 6(1 + C−1

2 )C/λ0]. Since γ̂T
1 γ1 = d1 > 0, by (4.52),

∣∣∣∣∣γ̂T
1 γ1 − ‖γ1‖2

2

∣∣∣∣∣ =
∣∣∣∣∣d1 − 1

∣∣∣∣∣ ≤
∣∣∣∣∣d1 − 1

∣∣∣∣∣(d1 + 1) =
∣∣∣∣∣d2

1 − 1
∣∣∣∣∣ ≤ C4‖α1‖2

1sn. (4.53)
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Now by combining (4.51) and (4.53), we obtain

‖γ̂1 − γ1‖2
2 =

∣∣∣∣∣‖γ̂1‖2
2 − 2γ̂T

1 γ1 + ‖γ1‖2
2

∣∣∣∣∣
≤
∣∣∣∣∣‖γ̂1‖2

2 − ‖γ1‖2
2

∣∣∣∣∣+
∣∣∣∣∣− 2γ̂T

1 γ1 + 2‖γ1‖2
2

∣∣∣∣∣
=
∣∣∣∣∣‖γ̂1‖2

2 − 1
∣∣∣∣∣+ 2

∣∣∣∣∣γ̂T
1 γ1 − ‖γ1‖2

2

∣∣∣∣∣
≤C5‖α1‖2

1sn,

where C5 = 6(1 + C−1
2 )C/λ0 + 2C4. Moreover, by Condition 1, it follows from the above

inequality

‖α̂1 −α1‖2
2 =(α̂1 −α1)T(α̂1 −α1) = (γ̂1 − γ1)TΣ−1(γ̂1 − γ1)

≤‖Σ−1‖‖γ̂1 − γ1‖2
2 ≤ c0C5‖α1‖2

1sn.

We have proved the theorem.

4.7 Proof of Theorem 3.3.5

Theorem (Theorem 3.3.5). Suppose that K = 2 and Conditions 1-2 hold. Then the mis-

classification rate of the optimal rule (3.5) and the conditional misclassification rate of our

sparse LDA rule as given in Section 3.2.1 are

ROPT = Φ
(
− δTDδ

2‖δTDΣ1/2‖2

)
, (4.54)

R(X) = 1
2Φ

(
− δ̂TD̂(2µ2 − x̄1 − x̄2)

2‖δ̂TD̂Σ1/2‖2

)
+ 1

2Φ
(
− δ̂TD̂(x̄1 + x̄2 − 2µ1)

2‖δ̂TD̂Σ1/2‖2

)
,

respectively, where Φ is the cumulative distribution function of the standard normal distribution,

δ = µ2 − µ1 and δ̂ = x̄2 − x̄1. Moreover, if sn → 0 and λ1(Ξ)‖α1‖2
1sn → 0 as n, p → ∞,
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our method is asymptotically optimal and we have

R(X)
ROPT

− 1 ≤ Op

(
λ1(Ξ)‖α1‖2

1sn
)
. (4.55)

Proof of Theorem 3.3.5. When K = 2, a new observation x is assigned to Class 1 by the

optimal rule (3.5) if and only if (µ2 − µ1)TD[x− (µ2 + µ1)/2] < 0. Hence,

P (x is assigned to Class 1|x ∈ Class 2) (4.56)

=P
(
(µ2 − µ1)TD[x− (µ2 + µ1)/2] < 0|x ∈ Class 2

)
=P

(
δTDΣ1/2Σ−1/2[x− µ2] < −δTDδ

2 |x ∈ Class 2
)

=P
(
δTDΣ1/2Z < −δTDδ

2

)
,

where Z = Σ−1/2[x−µ2] ∼ N(0, I) given x in Class 2. Hence, the above probability is equal

to Φ(− δTDδ
2‖δTDΣ1/2‖2

). The same result is true for

P (x is assigned to Class 2|x ∈ Class 1) .

Hence,

ROPT =1
2P (x is assigned to Class 1|x ∈ Class 2)

+ 1
2P (x is assigned to Class 2|x ∈ Class 1)

=Φ
(
− δTDδ

2‖δTDΣ1/2‖2

)
.

On the other hand, a new observation x is assigned to Class 1 by sparse LDA rule (3.15) if

and only if (x̄2 − x̄1)TD̂[x− (x̄1 + x̄2)/2] < 0. A similar argument as in (4.56) leads to

P·|X (x is assigned to Class 1|x ∈ Class 2) = Φ
(
− δ̂TD̂[2µ2 − x̄1 − x̄2]

2‖δ̂TD̂Σ1/2‖2

)
,
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where P·|X means the probability given the training sample X. Similarly,

P·|X (x is assigned to Class 2|x ∈ Class 1) = Φ
(
− δ̂TD̂[x̄1 + x̄2 − 2µ1]

2‖δ̂TD̂Σ1/2‖2

)
.

Then (4.54) follows. We will use the following inequality (see page 850 of Shorack and Wellner

[39]):

(1− 1
x2 )φ(x) ≤ x[1− Φ(x)] = xΦ(−x) ≤ φ(x), ∀x > 0, (4.57)

where φ is the density function of the standard normal distribution. Therefore, if x >
√

2,

Φ(−x) ≥ (1− 1
x2 )φ(x)x−1 ≥ 1

2φ(x)x−1, (4.58)

if 0 < x ≤
√

2, Φ(−x) ≥ Φ(−
√

2) ≥ Φ(−
√

2)φ(0)−1φ(x). Hence, we have for any x > 0,

Φ(−x) ≥ C1

1 + 2C1x
φ(x), where C1 = Φ(−

√
2)φ(0)−1 (4.59)

By (4.59), for any x > 0 and ε with x+ ε > 0 (ε can be negative or positive),

∣∣∣∣∣Φ(−(x+ ε))
Φ(−x) − 1

∣∣∣∣∣ = |Φ(−(x+ ε))− Φ(−x)|
Φ(−x) =

∣∣∣∫−(x+ε)
−x φ(y)dy

∣∣∣
Φ(−x)

= |−εφ(−(x+ ε̃))|
Φ(−x) ≤ (1 + 2C1x)|ε|φ(−(x+ ε̃))

C1φ(x)

=(1 + 2C1x)|ε|
C1

e−
(x+ε̃)2−x2

2 = (1 + 2C1x)|ε|
C1

e−
2x̃ε+ε̃2

2

≤(1 + 2C1x)|ε|
C1

ex|ε|, (4.60)

where ε̃ is a number between 0 and ε. We will apply (4.60) to

x = δTDδ

2‖δTDΣ1/2‖2
, ε = δ̂TD̂[2µ2 − x̄1 − x̄2]

2‖δ̂TD̂Σ1/2‖2
− δTDδ

2‖δTDΣ1/2‖2
. (4.61)
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By Lemma 10, we can choose a constant C̃ such that

P

 max
1≤j≤K

‖x̄j − µj‖∞ > C̃

√
K log p
n

 ≤ p−1,

Define

Ω̃n =

 max
1≤j≤K

‖x̄j − µj‖∞ ≤ C̃

√
K log p
n

= C̃sn

 ,
then

[P
(
Ω̃n

)
≥ 1− p−1. (4.62)

In the rest of the proof, we only consider the elements in Ωn
⋂ Ω̃n which has a probability

greater than 1− 3p−1 by (3.27) and (4.62). Note that by (3.2), we have µ1 = −µ2. Because

δ̂TD̂[2µ2 − x̄1 − x̄2] = [(x̄2 − µ2)− (x̄1 − µ1) + 2µ2]TD̂[2µ2 − (x̄1 − µ1)− (x̄2 − µ2)]

=4µT
2 D̂µ2 − (x̄2 − µ2)TD̂(x̄2 − µ2) + (x̄1 − µ1)TD̂(x̄1 − µ1)− 4(x̄1 − µ1)TD̂µ2,

we have

∣∣∣δ̂TD̂[2µ2 − x̄1 − x̄2]− δTDδ
∣∣∣ ≤ ∣∣∣4µT

2 D̂µ2 − δTDδ
∣∣∣+ (x̄2 − µ2)TD̂(x̄2 − µ2)

+ (x̄1 − µ1)TD̂(x̄1 − µ1) + 4
∣∣∣(x̄1 − µ1)TD̂µ2

∣∣∣
=I + II + III + IV. (4.63)

We estimate each of the four terms. Because δ = µ2 − µ1 = 2µ2, by (4.49), the first term

I =
∣∣∣4µT

2 D̂µ2 − δTDδ
∣∣∣ =

∣∣∣4µT
2 α̂1α̂

T
1 µ2 − 4µT

2 α1α
T
1 µ2

∣∣∣
=
∣∣∣4α̂T

1 µ2µ
T
2 α̂1 − 4αT

1 µ2µ
T
2 α1

∣∣∣ = 4
∣∣∣α̂T

1 Bα̂1 −αT
1 Bα1

∣∣∣
≤ 4C3α

T
1 Bα1‖α1‖2

1sn = 4C3λ1(Ξ)‖α1‖2
1sn, (4.64)

and we have

δTDδ = 4αT
1 Bα1 = 4λ1(Ξ). (4.65)
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For the second term, by the definition of Ω̃n in (4.62) and Theorem 3.3.4

II =(x̄2 − µ2)TD̂(x̄2 − µ2) =
∣∣∣(x̄2 − µ2)Tα̂1

∣∣∣2
≤‖x̄2 − µ2‖2

∞‖α̂1‖2
1

≤C̃2s2
n6‖α1‖2

1/λ0. (4.66)

The same bound for the third term. For the last one, by Condition 1 (b),

IV =4
∣∣∣(x̄1 − µ1)Tα̂1

∣∣∣ ∣∣∣α̂T
1 µ2

∣∣∣
≤4

[
max

1≤i≤K
‖x̄i − µi‖∞

]
‖α̂1‖1‖α̂1‖1‖µ2‖∞

≤24c0C̃sn‖α1‖2
1/λ0. (4.67)

By (4.63)-(4.67), sn → 0 and λ1(Ξ) ≥ c1 (see Condition 2), we have

∣∣∣δ̂TD̂[2µ2 − x̄1 − x̄2]− δTDδ
∣∣∣ ≤ C4λ1(Ξ)‖α1‖2

1sn, (4.68)

where C4 is a constant independent of n and p.

Next, by (4.51) and αT
1 Σα1 = 1,

∣∣∣‖δ̂TD̂Σ1/2‖2
2 − ‖δTDΣ1/2‖2

2

∣∣∣ =
∣∣∣δ̂TD̂ΣD̂δ̂ − δTDΣDδ

∣∣∣ (4.69)

=
∣∣∣δ̂Tα̂1α̂

T
1 Σα̂1α̂

T
1 δ̂ − δTα1α

T
1 Σα1α

T
1 δ
∣∣∣ = |α̂T

1 Σα̂1 − 1|δ̂TD̂δ̂ + |δ̂TD̂δ̂ − δTDδ|

=|γ̂T
1 γ̂1 − 1|δ̂TD̂δ̂ + |δ̂TD̂δ̂ − δTDδ|

≤6(1 + C−1
2 )Cλ−1

0 ‖α1‖2
1snδ̂

TD̂δ̂ + |δ̂TD̂δ̂ − δTDδ|.

By a similar argument as those for (4.68), we can show that

|δ̂TD̂δ̂ − δTDδ| ≤ C5λ1(Ξ)‖α1‖2
1sn,

δ̂TD̂δ̂ = (1 + o(1))δTDδ = (1 + o(1))4λ1(Ξ), (4.70)

where the last equality is due to (4.65) and C5 is a constant independent of n and p. By
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Lemma 8 and (4.65), we have ‖δTDΣ1/2‖2 =
√
δTDδ =

√
4λ1(Ξ) which together with (4.69),

(4.70) give

∣∣∣‖δ̂TD̂Σ1/2‖2
2 − ‖δTDΣ1/2‖2

2

∣∣∣ ≤ C̃5λ1(Ξ)‖α1‖2
1sn,

‖δ̂TD̂Σ1/2‖2 =
√

4λ1(Ξ) + o(1),

and∣∣∣∣∣ δTDδ

2‖δ̂TD̂Σ1/2‖2
− δTDδ

2‖δTDΣ1/2‖2

∣∣∣∣∣
=|δTDδ|

∣∣∣‖δ̂TD̂Σ1/2‖2
2 − ‖δTDΣ1/2‖2

2

∣∣∣
2‖δ̂TD̂Σ1/2‖2‖δTDΣ1/2‖2

(
‖δ̂TD̂Σ1/2‖2 + ‖δTDΣ1/2‖2

)
≤C6

√
λ1(Ξ)‖α1‖2

1sn,

which together with (4.68) imply

|ε| =
∣∣∣∣∣ δ̂TD̂[δ̂ − 2(x̄2 − µ2)]

2‖δ̂TD̂Σ1/2‖2
− δTDδ

2‖δTDΣ1/2‖2

∣∣∣∣∣
≤|δ̂

TD̂[δ̂ − 2(x̄2 − µ2)]− δTDδ|
2‖δ̂TD̂Σ1/2‖2

+
∣∣∣∣∣ δTDδ

2‖δ̂TD̂Σ1/2‖2
− δTDδ

2‖δTDΣ1/2‖2

∣∣∣∣∣
≤C7

√
λ1(Ξ)‖α1‖2

1sn, (4.71)

where C̃5, C6 and C7 are constants independent of n and p. By (4.60), (4.61) and (4.71) and

noting that x =
√
λ1(Ξ) ≥ √c1, we have |xε| ≤ C7λ1(Ξ)‖α1‖2

1sn = o(1) and hence

Φ
(
− δ̂TD̂[δ̂ − 2(x̄2 − µ2)]

2‖δ̂TD̂Σ1/2‖2

)
/Φ

(
− δTDδ

2‖δTDΣ1/2‖2

)
− 1 = Φ(−(x+ ε))

Φ(−x) − 1

≤(1 + 2C1x)|ε|
C1

ex|ε| ≤ C8λ1(Ξ)‖α1‖2
1sn

where C8 is a constant independent of n and p. Similarly, we have

Φ
(
− δ̂TD̂[δ̂ + 2(x̄1 − µ1)]

2‖δ̂TD̂Σ1/2‖2

)
/Φ

(
− δTDδ

2‖δTDΣ1/2‖2

)
− 1 ≤ C9λ1(Ξ)‖α1‖2

1sn.

where C9 is a constant independent of n and p. Therefore, the above two inequalities together
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with (4.54) give (4.55).

4.8 Proof of Theorem 3.3.7

Theorem (Theorem 3.3.7). Suppose that Conditions 1-2 hold. Let the tuning parameter in

the optimization problem (3.12), κn = C̃λ1(Ξ)Λpsn, where C̃ is a constant large enough and

independent of n and p. For any 1 ≤ i ≤ K − 1, let Qi and Q̂i be the orthogonal projection

matrices onto the following subspaces of Rp, respectively,

Wi = span{ξ1, ξ2, · · · , ξi}, Ŵi = span{ξ̂1, ξ̂2, · · · , ξ̂i}, (4.72)

where ξi = Bαi = λi(Ξ)Σαi. If sn → 0 and Λ2
psn → 0 as n, p → ∞, then for each

1 ≤ i ≤ K − 1, there exist constants Di,1, Di,2 and Di,3 independent of n and p such that in

Ωn,

‖α̂i‖1 ≤ Di,1Λp, ‖α̂i −αi‖2
2 ≤ Di,2Λ2

psn, ‖Qi − Q̂i‖2 ≤ Di,3Λ2
psn. (4.73)

Hence, for each 1 ≤ i ≤ K − 1, α̂i is a consistent estimate of αi, and the projection matrix

Q̂i is a consistent estimate of Qi.

