
Georgia State University Georgia State University 

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University 

Biology Faculty Publications Department of Biology 

5-2014 

KIFCI, A Novel Putative Prognostic Biomarker for Ovarian KIFCI, A Novel Putative Prognostic Biomarker for Ovarian 

Adenocarcinomas: Delineating Protein Interaction Networks and Adenocarcinomas: Delineating Protein Interaction Networks and 

Signaling Circuitries Signaling Circuitries 

Shrikant Pawar 
Georgia State University, spawar@gsu.edu 

Shashikiran Donthamsetty 
Georgia State University 

Vaishali Pannu 
Georgia State University, vpannu1@gsu.edu 

Padmashree Rida 
Georgia State University 

Angela Ogden 
Georgia State University, angela.s.ogden@gmail.com 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.gsu.edu/biology_facpub 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Pawar et al.: KIFCI, a novel putative prognostic biomarker for ovarian adenocarcinomas: delineating 
protein interaction networks and signaling circuitries. Journal of Ovarian Research 2014 7:53. doi: 
http://dx.doi.org/10.1186/1757-2215-7-53 

This Article is brought to you for free and open access by the Department of Biology at ScholarWorks @ Georgia 
State University. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator 
of ScholarWorks @ Georgia State University. For more information, please contact scholarworks@gsu.edu. 

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/biology_facpub
https://scholarworks.gsu.edu/biology
https://scholarworks.gsu.edu/biology_facpub?utm_source=scholarworks.gsu.edu%2Fbiology_facpub%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=scholarworks.gsu.edu%2Fbiology_facpub%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu


Authors Authors 
Shrikant Pawar, Shashikiran Donthamsetty, Vaishali Pannu, Padmashree Rida, Angela Ogden, Nathan 
Bowen, Remus Osan, Guilherme Cantuaria, and Ritu Aneja 

This article is available at ScholarWorks @ Georgia State University: https://scholarworks.gsu.edu/biology_facpub/40 

https://scholarworks.gsu.edu/biology_facpub/40


RESEARCH Open Access

KIFCI, a novel putative prognostic biomarker for
ovarian adenocarcinomas: delineating protein
interaction networks and signaling circuitries
Shrikant Pawar1†, Shashikiran Donthamsetty1†, Vaishali Pannu1, Padmashree Rida1, Angela Ogden1,
Nathan Bowen2, Remus Osan3, Guilherme Cantuaria4* and Ritu Aneja1*

Abstract

Background: Amplified centrosomes in cancers are recently garnering a lot of attention as an emerging hub of
diagnostic, prognostic and therapeutic targets. Ovarian adenocarcinomas commonly harbor supernumerary
centrosomes that drive chromosomal instability. A centrosome clustering molecule, KIFC1, is indispensable for the
viability of extra centrosome-bearing cancer cells, and may underlie progression of ovarian cancers.

Methods: Centrosome amplification in low- and high- grade serous ovarian adenocarcinomas was quantitated
employing confocal imaging. KIFC1 expression was analyzed in ovarian tumors using publically-available databases.
Associated grade, stage and clinical information from these databases were plotted for KIFC1 gene expression
values. Furthermore, interactions and functional annotation of KIFC1 and its highly correlated genes were studied
using DAVID and STRING 9.1.

Results: Clinical specimens of ovarian cancers display robust centrosome amplification and deploy centrosome
clustering to execute an error-prone mitosis to enable karyotypic heterogeneity that fosters tumor progression and
aggressiveness. Our in silico analyses showed KIFC1 overexpression in human ovarian tumors (n = 1090) and its
upregulation associated with tumor aggressiveness utilizing publically-available gene expression databases. KIFC1
expression correlated with advanced tumor grade and stage. Dichotomization of KIFC1 levels revealed a significantly
lower overall survival time for patients in high KIFC1 group. Intriguingly, in a matched-cohort of primary (n = 7) and
metastatic (n = 7) ovarian samples, no significant differences in KIFC1 expression were detectable, suggesting that
high KIFC1 expression may serve as a marker of metastases onset. Nonetheless, KIFC1 levels in both primary and
matched metastatic sites were significantly higher compared to normal tissue . Ingenuity based network prediction
algorithms combined with pre-established protein interaction networks uncovered several novel cell-cycle related
partner genes on the basis of interconnectivity, illuminating the centrosome clustering independent agenda of
KIFC1 in ovarian tumor progression.

