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ABSTRACT 

The study employed Ernest (2006) Theory of Semiotic Systems to investigate the use of 

and exposure to multiple representations in a 10th grade algebra II suburban high school class 

located in the southeastern region of the United States. The purpose of this exploratory case 

study (Yin, 2014) was to investigate the role of multiple representations in influencing and 

facilitating algebra II students’ conceptual understanding of piecewise function, absolute-value 

functions, and quadratic functions. This study attempted to answer the following question: How 

does the use of and exposure to multiple representations influence algebra II students’ 

understanding and transfer of algebraic concepts? Furthermore, the following sub-questions 

assisted in developing a deeper understanding of the question: a) how does exposure to and use 

of multiple representations influence students’ identification of their pseudo-conceptual 

understanding of algebraic concepts?; b) how does exposure to and use of multiple 

representations influence students’ transition from pseudo-conceptual to conceptual 

understanding?; c) how does exposure to and use of multiple representations influence students’ 

transfer of their conceptual understanding to other related concepts? Understanding the notion of 

pseudo-conceptual understanding in algebra is significant in providing a tool for examining the 

veracity of algebra students’ conceptual understanding, where teachers have to consistently 

examine if students accurately understand the meanings of the mathematical signs that they are 

constantly using. The following data collection techniques were utilized: a) classroom 

observation, b) task based interviews, and c) study of documents. The unit of analysis was 

students’ verbal and written responses to task questions. Three themes emerged from the analysis 

of in this study: (a) re-imaging of conceptual understanding; (b) reflective approach to 

understanding and using mathematical signs; and (c) representational versatility in the use of 



mathematical signs. Findings from this study will contribute to the body of knowledge needed in 

research on understanding and assessing algebra students’ conceptual understanding of 

mathematics. In particular the findings from the study will contribute to the literature on 

understanding; the process of algebraic concepts knowledge acquisition, and the challenges that 

algebra students have with comprehension of algebraic concepts (Knuth, 2000: Zaslavsky et al., 

2002). 

INDEX WORDS: Representations, Multiple representations, Pseudo-Conceptual understanding, 

Conceptual understanding, Semiotic systems. 
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1  INTRODUCTION 

“…..what is mathematically simple and occurs at the initial stage of mathematical knowledge 

construction can be cognitively complex and requires a development of a specific awareness 

about the coordination of semiotic registers” (Duval 2006, pp. 126-127). 

Background   

In learning algebraic concepts which are normally generalized in various families of 

functions like the; linear, absolute-value, quadratic, cubic, exponential, and rational functions 

students often demonstrate a certain level of proficiency in manipulating algebraic symbols, 

solving equations and analyzing graphical representations of these functions. When encouraged 

some students can verbalize and explain the steps they perform in solving a given algebra prob-

lem involving these functions, therefore demonstrating an awareness of the necessary procedures 

required to solve an algebra problem. This awareness of algebraic procedural competence has 

been documented in several research studies (Davis, 2007; Knuth, 2000 and Carlson, 1998). 

However, several research study findings (Garofalo & Trinter, 2012; Brousseau, 1997; Carlson, 

1998; Nabb, 2010; Kozulin, 2003; Davis, 2007; and Knuth, 2000) illuminate the following con-

cerns: (a) students still memorize facts or procedures without understanding the underlying 

meaning structures in the mathematical concepts and in the procedures; and (b) students often 

demonstrate a fragile understanding and difficulties in explaining when or how they can use what 

they know. Consistent with the above concerns is Carlson (1998) argument that the primarily 

procedural orientation to using functions to solve specific problems has led to absence of mean-

ing and coherence for students.  
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Learning mathematics and in particular the three functions mentioned above (i.e., piece-

wise, absolute-value, and quadratic) is a communicative activity that involves the use of mathe-

matical sign systems. This use of sign involves understanding how students receive the signs i.e., 

while listening and reading, and produce the signs while speaking, writing or inscribing or draw-

ing. Ernest (2006) observes that creativity in students’ sign reception and sign production at 

times may be conceptualized as the ultimate expression of conceptual understanding. One of my 

areas of interest as a teacher of algebra for the last twenty six years has been attempting to under-

stand algebra students’ mathematical signs receptions and productions. Specifically how algebra 

students’ use and communicate their algebraic conceptual understanding. My interest also in-

clude understanding students’ verbal and written responses to algebraic questions which on the 

surface demonstrate a full understanding of a particular mathematical notion yet their knowledge 

of the notion is riddled with contradiction and connections not based on logic (Berger, 2004b). 

Researchers (Sfard, 2000; Berger, 2005; Vygotsky, 1978) describe this type of pre-conceptual 

phase of understanding as pseudo-conceptual understanding which refers to students’ use of 

words and mathematical symbols in communication without knowing exactly what they mean or 

represent (Sfard, 2000; Vinner, 1998; & Vygotsky, 1986).  

Findings from several studies (Berger, 2004b; Ainsworth, 2006; & Knuth 2000) on the 

analysis of students’ written and verbal responses to assigned algebraic tasks reveal evidence of 

pseudo-conceptual understanding of algebraic concepts. These findings have also been identified 

in the way students communicate their conceptual understanding with teachers and peers 

(Eraslan & Aspinwall, 2007; Garofalo & Trinter, 2012). Ernest (2006) considers this understand-

ing as developmental and relates it to “using mathematical signs to refer to mathematical objects 

prior to fully understanding the sign, the transformational rules and the underlying meaning 
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structure of those signs” (p. 3). In this phase of pseudo-conceptual thinking, students’ primary 

focus of attention is the mathematical sign or a set mathematical signs procedures rather than the 

meaning or the ideas represented by the sign/s. Equally significant in this developmental phase 

of understanding is that students still perceive mathematical signs as an end in themselves as op-

posed to mathematical signs being representations of a given mathematical concepts (Sfard, 

2000).  

In this study I assumed Peirce (1998) triadic structure of a sign as the definition of a 

mathematical sign. Pierce’s definition which is expounded in detail in the definition of terms ob-

serves that all signs have a triadic structure: (a) a representamen (inscriptions) which refers to the 

form a sign takes; (b) an object i.e., a physical thing or an abstract object; and (c) interpretant i.e., 

an idea or the meaning of an object. Examples of mathematical signs include; a mathematical 

symbol, a mathematical statement, mathematical expression, the name of a mathematical object, 

and so on (Berger, 2004b). 

Concerns discussed above are consistent with algebra students’ gravitating towards unre-

flective algebraic procedures and manipulations, which have in turn led to a call for instruction 

and assessment activities that promotes deeper conceptual understanding. It follows that deeper 

conceptual understanding of algebraic function has been a foremost concern in several research 

literature (CCSSI, 2010; Berthold et al., 2009; Carlson, 1998). In this study, I adopted Godino 

(1996) description of conceptual understanding as the implicit or explicit knowledge of the prin-

ciples that govern a given mathematics domain, and the interaction between the various units of a 

given domain, as the definition of conceptual understanding. In an attempt to address this con-

cern, exposure to and use of multiple representations has been proposed to potentially support 

and facilitate students’ deeper conceptual understanding of mathematics in general (Ainsworth, 
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2006) and specifically in algebra (Monk, 2003; Goldin, 2003; and Smith, 2003). In addition re-

search on learning with and exposure to multiple representations recognizes the potential benefits 

of facilitating students’ deeper conceptual understanding (Berthold et al., 2009; Ainsworth, 2006; 

Ainsworth & van Labeke, 2004; Clement, 2004; and Tripathi, 2008). The findings from the sev-

eral research studies (Amit & Fried, 2005; Sfard, 2000; White & Pea, 2011; Davis, 2007; and 

Knuth, 2000)  that I looked into including Common Core State Standards Initiative (CCSSI, 

2010), and the National Council of Teachers of Mathematics (NCTM, 2000) through the various 

publications have advocated for the development of curricula that are challenging and engaging 

for students. The findings from these studies also advocate for instruction that leads to deep con-

ceptual understandings of mathematical concepts. CCSSI (2010) for example describes the hall-

mark of mathematical understanding as the “ability to justify, in a way appropriate to the stu-

dent’s mathematical maturity, why a particular mathematical statement is true or where a mathe-

matical rule comes from” (p.2). Need for conceptual understanding is further supported by Ber-

ger (2004b) and Sfard (2000) observation that students who have attained a deeper conceptual 

understanding of a mathematical notion are capable of attending to a mathematical object (e.g., 

definition of functions or an absolute-value function) in its entirety and not just as a fragmented 

aspect of the object. However, several research study findings on exposure and use of multiple 

representations  still reveal evidence of students’ understanding of mathematics that do not ex-

tend beyond simple procedural competence (Knuth, 2000; Berger, 2005; Eraslan & Aspinwall, 

2007; and Zaslavsky et al., 2002). This type of understanding is consistent with; Sfard (2000), 

Berger (2005) and Kozulin (2003) description of pseudo-conceptual understanding where stu-

dents use words or symbols without knowing exactly what they mean or represents.  
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The following three families algebraic functions i.e., piecewise, absolute-value, and quad-

ratic were the focus of the study. This study examined the role of multiple representations in fa-

cilitating 10th grade algebra II students’: (a) identification of pseudo-conceptual understandings 

in the three functions; transition from pseudo conceptual to conceptual understanding; and (c) 

transfer of their conceptual understanding to other related concepts. In this study the use of the 

term multiple representations will focus on the use of: verbal descriptions (oral or written 

words), tabular or pictorial representations (table of values), algebraic or symbolic representa-

tions (which include equations expressing the relationship between two or more quantities), and 

graphical representations (which include the Cartesian graphs). 

 

Statement of the Problem 

There is a need to examine how students’ use of and exposure to different representations 

can potentially extend algebra students’ conceptual understanding beyond procedural compe-

tence. Research on exposure to and use of multiple representations in mathematics education has 

demonstrated potential effectiveness in enhancing students’ conceptual understanding (Ains-

worth, 2006; Elia et al., 2007; Davis, 2007; Goldin, 2003; Monk, 2003; Smith, 2003; Goldin & 

Schteingold 2001; and Gagatsis & Elia, 2004). In addition, literature in mathematics teaching 

and learning is filled with examples of ways the use of multiple representations have had the po-

tential to serve as resources for supporting students’ conceptual understanding (Rider, 2007; 

Clement, 2004; Berthold & Renkl, 2009; Garofalo & Trinter, 2012; and Tripathi, 2008).  

Though results from these research studies indicate potential positive outcomes in the use 

of multiple representations in promoting students’ conceptual understanding in algebra, other 

studies (Davis, 2007; Knuth, 2000; Amit & Fried, 2005, Zaslavsky et al., 2002; Lobato & 
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Seirbert, 2002) have indicated the need for a closer examination of these conceptual understand-

ings. In Garofalo and Trinter (2012) study for example, they describe how a significant number 

of algebra students capable of reciting the quadratic formula 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 , often demonstrate 

difficulties in explaining the meaning of the various parts of the formulae (e.g., √𝑏2 − 4𝑎𝑐 or 

𝑥 =
−𝑏

2𝑎
 ) as well as describing what each variable in the formula represents.  

The challenge of understanding students’ conceptual understanding that does not extend 

beyond procedural competence is complicated by the theoretical framework used to study the 

problem. Studies investigating exposure to and use of multiple representations in enhancing stu-

dents conceptual understanding (Amit & Fried, 2005; Ainsworth, 2006; Friedlander & Tabach, 

2001; van der Meij & de Jong, 2006; diSessa, 2004; Zaslavsky, 2002; Knuth, 2000) are mainly 

rooted in theoretical frameworks in which conceptual understanding is regarded as deriving 

largely from interiorized actions (Berger, 2005, Sfard, 2000). In these theoretical frameworks the 

crucial role of mathematical signs and sign use in the teaching and learning of mathematical con-

cepts is not integrated into the framework. This essential role of mathematical signs which ac-

cording to Hoffman (2006) includes: (a) means by which students think about mathematical rela-

tions and objects (e.g., definitions of a function); and (b) product of students’ mathematical 

thinking, is largely not recognized in the theoretical framework of the studies mentioned above. 

In an algebra class for example, students demonstrate an understanding of their algebraic con-

cepts by means of visible signs and it is through the process of interpretation and transformation 

of these signs that students develop an understanding of mathematical concepts (Hoffman, 2006). 

Hence, it is appropriate that a sign-oriented perspective be integrated into a study that examines 

students’ conceptual understanding. This study proposes the use of semiotics perspective from 

which I can investigate the exposure to and use of multiple representations. In particular, I will 
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be utilizing Ernest (2006) Semiotic systems theory to examine how the notions of pseudo-con-

ceptual and conceptual understanding of algebra concepts allied with the notion of mathematical 

sign provide a theoretical framework with which to examine algebra II students’ construction of 

mathematical concepts.  

 

Purpose of the Study 

The purpose of this exploratory case study was to investigate the role of multiple repre-

sentations in influencing 10th grade algebra II students’ conceptual understanding of: (a) absolute 

value functions; (b) piecewise functions; and (c) quadratics functions. Employing semiotic sys-

tem theory, the study focused on understanding the role of exposure to and use of multiple repre-

sentations in; identifying students’ pseudo-conceptual understanding during the pre-conceptual 

phase of understanding these functions; influencing the transition from pseudo-conceptual to 

conceptual understanding of these algebraic concepts, and in facilitating students’ transfer of 

their conceptual understanding to other related concepts. Ernest (2006) Theory of Semiotic Sys-

tems provided a theoretical framework that facilitated my understanding of how algebra II stu-

dents’ use and production of mathematical signs i.e., external representations of mathematical 

concepts contributed to their pseudo-conceptual, conceptual understanding and transfer of math-

ematical concepts to other concepts. 

 

Research Question 

Using a qualitative exploratory case study methodology, I examined the influence of the 

use of multiple representations as defined in the study i.e. use of; verbal descriptions (natural lan-

guage), numerical (correspondence in a table of values), algebraic or symbolic representations 
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(equations expressing the relationship between two or more quantities), and graphical representa-

tions (Cartesian graphs) as described in (Goldin, 2003), in exploring algebra II students’ concep-

tual understanding of; absolute value functions, piecewise functions, and quadratics functions. 

This study attempted to answer the following question. How does the use of multiple representa-

tions influence algebra II students’ understanding and transfer of their algebraic concepts? Spe-

cifically the following sub-questions were examined: 

1. How does exposure to and use of multiple representations influence students’ 

identification of pseudo-conceptual understanding of algebraic concepts? 

2. How does exposure to and use of multiple representations influence students’ 

transition from pseudo-conceptual to conceptual understanding? 

3. How does exposure to and use of multiple representations influence students’ 

transfer of their conceptual understanding to other related concepts?  

 

Significance of the Study 

This study will contribute to the body of knowledge needed in research on understanding 

and assessing students’ conceptual understanding of mathematics especially in domains like al-

gebra. In particular the findings from the study will contribute to the literature on understanding; 

the process of algebraic concepts knowledge acquisition, and the challenges that algebra students 

have with comprehension of algebraic concepts. Equally important the findings from study will 

also contribute to the current literature on the role and potentially the effective use of multiple 

representations in promoting algebra students conceptual understanding.  Specifically this study 

will contribute new insights into the research work on analyzing learning with multiple represen-
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tations by highlighting areas of mathematical research study that are relatively under-investi-

gated. These areas of research study include: (a) utilizing semiotic perspectives which involves 

the understanding of the role of mathematical sign and sign use in analyzing the use of multiple 

representations in promoting mathematics students’ conceptual understanding of algebra con-

cepts; and (b) analysis of instructional and assessment resources that provoke and promote the 

transition from pseudo-conceptual to conceptual understanding of algebra concepts and act as 

tools for examining the integrity of students’ conceptual understanding.  

Definition of Terms  

Representation 

The term representation used in the study is derived from Goldin (2003) description of a 

representation as a “configuration of signs, character, icons, or objects that can somehow stand 

for, or “represent” something else. According to the nature of the representing relationship the 

term represent can be interpreted in many ways, including the following (the list is not exhaus-

tive): correspond to, denote, depict, embody, encode, evoke, label, mean, produce, refer to, sug-

gest, or symbolize” (p. 276). This description is consistent with (Duval, 2006) description of rep-

resentations as signs and their complex associations which are produced according to rules and 

which allow the description of a system, a process or a set of phenomena. Following is a defini-

tion of multiple representations that was adopted in this study.  

 

Multiple Representation 

The term multiple representations follows from the definition of representations and can 

be described as providing the same information in more than one form of external mathematical 
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representations (Goldin & Shteingold, 2001). Hence a mathematical concept like quadratic func-

tion 𝑦 = −2(𝑥 + 2)2 − 5  can be represented in a variety of modes i.e., as a verbal description, a 

correspondence in a table or a mapping, algebraic function, or as a graph. In this study the use of 

the term multiple representations will focus on the use of; verbal descriptions (natural language), 

numerical (correspondence in a table of values), algebraic or symbolic representations (equations 

expressing the relationship between two or more quantities), and graphical representations (Car-

tesian graphs) as described in (Goldin, 2003).  

Mathematical Signs 

 In this study I will assume Peirce (1998) triadic structure of a sign as the definition of a 

mathematical sign. Pierce (1998) observes that all signs have a triadic structure: (a) a representa-

men (inscription) which refers to the form a sign takes; (b) an object i.e., a physical thing or an 

abstract object; and (c) interpretant i.e., an idea or the meaning of an object.  In this regard Pierce 

(1998) defines a sign as’ 

anything ... which mediates between an object and an interpretant; since it is both 

determined by the object relatively to the interpretant and determines the 

interpretant in reference to the object, in such wise as to cause the interpretant to 

be determined by the object through the mediation of this "sign" (p. 410). 

In mathematics, examples of representamen include; graphs, verbal descriptions, and 

symbols. Examples of mathematical objects would consist of definition of; a function, a deriva-

tive, and a parallelogram. Examples of interpretant would include the ideas or interpretations 

generated in a student’s mind by the representamen of for example the graph of an absolute–

value function with a vertex (2,3) in the domain (-10,10). In this example, the graph is the repre-
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sentamen of the mathematical object absolute value function where different students may con-

struct different interpretants like equation 𝑦 = −2|𝑥 − 2| + 3,  or the “V” shape of the of this 

graph. 

Mathematical Text 

Mathematical text will refer to a simple or a compound sign that can be represented as a 

selection or combination of spoken words, gestures, objects, inscriptions using paper, chalk-

boards or computer displays as well as recorded or moving images (Ernest, 2008).  

Pseudo-Conceptual Understanding 

The use of the term pseudo-conceptual understanding in this study follows from Vinner 

(1997) description of using words or mathematical symbols in communication without knowing 

exactly what they mean or represent. This explanation is consistent with Vygotsky (1994) de-

scription of learners understanding that is coherent and objective, but the bonds formed between 

the various units of a given domain are derived from experiences rather than systematic or logic 

based. In addition Berger (2005) and Sfard (2000) observe that students demonstrating pseudo-

conceptual understanding in mathematical activity “when they are able to use and communicate 

about a mathematical notion as if they fully understand that notion even though their knowledge 

of that notion is riddled with contradictions and connections not based on logic” (Berger, 2005, 

p.14). 

 

 

 



12 

 

 

 

Conceptual Understanding 

The implicit or explicit knowledge of the principles that govern a given mathematics do-

main, and the interaction between the various units of a given domain (Godino, 1996). Students 

demonstrating conceptual understanding are capable of attending to a mathematical object (e.g., 

definition of a function) in its entirety and not just as a fragmented aspect of the object (Berger 

2004).  
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2  REVIEW OF THE LITERATURE 

“Dismissing the importance of plurality of registers of representations comes down to 

acting as if all representations of the same mathematical objects had the same content or as if the 

content of one could be seen from another as if by transparency”. Duval (2006, p. 14) 

Brief Overview of The Literature 

The literature review begins with a broad look at the notion of representation, in particu-

lar the role of semiotic representations in influencing students’ conceptual understanding. An ex-

tensive discussion of multiple representations will follow including an analysis of; the potential 

benefits associated with the use of multiple representations, and research studies on the use of 

multiple representations. The notion of pseudo-conceptual and conceptual understanding will 

then follow including a semiotic perspective broad review on the role of multiple representations 

in influencing students’ conceptual understanding.   

Representation 

Various definitions of the term representations in mathematics education have emerged 

Smith (2003). Goldin (2003) defines representation as a “configuration of signs, character, icons, 

or objects that can somehow stand for, or “represent” something else. According to the nature of 

the representing relationship the term represent can be interpreted in many ways, including the 

following (the list is not exhaustive): correspond to, denote, depict, embody, encode, evoke, la-

bel, mean, produce, refer to, suggest, or symbolize” (p. 276). Individual representations cannot 

be understood in isolation but, rather belong to a wider system known as representational system 

Goldin (2002). For example given the quadratic function 𝑦 = −2(𝑥 − 4)2 + 5  , the graph of this 
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function may provide a visual representation of the function, and alternatively the signs and sym-

bols in the given function (i.e. -2, 4, 5) may be used to describe the graph of the function (i.e., 

concave down, vertex (4,5), absolute maximum, and the x & the y-intercepts).   

This study adopted Goldin (2003) notion of representational system as the definition of 

representation. Goldin (2003) notion of representational systems involves the presence of signs 

(or characters) with well-defined configurations or rules for combining them and a structure that 

basically provides meaning and fundamentally sets up the relationship between relevant signs 

and their rules. To further understand the notion of representational systems, Goldin (2003) dis-

tinguishes between two types of representations systems; (a) individual person’s internal psycho-

logical, and (b) individual person’s external representational systems.  

Internal psychological systems include: “individual’s natural language; their visual im-

agery, and spatial tactile, and kinesthetic representation; problem solving heuristics and strate-

gies; their personal capabilities, including conceptions and misconceptions, in relation to conven-

tional mathematical notations and configurations; their personal symbolization constructs and as-

signments to all these; and their effect in relation to mathematics.” (p. 277). External representa-

tion systems include: normative natural language (e.g., standard English); conventional graph-

ical, diagrammatical, and notational systems of mathematics, structured learning environments 

that may include concrete manipulative materials or computer-based micro-worlds…” (p277).    

It follows that understanding the role of representations in student’s conceptual under-

standing of mathematics is important. Mathematical objects (e.g., functions, groups, relations, 

sets, fields and geometric figures) can be described as abstract, unobservable, and non-physical 

objects (Duval, 2006; Godino, 1996). From this ontological position of mathematics, mathemati-
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cal objects as opposed to other domains of scientific knowledge (physics, chemistry, biology, as-

tronomy etc.) are not accessible by perception or by instruments such as microscope, telescope, 

and/or measurement apparatus (Duval, 2006). Further mathematical knowledge being classified 

as a priori knowledge (Ernest, 1991) means that it consists of propositions asserted on the basis 

of reason alone. Ernest (1991) extends this idea further and asserts that this reason,  

..includes deductive logic and definitions which are used in conjunction with as-

sumed set of mathematical axioms or postulates, as basis from which to infer mathemati-

cal knowledge. Thus the foundation of mathematical knowledge, that is the grounds for 

asserting the truth of mathematical propositions, consists of logical deductive proof. The 

proof of a mathematical proposition is a finite sequence of statements ending in the prop-

osition which satisfies the following property. Each statement is an axiom drawn from a 

previously stipulated set of axioms, or is derived by a rule of inference from one or more 

statements occurring earlier in the sequence. The term ‘set of axiom’ is conceived 

broadly to include whatever statements are admitted into a proof without demonstration, 

including axioms, postulates and definitions (Ernest, 1991, p. 5). 

 

It follows that the indispensable role of representations is to provide access to mathemati-

cal objects by supporting students to directly identify, communicate, manipulate and work with 

mathematical objects. Hence, Duval (2006) observes that the use of signs and semiotics repre-

sentations provides access to the mathematical objects and shows us how to deal with these ob-

jects and argues that “ no kind of mathematical processing can be performed without using a se-

miotic systems of representation, because mathematical processing always involves substituting 

some semiotic representation for another” (p. 107).  

Recent Common Core State Standard Curriculum Initiatives (CCSSI, 2010) and profes-

sional organization such as NCTM through their various publications has placed considerable 

emphasis on the use of representations and argues that “the term representation refers to both the 

process and to product-in other words, to the act of capturing a mathematical concept or relation-

ship in some form and to the form itself… Moreover, the term applies to process and products 
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that are observable externally as well as to those that occur “internally,” in the minds of people 

doing mathematics”. (NCTM, 2000, p. 67). Representations such as graphs, algebraic equations, 

diagrams, tables and charts, numerals are external manifestation of mathematical concepts. In the 

NCTM publication Principles and Standards for School Mathematics (NCTM, 2000), represen-

tation was introduced as a process standard. Although still integral to each of the content stand-

ards, the representation standard has been separated from the individual content standards pre-

sented in the initials edition (NCTM, 1989). This shift in prominence (Pape & Tchoshanov, 

2001) demonstrates an increase interest in understanding the notion of representations among 

mathematics education researchers. Hence in the new process standard, NCTM (2000) advocates 

that instructional programs from prekindergarten through grade 12 should enable all students to: 

(a) create and use representations to organize, record, and communicate mathematical ideas; (b) 

select, apply, and translate among mathematical representations to solve problems; and (c) use 

representation(s) to model and interpret physical, social, and mathematical phenomena (p. 67). 

 

Multiple Representations 

Earlier research on learning with external representations, focused on the ways presenting 

pictures alongside text improved readers memory for text comprehension (Ainsworth, 2006). 

However the proliferation of multi-media learning environment in the last two decades has 

broadened the debate to include combinations of representations (multiple representations) such 

as diagrams, equations, text, tables, graphs, sounds, animations, video, and dynamic simulations.  

Any mathematical concept, for example; an absolute-value function or a quadratic function, can 

be represented in a variety of modes. Given the numerous modes of representations that are 
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available, this study focused on the exposure to and the use of the following multiple representa-

tions; verbal descriptions (natural language), numerical, algebraic (formal notational systems) 

and conventional graphical representations (Goldin 2003).  

Figure 1 is an illustration of how the same concept of a quadratic function 

𝑔(𝑥) = 10𝑥 − 𝑥2 can be presented in a variety of modes. In the figure the use of multiple repre-

sentations is demonstrated in the; verbal descriptions, numerical table of values, formal algebraic 

notational and conventional graphical representations. Several research studies findings on the 

use of and exposure to multiple representations conclude that, the ability to present the same con-

cept in different ways provides students with the opportunity to; (a) build abstraction about math-

ematical concepts (Ainsworth, 2006), (b) highlight different features or characteristics, and (c) 

provide distinct conceptual resources and problem solving capability (Larkin & Simon, 1987; 

Parnafes & DiSessa, 2004; DiSessa, 2004). NCTM (2000) standards advocate a curriculum 

based on multiple representations, arguing that by encouraging students to incorporate many dif-

ferent types of representations into their sense-making approaches, they will improve in their 

ability to understand underlying mathematical concepts and problem solving capability. 
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Figure 1. Sample Task Utilizing Multiple Representations of a Quadratic Function. 

 

Potential Benefits of Multiple Representations 

Potential benefits associated with exposure to and the use of multiple representations 

have been documented. These benefits include facilitating students’ deeper conceptual under-

standing (Berthold et al., 2009; Ainsworth, 2006; Ainsworth & van Labeke, 2004; Clement, 

2004; and Tripathi, 2008). Duval (2006) argues that a single representation cannot fully describe 

a mathematical concept. Kaput (1992) supports Duval’s position by arguing that each representa-

tion has different advantages in facilitating conceptual understanding, and advocates   the use of 

various representations for the same concept as an effective tool for instruction. In supporting 

this position Kaput (1989) also asserts that “the cognitive linking of representations creates a 

whole that is more than the sum of its parts” (p. 179), and argues that this cognitive linking ena-

bles students to see complex ideas in new ways and to apply them effectively. Meaningful and 
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effective learning of a mathematics content domain like algebra has also been documented as a 

potential benefit associated with the use of multiple representations (Friedlander & Tabach, 

2001). This potential benefit is demonstrated by how the use of multiple representations has 

played a significant role in the recent algebra instructional paradigm shift that emphasizes not 

only the symbolic manipulations skills but also a deeper understanding of families of functions 

(Gutierrez & Boero, 2006). Families of functions (e.g., linear, quadratic, absolute value, and ex-

ponential) share certain traits as demonstrated in the topic of transformation. In algebra instruc-

tion, transformation can be described as “action on the classes of functions that provide a meas-

ure of generalizability across the families” (Gutierrez & Boero, 2006, p.326). Use of multiple 

representations (graphs, algebraic equations, tables, and verbal descriptions) allow students to 

form deeper generalization of the families of functions when they explain their understanding 

and make predictions. 

Role of Multiple Representations  

The role of multiple representations can be summarized using Ainsworth (2006) func-

tional taxonomy shown in figure 2. In a review of the potential benefits that multiple representa-

tions bring to a learning situation, Ainsworth (2006) utilizes these taxonomy of multiple repre-

sentations to clearly identify three main pedagogical functions that multiple representations serve 

in the teaching and learning of mathematics.  An analysis of these functions associated with the 

existing use of multiple representations in learning situations, suggests that there are three main 

roles that multiple representations play in supporting learning. These functions include; (a) com-

plementing each other, (b) constraining interpretations, and (c) supporting construction of deeper 

conceptual understanding (Ainsworth, 2006).  
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Figure 2. Functional Taxonomy of Multiple Representations Model. Adapted  

from “DeFT: A conceptual framework for considering learning with multiple  

representations,” by S. Ainsworth, 2006, Learning and Instruction, 16, p 187.  

Copyright 2006 by the Elsevier Ltd. 

 

Exposure to and use of multiple representations provide complementary information 

when a single representation is insufficient in carrying all the information about a particular do-

main (Ainsworth, 2006). On the complementary role of multiple representations each representa-

tion complements each other because they differ in the information they each express or in the 

process that each representation supports. Use of multiple representations creates an environment 

where students can benefit from their combined advantages. Example: Given the quadratic func-

tion expressed in algebraic symbol vertex form as   𝑔(𝑥) = −3(𝑥 − 8)2 + 6 , this representation 

allows students to find the value of y for any given value of x, regardless of how large the value 

of x. However, this representation does not explicitly reveal other significant information that the 

equivalent graph provides.  
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Table 1. Sample of information provided by graphical representation of a quadratic function 

        Question/information                       Solution 

1. Find the end behavior of the graph of the 

function  𝑔(𝑥) = −3(𝑥 − 8)2 + 6 : 
 

 𝑎𝑠 𝑥 → ∞, 𝑦 → −∞  
 𝑎𝑠 𝑥 → −∞, 𝑦 → −∞  
 

2. What is the concavity of the graph Concave down: quadratic coefficient 

‘a’ is a negative  𝑎 < 0. 

 

3. What is the domain in interval notation [−∞, +∞]  
  

4. What is the range in inequality notation 𝑦 ≤ 6, 

 

5. Find the value of x for which g(x) > 0 since the graph is a concave down , 

(8 + √2, 8 − √2)   

   

6. Find the value of x for which 𝑔(𝑥) ≤ 0  

 

Since the graph is a concave down 

(−∞, 8 − √2] ∪ [8 + √2, ∞) 

 

7. Find the value of x for which 𝑔(𝑥) ≥ 0  [8 + √2, 8 − √2]   
   

8. Describe the transformation of 𝑔(𝑥) from 

the parent function   𝑦 = 𝑥2   

Horizontal shift 8 units right, vertical 

shift 6 units up, concave down, verti-

cal stretch factor 3 

 

Table 1 provides information advantageously served by having a graphical representa-

tion. The two representations support different processes and carry a set of different yet comple-

mentary information (e.g. end behavior of the graph of a function) from which students can ben-

efit by achieving a better understanding of the concept of quadratic functions.  

Use of multiple representations can be potentially useful in assisting students’ develop-

ment of an improved understanding of a domain by using one representation to constrain their 

interpretation of a second representation. This can be done by; (a) utilizing a familiar representa-

tion to support the interpretation of a less familiar one, or (b) using the inherent properties of one 

representation to limit the inferences drawn from a second representation. Example: consider the 

following sample of a common algebra equivalent expression misconception (𝑥 + 2)2 ≠ 𝑥2 + 4, 
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graphing representations of the quadratic functions 𝑔(𝑥) = (𝑥 + 2)2  and ℎ(𝑥) = 𝑥2 + 4  (see 

figure 3) can be used to show that the two expressions are not equivalent. 