Proof of Theorem 3.3.7. Due to the constraints of the optimization problems (3.10) and

(3.14) and the definitions of Wi and Ŵi in (4.72), for any 1 ≤ i ≤ K − 1 and j < i, we have

αT
i Σαi = 1, α̂T

i Σ̂α̂i + τn‖α̂i‖λn = 1,

αT
i Σαj = 0, αT

i ξj = 0, α̂T
i ξ̂j = 0. (4.74)

Then by the definitions of γk and γ̂k in (3.23) and (3.24), for any 1 ≤ i ≤ K − 1 and j < i,

we have

γi = Σ1/2αi, ‖γi‖2 = 1, γT
i γj = 0, γ̂i = Σ1/2α̂i, γ̂T

i Σ
−1/2ξ̂j = 0. (4.75)

For any 1 ≤ i ≤ K − 1, in addition to Wi and Ŵi, we define the following two subspaces of
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Rp,

Vi = span{γ1,γ2, · · · ,γi}, V̂i = span{ζ̂1, ζ̂2, · · · , ζ̂i},

where ζ̂i = λi(Ξ)−1Σ−1/2ξ̂i. Let Pi and P̂i be the orthogonal projection matrices onto Vi

and V̂i, respectively. By (4.74) and (4.75) and the definitions of Wi and Ŵi in (4.72),

γk ∈ V⊥i , αk ∈W⊥
i , α̂k ∈ Ŵ⊥

i , γ̂k ∈ V̂⊥i , for any k > i, (4.76)

where V⊥i , V̂⊥i , W⊥
i and Ŵ⊥

i are orthogonal complementary subspaces of Vi, V̂i, Wi and Ŵi,

respectively. We will prove that in the event Ωn (defined in (3.27)), for each 1 ≤ i ≤ K − 1,

there exist constants, Ci,1, Ci,2, Ci,3, Ci,4, Ci,5 and Ci,6 independent of n and p such that

‖α̂i‖1 ≤ Ci,1Λp, ‖γ̂i − γi‖2
2 ≤ Ci,2Λ2

psn, ‖Pi − P̂i‖2 ≤ Ci,3Λ2
psn,

‖Qi − Q̂i‖2 ≤ Ci,4Λ2
psn, ‖ξ̂i‖1 ≤ Ci,5λ1(Ξ)Λp, ‖ξ̂i − ξi‖2

2 ≤ Ci,6λ1(Ξ)2Λ2
psn, (4.77)

as n is large enough. We proceed by induction. When i = 1, the first two inequalities in

(4.77) follow from (4.35) in Theorem 3.3.4 by setting C1,1 = 6/λ0 and C1,2 = C5, and the

last two inequalities follow from the following lemma by setting C1,5 = C7 and C1,6 = C2
6 in

(4.78).

Lemma 11. Under the conditions of the theorem, we have, in Ωn,

‖ξ̂1 − ξ1‖2 = ‖ξ̂1 −Bα1‖2 ≤ C6λ1(Ξ)
√

Λ2
psn, ‖ξ̂1‖1 ≤ C7λ1(Ξ)Λp. (4.78)

where C6 and C7 are constants independent of p and n.
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On the other hand, since ‖γ1‖2 = 1, we have P1 = γ1γ
T
1 and P̂1 = ζ̂1ζ̂

T
1 /‖ζ̂1‖2

2. Then

‖P1 − P̂1‖ =
∥∥∥∥∥γ1γ

T
1 −

1
‖ζ̂1‖2

2
ζ̂1ζ̂

T
1

∥∥∥∥∥
≤‖(γ1 − ζ̂1)γT

1 ‖+ ‖ζ̂1(γ1 − ζ̂1)T‖+
∥∥∥∥∥
(

1− 1
‖ζ̂1‖2

2

)
ζ̂1ζ̂

T
1

∥∥∥∥∥
≤‖γ1 − ζ̂1‖2(‖γ1‖2 + ‖ζ̂1‖2) +

∣∣∣1− ‖ζ̂1‖2
2

∣∣∣ . (4.79)

Note that by Condition 1 (b), ‖Σ−1/2‖ = λmax(Σ−1/2) = λmin(Σ)−1/2 ≤ c
1/2
0 . Then by (4.78),

‖γ1 − ζ̂1‖2 =‖Σ1/2α1 − λ1(Ξ)−1Σ−1/2ξ̂1‖2

≤λ1(Ξ)−1‖Σ−1/2‖‖λi(Ξ)Σα1 − ξ̂1‖2

=λ1(Ξ)−1‖Σ−1/2‖‖Bα1 − ξ̂1‖2

≤c1/2
0 C6

√
Λ2
psn. (4.80)

Therefore, ‖ζ̂1‖2 ≤ 1 + c
1/2
0 C6

√
Λ2
psn and

∣∣∣1− ‖ζ̂1‖2
2

∣∣∣ =
∣∣∣1− ‖ζ̂1‖2

∣∣∣ (1 + ‖ζ̂1‖2
)

=
∣∣∣‖γ1‖2 − ‖ζ̂1‖2

∣∣∣ (1 + ‖ζ̂1‖2
)

≤‖γ1 − ζ̂1‖2(2 + c
1/2
0 C6

√
Λ2
psn)

≤c1/2
0 C6

√
Λ2
psn(2 + c

1/2
0 C6

√
Λ2
psn). (4.81)

Since Λ2
psn → 0, as n is large enough, by (4.79)-(4.81), we can find C1,3 large enough and

independent of n and p such that ‖P1 − P̂1‖2 ≤ C1,3Λ2
psn. Note that

‖ξ1‖2
2 = ‖Bα1‖2

2 = ‖λ1(Ξ)Σα1‖2
2 = λ1(Ξ)2γT

1 Σγ1, (4.82)

‖Q1 − Q̂1‖ =
∥∥∥∥∥ 1
‖ξ1‖2

2
ξ1ξ

T
1 −

1
‖ξ̂1‖2

2
ξ̂1ξ̂

T
1

∥∥∥∥∥ ,
Therefore, we have c−1

0 λ1(Ξ)2 ≤ ‖ξ1‖2
2 ≤ c0λ1(Ξ)2 and by (4.78), (4.82) and the same

argument as in (4.79)-(4.81), we can find a constant C1,4 independent of n and p such that

‖Q1 − Q̂1‖2 ≤ C1,4Λ2
psn. Hence, (4.77) is true for i = 1. Now let 1 < k ≤ K − 1. We will

show that under the assumption that all the inequalities (4.77) are true for all 1 ≤ i ≤ k − 1
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and all large enough n, they are also true for k and all large enough n. Because the proof is

long and technical, we summarize the results in the following Lemma and provide the proof

in Section 4.11.

Lemma 12. In Ωn, suppose that (4.77) is true for all 1 ≤ i ≤ k − 1 and all large enough n.

Then (4.77) is also true for k and all large enough n.

Hence, it follows from 12 that the inequalities in (4.77) are true for all 1 ≤ k ≤ K − 1.

Based on (4.77), in order to prove the theorem, we only need to show

‖α̂i −αi‖2
2 ≤ ‖Σ−1/2γ̂i −Σ−1/2γi‖2

2 ≤ ‖Σ−1‖‖γ̂i − γi‖2
2 ≤ c0Ci,2Λ2

psn.

Then we can obtain (4.73) by setting Di,1 = Ci,1, Di,2 = c0Ci,2 and Di,3 = Ci,4.

4.9 Proof of Theorem 3.3.8

Theorem (Theorem 3.3.8). Suppose that Conditions 1 and 2 hold and the general classification

rule T in (3.37) satisfies: âji = −âij and b̂ji = b̂ij. Let {δn : n ≥ 1} be a sequence

of nonrandom positive numbers with δn → 0 and λmax(∆)δn → 0 as n → ∞. For any

1 ≤ j 6= i ≤ K, let

aji = tjiâji + (aji)⊥

be an orthogonal decomposition of âji, where tjiâji is the orthogonal projection of aji along

the direction of âji, tji is a real number, and (aji)⊥ is orthogonal to tjiâji. Let

d̂ji = âT
jiΣ

−1/2(b̂ji − µi) , dji = aT
jiΣ

−1/2(bji − µi) = 1
2‖aji‖

2
2. (4.83)

If the following conditions are satisfied,

‖aji‖2
2 − ‖âji‖2

2 = ‖aji‖2
2Op(δn), tji = 1 +Op(δn), dji − d̂ji = ‖âji‖2

2Op(δn), (4.84)
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where Op(δn) are uniform for all 1 ≤ j 6= i ≤ K, then we have

RT (X)
ROPT

− 1 ≤ Op

(
K2
√
λmax(∆)δn log [{λmax(∆)δn)}−1]

)
. (4.85)

Proof of Theorem 3.3.8. Given a new observation x, TOPT (x) and T (x) denote the classes

to which x is assigned by the rules TOPT and T , respectively. We use P·|X to denote the

conditional probability given the training sample X.

RT (X)−ROPT = (1−ROPT )− (1−RT (X)) (4.86)

=
K∑
i=1

P
(
TOPT (x) = i|x ∈ the ith class

)
P
(
x ∈ the ith class

)
−

K∑
i=1

P·|X
(
T (x) = i|x ∈ the ith class

)
P
(
x ∈ the ith class

)
= 1
K

K∑
i=1

[
P
(
TOPT (x) = i|x ∈ the ith class

)
− P·|X

(
T (x) = i|x ∈ the ith class

)]

= 1
K

K∑
i=1

[∑
j 6=i

P·|X
(
TOPT (x) = i, T (x) = j|x ∈ the ith class

)
+ P·|X

(
TOPT (x) = i, T (x) = i|x ∈ the ith class

)
− P·|X

(
T (x) = i|x ∈ the ith class

)]

≤ 1
K

K∑
i=1

∑
j 6=i

P·|X
(
TOPT (x) = i, T (x) = j|x ∈ the ith class

)
= 1
K

K∑
i=1

∑
j 6=i

P·|X
(
T (x) = j, TOPT (x) = i|x ∈ the ith class

)
.

We use Pi(·) to denote the conditional probability P·|X (·|x ∈ the ith class). Then

P·|X (T (x) = j, TOPT (x) = i|x ∈ the ith class) = Pi (T (x) = j, TOPT (x) = i) (4.87)

=Pi
(
âT
kjΣ

−1/2(x− b̂kj) < 0, ∀k 6= j, and aT
liΣ
−1/2(x− bli) < 0, ∀l 6= i

)
≤Pi

(
âT
ijΣ
−1/2(x− b̂ij) < 0, and aT

jiΣ
−1/2(x− bji) < 0

)
=Pi

(
âT
jiΣ
−1/2(x− b̂ji) > 0, and aT

jiΣ
−1/2(x− bji) < 0

)
=PZ

(
âT
jiZ > âT

jiΣ
−1/2(b̂ji − µi), and aT

jiZ < aT
jiΣ
−1/2(bji − µi)

)
,

where Z = Σ−1/2(x−µi) ∼ N(0, Ip) and independent of the training sample X, PZ is the probability
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measure with respect to Z given X, and in the fourth line, we use âij = −âji.

To calculate the probability PZ
(
âT
jiZ > âT

jiΣ
−1/2(b̂ji − µi), aT

jiZ < aT
jiΣ
−1/2(bji − µi)

)
, we

note that it is equal to PZ
(
âT
jiZ > d̂ji,aT

jiZ < dji
)
by the definitions of dji and d̂ji. First, we note

that by the definition (3.36) of aji and Lemma 8,

‖aji‖22 = ‖Σ1/2D(µj − µi)‖22 = ‖Σ1/2Σ−1(µj − µi)‖22 = ‖Σ−1/2(µj − µi)‖22

=(µj − µi)TΣ−1(µj − µi)

which together with Lemma 9 give

2Kc1 ≤ ‖aji‖22 ≤ 2λmax(∆) (4.88)

Moreover, we have

dji = aT
jiΣ
−1/2(bji − µi) = (µj − µi)TΣ−1/2Σ−1/2(µj − µi)/2 = 1

2‖aji‖
2
2. (4.89)

Since the subscript ij is fixed during the calculation, for simplicity, we omit it in the following.

We also omit the subscript Z in PZ. Note the orthogonal decomposition a = tâ + a⊥ and the

relationship d = 1
2‖a‖

2
2 by (4.89). By the conditions in (4.141),

‖a‖22 − ‖â‖22 = ‖a‖22Op(δn), t = 1 +Op(δn), d− d̂ = ‖â‖22Op(δn),

we have ‖a⊥‖22 = ‖a‖22 − t2‖â‖22 = ‖â‖22Op(δn), d̂ = ‖â‖22(1
2 +Op(δn)). (4.90)

We first assume that a⊥ 6= 0. Define

W = âT

‖â‖2
Z ∼ N(0, 1), V = − aT

⊥
‖a⊥‖2

Z ∼ N(0, 1),

where the distributions are conditional on the training sample X. Since (W,V) is jointly normal

and â and a⊥ are orthogonal, W and V are uncorrelated and hence independent. Let φ and Φ are

the density and cumulative distribution functions of N(0, 1), respectively. Define

η = |td̂− d|
t

+ ‖a⊥‖2
t

√
log

[
(‖a‖22δn)−1]. (4.91)
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Then

P
(
âTZ > d̂,aTZ < d

)
= P

(
âTZ > d̂, (tâ + a⊥)TZ < d

)
=P

(
W >

d̂

‖â‖2
, t‖â‖2W− ‖a⊥‖2V < d

)

=
∫ ∞

d̂

‖̂a‖2

φ(w)P
(

V >
t‖â‖2w − d
‖a⊥‖2

)
dw =

∫ ∞
d̂

‖̂a‖2

φ(w)
[
1− Φ

(
t‖â‖2w − d
‖a⊥‖2

)]
dw

=
∫ d̂+η
‖̂a‖2
d̂

‖̂a‖2

+
∫ ∞
d̂+η
‖̂a‖2

φ(w)
[
1− Φ

(
t‖â‖2w − d
‖a⊥‖2

)]
dw

≤
∫ d̂+η
‖̂a‖2
d̂

‖̂a‖2

φ(w)dw +
∫ ∞
d̂+η
‖̂a‖2

φ(w)

1− Φ

 t‖â‖2 d̂+η
‖â‖2
− d

‖a⊥‖2


 dw

≤ η

‖â‖2
φ( d̂

‖â‖2
) +

[
1− Φ

(
td̂− d+ tη

‖a⊥‖2

)]∫ ∞
d̂

‖̂a‖2

φ(w)dw. (4.92)

Since d̂/‖â‖2 = ‖a‖2(1/2 + Op(δn)) and by (4.88), ‖a‖2 is bounded below, it follows from the

inequality:

(1− 1
x2 )φ(x) ≤ x[1− Φ(x)] ≤ φ(x), ∀x > 0, (4.93)

that there exists a constant C3 > 0 independent of p such that with probability converging to 1,

C3φ( d̂

‖â‖2
) ≤ d̂

‖â‖2
[1− Φ( d̂

‖â‖2
)]. (4.94)
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By (4.88), (4.90),(4.93), (4.94), and the definition (4.91) of η, the right hand side of (4.92),

η

‖â‖2
φ( d̂

‖â‖2
) +

[
1− Φ

(
td̂− d+ tη

‖a⊥‖2

)]
[1− Φ( d̂

‖â‖2
)]

≤ 1
C3

η

‖â‖2
d̂

‖â‖2
[1− Φ( d̂

‖â‖2
)]

+

1− Φ

 td̂− d+ |td̂− d|+ ‖a⊥‖2
√

log
[
(‖a‖22δn)−1]

‖a⊥‖2

 [1− Φ( d̂

‖â‖2
)]

