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ABSTRACT 
 

THE ECONOMICS OF SEXUAL AND MENTAL HEALTH  

By 

BENJAMIN JACOB HARRELL  

AUGUST 2021  

Committee Chair: Dr. James Cox  

Major Department: Economics  

In recent years, sexual and mental health have become increasingly important in both 

national discourse and policymaking.  These shifting priorities present unique opportunities for 

economists to study the market contexts, incentives, and trade-offs faced by those making 

choices about their sexual and mental health. This dissertation’s chapters utilize a mix of 

experimental and quasi-experimental methods to examine how changes in the health policy 

landscape affect choices about the treatment and prevention of sexually transmitted illnesses 

(STIs), and how patterns of discrimination affect access to mental healthcare markets.  

Chapter 1 estimates the causal effect of a major eligibility expansion of a major 

expansion of eligibility for high-quality public health insurance on utilization of medications 

used to treat and prevent the viral STIs: Human Papilloma Virus, Genital Herpes, and viral 

Hepatitis. I find a significant increase in uptake of prescriptions used to treat viral STIs, 

principally driven by uptake in prescriptions to treat genital herpes.  These increases appear to 

be driven primarily by these eligibility expansions, and not by trends of incidence of the 

illnesses themselves, suggesting pent-up demand for the treatment and prevention of common 

viral STIs.  



 

Chapter 2 similarly estimates the causal effect of the same public health 

insurance eligibility expansion on the incidence of HIV and AIDS, mortality, and prescriptions for 

specialty combination drugs used to treat and prevent these diseases.  Using matched data 

from the Centers for Disease Control and Prevention and the Centers for Medicare and 

Medicaid Services, I find that while Medicaid expansions had an ambiguous effect on the actual 

incidence and mortality of HIV and AIDS, it led to a modest uptake in prescriptions for these 

combination drugs. 

Chapter 3 details the results of a field experiment aimed at detecting evidence of 

discrimination against transgender individuals, racial, and ethnic minorities in access to mental 

health appointments.  Constructing a nationally-representative sample of mental health 

providers, we conduct an audit study in which fictitious prospective patients request mental 

health appointments.  We find evidence of discrimination against both racial and ethnic 

minorities and transgender individuals, especially along intersectional lines. 
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Introduction 

 

Healthcare is uncertain, contagious, and deeply connected to public finance 

(Bhattacharya, Hyde, and Tu, 2014).  While risk and uncertainty define the central problems of 

many health decisions, when it comes to decisions about mental and sexual health, another 

problem emerges: stigma. 

Choices about sexual partners and the kinds of interactions we have with them are 

driven by our most primal urges, urges that often cloud perceptions of risk, but these choices 

can have far-reaching, even dire consequences.  Decisions about sexual health are often fraught 

with stigma and socio-cultural practices that can make them deeply private, siloing individuals 

from information that can help them make better choices.  Mental health decisions are 

shrouded in a different kind of stigma, but also uncertainty about the science supporting or the 

efficacy of treatment (Beck, et al., 1995). 

Since such stigma exists with regard to choices about sexual and mental health, there 

exists large incentives to obfuscate those choices.  Consider, for example, underreporting taking 

drugs meant to treat mental illnesses.  Bharadwaj, Pai, and Suziedelyte (2017) estimate that, 

conditional on taking prescription psychotropics, underreporting of taking those cases increases 

sharply over the lifespan, and especially for men and those with less education, and at far 

higher rates than non-psychotropic drugs.  Similarly, Ramand (1980) and Schulz and Canning 

(2012) find that women underreport their contraceptive choices not only to researchers, but to 

their husbands as well. 

These issues are particularly pronounced among members of the lesbian, gay, bisexual, 

transgender, and queer/questioning (LGBTQ) community.  In addition to facing worse outcomes 
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with regard to both sexual health (CDC, 2018) and mental health (Burgess, et al., 2008), LGBTQ 

people face stigma and discrimination that compound into a phenomenon called "minority 

stress", which can exacerbate these already-poor outcomes.  However, there exists a dearth of 

economic research evaluating sexual and mental healthcare choices in both the general case as 

well as the choices made by LGBTQ-identifying people. 

The following three essays propose to answer economic questions about uptake, 

implementation, and retention in care for mental or sexual healthcare, where possible through 

the lens of LGBTQ-identifying individuals.  Economic theory tells us how these individuals 

should behave in light of changing incentives, but combining quasi-experimental and 

experimental methods will allow us to test the extent to which the theory matches the 

evidence. 

In the first two essays, I use quasi-experimental methods to examine the effect of 

expanding access to Medicaid, a government-provided health insurance program, on drugs 

used to treat certain sexually transmitted infections (STIs): first on the herpes, human papilloma 

virus, and hepatitis b, and then in the second essay, I zoom in on drugs used to treat and 

prevent human immunodeficiency virus (HIV) in addition to examining the effect of Medicaid 

expansion on the incidence and mortality of this illness.  I use applied econometric techniques 

to compare states who expanded Medicaid under the Patient Protection and Affordable Care 

Act (ACA, also called "Obamacare") to those who didn't.   

In the third and final essay, my coauthors and I present the preliminary findings of the 

first large-scale audit experiment aimed at uncovering evidence of discrimination against 

cisgender women, transgender women, transgender men, non-binary people, and racial and 
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ethnic minorities (African American and Hispanic individuals) in access to mental health 

services. As the experiment moves into its third phase, we classify the magnitude and 

differences of discrimination against these groups, summarize preliminary findings of the 

second phase of the experiment, and detail our planned next steps. 
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Chapter 1: Pent Up: Public Health Insurance and Prescription Medications for Sexually 

Transmitted Illnesses 

 

1.1 Introduction 

Among the most consequential decisions an individual will make about their health is 

the set of decisions about when, how, and with whom to have sex. Sex comes with many 

potential risks: unwanted or unplanned pregnancies, social stigma, psychological and physical 

pain, and potential sexually transmitted infections. Despite this risk, STIs in the United States 

are prevalent. By some estimates, as many as 1 in 2 individuals will contract an STI at some 

point in their life (CDC, 2018).   

According to the National Institutes of Health (NIH, 2015), there are more than 20 types 

of STIs (also called sexually transmitted diseases or venereal diseases), the most common of 

which are: chlamydia, genital herpes, gonorrhea, HIV/AIDS, human papillomavirus (HPV), 

syphilis, and hepatitis. The overall health risk of STIs depends upon the specific infection, but 

can range from mild discomfort, to sterility, and even to psychosis. In addition, there exists 

social stigma not only toward the diagnosis of an STI, but toward screening for an STI (Hood and 

Friedman, 2011), which has been shown to decrease disclosure of previous diagnoses between 

partners in addition to decreasing uptake of screenings. Those living with STIs also report 

increased psychological distress, which can sometimes interfere with social responsibilities like 

work and family obligations.  

STIs are shockingly prevalent in the United States. According to the Centers for Disease 

Control, nearly 20 million new STI cases will be reported each year (CDC, 2018). These are not 
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counting new infections of the most prevalent STIs like HPV and herpes for which the CDC does 

not collect data. HPV, the most common STI, will be contracted by virtually every sexually active 

adult at some point during their life. However, there is significant heterogeneity in the risk of 

infection across illnesses. For example, heterosexual women are most at risk for chlamydia, 

however young men of color who have sex with other men are most at risk for HIV. According 

to the Kaiser Family Foundation (2020), the annual direct costs in the U.S. associated with STIs 

is about $16 billion. Hence, while STIs impose heavy burdens on infected individuals, they also 

confer comparably heavy societal cost.  

One possible contributing factor to the state of sexual health in the United States is 

public ignorance of data–most of the general public simply does not know how common STIs 

are. Recent polling (Kirzinger et. al, 2020) shows dismal public knowledge on the basic facts of 

STIs. Only 13% of US citizens can correctly guess the prevalence of STIs, while over half (57%) 

personally have known someone with an STI. Only about 1 in 10 of the general public fear that 

they are at risk of contracting an STI, and only about 1 in 5 young adults. 

While many report that they are comfortable talking about their own sexual health with 

their doctor or sexual partners, some research contradicts this self-reported comfort. For 

example, Fortenbery, et al., (2001) find that 59% of surveyed men had never been tested for 

HIV due to fear of societal consequences of such a test, and another 44% stated that they 

would refuse a test if they were required to provide their name. Another study (Nack, 2000) 

interviewed women living with chronic STIs like herpes and HPV viewed their sexual selves as 

“damaged goods”, and since many were “passing” as healthy (presenting as asymptomatic), 

some reported lying about their sexual health to sexual partners. Overall, many find the 
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prospect or diagnosis of an STI fundamentally embarrassing, leading to negative perceptions of 

the testing process, lower willingness to seek treatment, and lower likelihood to share positive 

diagnoses with sexual partners (Balfe, et al., 2010). Despite ignorance and stigma, all STIs are 

preventable, and treatments exist that can cure many. However, one main reason for the high 

prevalence and spread of STIs is that many are initially asymptomatic, leaving many living with 

STIs to not become aware of their infection until individuals seek out treatment for other more 

serious. conditions. While many STIs can be cured, viral STIs such as herpes simplex viruses 1 

and 2 (HSV-1 and HSV-2), HPV, HIV/AIDs, and viral hepatitis (Hepatitis A and B or HVA and HVB) 

can only be treated, though some STIs like HPV, HVA, and HVB may be prevented altogether 

with vaccines.  

While administrative data regarding curable (bacterial) STIs are prevalent, less 

administrative data is collected on incurable (viral) STIs. For example, the Centers for Disease 

Control and Prevention publishes annual counts, prevalence, and infection rates for all major 

bacterial STIs: chlamydia, gonorrhea, syphilis, and cancroid. However, the CDC only directly 

tracks hepatitis B and HIV, leaving national data on herpes and HPV to be inferred from surveys 

(McQuillan, et al., 2018) despite these being among the most prevalent STIs. Indeed, the CDC 

does not recommend testing for genital herpes in particular unless individuals experience 

symptoms (CDC, 2015), citing potential ineffectiveness of serological testing. 

Despite the efficacy of treatment and prevention measures (CDC, 2016), STI prevalence 

is particularly high among low-income and uninsured individuals. While a loose, ad hoc network 

of public and private support funds clinics and aid programs aimed at curbing STIs for this 

population, lack of insurance and inability to pay for treatment is a major predictor of new 
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infections (Lee, et al., 2018). Therefore, expanding free or low-cost insurance to low-income or 

uninsured people likely removes barriers that are cost-related to the uptake of treatment and 

prevention of STIs, in particular STIs that are chronic. 

Starting in 2010, the United States government began the rollout of the Affordable Care 

and Patient Protection Act (ACA). This legislation, the largest of its kind in scope and execution 

in modern history, directly targeted inadequacies in existing U.S. healthcare markets. One 

principle aim of the ACA in its original form was provision of universal health insurance 

coverage by reducing the uninsurance rate to virtually zero. The mechanisms by which this 

would be achieved were twofold: the government would simultaneously require and subsidize 

employer-offered health insurance benefits as well as expand eligibility requirements for 

Medicaid, a public health insurance program for those living in poverty. Hence, those who could 

afford healthcare would have it subsidized by their employers and government tax credits while 

those who could not would have it subsidized by the federal government altogether. (Frean, 

Gruber, and Sommers, 2017). In the years prior to the rollout of the ACA, the uninsurance rate 

was just over 15%, and by 2018 it fell to 8.5% (Zammitti, Cohen, and Martinez 2017) 

In this chapter, I attempt to quantify the effects of ACA-related Medicaid expansions 

that occurred between 2011 and 2018 on medications primarily used in the treatment of the 

viral STIs herpes, HPV, and hepatitis B for which Medicaid acted as a third-party payer. I use 

prescriptions per capita as a clinical proxy (Lehmann et al. 2014) for patient uptake of these 

medications. The fact that these medications are covered by Medicaid, taken together with the 

fact that out-of-pocket cost for these medications can cost as much as $1000 per prescription 
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implies that without the aid of Medicaid, an otherwise-uninsured Medicaid-elligible person 

could not reasonably afford them. 

To estimate these effects, I combine administrative data on the universe of 

prescriptions obtained in outpatient, non-specialty settings; telemedicine, retail, and online 

pharmacies; both for fee for service and managed care plans for which Medicaid was a third 

party payer between 2011 and 2018 using a differences-in-differences (DD) design. I find that, 

post-expansion, prescriptions for medications used to treat the viral STIs herpes, HPV, and 

hepatitis increased by nearly 50% in expansion states compared to non-expansion states. 

Effects are similar in magnitude across drug types, but are primarily driven by drugs used to 

treat herpes. 

The chapter proceeds as follows: in the first part of section 2, I discuss Medicaid, with 

emphasis on specific Medicaid expansions, the previous literature, and evidence relevant to 

those expansions, while in the second part I discuss the growing body of research specifically 

devoted to the effect of Medicaid expansion on sexual health and risky behavior. In section 3, I 

discuss the empirical strategy, data, variables, methods, as well as the pharmacological context 

of the specific drugs I study. Section 4 discusses the results of my estimation. Finally, in section 

5, I conclude with a discussion first of limitations and extensions, and then policy relevance. 

Section 6, the appendix, contains tables and figures mentioned in subsequent sections. 

 

1.2 Medicaid, ACA Expansions, and Related Literature 

1.2.1 Medicaid Expansion Under the ACA: An Institutional Context 
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Medicaid was created in 1965 as part of the Johnson administration’s ”Great Society” 

suite of domestic antipoverty programs. It covers over 70 million low-income children, pregnant 

women, adults, senior citizens, and disabled people (about 1 in 5 Americans). It is the primary 

insurer for low-income people in the United States (Sommers and Grabowski, 2017). Medicaid 

is a joint program between states and the federal government, and prior to the ACA was largely 

federalist in nature with states granted wide latitude in the administration of Medicaid, 

including the freedom to set eligibility criteria as well as benefit structure. 

A key feature of Medicaid is low cost-sharing among patients, and comparatively more 

services eligible for coverage than private insurance. However, Medicaid does not cover testing 

for some STIs. (KFF, 2016) Testing for herpes is not covered at all. Coverage for HPV tests is 

restricted to certain categories of women despite widespread infection among men. Coverage 

for hepatitis B testing is restricted to those under the age of 18. These testing restrictions 

ensure that those who suspect that they might have herpes, HPV, or hepatitis cannot be sure of 

infection until they experience symptoms. Hence, given CDC estimates of herpes, HPV, and 

hepatitis prevalence, it could be the case that a significant population of people have never 

been diagnosed with these STIs, but experience symptoms for which, without insurance, they 

cannot be treated. 

When initially passed in 2010, the ACA mandated that all states expand eligibility for 

Medicaid, but in 2012, the Supreme Court ruled in National Federation of Independent Business 

v. Sebelius that this portion of the law (and only this portion of the law) was unconstitutional, 

leaving the ultimate decision of whether to expand Medicaid to individual states (Rosenbaum 

and Westmoreland, 2012). Beginning in 2014, 31 states and the District of Columbia chose to 
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expand Medicaid eligibility requirements to cover non-disabled adults as well as parents up to 

138% of the Federal Poverty Level (FPL) (KFF, 2016). Newly eligible individuals are insured by 

expansion plans that cover treatment for STIs (though sometimes not testing, as 

aforementioned). 

Economic theory suggests that Medicaid expansions will increase quantity demanded 

for prescriptions by reducing out-of-pocket prices for the newly enrolled. Moreover, since 

primary care visits are also covered by Medicaid expansion, individuals suffering from 

symptoms of viral STIs like herpes, HPV, and hepatitis may receive treatment for these STIs if 

their primary care physician determines such treatment is needed (even in the absence of a 

positive test). For example, a patient might a flare-up of genital herpes (the appearance of 

rashes and sores on the mouth, genitals, or rectum), and seek medical attention for their 

symptoms, wherein they might receive a prescription for Valtrex (one popular treatment) 

without the need for a blood test if their primary care physician diagnoses thinks that they may 

have genital herpes despite the lack of a serological test. However, since Medicaid covers some 

contraception as well, it could be the case that Medicaid expansion could reduce incidence of 

viral STIs, though given declining use of the most effective contraception (condoms) in the US, 

this seems unlikely (CDC, 2018). Another common inference from economic theory is that by 

lowering the relative risk of sexual activity, Medicaid expansion could cause ex ante moral 

hazard: the newly-enrolled perceive that the out-of-pocket cost of risky sex declines conditional 

on coverage, and thus engage in riskier sexual behavior. 

However, many factors may mute these effects. For instance, widespread stigma 

surrounding STIs might prevent the newly enrolled from seeking treatment or filling 
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prescriptions, especially in rural areas in which they might have personal ties to their doctor or 

pharmacist. Similarly, patients might be discouraged from taking up treatment if they are 

unfamiliar with the healthcare system itself. Finally, limited participation in Medicaid by 

providers or shortages of providers (Decker, 2011) could maintain non-cost-related barriers into 

healthcare markets. Thus, the extent to which Medicaid expansions affect uptake of treatment 

for non-HIV viral STIs is an empirical question. I attempt to quantify this effect. 

However, the newly-enrolled are not the only channel by which an effect could emerge. 

An important note is that all states experienced a 5% increase in income eligibility as part of the 

federal government’s new method of measuring income: modified adjusted gross income 

(MAGI). Another potential effect is what Frean, Gruber, and Sommers (2017) call the ”Welcome 

Mat” effect, in which ACA-driven outreach to Medicaid-eligible populations ”scooped up” 

people who were previously eligible for Medicaid, but who never applied. Previous research has 

shown these effects (in similar contexts) to be relatively small compared to the effect driven by 

the newly-eligible (Maclean, et. al, 2018), so my main analysis principally leverages variation in 

Medicaid availability for the newly eligible. 