Conclusions: Ovarian cancers display amplified centrosomes, a feature of aggressive tumors. To cope up with the
abnormal centrosomal load, ovarian cancer cells upregulate genes like KIFC1 that are known to induce centrosome
clustering. Our data underscore KIFC1 as a putative biomarker that predicts worse prognosis, poor overall survival
and may serve as a potential marker of onset of metastatic dissemination in ovarian cancer patients.
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Introduction
Centrosome amplification (CA) is a hallmark of cancers
[1-3]. Recent evidence suggests that amplified centrosomes
can drive malignant transformation [4] and perhaps fuel
metastatic dissemination [2]. Logically, excess centrosomes
would orchestrate a multipolar spindle which might result
in inviable progeny and jeopardize the survival of extra
centrosome bearing cancer cells. Cancer cells however,
overcome this paradoxical situation in their favor through
multiple mechanisms including centrosome clustering, a
cancer cell-specific trait [5-7]. It is being revealedthat
cancer cells have indeed evolved quite a sophisticated and
extensive arsenal of ‘clever tactics’ to hijack cellular mecha-
nisms and deploy them to cluster supernumerary centro-
somes into two polar groups to allow formation of a
pseudo-bipolar mitotic spindle [6-9]. A centrosome clus-
tering molecule, KIFC1 (also known as HSET), a minus
end-directed motor protein of the kinesin-14 family, is es-
sential for the viability of extra centrosome-bearing cancer
cells [1].
Recently, supernumerary centrosomes and high KIFC1

expression have been associated with chromosome misse-
gregation that results in low-grade aneuploidy, a landmark
of cancers [6-9]. Given that normal cells most often have
two centrosomes, they do not rely on centrosome cluster-
ing mechanisms; as a result, targeting KIFC1 is an attractive
chemotherapeutic strategy [10]. Proof-of-concept comes
from the recent discovery and preclinical development
of two novel KIFC1 small molecule inhibitors AZ82 [10]
and CW069 [11], that cause centrosome declustering ex-
clusively in cancer cells with amplified centrosomes [10].
Given the excellent promise of KIFC1 as a therapeutic tar-
get, its role as a negative prognosticator merits investigation
in cancers with amplified centrosomes. Since KIFC1 has
been shown to predict non-small cell lung cancer metasta-
sis to the brain [12], we were inquisitive to examine its use-
fulness as a risk predictor and/or negative prognosticator in
other aggressive cancer types which harbor amplified cen-
trosomes. Although centrosomal aberrations in epithelial
ovarian cancers (EOC) have been a relatively understudied
area, abnormalities in centrosomes have been reported in
ovarian tumors [13]. Centrosomal aberrations may be an
early event in ovarian carcinogenesis and implicated in
ovarian tumor progression. The features of many epi-
thelial tumors, including EOC, are the presence of aneu-
ploidy, a consequence of chromosomal instability (CIN)
that arises due to aberrant CA [14]. In several solid malig-
nancies, amplified centrosomes are a potential indicator of
cancer aggressiveness [15].
Herein we examined the severity and extent of centro-

some amplification in low- and high- grade serous ovarian
adenocarcinomas employing multicolor immunofluores-
cence confocal imaging. In these clinical specimens, we also
visualized various cell cycle stages and spindle architecture