 

 

Figure 3. Sample of graphical representations comparing equivalency of two quadratic functions 

 

In this example, familiar graphing representations of the quadratic functions 

𝑔(𝑥) = (𝑥 + 2)2  and  ℎ(𝑥) = 𝑥2 + 4  are used to support students’ reasoning about a less fa-

miliar representation i.e. equivalence of the expressions (𝑥 + 2)2  and 𝑥2 + 4 .  In this function it 

is the students’ familiarity with the constraining representation (graphing) or its ease of interpre-

tation that is essential (Ainsworth, 2006).   

Ainsworth (2006) describes graphical constraining benefit of multiple representations as 

the range of inferences that can be made about the represented concept. Graphical constraining is 

evident in learning environment where one representation limits the interpretation of a graph. An 

animation, for example can constrain the interpretation of a graph. Kaput (1989) observes a 

strong tendency among students to view graphs as pictures rather than symbolic representations. 

Monk (2003) observed a shift in educators’ perception of graphs from carrier of information to a 
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lens through which information can be explored. Van der Meij and de Jong (2006) in a study on 

the effect of different types of support for learning using multiple representations in a simulation-

based learning environment, describes the use of dynamic representations instead of static repre-

sentation. They describe the animation of a car riding up a hill with constant power as a graphical 

constrain of the interpretation of the speed shown in a line graph. The animation can show a stu-

dent that the line graph is not representing a valley but the speed of the car; learners can see that 

the car slows down going up the hill and that it accelerates going down the hill. Van der Meij and 

De Jong (2006) argue that the purpose of the constraining representation is not to provide new 

information but to support the learners’ reasoning about the less familiar representation (Ains-

worth, 2006). 

Thirdly multiple representations can support the construction of deeper understanding 

when students integrate information from different representations to achieve insights that might 

not be achieved from a single representation (Ainsworth, 2006). Deeper understanding occurs 

through; (a) abstraction, (b) extension (generalization), and (c) relational understanding. In re-

gard to abstraction, use of multiple representations influences the creation of mental entities that 

serve as the basis for new procedures and concepts at higher level of organization (Ainsworth, 

2006). During the extension process, students generalize (extend) their knowledge from known 

to unknown to representation without fundamentally altering the nature of that knowledge (Ains-

worth, 2006). In relational understanding the focus in on how two known representations are as-

sociated without reorganization of knowledge (Ainsworth, 2006). 

In the construction of deeper conceptual understanding computational offloading can 

serve as an indicator of students understanding of a mathematical concept. Computational of-

floading is a term used to refer to the extent to which the use of multiple representations reduce 
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the amount of cognitive effort required to solve an equivalent problem (Ainsworth, 2006). As an 

example consider the following absolute value function  𝑦 = −2|𝑥 + 5| − 6 in which students 

are to determine; (a) the x-intercept of the graph of the function, and (b) the input for which 

𝑓(𝑥) ≥ 0, Students attempting to solve this problem by engaging in symbolic (algebraic ) manip-

ulation only realize that the x-intercept/s does not exist after ending up with the equation 

|𝑥 + 5| = −3. However students exposed to the simultaneous use of the algebraic, numeric (ta-

ble of values), and graphical representations of this function have the potential to expand their 

thinking about absolute value function and deduce that when the parameter ‘a’ and the constant 

‘k’ have the same sign, it implies that the absolute value function has no x-intercepts. In this ex-

ample, the use of multiple representations influences the creation of mental attributes (abstrac-

tion) about the properties of absolute value functions that serve as the basis for generalizing (ex-

tension) their knowledge about this function.    

In Garofalo and Trinter (2012) study, they analyzed mathematical tasks that encouraged 

high school students and pre-service secondary school mathematics teachers to think flexibly 

about mathematical concepts and problems. They observed that with well-designed tasks; stu-

dents can expand their thinking about mathematical ideas, vary their approaches to solving math-

ematical problems, and value the use of multiple representations in problem solving. In the 

study, algebra students were required to derive the quadratics formula from the standard quad-

ratic model 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. Many did so by completing the square, whereas others needed a 

hint. After students used the usual “completing the square” strategy to derive the formula, they 

were required to leave the last line as shown below without combining the fractional expres-

sions 𝑥 =
−𝑏

2𝑎
±

√𝑏2−4𝑎𝑐  

2𝑎
 .  The purpose of doing this was to encourage students to think about 

what the expression −
𝑏

2𝑎
    represents in the equation and how it relates to the parabolic graph of 
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a quadratic function. Computational offloading was evident in this activity as demonstrated by 

the extent to which external representation (graphing) and the symbolic expression above com-

bined to reduce the amount of cognitive effort required in; identifying the x-coordinate of the 

vertex, and the equation of the line of symmetry.  

The use of algebraic equation (symbolic) and the equivalent graph in this study exploited 

the perceptual processes by grouping together relevant information (relational understanding) so 

making search recognition easier. Garofalo and Trinter (2012), observed that after students had 

the opportunity to think about the solution, −
𝑏

2𝑎
   most of them recognized that  −

𝑏

2𝑎
  represented 

the x-coordinate of the vertex and 𝑥 = −
𝑏

2𝑎
  represented the axis of symmetry by extension. In 

addition students also realized that the roots of the equation which are also the zeroes of the 

graphs can be found at equal distance from the axis of symmetry on the x-axis. i.e.  ±
√𝑏2−4𝑎𝑐  

2𝑎
. 

In summary, there is a convergence of research literature perspectives supporting the 

need for instructional and assessment activities that include exposure to and use of multiple rep-

resentations. These perspectives are grounded in the understanding that multiple representations 

offer potential benefits that can contribute to students’ deeper conceptual understanding of alge-

braic concepts. Following is a discussion on the research studies on the use of and exposure to 

multiple representations. 

 

Research Studies on use of Multiple Representations 

This section is a discussion on the several research studies on the use of multiple repre-

sentations. As part of a larger body of research designed to explore how students understand the 

concept of quadratic functions, Eraslan and Aspinwall (2007) conducted a task-based interview 
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qualitative study with tenth-grade honors students at a public high school in the south east of 

United States. These interviews took place at the end of a three-week instructional unit on quad-

ratic functions. Assessment materials which included student’s tests, quizzes, and interview 

questionnaires were collected and analyzed. The purpose of the study was to gain an insight into; 

(a) students’ conceptual understanding, and (b) the cognitive obstacles related to five aspects of 

the quadratic functions being taught (i.e., translating, determining, interpreting, solving quadratic 

equations, and modelling quadratic functions. Participants in the study were given tasks that re-

quired them to translate problems from equations to graphs and from graphs to equations. In light 

of their written work, the researcher designed new tasks in order to reveal the participant’s 

thought processes throughout the interviews. The participants’ work on four translation tasks and 

their response to interview questions were analyzed. The purpose of the study was to understand 

possible reasons for the nature of students understanding of a relationship between the vertex and 

the coefficients b and c in the standard form, 𝑦 = 𝑎2 + 𝑏𝑥 + 𝑐 of a quadratic function. Partici-

pants were presented with a quadratic function 𝑦 = 𝑎(𝑥 − 2)2 + 5 and asked to produce the 

graph.  

Next, the participants were presented with the graphic representation of a quadratic func-

tion showing the vertex and two ordered pairs on the graph and required to name a function for a 

given parabola. This task was approachable either by substituting the coordinates of the vertex 

into the vertex form 𝑦 = 𝑎(𝑥 − ℎ)2 + 𝑘 of quadratic function the equation and then checking an-

other point to find the leading coefficient. An alternative solution to the problem involved setting 

up a system of three equations in three unknowns and using algebraic means to find the coeffi-

cients of the equation. Analysis of students’ verbal and written responses identified the under-
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standing of the underlying structures of the mathematical sign as a cognitive obstacles that hin-

dered the participants’ translation between the two representations. This study highlights the im-

portance of instruction that not only introduces students to different forms of representations but 

also intentionally emphasizes an understanding of situations in which one representation has ad-

vantage over another.  

Result of the study also supports the importance of in-depth analysis of student thinking. 

Knowing the nature of students’ cognitive obstacles and taking a carefully designed plan of ac-

tion to minimize cognitive obstacles which is crucial in developing a rich conceptual understand-

ing. Finding from the analysis of students responses suggested that students’ obstacles to concep-

tual understanding might not be accessible through routine assessments like test, quizzes and 

homework assignments. In assessing students’ understanding of a particular concept the study 

recommend that teachers create opportunities to discuss with students about their thought pro-

cesses on tasks that reveal students’ adaptable thinking. Equally important Eraslan and Aspin-

wall (2007) study highlighted the significance of; monitoring students’ thinking, identifying their 

knowledge structures, and addressing obstacles that emerge when students are solving problems. 

Knuth (2000) study examined students' understandings of the connections between alge-

braic and graphical representations of functions. The purpose of this qualitative study was to un-

derstand the connections students develop when they interact with multiple representations. The 

study utilized task-based interview data collection technique. Participants in the study were 178 

students, enrolled in the following college preparation mathematics courses: 1st year algebra, 2nd 

year algebra, pre-calculus, and advanced level placement calculus classes. Participants were pre-

sented with a problem that had both the algebraic and a corresponding graphical representation 

and required the use of Cartesian Connection (Moschkovich, et al, 1993) where understanding 
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that both the equation-to-graph and graph-to-equation connection are considered fundamental in 

developing the flexibility among the representations. While the graphical representations in the 

problem explicitly provided information required to efficiently solve the problem, the algebraic 

representations provided only limited and implicit information. Responses from the participants 

revealed an overwhelming reliance on algebraic representations, even on tasks for which a 

graphical representation seemed more appropriate and efficient.  

The findings from this study indicate that for familiar routine problems many students 

master the connections between the algebraic and graphical representations, however, such mas-

tery appeared to be superficial at best an indication of pseudo-conceptual understanding. Knuth 

(2000) concludes by questioning the assumptions regarding the ease with which students are 

thought to master the Cartesian Connection. Knuth (2000) recommends that an expert's 

knowledge of the mathematic domains should extend beyond simple procedural competence, 

where the goal of mathematics instruction should be to move students beyond procedural compe-

tence and towards a more robust and flexible understanding of concepts like functions. 

Amit and Fried (2005) qualitative study examined potential benefits realized from the use 

of multiple representations where learners used standard representations in real classroom envi-

ronment. The purpose of the study was to explore whether; (a) teachers and students share an un-

derstanding of the significance of multiple representations, and (b) students are truly realizing the 

potential benefits from lessons explicitly designed with multiple representations in mind. The re-

search setting was the Learners’ Perspective Study (LPS), an international effort involving nine 

countries (Clarke, 2001; Fried & Amit, 2005) which expands on the work done in TIMMS video 

study which; (a) exclusively examined 8th grade teachers and only one lesson per teacher (Stigler 
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& Hiebert, 1999), (b) focused on student actions within the context of the whole-class mathemat-

ics practice, and (c) adopted a methodology whereby student reconstructions and reflections 

were considered in several videotaped mathematics lessons (Fried & Amit, 2005). Data collec-

tion included videotaped classroom instructions 15 lessons on systems of linear equations, field 

notes, relevant classroom materials, and student focus group interviews. Results from the study 

indicated that, though none of the students in the study appreciated the graphic representations as 

complementary to the algebraic representation of linear relations, majority of the students under-

stood why the teacher attached significant importance to the use of different representations. 

Several students in the study produced statements in line with the teacher’s approach to different 

representations yet they had limited conceptual understanding of what the teacher was attempting 

to communicate to them. The results also indicated that division between the teacher’s intention 

of what she was doing and the students’ interpretation of what was expected of them represented 

one of the reasons why the students in this class did not seem to get the idea that representations 

are to be selected, applied, and translated. Conclusion from the study was a need to provide stu-

dents with considerable experiences in the kind of thinking that potentially promotes linking of 

several representations.     

In Zaslavsky et al. (2002) study, the purpose of the qualitative study was to examine 

some implicit assumptions regarding the connection between the symbolic representations (alge-

braic) and graphical (geometrical) representations of a mathematical concept (slope of a linear 

function). The 124 participants in the study were subdivided into five groups and included; elev-

enth-grade calculus students, prospective and in-service secondary mathematics teachers, and 

university mathematics educators and mathematicians. The participants were interviewed on two 
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mathematical tasks that required them to analyze a slope appearing as an analytic attribute of a 

linear function, and as a geometric attribute of the line representing the graph of the function. 

Task 1 required participants to identify the slope of a line graphed in a homogenous sys-

tem of coordinates. In task 2 the participants were required to respond to a simple but non-stand-

ard task concerning the behavior of slope under a non-homogeneous change of scale. Analysis of 

the data (written responses, transcribed interviews, and field notes of group discussions), focused 

on the implicit and explicit concerns of the participants, the assumptions, and the nature of the 

experiences the participants went through in trying to cope with the cognitive conflicts in the two 

tasks assigned.   

Results revealed that several participants had difficulties making connections between the 

algebraically (analytical) and the geometric (graphical) representations. The study draws atten-

tion to the several unquestioned assumptions concerning basic mathematical notions like slope, 

scales, and angles and graphical representations. The study calls for further re-examination and 

refinements of the underlying assumptions and conventions that teachers and students (individu-

ally or collectively) make when learning mathematics. These assumptions that the researchers in 

the study alluded to represents the pseudo-conceptual understandings that students (and in this 

study teachers) demonstrates and hence a need to address this concerns during mathematics in-

struction. 

Pseudo-Conceptual Understanding 

The notion of pseudo-conceptual understanding of mathematics referenced in this study 

is derived from Vygotsky’s (1986) stages of pre-conceptual thinking and Berger’s (2004) elabo-

ration of stages of appropriation of mathematics object. When appropriating new mathematical 
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objects for example an absolute value function like 𝑦 = 𝑎|𝑥 − 𝐻| + 𝐾 either through direct in-

struction or in their interactions with mathematical text, students use different forms of pre-con-

ceptual thinking (heaps, complexes and potential concepts) which roughly corresponds do a dif-

ferent stage of the development of generalization and abstraction in the student (Vygotsky, 1986 

& Berger, 2004). Vygotsky (1994) describes pseudo-concepts as a special type of complex think-

ing that “from outside i.e. to an observer, it has the appearance of a true concept but on the inside 

(in terms of its genesis, the conditions under which it develops and the causal associations of 

these conditions) it is actually a complex thinking” (p.226). In mathematical activity, students in 

the pseudo-conceptual phase of understanding, “use and communicate mathematical notions as if 

they fully understand the notion, even though their knowledge of that notion is riddled with con-

tradictions and connections not based on logic” (Berger, 2004, p.14).  

Berger (2004) on elaborating on Vygotsky’s work on pre-conceptual thinking groups pre-

conceptual thinking into three stages; a) heap thinking stage, b) complex thinking stage, and c) 

potential conceptual thinking stage. Each of these thinking corresponds to a different stage in the 

development of the generalization and abstraction of a concept. These stages represents Vygot-

sky’s interest in the genesis and development of concepts (Berger 2004). Since my study is fo-

cused on the complex thinking stage within which pseudo-conceptual thinking or understanding 

of a concept is situated, an understanding of the heap thinking stage is important in setting up a 

platform for supporting my understanding of the complex thinking stage. Heap thinking refers to 

learners linking of ideas or objects together as a result of an idiosyncratic association (Berger, 

2004). In mathematics context this is the stage in which students associate one mathematical sign 

or text with another because of the physical context or circumstance rather than any mathemati-

cal property of the mathematical signs/text (Berger 2004). 
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An example of heap thinking in mathematics context involves students associating one 

sign, for example an absolute value function  𝑦 = 𝑎|𝑥 − 𝐻| + 𝐾   with another sign for example a 

quadratic 𝑦 = 𝑎(𝑥 − 𝐻)2 + 𝐾    because of physical context or attributes of the signs rather than 

the mathematical properties of the signs. In another example of heap thinking, many students 

tend to believe that all functions should be definable by a single algebraic formula (Carlson, 

1998) and tend to argue that a piecewise function defined like 𝑓(𝑥) = {
2𝑥 + 4, 𝑥 ≤ 0
1

3
𝑥 − 2, 𝑥 > 0

   repre-

sents two separate functions. Likewise a student using heap thinking would regard the functional 

notation f(x) as a product of two variables f and x. In these three examples students using heap 

thinking rely on the physical context such as the layout of the sign or other non-mathematical 

context to justify their mathematical understanding. Alternatively, in complex thinking stage stu-

dents’ ideas are based on experiences and associations with familiar concepts rather than on logic 

or any particular system. At this stage, students are capable of abstracting actual attributes of an 

idea or a concept (Berger, 2004) as their thinking is coherent and objective (Vygotsky, 1994). 

Vygotsky (1994) argues that this is a crucial stage in the formation of concepts as it allows stu-

dents to think in coherent terms and communicate their ideas about a mental entity via words and 

symbols (Berger, 2004). It is during these students’ communication with the teacher or with the 

more knowledgeable others that personal and meaningful concepts whose use is compatible with 

the wider mathematical community are developed.  

Mathematics being quintessentially a study of abstract sign systems (Ernest, 1997), it is 

important that in this research I attend to how mathematical text and signs are exchanged in these 

communications including the construction of mathematical concepts (in this study algebraic 

concepts) that are based on the abstraction of attributes of signs (Berger, 2004). In this study I 
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choose to be deliberate, explicit and focused on an important distinction between pseudo-concep-

tual and conceptual understanding. I believe this distinction is significant in providing a tool for 

examining the veracity of our students’ conceptual understanding of mathematical concepts. In 

pseudo conceptual understanding the primary focus is on the mathematical representations as an 

end in itself. A notion that Sfard (2000) refers to as “signifier-as-an –object-in-itself” (p. 79). In 

this understanding, the mathematical sign or a set mathematical signs rather than the meaning of 

the sign/s is the primary focus of attention. The following is an example of the distinction be-

tween pseudo conceptual and conceptual understanding in the appropriation of a mathematical 

object. In this case the absolute value function 𝑦 = 𝑎|𝑥 − 𝐻| + . Given an absolute value func-

tion 𝑦 = −2|𝑥 − 4| + 5, a student using pseudo conceptual thinking in appropriating this func-

tion will focus only on the mathematical symbol (i.e. the variable, operations, the absolute value 

symbol, and the equality sign) as an end in itself. A student using conceptual thinking will focus 

on the ideas embedded in the mathematical symbol (Berger, 2004) that is the meaning of the var-

iables in the absolute value function where in the above example, the meaning of the values of 

the variables -2, 4 and 5 represents an absolute value function graph that opens down, with a ver-

tical stretch of scale factor 2, a horizontal shift of four units right, and a vertical shift of five units 

up from the graph of  𝑦 = |𝑥 |. Equally import a student using conceptual thinking is able to link 

the absolute value function to other concepts like deducing various properties (e.g., the domain 

(−∞, ∞), the range (−∞, 5) and the y-intercept (0, -3). Having made a distinction between 

pseudo-conceptual and conceptual understanding of mathematical concepts, the following sec-

tion is an attempt to demonstrate the significance of students’ pseudo-conceptual understanding 

in mathematics and specifically in algebraic concepts. A discussion on how pseudo-concepts de-

velop and their role in the development of mathematical concept will also be included.  
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As mentioned previously, instruction or student interaction with mathematical texts or 

signs that emphasize “signifier-as-an-object-in-itself” (Sfard, 2000, p.76) model or paradigm 

contribute to pseudo conceptual understanding of mathematical concepts. In this model of in-

struction the focus is on the mathematical inscriptions (words, text or symbols) only and less on 

the meaning of the concept or the underlying processes by which a concept is built. Vinner 

(1998) observed that pseudo-concepts are often caused by either the lack of or failure to activate 

the crucial elements of true conceptual thought process. Where the crucial elements represents 

students control mechanisms for examining whether their responses to a given question make 

sense or not in a given situation. In the following example, in an attempt to respond to a descrip-

tion of the transformation of the following absolute value function  𝑦 = −2|𝑥 + 5| − 6 from the 

parent function  𝑦 = |𝑥 |, students use the term ‘concave down’. Though quadratic functions and 

absolute value functions have graphs with some similar characteristic behavior, the response in 

this example questions whether students fully comprehend the concepts of absolute value func-

tion and if they used any control mechanism to examine their association (i.e., the difference be-

tween a quadratic function and an absolute value function), to determine if their response fits the 

question or not. Lack of control mechanism and hence pseudo conceptual understanding in this 

example is evident since absolute value functions are not ‘curves’ but two linear functions with a 

common vertex or end point. 

Another area where pseudo-conceptual understanding of mathematical concepts is re-

vealed, is when students are asked to identify a mathematical object. In the following example, 

students are expected to define the quadratic function written in standard form as 
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 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏, &  𝑐 ∈ ℝ  and 𝑎 ≠ 0. Failure to mention that 𝑎 ≠ 0 in the defi-

nition represents a pseudo-conceptual understanding because the leading term which is the domi-

nant sign 𝑎𝑥2 defines the quadratic function. Challenges in students’ distinction between an alge-

braically defined function and an equation (Carlson, 1998) also contributes to pseudo conceptual 

understanding of various algebraic functions. In an attempt to examine students’ distinction be-

tween a quadratic function and a quadratic equation, identifying 𝑦 = 𝑥2 + 15𝑥 + 56,  as a quad-

ratic equation represents a pseudo-conceptual understanding since a quadratic equation is an 

equation with one unknown variable only. In this example a control mechanism for examining 

whether a response to the identification of the above mathematical object as an equation makes 

sense or not is necessary. In this example, questions about the general form of a quadratic equa-

tion, and the number of different letters a specific quadratic equation should have, can activate a 

control mechanism that can lead to a student giving the correct response i.e. examining whether 

𝑦 = 𝑥2 + 17𝑥 + 72,  is a quadratic function and not a quadratic equation. In this two examples 

terms, words and signs used by the teacher or the more knowledgeable others evoke in students’ 

mind certain mathematical associations (Vinner, 1997). However in the absence of deeper con-

ceptual understanding of the concept of quadratic functions, students do not attempt to examine 

their responses to know whether they constitute a correct answer or not. These examples and 

many other documented examples (Zaslavsky et al., 2002; Knuth; 2000; and Eraslan & Aspin-

wall, 2007) demonstrate a need for a closure examination of the role of pseudo-conceptual un-

derstanding in the development of students’ conceptual understanding.                             

The role of pseudo concepts in the development of the meaning of a concept is crucial in; 

(a) formation of mathematical concepts, and (b) creating a platform for future generalization of a 
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concept (Berger, 2004). In the formation of a concept the use of pseudo-concepts provides a stu-

dent with initial access to new and unknown mathematical notions when she effectively com-

municates or productively engages in activities using mathematical signs even though that stu-

dent might not fully comprehend the mathematical concept (Vygotsky, 1994). It is the use of 

pseudo-concepts that allow the student some form of communication either spoken or written 

about a mathematical object (e.g., an absolute value function, a quadratic function written in in-

tercept form or a piece-wise function).  

In creating a platform for future generalization, use of pseudo-concepts allows a student 

to abstracts or isolate different attributes of a mathematical object and organize ideas or objects 

with particular properties into groups (Vygotsky, 1994) in order to create platform for future 

generalizations. The following is an example of use of pseudo-conceptual understanding in this 

regard. In a lesson involving absolute–value functions, a teacher might require students to write 

an absolute-value model 𝑦 = 𝑎|𝑥 − 𝐻| + 𝐾 and observe the relationship between the signs of 

both constant ‘a’ and ‘k’ and the x-intercept of the graph of the absolute-value function for dif-

ferent values of ‘a’ and ‘k’. After several attempts including guess work and false starts (pseudo-

concepts), a student who observes that when the value of ‘a’ and ‘k’ have the same sign then the 

graph of the absolute-value function has no x-intercepts can be said to have created a platform 

for future generalization. The significance of the duo roles of  pseudo-conceptual understanding 

can be summarized as; (a) providing initial access to mathematical objects, and (b) acting as a 

bridge (Berger, 2004) between complex thinking (i.e., where mathematical ideas are based on 

experiences and associations with familiar concepts rather than on logic or any particular on 

logic) and conceptual thinking. The following is a description of conceptual understanding and 

its significance in the learning of algebraic concepts. 
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Conceptual Understanding 

A student is in conceptual phase of understanding when she is capable of attending to a 

mathematical object (e.g., definition of a function) in its entirety and not just as a fragmented as-

pect of the object (Berger 2004). According to Sfard (2000) conceptual understanding is demon-

strated when a student is capable of transitioning from “signifier-as-an-object-in-itself” phase of 

understanding to “signifier-as-a representation of-another object” (p.79) phase of understanding.  

As elaborated in the previous discussion, pseudo-conceptual understanding phase of un-

derstanding is characterized by students’ primary focus of attention on the mathematical signs 

where they perceive of mathematical sign as an end in itself. In the conceptual understanding 

phase, mathematical concepts whose existence is indicated by use of signs and symbols takes the 

role of representations of other mathematical objects, i.e., “signs are transparent so that the signi-

fied (mathematical ideas) shines through them” (Sfard, 2000, p.20). Consider the mathematical 

object, the quadratic function  𝑦 = −2(𝑥 − 4)2 + 3 written in vertex form. A student using con-

ceptual thinking to understand this mathematical object is expected to deduce various properties 

of quadratic function i.e., ideas embedded in the quadratics function in this mathematical object. 

For example the numbers -2, 4 and 3 represents a quadratic function with a vertex (4,3) that is 

concave down, with a vertical stretch of scale factor 2, a horizontal shift of four units right, and a 

vertical shift of three units up from the graph of the parent function 𝑦 = 𝑥2.  These are the inter-

nal links i.e., the links between the different properties and attributes of the function as deduced 

from the mathematical sign given. The student is also expected to link this function to other ex-

ternal concepts not explicit in the sign like the domain (−∞, ∞), the range (−∞, 3), the absolute 
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maximum y = 3, input for which the range 𝑓(𝑥) ≥ 0, and the y-intercept (0, -29). To a student 

demonstrating conceptual understanding of this quadratic function, the mathematical sign 

 𝑦 = −2(𝑥 − 4)2 + 3 is transparent enough so that the signified i.e., the mathematical idea of the 

object shines through the sign (Sfard 2000). To understand how conceptual understanding is in-

ternalized by students, I will refer to Vygotsky’ (1978) learning theory.    

Following is a discussion of Vygotsky (1978) Sociocultural learning theory that informs 

the theoretical framework (Theory of Semiotic Systems) adopted in this study. This discussion is 

essential in supporting my understanding of how conceptual understanding mentioned above is 

internalized through the use of socially elaborated symbol system e.g., mathematical signs. 

 

Vygotsky Socio-cultural Learning Theory 

Vygotsky’s theory places significant emphasis on the dynamic interdependence of social 

and individual processes in the shared construction of knowledge and is based on the concept 

that learning as a human activity takes place in a cultural context, is mediated by language and 

other symbol systems, and can be best understood when investigated in their historical develop-

ment (John-Steiner & Mahn, 1996). To understand the nature of the interdependence between 

individual and social processes in the shared construction of knowledge, Wertsch (1991) one of 

the first major scholars to interpret Vygotsky’s work, identified three major themes of  Vygot-

sky’s theoretical approach; (a) individual development including higher mental functioning, has 

its origin in social processes, (b) human action, on both the social and individual planes, is medi-

ated by semiotic means which are tools and signs, and (c) the need for reliance on genetic or de-

velopmental method in order to examine the origins and the history of mental phenomena. In this 

study, the utility of Vygotsky’s theoretical framework provides a lens in my understanding of: 
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(a) the relevant features of the classroom social context and interpersonal relations including; 

teacher-student and student-student interaction that might occur in the research; (b) the role of 

exposure to multiple representations i.e., verbal descriptions, numerical, graphical and algebraic 

expressions, as semiotic mediators in influencing students’ use of mathematical signs to gain ac-

cess to mathematical objects.  

The first theme concerning the social origins of higher mental functions emphasizes the 

significance of social interaction in human development. Vygotsky’s general genetic law of cul-

tural development emphasized his belief in the social formation of mind. In this theme, individ-

ual higher mental functioning originates on inter-mental plane i.e. social sphere or between peo-

ple, and then on the individual or the intra-mental plane. Vygotsky believed that  

“Every function in the child’s cultural development appears twice: first, on the social 

level, and later, on the individual level; first, between people (inter-psychological) and 

then inside the child (intra-psychological). This applies equally to voluntary attention, to 

logical memory, and to the formation of concepts. All the higher functions originate as 

actual relationships between individuals.” (Vygotsky, 1978, p. 57).  

 

Internalization of higher mental process then becomes a process of developmental trans-

formation from the lower mental functions to the intra-mental i.e. within the individual. In this 

theme, Vygotsky is looking at learning as a process that is situated in, but not limited to social 

interaction. These theme supported my understanding of how students synthesize several influ-

ences into their novel modes of understanding and participation (John-Steiner & Mahn, 1996) by 

participating in a variety of classroom mathematical activities which in Vygotsky’s work repre-

sent the social processes. Specifically, these theme supported my understanding of how students’ 
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interactions and exposure to multiple representations influenced: (a) their social norms for math-

ematics speaking and listening; (b) their judgment of adequacy of mathematical explanations and 

solutions; and (c) their habits of reasoning and sense making as elaborated by John-Steiner & 

Mahn (1996).  

In the second theme, Vygotsky believed that the development of learner’s higher mental 

functioning was mediated by social culturally-evolved tools and signs (Wertsch 1991). This list 

of tools and signs referred to as semiotic means include: “languages; various systems of count-

ing; mnemonic techniques; algebraic symbols; works of art; writing; schemes, diagrams, maps 

and mechanical drawings; all sorts of conventional signs and so on” (Vygotsky,1981, p. 137). 

According to Vygotsky (1981), cognitive development and learning depends on; student’s mas-

tery of symbolic mediators, their appropriation, and internalization in the form of inner psycho-

logical tools (Kozulin, 2003). Action mediated by semiotic mediators also referred to as psycho-

logical tools or signs are the fundamental mechanism that link the social and individual pro-

cesses. Hence in a mathematics classroom, semiotic mediators not only facilitate the mathemati-

cal activity but also define and shape students’ inner processes (Berger, 2005). Wertsch and 

Stone (1985) argue that it is “by mastering semiotically mediated processes and categories in so-

cial interaction that human consciousness is formed in the individual” (p. 166). Vygotsky’s sec-

ond theme will support my understanding of the significance of semiotic mediation is influenc-

ing students’ use of mathematical signs to gain access to mathematical objects.     

 The third theme is on reliance on genetic or developmental method in order to examine 

the origins and the history of mental phenomena. He argues that in order to understand mental 

phenomena we “need to concentrate not on the product of development but on the very process 

by which higher forms are established” (Vygotsky, 1978, p 64). According to this theme, since 
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learning and development are situated in socially and culturally shaped contexts, as historical 

conditions change so does the context and the opportunities for learning. Meaning that for this 

study I needed to look beyond individual student’s mental activity and include the situated prac-

tices that the participants found themselves. Specifically, looking at students’ process of internal-

ization of mathematical concepts in a learning environment that places significant emphasis in 

exposure to and use of multiple representations. This theme also made me cognizant of the con-

stantly changing context and opportunity for learning presented in a multiple representations en-

vironment.  Following is a discussion on Vygotsky’s concept of internalization.  

 

Vygotsky Concept of Internalization  

One focus of Vygotsky’s theory is the concept of internalization, which is conceived of 

as a representational activity that occurs simultaneously both in social practices and in the human 

mind (John-Steiner & Mahn, 1996). Internalization is a process by which shared construction of 

knowledge is appropriated, transmitted or transformed in formal and informal settings. Essential 

to the concept of internalization is the appropriation of socially elaborated symbol system. Semi-

otic representations that were the focus of this study are socially elaborated symbol systems. 

