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EVALUATING VARIANCE OF THE MODEL CREDIBILITY INDEX  

 

By 

Yan Xiao 

Under the Direction of Dr. Jiawei Liu and Dr.Yu-Sheng Hsu 
 

  

ABSTRACT 

Model credibility index is defined to be a sample size under which the power of rejection 

equals 0.5. It applies goodness-of-fit testing thinking and uses a one-number summary statistic as 

an assessment tool in a false model world. The estimation of the model credibility index involves 

a bootstrap resampling technique. To assess the consistency of the estimator of model credibility 

index, we instead study the variance of the power achieved at a fixed sample size. An improved 

subsampling method is proposed to obtain an unbiased estimator of the variance of power. We 

present two examples to interpret the mechanics of building model credibility index and estimate 

its error in model selection. One example is two-way independent model by Pearson Chi-square 

test, and another example is multi-dimensional logistic regression model using likelihood ratio 

test.  
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CHAPTER 1: INTRODUCTION 

1.1 Basic ideas 

Models derived from data provide insights for understanding certain phenomena and 

make predictions (Giudici, 2003, Hand, 2000) [1] [2]. In order to understand the data, the 

goodness-of-fit of the model plays important roles. However, in a real data analysis, one will 

often obtain a wrong model. The distance between the fitted and the true models can be 

measured with statistical distance. The fitted model is usually a convenient conceptual 

representation of the observed phenomenon (Linhart and Zucchini 1986) [3]. 

A probability model is an abstract mechanism from which one can imagine to generate 

the data. To fit a model, one needs to replace the empirical distribution with a theoretical 

probability distribution. A probability model M is an adequate approximation for the data set 

(x1,……, xn) if “typical” samples (X1 (θ),……,Xn (θ)) of sample size n generated using  M  resamples 

the data set ” (x1,……, xn) (Davies 1995)[4]. To assess model, it is necessary to check if the model 

is in agreement with the data of size n by using goodness-of-fit statistic. Other standard 

techniques for the model assessment include the AIC etc, which involve the sample size issue. 

Model credibility index N* proposed in Lindsay and Liu (2005) [5] is a new measure that applies 

goodness-of-fit testing thinking and is independent on the sample size. It uses a one-number 

summary statistic as an assessment tool in a false model world. In this study, we subsequently 

continue the work of Lindsay and Liu (2005) [5]. Accuracy of model credibility index will be 

evaluated and its confidence interval will be constructed. 
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1.2 Definition and Assumption  

Lindsay and Liu (2005) [5] defined the model credibility index N*, as a sample size (less 

than total sample size) under which the power of the test is 0.5. Lindsay and Liu(2005) [5] also 

set the assumption for the model credibility index, that is, total sample size n should be 

sufficiently large that many of the models under investigation are clearly false. Intuitively, N* is 

relative to the model selection. N* is inversely proportional to the squared distance measure that 

was used to construct the test statistics, such as Kullback-Leibler likelihood deviation (1959) [6]. 

The value of N* is independent of sample size n but depends on which goodness-of-fit test is 

chosen. Traditional hypothesis test has played a prominent role in the assessment of models since 

the development of Pearson’s chi-square statistic (Lindsay and Liu 2005) [5]. Under the 

assumption of requiring large enough sample size, models may be rejected due to the law of 

large numbers. The purpose to building N* is to measure the quality of the approximation of 

models to true data generating mechanism under the model false assumption. Then one can find 

out one model which can capture main features of data most economically (Lindsay and Liu 

2005) [5]. The larger the N* value, the better the model fits the data. 

  

1.3 The goals  

After the model credibility index N* is defined, the error of N* estimation will be the 

main focus of this study. At first we apply the index N* in the model selection process. Secondly, 

we can make better interpretation of the data generating mechanism and the characteristics of the 

model. Unlike standard methods for model selection, N* is independent on sample size n, and 

has a straightforward interpretation based on the hypothesis testing methodology.  

Finding the right variance of the model credibility index N* is an important issue in our                         
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study, because it can be used to judge the quality of the new statistic, as a follow up study of 

Lindsay and Liu (2005) [5]. However, directly obtaining the variance of N* will be difficult 

because of the discontinuity of the integers N*. To explore the variability of N*, we consider the 

power obtained by N*, and evaluate the variance of the power by some resampling techniques.  

In chapter 2, we will review detailed information about the model credibility index N*, 

including asymptotic approximation of N*, determination of N* using bootstrap. Beside the 

consistency of N*, we will propose an improved bootstrap method to estimate the variance of the 

power obtained by N*. In chapter 3, we will focus on applying the method on a two-way 

independent model by using Chi-Square goodness-of-fit test. Furthermore, we will carry a 

simulation study to verify the consistency of N*. In chapter 4, a logistic model example will be 

used to illustrate the process of building model credibility index N* and determining its error 

using likelihood ratio test. Finally, in chapter 5, based on the description within several chapters, 

we will make the conclusions about our study and discuss the possible further work.  
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CHAPTER 2: METHODOLOGY 

 
2.1 Review 

 In previous study, Lindsay and Liu (2005) [5] introduced the definition of model 

credibility index N* and used bootstrap method to determinate N*. Before discussing consistency 

of N*, we briefly introduce N* in detail as in this section.  

 

2.1.1 Basic ideas  

As described in Lindsay and Liu (2005) [5], model credibility index is a statistic to 

measure goodness-of-fit models. It depends on the hypothesis testing methodology, but does not 

depend on the sample size used to estimate it. Data X1,…,Xn are iid from distribution F; one is 

interested to test the goodness-of-fit of model M. Let N*(F,M) be the value of sample size that 

gives 0.5 power test between true distribution F and model M, we call the index N* to be model 

credibility index for model M. One can generate this statistic with a known goodness-of-fit 

procedure, such as likelihood ratio test. Typically goodness-of-fit test statistics is based on 

distance measure. In general, the model credibility index N*(F,M) increases when the distance 

decreases. This is because a larger size is required to discriminate F and M when their 

distribution distance becomes smaller.  

To construct model credibility index, we will use significant level α=0.05 for the 

goodness-of-fit test, and 0.5 for the test power. These critical values seem to be arbitrary. The 

value of α only plays a minor role. The power 0.5 is motivated by the 50/50 model decision, 



5 

which greatly facilitates the asymptotic analysis. Those will be clearly shown in the following 

section. 

 

2.1.2 Approximation of N* 

Lindsay and Liu (2005) [5] introduced methodology of how to construct asymptotic 

approximation of the model credibility index based on the likelihood ratio test in multinomial 

model. However, the approximation could be generalized. We show the generalized method in 

this section.  

Lindsay and Liu (2005) [5] derived a simple asymptotic version of the testing index and 

showed that it is proportional to the reciprocal of the squared distance. This in turn leads to an 

elementary consistent estimator of the asymptotic index. This estimator has two important 

usages: first, it can also itself be bootstrapped; second, it provides a simple way to assess the 

variability of the estimated index. 

The distance between a population distribution F and a model element M is defined as the 

likelihood deviation 2nL2(F, M). This is a version of the Kullback-Leibler distance (Kullback, S., 

1959) [6]. It technically operates as a squared distance, which is why we use the superscript 2.  

Let  represents the empirical distribution of data XF̂ 1,…,Xn, likelihood statistic is then   

2nL2( , M). The likelihood ratio test statistic will have the asymptotic chi-squared distributions 

under the null hypothesis. 

F̂

In the likelihood ratio test, one rejected the null hypothesis H0: F ∈  M at significant size  

α, if the likelihood ratio test statistic is large enough, that is  

                                       2n L2        ),(2 αdfx≥
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where is the upper 1-)(2 αdfx α  quantile of chi-squared distribution with degree freedom df.  