However, for exploiting this variation to be plausible, it needs to be the case that 

Medicaid expansions meaningfully affected uninsurance rates in expansion states compared to 

nonexpansion states, and that the newly-insured actually increased uptake of the healthcare 

for which they became newly insured. Frean, Gruber, and Sommers (2017) along with others 

(Miller and Wherry, 2017) show the former: Medicaid expansions under the ACA led to among 

the largest policy-driven reductions in uninsurance in modern times. Similarly, previous 

literature shows that the newly enrolled (as well as those who received coverage via the private 
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portion of the expansions) became more likely to have a primary care physician and regular 

checkups (Sommers, et al., 2016; Sommers, et al., 2017), as well as experienced improved 

health overall (Simon, Soni, and Cawley, 2017; Courtemanche, et al., 2017). 

Therefore, since Medicaid expansions have been shown to both increase the number of 

people with health insurance that covers drugs that treat hepatitis, HPV, and herpes as well as 

increases the overall utilization of healthcare services by those newly-insured people, it is 

plausible to assume that it could have an effect on uptake of prescriptions for those drugs. 

Moreover, a more narrow body of work within the extant Medicaid expansion literature offers 

some suggestive evidence of the kind of effect to expect. 

 

1.2.2 Sex, Drugs, and Medicaid Expansion 

 Predictions of ex-ante moral hazard are ubiquitous in health economics literature, 

especially literature with regard to health insurance and risky behavior. Early economic theory 

by Ehrlich and Becker (1972), develops a notion in which forward-looking utility maximizers 

perceive the purchase of health insurance as lowering the present-discounted expected future 

cost of risky behavior, and are faced with contemporaneous incentives to engage in that risky 

behavior. However, empirical work often yields results inconsistent with this theory. 

 A common criticism of this empirical work, though, is that up until the ACA, most tests 

leverage the variation in coverage status driven by the Medicare eligibility age cutoff of 65. 

(Dave and Kastner, 2009), and that the studied age group (65 and older) are less prone to risky 

behavior, especially risky sexual behavior (De Preux, 2011). However, Medicaid expansion 
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under the ACA offers similar variation in coverage status for a broader age range, especially 

young people. 

 Concurrent with the limited evidence of ex ante moral hazard within the literature is a 

fairly consistent finding that, in certain contexts, lowering the cost of unprotected sex increases 

STIs (Chesson, 2012) while increasing the cost of unprotected sex decreases STIs (Levine, 2003; 

Klick and Stratmann, 2008). However, these studies examine variation in the cost of condoms 

(usually by making them free), and other studies show that condom effectiveness is moderated 

by sex education (Buckles and Hungerman, 2016). This paper contributes to this literature by 

adding to the growing body of work that utilizes variation in health insurance coverage instead 

of the price of condoms. 

 While there are relatively few papers directly examining the effect of Medicaid 

expansion on sexual health, related findings are sprinkled through the larger literature. Arora 

and Desai (2016) find limited evidence of uptake in contraceptive use. Study of earlier 

expansions in Medicaid eligibility prior to the ACA found robust evidence of declines in 

pregnancy among both teens and newly-eligible women (Kearny and Levine, 2009). 

 Two papers directly examine the effect of Medicaid expansions on STIs. Oney (2018) and 

Willage (2020) both find that Medicaid expansion increased certain bacterial STIs, both overall 

and specifically among young adults. A limitation of these studies is that neither are able to 

observe the effect of these expansions on viral STIs (due to limitations previously discussed), 

and both focus on relatively early expansion periods before many states rolled out expansion in 

earnest. I contribute to this literature by offering a proxy for the effect of these expansions on 



14 

non-HIV viral STIs by offering prescriptions used to treat them as a kind of instrumental 

variable. 

 However, my focus in this paper is not STI incidence directly, but rather the medications 

used to treat them, and while no previous research examines these drugs, a small body of 

research shows that Medicaid expansion is associated with increased uptake of prescription 

medications across a variety of contexts. In general, Medicaid expansion is associated with 

about a 19% increase in new prescriptions (about 9 per new enrollee), with the largest 

increases for drugs devoted to chronic conditions (Ghosh, Simon, Sommers, 2019). My paper 

follows the method of Maclean, et al., (2018), who find that Medicaid expansion is associated 

with a 22.3% increase in psychotropic medications, medications used to treat mental illnesses, 

in expansion states. I expand this literature by including a previously-unexamined drug market: 

antivirals.  

 

1.3 Data and Methods 

1.3.1 Antiviral Medications 

To perform my primary analysis, I utilize data from the Medicaid State Drug Utilization 

Database (SDUD). This data, compiled by the Centers for Medicaid and Medicare (CMS), 

contains the universe of prescription drugs used in outpatient, non-specialty settings: 

telemedicine, retail, and online pharmacies. Medicaid covers these drugs as a third party under 

the Medicaid Drug Rebate Program (U.S. Department of Health and Human Services [HHS], 

2012). This data is compiled by the federal government quarterly and allows HHS to determine 

state and federal rebates from nearly 600 distinct pharmaceutical companies who participate in 
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this program.  I consider both fee-for-service and managed care reimbursement schemes.  

Since these data directly influence the rebates collected from manufacturers and whether 

states receive Medicaid drug funds from CMS, both are incentivized to ensure these data are of 

high quality. 

Following Maclean, et al. (2019), I utilize data starting in 2011 due to the inclusion of 

prescriptions financed by managed care plans. This is important as states have shifted toward 

managed care plans over time (Hurley and Sommers, 2003). Additionally, the vast majority of 

expansion states’ newly-eligible population will be enrolled in managed care plans (Paradise, 

2017). Hence, including data from before 2011 would miss a significant share variation between 

states in counts of prescriptions. 

I use SDUD for all quarters from Q1 2011 to Q4 2018 for all 50 states and the District of 

Columbia. My analysis captures overall prescriptions for antiviral medications with indications 

for STIs, and I consider heterogeneity across specific illnesses treated: herpes simplex virus 

(HSV) types 1 and 2, human papilloma virus (HPV), and viral hepatitis (hepatitis A and B). 

Medications are listed in Table 1.1. 
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Table 1.1: Antiviral Medications 

STI Treated Medications 

Herpes 
Acyclovir, Famciclovir, Valacyclovir, Zovirax, Famvir, 

Valtrex 

HPV 
Gardasil, Cervarix, Imiquimod, Zyclara, Aldara, 

Veregen 

Hepatitis 
Entecavir, Baraclude, Vemlidy, Viread, Epivir HBV, 

Hepsera 

Note: Data source is the Center for Disease Control and National 
Hepatitis Foundation Physician Treatment Guidelines.  Overall 
medications include the union of medications in this list.  More 
information upon request 

 

The CDC (2015) provides treatment guidelines for STIs. I form a set of drugs to examine 

by first using this treatment guide. Next, I cross-examine each drug’s Medline webpage to 

expand the list (as many drugs have multiple brand names). However, only drugs with FDA 

indicators for treatment of the viral STIs aforementioned are included in my analyses. I identify 

medications in the SDUD by product name and re-check my set of drugs using crosswalks 

between National Drug Codes provided by the National Bureau of Economic Research (Roth, 

2017).  

At this point, two principle confounds are introduced. First, the list of drugs I compile is 

not the universe of drugs used to treat the viral STIs upon which my analysis is centered. I argue 

that, given treatment guidelines from the CDC, it is highly unlikely that there exist significant 

deviations from these drugs in treatment. Secondly, some of the drugs in the set I compile are 

prescribed to treat other illnesses. For instance, many of the drugs used to treat herpes simplex 

virus also treat herpes zoster (shingles). This is an inherent limitation of studying antiviral drugs. 
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Where possible, I attempt to mitigate this by eliminating altogether drugs that can treat the 

viral STIs I study, but are principally used to treat others (e.g. Tenofovir is eliminated since it 

treats hepatitis B, but is principally prescribed to treat HIV).  

 

1.3.2 Medicaid Expansions and Outcomes 
 

My classification of expansion states and expansion dates follows Maclean, et al., (2019) 

and is found in Table 1.2. One institutional feature of Medicaid expansion under the ACA is that, 

following the National Federation of Independent Business v. Sebelius decision, some states 

expanded Medicaid while others did not, but not all states who expanded Medicaid did so at 

the same time. Four states expanded prior to 2011, choosing to cover parents and childless 

adults up to 100% of the FPL or higher. These states are considered treated in all periods. Most 

states expanded on January 1, 2014. Michigan and New Hampshire expanded later in 2014, 

while Alaska, Indiana, Louisiana, Montana, and Pennsylvania expanded in 2015 and 2016. To 

identify states as expanding in the data, I match Medicaid expansion dates to the SDUD by 

state-year-quarter. If states expand within a quarter, I code the first fully-treated quarter as the 

quarter of expansion. 

Table 1.2: Medicaid Expansion by State 

Early Expansion States 

Delaware  Prior to 2011 
District of 
Columbia  Prior to 2011 
Massachusetts  Prior to 2011 
New York  Prior to 2011 

Vermont  Prior to 2011 
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Regular Expansion States 

Arizona  Q1 2014 
Arkansas  Q1 2014 
Colorado  Q1 2014 
Connecticut  Q1 2014 
Hawaii  Q1 2014 
Illinois  Q1 2014 
Iowa  Q1 2014 
Kentucky  Q1 2014 
Maryland  Q1 2014 
Michigan  Q1 2014 
Minesotta  Q1 2014 
Nevada  Q1 2014 
New 
Hampshire  Q1 2014 
New Jersey  Q1 2014 
New Mexico  Q1 2014 
North Dakota  Q1 2014 
Ohio  Q1 2014 
Oregon  Q1 2014 
Rhode Island  Q1 2014 
Washington  Q1 2014 

Virginia  Q1 2014 

Late Expansion States 

Alaska  Q3 2015 
Indiana  Q1 2015 
Montana  Q1 2016 
Louisville  Q3 2016 
Pennsylvania  Q1 2015 
          

Note: Expansion dates derived from Maclean, et al., 2018.  States are counted 
as having expanded only if a "substantial" expansion occurred (i.e. if states 

covered both parents and children at least up to 100% of FPL.) 
 

I construct the number of Medicaid-financed prescriptions used to treat non-HIV viral 

STIs regardless of managed care or fee for service utilization. For subsequent analyses, I also 
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construct average reimbursement rates for these prescriptions by dividing the total number 

amount reimbursed by Medicaid for a drug by the total number of prescriptions for that drug in 

a state-year-quarter. 

1.3.3 Empirical Strategy 

I estimate the causal effect of Medicaid expansions on prescriptions for drugs that treat non-

HIV viral STIs using the differences-in-differences model specified in Equation (1): 

𝑅𝑥{𝑠𝑡} = 𝛽0 + 𝛽1(𝑀𝑒𝑑𝐸𝑥𝑝𝑠𝑡) + 𝛽2′(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑠𝑡) + 𝑆𝑠 + 𝜏𝑡 + 𝜀{𝑠𝑡} (1) 

Where 𝑅𝑥{𝑠𝑡}is the number of prescriptions reimbursed by Medicaid in state per 

100,000 18-64 year-olds in state s at year-quarter t; 𝑀𝑒𝑑𝐸𝑥𝑝𝑠𝑡is an indicator for whether or 

not state s has expanded its Medicaid program in period t (one can think of this as an 

interaction between a state’s time-invariant expansion status and an indicator variable that 

returns a 1 if expansion has happened in the current term or earlier). 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑠𝑡 is a vector of 

time-varying characteristics from the CPS (unemployment rate, average age, sex, race, 

ethnicity, non-U.S. birth, and education). 𝑆𝑠and 𝜏𝑡are state and year-quarter fixed effects, 

respectively. State fixed effects will control for time-invariant characteristics that are 

idiosyncratic to the state while year-quarter fixed effects control for time varying national 

trends in prescription of these drugs. I cluster standard errors at the state level and report 95% 

confidence intervals. 

1.3.4 Internal Validity 

 

A key feature of the Differences-in-Differences model (DD) is that it requires the 

assumption of pre-treatment parallel trends in outcomes in order to plausibly recover causal 
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estimates. In other words, it needs to be the case that in the (unobservable) counterfactual 

state, treatment (expansion states) and control (non-expansion states) groups would have 

followed the same trend in the post treatment period. However, since this counterfactual is 

inherently unobservable, this assumption is not directly testable. I attempt to overcome this 

challenge in two ways. 

First, I examine unadjusted trends in pre-expansion counts of per-capita prescriptions 

for both expansion and non-expansion states. If I find that these pre-treatment trends are 

similar regardless of expansion status (even if levels are not exactly the same), such trends 

suggest that the parallel trends assumption is satisfied. Second, I use pre-Medicaid-expansion 

data for the treatment group and 2011-2013 data for non-expansion states and estimate the 

regression in equation (2): 

𝑅𝑥{𝑠𝑡} = 𝛾0 + 𝛾1(𝑇𝑟𝑒𝑎𝑡𝑠 × 𝑇𝑟𝑒𝑛𝑑𝑡) + 𝛾2′(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑠𝑡 + 𝑆𝑠 + 𝜏𝑡 + 𝜀{𝑠𝑡} (2) 

In this event study specification, (𝑇𝑟𝑒𝑎𝑡𝑠 × 𝑇𝑟𝑒𝑛𝑑𝑡) is an interaction between an 

indicator for the treatment group (expansion states) and a linear time trend. Failure to reject 

the null hypothesis that the coefficient on this variable is zero supports that our data satisfy the 

parallel trends assumption. I exclude states with expansions prior to 2011 from my event study 

as they are coded as treated in all periods. 

 

1.3 Results 
 

1.4.1 Summary Statistics and Internal Validity 

Table 1.3 reports summary statistics for pre-treatment years: average prescription use 

per 100,000 18-64 year-olds by expansion status (excluding early expanders). Notable level 
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differences exist in demographic variables by expansion status, but I control for these variables. 

Also-notable level differences exist in counts of prescriptions. In particular, expansion states 

report nearly 5 times the number of prescriptions to treat hepatitis. 

 

Table 1.3. Average Annual Antiviral Drug Usage   

     
Average Number (Counts) of Prescriptions per Year  

 Expansion States Non-Expansion States 

 Pre-2014 Post-2014 Pre-2014 
Post-
2014 

Drug class    

Herpes 5668.284 7003.24 4468.566 3767.29 

HPV 471.0637 401.779 349.1806 236.8 

Hepatitis 1573.333 1767.01 322.0179 275.834 
     

Average Number (per 100,000 18-64-year olds) of Prescriptions per 
Year 
 Expansion States Non-Expansion States 

 Pre-2014 Post-2014 Pre-2014 
Post-
2014 

Drug class    

Herpes 87.27568 107.754 73.45259 49.1654 

HPV 6.099136 6.04046 5.185205 3.47867 

Hepatitis 13.45058 15.603 4.161251 3.62018 

 

Figure 1.1 maps out trends in prescriptions, which are aggregated to the state-year-

quarter level, and Figure 1.2 maps average trends in per-capita terms (per 100,000 18-64 year-

olds). Broadly, these trends move in parallel in the pre-treatment period, then sharply diverge 

following 2014. Figure 1.3 formalizes this in plotting the results of the regression model 

estimated from equation (2), and table 4 lists these coefficient estimates and reports their 

standard errors. Both visually and statistically, the results are striking: near-zero and 

insignificant estimates prior to Q1 of 2014 with sharp increases following Q1. 
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Figure 1.1: Total Prescription Utilization (per capita) 

Figure 1.2: Average Prescription Utilization (per capita) 

Figure 1.3: All Drugs Event Study 
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Table 1.4 Antiviral Drug Regression Estimates 

 (1) (2) (3) (4) 
 With 

State 
Controls 

With 
State 

Controls 
& 

logged 
Rx 

+ State 
& YQ FE 

+ State, 
YQ FE, & 
logged 

Rx 

dd 58.90*** 0.582*** 49.66*** 0.453*** 
 (13.40) (0.140) (12.81) (0.112) 

N 1631 1599 1631 1599 
adj. R2 0.196 0.153 0.722 0.790 

Standard errors in parentheses. All regressions clustered at the state level. 
* p < 0.1, ** p < 0.05, *** p < 0.01 

 
 

1.4.2 Difference-in-Differences: Prescriptions 

In my primary analysis, I estimate regression equation (1) and recover the causal estimates for 

the effect of Medicaid expansion on per-capita prescriptions for antiviral drugs used to treat 

viral STIs. These results are listed in table 1.5. In the fully-specified model, I find that Medicaid 

expansion is associated with an increase of 49.66 prescriptions per 100,000 18-64 year-olds 

(about a 52% increase 12 over the pre-treatment baseline of 96.14 per 100,000).  

However, given differences in per-capita uptake of these antiviral drugs by type shown 

in Table 1.3, it could be the case that there is significant heterogeneity in the effect of Medicaid 

expansion by drug type. To test for this heterogeneity, I estimate 3 separate regressions in 

which I restrict my sample to drugs treating each individual type of STI. Recall that since my 

event study for hepatitis treating antivirals rejects the null hypothesis of a pre-treatment effect, 

we must exercise caution in interpreting the results of the third regression, which estimates the 
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effect of Medicaid expansion on drugs treating hepatitis. Results of these regressions are 

detailed in Table 1.5.  