≤ 1
C3

(1
2 +Op(δn))η[1− Φ( d̂

‖â‖2
)] +

[
1− Φ

(√
log

[
(‖a‖22δn)−1])] [1− Φ( d̂

‖â‖2
)]

≤ 1
C3

(1
2 +Op(δn))η[1− Φ( d̂

‖â‖2
)] +

[
1− Φ

(√
log [(2λmax(∆)δn)−1]

)]
[1− Φ( d̂

‖â‖2
)]

≤

 η

C3
(1
2 +Op(δn)) +

φ
(√

log [(2λmax(∆)δn)−1]
)

√
log [(2λmax(∆)δn)−1]

 [1− Φ( d̂

‖â‖2
)]. (4.95)

By (4.90) and the definition (4.91) of η,

η

C3
(1
2 +Op(δn)) +

φ
(√

log [(2λmax(∆)δn)−1]
)

√
log [(2λmax(∆)δn)−1]

=‖a‖22Op(δn) +
√
‖a‖22Op(δn) log

[
(‖a‖22δn)−1]+O

exp
[
−
(√

log [(2λmax(∆)δn)−1]
)2
/2
]

√
log [(2λmax(∆)δn)−1]


≤2λmax(∆)Op(δn) +

√
2λmax(∆)Op(δn) log [(2λmax(∆)δn)−1] +O

( √
2λmax(∆)δn√

log [(2λmax(∆)δn)−1]

)

=Op
(√

λmax(∆)δn log [(λmax(∆)δn)−1]
)
. (4.96)

Next, we estimate

∣∣∣∣∣[1− Φ( d̂

‖â‖2
)]− [1− Φ( d

‖a‖2
)]
∣∣∣∣∣ =

∫ r2

r1
φ(x)dx,

where r1 = min (d̂/‖â‖2, d/‖a‖2), r2 = max (d̂/‖â‖2, d/‖a‖2). By (4.93) and (4.90),

∫ r2

r1
φ(x)dx ≤ (r2 − r1)φ(r1) = (r2 − r1)O(r1[1− Φ(r1)]) = (r2 − r1)r1O([1− Φ(r1)])

=
∣∣∣∣∣ d̂

‖â‖2
− d

‖a‖2

∣∣∣∣∣ r1O([1− Φ(r1)]) =
∣∣∣∣‖â‖2(1

2 +Op(δn))− 1
2‖a‖2

∣∣∣∣ 1
2‖a‖2O([1− Φ(r1)])

≤2λmax(∆)Op(δn)O([1− Φ(r1)]).
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Therefore,

∣∣∣∣∣[1− Φ( d̂

‖â‖2
)]− [1− Φ( d

‖a‖2
)]
∣∣∣∣∣ ≤ 2λmax(∆)Op(δn)O([1− Φ( d

‖a‖2
)]) = op(1)O([1− Φ( d

‖a‖2
)]),

and hence

[1− Φ( d̂

‖â‖2
)] = [1− Φ( d

‖a‖2
)](1 + op(1)), (4.97)

By (4.92), (4.95), (4.96) and (4.97)

P
(
âTZ > d̂,aTZ < d

)
≤ Op

(√
λmax(∆)δn log [(λmax(∆)δn)−1]

)
[1− Φ( d

‖a‖2
)]

= Op

(√
λmax(∆)δn log [(λmax(∆)δn)−1]

)
P
(
aTZ > d

)
. (4.98)

Now we consider the case of a⊥ = 0. By similar arguments as those for (4.97),

P
(
âTZ > d̂,aTZ < d

)
= P

(
âTZ > d̂, (tâ)TZ < d

)
(4.99)

=P
(

W >
d̂

‖â‖2
, t‖â‖2W < d

)
≤
∣∣∣∣∣[1− Φ( d̂

‖â‖2
)]− [1− Φ( d

t‖â‖2
)]
∣∣∣∣∣

≤λmax(∆)Op(δn)P
(
aTZ > d

)
≤ Op

(√
λmax(∆)δn log [(λmax(∆)δn)−1]

)
P
(
aTZ > d

)
.

Combining (4.98) and (4.99), and note the fact that given the new observation x belonging to the

ith class, Σ−1/2(x− µi) have the same distribution as Z, we have

PZ
(
âT
jiZ > âT

jiΣ
−1/2(b̂ji − µi),aT

jiZ < aT
jiΣ
−1/2(bji − µi)

)
(4.100)

≤Op
(√

λmax(∆)δn log [(λmax(∆)δn)−1]
)
PZ
(
aT
jiZ > dji

)
≤Op

(√
λmax(∆)δn log [(λmax(∆)δn)−1]

)
× PZ

(
aT
jiΣ
−1/2(x− µi) > aT

jiΣ
−1/2(bji − µi)|x ∈ the ith class

)
=Op

(√
λmax(∆)δn log [(λmax(∆)δn)−1]

)
P
(
aT
jiΣ
−1/2(x− bji) > 0|x ∈ the ith class

)
≤Op

(√
λmax(∆)δn log [(λmax(∆)δn)−1]

)
P (TOPT (x) /∈ the ith class|x ∈ the ith class)

≤Op
(√

λmax(∆)δn log [(λmax(∆)δn)−1]
)
KROPT
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where the Op term is uniform for all 1 ≤ i 6= j ≤ K. Now by (4.86), (4.87) and (4.100),

RT (X)−ROPT

≤ 1
K

K∑
i=1

∑
j 6=i

[
PZ
(
âT
jiZ < âT

jiΣ
−1/2(b̂ji − µi), aT

jiZ > aT
jiΣ
−1/2(bji − µi)

)]
,

≤Op
(
K2
√
λmax(∆)δn log [(λmax(∆)δn)−1]

)
ROPT

By Lemma 9, λmax(∆) = Kλmax(Ξ) = Kλ1(Ξ). Moreover, in this paper, we assume that K

is fixed, we have

RT (X)
ROPT

− 1 ≤ Op

(√
λ1(Ξ)δn log [{λ1(Ξ)δn}−1]

)
.

4.10 Proof of Theorem 3.3.9

Theorem (Theorem 3.3.9). Suppose that Conditions 1-2 hold, sn → 0 and λ1(Ξ)Λ2
psn → 0

as n, p→∞. Then the classification rule (3.15) of our sparse Fisher’s discriminant analysis

method is asymptotically optimal. Moreover, we have

RT (X)
ROPT

− 1 ≤ Op

(√
λ1(Ξ)Λ2

psn log
[
{λ1(Ξ)Λ2

psn}−1
])
. (4.101)

Proof of Theorem 3.3.9. To apply Theorem 3.3.8, we first verify the conditions (4.141) for

δn = Λ2
psn. In this proof, let δji = µj − µi and δ̂ji = x̄j − x̄i for any 1 ≤ i, j ≤ K. We only

consider the elements in Ωn
⋂ Ω̃n (see their definitions (3.27) and (4.62)). The complement

of Ωn
⋂ Ω̃n has a probability less than 3p−1 → 0 as n, p→∞. Therefore, by the definition

(4.62) of Ω̃n, we have

‖δji − δ̂ji‖∞ ≤ 2C̃
√
K log p
n

= 2C̃sn. (4.102)
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Let PK−1 and P̃K−1 be the orthogonal projection matrices of the two subspaces of

VK−1 = span{γ1,γ2, · · · ,γK−1}, ṼK−1 = span{γ̂1, γ̂2, · · · , γ̂K−1}.

Let Γ = [γ1, · · · ,γK−1] and Γ̂ = [γ̂1, · · · , γ̂K−1], both of which are p× (K − 1) matrices. Let

K = Γ̂TΓ̂ which is a symmetric (K − 1)× (K − 1) matrix with the (k, l)-th entry equal to

α̂T
kΣα̂l = γ̂T

k γ̂l. Then we have

PK−1 = ΓΓT, P̃K−1 = Γ̂K−1Γ̂T, ΓTΓ = IK−1, (4.103)

where IK−1 is the K − 1 dimensional identity matrix, because γk, 1 ≤ k ≤ K − 1, are

orthonormal vectors. By the definition (3.16),

K̂ = (α̂1, · · · , α̂K−1)T Σ̂ (α̂1, · · · , α̂K−1) = Γ̂TΣ−1/2Σ̂Σ−1/2Γ̂,

D̂ = Σ−1/2Γ̂K̂−1Γ̂TΣ−1/2. (4.104)

We consider the first equality in (4.141). By (3.36) and Lemmas 8 and 9,

aji = Σ1/2Dδji = Σ1/2Σ−1δji = Σ−1/2δji,

2Kc1 ≤ (µj − µi)TΣ−1(µj − µi) = ‖Σ−1δij‖2
2 = ‖aji‖2

2 ≤ 2Kλ1(Ξ). (4.105)

By (4.103),

D =
K−1∑
k=1

αkα
T
k = Σ−1/2

K−1∑
k=1

γkγ
T
k Σ

−1/2 = Σ−1/2ΓΓTΣ−1/2

= Σ−1/2PK−1Σ
−1/2. (4.106)

Hence, by (4.105), (4.106) and Lemma 8,

PK−1aji = PK−1Σ
−1/2δji = Σ1/2Σ−1/2PK−1Σ

−1/2δij = Σ1/2Dδji

=Σ1/2Σ−1δji = aji. (4.107)
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For any (k, l), by the definition of Ωn and Theorem 3.3.7,

|(K̂)kl − (K)kl| = |α̂T
k Σ̂α̂l − α̂T

kΣα̂l| ≤ ‖Σ− Σ̂‖∞‖α̂k‖1‖α̂l‖1

≤(τn/C2)Dk,1ΛpDl,1Λp ≤ h1Λ2
psn, (4.108)

where h1 = (C/C2) max1≤k,l≤K−1(Dk,1Dl,1). Because K̂−K is symmetric, by (4.108),

‖K̂−K‖ ≤ max
1≤k≤K−1

K−1∑
l=1
|(K̂)kl − (K)kl| ≤ (K − 1)h1Λ2

psn = o(1). (4.109)

Because αT
kΣαl = 1 if k = l, and equal to 0 if k 6= l, by (4.77) in the proof of Theorem 3.3.7,

as n large enough,

|(K)kl − (IK−1)kl| = |α̂T
kΣα̂l −αT

kΣαl| = |γ̂T
k γ̂l − γT

k γl|

≤|(γ̂k − γk)T(γ̂l − γl)|+ |γT
k (γ̂l − γl)|+ |(γ̂k − γk)Tγl|

≤‖γ̂k − γk‖2‖γ̂l − γl‖2 + ‖γ̂k − γk‖2 + ‖γ̂l − γl‖2 ≤ h2
√

Λ2
psn,

where h2 is a constant independent of p and n. Therefore,

‖K− IK−1‖ ≤ max
1≤k≤K−1

K−1∑
l=1
|(K̂)kl − (IK−1)kl| ≤ (K − 1)h2

√
Λ2
psn = o(1),

and hence ‖K‖ = 1 + o(1). (4.110)

By the Taylor’s expansion,

‖K−1‖ = ‖[IK−1 − (IK−1 −K)]−1‖ = ‖IK−1 + (IK−1 −K) + (IK−1 −K)2 + · · · ‖

≤‖IK−1‖+ ‖IK−1 −K‖+ ‖IK−1 −K‖2 + · · · = 1
1− ‖IK−1 −K‖

= 1 + o(1). (4.111)

(4.109)-(4.111) imply that ‖K̂− IK−1‖ = o(1). By the same argument as in (4.111), ‖K̂−1‖ ≤
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1 + o(1). Then by (4.109),

‖K̂−1 −K−1‖ ≤ ‖K̂−1‖‖K̂−K‖‖K−1‖ ≤ (K − 1)h1Λ2
psn(1 + o(1))2 ≤ 2(K − 1)h1Λ2

psn,

(4.112)

as n is large enough. Now by (4.104),

âji = Σ1/2D̂δ̂ji = Σ1/2Σ−1/2Γ̂K̂−1Γ̂TΣ−1/2δ̂ji = Γ̂K̂−1Γ̂TΣ−1/2δ̂ji

=Γ̂K̂−1Γ̂TΣ−1/2(δ̂ji − δji) + Γ̂(K̂−1 −K−1)Γ̂TΣ−1/2δji + Γ̂K−1Γ̂TΣ−1/2δji. (4.113)

We estimate the first term on the right hand side of (4.113). Let g = K̂−1Γ̂TΣ−1/2(δ̂ji − δji)

and gk denote its k-th coordinate, 1 ≤ k ≤ K − 1. By (4.172), (4.102), Theorem 3.3.7 and

(4.62),

‖Γ̂K̂−1Γ̂TΣ−1/2(δ̂ji − δji)‖2 = ‖Γ̂g‖2 = ‖
K−1∑
k=1

γ̂kgk‖2 ≤
K−1∑
k=1
‖γ̂k‖2|gk| ≤ ‖g‖1

≤
√
K − 1‖g‖2 ≤

√
K − 1‖K̂−1‖‖Γ̂TΣ−1/2(δ̂ji − δji)‖2 (4.114)

≤
√
K − 1‖K̂−1‖‖Γ̂TΣ−1/2(δ̂ji − δji)‖1

=
√
K − 1‖K̂−1‖

K−1∑
k=1
|α̂T

k (δ̂ji − δji)| ≤
√
K − 1‖K̂−1‖

K−1∑
k=1
‖α̂k‖1‖δ̂ji − δji‖∞

≤
√
K − 1(1 + o(1))(K − 1)Dk,1Λp2C̃sn = O(Λpsn) = O(Λ2

psn) ≤ O(Λ2
psn)‖aji‖2,

where the second equality in the last line is due to Λp ≥ ‖αk‖1 ≥ ‖αk‖2 ≥ c
−1/2
0 and the last

inequality is due to (4.105). Similarly, by (4.108) and (4.105), for the second term on the

right hand side of (4.113), we have

‖Γ̂(K̂−1 −K−1)Γ̂TΣ−1/2δji‖2 ≤ ‖Γ̂(K̂−1 −K−1)Γ̂T‖‖Σ−1/2δji‖2 (4.115)

=‖
∑

1≤k,l≤K−1
(K̂kl −Kkl)γ̂kγ̂T

l ‖‖aji‖2 ≤ h1Λ2
psn

∑
1≤k,l≤K−1

‖γ̂k‖2‖γ̂l‖2‖aji‖2

=(K − 1)2h1Λ2
psn‖aji‖2.
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As for the third term on the right hand side of (4.113), by (4.103), we have

‖Γ̂K−1Γ̂TΣ−1/2δji‖2 = ‖P̃K−1Σ
−1/2δji‖2 = ‖P̃K−1aji‖2. (4.116)

Now by (4.113)-(4.116) and (4.107), we have

‖âji‖2
2 = ‖P̃K−1aji‖2

2 +O(Λ2
psn)‖aji‖2

2 = ‖aji‖2
2 − ‖aji − P̃K−1aji‖2

2 +O(Λ2
psn)‖aji‖2

2

=‖aji‖2
2 − ‖PK−1aji − P̃K−1aji‖2

2 +O(Λ2
psn)‖aji‖2

2. (4.117)

By the second bound in (4.77), (4.110) and (4.111),

‖PK−1aji − P̃K−1aji‖2
2 ≤ ‖PK−1 − P̃K−1‖2‖aji‖2

2 ≤ ‖ΓΓT − Γ̂TK−1Γ̂‖2‖aji‖2
2

≤‖ΓΓT − Γ̂TΓ̂‖2‖aji‖2
2 + ‖Γ̂T(IK−1 −K−1)Γ̂‖2‖aji‖2

2 = O(Λ2
psn)‖aji‖2

2. (4.118)

Hence, by (4.117) and (4.118),

‖âji‖2
2 = ‖aji‖2

2 + ‖aji‖2
2O(Λ2

psn). (4.119)