of cells in mitosis to gain insights into the propensity of
ovarian tumors to undergo aberrant cell divisions that fos-
ter CIN, karyotypic heterogeneity and generation of aneu-
ploid clones. Further, we quantitated the extent of spindle
polarity, in particular, cells with multipolar spindle configu-
rations as well as cells with pseudo-bipolar spindles with
centrosomes corralled at the two poles. Given the link
between presence of excess centrosomes and upregula-
tion of KIFC1, an important member of the centrosome
clustering arsenal, we evaluated KIFC1’s potential as a
negative prognostic indicator in EOC. Using independ-
ent gene expression datasets, we identified that KIFC1
gene in ovarian cancer is expressed at least 2-fold (loga-
rithm to base 2 scale) higher than in normal ovaries. Our
in silico data also suggest a correlation between KIFC1
and grade, stage, and clinical outcomes in EOC. The gene
expression profiling-based identification of KIFC1 as a
negative prognosticator in EOC may improve evaluation
of disease course. In addition, an in silico-guided mech-
anistic understanding of KIFC1 gene interactions have
delineated pathways and protein interactions which illu-
minate previously unrecognized partners of this centro-
some clustering molecule to unravel the biological behavior
of ovarian tumors.

Results
Epithelial ovarian cancers harbor amplified centrosomes
Previous studies have reported a strong correlation be-
tween aneuploidy and CA in ovarian cancers, with near-
tetraploid tumors displaying a higher intratumoral CA,
near-diploid tumors showing infrequent centrosomal ab-
normalities [13,14]. Thus, we first evaluated the extent
and severity of CA in a grade-wise manner in ovarian
adenocarcinomas. To this end, we examined immuno-
stained centrosomes and mitotic spindles in cells from
paraffin-embedded clinical cancer samples derived from
low- (n = 7) and high-grade (n = 7) serous ovarian carcin-
omas. Both low- and high- grade tissues showed CA, with
high-grade tumors exhibiting notably higher numerical
and structural centrosome aberrations (~50%, indicated
with white arrows) as compared to low-grade tumors
(~40%, indicated with white arrows). Amplified centro-
somes were not observed in any of the normal adjacent
tissues, underscoring this anomaly as a tumor-specific one
(Figure 1A, B).

Epithelial ovarian cancers exhibit mitotic aberrations and
abnormal spindle architecture
Given the notable differences in centrosomal aberrations
between low and high grade ovarian cancers, we next
asked if differences in centrosomal aberrations between
tumor grades translated into differences in mitotic and
spindle aberrations. We found that low- and high- grade
tumors significantly differed in the proportion of cells
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harboring aberrant mitotic spindles. Over 50% mitotic
cells in low-grade ovarian tumors exhibited multipolar
spindles in stark contrast to a mere 20% multipolar mi-
totic cells in high-grade tumors (Figure 1C, D). Intri-
guingly, multipolar spindles observed in both low- and
high- grade tumors were predominantly tripolar, sug-
gesting the enabling role of spindle multipolarity in
promoting chromosome missegregation that underlies
low-grade aneuploidy as opposed to mitotic catastrophe.

Epithelial ovarian cancers display clustering of amplified
centrosomes
The discordance observed in the extent of CA and
multipolar mitosis in high-grade tumors naturally led us
to hypothesize that high-grade ovarian tumors manage
their “excess baggage” of supernumerary centrosomes
by clustering them into “pseudobipolar” spindles. Thus
we evaluated the extent of centrosome clustering by
counting the number of mitotic cells harboring “pseudo-

Figure 1 Centrosome amplification in ovarian cancer. Ovarian cancer and normal adjacent tissue were stained with α-tubulin (red),
γ-tubulin (green), and DAPI (blue) to visualize microtubules, centrosomes, and DNA, respectively. A. Confocal micrographs representing
centrosome amplification status in ovarian normal, low-grade cancer and high-grade cancer tissue. B. Bar graph representation of percent cells
showing centrosome amplification in ovarian and normal adjacent tissue. 500 cells were counted in each sample. C. Confocal microscopic
images represent cells throughout the sequential stages of the cell cycle. Arrows indicate presence of centrosome clustering. Scale bar, 5 μm.
D, E. Bar graph representation of percent cells showing multipolar mitosis and centrosome clustering in ovarian and normal adjacent tissue.
500 cells were counted in each sample. p < 0.05.
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bipolar” spindles. Intriguingly, our observations revealed
that 80% of the mitotic cells in high-grade tumors dis-
play centrosome clustering compared to only 20% in
low-grade tumors (Figure 1C, E). Taken together, our
data suggest that ovarian cancers display a high degree
of CA which is grade-dependent. Supernumerary centro-
somes drive the assembly of multipolar spindle during
mitosis to facilitate higher degree of chromosomal het-
erogeneity, mostly numerical in low-grade tumors. How-
ever, high-grade tumors tend to cluster their extra
centrosomes and form a “pseudobipolar” spindle to en-
able low-level of chromosome missegregation as com-
pared to low-grade tumors.