The power of the test at sample size n when Μ∉F  is  

                                        }|)(),ˆ(2{ 22 MFxMFnLP dfF ∉≥ α

The model credibility index N* is defined as the sample size at which testing power for the 

alternative H1: F ∉ M is 0.5, that is  

                                      , 5.0}|)(),(2{ 22* =∉≥ MFxMFLNP dfF α

Lindsay and Liu (2005)[5] used the fact that when the model is false, the centered 

likelihood ratio statistic has, asymptotically, a normal distribution with mean zero, and given 

approximation to N* is  

                                        
),(2

)(
2

2
*

MFL
x

N df
asy

α
=   

The power takes 0.5 has enabled one to avoid calculating the asymptotic variance for the 

normal distribution. Clearly, the expression of the approximation N* shows us, an inverse 

relationship to squared distance, the distance between the true sample distribution and the model 

plays a dominated role and α  plays a role only in the numerator of the approximation to 

determinate N*. The smaller the distance between the true sample distribution and the model is, 

the larger the N* value will be. We also demonstrate this with examples in following chapters. In 

our examples, we take value 0.05 forα .  

 

2.1.3 Application of bootstrap  

Bootstrap techniques introduced by Efron (1993) [7], provided a simple and effective 

method to estimate the bias of the estimator, unknown distribution etc. To construct N*, we use 

bootstrap procedure to simulate data sets, and expect to find the estimator of N* under a targeted 
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power of rejecting the false model fitting and estimator of the variance of the power obtained 

at . Bootstrap approach provides a good tool to realize this goal. We employ different 

bootstrap resampling methods to estimate these two estimators, which will be discussed in the 

following paragraphs.  

*N̂

Let X=(x1,….,xn) iid from a distribution F, discrete or continuous. Because bootstrap 

procedure is to generate a set of samples for a data set x1,.......,xn , and each sample can be 

conducted the goodness-of-fit test for the models. To estimate N*, we let the symbol  

represents the empirical data distribution and use  to substitute F, then  We 

claim that null hypothesis is model M includes F, and alternative hypothesis is model M does not 

include F. The bootstrap generates samples under the alternative, so rejection probability is 

power of the test. We can then capture an estimator of N* through this testing procedure by 

bootstrap simulation under various sample size. For any fixed sample size m, we simulate 

bootstrap samples of size m.  Suppose we set simulation 1000 times for bootstrap procedure, we 

test goodness-of-fit for each bootstrap sample. If a significant result for each test is obtain, we 

say this sampling distribution is far from the model M. We count the total number of rejections in 

the 1000 bootstrap samples. When the proportion of rejection is about 500, we let this sample 

size be the estimator of N*. If fail to get 500 times, we need to adjust the sample size until model 

be rejected by 50% of the time. We could carry out this analysis at any value of sample size. 

However,  is limited to be less than or equal to the total sample size n of the original data set. 

Otherwise, the process of seeking  would be noninformative. In order to save computation 

time by bootstrap, it is necessary to start an appropriate value based on the asymptotic 

approximation. 

F̂

F̂ ).,ˆ(ˆ ** MFNN =

*N̂

*N̂
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2.2 Consistency of bootstrap estimation of N* 

After N* is estimated, it is reasonable to evaluate the error of the estimation. However, it 

is difficult to discuss the continuity and consistency for integer N*. Instead, we fix the sample 

size at m and consider the variance of the power. We will analyze the variance of the power to 

provide demonstration for consistency of bootstrap estimator . Lehmann’s theory (1999) [8] 

guarantees the consistent of bootstrap estimator under some general regulations. Further, we will 

propose an improved subsampling estimator method.  

*N̂

Since consistency result of N* is hard to be directly obtained, we need to explore the 

consistency of bootstrap estimator of power at certain sample size.  

Assume that X1,….,Xn are independent identically distributed random variables from the 

distribution F. We generate m bootstrap samples out of X1,….,Xn for simplicity, denoted as 

X1,….,Xm. The test statistic is T m (X1,…,Xm ). Our parameter is the power at sample size m, which 

is expressed as                            

}.),...,
1

({),( t
m

XX
m

T
F

PFm >=β  

Here β  is an estimator of power, and t is a critical value for the test statistic. In theory, the 

expression of the power estimator is an expectation function, 

,)],...,
1

([),(
m

XX
F

EFm φβ =  

where is the indicator function Without loss of 

generality we can assume 

),...,1( mXXφ .}),...,
1

({ t
m

XX
m

TI >

φ to be symmetric in its m arguments. An unbiased estimator of β  can 

be constructed as  
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                                  ( ) )...11 ,...,
1

(...
1

∑ ∑ ≤<<≤= nmii miXiX

m
nU φ . 

The following two theorems state the theory for asymptotic variance and the normal property of 

U in Lehmann (1999) [8]. 

 

Theorem 2.1. If then ,2
)],...,

1,
,...,

1
([

im
X

i
X

i
xxVar σφ =

+

(1)  The variance of U-statistic equal to 

,/)( 2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

= m
n

im
mn

i
m

UVar i

m

i

σ  

(2) If and for all i=1,…,m, then  02 >iσ ∞<2
iσ

2
1

2)( σmUnVar →  

Theorem 2.2.  (Lehmann Theorem) 

(1) If ,then as n ∞<< 20 iσ ∞→  

)2
1

2,0()( σβ mN
d

Un →− ; 

                        (2) If  for all i=1,…,m, then  ∞<2
iσ

)1,0(
)(

N
d

UnVar
U

→
−β . 

Because φ  is the indicator function, conditions  for all i are obviously satisfied. 

The conditions for the consistency of bootstrap estimation of power at sample size m is, as long 

as m

∞<2
iσ

2/n→0 and n→∞.  

In the following section, we will show a new method by which the conditions for the 

consistency are simpler than Lehmann theorem (1999) [8]. 
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2.3 Theory of bootstrap without replacement  

 The basic theory of bootstrap is presented in the context of independent data, that is, 

sampling with replacement.  

A general theory could be derived based on smaller subsets of data. For example, for iid 

data set x1,…,xn, a statistic is computed over entire data and is recomputed over all  data set of 

size m. Politis and Romano (1999)[9] called it as subsampling. The use of subsampling values to 

approximate the variance of a statistic is well known. The jackknife estimate of bias and variance 

has been well studied with m=n-1. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
m
n

 The random subsampling method uses subsets of data to approximate variance of 

statistics. Subsampling shares some similar properties to the bootstrap, in more broad generality.  

X1,…, Xn  is a sample with n iid random variables. The test statistic is .  ),...,( 1 nn XXT

Theorem 2.3: Assume the limiting distribution of exists as n . Also assume 

m→∞ and m/n→0 as n . 

),...,( 1 nn XXT ∞→

∞→

Now let Yi be subset of {X1…..Xn} without overlapping with size m and be the 

statistic evaluated at the data set Y

imnT ,,

mT i.  Y1,…,YNn are the Nn= subsets. Then ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
m
n

)(1
1

,, tTI
N

U
nN

i
imn

n
n >= ∑

=

 

converges to the limiting distribution of in probability. nT

Remark: The proof of consistency of the subsampling distribution proves the consistency of the 

related U statistic. Furthermore, the variance of Un approaches to zero when n as in the 

below Theorem 2.4.                       