Therefore, the first equality in the condition (4.141) is verified. For the second one, by the

orthogonal decomposition (4.89), we have tji = aT
jiâji/‖âji‖2

2. By (4.105) and (4.104),

aT
jiâji = δT

ijΣ
−1/2Σ1/2D̂δ̂ji = δT

ijΣ
−1/2Γ̂K̂−1Γ̂TΣ−1/2δ̂ji

=δT
ijΣ

−1/2Γ̂K̂−1Γ̂TΣ−1/2(δ̂ji − δij) + δT
ijΣ

−1/2Γ̂K̂−1Γ̂TΣ−1/2δij

=δT
ijΣ

−1/2Γ̂K̂−1Γ̂TΣ−1/2(δ̂ji − δij) + aT
jiP̃K−1aji

=δT
ijΣ

−1/2Γ̂K̂−1Γ̂TΣ−1/2(δ̂ji − δij) + aT
jiP̃K−1P̃K−1aji. (4.120)

By (4.114), the first term in the last line of (4.120)

|δT
ijΣ

−1/2Γ̂K̂−1Γ̂TΣ−1/2(δ̂ji − δij)| ≤ ‖Σ−1/2δij‖2‖Γ̂K̂−1Γ̂TΣ−1/2(δ̂ji − δji)‖2

=‖aji‖2O(Λ2
psn)‖aji‖2 = O(Λ2

psn)‖aji‖2
2 (4.121)
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By (4.117) and (4.118), the second term in the last line of (4.120) is equal to

‖P̃K−1aji‖2
2 = ‖aji‖2

2 − ‖(PK−1 − P̃K−1)aji‖2
2 = ‖aji‖2

2 −O(Λ2
psn)‖aji‖2

2,

which together with (4.120) and (4.121) imply that

aT
jiâji = ‖aji‖2

2 + ‖aji‖2
2O(Λ2

psn), and hence tji =
aT
jiâji
‖âji‖2

2
= 1 +O(Λ2

psn), (4.122)

by (4.119). The second condition in (4.141) is verified. For the last condition in (4.141), by

the definitions of dji and d̂ji, and (4.105),

dji − d̂ji = 1
2‖aji‖

2
2 − âT

jiΣ
−1/2(b̂ji − µi) = 1

2‖aji‖
2
2 − δ̂T

jiD̂
( x̄j + x̄i

2 − µi

)
=1

2‖aji‖
2
2 − δ̂T

jiD̂
(

x̄j + x̄i
2 − µj + µi

2 + (µj − µi)
2

)

=1
2‖aji‖

2
2 − δ̂T

jiD̂
( x̄i − µi

2 + x̄j − µj

2

)
− 1

2 δ̂
T
jiD̂δji

=‖aji‖
2
2

2 − δ̂T
jiΣ

−1/2Γ̂K̂−1Γ̂TΣ−1/2
( x̄i − µi

2 + x̄j − µj

2

)
−

aT
jiâji
2

=‖aji‖
2
2

2 −
aT
jiâji
2 − δ̂T

jiΣ
−1/2Γ̂K̂−1Γ̂TΓ̂K̂−1Γ̂TΣ−1/2

( x̄i − µi

2 + x̄j − µj

2

)
, (4.123)

where in the last line, we use the fact that Γ̂K̂−1Γ̂ = P̃K−1 is a projection matrix and hence

P̃2
K−1 = P̃K−1. We estimate the last term on the right hand side of (4.125),

∣∣∣∣δ̂T
jiΣ

−1/2Γ̂K̂−1Γ̂TΓ̂K̂−1Γ̂TΣ−1/2
( x̄i − µi

2 + x̄j − µj

2

)∣∣∣∣
≤‖Γ̂K̂−1Γ̂TΣ−1/2δ̂ji‖2

∥∥∥∥Γ̂K̂−1Γ̂TΣ−1/2
( x̄i − µi

2 + x̄j − µj

2

)∥∥∥∥
2

=‖Σ1/2D̂δ̂ji‖2

∥∥∥∥Γ̂K̂−1Γ̂TΣ−1/2
( x̄i − µi

2 + x̄j − µj

2

)∥∥∥∥
2

=‖âji‖2

∥∥∥∥Γ̂K̂−1Γ̂TΣ−1/2
( x̄i − µi

2 + x̄j − µj

2

)∥∥∥∥
2
≤ ‖âji‖2O(Λ2

psn)‖aji‖2, (4.124)

where the last inequality can be obtained by a similar argument as in (4.114). it follows from
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(4.125) and (4.124) that

dji − d̂ji = ‖aji‖
2
2

2 −
aT
jiâji
2 + ‖âji‖2O(Λ2

psn)‖aji‖2 = O(Λ2
psn)‖aji‖2

2, (4.125)

where the last inequality is due to (4.119) and (4.122). Hence, the thir condition in (4.141)

is verified. Hence, we can apply Theorem 3.3.8 to obtain the theorem.

4.11 Proof of Lemmas

The rest of this section is devoted to the proof of all technical lemmas.

4.11.1 Proof of Lemma 3

Proof of Lemma 3

By (4.97), we have

∫ b

a
|f(a) + (t− a)f ′(a)|dt =

∫ b

a
|f(t)−

∫ b

a
G(t, s)f ′′(s)ds|dt

≤
∫ b

a
|f(t)|dt+

∫ b

a
|
∫ b

a
G(t, s)f ′′(s)ds|dt

≤
√
b− a‖f‖+

√
b− a‖G‖‖f ′′‖

≤
√
b− a‖f‖α +

√
b− a‖G‖√

α
‖f‖α

=
√
b− a

(
1 + ‖G‖√

α

)
‖f‖α.

On the other hand, if we can show that

∫ b

a
|f(a) + (t− a)f ′(a)|dt ≥ (

√
2− 1)(b− a)|f(a)|, (4.126)

then we have

(
√

2− 1)(b− a)|f(a)| ≤
√
b− a

(
1 + ‖G‖√

α

)
‖f‖α.
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The second inequality in the lemma follows from

(b− a)2

2 |f ′(a)| =
∫ b

a
|(t− a)f ′(a)|dt

≤
∫ b

a
[|f(a)|+ |f(a) + (t− a)f ′(a)|] dt

≤(b− a)|f(a)|+
√
b− a

(
1 + ‖G‖√

α

)
‖f‖α

≤(
√

2 + 2)
√
b− a

(
1 + ‖G‖√

α

)
‖f‖α.

Now we prove the inequality (4.126). Since if f(a) = 0, (4.126) is trivial, without loss of

generality, we assume that f(a) > 0. We first consider the case that

f(a) + (t− a)f ′(a) > 0, ∀a ≤ t ≤ b.

Let t = b. We have

f(a) + (b− a)f ′(a) > 0, hence f ′(a) > − f(a)
b− a

.

Therefore,

∫ b

a
|f(a) + (t− a)f ′(a)|dt =

∫ b

a
(f(a) + (t− a)f ′(a)) dt

=f(a)(b− a) + (b− a)2

2 f ′(a) > f(a)(b− a)− (b− a)2

2
f(a)
b− a

=(b− a)
2 f(a). (4.127)

Now we consider the case that there exists x ∈ [a, b] such that

f(a) + (x− a)f ′(a) = 0.
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Then

f ′(a) = − f(a)
x− a

. (4.128)

In this case,

∫ b

a
|f(a) + (t− a)f ′(a)|dt

=
∫ x

a
(f(a) + (t− a)f ′(a)) dt−

∫ b

x
(f(a) + (t− a)f ′(a)) dt

=(x− a)f(a) + (x− a)2

2 f ′(a)− (b− x)f(a)− [(b− a)2 − (x− a)2]
2 f ′(a)

=2(x− a)f(a)− (b− a)f(a) + (x− a)2f ′(a)− (b− a)2

2 f ′(a)

=2(x− a)f(a)− (b− a)f(a)− (x− a)f(a) + (b− a)2

2(x− a)f(a) by (4.128)

=(x− a)f(a) + (b− a)2

2(x− a)f(a)− (b− a)f(a)

≥
√

2(b− a)f(a)− (b− a)f(a) = (
√

2− 1)(b− a)f(a) (4.129)

Now comparing (4.127) and (4.129), we can obtain (4.126).

4.11.2 Proof of Lemma 4

Proof of Lemma 4

For any β1, β2 ∈ W 2
2 ([a, b]), by the definition of R̂α

〈
β1, R̂αβ2

〉
α

=
〈
β1, Γ̂nβ2

〉
=A00β1(a)β2(a) + A10β

′
1(a)β2(a) + A01β1(a)β′2(a) + A11β

′
1(a)β′2(a)

+ β1(a)
∫ b

a
ξ0(t)β′′2 (t)dt+ β2(a)

∫ b

a
ξ0(t)β′′1 (t)dt+ β′1(a)

∫ b

a
ξ1(t)β′′2 (t)dt

+ β′2(a)
∫ b

a
ξ1(t)β′′1 (t)dt+

∫ b

a

∫ b

a
Ξ(s, t)β′′1 (s)β′′2 (t)dsdt,

where

A00 =
∫ b

a

∫ b

a
Γ̂n(s, t)dsdt, A01 = A10 =

∫ b

a

∫ b

a
(s− a)Γ̂n(s, t)dsdt,
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A11 =
∫ b

a

∫ b

a
(s− a)(t− a)Γ̂n(s, t)dsdt, ξ0(t) =

∫ b

a

∫ b

a
Γ̂n(u, v)G(v, t)dudv

ξ1(t) =
∫ b

a

∫ b

a
(u− a)Γ̂n(u, v)G(v, t)dudv,

Ξ0(s, t) =
∫ b

a

∫ b

a
Γ̂n(u, v)G(u, s)G(v, t)dudv. (4.130)

Define discretized versions of Xp(t), 1 ≤ p ≤ n,

X(m)
p (t) =Xp(t(1))χ[t(1),

t(1)+t(2)
2 )

(t) +
m−1∑
q=2

Xp(t(q))χ[
t(q−1)+t(q)

2 ,
t(q)+t(q+1)

2 )
(t)

+Xp(t(m))χ[
t(m−1)+t(m)

2 ,t(m))
(t), (4.131)

where χ is the indicator function. Similarly, we define X̄(m) by replacing Xp with the sample

mean function X̄ in (4.131).

We first compute |Ã00 − A00|. By the definitions of Σ̂ql and Ypq, for any 1 ≤ q, l ≤ m,

Σ̂ql = 1
n

n∑
p=1

(
Ypq − Ȳ·q

) (
Ypl − Ȳ·l

)

= 1
n

n∑
p=1

(
Xp(t(q)) + εpq − X̄(t(q))− ε̄·q

) (
Xp(t(l)) + εpl − X̄(t(l))− ε̄·l

)

= 1
n

n∑
p=1

(Xp(t(q))− X̄(t(q)))(Xp(t(l))− X̄(t(l))) + Πql

=Γ̂n(t(q), t(l)) + Πql

where Ȳ·q = 1
n

∑n
p=1 Ypq, ε̄·q = 1

n

∑n
p=1 εpq, and

Πql = 1
n

n∑
p=1

(
Xp(t(q))− X̄(t(q))

)
(εpl − ε̄·l)

+ 1
n

n∑
p=1

(εpq − ε̄·q)
(
Xp(t(l))− X̄(t(l))

)
+ 1
n

n∑
p=1

(εpq − ε̄·q) (εpl − ε̄·l) .
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By the definitions of Ã00 and A00 in (4.7) and (4.130), and the definition (4.131),

Ã00 − A00 (4.132)

= 1
n

n∑
p=1

(∫ b

a
(X(m)

p (s)− X̄(m)(s))ds
)2

− 1
n

n∑
p=1

(∫ b

a
(Xp(s)− X̄(s))ds

)2

+ 2 1
n

n∑
p=1

∫ b

a
(X(m)

p (s)− X̄(m)(s))ds(ε̄(m)
p· − ε̄(m)

·· ) + 1
n

n∑
p=1

(ε̄(m)
p· − ε̄(m)

·· )2,

where

ε̄(m)
p· =

m∑
l=1

εplwl, ε̄(m)
·· = 1

n

n∑
p=1

ε̄(m)
p· . (4.133)

We provide an upper bound for maxq{t(q) − t(q−1)} in Case 2 in the following lemma.

Lemma 13. In Case 2 (random case), we have

max
q
{t(q) − t(q−1)} = Op(

logm
m

),

$(max
q
{t(q) − t(q−1)}) = Op($(3 logm

cm
)),

where

$(δ) = sup
s,t∈[a,b],|s−t|≤δ

[Γ(t, t)− 2Γ(s, t) + Γ(s, s)] , (4.134)

has been defined in Section 3.4 and c is the lower bound of the density function h(t) of the

distribution of the observation points.

Proof of Lemma 13

For any 0 < x ≤ b− a, let r be the positive integer satisfying

b− a
r − 1 >

x

2 ≥
b− a
r

. (4.135)

Then the event {maxq{t(q) − t(q−1)} > x} is contained in the event that there is at least one
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of the following r intervals having no observation time points,

[a, a+ b− a
r

], [a+ b− a
r

, a+ 2b− a
r

], · · · , [a+ (r − 1)b− a
r

, b].

Hence,

P (max
q
{t(q) − t(q−1)} > x) ≤ r(1− c(b− a)

r
)m.

By (4.135),

r(1− c(b− a)
r

)m ≤ (x+ 2(b− a)
x

)(1− xc(b− a)
x+ 2(b− a))m

≤ 3(b− a)
x

(1− xc(b− a)
3(b− a) )m ≤ 3(b− a)

x
e−

cmx
3 .

Hence, let x = 3 logm
cm

,

P (max
q
{t(q) − t(q−1)} >

3 logm
cm

) ≤ c(b− a)
logm . �

For the last terms on the right hand side of the equality (4.132), in Case 1, by directly

computing its first moment, we have that its order is Op(δm). In Case 2, by Lemma 4, for

any small positive number τ , there exists M > 0 (not depending m) such that

P (max
q
{t(q) − t(q−1)} > M

logm
m

) ≤ τ

2 .

Let Z = maxq{t(q) − t(q−1)} and κ = 8σ2(b−a)M
τ

.

P ( 1
n

n∑
p=1

(ε̄(m)
p· − ε̄(m)

·· )2 >
κ logm
m

) (4.136)

≤P ( 1
n

n∑
p=1

(ε̄(m)
p· )2 >

κ logm
m

,Z ≤M
logm
m

) + P (Z > M
logm
m

)

=E
P

 1
n

n∑
p=1

(ε̄(m)
p· )2 >

κ logm
m

∣∣∣∣∣ tq, 1 ≤ q ≤ m

χ{Z≤M logm
m
}

+ τ

2
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≤E

(κ logm
m

)−1

E

 1
n

n∑
p=1

(ε̄(m)
p· )2

∣∣∣ tq, 1 ≤ q ≤ m

χ{Z≤M logm
m
}

+ τ

2

≤E

(κ logm
m

)−1

2σ2
m∑
q=1

(t(q) − t(q−1))2χ{Z≤M κ logm
m
}

+ τ

2

≤E

(κ logm
m

)−1

2σ2(b− a) max
q

(t(q) − t(q−1))χ{Z≤M logm
m
}

+ τ

2

≤E

(κ logm
m

)−1

2σ2(b− a)Zχ{Z≤M logm
m
}

+ τ

2

≤
(
κ logm
m

)−1

2σ2(b− a)M logm
m

+ τ

2 = τ.

Hence

1
n

n∑
p=1

(ε̄(m)
p· − ε̄(m)

·· )2 ≤ Op(
logm
m

). (4.137)

Now we deal with the first and second terms on the right hand side of the equality

(4.132).