Vygotsky recognized the significance of the general transforming power of semiotic mediators 

and argued that by their very nature they have the “capacity to become cognitive tools” (Kozulin, 

2003, p.25). However, in order to realize this capacity Vygotsky argues that, semiotic mediators 

should be appropriated under special conditions that emphasize their meaning as cognitive tools 

(Kozulin, 2003). This study examined how instructional and assessment activities that emphasize 

on students’ conceptual understanding are appropriated.  
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Vygotsky theory recognizes that mediation of meaning is an essential component in the 

acquisition of psychological tools because semiotic signs derive their meaning from cultural con-

ventions and argues that “symbolic tools e.g., mathematical signs have no meaning whatsoever 

outside the cultural conventions that infuses them with meaning and purpose” (Kozulin, 2003, 

p.26). In their study on the role of instructional conversations in classroom learning, Chang-

Wells and Wells (1993) described the interdependence and transformative view of internaliza-

tion: “It is at points of negotiation of meaning in conversation that learning and development oc-

cur, as each learner’s individual psychological processes mediate (and at same time are mediated 

by) the constitutive inter-mental processes of the group” (p. 86). In mathematics instruction, the 

meaning of a concept that is either represented verbally or using mathematical signs is not assim-

ilated in a ready- made form (Berger, 2005) but undergoes significant development as the student 

uses signs in her/his communication with the more knowledgeable other. Students are expected 

to construct a concept whose use and meaning is compatible with its use in the mathematics 

community in so doing their conceptual construction is socially regulated (Berger, 2005). Vygot-

sky advocates for acquisition of semiotic tools within a learning paradigm that presupposes; (a) 

deliberate rather than spontaneous character of the learning process, (b) systematic acquisition of 

semiotic tools, and (c) emphasizes the generalized nature of semiotic tools and their application 

(Kozulin, 2003). In this study I focused on understanding how exposure to and use of multiple 

representations promote the acquisition of semiotic tools as described above. Following is a dis-

cussion on the use of and exposure to multiple representations from a semiotic perspective. 
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Semiotic Perspective and Multiple Representations 

Several research studies (Goldin, 2003; White & Pea, 2006; Rider, 2007; Pape & 

Tchoshanov, 2001; and Monk, 2003) advocate for use of multiple representations and observes 

that mathematical concepts are learned powerfully when a variety of appropriate representations 

with appropriate relationships among them have been developed. Multiple representations such 

as use of; verbal descriptions, numerical algebraic symbolic expressions, and graphs are funda-

mental strategies of mathematical activity with a potential of providing both conceptual re-

sources for problem solving process as well as social resources for communicating and coordi-

nating interactions (White & Pea, 2011).  

Central to school mathematics is the creation and use of standard system of representa-

tions e.g., use of signs and configuration of signs as seen in the school curriculum. However, 

learning mathematics without full understanding of the underlying meaning structures of these 

signs has long been a common outcome of school mathematics instruction. Findings from a con-

siderable research base over the last three decades (Hiebert, 2003; Shaughnessy et, al, 2009; 

CCSSI, 2010) have shown a considerable gap between procedural and conceptual knowledge in 

mathematics students’ performance (Kouba & Wearne, 2000), Students’ knowledge and skills 

have been described as fragile and apparently learned without much depth and conceptual under-

standing (Oehrtman, Carlson & Thompson, 2008; Hiebert, 2003). Equally concerning is the 

mathematics curriculum in United States that has been typically characterized as focusing on 

learning skills and procedures and addressing many mathematics topics at a superficial level 

(Milgram & Wu, 2005). A long lists of state and local school district curricular expectations have 

led to teaching too much, too quickly, and with far too little depth (NCTM, 2000; CCSSI, 2010). 
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Studies on students’ performance on related items that require reasoning, communication, con-

jecturing, and justifying answers have shown evidence of fragility and shallowness in conceptual 

understanding of mathematics (Kouba & Wearne, 2000).  

Professional organizations like NCTM in their various publications recognizes that deci-

sions made by teachers, school administrators, and other education professionals about the con-

tent and character of school mathematics have important consequences for students and recom-

mend that such decisions should be based on sound professional guidance (NCTM, 2000). For 

three decades, the NCTM and recently in the Common Core State Standard Curriculum Initia-

tives (CCSSI, 2010) have been in the forefront advocating for the development of curricula that 

are challenging and engaging for students, including instruction that leads to deep understanding 

of the relationships among mathematical concepts. The National Council of Teachers of Mathe-

matics (NCTM) in its Principle and Standards for School Mathematics (2000) has identified six 

key principles and ten standards of a high quality mathematics education for students. 

The vision of school mathematics in the Principles and Standards is based on students' 

learning mathematics with understanding. The Learning Principle from the NCTM Principles 

and Standards for School Mathematics (2000) states that, “students must learn mathematics with 

understanding, actively building new knowledge from experience and prior knowledge”    

(NCTM, 2000, p.20). In addition to the Principles outlined in the NCTM literature, the ten Stand-

ards that span from prekindergarten to grade 12 are descriptions of what mathematics instruction 

should enable students to know and do. The Standards for mathematics practices advocated for 

in the CCSS initiative, describe a variety of skills that mathematics educators should seek to de-

velop in their students. This skills include: NCTM process standards mentioned above; and the 

National Research Council (NRC, 2001) mathematical proficiency strands; “adaptive reasoning, 
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strategic competence, conceptual understanding (comprehension of mathematical concepts, oper-

ations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, ef-

ficiently and appropriately), and productive disposition (habitual inclination to see mathematics 

as sensible, useful, and worthwhile, coupled with a belief in diligence and one’s own efficacy)” 

(CCSSI p.1). 

The focus of this study was on the conceptual understanding mathematical proficiency 

strand and the algebra content standard. Algebra as a mathematics domain has been a focal point 

of reform efforts in mathematics education with many mathematics educators and researchers 

(Pansuk, 2010; Oehrtman, Carlson & Thompson, 2008; NCTM, 2000; RAND Mathematics 

Study Panel, 2003; Shaughnessy et al. 2009; Kilpatrick & Izsák, 2008) advocating for instruction 

that emphasizes algebraic conceptual understanding. A significant overlap in the NRC (2001) 

and NCTM (2000) description of conceptual understanding, concludes that students demonstrate 

conceptual understanding, 

..when they provide evidence that they can recognize, label, and generate examples of 

concepts; use and interrelate models, diagrams, manipulatives, and varied representations 

of concepts; identify and apply principles; know and apply facts and definitions; com-

pare, contrast, and integrate related concepts and principles; recognize, interpret, and ap-

ply the signs, symbols, and terms used to represent concepts. Conceptual understanding 

reflects a student's ability to reason in settings involving the careful application of con-

cept definitions, relations, or representations of either (NCTM, 2000, p.2). 
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It follows that the NCTM and the CCSSI initiative description of conceptual understand-

ing focuses on characteristics and features of a student who has acquired conceptual understand-

ing. The literature from these organizations does not explicitly explain how students acquire and 

develop mathematical conceptual understanding. What is needed is a framework that explains 

how students construct mathematical concepts that; (a) are personally meaningful to them, and 

(b) their usage is commensurate with that of the mathematical community. In an attempt to un-

derstand how schools create and use the standard system of representations as seen in the school 

curriculum, a sign oriented perspective from which to examine school mathematics would be ap-

propriate (Ernest, 2006). 

Ernest (2006), semiotic perspective is the theoretical lens I used using to examine how 

mathematical sign systems (representations) are developed, and elaborated in the educational 

process. Semiotic perspective as elaborated in the theoretical framework takes into account three 

necessary components of a semiotic system; (a) the set of mathematical signs, (b) set of rules of 

sign production, and (c) the set of relationship between the signs and their meanings embodied in 

an underlying meaning structure. Within the educational context students meet a whole new 

range of signs and symbolizing functions in mathematics. The historical and cultural develop-

ment in mathematics have given rise to the semiotic systems that provide the underlying struc-

ture of the mathematics curriculum in our schools. Semiotic perspective outlines a number of dif-

ferent but interrelated semiotic systems that are important in the leaning of mathematics and 

closely align with the NCTM and Common Core Standards. These systems area; (a) numbers, 

counting and computation, (b) rational numbers (fractions) and their operations, (c) measures and 

their means of computation, (d) geometry, probability and statistics, (e) algebra including solving 
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simple linear and quadratics equations, and (f) abstract systems such as calculus, analysis and ab-

stract (axiomatic) group theory (Ernest, 2006). According to research (Ernest 2006; & Sfard, 

2000), for individual to be successful in mathematical activity, mastery of semiotic systems is 

essential. This mastery involves; learning the implicit rules of correct use of mathematical sign, 

and application of these rules in the production and reading of mathematical text. This study will 

examine the role of multiple representations in promoting the mastery of semiotic systems. From 

a semiotic perspective, it is not just about the use of multiple representations but how utilizing 

multiple representations promotes the mastery of semiotic systems where students can poten-

tially benefit in the: (a) identification of mathematical concepts; (b) acceptance and internaliza-

tion of the goals of a given task; (c) selection of skills and procedures to perform a given mathe-

matical task (Ernest, 2008).  

Instructional practices that teach standard system (i.e., mathematical sign use) as an end 

in themselves may fail to develop students’ mathematical power (Goldin, 2003). Research on 

students’ conceptual understanding (Sfard, 2000) conclude that students demonstrate conceptual 

understanding when they are capable of transitioning from a mathematical-sign-as-an-object-in- 

itself phase of understanding to mathematical-sign-as-a-representation-of-another-object phase 

of understanding. In the conceptual thinking phase of understanding mathematical symbols and 

signs are perceived as: (a) representations of other mathematical objects and not an end by them-

selves; and (b) processes as well as objects. The transition from instructional model where math-

ematical objects (signs or symbols) are the primary focus of attention to a model where mathe-

matical objects (signs or symbols) are transparent (Sfard, 2000) represents a paradigm shift in the 

way mathematical truths or concepts should be presented. 
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Summary of the Literature Review 

The essential role of representations is to provide access to mathematical objects in stu-

dents’ sign receptions and sign productions activities. Duval (2006) observes that the use of signs 

and semiotics representations provides access to the mathematical objects and shows us how to 

deal with these objects. Further Duval argues that “ no kind of mathematical processing can be 

performed without using a semiotic systems of representation, because mathematical processing 

always involves substituting some semiotic representation for another” (p. 107). Potential bene-

fits associated with the use of multiple representations have been documented. These benefits in-

clude facilitating students’ deeper conceptual understanding (Berthold et al., 2009; Ainsworth, 

2006; Ainsworth & van Labeke, 2004; Clement, 2004; and Tripathi, 2008). Kaput (1992) in sup-

porting Duval’s positions argues that each representation has different advantages in facilitating 

conceptual understanding, and argues for  the use of various representations for the same concept 

as an effective tool for instruction. The role of multiple representations can be summarized as 

providing three main functions; (a) complementing each other, (b) constraining interpretations, 

and (c) supporting construction of deeper conceptual understanding (Ainsworth, 2006) 

Research studies on exposure to and use of multiple representations in algebra under-

standing (Ainsworth, 2006; Amit and Fried, 2005; Knuth, 2000; & Zaslavsky et al. 2002) support 

the need for algebra instructional and assessments activities that promote exposure to and use of 

multiple representations. The findings from this studies indicate that for familiar routine prob-

lems many students master the connections between the algebraic and graphical representations, 

however such mastery appeared to be superficial at best, which researchers Knuth(2000) and 

Berger (2004) describe as an indication of pseudo-conceptual understanding. Knuth (2000) rec-

ommendation that an expert's knowledge of the mathematic domains that extends beyond simple 
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procedural competence sums up the findings of the research studies in this literature review. Fur-

ther findings from these studies continue to emphasize the goal of mathematics instruction and 

assessments that should shift students’ mathematical understanding beyond procedural compe-

tence and towards a more robust and flexible understanding of concepts like functions. 

With the goal of shifting students understanding beyond simple procedural competence, 

literature reviewed further emphasized the need for instruction and assessment models or activi-

ties that aim at identifying students’ pseudo-conceptual understanding in mathematics (Berger, 

2004, 2005, Vygotsky, 1994, and Vinner, 1997). Pseudo-conceptual understanding refers to stu-

dents’ use of words and mathematical symbols in communication without knowing exactly what 

they mean or represent (Sfard, 2000; Vinner, 1998; & Vygotsky, 1986). The literature further in-

dicated the significant purposes of pseudo-conceptual understanding include; (a) effective com-

munication, and (b) promising engagement in activities that utilize mathematical signs even be-

fore students fully comprehend the relevant mathematical object they are studying. It can be ar-

gued that the use of pseudo-concept enables students to access new and unknown mathematical 

objects and hence allow students some form of communication about a given mathematical con-

cept.  

The literature further emphasized the need for transition from pseudo-conceptual under-

standing to conceptual understanding in mathematics in general and in algebra in particular. Stu-

dents utilizing conceptual thinking have transitioned from ‘signifier-as-an-object-in-itself’ model 

of thinking to ‘signifier-as-a-representation-of-another-object’ model of thinking (Sfard, 2000, 

p.79). In the conceptual thinking stage mathematical symbols and signs are perceived as a repre-

sentation of other mathematical objects and not an end by themselves. The transition from in-
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structional model where mathematical objects (signs or symbols) are the primary focus of atten-

tion to a model where mathematical objects (signs or symbols) are transparent (Sfard, 2000) rep-

resents a paradigm shift in the way mathematical truths or concepts should be presented.    

According to Sfard (2000) conceptual understanding is demonstrated when a student is 

capable of transitioning from “signifier-as-an-object-in-itself” phase of understanding to “signi-

fier-as-a representation of-another object” (p.79) phase of understanding. Use of multiple repre-

sentations (as defined in this study) either during instruction or assessment phase of learning can 

provide an avenue or a platform with which educators can assess students’ conceptual under-

standing. A tool with which educators can assess whether students’ understanding of mathemati-

cal concepts is in “signifier-as-a-representation-of-another object” phase of understanding.  

Informed by this literature, this study sought to closely examine the conceptual under-

standing mathematics practice standard advocated for in for example CCSS Initiative. In particu-

lar the study focused on the role of exposure to and use of multiple representations in the transi-

tion from pseudo-conceptual understanding where mathematical objects are the focus of atten-

tion, to conceptual understanding where the meanings embedded in mathematical signs are the 

primary focus. In addition this study also focused on exploring the role of multiple representa-

tions in facilitating algebra students’ conceptual understanding during mathematical sign recep-

tions and sign productions. In particular the study focused on understanding how exposure to and 

use of multiple representations influenced students conceptual understanding where mathemati-

cal   “signs are transparent enough so that the signified (mathematical ideas) shines through 

them” (Sfard, 2000, p.20). 
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3  THEORETICAL FRAMEWORK 

“….the role of semiotics as the study of signs encompasses all aspects of human sign 

making, reading and interpretation, across the multiple contexts of sign usage. Mathematics is an 

area of human endeavor and knowledge that is known above all else for its unique range of signs 

and sign-based activity….. So it seems appropriate to adopt a sign-orientated perspective from 

which to examine school mathematics”. Ernest (2006, p. 1) 

Brief Overview of the Conceptual Framework 

The theoretical perspective that I adopted for the study was Ernest (2006) Semiotics Sys-

tems Theory. Ernest (2006) theory is inspired by Vygotsky’s (1978) Sociocultural Learning The-

ory and provided a theoretical understanding and conceptualization of mathematics that is driven 

by a primary focus on mathematical sign and sign use. Ernest (2006) theory of semiotic systems 

as a theoretical lens, zooms in into Vygotsky’s (1978) second theme of semiotics mediation and 

offers insights into students’ sign reception and sign production. Wertsch (1991) one of the first 

major scholars to interpret Vygotsky’s work, identified three major themes of Vygotsky’s theo-

retical approach; (a) individual development including higher mental functioning, has its origin 

in social processes, (b) human action, on both the social and individual planes, is mediated by 

semiotic means which are tools and signs, and (c) the need for reliance on genetic or develop-

mental method in order to examine the origins and the history of mental phenomena.  

In a mathematics classroom, students learning any algebra function e.g., absolute-value 

function are inducted into a discursive practice that involves the use of signs and an understand-

ing of the rules of an algebra semiotic system. The teacher or the knowledgeable other presents 

tasks (whether from textbook or other mathematics resources) in the form of signs as well as the 

rules for working or transforming the signs to accomplish a given task. Ernest (2008) observes 
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that “the learning of mathematics in schools presupposes the induction of the students into a par-

ticular discursive practice, which involves the use of signs and sign rules in school mathematics” 

(p. 69). Informed by this understanding, Ernest (2008) theory was appropriate in the study in: (a) 

providing an in-depth understanding of how mathematical signs and their transformational rules 

are applied in an algebra classrooms; (b) supporting my understanding of how the shared con-

struction of the three algebraic functions was internalized, appropriated, and transformed in a 

formal learning environment; and (c) providing a theoretical insight into how algebra II students’ 

reception and production of mathematical signs played a role in their pseudo-conceptual and 

conceptual understanding of piecewise functions, absolute value function, and quadratic func-

tions.  

Theory of Semiotic Systems for Mathematics 

Several semiotic theories have emerged in the last decade (Hoffmann, 2006; Cobb, 2007) 

centered on the usefulness of semiotics as a theoretical perspective and a practical position in the 

teaching and learning of mathematics. Semiotic theories have gained and continue to gain a lot of 

attention because of their contribution to new perspectives on knowing and knowledge, repre-

senting and representation (SÁEnz-Ludlow & Presmeg, 2006). Ernest (2006) semiotic perspec-

tive is one of the aforementioned theories with a principal focus on both the appropriation of 

signs and the understanding of the underlying meaning structures that embody the relationship 

between signs. Following is a description of the semiotic perspective which is based on the con-

cept of semiotic systems (Ernest, 2008) and takes into account three necessary components; (a) 

set of signs, (b) set of rules of sign production, and (c) set of relationships between the signs and 

their meanings embodied in an underlying meaning structure.  
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Figure 4. Semiotic Systems Theory Model (Ernest, 2008) based on the concept of three 

necessary components of a mathematical sign: (a) set of signs; set of transformation 

rules; and set of underlying meaning structures.    

 

As illustrated previously, students learning any algebra function e.g., absolute value func-

tion are inducted into a discursive practice that involves the use of signs and an understanding of 

the rules of the absolute-value semiotic system. The teacher or the knowledgeable other presents 

tasks (whether from textbook or other mathematics resources) in the form of signs as well as the 

rules for working or transforming the signs to accomplish a given task. In most cases semiotic 

rules are exhibited implicitly through worked examples.  

 

Set of Signs 

The first component of a semiotic system involves a set of signs. Set of signs includes 

both elementary (𝑒. 𝑔.  +, −,×,÷, =, ≤, 𝑜𝑟 ≥ ) and compound signs for example absolute value 

function 𝑦 = 𝑎|𝑥 − 𝐻| + 𝐾 or quadratic function 𝑓(𝑥) = 𝑎(𝑥 − 𝐻)2 + 𝐾. These sets of sign 

were either : a) spoken or uttered via various media; written, drawn, represented by any material 

Sign

• Sign as Object

• Sign as Process

Meaning

• Mathematical content

• Informal Theories

• Previous semiotic systems

Rules

• Syntactic

• Semantic

• Pragmatic
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means, and encoded electronically; and b) multimodal involving a selection of sounds and spo-

ken words; repetitive bodily movements; and use of artifacts like algebra tiles, manipulatives like 

pebbles and counters. In school algebra, mathematical signs (verbal description, symbolic or al-

gebraic, graphical, and numerical data) are typically represented as textual inscriptions on the 

whiteboard, printed texts or worksheets or in students’ written work (Ernest, 2006). Informed by 

Ernest semiotic theory I classified mathematical signs in the students’ responses as: (a) sign as 

object; and (b) sign as process. For example the absolute value function 𝑦 = −2|𝑥 − 4| + 3 

viewed as an object represents a V shaped mathematical object with vertex at (4, 3), y-intercept 

 (0, −5) and opens down. Similarly the same absolute value function sign can be viewed as a 

process when considering its parts and the transformations from the parent function (i.e. horizon-

tal shift 4units right, vertical shift 3 units up, vertical stretch factor 2, and a reflection along the 

x-axis. Ernest (2008) also observes that in school algebra, the use of written language (verbal de-

scription) may be used to supplement the formal signs used at all level. 

Set of Rules 

The second component of semiotic systems is a set of rules of sign use and production. 

The set of rules for sign use, combination and production can be analyzed into 3 different types; 

syntactic, semantic, and pragmatic. For the study I focused on the syntactical and semantic rules. 

Syntactic rules are based on the signs for what they are i.e. rules for writing a well-formed for-

mula. Ernest (2006) observes that these set of rules concerns both the understanding of the defi-

nition and determinants of a well-formed i.e. grammatically correct, sign as well as the sequenc-

ing of signs in conversations i.e. what sign utterances may legitimately follow on from prior 

signs in a given social contexts. For example writing a quadratic function as  
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 𝑦 = 𝑎|𝑥 − 𝐻|2 + 𝐾, does not constitute a well-formed formula because a quadratic function in-

volves the square of the parenthesis and not the absolute value symbol. Semantic rules refers to 

the dimensions of sign interpretation and meanings (Ernest, 2006). For example in determining 

the x-intercept in the following function 𝑦 = −2|𝑥 − 4| + 3, a student substitutes zero for y in 

the function and write the expression as  0 = −2(𝑥 − 4) + 3 , this could be interpreted as ques-

tionable understanding of the significance of the absolute values function sign | |.  Arzarello 

(2006) extends this description beyond rules or algorithms to include any mode of sign produc-

tion “a set of modes for producing signs and transforming them: such modes may possibly be 

rules or algorithms but may also be more flexible action or production modes used by subjects” 

(p. 279).  

Observing the rules of a semiotic systems also involves following steps and procedures 

that legitimate certain text transformation as in the following example. In expanding the quad-

ratic expression  (𝑥 − 4)2 students might be tempted to express it as 𝑥2 − 16. The rule that legit-

imizes this transformation requires students to recognize that the binomial square  expression 

(𝑥 − 4)2  represent the product of the binomial (𝑥 − 4) multiplied by itself, hence the correct ex-

pansion should be written as a trinomial 𝑥2 − 8𝑥 + 16. In another example, simplifying the ra-

tional expressions   
𝑥+5

2(𝑥+5)
 , students might be tempted to simplify the expressions as  

𝑥+5

2(𝑥+5)
 =

0

2
  

or
𝑥+5

2(𝑥+5)
=

0

2
. The rule that legitimizes this text transformation requires students to recognize that 

the numerator equals 1(x+5), so when (x + 5) is cancelled in the numerator and denominator, the 

resulting number in the numerator is 1 and not 0. Hence the simplified answer should be  
1

2
 . Ern-

est (2008) observes that the set of rules in a semiotic system whether implicit or explicit are the 

key operative mechanism and principles through which students; (a) form new signs, and (b) 
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construct and elaborate on mathematical text. Pragmatic rules for example classroom stipulations 

on how to respond to or present to a mathematical tasks (e.g. underline final answers) are rhetori-

cal and purely determined by social conventions. 

Set of Underlying Meaning Structure 

The third component of a semiotic system involves the underlying meaning structure of 

the relationship between the signs which can range from an unsubstantiated idea to a conjecture 

that a student might observe that is akin to an informal mathematical theory (Ernest, 2008). I 

used three different criteria to analyze the meaning structures of the semiotics systems which in-

cluded identification of: a) a set of mathematical content; b) set of informal theories that students 

developed; and c) set of previously constructed semiotic systems that students referenced or 

made connections (Ernest, 2006). Set of mathematical contents includes loosely associated: 

“sign, concepts, objects, properties, functions, relationships, rules, procedures, methods, heuris-

tics, classifications, problems, examples, ideas, images, metaphors, models, structures, represen-

tations, propositions, theorems, arguments, proofs, theories, etc.” (Ernest, 2006, pg. 41). Informal 

mathematical theory refers to informal statements students used to evaluate a formal mathemati-

cal theory and served as the meaning structure of the several semiotic systems that students inter-

acted with. For example, in the following absolute value function (semiotic system) 

 𝑦 = −2|𝑥 − 4| + 3, a statement like “when 𝑎 = −2 𝑎𝑛𝑑 𝐾 = 3  have different signs it indicates 

that there exist two x-intercepts” is an indication of informal mathematical theory. In another ex-

ample involving quadratics functions, a teacher might require students to write a quadratic model 

in vertex form  𝑦 = 𝑎(𝑥 − 𝐻)2 + 𝐾 and observe how the values of parameter ‘a’ in the model 

controls the concavity of the parabola as well as the relationship between the signs of both con-
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stant ‘a’ and ‘k’ and the x-intercept of the graph of the quadratic function. In this example an in-

formal ‘mathematical theory’ would be a statement that “when the value of ‘a’ and ‘k’ have the 

same sign then the graph of a quadratic function has no x-intercepts”. Finally previously con-

structed semiotic system served as a meaning structure for a new semiotic system. In the quad-

ratic model example shown above, the meaning structure of the quadratic semiotic system can be 

described as an informal theory which intersects with the performance norms i.e. expected un-

derstanding of the relationship between the values of variables ‘a’ and ‘k’ and the x-intercept of 

the graph of a quadratics function. This example also illustrates that the act of meaning-making 

by students always draws upon their active mobilization of existing elements of meaning and un-

derstanding (Ernest, 2008). Arzarello (2006) describes this semiotic component as “a set of rela-

tionship among these signs and their meanings embodied in an underlying meaning structure” (p. 

279). Sfard (1994) refers to meaning structure as a reservoir of meanings that can be drawn upon 

in formulating, developing and operating a semiotic system such as the metaphor. The underly-

ing meaning structure of a semiotic system involves “repository of meanings and intuitions con-

cerning the semiotic system that support its creation, development, and utilization” (Arcavi, 2005 

pg. 12). 

 

Significance of Semiotic Systems Theory 

The significance of understanding and utilizing semiotic systems theory in this study, is 

the theoretical insight into the process of internalization of mathematical concepts that it pro-

vides. More important in the process of internalization, is the primary focus on mathematical 

sign and sign use. Ernest (2006) argues that,  
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….internalization necessitates the learner to be continually engaging in conversa-

tion, making public utterances and performances, deriving feedback from others, incorpo-

rating confirmations and corrections in his or her performance and functioning, which 

helps to shape the child’s emerging powers…the learner also learns to read, understand 

and comprehend the social context. (Ernest, 2006, p. 91). 

Ernest (2006) argument above is consistent with; Goldin (2003) notion of mathematical 

power, Sfard (2000) notion of conceptual understanding, and Vygotsky’s (1978) description of 

the concept of internalization as the process by which shared construction of knowledge is appro-

priated, transmitted or transformed. Key to these descriptions is the appropriation of socially 

elaborated symbol systems (i.e., semiotic mediations process). Though Vygotsky (1978) offers a 

general description of concept of internalization, Ernest’s (2006) semiotic theory focuses our at-

tention to a more detailed description of the internalization process of mathematics concepts. 

Internalization of mathematical concepts involves a gradual mastery of semiotic systems, 

which is described as the successful appropriation and deployment of; (a) mathematical signs, (b) 

mathematical sign rules, and (c) the underlying meaning structure of a semiotic system (Ernest, 

2006). The focus of this study was on the algebraic semiotic systems and the potential benefits 

associated with the mastery of; piecewise, absolute value, and quadratic functions algebraic sys-

tems. Benefits associated with the mastery of these systems include the development of the fol-

lowing abilities: (a) identification of mathematical signs; (b) acceptance of tasks associated with 

these semiotic systems; and (c) selection of the central functions and structures of an algebra sys-

tem that students maybe studying. A detailed explanation of these functions will follow.  

In an educational context when semiotic systems are presented whether during instruction 

or in the resources like textbooks, only one component of the semiotic system is made explicit 
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(Ernest, 2006) i.e., the set of signs. The rules of sign production and the underlying meaning 

structures are in most cases implicit. Mastery of semiotic systems empowers students to critically 

read mathematical texts whether published, written by students themselves, their peers or by the 

teacher. Given any mathematical task that involves the use of algebraic conceptual understand-

ing, the identification function of algebra semiotic systems enables students to read and interpret 

the context of the mathematical task assigned i.e., consciously or unconsciously students are 

aware when a task is signaled. Bennett et al (2012) observed that half of the time spent by stu-

dents on tasks was spent on deciphering and understanding the nature of the tasks, rather than 

performing them. Therefore according to Ernest (2006), continuous and consistent engagement 

with semiotic systems leads to mastery of these systems which then enables students to uncon-

sciously learn to recognize, understand, and engage with a task within familiar or unfamiliar con-

text.  

The second benefit of mastering the algebraic semiotic systems that I focused on in the 

study, involved acceptance and internalization of the goals of a given task (Ernest, 2006). Stu-

dents who have mastered; (a) the implicit rules of sign usage in mathematical text whether writ-

ten or spoken, and (b) the underlying meaning structures of the signs, are empowered to not only 

apply them in the production of texts but also in the reading and critiquing of the these text (Ern-

est, 1997). Hence, given a mathematical concepts like the; quadratic functions, absolute value 

function, or the piece-wise function, the ability to accept and internalize the goals of a given task 

allows students some form of communication whether spoken or written about these concepts. 

This acceptance function does at times occur without the students being aware of their tacit com-

pliance of the task at hand. The acceptance function highlighted in this semiotic theory is consist-
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ence with Berger (2004) observation that the use of pseudo-concepts provides students with ini-

tial access to new and unknown mathematical notions even when they might not fully compre-

hend the mathematical concepts they are studying.  

Selection function is the third benefit attributed to the mastery of semiotic systems. In 

this function students develop the ability to select from their own personal repertoire of 

knowledge, skills and procedures to perform appropriate functions in response to a given task 

(Ernest, 2006). These functions involve; texts transformation (showing their written algebraic 

steps), and production of oral responses (verbal descriptions of their understanding), and other 

means (graphing or tabular representations). In instruction where students are afforded the op-

portunity to utilize a variety of modes of representations, they develop the ability to not only read 

the mathematical tasks involving different functions (quadratic, linear and constant function) but 

also understand the rules governing the correct production of these functions with the given con-

ditions/rules and apply them appropriately. Use of multiple semiotic representations; verbal de-

scriptions, numeric, algebraic and graphical representations, then facilitates the successful appro-

priation and organization of semiotic systems, by providing students with a selection of their 

own personal stock of knowledge, and procedures to respond to a given task. The selection func-

tion highlighted in this section is consistent with Goldin (2003) notion of mathematical power 

and Berger (2005) notion of conceptual understanding where responding to a given task involves 

the ability to; recognize and visualize structured relationships, activate control mechanisms for 

examining their responses to a given task and employ of a variety of problem solving techniques. 
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Concept of Mathematical Sign Appropriation and Use 

Ernest’s concepts of sign appropriation and use (Ernest, 2006b) is derived from his theory 

of Semiotic Systems (Ernest, 2006) and considers the development of mind, personal identity, 

language and knowledge. This concept as shown in figure 5, can be represented in a cycle of ap-

propriation, transformation, publication, and conventionalization of mathematical signs (Ernest, 

2006b). The model represents; (a) a micro view of learning and of knowledge production, and 

(b) illustrates how mathematical signs become appropriated by students through experiencing 

their public use.  

This model was appropriate for this study because it provided a description of an overall 

process in which both; (a) students’ individual and private meanings, and (b) collective and pub-

lic expressions of their conceptual understanding are mutually shaped through conversations and 

interactions in a social settings like the classroom. Mathematical knowledge and the meaning of 

the full range of mathematical signs, texts and other forms of representations are distributed over 

all four quadrants of the model. 

Mathematics and the teaching of mathematics are essentially symbolic practices in which 

signs are constantly being invented, used, or recreated to facilitate cognitive operations or pur-

poses (Ernest, 2006; Hoffman, 2006). The term Mathematization for example refers to the pro-

cess of representing problems or facts by means of symbols, indices and relational representation 

as provided by the history of mathematics (Hoffman, 2006).  
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Figure 5. Schematic Model of Sign Appropriations and Use. Model represents; (a) a mi-

cro view of learning and of knowledge production, and (b) illustrates how mathematical 

signs become appropriated by students through experiencing their public use. 

 

 

Other terms used like; calculation refers to the process of transforming representation ac-

cording to rules of a certain system of representations, and proving refers to the process of repre-

senting a theorem as implied by other theorems within a consistent system of representations 

(Hoffman, 2006). It follows that signs and representations play an essential role in mathematics 

by providing access to mathematical objects (Berger, 2005). Hoffman (2006) argues that the es-

sence of mathematics consists of working with representations. Starting at the top right and pro-

ceeding in a clockwise direction, a discussion of the theoretical micro view model of learning 

and knowledge production will follow.   
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Within the collective mathematics community (Hoffman, 2006; Ernest, 2008), conven-

tionalized and socially negotiated mathematical signs are used to access mathematical objects as 

is evident in the mathematics textbooks and various curriculum resources available and used in 

schools. From a constructivist ontological perspective, mathematical objects are impossible to 

grasp and experience (Ernest, 1991) hence the essential need for signs and representations in me-

diating mathematical cognitions. Teachers perform mathematical activities like solving algebra 

problems by means of these visible signs which are external manifestation of mathematical con-

cepts. These signs include; conventional graphical, diagrammatical, and formal notational sys-

tems of mathematics (Goldin, 2003). An example of a mathematics community is the NCTM 

which through its various publications recommends that high school students’ algebra experience 

should enable them to create and use tabular, symbolic, graphical, and verbal representations to 

analyze and understand patterns, relations and functions (NCTM, 2000).  