∞→
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Theorem 2.4: Under regulation of Theorem 2.3, let k be the greatest integer less than or equal to 

n/m. Let Tn,m,j  be the statistic evaluated  at the data set Xm(j-1)+1,…,Xm(j-1)+m, and set 

∑
=

>=
k

j
jmnn tTI

k
U

1
,, )(1 . Since nU is the average of k iid variables (each is bounded between 0 

and 1). 

0
4
1)( →≤
k

UVar n , 

0)()( →≤ nn UVarUVar , as n ∞→ . 

The Theorems by Politis and Romano (1999) [9] improve the conditions of consistency. It only 

requires m/n  and n  for carefully constructed estimator.  ∞→ ∞→

 

2.4 Improved bootstrap estimation method 

Based on Theorems by Politis and Romano (1999) [9], we propose an improved bootstrap 

method (sampling without replacement) to estimate the variance of power β at size m. We draw 

samples of size m from data X1,…,Xn without replacement. But we control the rate of overlapping 

through techniques states as the below: 

Let the number of overlapping variables be fixed at r and divide data X1,…,Xn up into k 

random disjoint blocks. Let variables in the ith block be denoted as Xr(i-1)+1,...,.Xr(i-1)+r. 

To construct a subset of size m, we then draw the remaining (m-r) variables without 

replacement from the data X1,…,.Xr(i-1),…,Xri+1,…,Xn.  Then carry out the statistical test for the subset 

of m variables, record 1 if the results id a rejection and 0 if the results is not a rejection.  

Repeat generating the (m-r) variables combined ith block B times and the proportion of 

rejection is the simulated power gi.  
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The mean of gi, i=1…k is the estimated power and variance of gi, i=1…k is the unbiased 

variance estimate. 

One might randomly chosen the number of overlapping r=p.m, where p is a random 

number in (0,1). One might take various r and average the variance estimators. 

The idea is similar to the jackknife estimator (which fixes r=m-1). 

 

2.5 Confidence interval of approximations 

The estimator of N* is a point estimator, the confidence interval of N* can be 

constructed. The confidence interval of N* is an interval [N*l, N*h] which is a random interval 

based on the sample. As known in our context, the power is a function of N*.  Therefore, we first 

estimate the power and generate confidence interval of the power β. We take approximately 

Zα/2.σ as the margin error of the estimated power. Confidence interval of the power can be 

expressed as    

 
∧

± Varz 2/
ˆ

αβ  .  

Confidence interval is [βl,  βh].      

Taking inverse of the power function, confidence interval of N* can be obtained. In the 

examples of the following chapters, we will use the described method to generate confidence 

intervals to approximate the power and N*. 

 

2.6 Another variance estimation idea 

 In this section, we provide a rough but convenient approach to estimate the variances of 

power. It also has a fast rate of convergence. In this method we don’t control the overlapping 

rate. 
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Let m be the fixed subsample size (such as with power 0.5) and n be total sample size. To 

obtain an unbiased estimator of variance of power obtained at m, the improved method we will 

propose only needs m/n→0 and n→∞. Take 2m samples without replacement repeatedly from 

the data size n. The limitation for this procedure is 2m<n, and m/n→0 as n . ∞→

Let the bth sample of size 2m be broken into two subsample size m, say andbS *
bS . 

Suppose there are a total of B bootstrap samples taken. Let and be the corresponding test 

indicators from those samples. From this data one creates two estimators: 

bU *
bU

                    [ ].)()()()(1 ****∑ ∑ ∑ ∑ ×+×+×+×= jijijiji UUUUUUUU
T

J  

Here the sums are over all pairs of i and j satisfying j>i  and T is the total number of product 

terms. These terms are estimating the covariance between the U’s from independently drawn 

subsets. Hence we never use i=j.  

The second estimator is  

                                 ./)*( *∑= BUUK ii

 This estimates the covariance between dependent U’s. The estimated variance of the U statistic 

is J-K. This form for the estimator shows that for the estimated variance to go to zero, the 

difference between J and K must go to zero. This will occur as m becomes much smaller than n, 

as then a pair of samples coming from different Sb (the 2m samples) will only rarely overlap in 

any of their selections of X’s, and so start to look more like the two samples from the same Sb.     

To obtain estimator of power, we summarized the procedures of drawing bootstrap 

resample without replacement next. 

Step1: Select m as fixed subsample size (e.g.  by bootstrap)  *N̂

Step2: Resampling at size 2m from original data without replacement 
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Step3: Separate the 2m subjects into two subsamples, each one with m numbers 

Step4: Use statistic to do the test in each subsample 

Step5: Record as 1 if reject, otherwise as 0, separately cumulate number of rejection in  

            two subsamples. 

Step6: Repeat setp2-step6 B times and count final number of rejection u1(i) and u2(i) for   

            two Subsamples. 

Step7: Obtain estimate of power= . ∑
=

+
B

i
Biuiu

1
2/))(2)(1(

Using the information of U1 and U2, we obtained the estimator of the power. 

Subsequently, we can generate the variance of estimated power. The procedures is shown 

following.  

Step1:  Sum product value SS1 with u1(i)*u1(j), for all items of j>i, count items number   

Step2:  Sum product value SS2 with u1(i)*u2(j), for all items of u2>u1,count items  

            number 

Step3:  Sum product value SS3 with u2(i)*u1(j), for all items of u1>u2,count items  

            Number 

 Step4:  Sum product value SS4 with u2(i)*u2(j), for all items of j>i ,count items number 

Step5: Take average of all product items from step1 to step 4 to Obtain J,  

Step6: Sum value KK with u1(i)*u2(i), for all terms of u1 and u2, take average of KK. 

Step7: Obtain variance by J-K
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CHAPTER 3: NUMERICAL EXAMPLE (TWO-WAY INDEPENDENT MODEL) 

 
In this chapter, we apply model credibility index on contingency tables. Consider a 

contingency table in which the frequencies n(t) in the cell t=1,….,T be a random sample. 

Random variables n(t) have a multinomial distribution with parameters cell proportion and total 

size n. The cell proportions will be denoted d(t)=n(t)/n , which represent  the empirical 

distribution of the data. In a two-way contingency table, data are collected with two variables 

and interest is to test the hypothesis that these two variables are independent. Chi-square test at 

0.05 significant level are used for the test. In this section, we present a two-way table example to 

explain our method. 

 

3.1 Data set 

Table 3.1 shows a 5x4 contingency table with 5 columns, 4 rows, and total 20 cells about 

cross classifying number of children by annual income levels, which were used by Diaconis and 

Efron(1985) [10]. The data set has the categories of number of children being the rows and the 

categories of annual income being the columns. The sample size is n=25263.     

Table 3.1 Cross-classification of number of children by annual income 

Number of 
children Annual income 

 0-1 1-2 2-3 3+ total 
0 2161 3577 2184 1636 9558 
1 2755 5081 2222 1052 11110 
2 936 1753 640 306 3635 
3 225 419 96 38 778 

4+ 39 98 31 14 182 
Total 6116 10928 5173 3046 25263 
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Table 3.2  Expected value for each cell 

Number of 
children The expected annual income 

 0-1 1-2 2-3 3+ 
0 2313.9 4134.5 1957.1 1152.4
1 2689.7 4805.8 2274.9 1339.6
2 880.0 1572.4 744.3 438.3 
3 188.3 336.5 159.3 93.8 

4+ 44.1 78.7 37.3 21.9 
 

Expected values for each cell are shown in the Table 3.2. The results for goodness-of-fit 

test statistics, Chi-square test X2=568.5663 and Log likelihood test 2nL2=569.4205 with 12 

degree of freedom. Obviously, a strong significant p-value for the x2-statistic leads to rejection of 

the independent. In this case, we say that the observed table is extremely close to dependent.  