1
n

n∑
p=1

(∫ b

a
(X(m)

p (s)− X̄(m)(s))ds
)2

− 1
n

n∑
p=1

(∫ b

a
(Xp(s)− X̄(s))ds

)2

= 2
n

n∑
p=1

∫ b

a

(
(X(m)

p (s)−Xp(s))− (X̄(m)(s)− X̄(s))
)
ds

×
∫ b

a
(Xp(t)− X̄(t))dt

+ 1
n

n∑
p=1

[∫ b

a

(
(X(m)

p (s)−Xp(s))− (X̄(m)(s)− X̄(s))
)
ds

]2

.

We use E·|T to denote the conditional expectation given {tq, 1 ≤ q ≤ m}. Then

E·|T

[∫ b

a

(
(X(m)

p (s)−Xp(s))− (X̄(m)(s)− X̄(s)
)
ds

]2

≤2E·|T
[∫ b

a
(X(m)

p (s)−Xp(s))ds
]2

+ 2E·|T
[∫ b

a
(X̄(m)(s)− X̄(s))ds

]2

≤2(b− a)
(∫ b

a
E·|T

[
(X(m)

p (s)−Xp(s))2
]
ds+

∫ b

a
E·|T

[
(X̄(m)(s)− X̄(s))2

]
ds

)
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=4(b− a)
∫ b

a
E·|T

[
(X(m)

p (s)−Xp(s))2
]
ds

=4(b− a)
∫ t(2)−t(1)

2

t(1)

E·|T
[
(Xp(t(1))−Xp(s))2

]
ds

+
m−1∑
q=2

∫ t(q)+t(q+1)
2

t(q)+t(q−1)
2

E·|T
[
(Xp(t(q))−Xp(s))2

]
ds

+
∫ t(m)

t(m)+t(m−1)
2

E
[
(Xp(t(m))−Xp(s))2

]
ds


≤4(b− a)2$(max

q
{t(q) − t(q−1)}),

where the third line follows from Cauchy-Schwarz inequality and the last line follows the

definition of $. By using the same argument as in the proof of (4.136), we have that in Case

2,

1
n

n∑
p=1

[∫ b

a

(
(X(m)

p (s)−Xp(s))− (X̄(m)(s)− X̄(s))
)
ds

]2

=Op($(3 logm
cm

)), (4.138)

and by Cauchy-Schwarz inequality

2
n

n∑
p=1

∫ b

a

(
(X(m)

p (s)−Xp(s))− (X̄(m)(s)− X̄(s))
)
ds
∫ b

a
(Xp(t)− X̄(t))dt

=Op(
√
$(3 logm

cm
)).

In Case 1, they are Op($(δm)) and Op(
√
$(δm)) respectively.

For the third terms on the right hand side of the equality (4.132),

1
n

n∑
p=1

∫ b

a
(X(m)

p (s)− X̄(m)(s))ds(ε̄(m)
p· − ε̄(m)

·· )

= 1
n

n∑
p=1

∫ b

a
(X(m)

p (s)−Xp(s)− X̄(m)(s) + X̄(s))ds(ε̄(m)
p· − ε̄(m)

·· )

+ 1
n

n∑
p=1

∫ b

a
Xp(s)ds(ε̄(m)

p· − ε̄(m)
·· )− 1

n

n∑
p=1

∫ b

a
X̄(s)ds(ε̄(m)

p· − ε̄(m)
·· )
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Note that the last term in the above equality is zero. By (4.137), (4.138) and Cauchy-Schwarz

inequality, the first term on the right hand side of the above equality is less than

Op(
√

logm
m

$(3 logm
cm

))

in Case 2, and less than

Op(
√
δm$(δm))

in Case 1. One can see that the second term on the right hand side of the above equality is an

average of i.i.d. random variables. Under Assumptions 1 and 4, because the random curves,

observation times and measurement errors are independent, these i.i.d. random variables

have means zero, variances less than Op(
√
δm) in Case 1 and less than Op(

√
logm
m

) in Case 2,

and uniformly bounded third moments. By the Berry-Esseen theorem and a similar argument

as in (4.136), we have that the second term on the right hand side of the above equality is

Op(
√

δm
n

) in Case 1 and Op(
√

logm
nm

) in Case 2. Now we have that |Ã00 − A00| is, in Case 1,

less than

Op(δm) +Op($(δm)) +Op(
√
$(δm)) +Op(

√
δm$(δm)) +Op(

√
δm
n

)

≤ Op(
√
$(δm)) +Op(δm) +Op(

√
δm
n

)

and in Case 2, less than

Op(
√
$(3 logm

cm
)) +Op(

logm
m

) +Op(
√

logm
nm

).

Hence, by Lemma 3, in Case 1,

|Ã00 − A00||β1(a)|β2(a)| (4.139)

≤ 1
α

Op(
√
$(δm)) +Op(δm) +Op(

√
δm
n

)
 ‖β1‖α‖β2‖α,
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and for Case 2,

|Ã00 − A00||β1(a)|β2(a)| (4.140)

≤ 1
α

Op(
√
$(3 logm

cm
)) +Op(

logm
m

) +Op(
√

logm
nm

)
 ‖β1‖α‖β2‖α.

By similar arguments, all the following terms

|(Ã10 − A10)β′1(a)β2(a)|, |(Ã01 − A01)β1(a)β′2(a)|,

|(Ã11 − A11)β′1(a)β′2(a)|, |β1(a)
∫ b

a
(ξ̃0(t)− ξ0(t))β′′2 (t)dt|,

|β2(a)
∫ b

a
(ξ̃0(t)− ξ0(t))β′′1 (t)dt|, |β′1(a)

∫ b

a
(ξ̃1(t)− ξ1(t))β′′2 (t)dt|

|β′2(a)
∫ b

a
(ξ̃1(t)− ξ1(t))β′′1 (t)dt|, |

∫ b

a

∫ b

a
(Ξ̃(s, t)− Ξ(s, t))β′′1 (s)β′′2 (t)dsdt|,

have the same bounds as those in (4.139) and (4.140). Hence, we have that in Case 1,

‖R̂(m)
α − R̂α‖α ≤

1
α

Op(
√
$(δm)) +Op(δm) +Op(

√
δm
n

)
 ,

and in Case 2,

‖R̂(m)
α − R̂α‖α ≤

1
α

Op(
√
$(3 logm

cm
)) +Op(

logm
m

) +Op(
√

logm
nm

)
 .

4.11.3 Proof of Lemma 6

Proof of Lemma 6

Since ‖γ̂j‖ = 1, ‖ˆ̂γj‖ = 1 and ‖γ[αj ]
j ‖ = 1 by their definitions, it follows from (4.16) that

αj [γ̂j, γ̂j]→ 0, αj
[ˆ̂γj, ˆ̂γj]→ 0, αj

[
γ

[αj ]
j , γ

[αj ]
j

]
→ 0, (4.141)
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for all 1 ≤ j ≤ k − 1. By the following condition in this theorem,

max1≤k≤K αk
min1≤k≤K αk

= Op(1).

it follows from (4.16) that for any 1 ≤ j ≤ k − 1,

αk [γ̂j, γ̂j]→ 0, αk
[ˆ̂γj, ˆ̂γj]→ 0, αk

[
γ

[αj ]
j , γ

[αj ]
j

]
→ 0, (4.142)

‖γ̂j − ˆ̂γj‖αk → 0, ‖γ[αj ]
j − γj‖ → 0, ‖γ[αj ]

j − γj‖αk → 0, (4.143)

from which we have ‖γ̂j‖αk → 1, ‖ˆ̂γj‖αk → 1 and ‖γ[αj ]
j ‖αk → 1.

Let V̂k = {γ ∈ W 2
2 ([a, b])| 〈γ, γ̂j〉 = 0, 1 ≤ j ≤ k−1} and ˆ̂Vk = {γ ∈ W 2

2 ([a, b])|
〈
γ, ˆ̂γj

〉
=

0, 1 ≤ j ≤ k − 1}. Note that V̂k and ˆ̂Vk are the orthogonal complements of γ̂j and
ˆ̂γj, 1 ≤ j ≤ k − 1, in L2 inner product respectively. They are the closed subspaces in

(W 2
2 ([a, b]), 〈·, ·〉αk). Let P̂k and

ˆ̂
Pk be the orthogonal projections onto V̂k and ˆ̂Vk respectively

in (W 2
2 ([a, b]), 〈·, ·〉αk). Note that they are not the orthogonal projections in L2 inner product.

Now it can be see that {λ̂k, γ̂k} and {ˆ̂γk, ˆ̂γk} are the first eigenvalues and eigenfunctions of

P̂kR̂
(m)
αk
P̂k and ˆ̂

PkR̂αk
ˆ̂
Pk. Since ‖P̂k‖αk = ‖ ˆ̂

Pk‖αk = 1,

‖P̂kR̂(m)
αk
P̂k − ˆ̂

PkR̂αk
ˆ̂
Pk‖αk (4.144)

=‖P̂kR̂(m)
αk
P̂k − P̂kR̂αkP̂k + P̂kR̂αkP̂k − P̂kR̂αk

ˆ̂
Pk + P̂kR̂αk

ˆ̂
Pk − ˆ̂

PkR̂αk
ˆ̂
Pk‖αk

≤‖R̂(m)
αk
− R̂αk‖αk + 2‖R̂αk‖αk‖P̂k −

ˆ̂
Pk‖αk .

By the definition of R̂αk , ‖R̂αk‖αk ≤ ‖Γ̂n‖ = Op(1). Now we compute ‖P̂k − ˆ̂
Pk‖αk . For any

x ∈ W 2
2 ([a, b]), we have the following two decompositions,

x =
x− k−1∑

j=1
〈x, γ̂j〉 γ̂j

+
k−1∑
j=1
〈x, γ̂j〉 γ̂j =

x− k−1∑
j=1

〈
x, ˆ̂γj

〉 ˆ̂γj

+
k−1∑
j=1

〈
x, ˆ̂γj

〉 ˆ̂γj.

Since x−∑k−1
j=1 〈x, γ̂j〉 γ̂j ∈ Vk, it is mapped to itself by P̂k. Similarly, x−∑k−1

j=1

〈
x, ˆ̂γj

〉 ˆ̂γj is
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mapped to itself by ˆ̂
Pk. For any 1 ≤ j ≤ k − 1, because

0 =
〈
γ̂j, P̂kγ̂j

〉
=
〈
γ̂j, P̂kγ̂j

〉
αk
− αk

[
γ̂j, P̂kγ̂j

]
,

we have

〈
γ̂j, P̂kγ̂j

〉
αk

= ‖P̂kγ̂j‖2
αk

= αk
[
γ̂j, P̂kγ̂j

]
=αk2

(
[γ̂j, γ̂j] +

[
P̂kγ̂j, P̂kγ̂j

]
−
[
γ̂j − P̂kγ̂j, γ̂j − P̂kγ̂j

])
≤αk2

(
[γ̂j, γ̂j] +

[
P̂kγ̂j, P̂kγ̂j

])
≤ αk

2 [γ̂j, γ̂j] + 1
2‖P̂kγ̂j‖

2
αk
,

and hence ‖P̂kγ̂j‖2
αk
≤ αk [γ̂j, γ̂j]→ 0. Similarly, ‖ ˆ̂

Pkγ̂j‖2
αk
→ 0. Now for any x ∈ W 2

2 ([a, b]),

‖P̂kx− ˆ̂
Pkx‖αk =‖

x− k−1∑
j=1
〈x, γ̂j〉 γ̂j

+
k−1∑
j=1
〈x, γ̂j〉 P̂kγ̂j

−

x− k−1∑
j=1

〈
x, ˆ̂γj

〉 ˆ̂γj

− k−1∑
j=1

〈
x, ˆ̂γj

〉 ˆ̂
Pk ˆ̂γj‖αk

≤‖
k−1∑
j=1
〈x, γ̂j〉 γ̂j −

k−1∑
j=1

〈
x, ˆ̂γj

〉 ˆ̂γj‖αk +
k−1∑
j=1
| 〈x, γ̂j〉 |‖P̂kγ̂j‖αk

+
k−1∑
j=1
|
〈
x, ˆ̂γj

〉
|‖ ˆ̂
Pk ˆ̂γj‖αk

≤
k−1∑
j=1
‖x‖‖γ̂j − ˆ̂γj‖αk +

k−1∑
j=1
‖x‖‖γ̂j − ˆ̂γj‖‖ˆ̂γj‖αk

+
k−1∑
j=1
‖x‖

[
‖P̂kγ̂j‖αk + ‖ ˆ̂

Pk ˆ̂γj‖αk
]
,

hence,

‖P̂k − ˆ̂
Pk‖αk ≤

k−1∑
j=1

[
‖γ̂j − ˆ̂γj‖αk + ‖γ̂j − ˆ̂γj‖‖ˆ̂γj‖αk + ‖P̂kγ̂j‖αk + ‖ ˆ̂

Pk ˆ̂γj‖αk
]
,

Then by (4.144) and Lemma 4, ‖P̂kR̂(m)
αk
P̂k − ˆ̂

PkR̂αk
ˆ̂
Pk‖αk → 0. By a similar argument as the
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proofs of (4.15) and (4.12), we have

|λ̂k − ˆ̂
λk| ≤ ‖P̂kR̂(m)

αk
P̂k − ˆ̂

PkR̂αk
ˆ̂
Pk‖αk ,

‖γ̂k − ˆ̂γk‖αk ≤ ‖γ
[αk]
k ‖αkOp(‖P̂kR̂(m)

αk
P̂k − ˆ̂

PkR̂αk
ˆ̂
Pk‖

1
2
αk).

The same arguments lead to similar inequalities for |ˆ̂λk−λ[αk]
k |, ‖ˆ̂γk−γ

[αk]
k ‖αk and |λ[αk]

k −λk|,

‖γ[αk]
k − γk‖αk . Then the lemma follows.

4.11.4 Proof of Lemma 7

Proof of Lemma 7

For any β1, β2 ∈ W 2
2 ([a, b]), by the definition of Sα,

〈β1, Sαβ2〉α = 〈β1,Γβ2〉

=B00β1(a)β2(a) +B10β
′
1(a)β2(a) +B01β1(a)β′2(a) +B11β

′
1(a)β′2(a)

+ β1(a)
∫ b

a
ψ0(t)β′′2 (t)dt+ β2(a)

∫ b

a
ψ0(t)β′′1 (t)dt+ β′1(a)

∫ b

a
ψ1(t)β′′2 (t)dt

+ β′2(a)
∫ b

a
ψ1(t)β′′1 (t)dt+

∫ b

a

∫ b

a
Ψ(s, t)β′′1 (s)β′′2 (t)dsdt,

where

B00 =
∫ b

a

∫ b

a
Γ(s, t)dsdt, B01 = B10 =

∫ b

a

∫ b

a
(s− a)Γ(s, t)dsdt,

B11 =
∫ b

a

∫ b

a
(s− a)(t− a)Γ(s, t)dsdt, ψ0(t) =

∫ b

a

∫ b

a
Γ(s, u)G(u, t)dsdu,

ψ1(t) =
∫ b

a

∫ b

a
Γ(s, u)G(u, t)(s− a)dsdu,Ψ(t, s) =

∫ b

a

∫ b

a
Γ(v, u)G(v, t)G(u, s)dsdu.

We first estimate
∣∣∣B̃00 −B00

∣∣∣. Define

B̂00 = 1
n′

n∑
p=1

χ[Np>1]
1

Np(Np − 1)

Np∑
l 6=q:1

(Ypq − µ(tpq))
h(tpq)

· (Ypl − µ(tpl))
h(tpl)

.
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By a routine argument, it follows from (4.17) that

∣∣∣B̃00 − B̂00

∣∣∣ = Op(
1√
nηµ

) +Op(n−
1
2η
− 1

2−ε
g + η

3
4−ε
g ).