Brousseau (1997) observes that mathematicians do not communicate their results in the 

form in which they create them, instead they re-organize their results and give them a general 

form that is “de-contextualized, de-personalized, and de-temporalized” (p. 227). Examples of 

generalized form of mathematics are; absolute value function model 𝑦 = 𝑎|𝑥 − 𝐻| + 𝐾,  quad-

ratic function model 𝑦 = (𝑥 − 𝐻)2 + 𝐾, and the quadratic formulae 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
  . The 

teachers’ or the knowledgeable others’ role is then to undertake the opposite action of facilitating 

students’ ability to contextualize and personalize the knowledge created by mathematicians in 

order to give meaning to the knowledge to be taught (Hoffman, 2006). The teachers’ role during 

this process compares to Hersh (1988) comparison of the teaching of mathematics to a restaurant 

or a theater that has a front end and a back end. With the activity displayed at the front for public 
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viewing being tidied up according to strict norms of acceptability (Ernest 2008) while the back 

where preparatory work takes place often being chaotic and messy.   

The collective and socially conventionalized mathematical sign use as observed in text-

books and other mathematics resources, initially leads to students’ own unreflective response to 

and imitative use of signs based on the perceived regularity (rule-based) and connectivity of use 

within classroom practices. This is the bottom right portion of the model. Several researchers 

(Berger, 2005; Vygotsky, 1978; Sfard, 2000; and Vinner, 1997) have used the term pseudo-con-

ceptual understanding to describe this stage of the model. Pseudo-concepts occur whenever a stu-

dent uses particular mathematical objects in a way that coincides with the use of a genuine con-

cept even though the student has not fully constructed the concepts for themselves. Pseudo-con-

cepts resemble true concepts in their use, but the thinking behind these pseudo-concepts is still 

non- logical or based on experiential association (Berger, 2005).  At this stage mathematical 

signs rather than the meanings embedded in the signs are the primary focus of attention. Nabb 

(2010) observes students use of idiosyncratic devices (mnemonics) to assist them in memorizing 

formulas for later retrieval while admitting unfamiliarity of the formula conceptual foundation. 

Garofalo and Trinter (2012) describes how significant number of algebra students capable of re-

citing the quadratic formulae 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 , demonstrate  difficulties in explaining the mean-

ing of the various parts of the formulae as well as describing what each variable in the formula 

represents. 

 This second stage of the cycle compares to Vygotsky’s description of learning that leads 

to acquisition of spontaneous concepts which are the results of generalization of everyday per-

sonal experiences in the absence of systematic instruction (Kozulin, 2003). If instruction is not 

appropriately and effectively mediated, this stage maybe characterized by: (a) mastery of rote 
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skills or understanding of mathematical concepts (Kozulin, 2003); (b) lack of higher-order math-

ematical understanding that allows students to apply their skills in different situations; (c) reli-

ance on social cues (Brousseau, 1997) to provide the desired responses to a given mathematical 

task; and (d) potential of teachers accepting low level mathematical signs as evidence of general 

and higher level understanding (Brousseau, 1997). Action mediated by use of multiple represen-

tations like; verbal descriptions (natural language), numerical (correspondence in a table of val-

ues), algebraic or symbolic representations (equations expressing the relationship between two or 

more quantities), and graphical representations (Cartesian graphs) as described in Goldin (2003) 

are significant in linking students’ social experiences in this case mathematics classroom interac-

tions and their individual processing of mathematical information. Multiple representations act as 

semiotic mediators which facilitate students’ mathematical activities and define and shape their 

inner processes.       

After a series of interactions with mathematical signs which includes the imitative uses of 

mathematics signs, and through the process of mediation which includes; the appropriate use of 

mathematical signs, and social e.g., classroom mathematics activities interventions, students 

begin to develop an understanding of the implicit rules and associations in the various represen-

tations that they are studying. This is the third stage of the model (bottom left) where students 

develop personal meanings for mathematical signs and their uses, and transform them into some-

thing that is individually and privately owned (Ernest 2006b).  At this stage mathematical ideas 

are transformed into mathematical conceptual understanding. This happens when students make 

consistent and logical linking of; (a) the various attributes and properties of a mathematical con-

cept (e.g., the meaning of the various components of an absolute value function like 
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𝑦 = −2|𝑥 + 5| − 6 ), and (b) a mathematical concepts to other concepts or representations (e.g., 

understanding the domain, range, and end-behaviors of the absolute value function mentioned).  

At this stage conceptual understanding is characterized as the implicit or explicit knowledge of; 

(a) the principles that govern a given mathematics domain, and (b) the interaction between the 

various units of a given domain (Godino, 1996). Students are expected to construct concepts 

whose use and meaning are compatible with their use in the mathematics community (Berger, 

2005).  

In semiotic terms, acquiring conceptual understanding in mathematics can be seen as ac-

quiring the ability to express oneself appropriately through the means of representations provided 

by the tradition of mathematics (Hoffmann, 2006). The term appropriate means not only master-

ing the conventions of common sign usage in mathematics, but also understanding the relation 

between mathematical knowledge and mathematical representations. In Ernest (2006) semiotic 

theory he describes this stage as a process of mastering the semiotic systems. Goldin (2003) de-

scribes this stage as enabling students to develop mathematical power. Students who have devel-

oped mathematical power: (a) are capable of understanding and manipulating standard represen-

tations; and (b) demonstrate ability to recognize and visualize structural relationships; (c) think 

spatially; and (d) formulate problem solving strategies. (p. 277).       

At the students’ public utilization of sign stage which is the top left portion of the model, 

students use mathematical signs acquired to express their personal meaning or understanding of 

mathematical concepts through; verbal expressions, spontaneous utterances and extended text 

(i.e., tests, examinations, homework, or projects). These publications can occur in autonomous 

conversation acts and are subject to the process of conventionalization. In the conventionaliza-

tion process, students understanding expressed in various modes of communication (verbal or 
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symbolic) can be subjected to attention and response (assessments and evaluations) which can be 

critiqued, negotiated, reformulated, and/or accepted (Ernest, 2006). However, for students who 

have developed mathematical power (Goldin, 2003), they have the potential to: (a) be continu-

ally engaged in mathematical conversations; (b) make public utterances of their mathematical 

understanding; (c) derive feedback from others; and (d) incorporate confirmations and correc-

tions in their performance and functioning (Ernest, 2006, p. 91). 

In the process of conventionalization, social norms for mathematics speaking and listen-

ing; judgment of adequacy of mathematical explanations and solutions; and habits of reasoning 

and sense making are created (John-Steiner & Mahn, 1996). The process of conventionalization 

is at the center of the Zone of Proximal Development ZPD (Vygotsky, 1978) which is described 

as “the distance between the actual developmental level as determined through independent 

problem solving  and the level of potential development as determined through problem solving 

under adult guidance or in collaboration with more capable peer” (Vygotsky, 1978. p 86). The 

process of appropriation and publication in the model are boundary operations between the pub-

lic (also described as inter-psychological level of understanding) and private (also described as 

intra-psychological level of understanding) domain in which students participates in the commu-

nicative activity of sign reception and production (Ernest, 2006). In the private domain students 

transforms collectively appropriated mathematical signs into individual ones through the produc-

tion of meaning, and is thus a pivotal location for learning. 
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4  METHODOLOGY 

Brief Overview of the Research Design 

This study employed an exploratory case study method Yin (2014). Yin (2014) describes 

a case study as a research method “that investigates a contemporary phenomenon the “case” in 

its real-world context especially when the phenomenon and the context may not be clearly evi-

dent” (p.16). The purpose of this study was to investigate the influence of the exposure to and 

use of multiple representations in algebra II students’ conceptual understanding of; absolute 

value functions, piecewise functions, and quadratics functions.  The choice of this method was 

guided by the following research question: How does the use of multiple representations influ-

ence algebra II students’ understanding and transfer of their algebraic concepts? Specifically the 

following sub-questions were examined: 

1. How does exposure to and use of multiple representations influence students’ 

identification of pseudo-conceptual understanding of algebraic concepts? 

2. How does exposure to and use of multiple representations influence students’ 

transition from pseudo-conceptual to conceptual understanding? 

3. How does exposure to and use of multiple representations influence students’ 

transfer of their conceptual understanding to other related concepts? 

Exploratory case study is located within the wider landscape of qualitative research meth-

odology. Following Crotty (1998) four elements of a social research process, this chapter begins 

with a discussion of the philosophical underpinnings of a qualitative methodology within which 

case study is located. The chapter then follows with a detailed description of the exploratory case 

study including the rationale for employing this method. The chapter then discusses: research 
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settings and participants, data collection procedures and instrumentation, data analysis methods, 

limitations of the study, and the trustworthiness of the research findings. 

Qualitative Methodology Philosophical Underpinnings 

To ensure a strong research design, researchers (Crotty, 1998; Guba & Lincoln, 1994; 

and Paul & Marfo, 2001) have advocated for a research paradigm that is congruent with the re-

searchers’ beliefs about the nature of reality. Crotty (1998) four elements of social research pro-

cess (see figure 6) outlined the philosophical underpinnings that guided this research design. 

Crotty (1998), suggests that research process should include; (a) epistemology, (b) theoretical 

perspective, (c) methodology, and (d) methods. 

 

 

Figure 6. Four Elements of Social Research. A philosophical research design model used 

to guide my research design.   
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 Epistemology. 

This exploratory case study methodology was based on a constructivism epistemological 

paradigm (Guba & Lincoln, 1994). In constructivism paradigm, realities are apprehended in the 

form of multiple, intangible mental constructions that are socially and experientially based and 

dependent for their form and content on the individual persons or groups holding the construc-

tion (Guba & Lincoln, 1994). In this paradigm my role as a researcher and the object of my in-

vestigation are assumed to be interactively linked so that the findings in the study are literary cre-

ated as investigations proceeds (Denzin & Lincoln, 2005). In light of this understanding, I ap-

proached the study with a belief that my personal philosophy of the nature of knowledge was es-

sential in understanding the world around us (Crotty, 1998). This understanding extended to the 

kind of knowledge that I believe was attained in my research as well as the characteristics of the 

knowledge that the study contributed. 

 Theoretical Perspective. 

The theoretical perspective for conducting the study was interpretivism. This perspective 

was guided by constructivism epistemology mentioned above and represented statements of the 

assumptions that I brought to the study. This assumptions were also reflected in the case study 

methods.  The study sought to give an insight into; the question of how, and the qualities of expe-

riences gained by the students within the classroom social interaction. In assuming this perspec-

tive I was attempting to understand and explain my participants’ social (classroom) realities. Any 

understanding of causation (Crotty, 1998) came through an interpretive understanding of social 

actions (e.g. classroom interaction) that the participants were engaged in. Social constructions 

vary and are personal (Guba & Lincoln, 1994), implying that the participants construction of so-

cial realities was elicited and refined through my interaction with them in the study. The aim of 
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inquiry in this perspective was to understand and reconstruct the constructions that we (including 

myself) initially held about the use of multiple representations in an algebra II classroom. In the 

study the construct that I sought to understand was how the use of multiple representations as de-

fined in the study influenced students’ conceptual understandings of algebraic concepts. Since 

the study utilized the symbolic aspects of mediation, my objective was to gain and understanding 

of the potential changes in students’ conceptual understanding that were attributed to the intro-

duction and use of multiple representations. Equally important, since this study focused on semi-

otic aspects of mediation in sociocultural activities (e.g. mathematics classroom interaction), us-

ing interpretivism theoretical perspective, supported my aim of formulating a more informed and 

sophisticated (Guba & Lincoln, 1994) understanding of instructional and assessment practices 

that use multiple representations.  

Case Study Methodology. 

The underlying philosophy of an exploratory case study is to understand participants’ 

construction of their own realities (Stake, 1995; and Phillips & Burbules, 2000). My goal there-

fore was to understand how the participants i.e. twenty one algebra II mixed gender class made 

sense of their realities i.e. the instructional and assessment practices that utilized multiple repre-

sentations. Rationales for using case study (Yin, 2014; Cohen, 2000) included; strength in real-

ity, attention to subtlety and complexity, support to alternative interpretations, represents a step 

to action, and forms an archive of descriptive material. Case study methodology was appropriate 

for this study because: (a) represented a bounded system (Merriam, 2009; & Yin, 2009); and (b) 

flexible and adaptable. First, bounded system included the participants i.e., the algebra II stu-

dents who represented unique example of real people in real situations (Cohen, 2000), hence por-

traying the reality of being in a particular situation. Bounded system also referred to the temporal 
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i.e., twelve weeks period, geographical institution located in the south east of the country that 

serve middle and high school student population and confined to one particular teacher and his 

algebra II students. Second, case study design methodology was also flexible and adaptable in 

terms of data collecting methods and participants’ response to themes that emerged during the 

study.  

Use of multiple representations in mathematics learning is a complex and multi-layered 

research discipline (van der Meij & de Jong, 2006) and requires a full understanding and the 

grappling of the many interweaved and overlapping issues and themes that emerge in such a 

study. Since case study is concerned with the rich and clear description of relevant events, the 

use of this methodology was well –suited for this study in order to gain a deeper insight into the 

complexities associated with the students’ use of multiple representations.  Additionally since the 

focus of case study was to understand participants’ perceptions of their realities and experiences, 

by carefully attending to the classroom social interactions (subtle and complex features), this 

methodology did potentially shade some light into the various sometimes conflicting perceptions 

about the significance of multiple representations utility. By blending a description of events 

with their analysis, I was able to potentially portray what is like to be in a mathematics classroom 

where instruction utilizes multiple representations.  

Equally important Cohen (2000) describes case study as a step to action where the re-

searcher’s insights may be directly interpreted and put to use. This use includes, educational pol-

icy making as well as providing institutional feedback on effective instructional practices. Ob-

serving and following the surface features of an instructional practice as well as superficial treat-

ment of good ideas that emerge from these observations does not produce meaningful and effec-

tive results (Lewis, Perry, & Murata, 2006). Having an insightful understanding of instructional 
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practices should provide consumers of this knowledge (curriculum designers, teacher educators, 

and teachers), important and meaningful information that they can potentially adopt in their prac-

tices. Purpose of this study is to develop insightful understanding of effective instructional prac-

tices that utilize multiple representations. This is in the hope that this study will provide an ar-

chive of descriptive material (Cohen, 2000) that could serve as data source for other researchers 

and users interested in this area of research. The rationale for choosing a single case study is 

therefore based on the understanding that the study will be attempting to understand and collect 

insightful data of a typical everyday phenomenon (regular mathematics class where multiple rep-

resentations are utilized). The lessons learned and the insightful information gathered from this 

case will inform the readers about the experiences in a typical average high school algebra II 

mathematics classroom. 

Methods. 

The following data collection techniques were utilized; classroom observations, task-

based interviews, and collection of artifacts. The data collection procedures and instrumentations 

are discussed in details in the research design section of this chapter. 

 

Research Settings and Participants 

The research site was an algebra II class in a high school located in the south east of the 

country. The high school is a college preparation institution that emphasizes academic excellence 

and integrity in the study of mathematics. The school follows a rotating schedule with classes 

meeting 4 days a week for 55 minutes. Effective communication of mathematics using correct 

mathematical notation in an organized and logical manner is strongly emphasized. Use of multi-

ple representations in the instructional and assessment practices is encouraged in the school.  
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The mathematics department strongly advocates instructional practices that emphasizes 

conceptual understanding and students’ ability to justify their answers. The Mathematics courses 

taught in both the regular and advanced classes include; geometry, algebra II, Pre-calculus, Cal-

culus, Advanced Placement AB & BC Calculus, and Advanced Placement Statistics. The partici-

pants in the study were a 10th grade advanced algebra II mixed gender class of 21 students. The 

students had a prior algebra experience in 8th grade when they took advanced algebra I class 

which was a prerequisite for taking the algebra II class. The mathematics teacher in the class that 

I observed had 36 years of classroom teaching experience and is a strong advocate of instruc-

tional practices that emphasis the use of variety of approaches in solving mathematical problems. 

His responsibilities included; lesson planning, instructing, and assessing all the students in the 

class. He is also the Advanced Placement Calculus BC instructor at the school and annually 

holds calculus Advanced Placement AB and BC summer workshops for teachers from all over 

the country. 

The teacher Mr. Steve (pseudonym) started each lesson with clear instructional objectives 

and clearly articulated the mathematical ideas or procedures students were expected to learn. The 

teacher’s instructional strategies and the lesson design provided the students with the opportunity 

for discourse around important algebra II concepts. In addition the instructional strategies pro-

moted students’: justification of mathematical ideas or procedures; reflection on the correctness 

or sensibility of ideas and procedures; and the embrace of wrong answers as worthwhile learning 

opportunities. Mathematical tasks assigned or used during instruction promoted students’: use of 

variety of methods (algebraic, verbal, numerical, visual, and graphical) to represent and com-

municate mathematical ideas and procedures; use of multiple solution strategies and representa-

tions to support their ideas or procedures used; thinking beyond immediate solution and making 
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connections to other related mathematical concepts; and focus on understanding important math-

ematical concepts and processes. 

 

 

Figure 7. A model of the Research Site Advanced Algebra II classroom. A1 through E3 

represents the assigned seats. RD represents the researcher’s desk.  
 

 

Participants. 

The participants were all the twenty one students that agreed to participate in the study.  

Their written and verbal responses to the questions asked during instruction, group work activity 

and tests contributed to the massive data collected in the study. The study was built around the 

four students Ron, Tyron, Stacey, and Yolanda (pseudonyms) that volunteered to do the five 

task-based individual interviews at the end of each lesson unit as part of the review for the unit 
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test. The four students’ responses and experiences during the task-based interviews were then an-

alyzed and cross- referenced with the other 17 students’ classroom verbal and written responses 

during classroom observation and in their assessments materials.     

 

Data Collection Procedures and Instrumentations 

The first step in gaining access into a school is to become aware of the hierarchy and the 

rules of the institution (Bogdan & Biklen, 1998). I went through the process of negotiating entrée 

into the research site. This involved seeking permission from: (a) the Institute Review Board 

(IRB) of the university, a process that involved submitting to the board a proposal that detailed 

the procedures involved in the project; and (b) the principal of the school to conduct the research 

study. The school calendar at the Mountain Side High School (pseudonym) is divided into three 

terms. Term I from August to November, term II from December to February, and term III from 

March to May. At the beginning of the school year, and prior to any research activity I visited the 

advanced algebra II class that was the research site. The mathematics classroom teacher Mr. 

Steve (pseudonym) gladly welcomed and introduced me to the class. I informed the students the 

purpose of the research study verbally and passed out the informed assent form and the parental 

permission form (see appendix A). The following information was verbally communicated to the 

students and also included in the students assent and parental permission form: (a) a description 

of the central purpose of the study and data collection procedures; participants rights to voluntar-

ily withdraw from the study at any time; confidentiality protection of the participants; statement 

about any risk associated with participation in the study.  To participate in the study each student 

was required to assent to participate and the parental permission form had to be signed. Included 

also in these two documents was a copy of the research protocol from the Institute Review Board 
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of the university. Use of pseudonyms ensured that the students’ and the teachers’ confidentiality 

was protected.  All twenty one students signed and turned in the student assent form. All the pa-

rental permission form forms were also signed and turned after two days. 

 

Data Collection Techniques 

Yin (2014) observes that the data collection process within the case studies is complex 

and recommends the use of certain formal procedures to ensure quality control during the pro-

cess.  Following Yin (2014) recommendations on ‘formal procedures to ensure quality control 

during the data collection process’ (p.118), I used the following three principles of data collec-

tion to ensure quality control: (a) multiple source of evidence; (b) created a case study database; 

and (c) maintained a chain of evidence. Multiple sources of evidence ensured triangulation of 

data sources i.e. creation of converging lines of inquiry (Yin, 2014). Creation of case study data-

base assisted in my organizing and documenting the data collected. I did this by creating two 

separate sets of collection of: (a) data or evidentiary base i.e., field notes, interview transcripts, 

observation transcripts and case study protocols; and (b) my own set of reports, memo, reflec-

tion, and articles read (Yin, 2014). Maintenance of a chain of evidence was achieved by main-

taining a clear focus and set of information from initial research question to ultimate case study 

conclusions.   

Since the emphasis in my study was to understand and interpret learning in a complex so-

cial setting e.g. mathematic classroom, multiple data collection techniques was used. With the 

use of multiple techniques of investigating I was ensured of the improvement of the likelihood of 
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accuracy and objectivity (Dewalt, K & Dewalt, B., 2010). The techniques consistent with quali-

tative case study methodology that I used were; (a) classroom observation, (b) task-based inter-

views, and (c) collection of artifacts. 

 

Classroom Observations. 

Observation is a research method in which the researcher takes part in the daily activities, 

interactions, and events of a group of people as one of the means of learning the explicit and tacit 

aspects of their life routine (Dewalt, K. & Dewalt, B., 2010). The rationale for using observation 

as a method in this study was to develop a holistic understanding (Dewalt, K. & Dewalt, B., 

2010) of the students’ interactions with the various multiple representations i.e. verbal, graphical, 

numerical and algebraic semiotic resources as objectively and as accurate as possible. Holistic 

understanding include: (a) a unique and contextualized insight (Dewalt, K. & Dewalt, B., 2010) 

into the classroom events and activities; and (b) capturing the dynamics processes of the class-

room interactions as they unfold over a period of time. My main focus was to examine the 

emerging dynamics that were evoked by the use of multiple representations including capturing 

nuances of students’ thinking processes while engaged in problem solving using these represen-

tations (Chahine. I, 2013).  

My role in the study was that of a non-participant observer. I observed and recorded the 

daily classroom activities for a period of one term i.e., twelve weeks. I took field notes of each 

lessons observed to record  teacher actions, student actions, and any board work put up by the 

teacher or the students. I used an observational protocol as a method for recording the field notes. 

See figure 8 for a sample of day 6 observation log. Included in the observational protocol was: 

(a) header to record essential information i.e. date, time, unit/topic, resources, purpose of the 
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study, representations observed, and research questions; (b) space to record descriptive notes on 

particular activities like smartboard notes, teacher verbal and written discussion on white board, 

and students’ verbal and written discussions on the various white boards around the class and on 

their note books; and (c) space to record reflective notes that included my comments, reactions 

and experience in the field. 

Appendix B is a summary of the advanced algebra II class instructional sequences. The 

instructional sequences covered the following four units or focus topics: matrices and their appli-

cations; piecewise functions and absolute value functions; quadratic functions and their applica-

tions; and introduction to polynomial functions. At the completion of each unit/focus topic, the 

students took a test. There were a total of four tests and one final exam at the end of the term in 

November. The purpose of the tests was to provide some information on; their conceptual under-

standing of the units covered, growth in knowledge, ability to represent their mathematical ideas, 

and reasoning ability. The final exam was intended to provide information on their conceptual 

understanding of all the four focus topics covered throughout the term. In the interest of time and 

the massive amount of data collected, the data in this study only focused on the following units: 

piecewise functions, absolute-value functions, and quadratics functions and their applications.  
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Figure 8. Sample Observation Log Day 6. Includes; (a) header to record essential infor-

mation, (b) space to record descriptive notes on particular activities, and (c) space to rec-

ord reflective notes. 
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The classroom observations were supplemented by audiotaped recording of teacher-stu-

dent and student-student interaction. Students’ conversations during small group work were cap-

tured using audiotape recorders placed at two different locations in the classrooms. One in front 

to capture the teacher’s communication with the class. The second audio recorder was with me 

the researcher located at the back of the class to capture students’ responses and verbal commu-

nications. I later transcribed the audio recordings for further analysis. The field notes that I rec-

orded and the transcriptions were analyzed immediately. I studied and analyzed the data immedi-

ately to ensure that: (a) I learned and understood the nuances of the students’ verbal and written 

responses; and (b) I had a better understanding of the directions that the data was taking. 

Rationale for Observation. 

The rationale for using classroom observation as a data collection techniques was in-

formed by: (a) potential advantage in collecting non-verbal data; (b) discernment of ongoing be-

haviors and taking appropriate notes of salient features in the study; (c) developing a greater rap-

port and better access to the students and their activities in an informal and a natural environment 

(Bailey, 1978). During classroom observations, I was able to explore and confirm some of the 

ideas that emerged in the other data collection techniques i.e., the task-based interviews and in 

the collection of artifacts. Data collected during the classroom observations supported the: im-

provement of the design of the other data collection techniques such as task-based interviews 

protocol; refinement of the interview questions to ensure they were appropriate and relevant; and 

discernment of subtleties within participants’ responses (Mack, et. al, 2005). 
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Task-Based Interviews. 

Four students volunteered to participate in five 20-minutes, individual task-based inter-

views (Goldin, 2003). Task-based interview is a form of clinical interview where the interviewee 

interacts with; the interviewer, and also the task environment that is carefully designed for the 

purposes of the interview (Goldin, 2003, and Maher & Sigley, 2014). Task-based interview tech-

nique was appropriate for this study because of its potential in eliciting estimates of students; ex-

isting knowledge, growth in knowledge, and representations of their mathematical ideas (Maher 

& Sigley, 2014). Informed by Goldin (2003) principles for designing task-based interview I used 

the following principles to design the task-based interview: (a) designed task-based interviews to 

addressed advance research questions; (b) chose the tasks that were accessible to the students as 

part of test reviews; (c) chose tasks that embodied a rich representational structure; (d) developed 

explicitly described interviews and establish criteria for major contingencies; (e) encouraged free 

problem solving; maximized interaction with the external learning environment which included 

graphs on the smartboard and TI calculator available; (f ) decided what was to be recorded and 

recorded it as much as possible; and (g) compromised in term of time and schedules when it was 

appropriate.  

I conducted all the interviews in an assigned classroom on Thursdays during the second 

period of the day from 9:30am to 10:30 am when the school has scheduled activity periods. In 

situations where the participants were not available in the time slot above we did reschedule the 

interview after school between 3:00pm and 4:00pm. To minimize class interruptions and inter-

ferences with other after school activities, the participants felt comfortable interviewing at that 

time because they did not have an assigned class to attend (study hall). The task questions were 
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developed from the test reviews that the students were using to study for the unit tests. The stu-

dents had the option of responding to the writing interview questions either on the white board or 

on paper and pencil. There was a graph projected on the top-right end of the white board in case 

they needed to utilize a graph.  

During the interviews I followed the protocol (see Appendix C.) for a sample protocol, 

but was free to depart from it when necessary to investigate inferences about students’ thinking 

(Clement, 2004; & Goldin, 2003). See appendices (D, E, F, G, and H) for copies of the tasks. 

Task 1 (see appendix D), Task 2 (see appendix E) and Task 3 (see appendix F) involved piece-

wise functions, absolute value functions, and applications of absolute value functions respec-

tively. These three tasks this matched with test on unit focus 2. Task 4 (see appendix G) and 

Task 5 (see appendix H) involved the quadratic functions and their applications respectively. 

These two tasks matched with test on unit focus 3. 

I prompted the students to read each problem aloud and explain their thinking when solv-

ing each task. For the purpose of understanding students’ thinking and reasoning processes, the 

task-based interview approach was open-ended. Overall my goal was to understand the partici-

pants thinking (Steffe & Thompson, 2000) to the extent possible in the short period of time I had 

with them. When necessary, I rephrased questions to students when requested, but kept the re-

phrasing questions in the spirit of using language or ideas that might solicit further mathematical 

activities from the students (Steffe & Thompson, 2000).  

As the participants were engaged in the mathematical activity, I observed their actions 

and their verbal responses to assigned tasks, audio recorded the conversations and took photos of 

the work on the board for accuracy in transcription and for more detailed future analysis. The au-

dio recordings, accompanied transcripts, interview field notes, participants’ work, the teacher’s 
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smart-notes, teacher’s test reviews provided the data for the task-based interview analysis. I then 

coded and analyzed the data for emerging patterns that best described participants’ responses to 

the assigned tasks. 

Collection of Artifacts.  

Documents and artifacts that I collected included; activity sheets, written tests and exams, 

written test and exam reviews, written quizzes, teacher’s lesson plans, handouts, test and quizzes, 

end of semester examination, students note book, and photographic images of students’ work on 

the board. Documents and artifact collection was a follow up to the interview process that was 

conducted. The objective of the artifact collection was to provide potential evidence of themes 

that emerged from the interviews and the classroom observations. The documents provided in-

formation about the students’; existing knowledge, and process of growth in their conceptual un-

derstanding of algebra II. Prior (2004) document analysis questionnaire tool was used to provide 

the structure for the examination of the different documents that I collected. The intention was to 

understand: (a) the context within which the various documents were assigned; (b) how the docu-

ments were created; (c) why the documents were created; (d) the influences and conditions under 

which the documents were created; and (e) how the documents related to the use of multiple rep-

resentations. In addition, I used the documents like the digital Smart-Notes lessons from the 

teacher to identify further analytical categories that occurred. The documents were also utilized 

in finding suggested questions from the data for the participants that potentially pointed out at 

discrepancies between the interview data and the document analysis. (Stage & Manning, 2003). 

 



85 

 

 

 

Data Analysis Procedures 

Data analysis involves examining, categorizing, tabulating, testing and recombining evi-

dence to produce logically based findings (Yin, 2014). Huberman and Miles (1994) observe that 

the process of data collection, data analysis, and report writing are not distinct steps in the pro-

cess but are interrelated and often go on simultaneously in a research project. In analyzing the 

massive amount of data that was generated, I engaged in the process of moving in analytic cir-

cles rather using a fixed linear approach (Creswell, 2013). Informed by this understanding I uti-

lized Creswell (2013) data analysis spiral see figure 9 to organize my analysis process. I went 

through the analysis process by: (a) collecting the data using the three data collection techniques 

mentioned; (b) moving into the data management stage; (c) reading, writing, reflecting, and 

memoing;(d) describing, classifying, interpreting, categorizing and comparing the data; and (d) 

representing and visualizing the data.  
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Figure 9. Data Analysis Spiral Model (Creswell, 2013) used to organize the data analysis 

process in the study.  

  

 

Data that I collected from the class observation, task-based interview, and examination of 

documents was stored in a data base and organized into file folders, index cards, and computer 

files. After organizing the data I continued to analyze the data to get a sense of the whole data 

base (Creswell, 2013). Ager (1980) advocates that researchers should “…read the transcripts en-

tirely several times. Immerse themselves in the details, trying to get a sense of the interview as a 

whole before breaking it into parts” (p.103). I scanned through the entire database and identified 

major organizing ideas. I engaged in repeated review of the audio recordings, and took detailed 

analytic notes for each participants’ (Cobb & Gravemeijer, 2008) responses to task questions. 

This initial reading of the transcribed scripts and repeated review of the audio recording allowed 

for familiarity with the data and the identification of students’ responses that were clustered in 
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sub-categories Chahine (2013). I wrote memos in the margin of the field notes, interview tran-

scripts, observation transcripts, observation protocols, interviews protocol and students written 

response documents to assist in the initial process of exploring the database. These memos were 

short phrases, ideas, and key concepts that occurred to me as I read the documents. To write the 

memos, I asked probing questions about each participant’s data and made theoretical compari-

sons to Ernest theory of semiotics systems (Ernest, 2006) which provided the theoretical frame-

work for the study. 

 

Methodological Framework 

The unit of analysis was students’ responses (verbal and written) to the mathematical 

tasks assigned during; classroom observation, task-based interview, and the artifact collection 

phase of the study. The analysis was guided by: (a) Ernest Theory of Semiotic Systems (Ernest, 

2006); and (b) Schwarz, Dreyfus & Hershkowitz (2009) Recognizing, Building –with and Con-

structing (RBC+C) Model which is located within Abstraction in Context (AiC) methodological 

framework. Ernest Semiotic Systems Theory provided a structure for describing and analyzing 

how students identified: a) the mathematical signs involved in the tasks; b) the rules of transfor-

mation of these mathematical signs; and c) the underlying meaning structure of the mathematical 

signs and the transformation rules. RBC+C model provided a structure for analyzing students’ 

process of constructing abstract mathematical knowledge. In adapting ideas from multiple per-

spectives i.e., Ernest (2006) theory of Semiotic Systems and Schwarz, Dreyfus & Hershkowitz 

(2009) RBC+C model, I was attempting to deepen my fundamental understanding of the process 

of mathematics learning. This view has been advocated for in various studies and by several re-

searchers (Lester, 2005; Kieren, 2000; Stinson, 2004; Lerman, 2006; and Cobb, 2007), where 
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Lester (2005) describes it as acting as bricoleurs. Kieren (2000) observes that the use of multiple 

theories provides “different lenses through which one can attain a more complete and embodied 

view of mathematics education” (p. 228). 