 

Table 1.5 Antiviral Drug Regression Estimates per 100,000 by Drug Class 

 (1) (2) (3) (4) (5) (6) 
 Herpes Herpes 

(with 
logged Rx) 

HPV HPV (with 
logged RX) 

Hepatitis Hepatitis 
(with 

logged Rx) 

dd 44.75*** 0.473*** 2.136*** 0.490*** 3.652*** 0.432*** 
 (12.43) (0.122) (0.781) (0.160) (0.957) (0.0842) 

N 1599 1599 1578 1578 1592 1592 
adj. R2 0.640 0.766 0.719 0.704 0.915 0.894 

Standard errors in parentheses. All regressions clustered at the state level with CPS controls, 
State, and YQ FE. 
* p < 0.1, ** p < 0.05, *** p < 0.01 

 

There is a marked similarity in the individual effects on each drug type in percent-

change terms. Antivirals treating herpes increased by about 47%, those treating HPV increased 

by about 49%, and those treating hepatitis can cautiously be interpreted to have increased by 

43%. However, it is important to note that drugs treating herpes are prescribed far more than 

drugs treating HPV or hepatitis, and so their increase in levels is much larger (an increase of 

44.75 prescriptions per 100,000 compared to 2.13 for HPV-treating drugs and 3.65 for hepatitis-

treating drugs). 

 

1.4.3 Difference-in-Differences 

 A central question of this design is whether or not increases in prescriptions was 

financed by new enrollees or state Medicaid programs themselves. To answer this question, I 

next consider equation (1) with total and Medicaid payments to consider the costs of increased 
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prescriptions for these drugs. Following the example of Maclean, et al., 2018, I use these 

estimates to examine the extent to which individual state Medicaid programs bore the burden 

of costs over enrollees. Since these regressions are not in per-capita terms, I add the additional 

control of state population to the regressions.  

I begin by converting all Medicaid reimbursement to 2017 terms using the CPI. Next I 

construct total and Medicaid payments for drugs treating viral STIs. Pre-expansion, total 

payments for these drugs was $1,509,800 per year, per state while Medicaid payments was 

$1,498,763 per year, per state. Medicaid expansion is responsible for a roughly 45% increase in 

total payments and about a 41% increase in Medicaid payments. These are remarkably similar 

percentage increases in payments when compared with the increases in prescriptions discussed 

in the previous subsections. However, the principle conclusion of these estimates is that since 

patient share of payments relative to Medicaid payments did not substantially increase for 

these drugs due to Medicaid expansion.  Following previous research, I interpret this to mean 

Medicaid, not patients, provided the majority of expansion-attributable prescriptions. 

 

1.5 Conclusion 

1.5.1 Robustness and Limitations 

Absent non-parallel trends in pre-treatment periods, the principle threat to the 

difference-in-differences design employed in this paper is the staggered timing in treatment by 

way of heterogeneity in Medicaid expansion dates. If a state expanded, it did so as part of one 

of three groups: early (pre-2011) expansion, standard (Q1 of 2014) expansion, or late expansion 
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(after Q1 of 2014). This gives rise to the troublesome econometric condition of some treated 

units being compared to other treated units as a control.  

Previous literature (Goodman-Bacon, 2018) points out that under the conditions of 

differential timing in treatment, the DD estimator derived in section 4 is the weighted average 

of all 2x2 estimators implicit in the data. In other words, my results in section 4 are the mean 

effect of comparing early expansion states to late expansion states, late expansion states to 

regular expansion states, states that never expanded to states that expanded at any time, and 

states that expanded late to states that never expanded. Careful interpretation of the causal 

effect of Medicaid expansion requires that we decompose these individual effects from the 

weighted average. Each of these estimates are plotted in Figure 1.4.  

 

 

The first decomposed 2x2 estimator compares per-capita prescriptions in states that 

expanded early to those who never expanded, but only in post-treatment years of the 

expansion. This estimate only accounts for about 2% of the weighted average of the DD 

Figure 1.4: Coefficient Weights 
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estimate, and tells us that early expanders experienced an increase of about 35.95 prescriptions 

per 100,000 over late-period nonexpansion states (compared to the weighted average of 

49.65).  

The second decomposed 2x2 estimator compares per-capita prescriptions in states that 

expanded late to per-capita prescriptions in non-expansion states, but only in pre-treatment 

years. This estimate only accounts for about 2.6% of the weighted average, and tells us that late 

expanders experienced an increase of only about 1 prescription relative to pre-treatment non-

expansion states. This is not surprising as the event study shows a downward trend in 

expansion status interacted with a linear time trend, which implies an attenuation of the 

treatment effect over time. 

The third decomposed 2x2 estimator compares per-capita prescriptions among 

expansion states and nonexpansion states overall, and is the primary decomposed estimator 

with which I am interested. It accounts for about 77% of the weighted average, and tells us that 

expansion states saw uptake of 48.415 prescriptions per capita. This is remarkably similar to the 

estimate of 49.65 derived from the (weighted average) DD estimator derived from equation (1).  

Finally, the fourth decomposed 2x2 estimator compares treated units to already-treated 

units. It accounts for about 18.4% of the weighted average and tells us that states expanding 

later in the sample picked up about 63.06 more per capita prescriptions than those who 

expanded earlier. This is driven more by the comparison of regular expanders to early 

expanders than by late expanders to regular expanders given the much-larger share of regular 

expanders.  
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Hence, the results of the DD estimator derived from equation (1) is biased slightly 

upward, but remains a good estimate of the average treatment effect of Medicaid expansion on 

the number of prescriptions for drugs treating non-HIV viral STIs. For additional robustness, I 

simplify my model to ignore heterogeneity in treatment timing. I mark any state ever expanding 

Medicaid as treated and set Q1 of 2014 as the beginning of the treatment period for every 

treated unit. In this simplified 2x2 design, I re-estimate equation (1) and find very similar 

results: an increase of 45.91 prescriptions per capita.  

There are some limitations to using my current design. Primarily, many drugs in the set I 

construct are used to treat other conditions such as STIs I do not consider (like HIV) and 

unrelated illnesses (like shingles and chickenpox.) I argue that this is a fundamental limitation of 

using SDUD for causal inference. Furthermore, I point out that overall incidence of HIV (CDC, 

2018) is falling, and while incidence of herpes zoster is increasing (Harpaz, 2019), it has only 

increased by a small percentage even in the most at-risk category (adults over 65), a group not 

considered in the construction of my sample. Overall incidence of chickenpox is simply too low 

to account for increases in my results, and is concentrated in the very young. 

The second limitation to my design is that I lack data on patients. This is related to the 

first limitation in that I cannot guarantee that a prescription for a drug was guaranteed to treat 

the an STI, nor can I determine if the medication was prescribed appropriately or if it improved 

a patient’s symptoms. I am also not able to precisely infer incidence of herpes, HPV, and 

hepatitis. Currently, I am only able to refer to other data (CDC, 2018) that show herpes 

incidence has decreased from 59% to 48% from 1999-2016. It is unclear whether or not 

Medicaid expansion plays a role in that decline 
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1.5.2 Policy Relevance 

My work suggests that there exists much latent demand for STI treatment. Given 

existing research already discussed in this paper, this is not surprising. Those suffering from 

untreated STIs face many disincentives to taking up treatment, both with regard to stigma and 

cost. While public health policy can likely do little (at least in the short run) to reduce stigma, 

the principle incentive policymakers can target is cost. This is the story that plays out across 

many of the empirical papers examining the overall health effects of Medicaid expansions 

(Simon, Soni, and Cawley, 2017; Courtemanche, et al., 2017): eliminating or reducing the cost 

burden of healthcare improves overall health. Also given that many of these treatments provide 

a prophylactic effect (Corey, et al., 2004) when used during an outbreak. In other words, these 

treatments are also effective as preventing spread of the disease. It could be the case that by 

expanding access to these drugs to new enrollees, Medicaid expansions could attenuate 

infections in the long run, but more research is needed. 
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Chapter 2: Medicaid Expansion and the Treatment and Prevention of HIV (joint with Derek 

Hoodin) 

 

2.1 Introduction 

HIV constitutes a public health crisis in the US. Over 1.1 million people were living with HIV 

at the end of 2016, and there were nearly 39,000 new infections in the last year (CDC, 2018). 

HIV overwhelmingly affects men (80% of all new infections), disproportionately affects African 

Americans and Latinx individuals (73% of all new infections), and disproportionately affects 

the young (nearly 56% of all new infections are below 34). 

For much of the past fifty years, HIV was a death sentence. The virus attacks the immune 

system of its host at the genetic level, using the body’s own self-replication abilities to 

propagate itself, and is passed on sexually, by sharing needles for intravenous drug use, or 

through contact with the blood, saliva, or other bodily fluids of an HIV-infected person. By the 

time it reaches its third and final stage, HIV will have ravaged its host’s immune system 

beyond the point at which the host can protect itself against external pathogens. This final 

stage is referred to as AIDS, and the subsequent lack of any ability of the body to fight off 

opportunistic infections usually results in death. (Adler, et. al, 2012) 

After over a decade and activism and public pressure, government investment in 

pharmaceutical research and development gave rise to highly active antiretroviral therapy 

(HAART). HAART combined a cocktail of three or more potent antriretrovirals that inhibited 

HIV’s ability to replicate in the body. Though the first iteration of HAART had devastating 

(sometimes even fatal) side effects for some, wide-spread adoption in the U.S. saw the first 
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major decline in HIV-related fatalities. However, it soon became clear that HAART had an 

additional benefit: in addition to suppressing viral loads to non-fatal levels, the cocktail could 

suppress viral loads beyond the ability of conventional blood tests to detect. Reaching this 

”undetectable” status leaves an HIV-infected individual unable to transmit the virus. 

The benefits of HAART were fully realized in the early 2000s when researchers began to 

notice that non-infected partners in serodiscordant relationships (relationships between an 

HIV-infected person and non-HIV-infected person) remained non-infected even with partners 

who had not achieved undetectable status by sharing their partner’s antiretroviral drugs. 

Grant, et al. (2010) showed that by taking a modified version of an existing antiretroviral 

cocktail, non-infected people at risk for HIV could reduce their risk of infection to effectively 0. 

This advancement was called Pre-Exposure Prophylaxis (PrEP), and currently only two drugs 

(Truvada and Descovy, both produced by Gilead Sciences) have been authorized for use as 

PrEP. The subsequent decline in HIV infection rates in the U.S. directly attributable to PrEP are 

well-documented (Grant, et. al, 2014). 

However, HAART and PrEP are extremely expensive. HAART and PrEP both retail roughly 

between $16,000-$20,000 a year without insurance (Gebo, et. al, 2010; Horberg and 

Raymond, 2013). To date, HIV treatment and prevention is the largest line item in the 

Medicaid drug budget and the fifth largest for private insurers (Medicaid NADAC, 2018; 

ExpressScripts, 2017). While these costs are expected to go down with the expiration of 

Truvada’s patent in 2021, they remain a significant barrier to entry for many. 
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2.1.2 HIV-Related Economics Literature 

Though it is sparse, much of the extant literature with regard to HIV follows one of two 

main streams: empirical work examining behavioral effects of variation in HIV incidence or 

prevalence, theoretical work estimating moral hazard or elasticities, and some field work 

aimed at improving outcomes. 

Lakdawalla et al., 2006 use variation in Medicaid eligibility legislation as an instrument 

for HIV treatment. They find that treating HIV positive individuals subsequently doubles their 

sexual partners, thus increasing the risk of infection to HIV negative individuals and lowering 

their expected welfare. This result is likely not reasonable given the contemporary state of 

HIV treatment in which almost all HIV-treated individuals become undetectable quite quickly 

(Grant, et al, 2014) due to the efficacy of modern HAART. 

Auld’s (2006) structural model similarly approaches the HIV epidemic from a similar 

perspective of moral hazard. Using data from the San Francisco Men’s Health Survey (SFMHS), 

Auld estimates that risky sexual behavior is prevalence inelastic: men only reduced their risky 

sexual behavior by half a percentage point for every 1-point increase in the prevalence of HIV. 

Perhaps presciently, Auld suggests that (in the context of his model) a prophylactic vaccine 

would increase risky behavior. This is born out in the Public Health literature, which suggests 

that PrEP uptake is coupled with a spike in risky sexual behavior (Oldenberg, et al., 2019; 

Koester, et al., 2017). 

Other economists have used the SFMHS to draw similar conclusions. Dow and Phillipson 

(1996) consider the extent to which HIV positive men match with other HIV positive men as 
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sexual partners. This seroconcordant matching generates a positive externality: new HIV 

infections are reduced by about a third. Dow and Phillipson also find that HIV positive men are 

about twice as likely to match with other HIV positive men, likely due to stigma surrounding 

serodiscordant relationships. Francis (2008) proposes that high incidence may cause 

individuals to pursue heterosexual relationships instead of homosexual ones. While he finds 

some limited evidence of this, it is worth noting that such behavior is likely driven on the 

intensive margin among bisexual or pansexual men (Kenneady, 2014). 

Bhattacharya et al. (2003) aim to disentangle the effects of insurance and HIV-related 

mortality, jointly estimating demand for insurance alongside treatment. Bhattacharya and 

authors find that expanded access to insurance (public health insurance) in particular 

dramatically decrease the probability of HIV-related mortality (principally by expanding access 

to HAART). Given that these results are pre-PrEP, it seems reasonable to assume that they are 

an extreme lower bound on the benefits of public health insurance with regard to HIV-related 

mortality. Only one other study examines HIV and AIDS through the lens of Medicaid 

expansion. Gai and Marthinson (2019) finds evidence that Medicaid expansion is associated 

with a 3.22 percentage point increase in HIV testing rates. 

 

2.1.2 Medicaid Expansions, Sexual Health, and Contribution to the Literature 

Few papers examine the effect of Medicaid expansion on sexual health directly, but 

findings that elucidate the topic are part of the larger literature. Courtemanche, et al. (2017) 

find that expansion states saw larger relative amounts of HIV testing. Arora and Desai (2016) 

find limited evidence of uptake in contraceptive use. Studies of earlier expansions prior to the 
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ACA found evidence of declines in pregnancy among both teens and newly-eligible women 

(Kearny and Levine, 2009). 

 Oney (2018) and Willage (2020) both find that Medicaid expansion increased certain 

bacterial STIs, both overall and specifically among young adults, but these results are limited in 

that neither are able to observe the effect of these expansions on viral STIs, and both focus on 

relatively early expansion periods before some states expanded eligibility. Previous work shows 

a link between access to insurance and changes in HIV risk: Bhattacharya and coauthors (2003) 

and Lakdawalla and coauthors (2006) suggest that expanding access to insurance (especially 

public insurance) can save lives. Previous work also suggests that there could be some 

ambiguity to the direction of the effect: Gai and Marthinson suggest that expanding Medicaid 

increases HIV testing, which would increase the number of HIV-positive people in expansion 

states (since about 15% of those living with HIV are undiagnosed), while Bhattacharya suggests 

increased access to HAART should drive that number down. 

We contribute to this literature by offering a proxy for the effect of these expansions on non-

HIV viral STIs by offering prescriptions used to treat them as a kind of instrumental variable in 

addition to directly examining the effect on incidence and mortality and by showing that there 

is some effect on uptake of drugs used in the treatment and prevention of HIV.   It stands to 

reason that Medicaid expansion directly pulls two different levers: it pushes HIV infections up 

due to increasing the number of people being tested for HIV, but it also pulls HIV infections 

down through increased access to PrEP and HAART, both of which are covered by Medicaid. It 

could also indirectly push the number of HIV infections up by lowering the perceived relative 

risk of a risky sexual act. If a person living in an expansion state perceives that his or her 
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potential sexual partners are now relatively safer because of improved health outcomes 

(inasmuch as Medicaid saliently provides those), he or she might be incentivized to be more 

sexually risky. 

Finally, since it is well-known that increased respective effectiveness and availability of 

HAART and PrEP are correlated to increases in other STIs (CDC, 2018), it could be the case that 

Medicaid expansion comes with some moral hazard.  Our results show that the direct effect of 

Medicaid expansions on actual incidence and mortality due to HIV is unclear (noisy, imprecise 

estimates), and similarly, its effects on the medications used to treat and prevent HIV are 

sensitive to the specification: the standard two way fixed effects (TWFE) estimator yields 

insignificant results under the standard staggered treatment specification absent “clean” 

controls or stacking, methods from the TWFE econometric literature. 

 

2.2 Data and Methods 

Data for this work comes from three sources: (1) the Centers for Disease Control and 

Prevention (CDC) annual HIV/AIDS and STD Surveillance Reports and (2) the Medicaid State 

Drug Utilization Database (SDUD). 

Data from the CDC HIV/AIDS Surveillance Reports includes state aggregates for HIV and 

AIDS-related outcomes: new infections and mortality as well as breakdowns by race/ethnicity, 

and other demographic characteristics. We use provided per-capita counts of new HIV cases, 

new AIDS classifications, and mortality due to HIV or AIDS. We use data from 2010-2018 state 

level aggregates. 
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Data from the Medicaid SDUD include the universe of all filled prescriptions covered by the 

Medicaid Drug Rebate Program. We use data from 2011-2018 (both fee for service and 

managed care), and restrict our sample to the 20 combination drugs licensed by the Food and 

Drug Administration (FDA) for HIV treatment and prevention (shown in Table 2.1). HAART 

drugs are categorized under 7 different classes based on the method by which the drug 

interferes with the viral replication process.  Combination drugs are single pills that contain 

combination of other drugs and represent a more holistic drug regimen than ad-hoc cocktails.  

We focus only on the 20 combination drugs as the most recent physician guidance from the 

federal government (HHS, 2021) recommends their prescription over ad-hoc cocktails of other 

drugs, and since the utilization of these drugs represents the vast majority of HAART 

reimbursed by Medicaid. There are currently only two drugs approved for use as PrEP in our 

treatment period, Truvada, though a second drug, Descovy has since transitioned out of 

rotation as treatment and is now used as prevention. 

We also include controls from the ACS include state population estimates from 2011 to 

2018 from all 50 states and the District of Columbia. Also included are estimates of proportion 

of state population that is African American or Hispanic, as well as the proportion of the state 

living below the poverty line.  Finally, for robustness, we include state expenditures on the 

Ryan White program, a separate, large federal program providing HIV treatment and related 

medical care to low-income individuals.  Over half the people diagnosed with HIV in the U.S. 

utilize this program.  We define Medicaid expansion according to the timeline provided in 

Table 1.2 in chapter 1 of this work. 