 

3.2 Bootstrap Determination of N* 

Table 3.3 shows the cell probability corresponding to the Table 3.1. 

Table 3.3  Cell probability 

 0-1 1-2 2-3 3+ total 
0 0.085540118 0.141590468 0.086450540 0.0647587381 0.378339865
1 0.109052765 0.201124174 0.087954716 0.0416419269 0.439773582
2 0.037050232 0.069390017 0.025333492 0.0121125757 0.143886316
3 0.008906306 0.016585520 0.003800024 0.0015041761 0.030796026

4+ 0.001543760 0.003879191 0.001227091 0.0005541701 0.007204212
total 0.2420932 0.4325694 0.2047659 0.1205716 1 

 

To conveniently compute, we set bootstrap resampling 1000 times for the observed 

sample by keeping the proportion on each cell to generate a fixed sample size m with 0.5 power 

value. Each bootstrap resampling data is tested at a 0.05 significant level by Chi-square test and 

record the total rejection times. When the number of rejection is 500 times out of 1000 times, 

this sample size m is the estimation of model credibility index . According to the method of *N̂
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generating N* described in section 2.1.2, following flowchart shows the process of bootstrap 

determination of N*. 
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data d and model M 
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No

No

Obtain N*, 
Power=500/1000=0.5 

 

 

Figure 3.1 Flowchart to obtain N* 
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The number of N* is used as a fixed sample size m to generate estimated power by 

bootstrap method. Using bootstrap resampling methods without replacement, we randomly 

resample without replacement for total data size into two groups both with size number N*. If we 

do this many times, say 1000 times, we generate a statistic rejected the hypothesis with 

conventional levels of statistical significance under the null hypothesis of no difference between 

the observed distribution and empirical sampling distribution in each group. If the empirical 

sampling distribution includes about 500 samples out of 1000 observed sample (false model is 

our assumption, rejected probability is quite large), we conclude that the probability of such an 

outcome is about 0.5, which is the power we expected.  We take the average from the two groups 

as estimated power. Randomization allows us to generate the sampling distribution without 

making any assumptions about the shape of the population distributions. The empirical sampling 

distribution (or reference distribution) emerges from the multiple randomizations of our observed 

data. We can determine the cumulated distribution for our observations on the sampling 

distribution to generate simulated sampling data. Therefore, large sample size is more practical 

to use randomization to generate the sampling distribution.   

In the same way, following flowchart shows the process for estimator of power.  
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Figure 3.2 Flowchart to generate estimated power 
 

 Based on such calculation logic, we take different sample sizes m to observe the trend 

between fixed sample size m and generate estimator of power and to detect the model credibility 
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Table 3.5 Summarization of the bootstrap resampling 

J 0.251 
K 0.247 
arV̂ =J-K 0.004 

arV̂ˆ =σ  0.063 
Bootstrap estimator of 
Power, =(U1+U2)/2β̂

 
0.501 

 

From the results of Table 3.5, the confidence interval of the bootstrap estimation of the 

power is shown below, 

(1-α) % C.I. of the estimated power,  ±β̂ σα ˆ2/z  

                                            0.501±0.126= [0.375, 0.627] 

 

Figure 3. 5 Confidence interval of N* 

Based on the above information, we make Figure 3.5 to find the relationship between 

power and model credibility index N*, as well as find their confidence intervals.  From Figure 

3.5, we can estimate C.I. of the estimator N* is about [300, 627]. 
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We resample from original huge sample size (n=25263), which leave the large space to 

generate samples similar with original sample. As a result, the estimated power with 0.501 value 

is very agreeable with the fixed sample size in this case. If the original sample size is small 

relatively, estimated power might differ with chosen 0.5 power value. To explore this 

phenomenon, we show process by simulation study in following section. 

 

3.4 Simulation study 

A simulation is an imitation of some real thing, state of affairs, or process. We use 

bootstrap resampling simulation technique generate observations from the distribution of the 

sample itself-the empirical distribution. In this section, simulation technique is used to generate 

the effect of the power and variance of power under varying sample size. Each simulation results 

in new two-m subjects from the original data without replacement. Without replacement means 

data are dependent, non-overlapping in a sample, but data are independent between samples so 

that we can use two estimators (non-overlapping covariance and square terms in variance) to 

obtain estimated variance of the power. We will interpret our method and show simulation 

results with analyzing model credibility indices for two-way table.  

The consistency of power, hence N*, is achieved as long as m/n→0, n→∝. As ratio m/n 

goes to zero, variance of power tends to convergence. To realize simulation study, we take a 

fixed number m=490 and different sample size n value, say 2000, 3000, 5000, 10000, 50000, and 

100000 to make different ratio m/n. Using the computation methods in sections 2.5 and 2.6, we 

obtain the simulation results including estimated power, first estimator J, second estimator K and 

variance of power. Confidence interval of estimator power is computed at same time. All results 

are shown in Table 3.6 for each ratio m/n.  
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Table 3.6 Summarized results (m=490) 

Sample 
size n m/n β̂ =(U1+

U2)/2 
J K arV̂ =

J-K arV̂ˆ =σ  
C.I. of  β̂

σβ ˆ2ˆ ±  
100000 0.0049 0.502 0.252 0.250 0.002 0.045 [0.412,0.592] 
50000 0.0098 0.536 0.288 0.283 0.005 0.071 [0.394,0.678] 
10000 0.049 0.646 0.418 0.411 0.007 0.084 [0.478,0.814] 
5000 0.098 0.501 0.251 0.235 0.016 0.126 [0.249,0.753] 
3000 0.163 0.625 0.391 0.364 0.027 0.164 [0.297,0.953] 
2000 0.245 0.559 0.312 0.269 0.043 0.205 [0.145,0.973] 

 
Based on the results in Table 3.6, we make graphs between sample size n and power 

variance, between ratio m/n and power variance, between sample size n and power confidence 

interval, between ratio m/n and power confidence interval.  

 

Figure 3.6 Sample size n vs power variance and vs C.I in simulation study 

 

Figure 3.7 Ratio m/n vs power variance vs C.I. in simulation study 
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The relationships of m/n vs variance of the estimated power and m/n vs confidence 

interval of power are displayed in Figure 3.7. 

As described in 2.4, as m/n→0, we can obtain an unbiased estimator of variance of power 

obtained at size m by using our improved bootstrap estimated method. From Figure 3.7, we can 

observe a phenomenon that power variance is decreasing, as the ratio m/n gets smaller, which is 

consistent with our method. For two-way table case, we estimate the model credibility index N*, 

and evaluate the variance of its power, as well as construct the confident interval of the power.  

We provide a real-life example in next chapter for logistic regression model.   
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CHAPTER 4: NUMERICAL EXAMPLE (LOGISTIC MODEL) 

 
4.1 Data set 

We present a four-way contingency table shown in Table4.1, which summarizes data of 

automobile accident that were used by Alan Agresti (2002) [11]. In this data set, 68,694 

passengers in autos and light trucks involved in accidents in the state of Maine in 1991. The 

passengers are classified into four variables by gender, location of accident, seat-belt use, and 

injury situation. To simplify, we express factors gender by G, location by L, seat-belt use by S, 

and injury by I. 