In particular my objective was to observe the semiotic productions in the students’; writ-

ten responses, oral response transcriptions, and the observation and interview protocols where I 

analyzed their semiotic productions. These productions included understanding the influence of 

multiple representations in the understanding and use of; mathematical signs, transformation of 

mathematical signs, and the underlying meaning structures. For example, in response to research 

sub question 1, I selected written and audio transcribed responses to assigned tasks that demon-

strated pseudo-conceptual or pseudo-analytic thought process (Vinner, 1997; Moore and Carlson, 

2012) and analyzed them using Ernest (2006) semiotic system theory to identify evidence of; 

random associations of mathematical signs, lack of validation efforts in the sets of transforma-

tional rules, and absence of inquiry about underlying meaning structure in the sets mathematical 

signs in the task. I finally employed a detailed; description of the task, interpretation of the stu-

dents’ responses and a semiotic analysis of the task based responses. The process of describing, 

interpreting, analyzing, and classifying the data then allowed me to develop initial codes or sub-

categories that I later used to develop the overarching categories.  Guided by my research ques-

tion and theoretical framework i.e., Ernest Semiotic System Theory (2006), I used categorical 

aggregations (Stake, 1995) to identify instances from the data that I used to categorize emerging 

themes. I first identified and selected salient features from the classroom observations and the 

interviews where various semiotic resources (e.g., written text, spoken words, algebraic symbols, 

and drawings) were evoked. 
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Figure 10.Methodological Framework Model. Using RBC+C Model Schwarz, Dreyfus & 

Herschkowitz (2009) and Ernest Semiotic Systems Theory (Ernest, 2006) to analyze the 

data for semiotic activities. Research sub-questions RQ 1, RQ 2, & RQ3 are addressed by 

analyzing students’ responses using Recognizing, Building –with and Construction of 

knowledge (RBC+C) model and using Ernest (2006) semiotic systems theory to analyze 

mathematical signs, transformational rules and meaning structures in the signs.  
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The RBC+C methodological framework looks at the processes of abstraction i.e., emer-

gence of a new construct that can be described and analyzed by means of three observable epis-

temic actions: (a) recognizing, (b) building –with and (c) constructing. Recognizing refers stu-

dents realizing that a specific previous knowledge construct is relevant in the situation at hand. 

This construct could include a sign, a set of sign rules or algorithm, or a set of underlying mean-

ings structure in a mathematical sign. Students tapped into their previous knowledge and at-

tempted to adapt what they know to a task. Building-with represents a combination of recognized 

constructs, in order to achieve a localized goal such as the actualization of a strategy, a justifica-

tion or solution to a problem. Students used their knowledge and strategies to; understand a task, 

and use rules, propositions and formulae to solve a problem. Constructing refers to the assem-

bling and integrating previous construct to produce a new construct. Students use their 

knowledge to construct personal meanings and an understanding of institutional meaning. Ob-

servable actions would involve reorganization, and refinement of their understanding of a con-

cept. Table 2 is a sample of how I analyzed participant Tyron’s responses on task 4.   

Sample of data analysis (see table 2): In task 4 question (i.), Tyron is comparing two outputs 

𝑄(30) & 𝑄(40) of a quadratics function 𝑄(𝑥) = −3𝑥2 + 2𝑥 + 5. He recognizes that the sign 

𝑄(30) represents output (or y-coordinate) when the input is 30. Similarly sign 𝑄(40) represents 

output (or y-coordinate) when the input is 40. With that understanding he reaches out to the 

graph (strategy building-with). Points to the graph at the intersection of graph of 𝑄(𝑥) and a ver-

tical line drawn from x=30 and x=40. Confirms that y – coordinate of 𝑄(30) is above the y-coor-

dinate of 𝑄(40) and concludes that 𝑄(30) > 𝑄(40). He also realizes that the same information 

(constructing new construct) could be abstracted from the end behavior of 𝑄(𝑥)  
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i.e. 𝑎𝑠 𝑥 → ∞, 𝑦 → −∞;  𝑎𝑠 𝑥 → −∞, 𝑦 → −∞ . As the values of x increases to the right the val-

ues of y-decreases. He is able to make the link between the end behavior and the graph without 

necessarily involving any mathematical processing. He then concludes that “ I think it also looks 

like from end behavior as x moves further away from the vertex the less the value of y”. 

Table 2. Sample of Tyron’s Data Analysis Using RBC+C Model. 

Epistemic Action Description MR Sample Task Activity 

Recognizing Students realizing that a specific 

previous knowledge construct is 

relevant in the situation at hand. 

Students tapped into their previ-

ous knowledge and attempted to 

adapt what they know to the task.  

VD 

 

AL 

 

G 

Task 4:  Tyron 
Tyron: Comparing 𝑄(30) & 𝑄(40) 

            I think 𝑄(30) >   𝑄(40).  
I:         Why do you think 

             𝑄(30) >  𝑄(40)? 

 

Building-with A combination of recognized 

constructs, in order to achieve a 

localized goal such as the actual-

ization of a strategy, a justifica-

tion or solution to a problem. Stu-

dents use their knowledge and 

strategies to; understand a task, 

and use rules, propositions and 

formulae to solve a problem.    

VD 

 

AL 

 

G 

 

N 

              Tyron: I looked at the graph 

(points to the graph) at 𝑥 = 30. 

𝑄(30) is approximately lo-

cated here (points on the graph 

the intersection of graph of 

Q(x) and the vertical line 

roughly drawn from x=30 and 

x = 40).  

 

Constructing  Assembling and integrating pre-

vious construct to produce a new 

construct. Students use their 

knowledge to construct personal 

meanings and an understanding 

of institutional meaning. Observ-

able actions would involve reor-

ganization, and refinement of 

their understanding of a concept.  

VD 

 

AL 

 

G 

               Tyron: I think it also looks like 

from end behavior 𝑎𝑠 𝑥 →
∞, 𝑦 → −∞;  𝑎𝑠 𝑥 → ∞, 𝑦 →
−∞ as x moves further away 

from the vertex the less the 

value of y.  

 

Key: MR: Multiple Representations observed; VD: Verbal Descriptions; AL: Algebraic Symbols; G: Graphical; N: Numerical  

RBC+C Model describe three epistemic observable actions: Recognizing, Building-with, and Constructing drawn from 

Schwarz, Dreyfus & Hershkowitz (2009) Abstract in Context (AiC) methodology framework on process of constructing 

abstract mathematical knowledge. 

 

I then used the RBC+C Model to analyze all the four participants’ responses in task1 

through task 5 and other transcribed written and oral responses from classroom observation and 

collection of artifacts. Referencing back to the research question and the data, I used this model 

and Ernest Semiotic Systems Theory (Ernest, 2006) to analyze: (a) identification of pseudo-con-

ceptual understanding; (b) transition from pseudo-conceptual to conceptual understanding; and 

(c) transferring of conceptual understanding to other concepts.  
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Research question was: How does exposure to and use of multiple representations influ-

ence algebra II students’ understanding and transfer of their algebraic concepts? Specifically the 

following sub-questions were examined: 

1. How does exposure to and use of multiple representations influence students’ 

identification of pseudo-conceptual understanding of algebraic concepts? 

2. How does exposure to and use of multiple representations influence students’ 

transition from pseudo-conceptual to conceptual understanding? 

3. How does exposure to and use of multiple representations influence students’ 

transfer of their conceptual understanding to other related concepts?  

To address sub-question 1, I used the following constructs to identify observable pseudo-

conceptual responses: (a) Random associations which include; surface associations, example 

centered associations, artificial associations, and template oriented associations; (b) lack of vali-

dation effort; and (c) absence of meaning effort (Vinner, 1997; and Berger 2006). Figure 10 

gives a detail descriptions of the three constructs. Guided by the RBC+C model, the semiotic 

systems theory and the constructs in figure 10, I analyzed students’ task responses for any recog-

nition of previous knowledge and understanding of: set of signs produced with different actions 

e.g., speaking, writing, drawing, and handling their TI calculators; set of transformational rules 

or algorithms, and set of relationships among the signs and their underlying meaning structures 

(Arzarello, 2006, p. 279). 
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Table 3. Pseudo-Conceptual Understanding Indicators.  

Pseudo-conceptual Under-

standing Indicators 
Symbol Explanation/Meaning 

Random Associations Surface Association (SA) Superficial reading of a set of mathematical 

signs or statements. Involves the participants 

isolating particular aspect or part of a mathe-

matical expression and associating those signs 

or words with a new sign (Berger, 2004). 

Example-Centered (EC) 

 
Using an example as a nucleus round which 

to construct a concept: When appropriating a 

new mathematical object, the example is the 

nucleus/ core around which a new concept is 

built Vygotsky (1986). “Thinking of proto-

typical example rather than definition” (Sier-

pinska, 2000, p.222) where one particular ex-

ample (perhaps the only available example) 

constitutes the core of the attributes of other 

mathematical examples or ideas. 
Artificial Association (AA) Unfamiliar objects artificially associated with 

a familiar object. New mathematical objects/ 

expression, part of the object or expression 

(perhaps a sign or symbol) may remind learn-

ers of another epistemologically more acces-

sible and familiar mathematical sign (Berger, 

2004). The more familiar sign may then be-

come the nucleus of the new concept, but the 

connection between the two signs may be ar-

tificial or not relevant.  
Template-Oriented Association (TOA) Transferring the properties of a sign with 

which they are familiar to a new or unfamiliar 

sign which has the same template (Berger, 

2006). Sfard (2000) argues that this usage of 

mathematical sign which is signifier-oriented 

is an indication of pseudo-conceptual under-

standing with the students focusing on the 

templates of the two functions instead of the 

meanings structures of the functions.  
Validation Effort Validation Effort (VE) Lack of control mechanism where students re-

acts to their first associations without check-

ing their thoughts about the solution to a 

problem (Vinner, 1997).  
Meaning Inquiry  Meaning Inquiry (MI) Absence of examining their responses to de-

termine if their answers fit the context of a 

problem (Vinner, 1997). 
 

 

To address sub-question 2, the RBC+C and the semiotic theory model, guided my analy-

sis of identifying instances of transitions from pseudo-conceptual to conceptual understanding. I 

looked for evidence where students build-with by combining different elements of a sign to make 

meaning of the entire sign. This included students’; oral and written responses, explanations,  
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drawings and inscriptions that reflected participants attempt to use and provide a logical internal 

links between different entities of a sign. For example in the following absolute-value func-

tions 𝑦 = 𝑎|𝑥 − 𝐻| + 𝐾, a statement like “in an absolute value function when the parameter ‘a’ 

and parameter ‘k’ have the same sign it means there is no x-intercept” was categorized as a po-

tential indication of a conceptual understanding of the absolute value function.  

To address sub-question 3, the RBC+C and the semiotic theory model, guided my analy-

sis of how multiple representations influenced students’ transfer of conceptual understandings to 

other related concepts. In particular I analyzed: (a) students’ responses and logical explanations 

of external links related to a concept; and (b) students’ logical explanations of how those links 

related to and connected to other concepts. Example of an external logical link was in task 4. 

Certain mathematical entities and properties like the domain, range and end behavior are not ex-

plicit in the function 𝑄(𝑥) = −3𝑥2 + 2𝑥 + 5 but can be inferred from looking at the leading co-

efficient or graphing the function 𝑄(𝑥). In task 5, the students were expected to tap on to their 

knowledge of quadratic functions (like in task 4) to respond to questions in this task. Making the 

consistent and logical link/connection between the previously learned mathematical entities like 

the domain, range and end-behavior and using it to respond to questions in task 5, I categorized 

them as constructing new construct and making a connection between two semiotic systems. In-

formed by Sfard (2000) notion that conceptual understanding is demonstrated when students at-

tend to a mathematical object in its entirety (i.e., including its external link) and not just as a 

fragmented aspect of an object, I also categorized students responses that demonstrated logical 

understanding of the entire mathematical object as constructing new concept. 
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Limitation of the Study Design 

This case study methodology was limited with respect to generalizability. Since the par-

ticipants in the study represented a bounded system (Merriam, 2009; and Yin, 2003), this repre-

sented a unique example of students in real classroom situation. Bounded system refers to the 

temporal (in this case a twelve weeks semester as indicated in the time line), geographical, insti-

tutional (south east of the country in a middle to high school institution) and confined to a 

teacher and his algebra II class. The data collection, analysis and interpretation in this study ap-

ply only to individual/s with these similar characteristics rather than the general population.    

Equally important was the high likelihood of my subjectivity and biases affecting and limiting 

the generalizability of this method. These subjectivity and bias which included, my ideas, experi-

ences (in a different educational system) and insights as an algebra teacher might have interfered 

with the data collection process, interpretations and analysis of the findings. 

 

 Trustworthiness of the Data 

I believe that as a qualitative researcher I have the obligation of convincing my readers 

and myself that the findings in my study are genuine and dependable (Merriam, 2009). Within 

the constructivist paradigm of inquiry, the criteria for assessing the noteworthiness of an inquiry 

is its trustworthiness (Denzin & Lincoln 2005). In this study I adopted Schwandt, Lincoln and 

Guba (2007) criteria of trustworthiness that included; credibility, transferability, dependability, 

and confirmability. 

Credibility which refers to the correspondence of the perspective of the participants with 

the description of their perspectives by the researcher was ensured using the following tech-
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niques; extended field work, persistent observation, reflexivity, member check, and data triangu-

lation. Extended field work involved my prolonged engagement in the site where I spent signifi-

cant amount of time (four days a week for twelve weeks) in the research site to overcome the ef-

fect of misinformation, and build the necessary trust to uncover local constructions. I was also 

persistent in my daily observations which involved regular reflection and in-depth study of the 

research problem to gain a detailed understanding of how the most relevant characteristic fea-

tures of the situation for the problem under investigation were to be identified. Reflexivity in-

volved my monitoring the biases that I brought to the study. This was accomplished by continu-

ally reflecting on how my personal experiences as a mathematics teacher had the potential of im-

pacting my interpretation of the data, continuously discussing my interpretation of the data with 

the classroom teacher and the participants and use of memos to record those interpretations. 

Member check involved my inclusion of the research participants’ input in the interpretation and 

reporting of the study. In using this technique, the participants’ voice was heard in the findings, 

interpretation and conclusions of the study where I had to ask if my interpretation of their re-

sponses matched with what they had intended to respond. I used data triangulation which in-

volves the use of multiple data sources to strengthen the claims and interpretations that I made in 

the study. These multiple data sources included; field notes from observation, observation proto-

col transcripts, audio tapes of the task-based interviews, transcripts from the audio recording of 

interview, interview protocol and analysis of documents (tests, written test, lesson plans, and end 

of term exams).    

Transferability involves the extent to which the findings in my study can be applied in 

other contexts or with other respondents. This was assured by facilitating a “thick description” 

(Geertz, 1973). Thick descriptions included information that was; dense and rich in detail, and an 
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interpretive description of the participants intentions. Dependability which refers to the stability 

of my research findings over time was ensured by keeping a detailed and comprehensive docu-

mentation of the research process and every methodological decision made (Bogdan and Bilken, 

1998).  

The other transferability criteria included confirmability. Confirmability refers to re-

searcher’s bias and prejudice in the data collection, interpretation and analysis of findings. This 

was ensured by my demonstration of reflexivity and openly discussing my epistemological and 

personal involvement in the study. 
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5  RESULTS 

Overview 

In this chapter I provide an analysis and the results of the four students’ responses and 

thinking on the five different tasks during the task-based interview. These tasks were part of the 

tests review materials that they used to prepare for the tests. Tasks 1, 2, and 3 were used to re-

view Unit I on Piecewise Functions and Absolute Value Functions including the application of 

absolute value function. Tasks 4, and 5 were used to review Unit II on Quadratic Functions in-

cluding the application of quadratic functions. See appendix B for a sample of the lesson se-

quencing. The unit of analysis was students’ responses (verbal and written) to the mathematical 

tasks assigned. The analysis was built around the four students’ responses on the five task. I then 

triangulated the data from the interviews, classroom observations and the documents collected in 

interpreting the students’ responses. To ensure accuracy in transcription each interview session 

was audio-taped. The data presented in this section elucidates the common findings from analyz-

ing; the audio-taped transcripts, students’ written data, students’ documents, transcripts of the 

classroom observations specific to each units, teachers’ notes, and written tests and test reviews 

of the four students. For each task I offer a discussion of the findings from analyzing the partici-

pants written, uttered and drawn material. Although I focus on the students’ semiotic productions 

in each task, I contextualize the analysis by: (a) briefly describing the task; and (b) interpreting 

students’ responses using the RBC+C model. I then utilize the semiotic system theory (Ernest, 

2006) to analyze semiotic productions and identify the emerging themes in the analysis. I frame 

my analysis in terms of the way the use of multiple representations influences the identification 

and use of the three semiotic components of a mathematical sign. I selected excerpts of the origi-

nal transcripts so as to illustrate any argument I make. The analysis that follow is an attempt to 
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offer some insights into the students’ understanding of the task problem and how that under-

standing influenced their solutions. 

 

Task 1: Domain and Range in Piecewise Functions  

Description: Task 1 was in two parts. In Part I, prior to interaction with multiple repre-

sentations students were asked to use their understanding to describe the domain and the range of 

four functions: (a) constant function 𝐺(𝑥); (b) linear function 𝐹(𝑥); (c) a piecewise function 

𝑅(𝑥) involving only constant functions; and (d) piecewise function 𝑃(𝑥) involving both the con-

stant functions and linear functions see figure 12. 

 

 

Figure 11. Task 1 Part I. Domain & Range Questions prior to use of Multiple  

Representations. 

 

Following is a table (see table 4) of the summary of the participants’ part I responses to 

the domain and the range of each of the four functions named above. For the constant func-

tion 𝐺(𝑥) = 2, all four students correctly identified the domain written in both inequality and in-
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terval notation as ℝ 𝑎𝑛𝑑 (−∞, ∞) respectively. However, they all were quick to incorrectly re-

spond to the range of the same constant function as ℝ in inequality notation and (−∞, ∞) in in-

terval notation. No efforts towards reflecting on the responses was evident in all the four stu-

dents.  

Table 4 . Ron’s, Tyron’s, Stacey’s & Yolanda’s Responses Task I part I questions. 
 

Func-

tion                      

                  Ron 

Domain            Range 

                Tyron  

Domain             Range 

                 Stacey  

Domain             Range                         

             Yolanda  

Domain            Range  

 

  𝐺(𝑥)            

  
ℝ (−∞, ∞)   

                              
ℝ (−∞, ∞)                       

 

ℝ (−∞, ∞)                       
 

ℝ (−∞, ∞)                       
    
ℝ (−∞, ∞)                       

 
ℝ (−∞, ∞)                       

 
ℝ (−∞, ∞)     
                        

. 

 
ℝ (−∞, ∞)                       

𝐹(𝑥)  ℝ (−∞, ∞) ℝ (−∞, ∞) ℝ (−∞, ∞) ℝ (−∞, ∞) ℝ (−∞, ∞) ℝ (−∞, ∞) ℝ (−∞, ∞) ℝ (−∞, ∞) 

𝑅(𝑥)  𝑎 ℝ (−∞, ∞)   a ℝ (−∞, ∞)  a ℝ (−∞, ∞) a ℝ (−∞, ∞) 

𝑃(𝑥)         b ℝ (−∞, ∞)   b ℝ (−∞, ∞)  b ℝ (−∞, ∞) b ℝ (−∞, ∞) 

Key:  a = (-∞, 0) ∪ (0, 2] ∪ (2, 5) ∪ [5,∞)       b : (-∞, -4) ∪ (-4, 0 ) ∪ [0, ∞)  
 

 

 

For the linear function 𝐹(𝑥) = 𝑚𝑥 + 𝑏, all the four students had different linear functions: Ron 

used 𝐹(𝑥) = −2𝑥 + 4; Tyron used 𝐹(𝑥) = −
1

2
𝑥 + 3; Stacey used 𝐹(𝑥) = −3𝑥 + 2; and 

Yolanda used 𝐹(𝑥) = 2𝑥 + 5. They all correctly identified the domain of their respective func-

tion written in both inequality and interval notation as ℝ 𝑎𝑛𝑑 (−∞, ∞). Similarly the range of 

their respective linear functions were correctly identified as  ℝ 𝑎𝑛𝑑 (−∞, ∞) respectively.  

For the piecewise function 𝑅(𝑥), all the four students chose to first graph the function in order to 

support their understanding of the domain and the range of the function.   

The four students had similar responses to the domain and identified the domain of the linear 

function 𝑅(𝑥) in interval notation as (-∞, 0) ∪ (0, 2] ∪ (2, 5) ∪ [5, ∞). Similarly they all incor-

rectly described the range of 𝑅(𝑥) in both inequality and interval notation as ℝ 𝑎𝑛𝑑 (−∞, ∞) re-

spectively. No efforts towards reflecting on their responses were evident.  
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Following is an excerpt of Ron’s responses to questions on functions 𝑅(𝑥) & 𝑃(𝑥), dis-

cussion and explanation of his rationale. 

Table 5. Ron's Response top Task I part I on function R(x) and P(x) 
 

 

 

All four students incorrectly identified the range of 𝑅(𝑥) in interval notation as 

ℝ (−∞, ∞).  They tapped their former Algebra I formal knowledge about the range of a linear 

function ℝ  (−∞, ∞) to respond to the range of the; constant function 𝐺(𝑥) = 2, and piecewise 

function 𝑅(𝑥). In algebra I following their linear function understanding of the notion of domain 

and range, they alluded to the understanding that if the domain was ℝ  (−∞, ∞), then the range 

was inevitably ℝ  (−∞, ∞). Tyron’s explanation summarizes all the four students’ explanation of 

the notion of range in a piecewise function involving constant function “if the domain represent-
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ing the x-coordinate is from −∞ 𝑡𝑜 ∞  then the range must also be from −∞ 𝑡𝑜 ∞".  This expla-

nation was consistent with several verbal and written responses I logged in during week 5 class 

observation.  

Interpretation: The pseudo conceptual understanding indicator evident in the students’ re-

sponse to the range of function 𝐺(𝑥) 𝑎𝑛𝑑 𝑅(𝑥) is example-centered association. Function 

𝐺(𝑥) was a constant function and 𝑅(𝑥) was a piecewise function involving only constant func-

tions. The expected correct response for the range of 𝐺(𝑥) = 2 was {2}, and the expected correct 

response to the range of the piecewise function 𝑅(𝑥) was{−3, 0, 1, 2}. The four students’ re-

sponses to the range 𝐺(𝑥) 𝑎𝑛𝑑 𝑅(𝑥) was ℝ (−∞, ∞) which was incorrect. Similar responses to 

the range in a constant function that I recorded during class observation in week 3 indicated that   

ℝ (−∞, ∞) was the common understanding among most students in the class. In an example-

centered pseudo conceptual understanding, students use examples of a given notion (e.g. the 

range of the linear function) as the nucleus or the core around which they build a new notion 

(e.g. the range of a constant function). In this part of task I, students used the notion of the range 

of a linear function i.e. ℝ (−∞, ∞) which they were familiar with, as a prototype to describe the 

range of constant functions 𝐺(𝑥) 𝑎𝑛𝑑 𝑅(𝑥) which was unfamiliar to them. The four participants 

in the interview and 10 out of the 17 students in the class made the wrong assumption and used 

the range of the linear function as a prototype in which to describe the range in G(x) and R(x). 

This was evidence that the class did not systematically reflect on the definitions of the range in a 

constant function.       

In part I (d), the students were required to describe the domain and the range of a piece-

wise function 𝑃(𝑥) that involves both the linear and constant functions (see table 4). To find the 

domain and the range all four students confidently graphed the piecewise function P(x).  Their 
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responses to the domain as shown in table 3 was (-∞, 0) ∪ (0, 2] ∪ (2, 5) ∪ [5, ∞) in interval no-

tation and ℝ (−∞, ∞). Their responses to the range of P(x) was ℝ (−∞, ∞) which was incorrect. 

This response was common in all the four students’ work including the majority of the students 

in the class as indicated in their verbal and written responses to the range of a piecewise function.  

 

Interpretation: As in the previous functions 𝐺(𝑥) 𝑎𝑛𝑑 𝑅(𝑥) all the four students de-

scribed the range of the function 𝑃(𝑥) as ℝ (−∞, ∞). Similar pattern was observed in the verbal 

and oral responses of the other students during class observation. Their responses were incorrect. 

Two pseudo-conceptual behavior in response to the range of 𝑃(𝑥) were evident. These were con-

sistent with example-centered association indicator, and lack of validation effort on the correct-

ness of their responses. The rationale provided by Yolanda “since the domain means the values 

of x so I think the x-values will start from um...−∞ 𝑡𝑜 ∞. If the x’s are from −∞ 𝑡𝑜 ∞ the y’s 

meaning the range will also be from −∞ 𝑡𝑜 ∞” sums up a consistent pattern of understanding of 

this notion in the class. The class used the definition of the range of a linear function as the pro-

totype example of the range of all the other functions they came across. As in the previous re-

sponses to the ranges functions 𝐺(𝑥) 𝑎𝑛𝑑 𝑅(𝑥), the four students and majority of the students in 

the class still tapped on to their formal knowledge of range in a linear function acquired in alge-

bra I to describe the range of P(x). It is evident that they did not systematically think through the 

definition of the piecewise function 𝑃(𝑥) as a function whose definition changes as the inde-

pendent variable changes. My interpretation of students’ response in part I according to RBC+C 

model is that all the four students easily recognized the domain of all the four functions. They 

equally recognized the task requirement for the range. However general pattern in students’ re-

sponses to the range of the four functions 𝐺(𝑥), 𝑅(𝑥) 𝑎𝑛𝑑 𝑃(𝑥), were incorrect.  Analysis in Part 
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II of the task continues my interpretation of the students’ responses after interaction with multi-

ple representation.  

In part II of Task I, the four students were required to refer to the Smart-Notes “Domain 

Truck and Range Car” graphical animation (see figure 15.) class room activity that they had pre-

viously discussed briefly in class. The questions in Part II of the task were administered sepa-

rately after the students completed part I. This was part of the classroom observation that I had 

noted and I had an electronics copy of the activity from the teacher as part of my data collection 

artifacts. This being an electronic activity, it was projected on the Smart-board in front of the 

class during the interview. In the animation there was a picture of a truck and a car. The truck 

was referred to as the “Domain Truck” and the car was referred to as the “Range Car”. They 

were supposed to assume that the graph of the function they drew represented a “road” and they 

were driving the domain car from left to right. In the car was a passenger with the responsibility 

of collecting all the x-coordinates along the way (The Domain). Similarly in the “Range Car” 

was a passenger responsible for collecting all the y-coordinates (The Range) along the way from 

left to right. At the end of the “trip” they had to do an inventory of what they had in the “Domain 

Truck” and in the “Range Car”. This dynamic animation representation offered visualization of 

multiple representations where students drew inferences from pictures and animations (Ains-

worth & Van Labake, 2004). Students were then supposed to respond to the same questions they 

had in part I of this task (see figure 12). 
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Figure 12. Task I part II questions after exposure to Domain and Range Dynamic Multi-

ple Representations. 

 

 

 

 

Figure 13. Smart Notes Graphical Animation of Domain & Range of a Constant Function 
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Figure 14. Smart Note Graphical Animation of a Linear Function. 

 

 

Figure 15. Smart Notes Graphical Animation of a Piecewise Function involving only 

Constant Functions 

 

Description  

The activity in part II of task I represents the students’ interaction with multiple represen-

tations involving graphical, algebraic symbols, and verbal representations (uttered and written 

words). Graphical animations supports the development of mental representations skills which 
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Chahine (2013) describes as “skills developed and appropriated by students as they engage in 

learning amidst a range of modalities and resources” (p. 445).  

Table 6 is a summary of the four students’ responses to the domain and the range of the 

four functions: (a) constant function 𝐺(𝑥); (b) linear function 𝐹(𝑥); (c) piecewise function 𝑅(𝑥) 

involving only constant functions; and (d) piecewise function 𝑃(𝑥) involving both linear and 

constant functions. Included in the summary is: the multiple representations used or referred to in 

the task; the pseudo-conceptual understanding indicators identified in the task; and the semiotic 

systems components used to analyze the participants responses to part II of task 1 

During the Smart-Notes “Domain Truck and Range Car” discussion, the four students 

had an opportunity to systematically reflect and re-image their understanding of the notion of do-

main and the range of the four functions but more so in the piecewise functions like 𝑅(𝑥) and 

𝑃(𝑥) which was something new to them at that point. The “Domain Truck” represented an in-

ventory of all the x coordinates from left to right. The “Range Car” represented an inventory of 

all the y-coordinates of the functions from left to right. The four students’ responses to the do-

main of all the four functions were ℝ (−∞, ∞). For the constant function 𝐺(𝑥) = 2 all the four 

students’ response to the range was {2}. This is an insight into how they potentially re-imaged 

their understanding. This was a significant shift from their previous responses of the range of 

𝐺(𝑥) being ℝ (−∞, ∞). In their explanation to this response, Tyron explained that “Range is 2 

because the word is constant and the range car can only collect the y-coordinate 2”.  Yolanda 

echoed same explanation “range car is only collecting the numbers 2 so the range is {2}”. Stacey 

also observed the same “range car only collects the y-coordinate {2} and now I see the difference 

between this and my previous answer”.   
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Table 6. Summary of Task I Part II Responses. 

Participant Question/ 

Function 

     Response Multiple Rep-

resentations 

Referred 

Pseudo-Con-

ceptual 

Understanding  

Indicator/s 

Semiotic System  

Component/s 
Domain Range 

Ron 𝐺(𝑥)            ℝ (−∞, ∞)   {2} VD,  AL,  G, N Surface Associa-

tion 
S (Process) 
M(informal theory) Dynamic representa-

tions 

𝐹(𝑥)            ℝ (−∞, ∞)   ℝ (−∞, ∞)   VD,  AL,  G, N ---------------- S (object) 
Dynamic representa-

tions 

𝑅(𝑥)            𝑎 {−3,0,1,2} VD,  AL,  G, N Example-centered  

Association 
M(mathematical content) 

M(previous semiotic sys-

tem) 
Dynamic representa-

tions 

𝑃(𝑥)            𝑏 [−4, ∞) VD,  AL,  G, N Example-centered  

Association 
M(mathematical content) 

M(previous semiotic sys-

tem) 
Dynamic representa-

tions 
Tyron 𝐺(𝑥)            ℝ (−∞, ∞)   {2} VD,  AL,  G, N Surface Associa-

tion 
M(mathematical content) 

   Dynamic representa-

tions 

𝐹(𝑥)            ℝ (−∞, ∞)   ℝ (−∞, ∞)   VD,  AL,  G, N Surface Associa-

tion 
S (Process) 
M(informal theory) Dynamic representa-

tions 

𝑅(𝑥)            𝑎 {−3,0,1,2} VD,  AL,  G, N Example-centered  

Association 
M(mathematical content) 

M(informal theory) Dynamic representa-

tions 

𝑃(𝑥)            𝑏 [−4, ∞) VD,  AL,  G, N Example-centered  

Association 
M(mathematical content) 

M(previous semiotic sys-

tem) 
Dynamic representa-

tions 
Stacey 𝐺(𝑥)            ℝ (−∞, ∞)   {2} VD,  AL,  G, N Surface Associa-

tion 
S (Process) 
M(informal theory) Dynamic representa-

tions 

𝐹(𝑥)            ℝ (−∞, ∞)   ℝ (−∞, ∞)   VD,  AL,  G, N --------------- S (Process) 
M(informal theory) Dynamic representa-

tions 

𝑅(𝑥)            𝑎 {−3,0,1,2} VD,  AL,  G, N Example-centered  

Association 
M(mathematical content) 

M(informal theory) 

 
Dynamic representa-

tions 

𝑃(𝑥)            𝑐 [−4, ∞) VD,  AL,  G, N Example-centered  

Association 
M(mathematical content) 

M(informal theory) 

M(previous semiotic sys-

tem) 

Dynamic representa-

tions 

Yolanda 𝐺(𝑥)            ℝ (−∞, ∞)   {2} VD,  AL,  G, N Surface Associa-

tion 
S (Process) 
M(informal theory) Dynamic representa-

tions 

𝐹(𝑥)            ℝ (−∞, ∞)   ℝ (−∞, ∞)   VD,  AL,  G, N -------------- S (Process) 
M(informal theory) Dynamic representa-

tions 

𝑅(𝑥)            𝑎 {−3,0,1,2} VD,  AL,  G, N Example-centered  

Association 
M(mathematical content) 

M(informal theory) 

M(previous semiotic sys-

tem) 

Dynamic representa-

tions 

𝑃(𝑥)            𝑐 [−4, ∞) VD,  AL,  G, N Example-centered  

Association 
M(mathematical content) 

M(informal theory) 

M(previous semiotic sys-

tem) 

Dynamic representa-

tions 

Key:  a: (-∞, 0) ∪ (0, 2] ∪ (2, 5) ∪ [5, ∞)     b: (-∞, -4) ∪ (-4, 0) ∪ [0, ∞)   c: {-4} ∪ [-1, ∞) 
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All four students had similar responses to the domain and range of the linear func-

tion 𝐹(𝑥). Domain was ℝ (−∞, ∞) and the range ℝ (−∞, ∞). Their responses to the domain and 

the range of 𝐹(𝑥) did not deviate from their previous response pre-multiple representation activ-

ity in part I. For the piecewise function 𝑅(𝑥) that only involved linear functions, their domain re-

sponses was the same ℝ (−∞, ∞). Ron’s response summed up their similar responses “Doman 

Truck will collect all real numbers ℝ  𝑓𝑟𝑜𝑚 − ∞ 𝑡𝑜 ∞, but can also be written as (-∞, 0) ∪ (0, 

2] ∪ (2, 5) ∪ [5, ∞)”. All their responses for the range of 𝑅(𝑥) were {-3, 0, 1, 2}. Their rationale 

as to why their answers to the range was different from before the “Domain Truck and Range 

Car” activity, pointed out to the students taking their time to carefully look at the graph of the 

function, being reflective in understanding the graph, and trying to relate specifically to what the 

“Range Car” inventory had or meant. They all expressed care and concern while responding to 

function 𝑅(𝑥). They explained that the range of the function 𝑅(𝑥) was ‘tricky’ and they had to 

carefully analyze the motion of the “Range Car”.  For the function 𝑃(𝑥) involving both linear 

and constant functions, the following represents their responses to the domain and the range of 

the function P(x). This pattern of response was consistent with the recorded and analyzed class 

verbal and written responses during the class observation.  