KIFC1 gene expression level is high in ovarian cancers
compared to uninvolved normal ovarian tissue
Having identified a high degree of centrosomal clustering
in ovarian cancers, we reasoned that these cells may rely
heavily on KIFC1, a centrosome clustering molecule.
Thus, we were inquisitive to evaluate the expression of
KIFC1, a well known clustering molecule, which is highly
expressed in aggressive breast cancers, particularly the
triple negatives [10]. To this end, we examined single
channel microarray data from GEO and TCGA [16,17] da-
tabases to compare KIFC1 gene expression levels in serous
ovarian carcinoma to normal ovarian tissue. A fold change
for the means of Mas5.0 normalized intensity values in
ovarian cancer (n = 1090) over normal ovarian samples
(n = 38) revealed an approximately two fold difference,
with an average KIFC1 expression value of ~5.86 for nor-
mal tissue and ~7.72 for tumors (Figure 2A) (p < 0.001).

KIFC1 gene expression increases with grade in ovarian
cancers
Having found that KIFC1 expression was higher in EOC
as compared to normal ovarian tissue, we next assessed
if KIFC1 expression changes with grade and stage within
EOC. Ovarian carcinoma is categorized by four stages,
ranging from stage I in which the cancer is localized to
the ovary/ovaries to stage IV in that the cancer has
spread outside of the peritoneal cavity [18]. Grades for
ovarian carcinoma are classified based on their histo-
logical appearance. Grade 1 (well differentiated, grade 2
moderately differentiated, and grade 3 poorly differenti-
ated) [18,19]. Based on 468 EOC samples, average KIFC1
expression levels were ~6.53 for grade 1, ~7.85 for grade
2, and ~8.25 for grade 3, which were significantly differ-
ent (p < 0.01) amongst these sub-grades (Figure 2C). As
a result, higher KIFC1 is associated with increased grade.
Average KIFC1 expression levels were approximately
7.62 for stage I, 8.00 for stage II, 8.10 for stage III, and
7.82 for stage IV, and these differences were not statisti-
cally significant amongst these sub-stages (Figure 2B).
Although we found a significant correlation between
KIFC1 expression levels within sub-grades, such differ-
ences were not observed within sub-stages. Given our
finding that KIFC1 expression increases with grade, we
were next interested in determining whether it is
expressed at higher levels in metastatic versus primary
ovarian carcinomas (Figure 2D). Although both primary
and metastatic tumors showed significantly higher ex-
pression of KIFC1 as compared to normal tissue, there
was no significant difference in the expression value of

Figure 2 KIFC1 expression in ovarian cancer and normal tissue. A) Comparison of KIFC1 expression levels in ovarian cancer and normal
ovarian samples. A standard error plot for one channel data comparing fold change for cancer (n = 1090) and normal samples (n = 38) (p value <
0.001). B) Box whisker plot for comparing KIFC1 expression in ovarian cancer patients considering stages (n = 468) (p < 0.0001) C) Box whisker
plot for comparing KIFC1 expression in ovarian cancer patients considering grades (n = 468). D) Box whisker plot for comparing KIFC1 expression
in primary (n = 7) vs metastatic ovarian cancer (n = 7) (p < 0.05 between Grade 1 and 2 and between Grade 2 and 3).
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KIFC1 between matched primary and metastatic ovar-
ian carcinomas (Figure 2D). These fourteen matched
sets of primary and metastatic (omental) samples were
collected from seven advanced staged (III/IV) ovarian
cancer (serous adenocarcinoma) patients and were a
part of a recently published paper from John McDonald’s
group [20].