37 

2.2.1 Empirical Strategy 
 

For our preliminary analysis, we use a simple Difference-in-Differences framework to 

estimate the effect of Medicaid Expansion on HIV and AIDs: 

𝑌{𝑠𝑡} = 𝛽0 + 𝛽1(𝑀𝑒𝑑𝐸𝑥𝑝𝑠𝑡) + 𝛽2′(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑠𝑡 + 𝑆𝑠 + 𝜏𝑡 + 𝜀{𝑠𝑡} (1) 

 

Where 𝑌{𝑠𝑡}is the number of prescriptions used for (a) HIV treatment and/or prevention 

reimbursed by Medicaid in state per 100,000 18-64 year-olds in state s at year-quarter t or (b) 

(HIV/AIDS) incidence and/or mortality in state s at year t);  𝑀𝑒𝑑𝐸𝑥𝑝𝑠𝑡is an indicator for 

whether or not state s has expanded its Medicaid program in period t (one can think of this as 

an interaction between a state’s time-invariant expansion status and an indicator variable that 

returns a 1 if expansion has happened in the current term or earlier). 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑠𝑡 is a vector of 

time-varying characteristics from the CPS (unemployment rate, average age, sex, race, 

ethnicity, non-U.S. birth, and education) and Ryan White expenditures by state (for HIV/AIDS 

surveillance data).  𝑆𝑠and 𝜏𝑡are state and year-quarter (year) fixed effects, respectively. State 

fixed effects will control for time-invariant characteristics that are idiosyncratic to the state 

while year-quarter (year) fixed effects control for time varying national trends in prescription of 

these drugs. I cluster standard errors at the state level and report 95% confidence intervals. 

 

2.2.2 Internal Validity 

The Differences-in-Differences model (DD) requires the assumption of pre-treatment 

parallel trends in outcomes in order to plausibly recover causal estimates. This counterfactual is 

inherently unobservable, but we attempt to overcome this challenge in two ways. 
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First, we examine unadjusted trends in pre-expansion outcome variables of interest 

(HIV/AIDs incidence/mortality vs.per-capita counts of prescriptions) both expansion and non-

expansion states. If I find that these pre-treatment trends are similar regardless of expansion 

status (even if levels differ), such trends suggest that the parallel trends assumption is satisfied. 

Second, I use pre-Medicaid-expansion data for the treatment group and 2011-2013 data for 

non-expansion states and estimate the regression in equation (2): 

𝑌{𝑠𝑡} = 𝛾0 + 𝛾1(𝑇𝑟𝑒𝑎𝑡𝑠 × 𝑇𝑟𝑒𝑛𝑑𝑡) + 𝛾2′(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑠𝑡 + 𝑆𝑠 + 𝜏𝑡 + 𝜀{𝑠𝑡} (2) 

In this event study specification, (𝑇𝑟𝑒𝑎𝑡𝑠 × 𝑇𝑟𝑒𝑛𝑑𝑡) is an interaction between an 

indicator for the treatment group (expansion states) and a linear time trend. Failure to reject 

the null hypothesis that the coefficient on this variable is zero supports that our data satisfy the 

parallel trends assumption. I exclude states with expansions prior to 2011 from my event study 

as they are coded as treated in all periods. 

 

2.2.3 Robustness 

Previous literature (Goodman-Bacon, 2018) points out that under the conditions of 

differential timing in treatment, the DD estimator derived by the aforementioned model is the 

weighted average of all 2x2 estimators implicit in the data. In other words, the results derived 

under a standard differences in differences two way fixed effects model are the mean effect of 

comparing early expansion states to late expansion states, late expansion states to regular 

expansion states, states that never expanded to states that expanded at any time, and states 

that expanded late to states that never expanded. Careful interpretation of the causal effect of 

Medicaid expansion requires accounting for staggered treatment timing.  We account for this 
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staggered timing in two ways: first, we use the “clean controls” approach of Cengiz, Dube, 

Lindner, and Zipperer (2019) in which only treated units which have never been previously 

considered controls or who have only ever been considered as treated units (e.g. late 

expanders and early expanders) are only compared to untreated units. 

Secondly, we use the “stacked DD” approach of Abraham and Sun 2018 and Deshpande 

and Li 2017 in which we form a new dataset by transforming the year—quarter (year) variable 

into a timing variable with the year of treatment as the relative reference year (for treated 

units).  This solves the fundamental problem of considering already-treated units as a control by 

reshaping the data.  We do find that our results are only significantly different from zero if we 

address the bias caused by staggered rollout of Medicaid Expansion. 

 

2.3 Results and Discussion 

2.3.1 HIV/AIDS Incidence and Mortality 

  Given our model specification, the effect of Medicaid expansion on HIV incidence and 

mortality is unrecoverable since Figures 2.1 and 2.2 reveals that incidence and mortality 

measures fail the aforementioned event study design, and thus have non-parallel trends.  Event 

studies reveal pre-treatment coefficients are noisy, and while post-treatment coefficients are 

far more precisely-measured, coefficients are not different than zero.   
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Figure 2.1: per Capita AIDS cases and Mortality Event Studies 
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Figure 2.2: per Capita HIV cases and Mortality Event Studies 

 

      

There are several possible explanations for this.  The first is the most straightforward: 

Medicaid expansions simply didn’t move the needle on the dynamics of HIV treatment and 

prevention all that much.  The second, also likely explanation is that there is simply too little 

variation to precisely measure much given that the data used is from state-level aggregates of 

already-small measures.   A third explanation is that other sources of treatment funding beyond 

Medicaid (like Ryan White) are more responsible for variation in HIV/AIDS-related outcomes.  

This is plausible given the share of HIV-infected individuals who receive funding from these 

sources (over 50%).  A final, albeit untestable explanation for observed event study results is 

that Medicaid expansion had a dual effect on HIV/AIDS-related outcomes.  One could imagine 
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the case of access to public health insurance increasing the probability of reporting a positive 

HIV result by way of linkage to care while also decreasing the probability of reporting a positive 

HIV result by way of expanded access to treatment and prevention.  This duality of effects could 

cause the observed effect to tend toward zero. 

 

2.3.2 HIV Treatment and Prevention 

  Figures 2.3, 2.4, and 2.5 reveal graphically the results of the event-study design 

which tests the feasibility of using the DD design for prescriptions used to treat and prevent 

HIV, first aggregated and for treatment and prevention separately.  While coefficients in the 

year-quarters prior to expansion are somewhat noisily-estimated, the remain statistically not 

different from zero in pre-treatment periods, while post-treatment periods reveal a modest 

positive coefficient just outside the 95 percent confidence intervals. 

Table 2.1 shows DD regression estimates for HIV treatment and prevention show that 

Medicaid expansion is associated with an increase of about 16 prescriptions per 100,000 overall 

(if adjusted for staggered treatment).  Disaggregating treatment and prevention separately, 

Table 2.1 shows that this effect can be disaggregated into an increase of about 10 prescriptions 

per 100,000 with regard to prevention and an increase of about 21 prescriptions per 100,000 

with regard to treatment.  In percentage terms, these effects represent about a 23 percent 

increase over the mean of 68 prescriptions per 100,000 for all drugs, a 27% 
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Figure 2.3-Event Study All Drugs 

 

Figure 2.4-Event Study PrEP 

 

Figure 2.5-Event Study HIV Treatment 
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Table 2.1 

Regression Estimates—All Treatment and Prevention 

 (1) (2) (3) 
 Basic TWFE 

Estimate 
TWFE with 

“Clean    
Controls” 

“Stacked” 
TWFE 

MedExp 7.73 16.28 *** 15.95*** 
 (11.58) (2.81) (2.79) 

N 1632 1268 1036 
adj. R2 0.4147 0.6403 0.7001 

Standard errors in parentheses. All regressions clustered at the state level. 
* p < 0.1, ** p < 0.05, *** p < 0.01 

 
 

Table 2.2 
Regression Estimates—Prevention 

 (1) (2) (3) 
 Basic TWFE 

Estimate 
TWFE with 

“Clean    
Controls” 

“Stacked” 
TWFE 

MedExp 6.79 9.82*** 9.75*** 
 (4.72) (2.38) (2.56) 

N 1632 1268 1036 
adj. R2 0.465 0.6125 0.6626 

Standard errors in parentheses. All regressions clustered at the state level. 
* p < 0.1, ** p < 0.05, *** p < 0.01 

 
Table 2.3 

Regression Estimates—Treatment 

 (1) (2) (3) 
 Basic TWFE 

Estimate 
TWFE with 

“Clean    
Controls” 

“Stacked” 
TWFE 

MedExp 15.44 21.73*** 20.39*** 
 (11.21) (5.30) (3.79) 

N 1632 1268 1036 
adj. R2 0.5353 0.6201 0.6620 

Standard errors in parentheses. All regressions clustered at the state level. 
* p < 0.1, ** p < 0.05, *** p < 0.01 
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increase over the mean for PrEP, and about a 20% increase over the mean for HAART.  Again, all 

of these effects are sensitive to accounting for staggered treatment, but they do align with mid-

tier estimates (Maclean, et al., 2019) of the effect of Medicaid expansion on some drug 

markets, though these estimates significantly undershoot the effects observed in chapter 1. 

A comprehensive interpretation of these results is challenging.  Given the lack of 

evidence of an increase (or decrease) in HIV and AIDS incidence and mortality due to the policy 

change, we are unable to connect the increase in utilization of these prescriptions directly to an 

increase in diagnosis.  However, there are other explanations.  Given the results discussed in 

Chapter 1, it could be the case that there is a pent-up demand for HIV treatment and 

prevention (especially prevention).  For example, it could be the case that those newly-eligible 

for Medicaid would have previously financed these drugs out of pocket (not very plausible), or 

with the assistance of public and private funding sources (such as charities, pharmaceutical 

company rebates, or other income-contingent programs). 

The imprecision of these estimates make policy recommendations difficult and imply 

that Medicaid expansion had an ambiguous effect on the dynamics of HIV and AIDS in the US.  

There is no evidence that it changed new infections or classifications of HIV or AIDS, but there is 

limited evidence that it modestly increased the number of prescriptions for HIV treatment and 

prevention reimbursed by Medicaid in expansion states relative to non-expansion states.  Taken 

together with other evidence presented in chapter 1, we cautiously interpret these results to 

show a pent-up demand for drugs used in HIV treatment and prevention. 
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Chapter 3: Gender Identity, Race, and Ethnicity Discrimination in Access to Mental Health 

Care: Preliminary Evidence from a Multi-Wave Audit Field Experiment (joint with Patrick 

Button, Eva Dils, Luca Fumarco, and David Schwegman) 

 

3.1 Introduction 

Individuals who identify as transgender and non-binary1 (TNB individuals) face 

socioeconomic status and health disparities as well as confront considerable stigma and 

discrimination2 in their everyday lives (Badgett et al. 2009; Grant et al. 2011; Hughto, Reisner, 

and Pachankis 2015; James et al. 2016; Carpenter, Eppink, and Gonzales 2020). Compared to 

cisgender1 people in the United States, TNB individuals are more likely to live in poverty, to be 

food insecure (Russomanno et al. 2019), to have been incarcerated, to have been the victim of 

an assault (particularly intimate partner violence), to be unemployed (Badgett, Carpenter, and 

Sansone 2020; Leppel 2020), and to lack health insurance (Carpenter, Eppink, and Gonzales 

2020; James et al. 2016; Liszewski et al. 2018; Waters and Yacka-Bible 2017). TNB individuals 

are especially more likely to experience mental illness and severe psychological stress: TNB 

individuals have higher rates of anxiety, depression, substance misuse, and suicidality than non-

TNB individuals (Grossman and D'Augelli 2007; Lagos 2018; Meyer et al. 2017; Miller and 

Grollman 2015; Mustanski et al. 2010; Nuttbrock et al. 2010; Scanlon et al. 2010; Streed et al. 

 
1 Throughout the paper, we will discuss transgender and non-binary (TNB) individuals together; however, these are 

separate gender identities and our experimental design allows us to differentially test between binary transgender 

and non-binary individuals. Liszewski et al. (2018) propose useful definitions that we adopt. Someone who is 

transgender identifies with a gender identity that does not exclusively match their gender assigned at birth. Someone 

who is transgender may identify as a gender that is different than the one assigned at birth, with both genders, or no 

gender. Non-binary individuals identify neither as exclusively male nor exclusively female, may identify as 

something other than male or female, may identify as multi-gendered, or may not identify with any gender. 

Cisgender individuals have a gender identify that matches their sex assigned at birth.  
2 Following Lahey and Oxley (2018), the term “discrimination” used throughout this paper refers to “differential 

treatment by demographic characteristics(s).” It does not refer solely to animus or taste-based discrimination. See 

footnote 11 for discussion of the different types of discrimination. 
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2018; Su et al. 2016). These disparities are stark. In a sample of 1,053 transgender persons, for 

example, 41 percent report having attempted suicide. This rate is 26 times higher than the 

general population (Safer et al. 2016).3  

Despite an increased need for general and mental health services, real or perceived 

gender identity discrimination4 by mental health care professionals may affect a TNB 

individual's ability to access (or desire to seek) appropriate mental health care services and 

treatment. Previous research found that approximately one-fourth of transgender individuals 

opted not to seek health care when needed for fear of being mistreated due to their gender 

identity. One-third of transgender individuals report having had a negative experience related 

to identifying as transgender (James et al. 2016). 

If mental health care providers (MHPs) behave in a manner that limits access to mental 

health services for TNB individuals or discourages them from seeking treatment, it will worsen 

mental health disparities in several ways. First, discrimination by MHPs further contributes to 

minority stress. Second, discrimination delays treatment, which negatively impacts health and 

increases treatment costs (Boudreau et al. 2004; Himelhoch et al. 2004). Third, difficulties in 

securing appointments lead many patients to discontinue the search for treatment altogether 

(James et al. 2016; Lambda Legal 2010). Fourth, discrimination may reduce match quality 

between the MHP and patient by forcing the patient to select a therapist who is trans-friendly 

 
3 African American and Hispanic people also face significant health and socioeconomic disparities which we 

summarize in the background section. 
4 Small and Pager (2020) note that economics has generally focused on measurable discrimination (on differences in 

wages, employment, mortgage rates, or other economic outcomes) rather than perceived discrimination, for “a 

potential’s victim’s mental health, depression, stress, and related health outcomes, perceiving that it happened is 

everything. Perceptions of discrimination can have an effect regardless of whether the perpetrator discriminated or 

instead seemed to discriminate but did not actually do so.” (Small and Pager 2020; 63).  
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but is otherwise not as suitable for the patient (e.g., less experienced in the patient’s area of 

concern, MHP practices farther away from where the patient lives) (Mizock and Lundquist 

2016). Patient-MHP mismatch negatively affects care since a high-quality match is crucial for 

effective care (Budge and Moradi 2018; Kantrowitz 2016). 

Despite ample observational evidence that TNB individuals face substantial mental 

health disparities and survey evidence that TNB individuals report facing significant 

discrimination by health care professionals, no study has quantified the actual level of gender 

identity discrimination within the mental health care system against TNB individuals.5 

We measure discrimination in access to mental health care using an audit field 

experiment. Audit field experiments are considered the "gold standard" for measuring 

discrimination (Al-Ubaydli and List 2016; Bertrand and Duflo 2017; Gaddis 2018; Neumark 2018) 

because they allow researchers to study discrimination in actual behavior and they allow 

researchers to calculate an unbiased estimate of discrimination by holding all factors other than 

minority status constant. 

This paper provides the first experimental evidence of gender identity discrimination in 

the mental health care system. We further examine if this discrimination varies by race, by 

ethnicity, by the intersection of gender identity and race or ethnicity, and by common mental 

health concern. To do this, we conduct a large-scale experimental field study of mental health 

care providers throughout the United States. Specifically, we request appointments from 

 
5 The most relevant existing studies link the mental health disparities that TNB people face to self-reported measures 

of discrimination (Bockting et al. 2013; Clements-Nolle, Marx, and Katz 2006; Hendricks and Testa 2012; Miller 

and Grollman 2015; Perez-Brumer et al. 2015; Reisner et al. 2016; Tebbe and Moradi 2016; Testa et al. 2017). 

While informative, these studies do not observe actual discriminatory behavior, do not capture how often this 

discrimination occurs, and do not often capture whether discrimination occurs in access to health care. 
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mental health providers, including psychologists, counselors, social workers, and psychiatrists, 

using a popular online website. 

In these requests, we randomly assign names to signal race and gender. Specifically, in 

the first wave of the study, we use masculine and feminine names that signal a prospective 

patient is African American, Hispanic, or white. In the text of these appointment requests, our 

fictitious TNB patients disclose their gender identity by including a short statement like: "I am [a 

transgender woman]/[a transgender man]/[non-binary] and am looking for a trans-friendly 

therapist."6 We also randomly assign the specific mental health concern that the individual is 

seeking treatment (anxiety, stress, or depression). In the subsequent waves of the study, we 

will add names to signal that a prospective patient is Chinese American and we will also 

randomize a signal of insurance status to study how insurance status affects access.7 In our 

appointment requests, we provide both a return email address and phone number.  

We record several different categories of MHP responses to our appointment inquiries, 

including the offer of an appointment, a call or consultation offer, offering a placement on a 

waitlist, a referral to a different provider, a rejection, as well as no reply. Based on the results of 

the first wave of a multi-wave study, our key result is that African American and Hispanic TNB 

people, particularly Hispanic transgender women and non-binary African Americans, face 

discrimination in access mental health care. We also find discrimination against cisgender 

women, compared to cisgender men, and a preference for prospective patients that mention 

 
6 Disclosing gender identity and inquiring about LGBTQ+-friendly providers is a common and recommended 

practice for TNB individuals seeking mental health services (Kassel 2018). 
7 We will randomize on five insurance statuses: no mention of insurance status, self-pay with no reference to a 

sliding scale, self-pay with a reference to paying through a sliding scale, Medicaid, and private insurance. 
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depression over anxiety or stress, although these results are not robust to all possible control 

variables. 