 

Table 7. Ron's, Tyron's, Stacey's, & Yolanda's response to function P(x) question. 
Function                           Ron 

Domain            Range 

                Tyron  

Domain             Range 

               Stacey  

Domain             Range                         

             Yolanda  

Domain            Range 

    

 

  𝑃(𝑥)            

 
ℝ (−∞, ∞)  
   or  b  

                               
[−4, ∞)  

 

ℝ (−∞, ∞)  
   or  b  

 

[−4, ∞)  
    
ℝ (−∞, ∞)  
   or  b  

 

    c 

 
ℝ (−∞, ∞)  
   or b 

 

     c 

Key:    b: (-∞, -4) ∪ (-4, 0) ∪ [0, ∞)   c: {-4} ∪ [-1, ∞) 
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Interpretation: I employed the RBC+C model to analyze the four students’ responses to 

Task I. Exposure to and use of multiple representations in part II of the task enabled the four stu-

dents to recognize the domain and the range in all the four functions. They realized that a previ-

ous knowledge construct i.e., range and domain was relevant in responding to part I & II of the 

task. Ron and Tyron described the domain of the function 𝑃(𝑥) as ℝ (−∞, ∞) and even wrote it 

in interval notation as (-∞, -4) ∪ (-4, 0) ∪ [0, ∞). Ron attributed better understanding of the do-

main to a reflective and thorough look at the “Domain Truck” inventory. Building –with involves 

students attempt to justify their understanding of the task. Pointing and inscribing on the graph 

was means of communicating his understanding of the domain and range of each piece of the 

piecewise function. For example starting from the left to the right and inscribing on the graph he 

explains the following “the domain will be from −∞ 𝑡𝑜 − 4 (pointing at the graph of the first 

piece and moving his figure horizontally from left to right), the second piece domain will be from 

here to here −4 𝑡𝑜 0  (pointing at the graph of the second piece from (-4, 4) to (0, 0)). For the 

third piece it will be it only be 0 because this is a point. Um… for the forth piece domain will be 

from−1 𝑡𝑜 ∞” Ron’s range was[−4 , ∞) or (𝑦 ≥ −4). This was incorrect. The expected correct 

response to the range of 𝑃(𝑥) was {-4} ∪ [-1, ∞). Ron did not notice the gap between 

(0 , −4)𝑎𝑛𝑑 (0, −1) on the y-axis. Similarly Tyron described domain of 𝑃(𝑥) as ℝ (−∞, ∞) and 

range as (𝑦 ≥ −4). As much as the “Domain Truck and Range Car” activity made him have a 

deeper reexaminations of the inventory in the range, he still missed out an essential small portion 

of the range where there was a gap between(0 , −4)𝑎𝑛𝑑 (0, −1) on the y-axis. However a thor-

ough look at the “domain truck and range car” inventory gave them a better understanding and 

response to the range of 𝑃(𝑥). Use of multiple representations allowed Ron and Tyron to reor-

ganize, refine and construct a better understanding of the range construct in a piecewise function. 
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I did infer from his responses that the use of and exposure to multiple representations; afforded 

Ron and the other participants an opportunity to re-image their understanding, self-reflect on 

their response, and evoked some internal configurations (Chahine, 2013) that students used to 

provide a meaningful response.  

Stacey and Yolanda had similar responses to the domain of 𝑃(𝑥) as ℝ (−∞, ∞). How-

ever for the range their responses was {-4} ∪ [-1, ∞), “observe that at 𝑥 = 0 umm… I will skip 

from -4 to -1 (pointing at the gap between (0, -4) and (0, -1) on the y-axis)”. Stacey and Yolanda 

also did reflect, re-imaged and reconstructed their understanding of the range construct in a 

piecewise function. 

 

Analysis of Task 1.  

Example centered associations which are indicators pseudo-conceptual understanding 

were evident in this task. Prior to the introduction of the multiple representation “Domain Truck 

and Range Car” activity, all four students responses in the task-based interview and 10 out of 17 

oral and verbal responses from the rest of the class incorrectly used the example of the notion of 

the range in linear functions which is ℝ (−∞, ∞) as the nucleus around which they constructed 

the notion of the range of the other three functions; constant 𝐺(𝑥), piecewise involving only con-

stant functions𝑅(𝑥), and piecewise wise involving both linear and constant function 𝑃(𝑥). In the 

constant function 𝐺(𝑥), or the piecewise function𝑅(𝑥), that involved only constant functions, it 

was evident that the use of the word ‘constant’ to represent the outcome that does not change 

given any input, was not well understood. This represented a pseudo-conceptual understanding 

where the four students used a word like ‘constant’ without knowing exactly what it means or 



112 

 

 

 

represents in a particular function. “Domain Truck and Range Car” multiple representation activ-

ity afforded the students access to an alternative representation of the notion of the range in 

piecewise functions which was a new semiotic system at that point. They explored the notion of 

range in piecewise function that was different from their previous fixed understanding of range 

as ℝ (−∞, ∞) that was informed by their previous understanding of range in a linear function. 

As they collected the “Range Car” inventory of the y- coordinates in the piecewise function they 

repeatedly pointed at each piece of the piecewise function and explored the “Car” movement 

from left to right. This was an indication of; re-imaging, and reflecting on the concepts as their 

attention was shifting back and forth between the graph and the algebraic symbol of the func-

tions 𝑅(𝑥) and 𝑃(𝑥). For each piece in the functions 𝑅(𝑥) and 𝑃(𝑥) written in algebraic form, 

students focused on its graphical representation and the meaning of the range i.e. collection of 

the y-coordinates for that particular piece. They each made inscriptions on the graph and verbal 

descriptions of their understanding of the graph as they explored it from left to right and pro-

posed correct responses to the range of the functions.  

In terms of semiotic systems theory, this task involved: (a) identification of the mathe-

matical sign ‘range’ and; (b) its underlying meaning structure. Students understanding of the no-

tion of range as a collection of y-coordinates was challenged. Piecewise functions represents ex-

ample of unique functions where the definition of the function changes as the domain (independ-

ent variable) changes. Superficial reading of the mathematical signs and statements in the task 

represented or lead to a pseudo-conceptual understanding and response to the task. Though the 

mathematical sign i.e. the word range, triggered an awareness of what was required in this task, a 

careful conscious action but systematically reflected upon approach to responding to the question 

of range in piecewise function was also needed. The participants’ use of multiple representations 
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in this task and careful reflection of the y-coordinate ‘inventory’ as directed in the activity ena-

bled them to access alternative representations of the range and support a deeper focus and un-

derstanding of the underlying meaning of the notion of range in piecewise functions. This repre-

sents a shift from pseudo-conceptual to conceptual understanding of the notion of range. From 

the mathematical sign i.e. word ‘range’ being the primary focus of attention to the meaning or 

the idea that the word ‘range’ represents.  

I also observed and analyzed students’ statements that indicated an understanding of the 

underlying meaning structure of the two piecewise functions 𝑅(𝑥) and 𝑃(𝑥). This was after their 

interaction with the “Domain Truck and Range Car” activity. For example Stacey made follow-

ing observation “Oh I see that the domain can also be found from here (pointing at and making 

inscriptions indicating conditions of the piecewise functions). She observed that the conditions in 

the piecewise functions also matched the domain of the function “I think these conditions match 

up with the answers to the domain” Sfard (2000) describe the meaning structure of a semiotic 

system as a reservoir of meanings that can be drawn upon in formulating, developing, and oper-

ating a semiotic system. In an attempt to better understand the meaning structure of the domain 

of the piecewise functions 𝑅(𝑥) and 𝑃(𝑥), students used their informal theory “the conditions of 

the piecewise function matches with the domain of the piecewise function”. The use of multiple 

representations activity added to the reservoir of meanings that supported the students’ under-

standing of semiotic system piecewise function. This informal theory served as the meaning 

structure from which they drew their understanding of the notion of domain and range in piece-

wise function. 
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 Task 2: Absolute Value Function  

Description: In his absolute value function task, the four students were given a set of 

three conditions written in algebraic symbols. These conditions were: (a) the vertex of 

𝑃(𝑥) which was(5, 3); (b) a set of ordered pairs written in functional notation, 𝑃(−3) = 15,   

𝑃(18) = 22.5,  and 𝑃(0) = 10.5 ; and (c) the end behavior of 𝑃(𝑥) given as: 𝐴𝑠 𝑥 → ∞, 𝑦 → ∞,

𝐴𝑠 𝑥 → −∞, 𝑦 → ∞.  They were then supposed to use these conditions to determine the absolute 

value functions named 𝑃(𝑥) and then respond to ten questions related to the absolute value func-

tion that followed see figure 16. The following figures show a summary of each students’ re-

sponses to the questions in task 2 followed by a description, interpretation and an analysis of 

their responses. 

 

 

 

Figure 16. Task 2 Absolute-Value Function questions. 
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Interpretation of Task 2 Responses.  

All four students correctly identified the absolute value function as 𝑃(𝑥) =
3

2
|𝑥 − 5| + 3   

Using the RBC+C model, they did so by correctly recognizing and identifying the signs in the 

given task i.e. vertex (5,3), 𝑃(−3) = 15,  and 𝑃(18) = 22.5. They then build-with and used that 

information to substitute in the absolute value function model. 𝑃(𝑥) = 𝑎|𝑥 − 𝐻| + 𝐾. Building-

with involved correctly identifying the different algebraic symbols that were used to represent 

𝑃(𝑥) i.e. as absolute value function and as piecewise function. However the process by which 

they used to identify the piecewise function varied from one participant to the other. 

Ron (see table 8.) utilized the point-slope model to find both pieces written in slope-inter-

cept form  𝑦 = 𝑚𝑥 + 𝑏 .  𝑦 = −
3

2
𝑥 + 10.5 , 𝑥 ≤ 5 and  𝑦 =

3

2
𝑥 −

9

2
 for 𝑥 > 5 .  

In identifying the piece with negative slope, evidence of pseudo-conceptual understand-

ing was apparent. Surface association pseudo-conceptual understanding indicator was evident in 

Ron’s, Stacey’s and Yolanda’s identification of the y-intercept (see tables 8, 10, and 11). Ron 

was focused on processing the slope intercept form of 𝑃(𝑥) and did not attend to the significance 

of the sign 𝑃(0) = 10.5 which represents the y-intercept. In surface association type of pseudo-

conceptual indicator, students tend to give undue focus on a set of symbol or words and conse-

quently do not attend to significant information in the mathematical signs in a task. Identifying 

and using the sign 𝑃(0) = 10.5 would have reduced that amount of cognitive effort required to 

find the two slope-intercept form of function  𝑃(𝑥) = {
−

3

2
𝑥 + 10.5, 𝑥 ≤ 5

3

2
𝑥 −

9

2
, 𝑥 > 5

 . In this particular 

process of finding the slope–intercept form of the function 𝑃(𝑥), Ron latched on to a particular 

process of finding the slope-intercept form. 
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Table 8. Ron’s Responses to Task 2 Questions. 

Question Response Multiple 

Representa-

tions Re-

ferred 

Pseudo-Concep-

tual 

Understanding  

Indicator/s 

Semiotic System  

Component 

Function 

 

VD,  AL,  G, N Surface Association S(object) 

(R semantic )   

a) Find two for-

mulas for 𝑃(𝑥), 

         A  VD,  AL,  G Surface Association R(semantic) 

M(mathematical content) 

b) Find y-inter-

cept of 𝑃(𝑥).   
       (0,

21

2
)                               VD,  AL,  G Artificial Association R(semantic) 

c) Find the equa-

tion of the axis of 

symmetry 

 

𝑥 = 5 
VD,  AL,  N, G Artificial Association R(semantic) 

d) Graph 𝑃(𝑥). Ref. fig.            G ----------------- R(semantic) 

e) Transfor-

mation from par-

ent function 

H-shift 5 unit right 

V-shift 3 units up 

V-stretch factor 
3

2
 

Upright 

VD,  AL,  G ----------------- R(semantic) 

S(process) 

M(mathematical content) 

f) absolute 

max/min of  

𝑃(𝑥)  

Absolute min  

    3 

VD,  AL,  G Surface Association M(informal theory) 

S(object) 

 

g) x-intercept/s 

of 𝑃(𝑥) 
  𝑥 𝑖𝑛𝑡 = 𝑁𝑜𝑛𝑒    VD,  AL,  G Surface Association M(informal theory) 

R(semantic) 
h) domain and 

the range of 𝑃(𝑥) 

D: ℝ (−∞, ∞) 

R:   (∞, ∞) 

VD,  AL,  G Template oriented As-

sociation 
S (Process) 

M(informal theory) 
i) Find 𝑃(12).  
Compare 

to 𝑃(20). 

𝑃(12) =
27

2
  

𝑃(12) < 𝑃(20) 

VD,  AL,  N, G Surface Association M(informal theory) 

S (Process) 

j) Compare 

𝑃(2) and 𝑃(8).   
𝑃(2) = 𝑃(8).   VD,  AL, N,  G Surface Association M(informal theory) 

S(object) 
Key: VD: Verbal Description;  N: Numerical; AL: Algebraic; G: Graphing 

A: 𝑃(𝑥) =
3

2
|𝑥 − 5| + 3 and  𝑃(𝑥) = {

−
3

2
𝑥 +

21

2
, 𝑥 ≤ 5

3

2
𝑥 −

9

2
, 𝑥 > 5
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Table 9. Tyron’s Responses to Task 2 Questions. 

Question Response Multiple 

Representa-

tions Re-

ferred 

Pseudo-Concep-

tual 

Understanding  

Indicator/s 

Semiotic System  

Component 

Function 

 

VD,  AL,  G, N Surface Association S (object) 

R (semantic )   

a) Find two for-

mulas for 𝑃(𝑥), 

        B  VD,  AL,  N, G Surface Association R(semantic) 

M(mathematical content) 

b) Find y-inter-

cept of 𝑃(𝑥).   
       (0,

21

2
)                               VD,  AL,  N, G Artificial Association R(semantic) 

c) Find the equa-

tion of the axis of 

symmetry 

 

𝑥 = 5 
VD,  AL,  N, G Artificial Association R(semantic) 

d) Graph 𝑃(𝑥). Ref. fig.            G ----------------- R(semantic) & S(object) 

e) Transfor-

mation from par-

ent function 

H-shift 5 unit right 

V-shift 3 units up 

V-stretch factor 
3

2
 

Upright 

VD,  AL,  G ----------------- R(semantic), S(process) 

M(mathematical content) 

f) absolute 

max/min of  

𝑃(𝑥)  

Absolute min  

    𝑦 = 3 

VD,  AL, N, G Surface Association M(informal theory) 

S(object) 

 

g) x-intercept/s 

of 𝑃(𝑥) 
  𝑥 𝑖𝑛𝑡 = 𝑁𝑜𝑛𝑒    VD,  AL,  G Artificial Association M(informal theory) 

R(semantic) 
h) domain and 

the range of 𝑃(𝑥) 

D: ℝ (−∞, ∞) 

R:   (∞, ∞) 

VD,  AL,  G -------------------------- S (Process) 

M(informal theory) 
i) Find 𝑃(12).  
Compare 

to 𝑃(20). 

𝑃(12) =
27

2
  

𝑃(12) < 𝑃(20) 

VD,  AL,  N, G Surface Association M(informal theory) 

S (Process) 

j) Compare 

𝑃(2) and 𝑃(8).   
𝑃(2) = 𝑃(8).   VD,  AL, N,  G Surface Association M(informal theory) 

S(object) 
Key: VD: Verbal Description;  N: Numerical; AL: Algebraic; G: Graphing 

B: 𝑃(𝑥) =
3

2
|𝑥 − 5| + 3 and  𝑃(𝑥) = {

−
3

2
𝑥 +

21

2
, 𝑥 ≤ 3

3

2
𝑥 −

9

2
, 𝑥 > 3

     

 

 

 

 

 

 

 

 

 



118 

 

 

 

Table 10. Stacey’s Responses to Task 2 Questions 

Question Response Multiple 

Representa-

tions Re-

ferred 

Pseudo-Concep-

tual 

Understanding  

Indicator/s 

Semiotic System  

Component 

Function 

 

VD,  AL,  G, N Surface Association S (object) 

R (semantic )   

a) Find two for-

mulas for 𝑃(𝑥), 

      C  VD,  AL,  N, G Surface Association R(semantic) 

M(mathematical content) 

b) Find y-inter-

cept of 𝑃(𝑥).   
       (0,

21

2
)                               VD,  AL,  N, G Artificial Association R(semantic) 

c) Find the equa-

tion of the axis of 

symmetry 

 

𝑥 = 5 
VD,  AL,  N, G Artificial Association R(semantic) 

d) Graph 𝑃(𝑥). Ref. fig.            G ----------------- R(semantic) & S(object) 

e) Transfor-

mation from par-

ent function 

H-shift 5 unit right 

V-shift 3 units up 

V-stretch factor 
3

2
 

Upright 

VD,  AL,  G ----------------- R(semantic), S(process) 

M(mathematical content) 

f) absolute 

max/min of  

𝑃(𝑥)  

Absolute min  

     3 

VD,  AL, N, G Surface Association M(informal theory) 

S(object) 

 

g) x-intercept/s 

of 𝑃(𝑥) 
  𝑥 𝑖𝑛𝑡 = 𝑁𝑜𝑛𝑒    VD,  AL,  G Artificial Association M(informal theory) 

R(semantic) 
h) domain and 

the range of 𝑃(𝑥) 

D: ℝ (−∞, ∞) 

R:   (∞, ∞) 

VD,  AL,  G -------------------------- S (Process) 

M(informal theory) 
i) Find 𝑃(12).  
Compare 

to 𝑃(20). 

𝑃(12) =
27

2
  

𝑃(12) < 𝑃(20) 

VD,  AL,  N, G Surface Association M(informal theory) 

S (Process) 

j) Compare 

𝑃(2) and 𝑃(8).   
𝑃(2) = 𝑃(8).   VD,  AL, N,  G Surface Association M(informal theory) 

S(process) 
Key: VD: Verbal Description;  N: Numerical; AL: Algebraic; G: Graphing 

C: 𝑃(𝑥) =
3

2
|𝑥 − 5| + 3 and  𝑃(𝑥) = {

−
3

2
𝑥 +

21

2
, 𝑥 ≤ 5

3

2
𝑥 −

9

2
, 𝑥 > 5

     

 

 

When I prompted Ron to closely look at the sign 𝑃(0) = 10.5 and the graph, he was able to see a 

close link between the sign and the y-intercept. He was able to re-image his understanding of y-

intercept “wait a minute this is the same point that was given to us. I think 𝑃(0) = 10.5 which 

is (0, 10.5) is the y-intercept”. Ron was able to assemble and integrate previous construct of y-

intercept and produce a new construct or understanding of functional notation of y-intercept. 
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Table 11. Yolanda Responses to Task 2 Questions. 

Question Response Multiple 

Representa-

tions Re-

ferred 

Pseudo-Concep-

tual 

Understanding  

Indicator/s 

Semiotic System  

Component 

Function 

 

VD,  AL,  G, N Surface Association S (object) 

R (semantic )   

a) Find two for-

mulas for 𝑃(𝑥), 

      D  VD,  AL,  N, G Surface Association R(semantic) 

M(mathematical content) 

b) Find y-inter-

cept of 𝑃(𝑥).   
       (0,

21

2
)                               VD,  AL,  N, G Artificial Association R(semantic) 

c) Find the equa-

tion of the axis of 

symmetry 

 

𝑥 = 5 
VD,  AL,  N, G Artificial Association R(semantic) 

d) Graph 𝑃(𝑥). Ref. fig.            G ----------------- R(semantic) & S(object) 

e) Transfor-

mation from par-

ent function 

H-shift 5 unit right 

V-shift 3 units up 

V-stretch factor 
3

2
 

Upright 

VD,  AL,  G ----------------- R(semantic), S(process) 

M(mathematical content) 

f) absolute 

max/min of  

𝑃(𝑥)  

Absolute min  

     3 

VD,  AL, N, G Surface Association M(informal theory) 

 

g) x-intercept/s 

of 𝑃(𝑥) 
  𝑥 𝑖𝑛𝑡 = 𝑁𝑜𝑛𝑒    VD,  AL,  G Surface Association M(informal theory) 

R(semantic) 
h) domain and 

the range of 𝑃(𝑥) 

D: ℝ (−∞, ∞) 

R:   (∞, ∞) 

VD,  AL,  G Template Oriented  

Association 
S (Process) 

M(informal theory) 
i) Find 𝑃(12).  
Compare 

to 𝑃(20). 

𝑃(12) =
27

2
  

𝑃(12) < 𝑃(20) 

VD,  AL,  N, G Surface Association M(informal theory) 

S (Process) 

j) Compare 

𝑃(2) and 𝑃(8).   
𝑃(2) = 𝑃(8).   VD,  AL, N,  G Surface Association M(informal theory) 

S(process) 
Key: VD: Verbal Description;  N: Numerical; AL: Algebraic; G: Graphing 

D: 𝑃(𝑥) =
3

2
|𝑥 − 5| + 3 and  𝑃(𝑥) = {

−
3

2
𝑥 +

21

2
, 𝑥 ≤ 5

3

2
𝑥 −

9

2
, 𝑥 > 5

     

 

 

All four students correctly recognized and identified the axis of symmetry as x = 5 using 

the x-coordinate of the vertex. They correctly recognized and identified the transformation of 

𝑃(𝑥) from the parent function 𝑦 = |𝑥 | using ‘sophisticated’ verbal description and accurately 

drew the graph of 𝑃(𝑥). Except for Tyron, the other three participants described the absolute min 

as equals to 3. Tyron described the absolute min as y = 3. In responding to absolute min as 3 they 

did not pay attention in the meaning of or the difference between absolute min equal to 3 and ab-
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solute min as 𝑦 = 3. Absolute min represents the lowest value of the y coordinate. Their re-

sponses were indicative of surface association pseudo-conceptual understanding that involved 

superficial reading of a set of mathematical signs. Revisiting the definition of absolute max and 

looking at the graph again, Ron, Stacey, and Yolanda were able to re-image and redefine their 

responses to absolute min as 𝑦 = 3. They were able to build –with a new understanding of the 

correct presentation of the absolute max. They had different explanations as to why 𝑦 = 3 repre-

sented absolute min. Tyron reasoned that “since  𝑎 =
3

2
  was positive the graph can only have ab-

solute min” line 22 &23. Stacey had a different approach and used the end behavior symbol and 

the fact that the vertex was above the x-axis to describe the absolute min “𝐴𝑠 𝑥 → ∞, 𝑦 → ∞,

𝐴𝑠 𝑥 → −∞, 𝑦 → ∞.” Line 24.  Students managed to construct a new understanding of the link 

between the end behavior symbols and the graph. This in turn enabled them to produce a logical 

explanation of this link. I inferred from Stacey’s response that she tapped on to her informal the-

ory semiotic system component to understand the underlying meaning structure of the sign abso-

lute min and the link to the end behavior sign.  

In determining the x-intercepts of the function 𝑃(𝑥), Ron and Tyron used the analytical 

method substituting zero for y and calculating for x. Stacey used the same end behavior symbol 

and the fact that the vertex was above the x-axis to confirm that there was no x-intercept. The 

four participants correctly used analytical methods to show that there was no x-intercept. The fi-

nal answer step in the analysis |𝑥 − 5| = −2 implied that there was no solution (i.e.𝑥 = ∅ ). This 

was indicative of surface association of pseudo-conceptual understanding. It involved superficial 

reading of mathematical signs and not focusing on the meaning of those symbols. After I 

prompted Ron and Tyron to look closely and see if they could come up with any conjectures 

about the x-intercepts, Ron observed that “in absolute value functions if parameters ‘a’ and ‘k’ 
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have the same sign it implied that the function had no x-intercepts” line 30. Tyron observed the 

same but also concluded that “if ‘a’ was positive and ‘k’ was positive it implies an upright abso-

lute value function above the x-axis” line 25.    

Ron, Stacey, Yolanda identified the domain as D: ℝ (−∞, ∞) and range as ℝ (−∞, ∞). 

Though the domain response was correct the range response was incorrect. The expected correct 

range response was ℝ [3, ∞). The three students tapped on to their previous knowledge of range 

in a linear function to respond to the question of range in absolute value function. Template –ori-

ented pseudo-conceptual understanding indicator was evident. Since 𝑃(𝑥) appeared and could be 

written as two linear functions in part (a) of this task, the three students transferred their under-

standing of the properties of range in a linear function to the range in an absolute value func-

tion 𝑃(𝑥). Using the graph moving back and forth between the graph and the absolute value 

function  𝑃(𝑥) the three students reflected, re-imaged and re-evaluated their understanding of 

range in an absolute value function. Referring to their ‘domain truck’ and ‘range car’ activity in 

task 1 that emphasized conscious and systematic reflection of the domain and range of any func-

tion, the three students were able to correctly determine the range in 𝑃(𝑥).   

In comparing 𝑃(12) and 𝑃(20), all the four participants showed that 𝑃(12) < 𝑃(20). 

Ron, Stacey, and Yolanda used the analytical method to show that 𝑃(12) < 𝑃(20). They each 

calculated the individual value of 𝑃(12) 𝑎𝑛𝑑 𝑃(20) and compared their values. They were 

quickly drawn and focused on the processing of 𝑃(12) and 𝑃(20). They did not focus much on 

the meanings of the signs. Tyron used analytical method also, but proceeded to explain how he 

compared 𝑃(12) and 𝑃(20) using end-behavior “from the vertex, the further I move to the right 

the higher the point is 𝐴𝑠 𝑥 → ∞, 𝑦 → ∞, 𝐴𝑠 𝑥 → −∞, 𝑦 → ∞.” Line 35.  In comparing 𝑃(2) 

and 𝑃(8), all four students correctly determined that 𝑃(2) = 𝑃(8). Processing methods varied. 



122 

 

 

 

Tyron drew a vertical line at 𝑥 = 2 and 𝑥 = 8 and observed that 𝑃(2) and 𝑃(8) were on the 

same horizontal level on the implying that they were equal. Stacey and Yolanda used the reason-

ing that  𝑥 = 2 and 𝑥 = 8 were at the same horizontal distance from axis of symmetry  𝑥 = 5 on 

both sides their height above the x-axis was same. Informal theory that for absolute value func-

tion the points whose x-coordinates are at the same horizontal distance from the axis of sym-

metry on either side of the vertex have same y-coordinate. 

Analysis of Task 2 Responses.  

In several of the responses to the following questions; comparing 𝑃(2) = 𝑃(8), compar-

ing 𝑃(12) = 𝑃(20), determining the x-intercepts, and determining the y-intercept, the partici-

pants were quick to algebraically process the solutions to these questions. Pre using multiple rep-

resentation or prompted to look at the meaning of the mathematical signs in the questions, stu-

dents did not reflect through the underlying meaning structure of the signs. They relied on the 

second component of the semiotic system i.e. they focused on the transformational rule. All four 

students correctly used given information to process and determine the function 𝑃(𝑥) both as ab-

solute value function and as piecewise function. Mathematical sign like 𝑃(0) = 10.5, are ex-

pected to act as trigger for identifying the y-intercept so that Ron, Stacey and Yolanda would 

have been aware of the meaning of the sign 𝑃(0) = 10.5 as y-intercept and reduced amount of 

cognitive effort required to calculate and use y-intercept to respond to the question. The three 

students focused on processing the y-intercept more than using the ‘clues’ embedded in the 

sign 𝑃(0) = 10.5. From a semiotic perspective they focused on the transformational rules 

demonstrating some conscious effort and action to solve the problem, but did not systematically 

reflect on the meanings of the various elements of the absolute value function 𝑃(𝑥) like the y-

intercept. Exposure to and use of multiple representations i.e. graphing the function, inscribing 
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on the graph, verbal description, and use of algebraic sign 𝑃(0) = 10.5, served as a means of se-

miotic mediation and redirected their understanding of the meaning of the mathematical sign. 

The multiple representations enabled the participants to connect the attributes of the functions 

𝑃(𝑥) =
3

2
|𝑥 − 5| + 3 with the mathematical features represented in the graph. I inferred that use 

of multiple representations allowed students a reified understanding of absolute value functions. 

Reified understanding (Sfard, 2000) is a component of re-imaging of conceptual understanding 

and refers to when students’ perception of a mathematical entity transitions from a process at one 

level to an object at another level. For example a statement like “when parameters  ‘a’ and ‘k’ in 

an absolute value function are both positive it implies no x-intercepts and the graph is above the 

x-axis” indicates an understanding of the absolute-value function as an object as well as process 

of transformation.. There were evidence of students transitioning from static perception of the 

signs i.e. sign as object approach, to signs as process approach. For example the end behavior 

sign i.e. 𝐴𝑠 𝑥 → ∞, 𝑦 → ∞, 𝐴𝑠 𝑥 → −∞, 𝑦 → ∞ was a trigger to Stacey and Yolanda who used 

it compare 𝑃(12) and 𝑃(20) and predict that the further away the x coordinate is from the axis 

of symmetry the greater the y-coordinate. In this example, the participants transitioned from 

looking at the end behavior sign as mathematical object to sign as a process representing a dy-

namic approach. The mediation role of the multiple representations (graph, verbal descriptions, 

numeric, and algebraic notations) facilitated the participants’: (a) re-imaging of their understand-

ing to make connections between the graph and the algebraic notation; (b) representational versa-

tility, where students responses transitioned seamlessly between different representations. In this 

task the students were expected to make deduction of the various external properties of the abso-

lute value function 𝑃(𝑥) e.g. end behavior. Conceptual understanding requires the ability to 
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make the logical link between the various elements of the function like 𝑃(𝑥). For example Ty-

ron’s use of the end behavior sign to make comparisons of between 𝑃(12) and 𝑃(20) demon-

strate a transition from identifying end behavior sign as a mathematical object and an end in it-

self to identifying the sign as representative of an idea. It represented a shift in the students un-

derstanding from sign as a signifier (object) to sign as representation of an idea. Multiple repre-

sentations facilitated: (a) the identification of the mathematical sign/ideas in the sign; (b) the 

identification of the correct transformational rule; (c) the identification of the underlying mean-

ing structure necessary to make a logical links between various elements of a function like 𝑃(𝑥). 

 

Task 3: Absolute-Value Functions Application (Pool Table)  

In this task (see figure 17) students were required to write an equation of the path of a 

ball in a miniature golf and determine whether they make a hole in one or not. This task was 

adopted from Larson (2004) Algebra II class textbook. They were given the ordered pairs for the 

starting point, the banking position, and the hole. The task required their application of absolute 

value function understanding.  

 

Figure 17. Task 3 Application of Absolute Value Functions 
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Following is a summary and a description of their responses to the task 3 questions. Inter-

pretation of the responses and their analysis using RBC+C model and Ernest (2006) semiotic 

systems theory will follow. 