By Assumption 6, the following random variables are i.i.d. with mean zeros and finite

variances,

Zp = χ[Np>1]
1

Np(Np − 1)

Np∑
l 6=q:1

[
(Ypq − µ(tpq))

h(tpq)
· (Ypl − µ(tpl))

h(tpl)
−B00

]
, 1 ≤ p ≤ n.

Then B̂00 −B00 = 1
n′
∑n
p=1 Zp. Therefore,

E

(
n′

n
(B̂00 −B00)

)2

= 1
n
V ar(Z1).

Since n′

n
= 1

n

∑n
p=1 χ[Np>1] → P (N1 > 1) > 0 a.s. by the strong law of large numbers,

n
n′
→ 1

P (N1>1) a.s.. Hence, n
n′

= Op(1). Now

|B̂00 −B00| =
n

n′
|n
′

n
(B̂00 −B00)| = Op(

1√
n

).

Hence,

|B̃00 −B00| = Op(
1√
nηµ

) +Op(n−
1
2η
− 1

2−ε
g + η

3
4−ε
g ) +Op(

1√
n

).

We can obtain the same bounds for other terms. Then by the same argument as in the proof

of Lemma 4, we have

‖Ŝα − Sα‖α ≤
1
α

[
Op(

1√
nηµ

) +Op(n−
1
2η
− 1

2−ε
g + η

3
4−ε
g ) +Op(

1√
n

)
]
.

4.11.5 Proof of Lemma 1

Proof of Lemma 1

We will use the Bernstein’s inequality for bounded variables (see Lemma 2.2.9 in Van Der Vaart

and Wellner [48] or page 855 of Shorack and Wellner [39]). Given 1 ≤ i ≤ K, define i.i.d.

random variables Zj, 1 ≤ j ≤ n, where Zj = 1 if the jth sample observation belongs to the
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i-th class, otherwise Zj = 0. Hence, Zj has the Binomial distribution with parameters 1 and

1/K, and it mean and variance are 1/K and (1 − 1/K)1/K. Let Yj = Zj − 1/K. Then

EYj = 0 and V ar(Yj) = 1/K(1− 1/K). Since −1 ≤ Yi ≤ 1, by the Bernstein’s inequality for

bounded variables,

P (|Y1 + · · ·+ Yn| > x) ≤ 2 exp (−1
2

x2

nV ar(Y1) + x/3),

for any x > 0. For any constant C > 0, let x = nC
√

log p
Kn

. Then we have

P

∣∣∣∣nin − 1
K

∣∣∣∣ > C

√
log p
Kn

 = P

|Y1 + · · ·+ Yn| > nC

√
log p
Kn


≤2 exp

−1
2

n2C2 log p
Kn

n
K

(1− 1
K

) + nC3

√
log p
Kn

 ≤ 2 exp
−1

2
C2 log p

1 + C
3

√
K log p
n

. (4.145)

By the conditions, p ≥ 2,
√
K log p/n ≤ d0 and K ≤ p+ 1, (4.145) gives

P

 max
1≤i≤K

∣∣∣∣nin − 1
K

∣∣∣∣ > C

√
log p
Kn

 ≤ 2K exp
−1

2
C2 log p

1 + C
3

√
K log p
n

 (4.146)

≤2(p+ 1) exp
(
− C2 log p

2 + 2Cd0/3

)
≤ 2(p+ 1)p−C2/(2+2Cd0/3) ≤ p3−C2/(2+2Cd0/3).

For any M > 0, when C ≥ (M + 3)(d0 + 1), we have C > 3 and

(M + 3)(2 + 2Cd0/3) ≤ (M + 3)(C + Cd0) ≤ C(M + 3)(d0 + 1) ≤ C2.

Then C2/(2 + 2Cd0/3)− 3 ≥M and by (4.146), we have

P

 max
1≤i≤K

∣∣∣∣nin − 1
K

∣∣∣∣ > C

√
log p
Kn

 ≤ p3−C2/(2+2Cd0/3) ≤ p−M .

4.11.6 Proof of Lemma 2

Proof of Lemma 2

Given 1 ≤ k ≤ K − 1, let ti = µT
i αk for i = 1, . . . , K. Then we have tK = −∑K−1

i=1 ti because
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∑K
i=1 ti = (∑K

i=1 µi)Tαk = 0 by (3.2). By (3.22),

Σαk = 1
λk(Ξ)Bαk = 1

λk(Ξ)K

K∑
i=1

µi(µT
i αk) = 1

λk(Ξ)K

[
K−1∑
i=1

tiµi + tKµK

]

= 1
λk(Ξ)K

[
K−1∑
i=1

tiµi −
K−1∑
i=1

tiµK

]
= 1
λk(Ξ)K

K−1∑
i=1

ti(µi − µK) (4.147)

It follows from (4.147) that

‖Σαk‖1 ≤
1

λk(Ξ)K

K−1∑
i=1
|ti|‖µi − µK‖1 ≤

1
λk(Ξ)K (

K∑
i=1
|ti|)

(
max

1≤i 6=j≤K
‖µi − µj‖1

)

≤ 1
λk(Ξ)K

√√√√K K∑
i=1

t2i

(
max

1≤i 6=j≤K
‖µi − µj‖1

)
= 1
λk(Ξ)

√∑K
i=1 t

2
i

K

(
max

1≤i 6=j≤K
‖µi − µj‖1

)

= 1√
λk(Ξ)

(
max

1≤i 6=j≤K
‖µi − µj‖1

)
, (4.148)

where the last equality is due to ∑K
i=1 t

2
i /K = ∑K

i=1(µT
i αk)2/K = αT

kBαk = λk(Ξ). By

Condition 2 (c), λk(Ξ) ≥ λK−1(Ξ) ≥ c−1
3 λ1(Ξ) which together with (4.148) give

max
1≤k≤K−1

‖Σαk‖1 ≤
√
c3√

λ1(Ξ)

(
max

1≤i 6=j≤K
‖µi − µj‖1

)
.

On the other hand, given 1 ≤ i 6= j ≤ K, by (4.152) in the proof of Lemma 8,

µj − µi = B
K−1∑
k=1

skαk =
K−1∑
k=1

skλk(Ξ)Σαk, (4.149)

where sk’s are real numbers. Multiplying αT
k on both sides of (4.149), we can obtain

αT
k (µj − µi) = skλk(Ξ). Note that by Lemma 9 and Condition 1 (b),

‖µj − µi‖2
2 ≤ c0(µi − µj)TΣ(µi − µj) ≤ 2c0λmax(∆) = 2c0λ1(∆) = 2c0Kλ1(Ξ), (4.150)
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and ‖αk‖2
2 ≤ c0α

T
kΣαk = c0. By (4.149) and (4.150),

‖µj − µi‖1 ≤
K−1∑
k=1
|skλk(Ξ)|‖Σαk‖1 =

K−1∑
k=1
|αT

k (µj − µi)|‖Σαk‖1

≤
K−1∑
k=1
‖αk‖2‖µj − µi‖2‖Σαk‖1 ≤ (K − 1)√c0

√
2c0Kλ1(Ξ)

(
max

1≤k≤K−1
‖Σαk‖1

)
. (4.151)

Therefore,

1
(K − 1)c0

√
2Kλ1(Ξ)

(
max

1≤i 6=j≤K
‖µi − µj‖1

)
≤ max

1≤k≤K−1
‖Σαk‖1 .

4.11.7 Proof of Lemma 8

Proof of Lemma 8

By the definition (3.3) of B, for any 1 ≤ i 6= j ≤ K − 1,

(UTαi)T(UTαj) = αT
i UUTαj = KαT

i Bαj = Kλj(Ξ)αT
i Σ

Tαj = 0,

and by (3.2), 1T
KUTαi = 0 for any 1 ≤ i ≤ K − 1. Therefore, {1K ,UTα1, · · · ,UTαK−1}

forms an orthogonal basis of RK . For any 1 ≤ i 6= j ≤ K, let vij be the vector in RK with

all coordinates equal to zero except the ith and the j-th coordinates which are equal to −1

and 1, respectively. Let

vij = a1K +
K−1∑
k=1

bkUTαk,

be the orthogonal expansion of vij , where and a and bk are coefficients. Since vij is orthogonal

to 1K , we have a = 0. Now

µj − µi = Uvij = U
K−1∑
k=1

bkUTαk = Bz, (4.152)
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where z = K
∑K−1
k=1 bkαk is a linear combination of αk, 1 ≤ k ≤ K − 1. By the eigen-

decomposition, Σ−1/2BΣ−1/2 = Ξ = ∑K−1
k=1 λk(Ξ)γkγT

k . Hence,

B =
K−1∑
k=1

λk(Ξ)Σ1/2γkγ
T
k Σ

1/2 =
K−1∑
k=1

λk(Ξ)Σαkα
T
kΣ.

Because αT
kB = λk(Ξ)αT

kΣ and

D(µj − µi) =
K−1∑
k=1

αkα
T
kBz =

K−1∑
k=1

λk(Ξ)αkα
T
kΣz = Σ−1

K−1∑
k=1

λk(Ξ)Σαkα
T
kΣz

=Σ−1Bz = Σ−1(µj − µi). (4.153)

Hence, the lemma is proved.

4.11.8 Proof of Lemma 9

Proof of Lemma 9

Let Φ = Σ−1/2U. Then by the definitions the definition (3.3) and (3.21), we have

∆ = ΦTΦ, Ξ = 1
K

ΦΦT.

By (3.2), U1K = 0, where 1K = (1, 1, · · · , 1)T. Hence ∆1K = 0. Since ∆ is K×K, the rank

of ∆ is at most K − 1 and it has at most K − 1 nonzero eigenvalues. For any 1 ≤ i ≤ K − 1,

since γi is the i-th eigenvector of Ξ with the eigenvalue λi(Ξ), we have

∆ΦTγi = ΦTΦΦTγi = KΦTΞγi = KΦλi(Ξ)γi = Kλi(Ξ)Φγi. (4.154)

Therefore, ΦTγi is the eigenvector of ∆ with the eigenvalue Kλi(Ξ), 1 ≤ i ≤ K − 1. Hence,

all the nonzero eigenvalues of ∆ are

λK−1(∆) = KλK−1(Ξ) ≤ · · · ≤ λ2(∆) = Kλ2(Ξ) ≤ λ1(∆) = Kλ1(Ξ).
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To prove the inequalities in the lemma, we define vij to be the K-vector with all coordinates

are equal to zeros except the ith and jth coordinates which are equal to 1 and -1, respectively,

where 1 ≤ i 6= j ≤ K. Then

(µi − µj)TΣ−1(µi − µj) = vT
ijUTΣ−1Uvij = vT

ij∆vij ≤ ‖vij‖2
2λmax(∆) = 2λmax(∆),

and vT
ij1K = 0. Since 1K is the eigenvector of ∆ with eigenvalue zero, all the eigenvalues of

∆ + λ+
min(∆)1K1T

K/K are not less than λ+
min(∆), where λ+

min(∆) = λK−1(∆) = KλK−1(Ξ).

Hence,

(µi − µj)TΣ−1(µi − µj) = vT
ij∆vij = vT

ij

[
∆ + λ+

min(∆)1K1T
K/K

]
vij

≥‖vij‖2
2λ

+
min(∆) = 2λ+

min(∆) = 2λK−1(∆) = 2KλK−1(Ξ) ≥ 2Kc1,

where the last inequality is due to Condition 2 (a).

4.11.9 Proof of Lemma 10

Proof of Lemma 10

We only consider the case that (n1, n2, · · · , nK) follows a multinomial distribution. For

the nonrandom case, a similar argument can prove the lemma. Let x̄kj denote the k-th

coordinate of the j-th sample class mean x̄j and σkk is the k-th diagonal element of Σ. Since
√
ni(x̄kj − µk

j )/
√
σkk has a standard normal distribution, for any C1 > 0,

P

|x̄kj − µk
j | ≥ C1

√√√√σkk log p
nj


=1− Φ(C1

√
log p) ≤ φ(C1

√
log p)

C1
√

log p

= 1√
2π log pC1pC

2
1/2
, (4.155)

where Φ and φ are the cumulative and density functions of the standard normal distribution
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and we use the inequality 1 − Φ(x) ≤ φ(x)/x for any x > 0 (see page 850 in Shorack and

Wellner [39]). For any M ′ > 0, let C ′ = 2(M ′ + 3). Since K log p/n → 0,
√
K log p/n ≤

min{1, 1/(2C ′)} for all n large enough. By Lemma 1,

P

 max
1≤i≤K

∣∣∣∣nin − 1
K

∣∣∣∣ ≤ C ′
√

log p
Kn

 ≥ 1− p−M ′ . (4.156)

Since C ′
√

log p/(Kn) = (C ′
√
K log p/n)/K ≤ 1/(2K), the inequality in the parenthesis in

(4.156) implies min1≤i≤K ni ≥ n/(2K). Hence, we have P (min1≤i≤K ni ≥ n/(2K)) ≥ 1−p−M ′ ,

which together with (4.155) and the inequality |σkk| ≤ λmax(Σ) ≤ c0 (see Condition 1 (b))

leads to

P

|x̄kj − µk
j | ≥ C1

√
2c0K log p

n


≤P

|x̄kj − µk
j | ≥ C1

√√√√σkk log p
nj

, min
1≤i≤K

ni ≥ n/(2K)


+ P ( min
1≤i≤K

ni < n/(2K))

≤ 1√
2π log pC1pC

2
1/2

+ p−M
′
.

Hence, it follows from the above inequality that

P

 max
1≤j≤K

‖x̄j − µj‖∞ > C1

√
c0K log p

n


≤

∑
1≤j≤K

∑
1≤k≤p

P

|x̄kj − µk
j | ≥ C1

√
c0K log p

n


≤ Kp√

2π log pC1pC
2
1/2

+Kpp−M
′
.

Since K ≤ p + 1 ≤ p2, for any M > 0, we choose C1 large enough such that the first term

on the right hand side of the above inequality is less than p−M/2. Let M ′ = M + 4, then

the second term on the right hand side of the above inequality is less than p−M−1 ≤ pM/2.