Table 4.1 Data of automobile accident 

Gender Location Seat Belt No Injury Injury 
Female Urban No 7287 996 
Female Urban Yes 11587 759 
Female Rural No 3246 973 
Female Rural Yes 6134 757 
Male Urban No 10381 812 
Male Urban Yes 10969 380 
Male Rural No 6123 1084 
Male Rural Yes 6693 513 

 

4.2 Models selection 

For the dataset in the Table 4.1, we fit five kind logistic models (total 46 models) from 7 

parameters to 11 parameters (k) with three 2-way interactions, four 2-way interactions, five 2-

way interactions, six 2-way interactions, and one 3-way interaction. The fitted results, likelihood 

ratio test (L.R.T) and model quality statistic AIC are listed for each model.  
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For logistic model, likelihood ratio test statistic is used to test goodness-of-fit instead Chi-

square statistic for two-way independent model. We follow the steps that are similarly for two-

way independent model to generate for models highlighted in Table 4.2. These models have 

the smallest LRT statistics in models with same number of parameters and hence are considered 

the best at its complexity.  

*N̂

Table 4.2 Process of model selection 

Model With one 3-way interaction k L.R.T N* 
1 S+L+G+I+GL+GS+GI+LS+LI+SI+S*L*G 11 7.46 60300 
2 S+L+G+I+GL+GS+GI+LS+LI+SI+S*L*I 11 20.63  
3 S+L+G+I+GL+GS+GI+LS+LI+SI+S*G*I 11 22.85  
4 S+L+G+I+GL+GS+GI+LS+LI+SI+L*G*I 11 18.57  

 
Model With all (six) 2-way interaction k L.R.T N* 

1 S+L+G+I+GL+GS+GI+LS+LI+SI 10 23.35 20500 
 

Model With five 2-way interaction k L.R.T N* 
1 S+L+G+I+GL+GS+GI+LS+LI 9 921.7  
2 S+L+G+I+GL+GS+GI+LS+SI 9 806.5  
3 S+L+G+I+GL+GS+GI+LI+SI 9 50.89 10560 
4 S+L+G+I+GL+GS+LS+LI+SI 9 421.7  
5 S+L+G+I+GL+GI+LS+LI+SI 9 891.7  
6 S+L+G+I+GS+GI+LS+LI+SI 9 193.5  

 
Model With four 2-way interaction k L.R.T N* 

1 S+L+G+I+GL+GS+GI+LS 8 1681  
2 S+L+G+I+GL+GS+GI+LI 8 925.8  
3 S+L+G+I+GL+GS+GI+SI 8 810.6  
4 S+L+G+I+GL+GS+LS+LI 8 1204  
5 S+L+G+I+GL+GS+LS+SI 8 1155  
6 S+L+G+I+GL+GS+LI+SI 8 446  
7 S+L+G+I+GL+GI+LS+LI 8 1674  
8 S+L+G+I+GL+GI+LS+SI 8 1665  
9 S+L+G+I+GL+GI +LI+SI 8 906  
10 S+L+G+I+GL+LS+LI+SI 8 1174  
11 S+L+G+I+GS+GI+LS+LI 8 1082  
12 S+L+G+I+GS+GI+LS+SI 8 926  
13 S+L+G+I+GS+GI +LI+SI 8 208 2650 
14 S+L+G+I+GS+LS+LI+SI 8 542.1  
15 S+L+G+I+GI+LS+LI+SI 8 1049  
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Model With three 2-way interaction k L.R.T N* 

1 S+L+G+I+GL+GS+GI 7 1686  
2 S+L+G+I+GL+GS+LS 7 1923  
3 S+L+G+I+GL+GS+LI 7 1208  
4 S+L+G+I+GL+GS+SI 7 1159  
5 S+L+G+I+GL+GI+LS 7 2433  
6 S+L+G+I+GL+GI+LI 7 1674  
7 S+L+G+I+GL+GI+SI 7 1666  
8 S+L+G+I+GL+LS+LI 7 1955  
9 S+L+G+I+GL+LS+SI 7 1907  
10 S+L+G+I+GL+LI+SI 7 1188  
11 S+L+G+I+GS+GI+LS 7 1802  
12 S+L+G+I+GS+GI+LI 7 1083  
13 S+L+G+I+GS+GI+SI 7 927.6  
14 S+L+G+I+GS+LS+LI 7 1324  
15 S+L+G+I+GS+LS+SI 7 1275  
16 S+L+G+I+GS+LI+SI 7 556.6 1000 
17 S+L+G+I+GI+LS+LI 7 1831  
18 S+L+G+I+GI+LS+SI 7 1782  
19 S+L+G+I+GI+LI+SI 7 1063  
20 S+L+G+I+LS+LI+SI 7 1291  

 

Our interest is to obtain useful information from false model. Models listed in Table 4.3 

are all rejected by conventional LRT testing, while the N* index shows that they still have 

desirable goodness-of-fit.   

Table 4.3 Summarized models  

  k L.R.T AIC N* N*/k 

Model 1 S+L+G+I +GS+LI+SI 7 556.6 722.1 1000 142.9 

Model 2 S+L+G+I +GS+GI +LI+SI 8 208 379.5 2650 331.2 

Model 3 S+L+G+I+GL+GS+GI+LI+SI 9 50.89 224.2 10560 1173.3

Model 4 S+L+G+I+GL+GS+GI+LS+LI+SI 10 23.35 198.8 20500 2050 
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Figure4.1 Model dimension k vs likelihood ratio test (L.R.T) and k vs N*   
            

4.3 Results  

The power, the variance of the power, and confidence interval are calculated for each 

model below by bootstrap resampling without replacement method. We make inference to obtain 

confidence interval of the power. 

Table 4.4 Results of bootstrap without replacement method 

 k N* Power Variance σ̂  C.I 
Model 1 7 1000 0.492 0.0001 0.010 [0.472,0.512] 
Model 2 8 2650 0.501 0.0140 0.118 [0.265,0.737] 
Model 3 9 10560 0.478 0.0289 0.170 [0.138,0.818] 
Model 4 10 20500 0.383 0.2365 0.486 [0,1] 

 

 
Figure4.2 Model dimension k vs variance of estimated power and vs C.I of power 
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4.4 Conclusion                                                 

From the results, we can conclude,  

(1) Models with more parameters generate larger N* value than model with few 

parameters. On the other hand, models with larger N* fit better. This conclusion is consistence 

with likelihood ratio test value, that is, model with smaller LRT is better-fitted one. As seen in 

Figure 4.1, Models with more parameters accompany smaller likelihood ratio test value during 

selecting model, which indicates a good fitted model.                                                                                               

(2) Models with more parameters generate larger variance of power value than with few 

parameters’ models.  

(3) Models with more parameters are harder to obtain consistency estimate of the power, 

which generate wider confidence interval than with few parameters by bootstrap without 

replacement method. 

  For this example, model 1 in Table 4.4 should be one of the candidate models with 

smallest variance, smallest model credibility index N*, smallest confidence interval. And model 

2 is another candidate model with moderated values of N*, power, variance, and wider 

confidence interval.        
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CHAPTER 5: DISCUSSION AND FUTURE WORK 

 

Liu and Lindsay [3] introduced the model credit index method for model selection in a 

model false world with large data size.   In this study, we extend the model credit index method 

in measuring consistency of estimation of model credit index by variance estimator of power 

using bootstrap without replacement.   

By applying the methods to independent model and logistic model, the model 

characteristic can be identified using N*. For a given total sample size n, fixed sample size m 

increase, m/n→large, power →large and its variance →large for independent model. By 

simulation study, consistency of power is verified, that is, as n→∞, then m/n→0, and 

variance→0. For logistic model, model good fit with larger model parameter k, and generate 

large N*, large variance of power and large confidence interval.  