 

Table 12. Participants’ Responses to Task 3 Application of Absolute-value Functions  
 

Participant Question Response Multiple 

Representa-

tions 

Referred 

Pseudo- 

Conceptual 

Understanding  

Indicator/s 

Semiotic System  

Component 

Ron Make the shot? 𝑌𝑒𝑠 VD,  AL,  G, N Surface Association S(object) 

(R semantic )   

Justification  y = −
12

7
|𝑥 − 6| + 8   

Subs ordered pairs 
(6,8), (2.5, 2)& (9.5, 2) 

 

VD,  AL,  G 
 S(object) 

M(mathematical con-

tent) 

Alternative op-

tion  
Graphing  

absolute value function                             

VD,  AL,  G Surface Association R(semantic) 

S(process) 

M(informal theory) 
Tyron Make the shot? 𝑌𝑒𝑠 VD,  AL,  N, G Surface Association S(object) 

(R semantic )   
Justification y =−

12

7
|𝑥 − 6| + 8   

Sub ordered pairs 
(6,8), (2.5, 2)& (9.5, 2) 

 VD,  AL,  G  S(object) 

(R semantic )   

Alternative op-

tion 

Graphing  

absolute value function                             

VD,  AL,  G  R(semantic) 

S(process) 

M(informal theory) 

Stacey  Make the 

shot? 

𝑌𝑒𝑠 VD,  AL,  G Surface Association S(object) 

(R semantic )   

Justification y =−
12

7
|𝑥 − 6| + 8   

Sub ordered pairs 
(6,8), (2.5, 2)& (9.5, 2) 

VD,  AL,  G Surface Association M(informal theory) 

S(object) 

(R semantic )   

Alternative op-

tion 

Graphing  

absolute value function                             

VD,  AL,  G Surface Association M(informal theory) 

S(object) 

(R semantic )   
Yolanda Make the shot? 𝑦𝑒𝑠 VD,  AL,  N, G Surface Association R(semantic) 

S(process)  
Justification y =−

12

7
|𝑥 − 6| + 8   

Sub  ordered pairs 
(6,8), (2.5, 2)& (9.5, 2) 

VD,  AL, N,  G Surface Association 

 
M(informal theory) 

S (Process) 

M(mathematical con-

tent) R(semantic) 
Alternative  

option 

 Graphing  

absolute value function                             

VD,  AL, N,  G Surface Association M(informal theory) 

S (Process) 

M(mathematical con-

tent) R(semantic) 
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Interpretation of Task 3 Responses.  

All four students started off responding to the question by recognizing that the task in-

volves an absolute value function but more importantly identify that the vertex of the absolute 

value function as (6, 8). Ron, Stacey, and Yolanda started off not sure that they would make the 

shot. Stacey explicitly stated that she was not sure is she will make it “I am not sure if I will 

make it but I will try I think I might make the shot” line 1. All four students correctly recognized 

ordered pair (6, 8) as the vertex of the absolute value function. They then build-with a strategy 

and substituted the coordinates of the vertex (6, 8) and the point (2.5, 2) and determined the ab-

solute value function of the path of the ball as y =−
12

7
|𝑥 − 6| + 8. To determine if they made 

the shot or not, Ron, Stacey, and Yolanda substituted the values of the ordered pair(9.5, 2) and 

ended up with a true statement 2= 2 . New understanding of the absolute value function was 

constructed when they used the true statement to infer that the ordered pair (9.5, 2) which repre-

sents the hole was on the path of the ball hence they would make the shot. Tyron adopted a dif-

ferent position to determine if he made the shot or not. He recognized that the axis of symmetry 

split the function into two equal parts. Tyron build-with a strategy when he drew the axis of sym-

metry  𝑥 = 6  recognized and determined that from the y-coordinate, both points 

(2.5, 2) 𝑎𝑛𝑑 (9.5, 2) had the same co-ordinate. Also he determined that the absolute value func-

tion  |𝑥 − 6| signified that points on both sides of axis of symmetry that were at the same hori-

zontal distance from the x-coordinate x = 6 had same y-coordinates. Since the ordered pairs 

(2.5, 2) 𝑎𝑛𝑑 (9.5, 2) were both 3.5 units horizontally from axis of symmetry on both sides of the 

axis it implied that the hole was on the path of the absolute value function on the opposite side 

across from starting point and hence he would be able to make the shot. 
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Analysis of Task 3 Responses.  

All four students recognized immediately what the goal of the task was. Semiotic system 

component that students gravitated to was the transformation of rules. Ron, Stacey, and Yolanda 

correctly identified the procedures to apply by using algebraic manipulation of the absolute value 

function to determine whether they made the shot or not. They processed the absolute value 

function in the path of the ball and determined it to be y =−
12

7
|𝑥 − 6| + 8. They then used or-

dered pair of the hole (9.5, 2) in the absolute value function and determined if they made the 

shot of not. True statement 2 = 2 implied that they made the shot. Use of multiple representa-

tions i.e., graph and algebraic symbol triggered and supported a symbol sense where the vertex 

(6, 8) and the axis of symmetry were correctly identified. Tyron’s demonstrates a deeper concep-

tual understanding of the underlying meaning structure of the signs in the absolute value func-

tion. He makes a logical link between the different elements of the function and uses them to re-

spond to the task question. He makes a connection between the axis of symmetry and the abso-

lute sign |𝑥 − 6| and infers that the initial golf ball position (2.5, 2) and the hole are horizontally 

at equal distance of 3.5 from axis of symmetry 𝑥 = 6 on both sides. In absolute value function, 

“except for the vertex for every y-coordinate there are two x-coordinates”. Tyron then infers that 

he will make the shot because these two ordered pairs (2.5, 2) and (9.5, 2) are same distance 

horizontally from axis of symmetry. Use of multiple representations allowed for the students to 

re-image their conceptual understanding of the absolute value functions, develop a reflective ap-

proach to understanding each sign in the function and make a logical external link between the 

parameters of the functions and the problem content in this task. Representational versatility i.e. 

ability to work seamlessly between representations was demonstrated when Tyron made the con-

nections between the significance of the axis of symmetry and the two ordered pairs. 
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Task 4: Quadratic Functions  

In task 4, the students were given a set of three quadratic function conditions. They were 

then required to use the given information to determine the quadratic function 𝑄(𝑥). Using the 

information given they were also required to answer twelve questions (see figure 18). These 

questions involved: determining the y-intercepts given in different representations; determining 

the absolute max; and determining the meanings and transformations of various symbols in the 

quadratic function.  

 

Figure 18. Task 4 Questions. 

 

Table 13 represents a summary of Ron’s, Tyron’s, Stacey’s and Yolanda’s responses to 

task 4 questions. The summary includes the multiple representations used or referred in the prob-

lem, pseudo-conceptual understanding indicators, and semiotic systems components identified in 

the problem. 
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Table 13. Ron's, Tyron's, Stacey's, & Yolanda's task 4 responses 

Question Response Multiple Repre-

sentations Re-

ferred 

Pseudo-Concep-

tual 

Understanding  

Indicator/s 

Semiotic System  

Component 

Quadratic Function 𝑄(𝑥)
= −3𝑥2 + 2𝑥 + 5 

VD,  AL,  G, N Surface Association S(object) 

(R semantic )   

i. Concavity  Opens down VD,  AL,  G  S(object) 

M(mathematical content) 
ii. y-intercept of 

𝑄(𝑥).   
       (0, 5)                               VD,  AL,  G Artificial Association 

Surface Association 

R(semantic) 

S(process) 

M(informal theory) 
iii. Find 𝑄(0) (0, 5) VD,  AL,  N, G Artificial Association 

Surface Association 
R(semantic) 

S(object) 

M(informal theory) 
iv.  value of  x for 

which 𝑄(𝑥) = 0  
𝑥 = −1  &  𝑥 =

5

3
 

          G Surface Association S(object) 

(R semantic )   
v. Absolute   

max/min  
𝑦 =

16

3
 

VD,  AL,  G ---------------------- R(semantic) 

S(process) 

M(mathematical content) 

vi. Domain for  

     𝑄(𝑥) ≥ 0  
[−1,

5

3
 ] 

VD,  AL,  G Surface Association M(informal theory) 

S(object) 

S(process) 

 

vii Domain for  

  𝑄(𝑥) < 0 
(−∞, −1) ∪ (

5

3
, ∞ )  VD,  AL,  G Surface Association M(informal theory) 

S(object) 

S(process) 
viii. Find  

 𝑄 (−
2

2(−3)
) 

𝑦 =
16

3
 

VD,  AL,  G Template oriented Asso-

ciation 
S (Process) 

M(informal theory) 

M(mathematical content) 
ix. Find domain 

given range as 

(−
22

4(−3)
+ 5).   

1

3
 

VD,  AL,  N, G Surface Association M(informal theory) 

S (Process) 

M(mathematical content) 

R(semantic) 
x.  Compare 

𝑄(30) and 𝑄(40)   
    𝑄(30) > 𝑄(40)   VD,  AL, N,  G Surface Association 

Template oriented Asso-

ciation 

M(informal theory) 

S (Process) 

M(mathematical content) 

R(semantic) 
xi. Compare 

𝑄(−1) and 𝑄 (
5

3
).   

𝑥 =
1

3
 

VD,  AL, N,  G Surface Association M(informal theory) 

S (Process) 

M(mathematical content) 

R(semantic) 
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 Interpretation of Participants’ Task 4 Responses. 

Applying the RBC+C model, all four participants recognized and correctly named and 

identified the parameters:  𝑎 = −3;  𝑏 = 2; and 𝑐 = −3. They then build-with and used these pa-

rameters to determine the quadratic function 𝑄(𝑥) written in standard form 

𝑄(𝑥) = −3𝑥2 + 2𝑥 + 5. The four participants then correctly identified the concavity of 𝑄(𝑥) 

and referenced the leading coefficient ‘a’ being a negative as the justification for the graph open-

ing down i.e. concave down. They all confirmed this using the graphing calculator. The y-inter-

cept of 𝑄(𝑥) was correctly identified by all the four participants though they had varied methods 

of finding the y-intercept as well as 𝑄(0). Prior to referring to the graph on their calculator that 

was projected on the smart board from the calculator, all the four students gravitated towards 

processing the y-intercept by substituting 0 in the function 𝑄(𝑥). They then determined that the 

y-intercept was 5 i.e.(0, 5). In building –with epistemic action I also observed the significance of 

the sign 𝑄(0) becoming apparent when Stacey for example moved back and forth (inscribing on 

the board the position of the y-intercept on the graph) between the graph, the quadratic func-

tion 𝑄(𝑥) = −3𝑥2 + 2𝑥 + 5 and recognizing that y-intercept was equivalent to the constant (5) 

in the standard form function i.e. 𝑄(0) = 𝑐. Tyron also recognized and declared that the y-inter-

cept was “𝑄(0) = 𝑐 and y = c” line 8 (see appendix I). To find the value of x for which 𝑄(𝑥) =

0, they build-with previous knowledge and used the factoring method to find the x-inter-

cepts (−1,0) & (
5

3
, 0). Stacey immediately recognized that she was looking for the x-intercepts 

and produced a new construct by inferring that 𝑄(𝑥) = 0 represented the output or the y-coordi-

nate that was equal to zero. They transformed the standard form into intercepts form 

(−3𝑥 + 5)(𝑥 + 1) = 0 facilitate the identification of the x-intercepts. Students’ response ques-

tion (iv.) indicated that the significance of sign 𝑄(𝑥) = 0 was not immediately recognized prior 
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to using the graph. Using multiple representation that included; the graph on calculator, verbal 

description, and algebraic expressions of 𝑄(𝑥), supported the building-with, and facilitated the 

students’ ability to re-image and recognize that there were several form of representations of the 

same mathematical object i.e. the x-intercept. Evidence of superficial associations when students 

showed familiarity with the signs 𝑄(𝑥) = 0, yet their responses indicated unfamiliarity with its 

significance. The four students’ undue focus was on the symbols in this task, and non- attend-

ance to their significance was indication of pseudo-conceptual understanding. They transitioned 

from surface association type of pseudo-conceptual understanding where students demonstrated 

superficial non-reflective approach to reading the signs 𝑄(0) & 𝑄(𝑥) = 0, to a more reflective 

approach to understanding the meaning of the signs 𝑄(0) &  𝑄(𝑥) = 0. This transition repre-

sented students’ construction of new meaning of the signs 𝑄(0) &  𝑄(𝑥) = 0. Ron’s response “it 

looks like the answer to the  𝑄(𝑥) = 0 represents the x-intercepts” line 17 see appendix I. This 

pattern of unreflective and non-attendance to the significance or the meaning of the sign, fol-

lowed by multiple representation use facilitating new insights into the meaning was evident in 

the other questions in this task. Unreflective response was demonstrated by students gravitating 

towards and privileging algebraic processing before establishing the underlying meaning struc-

ture of the mathematical signs in the task. For example in responding to question x. i.e., compar-

ing 𝑄(30) and 𝑄(40) all the four students used the algebraic processing of the two symbol to 

compare the value. However examining their responses and reflecting on; the graph, end-behav-

ior and the symbols they recognized that the end behavior written algebraically 𝑎𝑠  𝑥 → ∞, 𝑦 →

−∞ 𝑎𝑛𝑑 𝑎𝑠 𝑥 → −∞, 𝑦 → ∞ had clues and ideas that would have reduced their cognitive effort 

in determining the comparing 𝑄(30) and 𝑄(40). Use of multiple representations afforded the 

students with an opportunity to construct new meaning for the end behavior symbol. In another 
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example, in question viii, the students were required to find 𝑄 (−
2

2(−3)
) where the values of the 

leading coefficient 𝑎 = −3 and linear coefficient 𝑏 = 2 have been explicitly included in the in-

put of the function. Prior to looking at the three representations i.e., graph, the sign 

𝑄(𝑥) = −3𝑥2 + 2𝑥 + 5 , and the sign 𝑄 (−
𝑏

2(𝑎)
) together, all four students gravitated to re-

sponding to the question by algebraic processing. The later recognized that the sign 𝑄 (−
𝑏

2(𝑎)
) 

represented the output at the absolute max which was equal to 
16

3
. 

  Analysis of Task 4 Responses.  

Pseudo-conceptual understanding associated with surface and template association was 

evident in all the four students’ responses prior to utilizing multiple representations. In addition 

their responses to questions like x., demonstrated a conscious and genuine effort to action but did 

not systematically reflect upon the underlying meaning structures of the signs in the task. They 

all demonstrated ability to use the mathematical sign correctly in processing algebraically. How-

ever in questions that required some understanding of the meaning structure in order to reduce 

the cognitive effort required to solve the task, challenges were evident prior to use of multiple 

representations. In semiotic theory the students privileged the second component of the semiotic 

sign i.e. the transformational rules and paid little attention to the other two components. Use of 

multiple representations (i.e. inscribing on the graph, comparing graph to symbols, and reevalu-

ating verbal descriptions) afforded the students opportunity to re-image their understanding and 

create new insights into the meanings of the signs used thus allowing the four students to gener-

ate new interpretations of the signs used. Students re-imaging of their understanding of the math-

ematical object  𝑄(𝑥) was demonstrated by their reified understanding of the function. Reified 

understanding is what results when mathematical entities are perceived as an object at one level 
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are also reconceived as process at another level (Sfard, 1991). Students transitioned their under-

standing of y-intercept written in functional form  𝑄(0) from a mathematical object to a process 

as a position on a graph (y-axis) with particular significance. 

 

Task 5: Quadratic Function Application Kilauea Iki Crater Hawaii  

Task 5 involved application of quadratic functions. The task was adapted from Larson 

(2004) Algebra II textbook that the students were using. The students were required to examine a 

picture that showed the path of a typical lava fragment while the fragment was in the air. They 

were then required to use the information on the graph to respond to eight questions that fol-

lowed. Figure 19 shows the graph of path of the lava fragment including the required task 5 

questions.   
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Figure 19. Task 5 Application of Quadratic Functions: Lava fragments from Volcanic 

cinder Pua Puai in Hawaii.  

 

 

Description: This task was part of the Unit II on Application of Quadratic Function and 

Piecewise Function test review. The students were required to examine the picture (graph) which 

models a path of a typical lava fragment while in the air. This lava fragment was from a volcanic 

eruption in Pua Puai in Hawaii. They were then required to use the information from the picture 

to answer the questions that followed.  
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Table 14. Summary of Ron's, Tyron's, Stacey's, & Yolanda's responses to task 5. 

Question Response Multiple Rep-

resentations 

Referred 

Pseudo-Concep-

tual 

Understanding  

Indicator/s 

Semiotic System  

Component 

Intercept Form 
 

VD,  AL,  G, N Surface Association S(object) 

R( semantic )   

Vertex Form 

 
VD,  AL,  N, G  S(object) 

(R semantic )   

Standard Form 

 
VD,  AL,  N, G  S(object) 

(R semantic )   

i) time in air           

           21.875s 

VD,  AL,  G Surface Association R(semantic) 

M(mathematical content) 

M(informal theory)  
ii) max height    175

16
 

VD,  AL,  N, G Surface Association M(informal theory) 

R(semantic) 

iii) 

stretch/shrink factor  
Vertical stretch 

𝑎 = −16 
 

VD,  AL,  N, G ---------------------------- M(informal theory) 

S(object) 

iv) 

y-intercept of H(t)   
(0, 0) VD,  AL,  N, G Surface Association S(process) 

M(mathematical content) 

v) 

x-intercept/ of H(t)    
(0, 0) & (21.875) VD,  AL,  G Artificial Association R(semantic) 

S(process) 

M(mathematical content) 

M(informal theory) 
vi)  

Domain 𝐻(𝑡) ≥ 0  
[0 , 21.875] 

 
VD,  AL,  N, G Artificial Association R(semantic) 

S(process) 

M(mathematical content) 

M(informal theory) 
vii)  

Height after 10s. 
1900𝑓𝑡   VD,  AL,  N, G       Surface Association R(semantic) 

S(process) 

M(mathematical content) 
viii) 

time taken to reach 

1000ft  

3.379s & at 18.5s VD,  AL,  N, G Surface Association R(semantic) 

S(process) 

M(mathematical content) 

Key: VD: Verbal Description;  N: Numerical; AL: Algebraic; G: Graphing;  

S: Mathematical sign; R: Transformational rule; M: Meaning structure of the sign.     

 

 

 

Each student started the task by reading it out loud. In the first part of the task, each stu-

dent was required to develop a quadratic function in three forms; a) intercept, b) vertex, and c) 

standard form using the given information. All four students initially approached solving task 5 

questions by writing the three quadratic function models and substituting the ordered pairs (0, 0) 

and (21.875, 0). Students were free to use a calculator (TI 84 Plus) if they so wished. Ron, 

Stacey, and Yolanda had the correct response for the intercept form of the quadratic function 
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𝐻(𝑡) = −16𝑡(𝑡 − 
175

16
) that the lava modeled. They developed the correct intercept function by 

substituting (20, 600) in the quadratic intercept form model 𝐻(𝑥) = 𝑎(𝑥 − 𝑝)(𝑥 − 𝑞).  

 

 

Figure 20. Portion of Tyron’s Transcripts of Task 5 Responses. 

Tyron’s intercept model was incorrect. He used the formula 𝐻(𝑥) = (𝑥 − 𝑝)(𝑥 − 𝑞) re-

sulted in the intercept function  𝐻(𝑡) = 𝑡(𝑡 − 
175

16
). To confirm their responses, students were en-

couraged to graph all the three forms of the quadratic functions and compare the results. Tyron’s 

intercept form graph did not match the graph of the other two models. As he reworked the inter-

cept form again, he discussed the problem context (see figure 20). 
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 Interpretation of Task 5 Tyron’s Responses.  

In applying the RBC+C model, Tyron recognizes that his intercept model does not match 

the given lava fragment path. Tyron’s intercept model of the quadratic function generates an un-

expected graph with concavity that does not march the model in the original problem or the 

graphs of the other two (vertex, and standard form). Tyron builds-with when he understands the 

task and develops a strategy to solve the problem he just discovered. The graph (representation) 

oriented differently from the rest causes Tyron to re-examine, reflect and reimage his under-

standing of the intercept form: “I think I might have missed out something” (line 2). He reexam-

ines his tables of value generated by the three quadratic form. He realizes that the table of values 

from the intercept form also differs from the rest. He then compares certain values in the table of 

value to the picture (graph) which models a path of a typical lava fragment. His parameter ‘a’ 

value is missing and recalculates and corrects his intercept form to   𝐻(𝑡) = −16𝑡(𝑡 − 
175

8
). 

Pseudo-conceptual behavior (surface association) is evident in Tyron’s undue focus on other 

parts of the intercept form and non-attendance to the parameter ‘a’ which is a significant part of 

the mathematical object  𝐻(𝑥) = 𝑎(𝑥 − 𝑝)(𝑥 − 𝑞). Use of multiple representation i.e. graphical, 

verbal descriptions, table of values, and algebraic symbol influences the identification of this 

pseudo-conceptual understanding and a construction of a renewed insight of the significance of 

the parameter ‘a’ in the model. 

 Analysis of Task 5 Tyron’s Responses.  

Pseudo conceptual behavior identified involved surface association. Tyron did not pay 

attention to a significant attribute of the mathematical sign 𝐻(𝑡) = 𝑎(𝑡 − 𝑝)(𝑡 − 𝑞) i.e. the verti-

cal stretch factor “a”. In this quadratic function semiotic system, the mathematical sign 𝐻(𝑡) =

𝑡 (𝑡 −
175

8
) used by Tyron is missing a significant feature ‘a’. The use of multiple representations 
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(graph, verbal description, algebraic symbol) reoriented and re-imaged Tyron’s understanding of 

the significance of the parameter ‘a’ symbol in the quadratic function intercept form 𝐻(𝑥) =

𝑎(𝑡 − 𝑝)(𝑡 − 𝑞). Tyron repeatedly pointing at his initial intercept form graphs indicated that his 

attention moved back and forth between the meaning of ‘a’ sign and the graphical representation. 

This exposure and use of multiple representations supported the identification of the significance 

of an important feature ‘a’ in a mathematical sign intercept form 𝐻(𝑡) = 𝑎(𝑡 − 𝑝)(𝑡 − 𝑞). The 

use of multiple representations provided Tyron an opportunity to reflect and re-image his under-

standing of the underlying meaning structure of the mathematical sign. Transition from pseudo 

conceptual understanding to conceptual understanding is evident when he recalculates, refines 

and rewrites his intercept form function correctly 𝐻(𝑡) = −16𝑡 (𝑡 −
175

8
). He establishes the 

logical link between the variables (sign components) in the quadratic function and the meaning 

of the parameter as demonstrated in the graph. He confirms his refined intercepts form function 

by graphing it on TI calculator. This graph matches the graphs of the other two quadratic form 

models. Refining, rewriting and confirming his answer represents a transition from pseudo-con-

ceptual to conceptual understanding. 

 Description of Task 5 Part (ii). 

The second part of task 5 students were required to respond to question part (i.-viii).  In 

part (i) students were asked to determine the time it took for the lava fragment to be in the air. 

All students correctly identified the length of time the lava fragment was in the air (i.e. 21.875 

seconds). Ron, Tyron, and Yolanda used the ordered pair (0,0) initial time when lava fragment 

was released and (21.875, 0) end of the lava fragment path time on the graph to identify this 

length of time. However Stacey gravitated to solving the problem algebraically by solving the 

equation 0 = −16𝑡 (𝑡 −
175

8
) and obtaining the answer (0,0) & (21.875,0).   
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 Interpretation Task 5 Part (ii) Responses. 

When asked how she could have used the graph to easily identify the time taken by the 

lava fragment in the air, Stacey appeared surprised. Her response “I think it is just easier to sub-

stitute zero for y in this function (pointing at the intercept function form) and calculate for t.” line 

10. Stacey had not made a connection between the path of the graph and the algebraic sign inter-

cept form  𝐻(𝑡) = −16𝑡 (𝑡 −
175

8
). Stacey moved back and forth between the information on the 

graph and the intercept form function by retracing the path of the fragment and highlighting the 

ordered pairs  (0, 0)& (21.875,0).  She looked at her solution 
175

8
  and correctly recognized and 

identified it on the graph by making an inscription. Making inscriptions on the graph was 

Stacey’s attempt to build-with by relating and making a connection between the symbolic repre-

sentation and the graphical representation of the mathematical object quadratic function in inter-

cept form. She then constructed a new understanding when she realized that she could have eas-

ily determined the same answer by understanding the meaning of each component in the quad-

ratic intercept form function that she used i.e. 𝐻(𝑡) = −16𝑡 (𝑡 −
175

8
).  The inscriptions she 

made and the verbal statement “Now I see that this point (pointing at the end of the graph with 

ordered pair (21.875,0) inscribed) represents same thing as this (pointing at the   
175

8
) in the in-

tercept form function”  line 15 is evidence of her generating a personal meaning of the mathe-

matical sign. 

 Analysis Task 5 Part (ii) Responses. 

The pseudo conceptual understanding involved is surface attention. This was evident in 

Stacey’s nonattendance to the meaning of the mathematical sign; a) (𝑡 −
175

8
) and b) ordered 

pair (21.875, 0) in the graph. The semiotic system component involved is the identification of 
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the underlying meaning structure in the mathematical sign 𝐻(𝑡) = −16𝑡 (𝑡 −
175

8
). Though her 

algebraic transformational rules involving the procedure for calculating the intercepts were cor-

rect, there was evidence of not taking advantage of computational offloading a significant indica-

tor of conceptual understanding. Pre-use of multiple representation evidence of absence of repre-

sentational versatility. Computational offloading refers to “the extent to which different external 

representations reduce the amount of cognitive effort required to solve equivalent problems” 

(Ainsworth, 2006. P.185). Simultaneous use of multiple representations: (a) the graph that in-

volved making inscriptions on the picture to indicate the time when the lava hit the ground; (b) 

algebraic symbol(𝑡 −
175

8
); and (c) verbal description of the intercepts, was an indication of 

Stacey’s attempt to make sense and construct a personal interpretation and meanings of the vari-

ous attributes of the mathematical sign 𝐻(𝑡) = −16𝑡 (𝑡 −
175

8
). 

  Interpretation Task 5 Part (iii) Responses.  

In part (iii) students were required to determine whether the function 𝐻(𝑡) had a vertical 

stretch or shrink factor and describe its significance in the context of the lava fragment problem. 

All four students correctly recognized and identified that the quadratic function 𝐻(𝑡)had a verti-

cal stretch factor ‘a’ of 16. They were able to correctly tell that the number 16 represented the 

stretch factor and the negative (-16) represented the concavity (concave down) of the graph of 

the quadratic function. Ron build-with and offered an addition explanation or insight in explain-

ing that the vertical stretch ‘a = 16’ implied that the lava fragment path was “slim and a higher 

maximum height”. “I think -16 also implies that the curve is thinner and has a higher maximum 

height than if it had a number like -1”   
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Interpretation: Ron had a grasp of the significance of the vertical stretch factor ‘a = -16’. 

He then was able to construct a connection between the algebraic function 

𝐻(𝑡) = −16𝑡2 + 350𝑡 to the graph by suggesting that concavity was “thinner” because the ab-

solute value of ‘a’ was 16. He further suggested that the path of the lava fragment would be 

‘wider’ if the absolute value of the vertical stretch factor was less than 16.  

  Analysis Task 5 Part (iii) Responses. 

The semiotic system component identified in this analysis is the identification of the un-

derlying meaning structure of the mathematical sign 𝐻(𝑡) = −16𝑡2 + 350𝑡. Using multiple rep-

resentations: (a) the graph (picture); (b) the generated algebraic symbol 𝐻(𝑡) = −16𝑡2 + 350𝑡 ; 

and (c) the verbal description in the informal ‘theory’. Third semiotic system component was ev-

ident when Ron constructed and developed an informal statement ‘theory’ i.e. “the greater the 

absolute value of ‘a’ the thinner the path of the lava fragment”. This informal ‘theory’ served as 

the meaning structure that Ron used in order to construct and make sense or generate a personal 

interpretation of the symbol ‘a’ in the quadratic function written in standard form. It is this un-

derstanding that Ron used to later to explain the significance of ‘a’ in the context of the problem. 

This informal theory laid the groundwork for a more formal understanding and explanation of 

the various component of the semiotic system 𝐻(𝑡) = −16𝑡2 + 350𝑡. I inferred that multiple 

representations afforded Ron to be reflective about the response and the interpretation of his un-

derstanding of concavity. Ron was able to transfer his understanding of ‘a’ to offer an explana-

tion of the nature and structure of the concavity of the path of the lava fragment. The graph (pic-

ture) supported Ron’s understanding of the significance of parameter ‘a’ by refining his image of 

how the path of the lava fragment is related to the mathematical sign 𝐻(𝑡) = −16𝑡2 + 350𝑡. 
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 Description Task 5 Part (iv.), (v) and (vi) Responses.  

In part (iv.) students were to determine the y-intercept of the function 𝐻(𝑡) and describe 

the significance of the y-intercept in the context of the lava fragment problem. All four students 

correctly recognized and identified the y-intercept as(0, 0). They all used the ordered (0, 0) in the 

graph (picture) and offered the explanation that at y-intercept the x-coordinate of the ordered pair 

is zero. The significance of the y-intercept was also correctly identified as implying the starting 

point (i.e. time) of the lava fragment release from the ground. 

In part (v.) students were asked to determine the x-intercepts of the function 𝐻(𝑡) and de-

scribe the significance of the x-intercept in the context of the lava fragment problem. The four 

students recognized and offered correct responses to the x-intercepts as (0,0) 𝑎𝑛𝑑 (21.875, 0) or 

(
175

8
, 0).  Ron, Tyron, and Stacey further build- with their understanding and offered correct ex-

planations to the significance of the intercepts as the time when the lava fragment leaves the 

ground and 21.875 as the time it takes for the fragment to hit the ground again. However in 

Yolanda explanation, she used the term “distance it takes for the lava fragment to hit the ground 

again”. 

 Interpretation Task 5 Part (iv.), (v), and (vi) Responses. 

Yolanda incorrectly responded to the explanation of the significance of the number 

21.875. The unit of measurements were time independent variable and height the dependent vari-

able.  Yolanda did not make immediate connection between 𝐻(𝑡) and the problem context. To 

Yolanda the symbol 𝐻(𝑡) still represented the horizontal distance that the lava fragment covered. 

Pseudo-conceptual understanding demonstrated was artificial association where she associated 

the unfamiliar sign 𝐻(𝑡) with the familiar sign 𝐻(𝑥) which represents distance covered. Yolanda 

demonstrated a conscious action i.e. verbal description of 𝐻(𝑡), but did not systematically reflect 
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upon her statement. In using the symbol 𝐻(𝑡), this reminded her of the mathematical sign 𝐻(𝑥) 

which she was familiar with and was epistemologically more accessible to her. The connection 

between the two sign was artificial within the context of the problem. In part (vi.), the students 

were required to find the domain for which 𝐻(𝑡) ≥ 0 and explain the significance of the mathe-

matical sign 𝐻(𝑡) ≥ 0 within the context of the problem. All four students responded correctly to 

the domain as [0, 21.875]. However Ron’s solution method involved the use of the intercept 

function 𝐻(𝑡) = −16𝑡(𝑡 −
175

8
) to find the domain.  

Interpretation: In retracing the graph and inscribing on the x-intercepts, Ron was attempt-

ing to explore the connection among; the term domain (verbal description), the symbols ordered 

pairs (0, 0 ) 𝑎𝑛𝑑 (21.875, 0 ), and their inscription on the graph. His attention moved between 

his domain response  [0, 21.875] and the graph. He constructed a new understanding and real-

ized that the symbol was also represented in the graph and offers the following “I don’t know 

why I took the long route calculating the domain the answer was right here on the graph”. By en-

gaging Ron in further reflection and re-examination of the significance of the term domain in this 

problem context, Ron was able to make a build-with and construct a personal connection of the 

meaning of the term domain as the time taken by the lava fragment in the air. 

 Analysis Task 5 Part (iv), (v) and (vi) Responses.  

The component of the semiotic system that was referenced by Yolanda was the mathe-

matical sign (both the verbal and the algebraic sign 𝐻(𝑡)) that was used to represent the x-inter-

cepts. A reflective approach and a re-examination of the symbol 𝐻(𝑡) and looking at the inde-

pendent variable (t) within the context if the problem, Yolanda was able to refine and construct a 

new understanding of the significance of the sign 𝐻(𝑡) and the interpretation within the context 
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of the problem. The semiotic systems components invoked in Ron’s response were: (a) the trans-

formational rule; and (b) the underlying meaning structures (informal theory). He demonstrated 

competence in processing the quadratic function in intercept form in order to determine the do-

main[0, 21.875]. This was evidence of his understanding of the transformational rule semiotic 

system component. Though he was comfortable processing the domain algebraically, the under-

standing of the underlying meaning structure of the system was missing. By referencing the 

graph (picture) Ron should have realized that the ordered pair (21.875, 0) represented the do-

main, hence no need to engage in algebraic manipulation. Computational offloading opportunity 

which refers to the extent to which multiple representations reduce the amount of cognitive effort 

required to solve the problem was missed. Loose associations between the verbal, algebraic and 

the graphical representation of the concept of domain. Ron later reflected and re-examined the 

end of the path of the lava and realized that the solution to the domain was in the picture. 