Increased KIFC1 expression is associated with poorer
overall survival in age-specific ovarian cancer patients
Studies have shown that five year survival for stage I
ovarian cancer is 92%, stage II 55.1%, stage III 21.9%,
and 5.6% for stage IV [21] stating a continuous decrease
in patient survival rate with increasing cancer stage.
Given the association between age, stage, and overall
survival, we were keen to investigate the association of
KIFC1 expression with these variables. Utilizing datasets
from TCGA, we analyzed overall survival in months for
patients diagnosed with ovarian cancer. Patients were
categorized into six groups by age (30–39, 40–49, 50–59
and 60–69). Furthermore, each age group was divided
into two subgroups based on average KIFC1 expression
(i.e., low and high). Patients with KIFC1 expression
levels more than average KIFC1 expression were catego-
rized as high subgroup and patients with KIFC1 expres-
sion levels less than average KIFC1 expression were
categorized as low subgroup. Overall survival in days for
these patients is plotted in Figure 3, with averages given
in Table 1. In patients aged 30–39, the subgroup with
low KIFC1 expression had a ~20% increase in survival
compared to the high expression subgroup (Figure 3A).

In patients aged 40–49 the subgroup with low KIFC1 ex-
pression had a ~9% increase in survival compared to the
subgroup with high KIFC1 expression (Figure 3B). In pa-
tients aged 50–59 years, the subgroup with low KIFC1
expression had a ~5.6% increase in survival compared to
the subgroup with high KIFC1 expression (Figure 3C).
However, this trend was reversed in patients aged 60
and older possibly due to associated co-morbidities. In
these patients, the subgroup with low KIFC1 expression
had a ~11% decrease in survival compared to the sub-
group with high KIFC1 expression (Figure 3D). Thus, in-
creased KIFC1 expression correlated with poor overall
survival in ovarian cancer patients.

Interactions and functional annotation of KIFC1 and its
highly correlated genes using DAVID and STRING 9.1
We next sought correlations between 22276 Affymetrix
genes and KICF1 in cancer and normal ovarian samples
using Pearson’s correlation coefficient. Genes with a cor-
relation value of >0.5 and between −0.1 and −0.5 were fed
in the Ingenuity pathway analysis (IPA) tool to identify cell
cycle and related pathways (Table 2). A detailed list of
all associated pathways is provided in Additional file 1:
Table S1. Interactions with KIFC1 protein were explored
with STRING 9.1. Proteins for genes which had highest
and lowest correlations with KIFC1 were fed into STRING
9.1 [22] to obtain confidence values for their interac-
tions, which were then fed into Cytoscape 3.0 [23] for
development of an interactome (Figure 4). We found Mi-
totic arrest deficient-like 1 (MAD2L1), Polo-like kinase 1
(PLK1), Cell division cycle 20 (CDC20), cyclin-dependent

Figure 3 Overall Survival (OS) plot for high and low KIFC1 groups. Patient ages range from 30 to 80 years, each group divided with a
decade difference. Further subgroups of high and low KIFC1 were made based on averages of KIFC1 expression levels in each group. A) OS plot
for patients with age group 30 to 40 years. B) OS plot for patients with age group 40 to 50 years. C) OS plot for patients with age group 50 to 60
years. D) OS plot for patients with age group 60 to 70 years. For all the graphs p>0.05.
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kinases (CDK1), Nucleolar and spindle associated protein
1 (NUSAP1), Protein regulator of cytokinesis 1 (PRC1),
Kinesin family member 11 (KIF11), Targeting Protein For
Xklp2 (TPX2), and Kinesin family member 23 (KIF23) as
first degree neighbors with KIFC1 (Figure 4). The confi-
dence value for each of these interactions is given in
Table 3.