Hence, (4.19) is true for C ≥ C1
√
c0 and all n large enough.
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4.11.10 Proof of Lemma 11

Proof of Lemma 11

In this proof, we only consider the element in Ωn. Since ξ̂1 is the solution to (3.12) with

j = 1, we have

‖ξ̂1 − B̂α̂1‖2
2 + κn‖ξ̂1‖1 ≤ ‖Bα1 − B̂α̂1‖2

2 + κn‖Bα1‖1 (4.157)

where

‖ξ̂1 − B̂α̂1‖2
2 = ‖ξ̂1 −Bα1‖2

2 + 2(ξ̂1 −Bα1)T (Bα1 − B̂α̂1) + ‖Bα1 − B̂α̂1‖2
2. (4.158)

It follows from (4.157) and (4.158) that

‖ξ̂1 −Bα1‖2
2 + 2(ξ̂1 −Bα1)T (Bα1 − B̂α̂1) + κn‖ξ̂1‖1 ≤ κn‖Bα1‖1 (4.159)

By Theorem 3.3.4, the definition (3.27) of Ωn, the definition (3.33) of Λp and the fact that

‖B‖ ≤ λ1(Ξ)‖Σ‖ ≤ λ1(Ξ)c0,

2(ξ̂1 −Bα1)T (Bα1 − B̂α̂1)

=2(ξ̂1 −Bα1)T (Bα1 −Bα̂1) + 2(ξ̂1 −Bα1)T (Bα̂1 − B̂α̂1)

≥− 2‖ξ̂1 −Bα1‖2‖Bα1 −Bα̂1‖2 − 2‖ξ̂1 −Bα1‖1‖B− B̂‖∞‖α̂1‖1

≥− 2‖ξ̂1 −Bα1‖2‖Bα1 −Bα̂1‖2 − 2(‖ξ̂1‖1 + ‖Bα1‖1)‖B− B̂‖∞‖α̂1‖1

≥− 2‖ξ̂1 −Bα1‖2‖Bα1 −Bα̂1‖2 − 2(‖ξ̂1‖1 + λ1(Ξ)‖Σα1‖1)‖B− B̂‖∞
√

6‖α1‖2
1/λ0

≥− 2‖ξ̂1 −Bα1‖2‖B‖‖α1 − α̂1‖2 − 2(‖ξ̂1‖1 + λ1(Ξ)Λp)(τn/C2)(
√

6Λ2
p/λ0)

≥− 2‖ξ̂1 −Bα1‖2λ1(Ξ)c0

√
C5c0

√
Λ2
psn − 2(C/C2)

√
6/λ0λ1(Ξ)Λ2

psn

− 2(C/C2)
√

6/λ0Λpsn‖ξ̂1‖1



126

which together with (4.159) lead to

‖ξ̂1 −Bα1‖2
2 − 2‖ξ̂1 −Bα1‖2λ1(Ξ)c0

√
C5c0

√
Λ2
psn − 2(C/C2)

√
6/λ0λ1(Ξ)Λ2

psn

− 2(C/C2)
√

6/λ0Λpsn‖ξ̂1‖1 + κn‖ξ̂1‖1 ≤ κn‖Bα1‖1 = κnλ1(Ξ)‖Σα1‖1

≤κnλ1(Ξ)Λn = C̃λ1(Ξ)2Λ2
psn. (4.160)

Then we have

(
‖ξ̂1 −Bα1‖2 − λ1(Ξ)c0

√
C5c0

√
Λ2
psn

)2
+
(
κn − 2(C/C2)

√
6/λ0Λpsn

)
‖ξ̂1‖1

≤
(
C̃λ1(Ξ)2 + 2(C/C2)

√
6/λ0λ1(Ξ) + λ1(Ξ)2(C5c

3
0)
)

Λ2
psn

≤
(
C̃ + 2(C/C2)

√
6/λ0c

−1
1 + (C5c

3
0)
)
λ1(Ξ)2Λ2

psn (4.161)

where the last inequality is due to λ1(Ξ) ≥ c1 by Condition 2 (a). Then it follows from

(4.161) that

(
‖ξ̂1 −Bα1‖2 − λ1(Ξ)c0

√
C5c0

√
Λ2
psn

)2

≤
(
C̃ + 2(C/C2)

√
6/λ0c

−1
1 + (C5c

3
0)
)
λ1(Ξ)2Λ2

psn

which implies that

‖ξ̂1 −Bα1‖2 ≤
(√

C̃ + 2(C/C2)
√

6/λ0c
−1
1 + (C5c3

0) + c0

√
C5c0

)
λ1(Ξ)

√
Λ2
psn. (4.162)

It also follows from (4.161) that

(
κn − 2(C/C2)

√
6/λ0Λpsn

)
‖ξ̂1‖1 ≤

(
C̃ + 2(C/C2)

√
6/λ0c

−1
1 + (C5c

3
0)
)
λ1(Ξ)2Λ2

psn.

(4.163)
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We take C̃ > 2(C/C2)
√

6/λ0c
−1
1 . Then

κn − 2(C/C2)
√

6/λ0Λpsn = C̃λ1(Ξ)Λpsn − 2(C/C2)
√

6/λ0Λpsn

≥ C̃λ1(Ξ)Λpsn − 2(C/C2)
√

6/λ0c
−1
1 λ1(Ξ)Λpsn =

(
C̃ − 2(C/C2)

√
6/λ0c

−1
1

)
λ1(Ξ)Λpsn

which together with (4.163) lead to

‖ξ̂1‖1 ≤
[(
C̃ + 2(C/C2)

√
6/λ0c

−1
1 + (C5c

3
0)
)
/
(
C̃ − 2(C/C2)

√
6/λ0c

−1
1

)]
λ1(Ξ)Λp. (4.164)

Therefore, the lemma follows from (4.162) and (4.164) with

C6 =
(√

C̃ + 2(C/C2)
√

6/λ0c
−1
1 + (C5c3

0) + c0

√
C5c0

)
,

C7 =
(
C̃ + 2(C/C2)

√
6/λ0c

−1
1 + (C5c

3
0)
)
/
(
C̃ − 2(C/C2)

√
6/λ0c

−1
1

)
.

4.11.11 Proof of Lemma 12

Proof of Lemma 12

We only consider elements in the event Ωn. Because γk is the k-th eigenvector of Ξ, it is

the solution to

max
γ∈V⊥

k−1

γTΞγ

‖γ‖2
2
.

Since the projection (I−Pk−1)γ̂k ∈ V⊥k−1 and ‖(I−Pk−1)γ̂k‖2 ≤ ‖γ̂k‖2, we have

γ̂T
k (I−Pk−1)Ξ(I−Pk−1)γ̂k

‖γ̂k‖2
2

≤ γ̂T
k (I−Pk−1)Ξ(I−Pk−1)γ̂k
‖(I−Pk−1)γ̂k‖2

2
≤ γT

k Ξγk
γT
k γk

= λk(Ξ). (4.165)
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It can be seen that Pk−1 = ∑k−1
i=1 γiγ

T
i , hence

ΞPk−1 =
k−1∑
i=1

Ξγiγ
T
i =

k−1∑
i=1

λi(Ξ)γiγT
i , Pk−1ΞPk−1 = ΞPk−1. (4.166)

By (4.166),

γ̂T
k (I−Pk−1)Ξ(I−Pk−1)γ̂k = γ̂T

k Ξγ̂k − 2γ̂T
k ΞPk−1γ̂k + γ̂T

k Pk−1ΞPk−1γ̂k

=γ̂T
k Ξγ̂k − 2γ̂T

k ΞPk−1γ̂k + γ̂T
k ΞPk−1γ̂k = γ̂T

k Ξγ̂k − γ̂T
k ΞPk−1γ̂k

=γ̂T
k Ξγ̂k −

k−1∑
i=1

λi(Ξ)(γT
i γ̂k)2,

which combined with (4.165) lead to

γ̂T
k Ξγ̂k −

k−1∑
i=1

λi(Ξ)(γT
i γ̂k)2 ≤ λk(Ξ)‖γ̂k‖2

2 = λk(Ξ)γ̂T
k γ̂k.

Then we have

γ̂T
k Ξγ̂k ≤ λk(Ξ)γ̂T

k γ̂k +
k−1∑
i=1

λi(Ξ)(γT
i γ̂k)2 ≤ λk(Ξ)γ̂T

k γ̂k + λ1(Ξ)
k−1∑
i=1

(γT
i γ̂k)2

≤λk(Ξ)
[
γ̂T
k γ̂k + c3

k−1∑
i=1

(γT
i γ̂k)2

]
, (4.167)

where the last inequality is due to Condition 2(b). Because α̂k is the solution to

max
α∈Ŵ⊥

k−1

αTB̂α

αTΣ̂α + τn‖α‖2
λn

, (4.168)

and noting that (I− Q̂k−1)αk ∈ Ŵ⊥
k−1, α̂k = Σ−1/2γ̂k and α̂T

k Σ̂α̂k + τn‖α̂k‖2
λn = 1, we have

γ̂T
k Σ

−1/2B̂Σ−1/2γ̂k = α̂T
k B̂α̂k = α̂T

k B̂α̂k

α̂T
k Σ̂α̂k + τn‖α̂k‖2

λn

≥ αT
k (I− Q̂k−1)B̂(I− Q̂k−1)αk

αT
k (I− Q̂k−1)Σ̂(I− Q̂k−1)αk + τn‖(I− Q̂k−1)αk‖2

λn

, (4.169)
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By (4.167) and the definition of Ωn, the left hand side of (4.169)

γ̂T
k Σ

−1/2B̂Σ−1/2γ̂k ≤ γ̂T
k Σ

−1/2BΣ−1/2γ̂k + ‖B̂−B‖∞‖Σ−1/2γ̂k‖2
1

≤γ̂T
k Ξγ̂k + 1

C2
τn‖Σ−1/2γ̂k‖2

1 ≤ γ̂T
k Ξγ̂k + λk(Ξ)

c1

1
C2
τn‖Σ−1/2γ̂k‖2

1

≤λk(Ξ)
[
γ̂T
k γ̂k + c3

k−1∑
i=1

(γT
i γ̂k)2 + c−1

1
C2

τn‖α̂k‖2
1

]
(4.170)

where we use λk(Ξ) ≥ c1. Now

γ̂T
k γ̂k = γ̂T

k γ̂k − γ̂T
k Σ

−1/2Σ̂Σ−1/2γ̂k + γ̂T
k Σ

−1/2Σ̂Σ−1/2γ̂k (4.171)

=γ̂T
k Σ

−1/2(Σ− Σ̂)Σ−1/2γ̂k + α̂T
k Σ̂α̂k ≤ ‖Σ− Σ̂‖∞‖Σ−1/2γ̂k‖2

1 + α̂T
k Σ̂α̂k

≤ 1
C2
τn‖α̂k‖2

1 + α̂T
k Σ̂α̂k = α̂T

k Σ̂α̂k + 1
C2
τn‖α̂k‖2

1 = 1− τn‖α̂k‖λn + 1
C2
τn‖α̂k‖2

1

≤1− λnτn‖α̂k‖1 + 1
C2
τn‖α̂k‖2

1 = 1− (λn − 1/C2)τn‖α̂k‖2
1.

Because as n is large enough, λn − 1/C2 ≥ λn − (1 + c−1
1 )/C2 = λn − λ0/2 > λ0/2, (4.171)

gives ‖γ̂k‖2
2 ≤ 1. On the other hand,

γ̂T
k γ̂k = γ̂T

k γ̂k − γ̂T
k Σ

−1/2Σ̂Σ−1/2γ̂k + γ̂T
k Σ

−1/2Σ̂Σ−1/2γ̂k

=γ̂T
k Σ

−1/2(Σ− Σ̂)Σ−1/2γ̂k + α̂T
k Σ̂α̂k ≥ α̂T

k Σ̂α̂k − ‖Σ− Σ̂‖∞‖Σ−1/2γ̂k‖2
1

≥α̂T
k Σ̂α̂k −

1
C2
τn‖α̂k‖2

1 = 1− τn‖α̂k‖λn −
1
C2
τn‖α̂k‖2

1 ≥ 1− (1 + 1/C2)τn‖α̂k‖2
1,

which together with (4.171) lead to

1− (1 + 1/C2)τn‖α̂k‖2
1 ≤ ‖γ̂k‖2

2 ≤ 1, (4.172)
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as n is large enough. It follows from (4.170) and (4.171) that

γ̂T
k Σ

−1/2B̂Σ−1/2γ̂k ≤ λk(Ξ)
[
1− (λn − 1/C2)τn‖α̂k‖2

1 + c3

k−1∑
i=1

(γT
i γ̂k)2 + c−1

1
C2

τn‖α̂k‖2
1

]

=λk(Ξ)
[
1− (λn − (1 + c−1

1 )/C2)τn‖α̂k‖2
1 + c3

k−1∑
i=1

(γT
i γ̂k)2

]

=λk(Ξ)
[
1− (λn − λ0/2)τn‖α̂k‖2

1 + c3

k−1∑
i=1

(γT
i γ̂k)2

]
(4.173)

where we use (1 + c−1
1 )/C2 = λ0/2 by the definition (3.26) of C2. Next, we calculate the right

hand side of (4.169). Let βk = (I− Q̂k−1)αk.

βT
k Bβk = αT

k (I− Q̂k−1)B(I− Q̂k−1)αk = αT
kBαk − 2αT

k Q̂k−1Bαk + αT
k Q̂k−1BQ̂k−1αk

≥αT
kBαk − 2αT

k Q̂k−1Bαk = λk(Ξ)
[
αT
kΣαk − 2αT

k Q̂k−1Σαk

]
. (4.174)

On the other hand,

βT
kΣβk = αT

k (I− Q̂k−1)Σ(I− Q̂k−1)αk = αT
kΣαk − 2αT

k Q̂k−1Σαk + αT
k Q̂k−1ΣQ̂k−1αk

≤αT
kΣαk − 2αT

k Q̂k−1Σαk + ‖Σ‖‖Q̂k−1αk‖2
2 ≤ αT

kΣαk − 2αT
k Q̂k−1Σαk + c0‖Q̂k−1αk‖2

2.

(4.175)

Then by the definition (3.27) of Ωn, (4.174), (4.175) and Condition 2 (a), the right hand side

of (4.169) is equal to

βT
k B̂βk

βT
k Σ̂βk + τn‖βk‖2

λn

≥ βT
k Bβk − ‖B̂−B‖∞‖βk‖2

1

βT
kΣβk + ‖Σ̂−Σ‖∞‖βk‖2

1 + τn‖βk‖2
1

≥
βT
k Bβk − 1

C2
τn‖βk‖2

1

βT
kΣβk + 1

C2
τn‖βk‖2

1 + τn‖βk‖2
1

≥
λk(Ξ)

[
αT
kΣαk − 2αT

k Q̂k−1Σαk

]
− λk(Ξ) c

−1
1
C2
τn‖βk‖2

1

αT
kΣαk − 2αT

k Q̂k−1Σαk + c0‖Q̂k−1αk‖2
2 + (1 + 1/C2)τn‖βk‖2

1
. (4.176)
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Now by (4.169), (4.173) and (4.176),

λk(Ξ)
[
αT
kΣαk − 2αT

k Q̂k−1Σαk

]
− λk(Ξ) c

−1
1
C2
τn‖βk‖2

1

αT
kΣαk − 2αT

k Q̂k−1Σαk + c0‖Q̂k−1αk‖2
2 + (1 + 1/C2)τn‖βk‖2

1

≤λk(Ξ)
[
1− (λn − λ0/2)τn‖α̂k‖2

1 + c3

k−1∑
i=1

(γT
i γ̂k)2

]
,

which, by a simple calculation, leads to

(λn − λ0/2)τn‖α̂k‖2
1

≤
c0‖Q̂k−1αk‖2

2 + (1 + 1/C2)τn‖βk‖2
1 + c−1

1
C2
τn‖βk‖2

1

αT
kΣαk − 2αT

k Q̂k−1Σαk + c0‖Q̂k−1αk‖2
2 + (1 + 1/C2)τn‖βk‖2

1
+ c3

k−1∑
i=1

(γT
i γ̂k)2

= c0‖Q̂k−1αk‖2
2 + (1 + λ0/2)τn‖βk‖2

1

1− 2αT
k Q̂k−1Σαk + c0‖Q̂k−1αk‖2

2 + (1 + 1/C2)τn‖βk‖2
1

+ c3

k−1∑
i=1

(γT
i γ̂k)2

≤c0‖Q̂k−1αk‖2
2 + (1 + λ0/2)τn‖βk‖2

1

1− 2c3/2
0 ‖Q̂k−1αk‖2

+ c3

k−1∑
i=1

(γT
i γ̂k)2, (4.177)

where we use

‖αi‖2
2 ≤ ‖Σ−1‖‖Σ1/2αi‖2

2 = ‖Σ−1‖‖γk‖2
2 = ‖Σ−1‖ ≤ c0. (4.178)

We will estimate terms on the right hand side of (4.177). By (4.76), we have

P̂k−1γ̂k = 0, Qk−1αk = 0. (4.179)