By the proven facts through out examples, the method of consistency of power proposed 

is demonstrated. Also, the method generates an unbiased variance estimator and converges fast 

with ratio m/n→0. The method in section 2.4 provides better estimation of variance. We would 

utilize this method in the future.  Besides, trying to practice method in the general model like 

continuous data is also an issue for the further work.  
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APPENDICES 
 

Appendix A: R code to generate fixed sample size N* and estimated power for 2-way table 
 
 
#produce data of table4 
 
table4<-
c(2161,3577,2184,1636,2755,5081,2222,1052,936,1753,640,306,225,419,96,38,39,9
8,31,14) 
n0<-sum(table4) 
 
oc<-
matrix(table4,nrow=5,ncol=4,byrow=TRUE,dimname=list(c("0","1","2","3","4+"),c
("0-1","1-2","2-3","3+"))) 
oc #observed cell 
 
rtot<-apply(oc,1,sum) 
rtot #row total 
 
ctot<-apply(oc,2,sum) 
ctot #column total 
 
ei<-outer(rtot,ctot,"*")/sum(oc) 
ei #estimated cell 
 
chi2.T<-sum((oc-ei)^2/ei) 
chi2.T #5x4 table chi-square 
pchisq(q=chi2.T,df=12, lower.tail=FALSE) #p-value 
 
L<-2 * sum(oc * log(oc/ei)) 
L #likelihood ratio test 
 
 
dt<-prop.table(oc)  
dt  #obtain proportion table for each cell 
 
drtot<-apply(dt,1,sum) 
drtot #row total 
 
dctot<-apply(dt,2,sum) 
dctot #column total 
 
dei<-outer(drtot,dctot,"*")/sum(dt) 
dei #estimated cell 
 
dL<-2 * sum(dt * log(dt/dei)) 
dL 
 
chi.cri<-qchisq(0.05,12) #chi-square value 
N.asy<-round(chi.cri/dL) 
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N.asy 
chisq.test(oc) 
 
 
#resampling table4(keep proportion for each cell)  
 
#loop bt times, and record number of rejection for 1000 loops 
#n is number of total observations in the table 
 
cc<-0 
n<-490 # n can be changed 
 
bt<-1000 #bt can be changed 
 
rsi<-rmultinom(bt, n, dt) #produce bt columns, each one can consist of a 
table  
 
for (i in 1:bt) 
{ 
rs<-matrix(rsi[,i],nrow=5,ncol=4) 
 
ck<-chisq.test(rs, rescale.p=TRUE)$p.value  
 
if(is.na(ck))  
{cc<-cc+1} 
 
if(!is.na(ck))  
 
if (ck<0.05) 
{cc<-cc+1} 
} 
 
cc #rejected number in 1000 random two way tables(keep same proportion) 
bata<-cc/bt 
bata #estimated power when total sample size n=490 
 
######## 
####generate 2 vectors as 2 groups for reject=1,not reject=0 
#u1 vector for Group1 
#u2 vector for Group2 
 
m<-490 #reject number as power=0.5 
 
n0<-25263 #initial observation's sum of table4  
 
sam1<-matrix(0,20,bt)#assign 20 cell(5x4)space 
sam2<-matrix(0,20,bt) 
u1<-c(rep(0,1000))#assign 1000 space  
u2<-c(rep(0,1000)) 
 
 
#generate 1000 tables(between these tables are independent; in each single 
table,data follow the trend of initial one which is dependent)by 1000 
bootstraps to test reject number 
 
for (i in 1:bt) 
{ 
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twoid<-rep(0,2*m)#assign space for twoid 
twoid<-sample(1:n0,size=2*m,replace=F) 
id1<-twoid[1:m]#498 number, the value are less than 25263 
id2<-twoid[-(1:m)]#another 498 number, values are less than 25263 
 
br<-append(0,cumsum(table4))#cumulate initial data(20 cells) 
 
sam1[,i]<-tabulate(cut(id1,br,include.lowest=T),length(br)-1)#generate 20 
number which follow the trend of initial one 
 
sam2[,i]<-tabulate(cut(id2,br,include.lowest=T),length(br)-1)#generate 
another 20 number 
 
rs1<-matrix(sam1[,i],nrow=5,ncol=4, byrow=T)#each 20 number consist to one 
5x4 table 
 
ck1<-chisq.test(rs1, rescale.p=TRUE)$p.value  
 
if(is.na(ck1))  
{u1[i]<-u1[i] 
u1[i]<-u1[i]+1} 
 
if(!is.na(ck1))  
 
if (ck1<0.05) 
{u1[i]<-u1[i]+1} 
 
rs2<-matrix(sam2[,i],nrow=5,ncol=4,byrow=T) 
 
#prop.table(rs2) 
 
ck2<-chisq.test(rs2, rescale.p=TRUE)$p.value  
 
if(is.na(ck2))  
{u2[i]<-u2[i] 
u2[i]<-u2[i]+1} 
 
if(!is.na(ck2))  
 
if (ck2<0.05) 
{u2[i]<-u2[i]+1} 
 
} 
u1 
table(u1) # number of reject in group1 
u2 
table(u2)#number of reject in group2 
 
 
batahat<-sum(u1,u2)/(2*bt) 
 
batahat #average value as estimated power 
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Appendix B: R coding for simulation of 2-way table 
 
table4<-
c(2161,3577,2184,1636,2755,5081,2222,1052,936,1753,640,306,225,419,96,38,39,9
8,31,14) 
n0<-sum(table4) 
 
oc<-
matrix(table4,nrow=5,ncol=4,byrow=TRUE,dimname=list(c("0","1","2","3","4+"),c
("0-1","1-2","2-3","3+"))) 
 
dt<-prop.table(oc)  
dt  #obtain proportion table for each cell 
 
p<-prop.table(table4) 
 
 
 
n<-100000 
sim.size<-rmultinom(1, n, dt) 
no<-sum(sim.size) 
sim.oc<-
matrix(sim.size,nrow=5,ncol=4,dimname=list(c("0","1","2","3","4+"),c("0-
1","1-2","2-3","3+"))) 
 
sim.dt<-prop.table(sim.oc) 
 
 
#n<-25263#original data size 
# simulation various n  
#n<-1000 
#n<-5000 
#n<-10000 
#n<-50000 
#n<-100000 
 
cc<-0 
N<-490 
bt<-1000 #bt can be changed 
 
rsi<-rmultinom(bt, N, sim.dt) #produce bt columns, each one can consist of a 
table  
 
for (i in 1:bt) 
{ 
rs<-matrix(rsi[,i],nrow=5,ncol=4) 
 
ck<-chisq.test(rs, rescale.p=TRUE)$p.value  
 
if(is.na(ck))  
{cc<-cc+1} 
 
if(!is.na(ck))  
 
if (ck<0.05) 
{cc<-cc+1} 
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} 
 
cc #rejected number is 505 in 1000 random two way tables(keep same 
proportion) 
bata<-cc/bt 
bata 
 
######## 
####generate 2 vectors as 2 groups for reject=1,not reject=0 
#u1 vector for Group1 
#u2 vector for Group2 
 
m<-490 #reject number as power=0.5 
 
n0<100000 #initial observation's sum of table4  
 
sam1<-matrix(0,20,bt)#assign 20 cell(5x4)space 
sam2<-matrix(0,20,bt) 
u1<-c(rep(0,1000))#assign 1000 space  
u2<-c(rep(0,1000)) 
 