Discussion
Over the recent years, the role of KIFC1 in centrosome
clustering in cancer cells with supernumerary centro-
somes has been well recognized. Our present study
shows that both low- and high- grade ovarian tumors
display CA. This finding is consistent with a previous re-
port showing presence of CA in ovarian tumors in a
stage-dependent manner [13]. Interestingly, we found
that while low-grade tumors display a higher proportion
of mitotic cells displaying multipolar mitosis compared
to high-grade ones, centrosome clustering was almost an
exclusive feature of high-grade tumors compared to low-
grade ones. As part of the tumor evolution agenda, we
rationalize that when tumors are low-grade, multipolar
mitosis reflects their proclivity to undergo aberrant mi-
toses and subsequent cell divisions. Perhaps multipolar
mitosis enables them to maintain low-grade aneuploidy
which fosters tumor growth and progression. On the

other hand, maintaining enhanced centrosomal cluster-
ing as in the case of high-grade tumors may serve cancer
cells by helping them attain a more aggressive phenotype
[2]. We believe that centrosome clustering confers can-
cer cells with cytoskeletal advantages that may enhance
cell polarization, Golgi-dependent vesicular trafficking,
stromal invasion, and other aspects of metastatic pro-
gression [2].
Since high-grade ovarian cancers display a high degree

of centrosomal amplification coupled with a configur-
ation that keeps them in a “bundled” or clustered state,
it is reasonable to expect that they overexpress proteins
that will aid in centrosome clustering. To this end, we
examined the expression of KIFC1, a known centrosome
clustering molecule, and evaluated its prognostic power
in ovarian cancer. We found KIFC1 levels to be signifi-
cantly higher in ovarian cancer compared to normal
ovarian epithelia. It is noteworthy that increasing KIFC1
levels were associated with increasing grades. This is es-
pecially important from a clinical viewpoint as the likely
course of disease could be predicted accurately by meas-
uring KIFC1 expression in different grades. Even though
KIFC1 levels in both primary and metastatic tissue were
significantly higher compared to normal tissue, KIFC1
expression between matched primary and metastatic
ovarian carcinoma were not different. We speculate that
the primary tumor expressed KIFC1 to a high enough
level to cause epithelial to mesenchymal transition
(EMT) that marks the beginning of the metastatic jour-
ney. Thus, it is likely that KIFC1 may serve to be a
marker for metastatic onset. The overall survival was
also lower in patients with high KIFC1 expression, im-
plying its value as a prognostic biomarker in ovarian
cancer. We further delineated the proteins that might be
interacting with KIFC1 gene and found that many of
these potentially interacting proteins were cell-cycle re-
lated genes. KIFC1 is a kinesin involved in various cellu-
lar processes such as mitotic spindle assembly [24],
centrosome clustering [25,26], and vesicle transport [27]
in cancer cells. Thus, its interaction with an array of cell
cycle-specific proteins is ostensible. Nevertheless, these
data implicate the role of KIFC1 in the regulation of
cell-cycle and interaction with these proteins. It is likely
that KIFC1 has clustering-independent role in cancer
cells which require further investigation.

Conclusion
Taken together, we demonstrate that ovarian cancers
display amplified centrosomes, a feature of aggressive tu-
mors. To cope up with the abnormal centrosomal load
and at the same time circumvent mitotic catastrophe,
ovarian cancer cells upregulate genes like KIFC1 that are
known to induce centrosome clustering, a “tactic” that
tumor cells have evolved to execute mitosis in a pseudo-

Table 1 Comparing survival in days for patients with
ovarian cancer categorized in different age groups and
with high and low KIFC1 expression levels

Age groups (Years) Survival (days) for high
KIFC1 expression

Survival (days) for low
KIFC1 expression

30-40 831.7 (N = 11) 1262.2 (N = 12)

40-50 916.2 (N = 57) 1100.2 (N = 54)

50-60 1025.1 (N = 89) 1147.3 (N = 103)

60-70 1239.4 (N = 61) 975.9 (N = 64)

Table 2 Pathways and genes involved with KIFC1 and its
correlated genes

Pathways associated No of genes % of genes involved

Cell cycle 54 73

Cell cycle checkpoint 13 17.6

Cell division 35 47.3

Cell proliferation 15 20.3

Chromosome condensation 6 8.1

Chromosome segregation 16 21.6

M phase 45 60.8

Microtubule cytoskeleton 36 48.6

Mitotic cell cycle 45 60.8

Pawar et al. Journal of Ovarian Research 2014, 7:53 Page 6 of 9
http://www.ovarianresearch.com/content/7/1/53



bipolar state. Our data compellingly underscores that
KIFC1 can be a prognostic biomarker in ovarian cancers.
Our interactome data have discovered some “purely”
novel potential binding partners based upon pathway
connectivity, which merit further screening and investi-
gation to shed more light into the possibly clustering in-
dependent roles of KIFC1.