When complete, our study will make several contributions to the existing literature on 

mental health care discrimination and gender identity discrimination. This is the first paper to 

provide causal estimates of gender identity discrimination in the U.S. health care system. 

Moreover, this study is also one of the few audit studies that explicitly tests for gender identity 

discrimination in any context (Bardales 2013; Granberg, Andersson, and Ahmed 2020; Levy at 

al. 2017; Make the Road New York 2010; Rainey, Imse, and Pomerantz 2015) with most of these 

studies having small sample sizes or being reports or honors theses (with the exception being 

Granberg, Andersson, and Ahmed 2020).8 

Our study also improves on the three existing audit field experiments of discrimination 

in access to mental health care (Kugelmass 2016, 2019; Shin et al. 2016).9 First, our largest 

contribution is that even with the preliminary data from only the first wave of our experiment – 

1,000 observations – we already have a much larger sample size than these prior studies, which 

had sample sizes of between 300 to 400 each. Second, our sample is nationally representative, 

including MHPs in every state, proportional to their population, and including MHPs from 

 
8 There are a few studies that are not audit field experiments that also focus on discrimination or disparities faced by 

transgender people. Van Borm and Baert (2018) conduct a vignette experiment to quantify hiring discrimination 

against transgender women, compared to cisgender women, in fictional employment hiring scenarios. Van Borm et 

al. (2020) explore the mechanisms of hiring discrimination against transgender men using a similar vignette study. 

Reed, Franks, and Scherr (2015) conduct a small vignette study to quantify hiring discrimination against transgender 

people and to what extent hiring discrimination is based on assumptions about transgender people having mental 

illness. Geijtenbeek and Plug (2018) study the earnings of transgender people compared to cisgender people, and 

compared to before and after their administrative gender transition. Schilt and Wiswall (2008) study how workplace 

experiences change after transitioning. Drydakis (2019) discusses mental health, life satisfaction, and job 

satisfaction before and after transitioning. 
9 Olin et al. (2016) is another audit field experiment of access to mental health care, but focuses on access to care for 

youth in New York state and quantifies general access rates and wait times. 
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across the state, rather than just selecting individual cities (New York City, Kugelmass 2016) or 

states (an “East Coast, Mid-Atlantic state”, Shin et al. 2016). Third, we follow Kugelmass (2019) 

and send appointment requests in a more externally-valid way by sending emails through a 

common MHP listing and appointment request service.10 Fourth, we plan to leverage the 

detailed data in the publicly-posted MHP profiles to understand the sources of discrimination, 

where and when discrimination occurs the most, and what factors may reduce discrimination 

(see the final “Next Steps” section). This detailed data is not available, or is not used, to near 

this extent in virtually all other audit field experiments. 

Lastly, to our knowledge, we are the first study to use experimental methods to 

examine how race, ethnicity, and gender identity interact to moderate or exacerbate 

discrimination. This adds to the limited experimental research on intersectional discrimination 

in general (Bourabain and Verhaeghe 2018; Burn et al. 2020; Lahey and Oxley 2018; Lauster and 

Easterbrook 2011; Pedulla 2014; Schwegman 2019). There is ample reason to believe that TNB 

people of color will experience greater discrimination than their cisgender non-white or white 

transgender/non-binary peers. In the United States, anti-transgender violence, which includes 

physical and sexual violence, is highly racialized (Jefferson, Neilands, and Sevelius 2013; 

Lombardi et al. 2002; Stotzer 2009). For example, 61 percent of lethal anti-LGBTQ+ hate in the 

 
10 Prior studies (Shin et al. 2016; Kugelmass 2016) left voicemails for MHPs to request an appointment, usually 

intentionally calling at times when they knew the MHP would not pick up the phone to avoid the risk of the MHP 

picking up the phone (e.g., “Sunday evening”, Shin et al. 2016, p. 1196; “at night”, Kugelmass 2016, p. 173). While 

this is an experimentally valid approach, our approach, following Kugelmass (2019), is to send appointment requests 

through email, through the most comprehensive and popular online therapist database. This avoids the less 

externally valid approach of calling and leaving voicemails, opting to mirror one of the most common ways that 

prospective patients find MHPs. 
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U.S. during 2016 resulted in the murder of transgender women of color, rates well beyond their 

proportion of the general population (Waters and Yacka-Bible 2017). 

As we proceed through the next waves of the experiment, we will expand the study and 

further contribute to the literature. We discuss the details of the multiple extensions of this 

study in the concluding section of this paper. 

At the time of writing this paper, our experiment is ongoing. This working paper 

presents the results from the first wave of the study, where we contact 1,000 mental health 

care providers (MHPs) who post their contact information on a popular online platform. We 

send each MHP an appointment request from one prospective patient, with randomly assigned 

race or ethnicity (white, African American, or Hispanic), gender identity (transgender, non-

binary, or presumed to be cisgender), and common mental health concern (depression, anxiety, 

or stress). 

 

3.2 Background 
 

3.2.1 Mental Health Disparities among Racial, Ethnic, and Gender Minorities 

There is a complex relationship between race, ethnicity, and mental health, with 

sometimes conflicting research on the direction of mental health disparities. For example, 

Hispanics, African Americans, and Asian Americans report having lower current, last-year, and 

lifetime rates of major depression and other psychiatric disorders than whites (Miranda et al. 

2008; Williams et al. 2007; Williams 2018). However, when African Americans and Hispanics 

experience a mental disorder, their mental health episode tends to be more severe, persist for 

longer, and be more debilitating than for whites (Breslau et al. 2005). African Americans 
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reporting an episode of depression are more likely to be chronically or persistently depressed, 

have more severe symptoms of depression, and be less likely to receive treatment (Williams et 

al. 2007; Williams 2018). 

While the relationship between race, ethnicity, and mental health is complex, there is 

more clear evidence that TNB people have worse mental health, higher rates of major 

psychiatric disorders, and higher rates of substance misuse than the general population. TNB 

individuals report higher rates of suicidal ideation and attempted suicide, as well as significantly 

higher rates of clinical depression (Clements-Nolle et al. 2001; Grossman and D'Augelli 2007; 

Haas et al. 2011; Hoffman 2014; Mustanski et al. 2010; Nuttbrock et al. 2010; Scanlon et al. 

2010; Su et al. 2016). 

Moreover, there is broad consensus that exposure to chronic and acute stressors—such 

as poverty, neighborhood violence, or discrimination—can negatively affect mental health 

(Pearlin et al. 1981, 2005; Turner 2013; Vega and Rumbaut 1991). Racial and gender minorities 

face higher rates of "traditional" stress than whites. Notably, they are more likely to be 

unemployed, uninsured, exposed to neighborhood violence, and involved in the criminal justice 

system (James et al. 2016; Williams 2018).  

Economic precariousness, increased exposure to violence, social stigma, and explicit 

discrimination creates a unique set of psychological pressures and stresses for racial and gender  

minorities that is often referred to as "minority stress" (Arbona and Jimenez 2014; Hendricks 

and Testa 2012; Kelleher 2009; Tebbe and Moradi 2016; Testa et al. 2017). Minority stress is 

positively correlated with worse mental health outcomes, including higher rates of distress and 
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depression (Lewis, Cogburn, and Williams 2015; Paradies et al. 2015; Pascoe and Richman 2009; 

Schulz et al. 2006; Wallace, Nazroo, and Becares 2016; Williams and Mohammed 2009). 

Specifically, explicit discrimination and other stressors can negatively affect mental 

health through several different pathways. Discrimination can increase stress, which puts 

pressure on the body's cardiovascular system and heightens vigilance, i.e., a state of 

psychological arousal designed to monitor and protect oneself from threats (Williams, Lavizzo-

Mourey, and Warren 1994; Sawyer et al. 2012). Heightened violence is positively associated 

with depressive symptoms and was found to contribute to the African American-white disparity 

in depression (LaVeist et al. 2014; Testa et al. 2012).  

Moreover, structural and institutional racism can give rise to the "stress proliferation 

process" (Pearlin et al. 2005) in which an initial stressor can initiate or exacerbate stressors in 

other aspects of life (Williams 2018). Previous research finds evidence of racial discrimination in 

the labor market (e.g., Bertrand and Mullainathan 2004; Gaddis 2015; Pager and Shepherd 

2008), the housing market (e.g., Gaddis and Ghoshal 2020; Hanson and Hawley 2011; Hanson et 

al. 2016; Murchie and Pang 2018), physical and online stores or marketplaces (e.g., Bourabain 

and Verhaeghe 2018; Doleac and Stein 2013), and the public sector (e.g., Bergman and McFarlin 

2020; Giulietti, Tonin, and Vlassopoulos 2019; Mujcic and Frijters 2020), among other areas and 

markets.  

There is also evidence of TNB individuals facing significant discrimination in the labor 

market, in secondary and postsecondary schools, when accessing health care, when accessing 

housing, and in the criminal justice system (Baumle, Badgett, and Boutcher, 2020; BreakOUT! 

and National Council on Crime & Delinquency 2014; Glick et al. 2019; Grant et al. 2011; 
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Hanssens et al. 2014; James et al. 2016; Levy et al. 2017; Mallory, Hasenbush, and Sears 2015; 

Romero et al. 2016; Sears and Mallory 2014; Stotzer 2014; Stroumsa 2014). This systematic 

discrimination and inequality not only causes stress, but it can both cause and contribute to 

economic insecurity, which is a significant source of stress (Williams 2018).  

For TNB individuals and cisgender racial minorities facing acute psychological stressors, 

counseling and therapy are effective and common strategies for helping with numerous mental 

health concerns, such as stress, anxiety, depression, and substance misuse. However, if 

providers of these mental health services discriminate against TNB individuals and racial 

minorities by restricting access to these services, then this discrimination may partially cause 

and likely exacerbate underlying race and gender identity-related mental health disparities. 

 

3.2.2 Mental Health Care Providers in the United States  

Mental health care providers supply and regulate access to mental health care services 

in the United States. Problematically, there is no universally agreed-upon definition of a 

"mental health care provider," nor is there a consensus on which provider types make up the 

mental health workforce in the United States (Heisler 2018). Mental health care services are 

provided by a wide range of licensed professionals, including primary care physicians, 

psychologists, psychiatrists, nurses, mental health and substance abuse counselors, family and 

marriage counselors, and social workers. Specific education and licensure requirements can 

vary from state to state, whereas other licensure requirements are more uniform across states. 

For example, to be a clinical psychologist requires a doctoral degree in psychology (Ph.D. or 

Psy.D) and passage of a certification exam (e.g., the Professional Practice in Psychology Exam). 
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Regardless of their professional training and qualifications, mental health providers have 

a significant degree of professional autonomy. MHPs are significantly more likely to be in solo 

practice than physicians or other healthcare providers. While only one in five physicians work 

by themselves, almost half of all MHPs do (Kane and Emmons 2013; Kugelmass 2016, 2019; 

Michalski, Mulvey, and Kohout 2009). Thus, MHPs face fewer formal and institutional 

constraints on their ability to make decisions consistent with their explicit or implicit biases.  

Previous experimental and observational studies establish that health care providers, 

including MHPs, make decisions about patients that are shaped by their perceptions of a 

patient's race, social class, and gender (van Ryn and Burke 2000; Kugelmass 2016, 2019). This 

research primarily focuses on how race-based explicit or implicit biases affect diagnosis, 

treatment recommendations, and patient management (Arber et al. 2006; Green et al. 2007; 

Haider et al. 2011; Kikano et al. 1996; Lutfey et al. 2008, 2010; McKinlay et al. 1997; 

Stepanikova 2012; van Ryn et al. 2011). These explicit or internalized biases and prejudices 

result in African Americans and other minorities receiving fewer procedures and poorer quality 

medical care than whites across virtually every medical intervention (Smedley, Stith, and Nelson 

2003).  

These disparities may be driven by a personal aversion or a "taste-based animus" 

against working with gender and racial minorities. Health care providers have been found to 

ascribe negative characteristics to African American patients and lower-class patients, and they 

often perceive African American patients as implicitly less cooperative and more hostile (Abreu 

1999; Green et al. 2007; van Ryn and Burke 2000).  
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Few studies examine if health care providers hold explicitly negative anti-transgender or 

anti-non-binary views. However, medicine and medical providers have historically treated TNB 

bodies as abnormal, unhealthy, diseased, and in need of corrective treatment (Davis et al. 

2015). The American Psychiatric Association's Diagnostic and Statistical Manual of Mental 

Disorders considered being transgender a mental disorder from 1980 until 2012 (Heffernan 

2012), and the World Health Organization considered identifying being transgender as a mental 

illness until 2018 (Papenfuss 2019). Many MHPs continue to view TNB people as mentally ill, 

delusional, or self-destructive because of their gender identity (Mizock and Fleming 2011).  

There is also ample evidence to suggest that MHPs seek to cultivate a group of desirable 

patients by "cream skimming," or explicitly or implicitly choosing to provide services to a 

specific group of patients. That is, MHPs could choose to only provide services only to patients 

based on several non-mutually exclusive characteristics, including gender or race homophily, 

type of services the patient is seeking (e.g., the severity of the mental illness), or insurance 

status (i.e., the likelihood of payment, amount of payment, timeliness of payment). For 

example, there is evidence that therapists prefer to see YAVIS (young, attractive, verbal, 

intelligent, successful) patients (Teasdale and Hill 2006; Tyron 1986). Previous experimental 

audit and correspondence studies document cream-skimming based on a patient's 

socioeconomic status (Angerer, Waibel, and Stummer 2019; Kugelmass 2016; Olah et al. 2013), 

insurance status (Bisgaier and Rhodes 2011; Olin et al. 2016; Polsky et al. 2015; Rhodes et al. 

2014; Werbeck et al. 2019), race (Leech, Irby-Shasanmi, and Mitchell 2019; Sharma et al. 2015, 

2018; Wisniewski and Walker 2020), and perceived gender (Olah et al. 2013; Sharma et al. 

2015). 
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 Cream skimming could be rooted in different sources of discrimination, such as taste-

based discrimination (i.e. MHPs are transphobic), statistical discrimination (MHPs use minority 

status to make assumptions about the prospective patient), or implicit bias (unconscious 

bias).11 An MHP could exhibit statistical discrimination in appointment allocation in numerous 

ways. First, MHPs could assume that TNB prospective patients are more likely to have a severe 

mental health issue, which requires more time and effort to treat and potentially poses greater 

liability.12 Alternatively, MHP my perceive TNB individuals as less likely to be insured or being 

less able to pay standard out-of-pocket rates.13 Thus, MHPs could perceive TNB patients to be 

less desirable, causing MHPs to respond less favorably to appointment inquiries from TNB 

prospective patients. If this cream skimming is driving the behavior of MHPs, then including 

elements that increase the desirability of the patient (e.g., ability to pay) should differentially 

increase positive response rates for TNB prospective patients compared to presumed cisgender 

prospective patients. 

 Lastly, mental health care providers may hold implicit, unconscious biases about racial 

and gender minorities (Devine 1989; Greenwald and Banaji 1995). Devine (1989) notes that it is 

possible for individuals who are not explicitly prejudiced and who may deliberately try to avoid 

 
11 Economics typically conceptualizes discrimination in terms of taste-based discrimination (Becker 1971) and 

statistical discrimination (Arrow 1973; Phelps 1972). Taste-based discrimination, or animus, occurs when MHPs 

gain disutility from interacting with specific groups of patients (or alternatively, they gain utility from the act of 

discrimination) (Lahey and Oxley 2018). Statistical discrimination occurs when minority status is used as a proxy 

for missing information about the prospective patient, such as assuming that minorities have lower socio-economic 

status, people of color are more likely to have Medicaid, or TNB individuals have more severe conditions.   
12 Numerous studies find that TNB individuals face more severe mental health conditions (Grossman and D'Augelli 

2007; Lagos 2018; Meyer et al. 2017; Miller and Grollman 2015; Mustanski et al. 2010; Nuttbrock et al. 2010; 

Scanlon et al. 2010; Streed et al. 2018; Su et al. 2016), which could lead MHPs to statisticaly discriminate against 

TNB prospective patients if they prefer patients with less severe conditions.  
13 Several studies find that TNB individuals are less likely to have health insurance (Carpenter, Eppink, and 

Gonzales 2020; James et al. 2016; Liszewski et al. 2018; Waters and Yacka-Bible 2017) and have lower income 

(Badgett, Carpenter, and Sansone 2020; Carpenter, Eppink, and Gonzales 2020), which could lead to MHPs 

statistically discriminating on this basis. 
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stereotypes and prejudice to still make decisions based on internalized biases or stereotypes. 

Numerous studies find that health care providers hold implicit biases and stereotypes about 

racial minorities that result in unequal treatment (Green et al. 2007; McKinlay et al. 1996). 

There are few studies documenting implicit stereotypes held about gender identity. However, a 

recent study found that people tend to express implicit and explicit preferences for cisgender 

over transgender people (Axt et al. 2020). 

Regardless of the cause of any underlying discrimination, if MHPs are less responsive to 

and less helpful towards racial and gender minorities, this behavior will decrease access and 

reduce the probability that these individuals receive timely and necessary medical care. The 

concluding section of this paper describes the steps that we will take to better understand the 

mechanisms behind discrimination. 

 

3.3 Experimental Design 

Audit field experiments are the gold standard for detecting and measuring 

discrimination (Al-Ubaydli and List 2016; Bertrand and Duflo 2017; Gaddis 2018; Neumark 

2018). Experimental studies are practically the only method for causally measuring 

discrimination against groups for which there is very little administrative or survey data, e.g., 

TNB individuals.14 In this section, we outline the details of our experimental design. We discuss 

ethics in audit studies in Appendix B. 