 
#generate 1000 tables(between these tables are independent; in each single 
table,data follow the trend of initial one which is dependent)by 1000 
bootstraps to test reject number 
 
for (i in 1:bt) 
{ 
 
twoid<-rep(0,2*m)#assign space for twoid 
twoid<-sample(1:n0,size=2*m,replace=F) 
id1<-twoid[1:m]#490 number, the value are less than 25263 
id2<-twoid[-(1:m)]#another 490 number, values are less than 25263 
 
br<-append(0,cumsum(table4))#cumulate initial data(20 cells) 
 
sam1[,i]<-tabulate(cut(id1,br,include.lowest=T),length(br)-1)#generate 20 
number which follow the trend of initial one 
 
sam2[,i]<-tabulate(cut(id2,br,include.lowest=T),length(br)-1)#generate 
another 20 number 
 
rs1<-matrix(sam1[,i],nrow=5,ncol=4, byrow=T)#each 20 number consist to one 
5x4 table 
 
ck1<-chisq.test(rs1, rescale.p=TRUE)$p.value  
 
if(is.na(ck1))  
{u1[i]<-u1[i] 
u1[i]<-u1[i]+1} 
 
if(!is.na(ck1))  
 
if (ck1<0.05) 
{u1[i]<-u1[i]+1} 
 
rs2<-matrix(sam2[,i],nrow=5,ncol=4,byrow=T) 
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#prop.table(rs2) 
 
ck2<-chisq.test(rs2, rescale.p=TRUE)$p.value  
 
if(is.na(ck2))  
{u2[i]<-u2[i] 
u2[i]<-u2[i]+1} 
 
if(!is.na(ck2))  
 
if (ck2<0.05) 
{u2[i]<-u2[i]+1} 
 
} 
u1 
table(u1) # number of reject in group1 
u2 
table(u2)#number of reject in group2 
 
 
batahat<-sum(u1,u2)/(2*bt) 
 
batahat #average value as estimated power 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



40 

Appendix C: R code for logistic model selection 
 
################################ 
Generating N* and estimated power for 4-way contingency table 
################################ 
 
d0<-c(7287,996,11587,759,3246,973,6134,757,10381,812,10969,380,6123, 
      1084,6693,513)#dataset 
n0<-sum(d0) 
dt<-d0/n0 #proportion 
 
#### models with different number of 2-way interactions 
 
cc<-0 
n<-1000#for model.16 
n<-2650 #for model.13 
n<-10560#for model3 
n<-20500 #for model4 
n<-60300#for model5 
  
bt<-1000 #bt can be changed 
 
rsi<-rmultinom(bt, n, dt) #produce bt columns, each one can consist of a 
table  
 
for (i in 1:bt) 
{ 
d<-matrix(rsi[,i]) 
data.s<-cbind(expand.grid(inj=c("ni","yi"),  
  sb=c("no","yes"), loc=c("urban","rural"), 
  gen=c("female","male")), Fr=d) 
 
#with 1 3-way interaction  model.0 BEST 
model.0<-
glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+gen*inj+loc*sb+loc*inj+sb*inj+sb*loc*gen
,       
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
 
model.1<-
glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+gen*inj+loc*sb+loc*inj+sb*inj+sb*loc*inj
,       
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
model.2<-
glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+gen*inj+loc*sb+loc*inj+sb*inj+sb*gen*inj
,       
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
model.3<-
glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+gen*inj+loc*sb+loc*inj+sb*inj+loc*gen*in
j,       
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
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#with 6 2-way interactions 
 
model.0<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+gen*inj+loc*sb+loc*inj+sb*inj, 
      
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
 
#model with 5 2-factors,model.3 best 
#model 1  
model.1<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+gen*inj+loc*sb+loc*inj,  
     
   family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
#model 2  
model.2<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+gen*inj+loc*sb+sb*inj,     
family=poisson, data=data.s,       
         control=glm.control(epsilon=0.0000001,maxit=100)) 
 
#model 3 best one 
model.3<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+gen*inj+loc*inj+sb*inj,  
     
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
 
#model 4 remove gen*inj+gen*loc 
model.4<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+loc*sb+loc*inj+sb*inj,  
     
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
       
#model 5  
model.5<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*inj+loc*sb+loc*inj+sb*inj,  
     
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
#model 6  
model.6<-glm(Fr~gen+loc+sb+inj+gen*sb+gen*inj+loc*sb+loc*inj+sb*inj,  
     
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
 
 
 
#15 models with 4 2-way interactions (15 models),model.13 best 
#model 1  
model.1<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+gen*inj+loc*sb,   
    
    family=poisson, data=data.s,   
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    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
#model 2  
model.2<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+gen*inj+loc*inj,   
     
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
#model 3  
model.3<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+gen*inj+sb*inj,   
    
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
 
#model 4 remove gen*inj+gen*loc 
model.4<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+loc*sb+loc*inj,   
    
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
    
#model 5  
model.5<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+loc*sb+sb*inj,   
    
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
#model 6  
model.6<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+loc*inj+sb*inj,   
    
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
#model 7  
model.7<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*inj+loc*sb+loc*inj,   
    
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
#model 8 
model.8<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*inj+loc*sb+sb*inj,   
    
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
#model 9 
model.9<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*inj+loc*inj+sb*inj,   
    
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
#model 10 
model.10<-glm(Fr~gen+loc+sb+inj+gen*loc+loc*sb+loc*inj+sb*inj,   
    
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
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#model 11 
model.11<-glm(Fr~gen+loc+sb+inj+gen*sb+gen*inj+loc*sb+loc*inj,   
    
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
#model 12 
model.12<-glm(Fr~gen+loc+sb+inj+gen*sb+gen*inj+loc*sb+sb*inj,   
    
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
 
#model 13 AIC smallest best one 
model.13<-glm(Fr~gen+loc+sb+inj+gen*sb+gen*inj+loc*inj+sb*inj,   
    
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
#model 14 
model.14<-glm(Fr~gen+loc+sb+inj+gen*sb+loc*sb+loc*inj+sb*inj,   
    
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
#model 15 
model.15<-glm(Fr~gen+loc+sb+inj+gen*inj+loc*sb+loc*inj+sb*inj,   
    
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
 
#model with 3 2-way interactions (20 models),model1.16 best 
 
model.1<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+gen*inj,    
   
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
model.2<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+loc*sb,       
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
model.3<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+loc*inj,    
   
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
model.4<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+sb*inj,       
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
model.5<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*inj+loc*sb,    
   
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
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model.6<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*inj+loc*inj,    
   
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
model.7<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*inj+sb*inj,    
   
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
model.8<-glm(Fr~gen+loc+sb+inj+gen*loc+loc*sb+loc*inj,    
   
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
model.9<-glm(Fr~gen+loc+sb+inj+gen*loc+loc*sb+sb*inj,       
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
model.10<-glm(Fr~gen+loc+sb+inj+gen*loc+loc*inj+sb*inj,    
   
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
model.11<-glm(Fr~gen+loc+sb+inj+gen*sb+gen*inj+loc*sb,    
   
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
model.12<-glm(Fr~gen+loc+sb+inj+gen*sb+gen*inj+loc*inj,    
   
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
model.13<-glm(Fr~gen+loc+sb+inj+gen*sb+gen*inj+sb*inj,    
   
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
model.14<-glm(Fr~gen+loc+sb+inj+gen*sb+loc*sb+loc*inj,    
   
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
model.15<-glm(Fr~gen+loc+sb+inj+gen*sb+loc*sb+sb*inj,       
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
#best one 
model.16<-glm(Fr~gen+loc+sb+inj+gen*sb+loc*inj+sb*inj,    
   
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
model.17<-glm(Fr~gen+loc+sb+inj+gen*inj+loc*sb+loc*inj,    
   
    family=poisson, data=data.s,   
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    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
model.18<-glm(Fr~gen+loc+sb+inj+gen*inj+loc*sb+sb*inj,    
   
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
model.19<-glm(Fr~gen+loc+sb+inj+gen*inj+loc*inj+sb*inj,    
   