Material and methods
A) In silico analysis of KIFC1 gene expression
A.I. Data collection
One channel micro array data were collected from Gene
Expression Omnibus (GEO) database and Cancer Genome
Atlas (TCGA). List of gene identities (ID’s) is given in
Table 4.
The gene expression data for the fourteen matched

sets of primary and metastatic (omental) samples were
procured from a recently published paper from John
McDonald’s group [20].

A.II. Data pre-processing
One channel micro array data was Mas5.0 normalized
[28], and was further taken for processing.

Figure 4 Pathway analysis for KIFC1. Interactome of high and low correlating genes and their interactions with KIFC1. Pathways associated
with first degree neighbors of KIFC1 protein.

Table 3 Confidence values for KIFC1 and respective
interactions

Interaction(s) Confidence value

KIF23 0.622

PRC1 0.626

MAD2L1 0.638

PLK1 0.646

CDK1 0.671

TPX2 0.677

CDC20 0.717

NUSAP1 0.734

KIF11 0.806

Table 4 List of Gene ID

Normal samples GEO Series ID Cancer samples GEO Series ID

GSE14407, GSE18520 (N = 38) GSE20565, GSE14764, GSE12418,
GSE41498, GSE9890, GSE9891 (N = 494)

https://tcga-data.nci.nih.gov/datareports/
aliquotIdBreakdownReport.htm (N=595)

Pawar et al. Journal of Ovarian Research 2014, 7:53 Page 7 of 9
http://www.ovarianresearch.com/content/7/1/53

https://tcga-data.nci.nih.gov/datareports/aliquotIdBreakdownReport.htm
https://tcga-data.nci.nih.gov/datareports/aliquotIdBreakdownReport.htm


A.III. Identification of KIFC1 gene expression
Logarithm to the base 2 transformed KIFC1 expression
levels of ovarian cancer patients were extracted from the
TCGA and GEO patients and compared to their normal
pairs. Identification of KIFC1 expression levels for 14
primary and secondary ovarian cancer samples was done
following AI, AII, and AIII protocols.

A.IV. KIFC1 gene expression and associated clinical outcome
information
Associated grade, stage and clinical information for 468
patients from GEO database were plotted for KIFC1
gene expression values.

B) Interactions of KIFC1 protein
KIFC1 gene was correlated with 22277 affymetrix probe
id’s, genes with a correlation value of >0.5 and between
−0.1 and −0.5 were fed in the IPA tool to identify path-
ways associated. Proteins and their interactions amongst
them with confidence values were extracted from
STRING 9.1, and inputted in Cytoscape 3.0 for building
interactomes.

C) tissue specimens
In this study, a total of 14 human serous ovarian cancer
specimens and their normal adjacent were procured
from Northside Hospital (Atlanta, GA). There were 7
each of low- and high- grade cancer tissues.

D) Immunofluoresence
Slides were first deparaffinized by baking in oven at 60°C
for 2 h followed by 3 xylene baths. Rehydration was then
performed in a series of ethanol baths (100%, 90%, 75%
and 50%). Antigen retrieval was achieved by citrate buf-
fer (pH 6.0) in a pressure-cooker (15 psi) for 3 min. Pri-
mary antibodies (1:2000 dilution) were incubated with
the slides for 45 min at 37°C. The cells were washed 10×
with PBS at room temperature before incubating at 37°C
with a 1:2000 dilution of conjugated secondary anti-
bodies. Cells were washed 5× with PBS and then
mounted with Prolong-Gold antifade reagent that con-
tained DAPI (Invitrogen).

E) Statistical analysis
Statistical analysis was performed using Student’s t-test
and the criteria for statistical significance was p < 0.05.

Additional file

Additional file 1: List of Pathways Associated with KIFC1.
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