 
14 See Badgett, Carpenter, and Sansone (2020) for a helpful overview of the (often lack of ) data on LGBTQ+ 

individuals in socio-economic and health surveys. 
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3.3.1 Sampling Frame and Power Analysis  

We use a popular online therapist search database to collect our sample of auditable 

mental health care providers. In order to be included in our sample, an MHP: (1) must not 

specialize exclusively on specific types of patients who are outside of the scope of our 

experiment (e.g., children, adolescents, or couples therapy), (2) must not be specialized in a 

type of therapy (e.g., grief, domestic violence) that would not deal with the common mental 

health conditions that we signal: anxiety, depression, and stress, (3) must list an individual's 

profile (e.g., it cannot be the profile of a clinic), (4) must provide an email option through a web 

form, and (5) must be accepting patients (i.e., we do not contact MHPs that indicate that they 

are not currently accepting patients). After accounting for these characteristics, we select MHPs 

proportionately to state populations. Within states, we select MHPs proportionally to the 

population of each ZIP code. 

We collect information about each MHP from their publicly-posted profile to use in 

future analysis. We will use this to control for variation in MHPs' characteristics that affects 

MHP responses, thus increasing the precision of our estimates of discrimination. We will also 

use this data on MHP characteristics to investigate moderators of discrimination. Specifically, 

we record the MHPs state, their ZIP code, the number of years in practice, their cost per 

session, and their titles, licenses, and degrees. We also note whether each MHP specializes in 

anxiety, depression, and stress. Lastly, we record whether each MHP lists "transgender ally," 

"non-binary ally," “LGBT-ally,” and/or a transgender specialty on their profile. We also saved 

each MHP’s publicly-posted profile so we can extract more data from it later. We discuss our 
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plans for using MHP characteristics and other factors to explore the moderators and sources of 

discrimination in the final “Next Steps” section in the paper, and in Table 9. 

 

3.3.2 Patient Profiles and Email Scripts  

If a mental health care provider meets the inclusion criteria for this experiment, we send 

a message to them through an “Email Me” webform. In these inquiries, we use names to signal 

the fictitious prospective patient's race, ethnicity, and gender. We randomly assign various 

other aspects of the email to signal gender identity, mental health concern, and, in future 

waves of our experiment, insurance status. Figure 3.1 provides the general structure of our 

appointment inquiry emails, and Figure 3.2 summarizes the randomized options that we assign 

to each email. 
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Figure 3.1: Structure of the Emails to MHPs 

1.) [EMAIL SUBJECT LINE]     Legend: ( ): denotes motivating verbiage, not exact phrasing 

Hi,/Hello,                                                      [ ]: denotes randomized input 

My name is 2) [NAME]. (I’m contacting you because) 3) [MENTAL HEALTH 

CONCERN] (and would like to talk to a therapist). If transgender or non-binary: I am  

4) [GENDER IDENTITY] and am looking for a therapist who is trans-friendly. 5) 

[APPOINTMENT REQUEST]. 

6) [VALEDICTION] 

2) [NAME] 

  

 

Figure 3.2: Randomized Components of the Emails to MHPs 

Notes: Ethnic and race specific first names are from Barlow and Lahey (2018), Gaddis (2017).

2) [NAME]      

Afr.-Am. Hispanic White 

         Male-Coded First Names 

Darius Alejandro Brian 

DeShawn Luis   Kevin  

 

       Female-Coded First Names 

Ebony  Mariana  Amanda  

Lakeisha Valentina Heather 

 

                     Last Names 

Washington Hernandez Anderson 

Jefferson Garcia            Thompson 

3) [MENTAL HEALTH CONCERN] 

-I’ve been feeling anxious lately. 

-I’ve been feeling stressed all the time. 

-I think I might be depressed. 

1) [EMAIL SUBJECT LINE] 

-Seeking therapy 

-Looking for a therapist 

-Therapy inquiry 

4) [GENDER IDENTITY] 

-a transgender woman 

-a transgender man 

-non-binary 

6) [VALEDICTION] 

-Sincerely,      -Thanks,      -Best,      -[None] 

5) [APPOINTMENT REQUEST] 

-Can we set up an appointment? -When could I see you? 



 

 

We use names from two previous audit studies (Barlow and Lahey 2018; Gaddis 2017a) 

to signal race and gender. We present these names in Figure 3.1, box 2. Each name is either 

stereotypically masculine (signaling that the sender identifies as a male) or feminine (signaling 

that the sender identifies as female). We assign transgender and cisgender women (men) a 

feminine (masculine) first name. Non-binary prospective patients are assigned either feminine 

names or masculine names, each with a 50 percent probability.15  

Each MHP will receive one inquiry from one prospective patient who identifies either as 

transgender (25 percent of the time), non-binary (25 percent of the time), or cisgender (50 

percent of the time). Specifically, TNB prospective patients the following statement in their 

appointment request email: “I am [a transgender woman]/[a transgender man]/[non-binary] 

and I am looking for a therapist who is trans-friendly.” Cisgender prospective patients do not 

include any statement about gender identity and are thus presumed to be cisgender. 

We believe that signaling TNB status in this way is common and externally valid. For a 

TNB individual seeking mental health services, finding a therapist who will not discriminate 

against them (i.e., a “trans-friendly” therapist) or stop them from being transgender16 is 

essential. Disclosing transgender status and inquiring about trans-friendly services is common 

 
15 Many non-binary people keep their names assigned at birth, or otherwise have names that are more feminine or 

masculine, especially since few names are non-gender specific. We considered including some non-gender specific 

names for non-binary people but decided not to since there is no clear naming convention or way that non-binary 

people select non-gender specific names. Also, including another set of names would have added another difference 

between our non-binary prospective patients and our transgender and cisgender prospective patients, which may 

have made it more different to compare results.  
16 Almost 1 in 10 respondents to the 2015 U.S. Transgender Survey report that at least one MHP has tried to stop 

them from being TNB (James et al. 2016). Those who have experienced a professional try to stop them from being 

TNB report worse mental health outcomes, including higher rates of psychological distress and attempted suicide. 
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and is recommended by experts who provide advice on how to find trans-affirming care (e.g., 

Kassel 2018).  

We selected names that clearly signal gender, race (African American or white), and 

ethnicity (Hispanic) from studies that carefully test how names signal race, ethnicity, and 

socioeconomic status (Barlow and Lahey 2018; Gaddis 2017a).17 Figure 2 presents these names. 

In the next waves of our experiment, we will add Chinese American names, as discussed in our 

concluding section. 

In the first wave of the study, the results of which we present in this paper, we 

randomly assign an MHP to receive an inquiry containing a white name approximately 50 

percent of the time, an inquiry containing an African American name approximately 25 percent 

of the time, and an inquiry containing a Hispanic name approximately 25 percent of the time.  

We also randomly assign one of the following mental health conditions: stress, anxiety, 

or depression. We use these conditions since they are the most common, virtually all MHPs are 

qualified to treat them, and they do not suggest that the mental health concern is trans-

specific. We focus this study on quantifying access to mental health care for common mental 

health conditions rather than quantifying access to trans-specific care, which is a separate 

research question requiring a different research design. 

 
17 Using these names helps us confront the criticism that using African-American first names to signal race over-

estimate discrimination and confuses racial discrimination for socio-economic status discrimination because some 

names also have negative socioeconomic status signals (Barlow and Lahey 2018; Darolia et al. 2016; Fryer and 

Levitt 2004; Gaddis 2017a; 2017b; Ghoshal 2019). 
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3.3.3 Coding Mental Health Provider Responses  

Each appointment request email contained both the fictitious patient’s email and phone 

number. MHPs are thus able to respond via phone, text message, and email. We consider a 

(non-automated) email, a text message, or a voicemail to be a response.18 

We coded each MHP response into one of the following seven mutually exclusive 

outcome categories: appointment offered, call or consultation offer, screening question(s), 

referral, waitlist, rejection, and no response. These seven, mutually-exclusive categories19 

capture the variation in the quality of response. See Table 1 for each outcome's more detailed 

definition.  

To improve power and increase our results' interpretability, we collapse these 

categories into a binary variable, called “positive response,” that adopts the value one if the 

MHP’s response was normatively positive (the sum of appointment offer and call or 

consultation offer) and zero otherwise.20 Categorizing responses as positive or not positive is a 

standard approach in audit studies (e.g., Kugelmass 2019; Neumark, Burn, and Button 2019), 

but in future waves of the study, we will conduct an analysis that better explores differences 

between frequencies in different response categories.  

 

 

 
18 We record MHP’s phone numbers and cross-reference those with any missed calls, but we find only perhaps one 

instance of an MHP calling without leaving a voicemail. 
19 MHPs of course often provide more than one type of response, such as a referral and a consultation offer. If an 

MHP’s response falls into more than one category, it is coded as the best category. For example, a referral and a 

consultation offer is coded as consultation offer, and a rejection and a referral is coded as a referral. 
20 This is the same binary categorization as Kugelmass (2019). Our results are generally similar if we use an 

alternative binary categorization that deems screening questions and referrals to be positive responses as well. We 

discuss these results in a robustness sub-section within the results section.  



 

Table 3.1: Descriptive Statistics of Outcomes 

  
Binary 

Coding 

Overall 

 

Gender Identity Race and Ethnicity 

Outcome Description Default Alt. Cisgender 
Trans or 

Non-Binary 
White 

African 

American 
Hispanic 

Appointment 

Offer 

The MHP 

explicitly 

offers an 

appointment. 

+ + 33.3% 33.2% 33.4% 33.4% 32.4% 34.0% 

Call or 

Consultation 

Offer 

The MHP 

offers to 

speak on the 

phone but 

does not 

offer an 

appointment. 

+ + 23.3% 27.3% 19.6% 24.6% 23.2% 20.5% 

Screening 

Question 

The MHP 

requests 

additional 

information 

but does not 

offer an 

appointment. 

- + 6.0% 7.1% 5.0% 5.9% 7.0% 5.0% 

Referral 

The MHP 

gives a 

referral but 

does not 

offer an 

appointment. 

- + 4.8% 3.8% 5.8% 4.9% 5.9% 3.2% 
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Waitlist 

The MHP 

offers to put 

the 

prospective 

patient on a 

waitlist.  

- - 2.1% 1.3% 2.9% 2.1% 0.7% 0.4% 

Rejection 

The MHP 

rejects the 

prospective 

patient and 

does not 

offer an 

alternative 

provider. 

- - 6.0% 6.5% 5.6% 5.8% 6.6% 5.5% 

No Response 

No response 

from the 

MHP within 

one week. 

- - 24.5% 20.9% 27.6% 23.0% 24.0% 28.2% 

   N 1,000 480 520 500 270 230 

Notes: These categorizations are mutually exclusive. For example, a response is coded as an appointment offer even if a 

referral is also provided. Our default binary coding treats appointment offer and call or consultation offer as the only 

positive outcomes, while our alternative binary coding also considers screening questions and referrals as positive 

outcomes. 

 

 

 

 

 



 

3.4 Empirical Strategy 

 We use regression analysis to quantify differences in outcomes. We start first by testing 

for differences in our broader categories, using the binary “positive” outcome variable and a  

linear probability model21 as follows: 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑖 = 𝛽0 + 𝛽1𝑇𝑟𝑎𝑛𝑠𝑂𝑟𝑁𝑜𝑛𝐵𝑖𝑛𝑎𝑟𝑦𝑖 + 𝛽2𝐴𝑓𝑟𝑖𝑐𝑎𝑛𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛𝑖 + 𝛽3𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖

+ 𝛽4𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑖 + 𝛽5𝐴𝑛𝑥𝑖𝑒𝑡𝑦𝑖 + 𝜀𝑖  
[1] 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑖  equals one for positive responses to the appointment inquiry (appointment 

offer or call or consultation offer), and 𝑇𝑟𝑎𝑛𝑠𝑂𝑟𝑁𝑜𝑛𝐵𝑖𝑛𝑎𝑟𝑦𝑖, 𝐴𝑓𝑟𝑖𝑐𝑎𝑛𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛𝑖, and 

𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖 are indicator variables for each randomized status, with the excluded category being 

cisgender white people. 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑖 and 𝐴𝑛𝑥𝑖𝑒𝑡𝑦𝑖  capture differences in the positive 

response rate between those who mention depression or anxiety in their appointment request, 

compared to those who just mention having stress. In our preferred specifications, we also 

include state fixed effects and fixed effects for the week and day of the week when we sent the 

appointment request. We cluster our standard errors at the patient level since, while each MHP 

only gets one email, each patient emails appointment requests to up to ten MHPs in their 

assigned area. 

We then extend equation [1] to explore intersectional groups, such as individuals by 

gender identity (e.g., transgender wo(men) vs. cisgender wo(men) vs. non-binary people) and 

by race, ethnicity, and gender identity intersectionality (e.g., TNB people of color).  

 
21 Our main results are similar using a probit model (see Table Appendix Table A1). We discuss the minor 

differences in the robustness sub-section of the results section. 

68 



69 

In subsequent analyses, when we have a larger sample size and have collected more 

data, we will control for MHP characteristics. We anticipate that this would increase precision 

in addition to showing how MHP characteristics affect access to appointments in general. We 

will also conduct a more in-depth analysis of differences in the types of responses, such as using 

multinomial models to determine if there are differences within our binary categorization that 

our analysis does not pick up. For example, are TNB individuals more likely to get a call or 

consultation offer instead of an outright appointment? Or are TNB individuals more likely to get 

referrals instead of being outright rejected? This analysis will provide a deeper understanding of 

how MHPs react to prospective patients.22 

 

3.5 Preliminary Results 

Between January 28, 2020 and May 15, 2020, we sent appointment requests to 1,000 

MHPs. Before proceeding, it is important to note that, although our sample size is small, it is 

only the first wave of a multi-wave study. Thus, these results are preliminary and subject to 

change based on the results of subsequent waves. 

We receive responses to 75.5 percent of our appointment request emails. This response 

rate is comparable to other email correspondence audit studies (Hanson et al. 2016; Kugelmass 

2019). Among these responses, 80 percent of MHPs responded via email, and the remainder 

left a voicemail (or, in a few instances, a text message only). 

 
22 Our results, however, are similar using our alternative binary coding, which also considers screening questions 

and referrals as positive outcomes. But a multinomial model would allow for a finer study of differences by response 

categories. 
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In Table 1, we categorize the responses into seven mutually exclusive outcome 

categories. In particular, we received an appointment offer from one third of our appointment 

requests and we received a call or consultation offer 23.3 percent of the time. We code both of 

these as positive responses in our binary coding, so the positive response rate is 56.6 percent. 

For the responses we code as negative, the most common situation was that we did not receive 

a response at all (24.5 percent), followed by a response with a rejection (6.0 percent), the MHP 

asks a screening question but does not offer an appointment, call, or consultion (6.0 percent), 

the MHP offers a referral only (4.8 percent), or the MHP offers to put the prospective patient 

on a waitlist (2.1 percent). See Table 1 for each outcome's frequency by gender identity, race, 

and ethnicity. 

 

3.5.1 Differences in Positive Response Rates 

We then collapse this more detailed coding of responses into our binary positive 

response coding (positive responses are appointment, call, or consultation offers) to present 

raw differences in positive response rates. Table 2 presents positive response rates by gender 

identity, first for the aggregated grouping of cisgender prospective patients versus TNB 

prospective patients. Cisgender prospective patients received a positive response 60.6 percent 

of the time while TNB prospective patients only received a positive response 52.8 percent of 

the time—a statistically significant 7.8 percentage point difference (p-value = 0.013, using a 

two-sided t-test). We then compare positive response rates by our finer categorizations of 

gender identity. Cisgender men have the highest positive response rate (61.6 percent) followed 

by cisgender women (58.8 percent), transgender women (55.8 percent), non-binary individuals 
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(51.9 percent), and transgender men (50.7 percent). These finer categorizations have less 

precision, given our smaller sample size, so only the response rate difference between 

cisgender and transgender men – where transgender men have an 10.9 percentage point lower 

response rate – is statistically significant (p-value = 0.030). 

Table 3.2 Positive Response Rates by Gender Identity 

Response Rates by Trans/Cis Status: Positive Negative Total   

Cisgender 60.6% (291) 39.4% (189) 480   

Transgender or Non-binary 52.8% (275) 47.2% (245) 520   

Total 56.6% (566) 43.4% (434) 1,000   

      

Test of independence, p-value 0.013     

      

Response Rates by Gender Identity:      

Cisgender men 61.6% (191) 38.4% (119) 310   

Cisgender women 58.8% (100) 41.2% (70) 170   

Transgender men 50.7% (71) 49.3% (69) 140   

Transgender women 55.8% (95) 44.2% (75) 170   

Non-binary 51.9% (109) 48.1% (101) 210   

      

Tests of independence, p-values Cis men Cis women 
Trans 
men 

Trans 
women 

Non-
binary 

Cisgender men …     
Cisgender women 0.551 …    
Transgender men 0.030 0.151 …   
Transgender women 0.222 0.585 0.365 …  
Non-binary 0.028 0.179 0.829 0.441 … 
Notes: Responses are coded as positive if the MHP’s response was an appointment offer or a call or consultation 
offer. P-values come from a t-test (two-sided). 

 

Table 3.3 presents positive response rates by race and ethnicity. White prospective 

patients have the highest positive response rate (58.0 percent) followed by African Americans 

(55.5 percent) and Hispanics (54.8 percent). None of these differences are statistically 

significant in this raw data.  Table 4 presents positive response rates for groups by the 
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intersection of race, ethnicity, and gender identity. We find no statistically significant 

differences in raw response rates between whites, African Americans, or Hispanics with the 

same transgender/cisgender status. However, we find differences by race and ethnicity across 

transgender/cisgender status.  