Since we assume that (4.77) is true for all 1 ≤ i ≤ k − 1 and all n large enough, by (4.172),

(4.178) and (4.179), we have

k−1∑
i=1

(γT
i γ̂k)2 = ‖Pk−1γ̂k‖2

2 = ‖Pk−1γ̂k − P̂k−1γ̂k‖2
2 ≤ ‖P̂k−1 −Pk−1‖2‖γ̂k‖2

2

≤‖P̂k−1 −Pk−1‖2 ≤ Ck−1,3Λ2
psn

and ‖Q̂k−1αk‖2
2 = ‖Q̂k−1αk −Qk−1αk‖2

2 ≤ ‖Q̂k−1 −Qk−1‖2‖αk‖2
2,

≤ c0‖Q̂k−1 −Qk−1‖2 ≤ c0Ck−1,4Λ2
psn. (4.180)
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Next, we estimate ‖βk‖1. Let Q̂k−1αk = ∑k−1
i=1 tiξ̂i, where t = (t1, · · · , tk−1) is the coefficient

vector. By (4.77),

‖Q̂k−1αk‖1 ≤
k−1∑
i=1
|ti| max

1≤i≤k−1
‖ξ̂i‖1 ≤ ‖t‖1

(
max

1≤i≤k−1
Ci,5

)
λ1(Ξ)Λp. (4.181)

To find an upper bound for ‖t‖1, we multiply αT
j , 1 ≤ j ≤ k − 1, on both sides of

Q̂k−1αk = ∑k−1
i=1 tiξ̂i = ∑k−1

i=1 tiξi −
∑k−1
i=1 ti(ξi − ξ̂i), then by (4.77) and (4.178), we have

|αT
j Q̂k−1αk| =

∣∣∣∣∣
k−1∑
i=1

tiα
T
j ξi −

k−1∑
i=1

tiα
T
j (ξi − ξ̂i)

∣∣∣∣∣ =
∣∣∣∣∣λj(Ξ)tj −

k−1∑
i=1

tiα
T
j (ξi − ξ̂i)

∣∣∣∣∣
≥λj(Ξ)|tj| −

k−1∑
i=1
|ti|‖ξi − ξ̂i‖2‖αj‖2 ≥ λj(Ξ)|tj| − c1/2

0

k−1∑
i=1
|ti|‖ξi − ξ̂i‖2

≥λj(Ξ)|tj| − c1/2
0

k−1∑
i=1
|ti|

(
max

1≤i≤k−1
‖ξi − ξ̂i‖2

)

≥λj(Ξ)|tj| − c1/2
0 ‖t‖1

(
max

1≤i≤k−1

√
Ci,6

)
λ1(Ξ)

√
Λ2
psn

≥λ1(Ξ)
[
c−1

3 |tj| − c
1/2
0 ‖t‖1

(
max

1≤i≤k−1

√
Ci,6

)√
Λ2
psn

]
, (4.182)

where the last inequality is due to Condition 2 (c). On the other hand, by (4.179) and (4.178),

|αT
j Q̂k−1αk| = |αT

j (Q̂k−1 − Qk−1)αk| ≤ ‖Q̂k−1 − Qk−1‖‖αj‖2‖αk‖2 ≤ c0‖Q̂k−1 − Qk−1‖

which together with (4.182) leads to

λ1(Ξ)c−1
3 ‖t‖1 = λ1(Ξ)c−1

3

k−1∑
j=1
|tj|

≤
k−1∑
j=1
|αT

j Q̂k−1αk|+ (k − 1)c1/2
0 ‖t‖1

(
max

1≤i≤k−1

√
Ci,6

)
λ1(Ξ)

√
Λ2
psn

≤(k − 1)c0‖Q̂k−1 −Qk−1‖+ (k − 1)c1/2
0 ‖t‖1

(
max

1≤i≤k−1

√
Ci,6

)
λ1(Ξ)

√
Λ2
psn

By solving the above inequality, we obtain

‖t‖1 ≤
[
c−1

3 − (k − 1)c1/2
0

(
max

1≤i≤k−1

√
Ci,6

)√
Λ2
psn

]−1
λ1(Ξ)−1(k − 1)c0‖Q̂k−1 −Qk−1‖,

which together (4.181) imply ‖Q̂k−1αk‖1 ≤ O(1)‖Q̂k−1 − Qk−1‖Λp = o(1)Λp by (4.77).
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Therefore,

‖βk‖1 = ‖αk − Q̂k−1αk‖1 ≤ ‖αk‖1 + ‖Q̂k−1αk‖1 = (1 + o(1))Λp ≤ 2Λp, (4.183)

as n is large enough. By (4.177), (4.180) and (4.183), and noting that λn > λ0 as n is large

enough, we have

‖α̂k‖1 ≤ Ck,1Λp, (4.184)

for all n large enough, where Ck,1 is a constant only depending Ci,j, 1 ≤ i ≤ k − 1 and

1 ≤ j ≤ 6, λ0, C, C2, C̃ and the constants in Conditions 1 and 2. By (4.167), (4.172) and

(4.180),

γ̂T
k Ξγ̂k ≤ λk(Ξ)

[
γ̂T
k γ̂k + c3

k−1∑
i=1

(γT
i γ̂k)2

]
≤ λk(Ξ)

[
1 + c3Ck−1,3Λ2

psn
]
. (4.185)

By (4.169) and (4.176),

γ̂T
k Ξγ̂k = γ̂T

k Σ
−1/2BΣ−1/2γ̂k ≥ γ̂T

k Σ
−1/2B̂Σ−1/2γ̂k − ‖B̂−B‖∞‖Σ−1/2γ̂k‖2

1

≥
λk(Ξ)

[
αkΣαk − 2αkQ̂k−1Σαk

]
− λk(Ξ) c

−1
1
C2
τn‖βk‖2

1

αkΣαk − 2αkQ̂k−1Σαk + c0‖Q̂k−1αk‖2
2 + (1 + 1/C2)τn‖βk‖2

1
− τn‖α̂k‖2

1/C2. (4.186)

By the similar arguments as in (4.177) and (4.184), we have

γ̂T
k Ξγ̂k/λk(Ξ)− 1

≥
c0‖Q̂k−1αk‖2

2 + (1 + 1/C2)τn‖βk‖2
1 + c−1

1
C2
τn‖βk‖2

1

αT
kΣαk − 2αT

k Q̂k−1Σαk + c0‖Q̂k−1αk‖2
2 + (1 + 1/C2)τn‖βk‖2

1
− τn‖α̂k‖2

1/(C2λk(Ξ))

= c0‖Q̂k−1αk‖2
2 + (1 + λ0/2)τn‖βk‖2

1

1− 2αT
k Q̂k−1Σαk + c0‖Q̂k−1αk‖2

2 + (1 + 1/C2)τn‖βk‖2
1
− τn‖α̂k‖2

1/(C2λk(Ξ))

≥c0‖Q̂k−1αk‖2
2 + (1 + λ0/2)τn‖βk‖2

1

1− 2c3/2
0 ‖Q̂k−1αk‖2

− CC−1
2 C2

k,1λk(Ξ)−1Λ2
psn
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which together with (4.180) and (4.183) imply that as n is large enough,

γ̂T
k Ξγ̂k/λk(Ξ)− 1 ≥ −C8Λ2

psn, (4.187)

where C8 is a constant independent of n and p. Combining (4.185) and (4.187), we obtain

|γ̂T
k Ξγ̂k − λk(Ξ)| ≤ C9λk(Ξ)Λ2

psn, (4.188)

where C9 = max (C8, c3Ck−1,3). Let

γ̂k = d1γ1 + d2γ2 + · · ·+ dK−1γK−1 + ĉβ̂ (4.189)

be the orthogonal expansion of γ̂k, where β̂ is an vector orthogonal to each of γK−1, · · · , γ1,

with ‖β̂‖2 = 1.

|γ̂T
k Ξγ̂k − λk(Ξ)|

=
∣∣∣∣∣d2

1λ1(Ξ) + d2
2λ2(Ξ) + · · ·+ d2

K−1λK−1(Ξ)− λk(Ξ)
∣∣∣∣∣

≥
∣∣∣∣∣d2
k − 1

∣∣∣∣∣λk(Ξ)− λk+1(Ξ)
K−1∑
i=k+1

d2
i − λ1(Ξ)

k−1∑
i=1

d2
i

≥
∣∣∣∣∣d2
k − 1

∣∣∣∣∣λk(Ξ)−
∣∣∣∣∣d2
k − 1

∣∣∣∣∣λk+1(Ξ)− (d2
k − 1)λk+1(Ξ)− λk+1(Ξ)

K−1∑
i=k+1

d2
i − λk+1(Ξ)

k−1∑
i=1

d2
i

− (λ1(Ξ)− λk+1(Ξ))
k−1∑
i=1

d2
i

=
∣∣∣∣∣d2
k − 1

∣∣∣∣∣[λk(Ξ)− λk+1(Ξ)]− λk+1(Ξ)
[
K−1∑
i=1

d2
i − 1

]
− (λ1(Ξ)− λk+1(Ξ))

k−1∑
i=1

d2
i

≥
∣∣∣∣∣d2
k − 1

∣∣∣∣∣[λk(Ξ)− λk+1(Ξ)]− λk+1(Ξ)
[
‖γ̂k‖2

2 − 1
]
− λ1(Ξ)

k−1∑
i=1

d2
i

=
∣∣∣∣∣d2
k − 1

∣∣∣∣∣[λk(Ξ)− λk+1(Ξ)]− λk+1(Ξ)
[
‖γ̂k‖2

2 − 1
]
− λ1(Ξ)‖Pk−1γ̂k‖2

2

=
∣∣∣∣∣d2
k − 1

∣∣∣∣∣[λk(Ξ)− λk+1(Ξ)]− λk+1(Ξ)
[
‖γ̂k‖2

2 − 1
]
− λ1(Ξ)‖Pk−1γ̂k −Pk−1γ̂k‖2

2

≥
∣∣∣∣∣d2
k − 1

∣∣∣∣∣[λk(Ξ)− λk+1(Ξ)]− λk+1(Ξ)
[
‖γ̂k‖2

2 − 1
]
− λ1(Ξ)‖P̂k−1 −Pk−1‖2, (4.190)
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where by (4.172), (4.184) and (4.77), as n is large enough,

∣∣∣∣∣‖γ̂k‖2
2 − 1

∣∣∣∣∣ =
∣∣∣∣∣γ̂T
k γ̂k − 1

∣∣∣∣∣ ≤ (1 + 1/C2)τn‖α̂k‖2
1 ≤ (1 + 1/C2)CCk,1Λ2

psn. (4.191)

Hence by (4.180),(4.188),(4.190), (4.191), (4.77) and Condition 2,

∣∣∣∣∣d2
k − 1

∣∣∣∣∣ ≤ C10Λ2
psn, (4.192)

where C10 is a constant independent of n and p. Since γ̂T
k γk = dk > 0, by the orthogonal

decomposition (4.189), (4.191) and (4.192)

∣∣∣∣∣γ̂T
k γk − ‖γk‖2

2

∣∣∣∣∣ =
∣∣∣∣∣dk − 1

∣∣∣∣∣ ≤
∣∣∣∣∣dk − 1

∣∣∣∣∣(dk + 1) =
∣∣∣∣∣d2
k − 1

∣∣∣∣∣ ≤ C10Λ2
psn. (4.193)

and

‖γ̂k − γk‖2
2 =

∣∣∣∣∣‖γ̂k‖2
2 − 2γ̂T

k γk + ‖γk‖2
2

∣∣∣∣∣ ≤
∣∣∣∣∣‖γ̂k‖2

2 − ‖γk‖2
2

∣∣∣∣∣+
∣∣∣∣∣− 2γ̂T

k γk + 2‖γk‖2
2

∣∣∣∣∣
=
∣∣∣∣∣‖γ̂k‖2

2 − 1
∣∣∣∣∣+ 2

∣∣∣∣∣γ̂T
k γk − ‖γk‖2

2

∣∣∣∣∣ ≤ Ck,2Λ2
psn, (4.194)

where Ck,2 = (1 + 1/C2)CCk,1 + 2C10. By (4.184), a similar argument as in the proof of

Lemma 11 leads to

‖ξ̂k‖1 ≤ Ck,5λ1(Ξ)Λp, ‖ξ̂k − ξk‖2
2 ≤ Ck,6λ1(Ξ)Λ2

psn (4.195)

where Ck,5 and Ck,6 are constants independent of n and p. Now we estimate ‖P̂k − Pk‖

and ‖Q̂k − Qk‖. Let ŵk = (I − P̂k−1)ζ̂k/‖(I − P̂k−1)ζ̂k‖2. Then it is easy to show that

P̂k = ŵkŵT
k + P̂k−1 and Pk = γkγ

T
k + Pk−1. Hence,

‖P̂k −Pk‖ = ‖ŵkŵT
k + P̂k−1 − γkγ

T
k −Pk−1‖ ≤ ‖P̂k−1 −Pk−1‖ (4.196)

+ 2‖ŵk − γk‖2‖γk‖2 + ‖ŵk − γk‖2
2 = ‖P̂k−1 −Pk−1‖+ 2‖ŵk − γk‖2 + ‖ŵk − γk‖2

2,
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where

‖ŵk − γk‖2 =
∥∥∥∥∥ (I− P̂k−1)ζ̂k
‖(I− P̂k−1)ζ̂k‖2

− γk

∥∥∥∥∥
2

≤
∥∥∥∥∥ (I− P̂k−1)ζ̂k
‖(I− P̂k−1)ζ̂k‖2

− (I− P̂k−1)
∥∥∥∥∥

2
+ ‖(I− P̂k−1)− γk‖2

≤
∣∣∣1− ‖(I− P̂k−1)ζ̂k‖2

∣∣∣+ ‖(I− P̂k−1)ζ̂k − γk‖2. (4.197)

By (4.180) , (4.195) and (4.77)

‖(I− P̂k−1)ζ̂k − γk‖2 = ‖(I− P̂k−1)(ζ̂k − γk)− P̂k−1γk‖2

=‖(I− P̂k−1)(ζ̂k − γk)− (P̂k−1 −Pk−1)γk‖2 ≤ ‖ζ̂k − γk‖2 + ‖P̂k−1 −Pk−1‖

=‖λk(Ξ)−1Σ−1/2ξ̂k −Σ1/2αk‖2 + ‖P̂k−1 −Pk−1‖

≤λk(Ξ)−1‖Σ−1/2‖‖ξ̂k −Bαk‖2 + ‖P̂k−1 −Pk−1‖ ≤
√
C11Λ2

psn, (4.198)

where C11 is a constant independent of n and p, and we use Condition 2 (c). Hence

∣∣∣‖(I− P̂k−1)ζ̂k‖2 − 1
∣∣∣ =

∣∣∣‖(I− P̂k−1)ζ̂k‖2 − ‖γk‖2

∣∣∣ ≤ ‖(I− P̂k−1)ζ̂k − γk‖2 ≤
√
C11Λ2

psn.

(4.199)

Therefore, by (4.197)-(4.199), ‖ŵk − γk‖2 = 2
√
C11Λ2

psn which together with (4.196) imply

that ‖P̂k − Pk‖ ≤
√
Ck,3Λ2

psn, where Ck,3 is a constant independent of n and p. Let

v̂k = (I − Q̂k−1)ξ̂k/‖(I − Q̂k−1)ξ̂k‖2. Then it is easy to show that Q̂k = v̂kv̂T
k + Q̂k−1 and

Qk = ξkξ
T
k /‖ξk‖2

2 + Qk−1. A similar argument leads to ‖Q̂k −Qk‖ ≤
√
Ck,4Λ2

psn, where Ck,4
is a constant independent of n and p. We have proved the lemma.
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