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
model.20<-glm(Fr~gen+loc+sb+inj+loc*sb+loc*inj+sb*inj,    
   
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
 
ndf<-model.16$df.residual 
dev<-model.16$deviance 
 
ndf<-model.13$df.residual 
dev<-model.13$deviance 
 
ndf<-model.3$df.residual 
dev<-model.3$deviance 
 
ndf<-model.0$df.residual 
dev<-model.0$deviance 
 
ndf<-model.0$df.residual 
dev<-model.0$deviance 
 
ck<-dev 
cr<-qchisq(1-0.05,ndf) 
 
 if(ck>cr) 
  {cc<-cc+1} 
} 
 
bata<-cc/bt #obtain power for rejection 
bata  
 
 
################################## 
#results of n as power=0.5 
model.0 n=60300 bata=0.5 #1 3-way interaction 
model.0 n=20500  bata=0.5 #all 6 2-way interactions 
model.3  n=10560 bata=0.5 #5 2-way interactions 
model.13 n=2650  bata=0.5 #4 2-way interactions 
model.16 n=1000   bata=0.5 #3 2-way interactions 
     
######################################### 
 
 
 
####generate 2 vectors as 2 groups for reject=1,not reject=0 
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#u1 vector for Group1 
#u2 vector for Group2 
 
#for model with 3 2-way interaction 
 
m<-1000  
m<-2650 
m<-10560 
m<-20500 
m<-60300 
n0<-68694 #initial table sum 
 
sam1<-matrix(0,16,bt)#assign space 
sam2<-matrix(0,16,bt) 
u1<-c(rep(0,1000))#assign 1000 space  
u2<-c(rep(0,1000)) 
 
#generate 1000 tables(between these tables are independent; in each single 
table,data follow the trend of initial one which is dependent)by 1000 
bootstraps to test reject number 
 
for (i in 1:bt) 
{ 
 
twoid<-rep(0,2*m)#assign space for twoid 
twoid<-sample(1:n0,size=2*m,replace=F) 
id1<-twoid[1:m]#20500 number, the value are less than 68694 
id2<-twoid[-(1:m)]#another 20500 number, values are less than 68694 
 
br<-append(0,cumsum(d0))#cumulate initial data(16 cells) 
 
sam1[,i]<-tabulate(cut(id1,br,include.lowest=T),length(br)-1)#generate 16 
number which follow the trend of initial one 
 
sam2[,i]<-tabulate(cut(id2,br,include.lowest=T),length(br)-1)#generate 
another 16 number 
 
d<-sam1[,i] 
data.s<-cbind(expand.grid(inj=c("ni","yi"),  
  sb=c("no","yes"), loc=c("urban","rural"), 
  gen=c("female","male")), Fr=d) 
 
#using all best model for each kind dimention model 
 
#model for 3 2-way interactions 
model.16<-glm(Fr~gen+loc+sb+inj+gen*sb+loc*inj+sb*inj,    
   
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
#model for 4 2-way interactions 
model.13<-glm(Fr~gen+loc+sb+inj+gen*sb+gen*inj+loc*inj+sb*inj,   
    
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
#model for 5 2-way interaction   
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model.3<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+gen*inj+loc*inj+sb*inj,  
     
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
 
#model for 6 2-way interactions 
 
model.0<-glm(Fr~gen+loc+sb+inj+gen*inj+inj*loc+inj*sb+gen*loc+gen*sb+loc*sb, 
      
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
 
#with 1 3-way interaction model.0 BEST 
model.0<-
glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+gen*inj+loc*sb+loc*inj+sb*inj+sb*loc*gen
,       
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
 
 
ndf1<-model.16$df.residual 
dev1<-model.16$deviance 
 
ndf1<-model.13$df.residual 
dev1<-model.13$deviance 
 
ndf1<-model.3$df.residual 
dev1<-model.3$deviance 
 
ndf1<-model.0$df.residual 
dev1<-model.0$deviance 
 
 
ck1<-dev1 
cr1<-qchisq(1-0.05,ndf1) 
 
 if(ck1>cr1) 
  {u1[i]<-u1[i]+1} 
 
d<-sam2[,i] 
data.s<-cbind(expand.grid(inj=c("ni","yi"),  
  sb=c("no","yes"), loc=c("urban","rural"), 
  gen=c("female","male")), Fr=d) 
 
#model for 3 2-way interactions 
model.16<-glm(Fr~gen+loc+sb+inj+gen*sb+loc*inj+sb*inj,    
   
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
 
#model for 4 2-way interactions 
model.13<-glm(Fr~gen+loc+sb+inj+gen*sb+gen*inj+loc*inj+sb*inj,   
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    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
 
#model for 5 2-way interactions 
model.3<-glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+gen*inj+loc*inj+sb*inj,  
     
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
#model for 6 2-way interactions 
model.11<-glm(Fr~gen+loc+sb+inj+gen*inj+inj*loc+inj*sb+gen*loc+gen*sb+loc*sb, 
      
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
 
#with 1 3-way interactions model.0 BEST 
model.0<-
glm(Fr~gen+loc+sb+inj+gen*loc+gen*sb+gen*inj+loc*sb+loc*inj+sb*inj+sb*loc*gen
,       
    family=poisson, data=data.s,   
    control=glm.control(epsilon=0.0000001,maxit=100)) 
 
 
 
ndf2<-model.16$df.residual 
dev2<-model.16$deviance 
 
ndf2<-model.13$df.residual 
dev2<-model.13$deviance 
 
ndf2<-model.3$df.residual 
dev2<-model.3$deviance 
 
ndf2<-model.0$df.residual 
dev2<-model.0$deviance 
 
ck2<-dev2 
cr2<-qchisq(1-0.05,ndf2) 
 
 if(ck2>cr2) 
  {u2[i]<-u2[i]+1} 
 
} 
 
u1 
table(u1)# number of reject in group1 
u2 
table(u2) 
 
batahat<-sum(u1,u2)/(2*bt) 
 
batahat #average value as estimated power 
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Appendix D: R code for calculate variance of the estimated power 
  
############ 
#find J 
 
c1<-0;c2<-0;c3<-0;c4<-0 
SS1<-0;SS2<-0;SS3<-0;SS4<-0 
 
for ( i in (1:999)) 
   { for ( j in ((i+1):1000)) 
 
{ 
s1<-u1[i]*u1[j] # product u1*u1(j>i) 
SS1<-SS1+s1 #sum in group1 u1*u1(j>i) 
c1<-c1+1  # number of product in group1 
 
s2<-u1[i]*u2[j]#product u1*u2(u2>u1) 
SS2<-SS2+s2 #sum in group2 
c2<-c2+1 
 
 
s3<-u2[i]*u1[j] #product u1*u2(u1>u2) 
SS3<-SS3+s3 
c3<-c3+1 
 
s4<-u2[i]*u2[j] #sum in group2 (j>i) 
SS4<-SS4+s4 
c4<-c4+1 #number of product in group2 
 
} 
} 
 
c1;c2;c3;c4 
T<-sum(c1,c2,c3,c4) 
SS<-sum(SS1,SS2,SS3,SS4) 
J<-SS/T #first estimator 
J 
 
################# 
#Find K   
# product terms for K(u1i*u2i) 
K<-0 
for (k in (1:1000)) 
{ 
k<-u1[k]*u2[k] 
K<-K+k 
} 
K<-K/bt #second estimator 
K 
 
Var.bata<-abs(J-K)# variance of batahat 
Var.bata 
 
batahat  #sum(u1+u2)/(2*bt) 
 