Table 3.3 Positive Response Rates by Race or Ethnicity 

 Positive Negative Total 

White 58.0% (290) 42.0% (210) 500 
African American 55.5% (150) 45.5% (120) 270 
Hispanic 54.8% (126) 45.2% (104) 230 
Total 56.6% (566) 43.4% (434) 1,000 
    
Tests of independence, p-values White African American Hispanic 
White … … … 
African American 0.514 … … 
Hispanic 0.415 0.862 … 
Notes: Responses are coded as positive if the MHP’s response was an appointment offer or a 
call or consultation offer. P-values come from a t-test (two-sided). 
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Table 3.4 Positive Response by Race or Ethnicity, for Cisgender and Transgender or 
Non-Binary Patients Separately 

Response rates for cisgender only: Positive Negative Total 

White 61.5% (160) 38.5% (100) 260 
African American 60.7% (85) 39.3% (55) 140 
Hispanic 57.5% (46) 42.5% (34) 80 
Total  60.6% (291) 39.4% (189)  480 
    
Test of independence, p-values White African American Hispanic 
White … … … 

African American 0.872 … … 

Hispanic 0.519 0.642 … 
    

Response rates for transgender or non-binary only:                      

White 54.2% (130) 47.8% (110) 240 
African American 50.0% (65) 50.0% (65) 130 
Hispanic 53.3% (80) 46.7% (70) 150 
Total  52.9% (275) 47.1% (245)  520 
    
Test of independence, p-values White African American Hispanic 
White … … … 
African American 0.445 … … 

Hispanic 0.873 0.579 … 
    

Transgender or non-binary vs. Cisgender: Tests of independence, p-values 

 
Cisgender 

White 
Cisgender African 

American 
Cisgender 
Hispanic 

Transgender or non-binary White 0.096 … … 
Transgender or non-binary African 
American 

0.030 0.077 … 

Transgender or non-binary Hispanic 0.105 … 0.547 
Notes: Responses are coded as positive if the MHP’s response was an appointment offer or a call or 
consultation offer. P-values come for a t-test (two-sided). 
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Cisgender African Americans have a higher positive response rate (60.7 percent) than 

TNB African Americans (50.0 percent, p-value = 0.077), and cisgender whites have a higher 

positive response rate (61.5 percent) than TNB whites (54.2 percent, p-value = 0.096). 

However, we find the largest positive response rate differences by comparing TNB 

African Americans and Hispanics to cisgender whites. TNB African Americans face the lowest 

positive response rate (50.0 percent) compared to cisgender whites, who face the highest rate 

(61.5 percent, p-value = 0.030). For TNB Hispanics, this response rate is 53.3 percent (p = 

0.105). Thus, it appears that the discrimination against TNB prospective patients is largely 

discrimination against TNB African-Americans and Hispanics. 

Table 3.5 presents regression estimates of the differences in response rate by race, 

ethnicity and gender identity derived from the linear probability model specified in equation 

[1]. Without any control variables, the regression estimates show that prospective patients who 

signal TNB status have between a 6.5 and 7.5 percentage point lower positive response rate, 

significant at the 5 percent level (columns (1) and (2)). Without control variables, there is also 

no difference in response rates between white, African American, and Hispanic prospective 

patients. These results mirror the raw differences in positive response rates seen in Tables 3.2 

and 3.3. We also find that those who mention anxiety in their appointment request, rather than 

stress, have a 10.4 percentage point lower response rate. 
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Table 3.5: Differences in Positive Response Rates, Results for Aggregated Groups and by Mental 

Health Concern 

 (1) (2) (3) (4) (5) 

 
     

Transgender or Non-binary - .07446** -.0657** -.0334 -.0084 .0123 

 (.0317) (.0320) (.0429) (.0429) (.0426) 

 
     

African American - .0245 -.0226 -.1091** -.1492** -.1333*** 

 (.0374) (.0374) (.0432) (.0419) (.0404) 

 
     

Hispanic -.0195 -.0278 -.0209 -.0911* -.1302** 

 (.0398) (.0399) (.0526) (.0465) (.0495) 

 
     

Depression … - .0201 .0450 .1366** .1459** 

 
 (.0385) (.0502) (.0587) (.0576) 

 
     

Anxiety … -.1040** -.0011 .0139 .0111 

 
 (.0449) (.0524) (.0527) (.0527) 

 
     

State fixed effects:   X X X 

Week-sent fixed effects:    X X 

Day-of-the-week-sent fixed effects:     X 

Mean positive response rate for 
excluded category (cisgender 
whites w/ stress): 

.6158 .6479 .6487 .6473 .6353 

N 1,000 1,000 1,000 1,000 1,000 

Adjusted R2 0.0063 0.0076 0.0808 0.0986 0.1070 
Notes: Regression estimates based on the linear probability model in equation (1). Standard errors, clustered at 

the patient level, in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Adding state fixed effects (column (3)) changes these estimates significantly.23 With 

state fixed effects, the positive response rate is only 3.3 percentage points lower and 

statistically insignificant for TNB individuals compared to cisgender individuals. Adding state 

fixed effects reveals discrimination against African American prospective patients, with a 10.9 

percentage point lower response rate, statistically significant at the 5 percent level. Adding 

state fixed effects also removes the estimated positive response rate difference between 

prospective patients who mention stress versus anxiety. 

We then add week-sent and day-of-the-week-sent fixed effects to control for random 

variation from the time that the emails were sent (although this is random with respect to 

prospective patient demography). In our preferred specification with all these controls (column 

(5)), we find no evidence of differential positive response rates between cisgender and TNB 

prospective patients. However, we do find that, on average, MHPs respond to both African 

American and Hispanic patients about 13 percentage points less often than white patients 

(significant at the 1 percent and 5 percent levels, respectively). In this preferred specification, 

we also find that prospective patients reporting depression as the primary mental health 

concern in an inquiry to the MHP increases the probability of a positive response by 14.6 

percentage points relative to the prospective patient mentioning stress.  

In Table 3.6, we disaggregate the cisgender and TNB groups to quantify differences in 

positive response rates to prospective patients of specific gender identities: binary transgender 

 
23 This is a function of our temporarily smaller sample size. Patient demographics are randomly assigned by state. 

The inclusion of state fixed effects controls for between-state differences in response rates, which is a significant 

source of variation in positive response rates. The inclusion of state fixed effects also means that we put more 

weight onto within-state differences by patient demographics. We have less within-state variation in patient 

demographics since, unlike many other audit field experiments, we do not send subjects (MHPs) more than one 

email. 
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men and women, non-binary individuals (with either masculine-coded or feminine-coded 

names), and cisgender men and women (where cisgender men are the comparison group). All 

estimates are from a regression that includes the control variables in our preferred 

specification (column (5) in Table 3.5). 
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Table 3.6: Differences in Positive Response Rates, Results by Gender Identity 

 (1) (2) (3) (4) 
     

Transgender or Non-binary .0123 … … … 

 (.0426)         
…Binary Transgender  … .0289 … … 

  (.0472)        
…Trans Women … … .0004 .0096 

   (.0624) (.0618) 
     

…Trans Men … … -.0200 -.0158 

   (.0660) (.0665) 
     

…Non-binary … -.0272 -.0607 … 

  (.0690) (.0706)       
…Non-binary  
female first name 

… … … -.0100 

   (.0873) 
     

…Non-binary  
male first name 

… … … -.0892 

   (.0891) 
     

Cisgender Women … … -.1082** -.1086** 

   (.0527) (.0534) 
     
African American -.1333** -.1355** -.1505*** -.1459** 

 (.0404) (.0399) (.0412) (.0422) 
     
Hispanic -.1302** -.1309** -.1183** -.1262** 

 (.0495) (.0509) (.0451) (.0454) 
     
Mean positive response 
rate for excluded category 
(cisgender white men): 

.6353 .6383 .6776 .6826 

N 1,000 1,000 1,000 1,000 

Adjusted R2 0.1070 0.1076 0.1096 0.1100 
Notes: All regressions include the controls in column (5) of Table 5: mental health concern (depression and anxiety 

relative to the excluded category of stress), state fixed effects, day-of-the-week-sent fixed effects, and week-sent 

fixed effects. Column (1) repeats the results from column (5) in Table 5 for ease of interpretation. Standard errors, 

clustered at the patient level, in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 

 

Column (1) of Table 3.6 reports the coefficients from column (5) of Table 3.5 for 

comparison. Column (2) considers binary transgender and non-binary individuals separately, 
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column (3) further differentiates binary transgender people to consider transgender women, 

transgender men, and non-binary individuals separately. Column (4) further differentiates non-

binary individuals by if they have feminine-coded or masculine-coded first names. Regardless of 

how we divide the TNB population, we do not find any differences within TNB subgroups, or 

between TNB subgroups and cisgender individuals. However, we do find that cisgender women 

are about 10.8 percentage points less likely to receive a response compared to cisgender men. 

In Table 3.7, we disaggregate cisgender and TNB prospective patients by race and 

ethnicity to quantify any intersectional discrimination, a trend we saw in the raw data in Table 

3.4. Column (1) of Table 3.7 again reports baseline estimates from our preferred specification 

reported in Column (5) of Table 3.5. Column (2) reports differences in response rates for 

specific racial and ethnic groups disaggregated by gender identity. We find that white TNB 

prospective patients are about 10.0 percentage points more likely to receive a positive 

response compared to white cisgender prospective patients, although this is only statistically 

significant at the 10 percent level. However, TNB prospective patients that are African 

American are 13.3 percentage points less likely to receive a positive response than white 

cisgender prospective patients (significant at the 5 percent level). Hispanic TNB prospective 

patients have a 10.3 percentage point lower response rate, but this is not statistically 

significant. We do not find any differences in positive response rates between cisgender African 

Americans, cisgender Hispanics, or cisgender whites.  

 

 

 



80 

Table 3.7: Differences in Positive Response Rates, Intersectional Results by Trans/Cisgender Status 

and Race/Ethnicity 

 (1) (2) 
   

Transgender or Non-binary .0123 … 

 (.0426)     
…and white  … .0998* 

  (.0574) 
   

…and African American … -.1333** 

  (.0613) 
   

…and Hispanic … -.1025 

  (.0625) 
   
Cisgender         

…and African American … -.0241 

  (.0659) 
   

…and Hispanic … -.0321 

  (.0673) 

All African American -.1333** … 

 (.0404)     
All Hispanic -.1302** … 

 (.0495)  
   
Mean positive response 
rate for excluded group 
(cisgender whites): 

.6353 .6510 

N 1,000 1,000 

Adjusted R2 0.1070 0.1100 
Notes: All regressions include the controls in column (5) of Table 5: mental health concern (depression and anxiety 

relative to the excluded category of stress), state fixed effects, day-of-the-week-sent fixed effects, and week-sent 

fixed effects. Column (1) repeats the results from column (5) in Table 5 for ease of interpretation. Standard errors, 

clustered at the patient level, in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 

 

 

Table 3.8 disaggregates these results further by specific gender identity (transgender 

women, transgender men, non-binary individuals, and cisgender women, compared to the 
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excluded category of cisgender men), by race and ethnicity, and by their intersections. Table 3.8 

shows that white transgender men (white transgender women) are 21.1 (16.9) percentage 

points more likely to receive a positive response than cisgender whites (both significant at the 5 

percent level). However, Hispanic transgender women are 37.0 percentage points less likely to 

receive a positive response (significant at the 1 percent level). African American transgender 

men (African American transgender women) have positive response rates that are 12.4 (7.6) 

percentage points lower than cisgender whites (not statistically significant). 
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Table 3.8: Differences in Positive Response Rates, Intersectional Results by Gender Identity and 

Race/Ethnicity 

 (1) 
  

Transgender Women  
…and white  .1689** 

 (.0743) 
  

…and African American -.0760 

 (.0993) 
  

…and Hispanic -.3701*** 

 (.0936) 
  
Transgender Men  

…and white  .2105** 

 (.0962) 
  

…and African American -.1239 

 (.0978) 
  

…and Hispanic -.0819 

 (.1025) 
  
Non-binary  

…and white  -.0017 

 (.0906) 
  

…and African American -.4913*** 

 (.1082) 
  

…and Hispanic -.1380* 

 (.0808) 
  
Cisgender  

…and African American .0167 

 (.0712) 
  

…and Hispanic .0228. 

 (.0709) 
  
Mean positive response rate 
for excluded group (cisgender 
whites): 

.7546 

N 1,000 
Adjusted R2 0.1163 

Notes: All regressions include the controls in column (5) of Table 5: mental health concern (depression 
and anxiety relative to the excluded category of stress), state fixed effects, day-of-the-week-sent fixed effects, and 
week-sent fixed effects. Standard errors, clustered at the patient level, in parentheses. * p < 0.10, ** p < 0.05, *** 
p < 0.01. 
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For non-binary prospective patients, there is no difference in positive response rates 

between non-binary white and cisgender white prospective patients. However, African 

American non-binary prospective patients have a 49.1 percentage point lower positive 

response rate, significant at the 1 percent level. Hispanic non-binary individuals have a 13.8 

percentage point lower positive response rate, but this is only significant at the 10 percent 

level. 

 

3.5.2 Robustness Checks 

 We first check if our main results are different when using a probit instead of a linear 

probability model. Appendix Table A5 presents the results of Table 5 using a probit instead and 

the results are very similar.  

Then, we move to our more important robustness check which is to determine if our 

method of coding the categorical responses (see Table 3.1) into binary outcomes is robust to 

plausible alternative binary codings. In our default specification, we deem positive responses to 

be explicit appointment offers or call or consultation offers, the same coding as in Kugelmass 

(2019). However, two other possible responses are more ambiguous: screening questions and 

referrals and we consider an alternative binary coding of positive responses that includes these 

two as positive as well.  

While a screening question could indicate a barrier to access (Kugelmass 2019), such as 

providers being differentially more concerned about insurance status for minorities, a screening 

question does not necessarily mean that an appointment would not be offered. Screening 

questions may also be more common for minorities if, for example, the MHP asks if the 
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concerns are trans-specific, or if the MHP asks if the prospective patient would prefer someone 

who specializes in trans/race issues. Thus, screening questions, while generally suggestive of 

barriers in access to appointments, could in some situations fail to capture responses that are 

positive.  

Referrals are also likely to indicate a barrier to access (Kugelmass 2019), but it depends 

on why a referral is provided. Many referrals are essentially appointment rejections, but a way 

to moderate the negative implications of denying an appointment by providing the prospective 

patient with an alternative. The question is, then, whether this alternative provider is better for 

the prospective patient. 

We try to avoid these types of referrals by not suggesting that the common mental 

health concerns are trans- or race-specific as we seek to quantify discrimination in access to 

general mental health care for common mental health concerns. However, MHPs may still 

suggest alternative providers under the view that the TNB prospective patients, or racial or 

ethnic minority prospective patients, would do better with a specialist. While many MHPs 

provide these referrals in addition to appointment, call, or consultation offers, there are some 

who provide a referral only and a subset of these could still be considered positive outcomes. 

After the next wave of data collection, we will start exploring the quality of these 

referrals to see if the referrals are to lower or higher quality MHPs. Determining the quality of 

the MHP that is referred to is possible if they also have an online profile or website, which 

almost all MHPs do. Until we are better able to differentiate between likely good and likely bad 

referrals, we test the robustness of our binary positive outcome coding by including a referral 

as a positive response. 
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Appendix Tables A2 to A8 present all of our results with this alternative positive binary 

coding, where positive responses are appointment, call, or consultation offers, screening 

questions, or referrals. Since screening questions occur 6.0 percent of the time and referrals 

occur 4.8 percent of the time (see Table 3.1), the alternative positive response rate is 67.1 

percent on average, compared to 56.6 percent for our default rate. Our results are similar 

across all tables except for a few minor differences. We generally find less discrimination 

against non-binary African Americans using the alternative binary coding. This suggests that 

non-binary African Americans are relatively more likely to be asked screening questions or 

given referrals.  

With the alternative positive coding, we also find discrimination against Hispanic 

transgender men when we did not find discrimination with the default positive coding. Under 

this alternative coding, discrimination is similar against Hispanic transgender women and men, 

while with our default positive coding, there was a much larger magnitude of estimated 

discrimination against Hispanic transgender women, with no statistically significant evidence of 

discrimination against Hispanic transgender men. This suggests that Hispanic transgender 

women (men) are differentially more likely (less likely) to be asked screening questions or given 

referrals. Our broader result – that discrimination is primarily against TNB African-Americans 

and Hispanics – is unchanged with this alternative binary coding.
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3.6 Conclusion and Discussion 

To summarize our results from our first wave of the experiment, we generally find no 

differences in positive response rates between TNB and cisgender prospective patients in our 

preferred specifications. This lack of a difference occurs because positive response rates may 

actually be higher for white transgender women and men. However, this is offset by African 

American and Hispanic TNB people (particularly Hispanic transgender women, and non-binary 

African American people) facing significantly lower positive response rates. Ignoring 

intersectionality would have obscured this discrimination against TNB people of color. 

We find that African American and Hispanic prospective patients face discrimination on 

average. However, this average result is driven by the significant discrimination faced by 

intersectional groups, namely non-binary African Americans and Hispanic transgender women. 

We do not find differences in response rates by race or ethnicity for cisgender prospective 

patients. This may suggest that discrimination against African Americans and Hispanics is 

primarily against African Americans and Hispanics who are transgender or non-binary only. 

However, given our small sample size at this time we cannot rule out meaningful magnitudes of 

discrimination against cisgender African Americans or Hispanics, which motivates our planned 

data collection going forward.24 

 
24 In Table 3.7, column (2), the coefficient on cisgender African Americans is -0.0241, with a standard error of 

0.0659. This imprecise estimate has a 95 percent confidence interval of -0.153 to 0.105. The confidence interval is -

0.164 to 0.0998 for cisgender Hispanics. These intervals clearly include meaningful magnitudes of discrimination, 

which means that the most honest interpretation of our results is that it is inconclusive if cisgender African 

Americans or Hispanics face discrimination in access to mental health care appointments. Our power analysis filed 

with our pre-analysis plan discusses how many observations we would need in our final experiment to detect 

meaningful magnitudes of discrimination. 



87 

Interestingly, we also find that cisgender women face lower positive response rates than 

cisgender men. We also find that prospective patients that mention depression as their mental 

health concern receive higher positive response rates than prospective patients that mention 

stress of anxiety, although this difference is not entirely robust as it does not appear without 

state fixed effects, which we include in our preferred specifications.  

These preliminary results motivate our continued data collection and data analysis to 

better understand the ways and reasons that discrimination occurs in access to mental health 

care. We hope to better understand, for example, why white binary transgender women and 

men may experience higher appointment offer rates and why cisgender women may 

experience lower positive response rates. Statistical discrimination based on insurance status 

could perhaps explain the discrimination against cisgender women.25 The source of the 

preference for white transgender women and men is less clear, although a simple explanation 

is that MHPs simply want to work with or care about the welfare of white binary transgender 

women and men. We will explore if this preference appears correlated with attitudes on 

transgender issues or implicit bias against transgender people to see if this preference appears 

driven by taste-based discrimination in favor of (white) transgender people. 

In the final section below, we detail the next steps in this research, which includes 

conducting secondary analysis to explore the sources and moderators of discrimination, and 

also conducting “spin off” studies to quantify discrimination based on other factors not 

explored in this first wave of data collection. 

 
25 MHPs could assume that cisgender women have worse insurance on-average, given that women face lower wages 

and lower rates of private health insurance coverage. 
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3.6.1 Next Steps 

We will expand this research to investigate the mechanisms behind discrimination. We 

will study where and why discrimination occurs by taking equation [1] and adding interactions 

between our minority status variables and moderators of discrimination. Table 9 presents these 

interaction variables, what they test for, and our hypotheses. For example, we will study if MHP 

race or ethnicity predicts discrimination, if transgender rights laws affect discrimination, and to 

what extent discrimination may be taste-based, statistical, or based on implicit bias. We will 

also explore how COVID-19 and related policies, such as shelter-in-place ordinances, have 

affected access to mental health care, and discrimination in access to mental health care. 

In addition to exploring these moderators and sources of discrimination, we will extend 

this study in future waves by adding additional experimental arms as follows: 

1. We will add prospective patients with Chinese names to quantify discrimination against that 

them; 

2. We will randomize mention of different insurance statuses and methods of payment to 

quantify if prospective patients with Medicaid face reduced access to mental health care; 

and 

3. We will add prospective patients who vary in sexual orientation to quantify sexual 

orientation discrimination. 

We detail these plans below and welcome any feedback. 

Insurance Status, Access to Mental Health Care, and Statistical Discrimination 

In the next wave, we will randomly disclose insurance status or preferred payment 

method. We will randomly assign insurance status so that an MHP has a 10 percent probability 



89 

of receiving an inquiry in which insurance is not mentioned, a 16 percent probability of 

receiving an email in which self-pay with no reference to a sliding scale is mentioned, a 14 

percent probability of receiving an email in which self-pay with a reference to a sliding scale is 

mentioned, a 30 percent probability of receiving an inquiry in which Medicaid is mentioned, 

and a 30 percent probability of receiving an email in which private insurance is referenced.26  

There is some research on how insurance or ability to pay affects access to health care. 

Several audit field experiments quantify how access to primary care varies by insurance status 

(Bisgaier and Rhodes 2011; Leech, Irby-Shasanmi, and Mitchell 2019; Olin et al. 2016; Polsky et 

al. 2015; Rhodes et al. 2014; Sharma, Mitra, and Stano 2015; Sharma et al. 2018), however only 

Olin et al. (2016) quantifies access to mental health care (although for adolescents in in the 

state of New York only). These audit studies general find that those with Medicaid face reduced 

access to health care. We expect that those with Medicaid will face similar barriers in access to 

mental health care as they do for access to primary care. 

In addition to randomizing insurance status to our prospective patients to quantify 

access to mental health care appointments, we can also use this to study statistical 

discrimination, as detailed in Table 9. To summarize, MHPs could statistically discriminate 

against minorities by assuming that they have worse insurance or worse ability to pay. We can 

quantify this statistical discrimination by testing if minorities face more discrimination when 

insurance status is not revealed than when it is revealed. If MHPs assume that minorities have 

worse ability to pay, then revealing ability to pay (e.g., private insurance) will differentially 

boost positive response rates more for minorities. 

 
26 The first wave of the experiment, detailed in this paper, did not include any mentions of insurance status. 
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Discrimination Against Chinese Prospective Patients 

In the next wave of our experiment, we include names that signal the prospective 

patient is Chinese American. No study has examined if Asian Americans face discrimination in 

access to mental health care services. Chinese American status will be disclosed with frequent 

first and last names in the U.S. Chinese community. Half the time, our Chinese American 

prospective patients will have Chinese first names and last names. The other half of the time, 

our Chinese American prospective patients will have gender-specific English first names and 

Chinese last names. 

Sexual Orientation Discrimination 

 In a future wave of the experiment, we will include signals for sexual orientation, likely 

using a similar approach to how we signal TNB status. That is, lesbian, gay, or bisexual 

prospective patients would include a statement like “I am gay/lesbian/bisexual and am looking 

for a gay-friendly therapist.” This extension to study sexual orientation discrimination would be 

the first audit field experiment of discrimination in access to health care for sexual minorities. 

COVID-19 and Access to Mental Health Care 

Our first wave of data collection (between January 28, 2020, and May 15, 2020) 

occurred during the first wave of the COVID-19 pandemic and we plan to continue further data 

collection. As of writing, cases have reached an all-time high and there is no expectation of the 

pandemic ending any time soon. This provides us with a natural experiment to explore how 

access to mental health care varies before, during, and after the pandemic and with the 

severity of the pandemic.  
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Why should access to MHPs change during a pandemic? Similarly to other social crises, 

the intensity of the COVID-19 pandemic—as proxied by infection and mortality rates as well as 

by shelter-in-place ordinances—increases depression and suicidal ideation (Killgore et al. 2020; 

McIntyre and Lee 2020; Pfefferbaum and North 2020; Torales et al. 2020). MHPs can help treat 

these conditions, but they are likely to face increased demand for appointments. Access could 

also change through an inability to meet in person under normal circumstances, and the 

movement of MHPs towards greater use of telehealth systems (Madigan et al. 2020; Reay et al 

2020).  

We will test three hypotheses: (i) the increase in the COVID-19 intensity, measured as 

either cases or deaths, reduces access to therapy appointment; (ii) shelter-in-place ordinances 

reduce access to therapy appointments; and (iii) discrimination against minorities increases 

with increased COVID-19 intensity and with shelter-in-place ordinances. We hypothesize that 

discrimination could increase in these cases since prior research links (but not conclusively) 

increased discrimination to shortages (Baert et al. 2015; Carlsson, Fumarco, and Rooth 2018; 

Dahl and Knepper 2020; Kroft, Notowidigdo, and Lange 2013). 

The integration of COVID-19 data will help us explore in greater detail discrimination 

against Chinese Americans. Based on surveys early during the COVID-19 pandemic, there was 

an increase in anti-Asian and anti-Chinese views and events (Litam 2020; Ruiz, Horowitz, and 

Tamir 2020). We will examine if MHPs are more or less responsive to Chinese Americans over 

the course of the COVID-19 pandemic. We will exploit both geographical and temporal variation 

in the pandemic's severity to examine how this severity correlates with MHP behavior towards 

Chinese Americans. 
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3.7 Appendix 

Table A1: Robustness Test--Differences in Positive Response Rates, Results for Aggregated Groups and 

by Mental Health Concern (Probit Model Marginal Effects) 

 

Linear 
Probability 

Model 
(1) 

Probit Average 
Marginal 
Effects 

(2) 

   

Transgender or Non-binary .0123  .0112 

 (.0426) (.0442) 

   

African American -.1333** -.1417** 

 (.0404) (.0404) 

   

Hispanic -.1302** -.1280** 

 (.0495) (.0485) 

   

Depression .1459** .1515** 

 (.0576) (.0572) 

   

Anxiety .0111 .0169 

 (.0527) (.0515) 

   
State fixed effects: X X 

Week-sent fixed effects: X X 

Day-of-the-week-sent fixed effects: X X 

Mean positive response rate for 
excluded category (cisgender 
whites w/ stress): 

.6473 

N 1,000 1,000 

Adjusted R2 0.0986 0.0822 
Notes. Regression estimates based on equation (1). Standard errors, clustered at the patient level and average 

marginal effects standard errors calculated via delta method, both in parentheses. * p < 0.10, ** p < 0.05, *** p < 

0.01.  
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Table A2. Alternative Positive Response Rates by Gender Identity 

Response Rates by Trans/Cis Status: Positive Negative Total   

Cisgender 71.3% (342) 28.7% (138) 480   

Transgender or Non-binary 63.1% (328) 36.9% (192) 520   

Total 67.0% (670) 33.0% (330)  1,000   

      

Test of independence, p-value 0.006     

      

Response Rates by Gender Identity:      

Cisgender men 71.9% (223) 28.1% (87) 310   

Cisgender women 70.0% (119) 30.0% (51) 170   

Transgender men 58.6% (82) 41.4% (58) 140   

Transgender women 67.1% (114) 32.9% (56) 170   

Non-binary 62.9% (132) 37.1% (78) 210   

      

Tests of independence, p-values Cis men Cis women 
Trans 
men 

Trans 
women 

Non-
binary 

Cisgender men …     
Cisgender women 0.655 …    
Transgender men 0.005 0.036 …   
Transgender women 0.265 0.561 0.124 …  
Non-binary 0.029 0.145 0.422 0.395 … 
Notes: Our alternative positive response rate codes responses as positive if the MHP’s response was an 
appointment offer, call or consultation offer, screening questions, or referral. P-values come from a t-test (two-
sided). 

 

Table A3. Alternative Positive Response Rates by Race or Ethnicity 

 Positive Negative Total 

White 68.6% (343) 31.4% (157) 500 
African American 67.8% (183) 32.2% (87) 270 
Hispanic 62.6% (144) 37.4% (86) 230 
Total 67.0% (670) 33.0% (330)  1,000 
    
Tests of independence, p-
values White African American Hispanic 
White … … … 
African American 0.815 … … 
Hispanic 0.111 0.227 … 
Notes: Our alternative positive response rate codes responses as positive if the MHP’s 
response was an appointment offer, call or consultation offer, screening questions, or 
referral. P-values come from a t-test (two-sided). 
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Table A4. Alternative Positive Response by Race or Ethnicity, for Cisgender and 

Transgender or Non-Binary Patients Separately 

Response rates for cisgender only: Positive Negative Total 

White 72.7% (189) 27.3% (71) 260 
African American 72.9% (102) 27.1% (38) 140 
Hispanic 63.8% (51) 36.2% (29) 80 
Total 67.0% (670) 33.0% (330)  480 
    
Test of independence, p-values White African American Hispanic 
White … … … 

African American 0.972 … … 

Hispanic 0.126 0.159 … 
    

Response rates for transgender or non-binary only:     

White 64.2% (154) 35.8% (86) 240 
African American 62.3% (81) 37.7% (49) 130 
Hispanic 62.0% (93) 38.0% (57) 150 
Total     520 
    
Test of independence, p-values White African American Hispanic 
White … … … 
African American 0.724 … … 
Hispanic 0.667 0.958 … 
    

Transgender or non-binary vs. Cisgender - Tests of independence, p-values 

 
Cisgender 

White 
Cisgender African 

American 
Cisgender 
Hispanic 

Transgender or non-binary White 0.040 … … 
Transgender or non-binary African 
American 

0.036 0.064 … 

Transgender or non-binary Hispanic 0.024 … 0.795 
Notes: Our alternative positive response rate codes responses as positive if the MHP’s response was 
an appointment offer, call or consultation offer, screening questions, or referral. P-values come from 
a t-test (two-sided). 
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Table A5: Differences in Alternative Positive Response Rates, Results for Aggregated Groups and by 

Mental Health Concern 

 (1) (2) (3) (4) (5) 

 
     

Transgender or Non-binary -.0764** -.0656* -.0378 -.0328  -.0178 

 (.0370) (.0357) (.0386) (.0406) (.0428) 

 
     

African American -.0081 -.0107 -.0617* -.0847** -.0753** 

 (.0408) (.0404) (.0363) (.0366) (.0374) 

 
     

Hispanic -.0467 -.0565 -.0851 -.1086* -.1345** 

 (.0477) (.0459) (.0543) (.0577) (.0623) 

 
     

Depression … .0266 . 0695 .1679** .1688** 

 
 (.0382) (.0487) (.0620) (.0636) 

 
     

Anxiety … -.0585 .0123 . 0557 .0494 

 
 (.0530) (.0570) (.0605) (.0604) 

 
     

State fixed effects:   X X X 

Week-sent fixed effects:    X X 

Day-of-the-week-sent fixed effects:     X 

Mean positive response rate for 
excluded category (cisgender 
whites w/ stress): 

. 7226 .7204 .6748 .7739 .7617 

N 1,000 1,000 1,000 1,000 1,000 

Adjusted R2 0.0091 0.0143 0.0777 0.0900 0.1070 
Notes: Our alternative positive response rate codes responses as positive if the MHP’s response was an 

appointment offer, call or consultation offer, screening questions, or referral. Regression estimates based on the 

linear probability model in equation (1). Standard errors, clustered at the patient level, in parentheses. * p < 0.10, 

** p < 0.05, *** p < 0.01. 
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Table A6: Differences in Alternative Positive Response Rates, Results by Gender Identity 

 (1) (2) (3) (4) 
     

Transgender or Non-binary  -.0178 … … … 

 (.0428)         
…Binary Transgender  … -.0140 … … 

  (.0450)        
…Trans Women … … .0381 .0485 

   (.0697) (.0712) 
     

…Trans Men … … -.0797 -.0751 

   (.0610) (.0625) 
     

…Non-binary … -.0267 -.0285 … 

  (.0812) (.0814)       
…Non-binary  
female first name 

… … … -.0594 

   (.0982) 
     

…Non-binary  
male first name 

… … … .0266 

   (.1137) 
     

Cisgender Women … … -.0157 -.0186 

   (.0640) (.0534) 
     
African American -.0753** -.0758** -.0608 -.0559 

 (.0374) (.0368) (.0423) (.0435) 
     
Hispanic -.1345** -.1347** -.1046* -.1132** 

 (.0623) (.0626) (.0565) (.0568) 
     
Mean positive response 
rate for excluded category 
(cisgender white men): 

.7617 . 7622 .7507  .7558 

N 1,000 1,000 1,000 1,000 

Adjusted R2 0.1076 0.0944 0.0964 0.0969 
Notes: Our alternative positive response rate codes responses as positive if the MHP’s response was an 

appointment offer, call or consultation offer, screening questions, or referral. All regressions include the controls in 

column (5) of Table 5: mental health concern (depression, anxiety, stress), state fixed effects, day of the week sent 

fixed effects, and week sent fixed effects. Column (1) repeats the results from column (5) in Table 5a for ease of 

interpretation. Standard errors, clustered at the patient level, in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table A7: Differences in Alternative Positive Response Rates, Intersectional Results by 

Trans/Cisgender Status and Race/Ethnicity 

 (1) (2) 
   

Transgender or Non-binary  -.0178 … 

 (.0428)     
…and white  … . 0840 

  (.0668) 
   

…and African American … -.0983* 

  (.0570) 
   

…Hispanic … -.1500** 

  (.0748) 
   
Cisgender         

…and African American … .0401 

  (.0706) 
   

…Hispanic … .0007 

  (.0781) 

All African American -.0753** … 

 (.0374)     
All Hispanic -.1345** … 

 (.0623)  
   
Mean positive response 
rate for excluded group 
(cisgender whites): 

.7617 .7771 

N 1,000 1,000 

Adjusted R2 0.1076 0.0986 
Notes: Our alternative positive response rate codes responses as positive if the MHP’s response was an 

appointment offer, call or consultation offer, screening questions, or referral. All regressions include the controls in 

column (5) of Table 5a: mental health concern (depression, anxiety, stress), state fixed effects, day of the week 

sent fixed effects, and week sent fixed effects. Column (1) repeats the results from column (5) in Table 5 for ease 

of interpretation. Standard errors, clustered at the patient level, in parentheses. * p < 0.10, ** p < 0.05, *** p < 

0.01. 
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Table A8: Differences in Alternative Positive Response Rates, Intersectional Results by Gender Identity 

and Race/Ethnicity 

 (1) 
  

Transgender Women  
…and white  .1796** 

 (.0802) 
  

…and African American -.0901 

 (.1228) 
  

…Hispanic -.2362* 

 (.1259) 
  
Transgender Men  

…and white  .0806 

 (.1267) 
  

…and African American -.0802 

 (.0668) 
  

…Hispanic -.2360** 

 (.1184) 
  
Non-binary  

…and white  -.0203 

 (.1031) 
  

…and African American -.3426** 

 (.1324) 
  

…Hispanic -.1058 

 (.1051) 
  
Cisgender  

…and African American .0551 

 (.0788) 
  

…Hispanic .0414 

 (.0803) 
  
Mean positive response rate 
for excluded group (cisgender 
whites): 

.8302 

N 1,000 
Adjusted R2 0.1047 

Notes: See notes to Table A6. Standard errors, clustered at the patient level, in parentheses. * p < 0.10, ** p < 0.05, 

*** p < 0.01. 
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