 Description Task 5 Part (viii) and (ix).  

In Part (viii.) the students were required to determine the height of the lava fragment after 

10 seconds. All the four students recognized and correctly determined the height as 1900 feet by 

substituting 10 in the intercept form 𝐻(10) = −16𝑡(𝑡 −
175

8
). They all responded to 𝐻(10) =

1900 𝑎𝑛𝑑 (10, 1900) as the correct mathematical sign they would use to indicate height after 10 

seconds.  

In part (ix) students were required to determine the amount of time it took the lava frag-

ment to reach a height of 1000 feet above the ground. All four students used the standard form  

𝐻(𝑡) = −16𝑡2 + 350𝑡 to algebraically determine the time at height 1000feet. They then used a 

graphing calculator to confirm their answers. In describing the mathematical symbol that they 
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would use to show the height at a given time, they all used both the symbol 𝐻(3.379) = 1000  

and (3.379, 1000).  

 

Figure 21. Portion of Transcript Ron’s Response to Question viii. 

 

In describing if this was the only time that the lava fragment was at 1000feet, Ron, Tyron 

and Yolanda responded that there could be another time that the lava fragment was at a height of 

1000feet. Ron explanation which summarizes the general response follows. 

 Interpretation Task 5 Part (viii) and (ix). 

Using algebraic manipulation of the standard quadratic function i.e. the quadratic for-

mula, all the four students were able to determine the correct time the lava fragment was at a 

height 1000feet. Loose association between the graphing and algebraic representation (standard 

quadratic function) was evident in all the four students’ explanations. Looking at the standard 
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quadratic function that they all referenced, the expectation was that they would make deduction 

about the various properties of the function from the graph. However they only focused on the 

algebraic manipulation. Ron used an extra approach. Upon further re-examination and reimaging 

he constructed a new understanding of the path of the lava fragment evidenced by his inscribing 

on the graph and making a statement that suggested some indication of an association between 

the graph and the algebraic representation. “I think there are two times when the fragment is at a 

height 1000feet” line 1.  A closer and reflective look at his responses and the graph which in-

cluded; several pauses, inscription on the graph and reference to his algebraic manipulation, re-

sulted in his making the following conjecture “except at the vertex, for every height there are two 

x-values” line 10. 

 Analysis Task 5 Part (viii) and (ix).  

The semiotic system component of understanding the underlying meaning structure of the 

quadratic function in standard form was missing from three students; Tyron, Stacey, and 

Yolanda. The link between the various components of the mathematical sign 

 𝐻(𝑡) = −16𝑡2 + 350𝑡 were missing. These included: (a) relationship between the graph and 

the function; and (b) the meaning of the various signs that make up the quadratic function. Using 

the multiple representations i.e., the graph, verbal descriptions and algebraic symbols invoked in 

the students the need to re-image, re-examine and reflect on the underlying meaning structure in 

the transformational rule (processing the solutions). This included; supporting Ron’s understand-

ing of why the quadratic equation 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
  yielded two solutions, significance of the 

symbol ± in the quadratic equation formula. By; rewriting the quadratic function next to the 

graph, inscribing on the graph and marking approximately the position on the lava fragment at 

1000feet and drawing a horizontal line from the 1000feet y axis position, Ron was trying to 
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make sense of the meaning and the connection between the two representations (graph and alge-

braic symbol). The movement between the graphical representation and the mathematical sign 

was an attempt by Ron to make sense of the mathematical object 𝐻(𝑡) = −16𝑡2 + 350𝑡.  Rei-

fied abstraction Sfard (1991) which is the results of mathematical entity e.g. quadratic function 

𝐻(𝑡) is perceived as a process at one level and as an object at another level was evident in Ron’s 

work and explanation of two x-values for every y coordinate in a quadratic function. From a se-

miotic theory perspective, by Ron generating an informal statement “except at the vertex, it looks 

like for every height y, there are two X maybe that is why this sign has a degree 2” line 12, is an 

attempt to understand and construct the underlying meaning structure of the mathematical sign 

𝐻(𝑡) = −16𝑡2 + 350𝑡. I can infer that the use of multiple representations supported the stu-

dent’s construction of new insight of the quadratic function by providing an opportunity for par-

ticipants: (a) re-image their understanding of the quadratic functions; (b) develop a reflective ap-

proach to understanding the quadratic function; and (c) develop representational versatility in un-

derstanding the internal and external links in the quadratic function.    
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6  SUMMARY AND  DISCUSSION 

“The transition from signifier-as-an-object-in-itself to signifier-as-a-representation of an-

other object is a quantum leap in a subject’s consciousness.” (Sfard, 2000, p. 79) 

Summary and Discussion  

Following is a discussion of the research study findings including a discussion of how the 

emerging themes addressed the three sub-questions. Utilizing semiotic systems theory (Ernest, 

2006), the focus of this study was to understand how algebra II students’ use and exposure to 

multiple representations influenced their conceptual understandings of the following families of 

functions; piecewise, absolute value and quadratics. In particular the focus was to better under-

stand how identification and use of the different semiotic systems components i.e., mathematical 

signs, mathematical transformational rules, and the underlying meaning structures embedded in 

the mathematical signs, interweaved and facilitated their understanding of the three families of 

functions.  

The research question in this study was: How does exposure to and use of multiple repre-

sentations influence algebra II students’ understanding and transfer of their algebraic concepts? 

Specifically the following sub-questions were examined: 

1. How does the use of multiple representations influence students’ identification of 

pseudo-conceptual understanding of algebraic concepts? 

2. How does the use of multiple representations influence students’ transition from 

pseudo-conceptual to conceptual understanding? 

3. How does the use of multiple representations influence students’ transfer of their 

conceptual understanding to other related concepts?  
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In response to these three sub-questions, analysis of students’ written and verbal re-

sponses revealed three emerging themes in regard to student’s conceptual understanding when 

using or and exposed to multiple representations. These themes were: (a) re-imaging of concep-

tual understanding; (b) reflective approach to sign receptions and productions; (c) representa-

tional versatility of mathematical signs. 

 Re-imaging of Conceptual Understanding. 

Exposure to and use of multiple representations promoted students’ re-imaging of their 

conceptual understanding of piecewise, absolute value and quadratics families of functions. Re-

imaging themes emerged through observing how multiple representations promoted the follow-

ing constructs; abstraction, generalizations, and transparency between representations. Abstrac-

tion refers to process of creating mental entities that served as basis for new action (Kaput, 

1989). Participants being involved and exposed to different means of representing same con-

cepts, provided them with a rich and diverse source of representations (Ainsworth, 2006), which 

they then used to translate and construct references across representations. For example in task 3 

(Pool table activity), Tyron used; algebraic symbol |𝑥 − 6|, ordered pairs (2.5, 2) & (9.5, 2) and 

axis of symmetry to infer that points at the same horizontal distance from axis of symmetry on 

either sides have the same y-coordinate. He later generalized that for absolute value function, ex-

cept at the vertex, for every y-coordinate there exists two x-coordinates. From a semiotic per-

spective exposure to multiple representations facilitated understanding that exposed the underly-

ing meaning structures in absolute value function in task 3. The transparency between represen-

tations construct was evident through reified abstraction (Sfard, 1991). Reified abstraction is 

what results when mathematical entities are perceived as an object at one level are also recon-

ceived as process at another level (Sfard, 1991). For example in task 5 (Lava Fragment Task), 
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the domain symbol 𝑄(𝑡) ≥ 0 was perceived by Stacey as an object [0, 21.875]. Through multi-

ple representation i.e., verbal description, graph, and algebraic symbols in the task, Stacey was 

able to translate meaning of the symbol 𝑄(𝑡) ≥ 0 to represent the process time taken by the lava 

fragment to hit the ground again.  

With exposure to different representations of the same concept, participants developed 

clearer mental images of these families of functions. These mental images later facilitated the 

participants’ conceptual understanding and transfer of constructs like; domain and range in task 

1, significance of end-behavior in comparing two outputs in task 2, significance axis of sym-

metry in task 2 & 3, and the parameters absolute-value and quadratics functions. They potentially 

were able to visualize for example the link between the end-behavior and comparison of two out-

puts without necessarily engaging in long algebraic manipulations. Consistent with Chahine 

(2013), finding in the study on the impact of using multiple modalities, I also observed that the 

participants mental images that were developed during exposure and interaction with multiple 

representations later emerged as skills and not as mere recall activities. This was demonstrated in 

their verbal and written responses. For example in task 2, Ron had a clearer perspective of the y-

intercepts presented in; algebraic form 𝑃(0) = 10.5 &  (10.5, 0), graphical form as point on the 

y-axis, and algebraic form as a symbol/number 10.5 in the function 𝑦 = −
3

2
𝑥 + 10.5. 

 Reflective Approach to Sign Receptions and Sign Productions. 

Use of multiple representations created an opportunity for the participants to shift their 

approach to understanding and processing of the absolute value functions, piecewise functions 

and quadratic functions from unreflective exploration of mathematical tasks to one that tapped 

into their regulatory powers (Ernest, 2008b). Unreflective exploration of mathematical tasks in-
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cluded reliance on; typical examples (Schoenfield, 1992), and social cues (Ernest, 2006) to pro-

vide the required responses and answers to the mathematical tasks. Tapping on to regulatory 

power the participants shifted their sign receptions and productions approach to a careful and 

systematically reflected upon approach to responding to mathematical tasks that included plan-

ning, monitoring, and controlling their responses to assigned tasks. Prior to engaging with multi-

ple representations (verbal descriptions, algebraic symbols, numerical, and graphing) the partici-

pants conceptual understanding was characterized by: (a) reaction to their first associations to 

mathematical tasks without reflecting on the mathematical signs, mathematical transformational 

rules, and underlying meaning structures in a task; (b) lack of control mechanisms that triggered 

their sense making mechanisms; and (c) absence of meaning effort (Vinner, 1997; and Berger 

2006). Equally important was an observation that prior to using multiple representations students 

continued to tap on to their previous formal knowledge and understanding of semiotic systems 

like the linear functions to respond to tasks involving the three functions mentioned above. For 

example the notion of domain and range in task 2 involved a careful transition in their under-

standing of domain and range in linear function to piecewise functions where the definition of 

the functions varies with the independent variable.  

In the study I observed the influence of exposure to multiple representations on tapping 

into the participants’ ability to regulate their mathematical activities during the two phases of un-

derstanding/ solving a mathematical task. These was during: (a) sign reception phase; and (b) 

sign production phase. Regulating mathematical activities in the sign reception phase involved 

spending time and making effort to explore and create the meaning of the mathematical signs in 

a given task. It included a reflective and controlled approach to the reading of mathematical signs 

and making and attempt to make sense of their meaning. It also included accessing a repertoire 
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of mathematical transformation rules and a reservoir of meaning structure and applying them in 

completing an assigned task. 

Regulating sign production phase involved self-monitoring and self-reflection of the 

mathematical signs that they produced. It also involved participants’ judgement on whether the 

mathematical signs they produced followed the conventionalized and institutionalized structuring 

of mathematical rules of formal production. This observation was consistent with Montiel, et.al. 

(2009) observation in their study of the use of onto-semiotic approach to identify and analyze 

mathematical meanings. In their study, discrepancy between institutional and personal meanings 

of mathematical concepts was detected in their participants’ verbal expressions and interpreta-

tions of properties of single and multivariate functions. In this study the regulatory power was 

evident when the participants consistently asked reflective questions privately or loudly as they 

processed the solutions to the assigned tasks. This was suggestive of self-monitoring and self-

regulation of their problem solving problem (Ernest, 2006) an essential characteristic in concep-

tual understanding. 

 Representational Versatility of Mathematical Signs.  

The third theme that emerged in the findings was the potential representational versatility 

of mathematical signs in students’ verbal and written responses. Representational versatility is 

described as the ability to seamlessly work with and between representations as students engage 

in procedural and conceptual interaction with representations (Thomas, 2008). Noticeable behav-

ior that indicated this theme was the identification of computational offloading opportunities 

with justification. I identified three construct that formed these theme: (a) activation retrieval 

processes; (b) essential relation focus; and (c) efficient and enhanced analysis.  
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Activation or triggering of retrieval process allowed students to conveniently search for 

information that otherwise would not have been obvious using one representation. For example, 

use of multiple representations refocused the manner in which students dealt with and used the 

notion of end behavior in a manner that could not be inferred or used in the object itself. In task 

4, comparing 𝑄(30) 𝑎𝑛𝑑 𝑄(40) of a quadratic function in which the output were out of the 

graph (10 by 10) range required computational effort to compare. Essential relation focus al-

lowed students to see the applicability conditions of a representation. This involved identifying 

the representations that were appropriate for the assigned task. Efficient and enhanced analysis 

construct involved students’ ability to focus on more creative forms of generalizations in addi-

tion to standard generalization. For example, in the quadratic function task 5 (Lava Fragment Ac-

tivity), students were able to generalize that for every y-value there are two values of x except at 

the vertex. They then extended this generalization to determine the values of times at a given 

height of 1000ft.  

I inferred that exposure to and use of multiple representations supported students’ repre-

sentational versatility ability which in turn facilitated the identification of computational offload-

ing opportunities. These they did by; activating the retrieval process, focusing on the essential 

relations in multiple representations, and analyzing and generating effective generalizations. 

Computational offloading refers to the extent to which an activity reduces the amount of cogni-

tive effort required to solve a problem. I argue that identification of computational offloading op-

portunity that is justified by a high quality self-explanation (Roy & Chi, 2005) is an indication of 

conceptual understanding. High quality self-explanation refers to statements that demonstrate the 

generation of inferences, integrating phrases, and various comments that reflect deep analysis of 
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a concept (Roy, & Chi, 2005). This argument follows from the position that in conceptual under-

standing; the internal links i.e., the link between the different properties and attributes of a con-

cept or a mathematical object are consistent and logical, and the external link i.e., the link be-

tween that concept and other concepts are also consistent and logical. (Vygotsky, 1994). Further 

informed by Sfard (2000) notion that conceptual understanding is demonstrated when students 

attend to a mathematical object in its entirety and not just as a fragmented aspect of an object, I 

inferred that the use of multiple representations influenced and supported students explanations 

of the connections and the links between the different attributes of the three functions; absolute-

value function, piecewise function, and quadratic function. Students’ oral and written explana-

tions after an interaction with multiple representations, reflected a logical link: (a) internal links 

between the different explicit elements of a mathematical objects e.g. the parameters in the abso-

lute- value functions 𝑦 = 𝑎|𝑥 − 𝐻| + 𝐾; and (b) external links of implicit elements of the same 

objects like the domain, range, and end behavior.  

For example in task 2 use of multiple representations provided participants with an op-

portunity to make logical link between the end behavior sign 𝐴𝑠 𝑥 → ∞, 𝑦 → ∞, 𝑎𝑠 𝑥 →

−∞, 𝑦 → ∞ , the verbal description of the end-behavior, and the ordered pairs P(12) 𝑎𝑛𝑑 𝑃(20). 

The participants were able to compare the values of  𝑃(12) 𝑎𝑛𝑑 𝑃(20) and draw conclusion 

that 𝑃(12) < 𝑎𝑛𝑑 𝑃(20) based on the information from the end behavior. This logical link re-

duced the amount of cognitive effort that was required to calculate and process 

both 𝑃(12) 𝑎𝑛𝑑 𝑃(20) for comparison purposes. For example in task 2, the internal link of pa-

rameters of the graph of the function began to make more sense to the participants when they had 

an opportunity to interact with the graph, verbal descriptions, table of value and the algebraic ex-

pression of the function. 
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Use of multiple representations supported students’ logical link of the parameters of the 

absolute value functions and the x-intercept concept reducing the amount of cognitive effort re-

quired to calculate for example the x-intercepts in examples where the concavity symbol ‘a’ and 

the vertical shift symbol ‘k’ had the same sign. Identification of the y-intercept written in func-

tion notation  𝑃(0) = 10.5 reduced the amount of cognitive effort required to process (i.e. write 

in slope-intercept form) and solve. In task 3 participants identified that in a quadratic function, 

points at the same horizontal distances from the axis of symmetry have the same y-coordinate. 

This clearly explained informal understanding reduced the amount of cognitive effort required by 

the participants to determine that they will be able to make the shot in the game of pool assigned 

in the task. Further in task 5 that involved the lava fragment eruption, information given on the 

graph (21.875, 0) and (0, 0) was easily used to determine the x-intercepts of the graph hence the 

amount of time that the lava fragment was in the air. Participant further made a logical link of the 

x-intercepts and the domain for which 𝐻(𝑡) ≥  0 . Participants were able to determine that 

𝐻(𝑡) ≥  0  represented the time with which the lava was in the air. Extending concept of external 

logical link also included students understanding in task 5 that for in a quadratic function, for 

every y-value there are two values of x except at the vertex. They were able to extend that under-

standing to responding to the values of time at a given height 1000ft and reasoned that there were 

two values of time at height 1000ft. In task 6 emphasis was on understanding and making logical 

link between parameters of a quadratic function 

𝑄(𝑥) = −3𝑥2 + 2𝑥 + 5. Participants easily identified that 𝑄(0) represented the y-inter-

cept and concluded that for a quadratic function written in standard form, 𝑄(0) = 𝑐 the parame-

ter c represented the y-intercept. In addition 𝑄 (−
𝑏

2(𝑎)
) represented the absolute max or mini-

mum because the axis of symmetry is defined as. 𝑥 = −
𝑏

2(𝑎)
. This understanding reduced the 
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amount of cognitive effort required to determine𝑄 (−
2

2(𝑎)
). Students also used the logical link of 

end behavior 𝐴𝑠 𝑥 → ∞, 𝑦 → −∞, 𝐴𝑠 𝑥 → −∞, 𝑦 → −∞ to compare 𝑄(30) 𝑎𝑛𝑑 𝑃(40). They 

concluded that 𝑄(30) > 𝑃(40) based on the logical connection they made between end behavior 

sign and the graph of the function 𝑄(𝑥) .   

 

 Discussion in the Context of the Research Question  

Following is a discussion of the findings and the emerging themes in the context of the 

research questions. 

 Research Sub-Question 1.  

Research sub-question 1 was; how does exposure to and use of multiple representations 

influence students’ identification of pseudo-conceptual understanding of algebraic concepts? 

Specifically the study looked at how the exposure to and use of multiple representations influ-

enced the identification of pseudo-conceptual understandings in the following functions; piece-

wise, absolute-value, and quadratic. To address this sub-question, I used the following construct 

to identify the observable pseudo-conceptual verbal and written responses: (a) Random associa-

tions of mathematical signs which included surface associations, example centered associations, 

artificial associations, and template oriented associations; (b) Lack of validation effort during 

sign reception and sign production; and (c) Absence of effort to understand the meaning of the 

signs, transformational rule, and underlying meaning structures in the signs (Vinner, 1997; and 

Berger 2006). 

From the findings in the analysis of the participants’ verbal and written responses, I in-

ferred that the exposure to and the use of multiple representations potentially influenced how stu-
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dents interacted and responded to the task questions assigned. Specifically this exposure pro-

vided an opportunity for participants to: (a) re-image their conceptual understanding of the three 

functions; and (b) reflect on their sign receptions and productions. By participants being involved 

and exposed to different means of representing the same concept, they were provided with a rich 

and diverse source of representations (Ainsworth, 2006) which allowed the students to re-image 

their conceptual understandings. This re-imaging of their conceptual understandings in turn made 

it easier for the students to construct references across representations providing the participants 

with a reservoir of resources to validate their understanding of the mathematical signs that they 

received and produced.  

I also inferred that exposure to and use of multiple representations also allowed for par-

ticipants to be reflective about how they received and produced the mathematical signs. They 

demonstrated a careful and systematically reflected upon approach to understanding the mathe-

matical signs and in turn responding to the assigned tasks. Reflective approach to understanding 

their signs created a platform for students to inquire about the reasonableness of their responses 

including efforts to understand the meaning of the signs, transformational rule, and underlying 

meaning structures in the signs. 

  

 Research Sub-question 2. 

Research sub-question 2 was; how does the exposure to and use of multiple representa-

tions influence students’ transition from pseudo-conceptual to conceptual understanding? Expo-

sure to and use of multiple representations afforded participants with an opportunity to shift their 

understanding from a procedural dependent to a more reflective approach to understanding and 
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solving the assigned tasks. This approach also demonstrated potential representational transpar-

ency between different representations of the same concept. Guided by the RBC+C model and 

the semiotic system theory model in analyzing instances of transition from pseudo-conceptual to 

conceptual understanding in the students’ verbal and written responses, the following themes 

emerged in the analysis: (a) reflective approach to understanding their sign receptions and pro-

ductions; and (b) representational versatility. Pseudo-conceptual understanding of algebraic con-

cept in general and of; piecewise, absolute value, and quadratic functions in particular can be po-

tentially attributed to: (a) randomness of mathematical sign associations; (b) lack of validation 

effort; and (c) lack of effort in understanding the underlying meaning structure of the mathemati-

cal signs. On the contrary conceptual understanding of the algebraic functions named above can 

be attributed to students’ ability to attend to a mathematical object in its entirety (i.e., including 

its external link) and not just as a fragmented aspect of an object (Sfard, 2000). This includes the 

ability to make consistent and logical link between the mathematical object e.g., absolute value 

function and previously learned mathematical entities like end-behaviors and the domain and 

range applications.    

To make these logical links participants in the study tapped on to their regulatory powers 

(Ernest, 2008) of self-monitoring and self-reflection afforded by exposure to and use of multiple 

representations to control their responses to the assigned tasks. In addition participants also 

demonstrated ability to be reflective and control their mathematical sign receptions and sign pro-

duction activities. Self-monitoring and self- reflections of mathematical signs emerged as skills 

that participants called upon in developing tools for problem solving the assigned task questions. 
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 Research Sub-question 3.  

Research sub-question 3 was; how does exposure to and use of multiple representations 

influence students’ transfer of their conceptual understanding to other related concepts? The 

three emergent themes in the study were: (a) re-image their conceptual understanding of the three 

functions; (b) reflective approach to understanding their sign receptions and productions; and (c) 

representational versatility of mathematical signs. Analysis of students’ verbal and written re-

sponses to task questions revealed potential improvement on their logical explanations of; exter-

nal links related to a concept, and how those links related to and connected to other concepts. 

This involved how the students processed and generalized important attributes in one semiotic 

system (e.g., absolute-value system) and applied to other semiotic systems (e.g., quadratic func-

tion). Afforded by exposure to and use of multiple representations participants in the study 

demonstrated representational versatility which in turn enabled them to attend to mathematical 

objects (e.g., absolute value functions) in their entirety and not as a fragmented aspect of an ob-

ject. Attending to mathematical objects implied that the participant extended their range of flexi-

bility in thinking about the use and application of the piecewise functions, absolute value func-

tions, and quadratic functions. 

 

Recommendations and Implications  

This study was inspired by theory of semiotic system (Ernest, 2006). The three themes 

that emerged in the analysis of students’ verbal and written responses were: (a) re-imaging of 

conceptual understanding; (b) reflective approach to sign receptions and productions; (c) repre-

sentational versatility during sign reception and production. These themes supported the notion 
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that exposure to and use of multiple representations potentially facilitated the participants’ con-

ceptual understanding of the; piecewise, absolute value, and quadratic functions. In particular 

participants had a rich and diverse source of representations (Ainsworth, 2006), which in turn al-

lowed them to translate and construct references across representations by re-imaging their con-

ceptual understandings. In an attempt to understand and process the three functions, exposure to 

and use of multiple representations created opportunities for the participants to be more reflec-

tive about their sign receptions and sign productions. Further consistent with Sfard (1994), this 

exposure contribute to the reservoir of meanings that students can draw upon in formulating, de-

veloping and operating a semiotic system.  

This study recommends that future studies should consider exploring instructional and 

assessment models that promote a reflective approach to understanding and processing mathe-

matical concepts in various algebraic families of functions. In particular the focus should be ex-

ploring how students’ exposure to and use of multiple representations can potentially promote 

the identifying and mastery of; mathematical signs, mathematical transformational rules, and un-

derlying meaning structures embodied in the sign.      

Further inspired by the concerns that: (a) there is a need to extend algebra students’ con-

ceptual understanding of mathematics beyond procedural competence; (b) students still memo-

rize facts or procedures without understanding the underlying meaning structures in the mathe-

matical concepts and in their procedures; and (c) the primarily procedural orientation to using 

functions to solve specific problems has led to absence of meaning and coherence for students 

(Carlson, 1998), this study endeavors to raise practical recommendations to call for change in in-

structional and assessment models to include exposure to and use of multiple representations 

from a semiotic perspectives. The findings in this study provide an account of how exposure to 
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and use of multiple representations can support; re-imaging of conceptual understandings, reflec-

tive approach to sign receptions and sign productions, and representational versatility of mathe-

matical sign use, which can in turn can play a significant role in potentially providing depth and 

mastery of algebraic conceptual understanding.   
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APPENDICES 

Appendix A 

Georgia State University 

Department of Middle-Secondary Education and Instructional Technology 

     Parental Permission Form 

                                                    

Title:     Use of Multiple Representations in Algebra II Instruction 

 

Principal Investigator:   Christine Thomas, PhD. 

Student Investigator:   Isaac Gitonga 

 
.  

Sponsor:    None 

 

I. Purpose:   

Your child is invited to participate in a research study. The purpose of the study is to investigate 

the use of multiple representations in mathematics learning instructions. The research will occur 

during students’ regular algebra II class period this term. The study will focus on algebra II stu-

dents’ ability to understand and make translations within and between graphing, numeric, algebraic 

and verbal modalities of mathematics concepts. As educators the need to improve the teaching and 

learning of mathematics is our central goal. One of the most reliable sources of information on our 

teaching practices is the students themselves. As students attempt to make sense of mathematics, 

their talks and interaction in the classroom provide an important resource for meaning construc-

tion. Feedback and students voices are a significant part of collecting information on how educa-

tors can improve their teaching practices. Your child is invited to participate in this study because 

she/he is an algebra II student and a member of a class where the teacher utilizes multiple repre-

sentations in his classroom instruction. A total of twenty one students in this class will be in the 

study. The research will occur during the regular algebra II class period this term.  

 

 

II. Procedures:  

 

I will be observing the teacher during instruction as well as the students. For accuracy in gather-

ing information on the teacher’s instruction I will utilize audio recording with a recorder placed 

at the teacher’s desk. I will also be observing students either working individually or in groups. I 

may ask students to provide brief explanations on how they solve a problem. The work that stu-

dents will do including the solutions to a given task that they might put up on the board or in 

writing will be analyzed for mathematical thinking.  For accuracy in gathering student’s re-

sponses, I will utilize brief audio recording without class disruption.  Communication during this 

study will be informal as normal practice. Performance will be anonymous. 

 

 

http://msit.gsu.edu/index.htm


181 

 

 

 

III. Risks:  

 

In this study, participants will not have any more risks than you would in a normal day of 

life. Your child will not be subjected to risk or discomfort physically, psychologically, so-

cially, or academically because of participation in this study. 

IV. Benefits:  

 

Participation in this study may benefit your child by providing opportunity to reason and solve 

mathematical problems and to demonstrate understanding of key algebraic concepts through use 

of multiple representations. Overall, we hope to gain information about how students make sense 

of mathematics  

 

V. Voluntary Participation and Withdrawal:  

Participation in research is voluntary. Your child does not have to be in this study.  If he/she 

decides to be in the study and change their mind, they have the right to drop out at any time. 

They may skip responding to any questions or stop participating at any time.  Whatever they 

decide, they will not be penalized in any way.  

 

VI. Confidentiality:  

We will keep participant’s records private to the extent allowed by law. Your child’s name and 

other facts that might point to your child will not appear when we present this study or publish the 

results. We will use pseudonym rather than the student’s name on the study records. Only Isaac 

Gitonga will have access to the information that students provide. Information regarding the study 

will be kept no more than five years and then shredded. The audio recordings will be destroyed 

immediately after they are transcribed. The transcriptions and other research data will be stored in 

a locked file cabinet in the researcher’s home. The computer used will be password and firewall 

protected.   

 

VII.    Contact Persons:  

Call Dr. Christine Thomas (404) 651-2515 or cthomas11@gsu.edu, or Isaac Gitonga at (770) 

457-7201 or gitongai@marist.com if you have questions about this study. If you have questions or 

concerns about your child’s rights as a participant in this research study, you may contact Susan 

Vogtner in the Office of Research Integrity at 404 463- 0674 or svogtner1@gsu.edu. 

 

VIII. Copy of Consent Form to Subject:  

We will give you a copy of this consent form to keep. 

If you are willing to volunteer for this research, please sign below.  

 

 ____________________________________________  _________________ 

 Participant        Date  

 

 _____________________________________________  _________________ 

Principal Investigator or Researcher Obtaining Consent   Date  

mailto:gitongai@marist.com
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Appendix B 

Summary of Instructional Sequence for the Advanced Algebra II Class 

        Topic 
 (Lesson Focus) 

Number 
   of Les-
sons 

                    Lessons Objectives Resources 

I. 
 

  Matrices  
         and  
Applications 

   8  Organize information in a matrix 

 Add and subtract matrices 

 Multiply a matrix by scalar 
 Multiply matrices 

 Use matrices to model data 
 Use matrices to solve  “real world” problems 

 Model events using linear equations and systems of linear equations 

 Use matrices to solve systems of linear equations 
 Solve systems of linear equations in three variables using linear combination 

 Solve systems of linear equations in three variables using substitution 

 Solve systems of linear equations in three variables using matrices with the 
graphing calculator(GC)  

Teachers Handouts 
 
Smart board presenta-
tions notes (available in 
class website) 
Graphing Calculator 
(GC) 
Textbook Cha. 2, 3, & 4 
Larson, R. (2004). 
McDougal Littell Alge-
bra. Evanston, Ill.: 
McDougal Littell.  

II.  
Absolute Value  
        &  
Piecewise Func-
tions 

9  Graph piecewise functions, including step functions 

 Write equations of piecewise functions given the graph 
 State the domain & the range of piecewise functions 

 Recognize and draw graphs of Absolute Value functions.  

 Find the vertex and axis of symmetry of absolute value functions. 
 Graph and interpret absolute value functions in the form  𝑦 = 𝑎|𝑥 − 𝐻| + 𝐾 

 Understand and use verbal descriptions of the effect of the parameters; “a”, 
“h”, and “k”. 

 Find the equation of absolute value functions given the vertex & a point. 

 Maximize and minimize absolute value functions, describe end behavior and 
domain and range 

 Write the equation of an absolute value function as piecewise     

Teachers Handouts 
 
Smart board presenta-
tions notes (available in 
class website) 
 
Textbook Chapter 2, 3, & 
4 

III. Quadratic  
      Functions 

19  Recognize and draw graphs of quadratic functions. 
 Find the vertex and axis of symmetry of quadratic functions 

 Graph and interpret quadratic functions in the form 𝑦 = 𝑎(𝑥 − 𝐻)2 + 𝐾 

 Graph and interpret quadratic functions in the form 𝑦 = 𝑎(𝑥 − 𝑝)(𝑥 − 𝑞) 

 Understand and describe in words the effect of the parameters; “a”, “h”, and 
“k” on a quadratics function. 

 Find the equation of a quadratic function given the vertex and a point 

 Maximize and minimize quadratic functions, describe end behavior, domain 
and range. 

 Use the method of “completing the square” to write quadratic functions in 
vertex form.  

 Solve quadratics equations using square roots when appropriate 

 Solve quadratic equations using the quadratic formula. 

 Use the discriminant to determine how many solutions a quadratic equations 
has. 

 Factor quadratic expressions 

 Solve quadratic equations by factoring when appropriate 
 Solve quadratic equations with complex solutions and perform operations 

with complex numbers. 

 Find the roots of quadratic functions 
 Find the end-behavior of quadratic functions 

 Find the domain & the range of quadratic functions 

 Find the point of intersection of two quadratic functions 
 

Teachers Handouts 
 
Smart board presenta-
tions notes (available in 
class website) 
 
Textbook Chapter 5 

IV. 
Polynomial 
Functions 

5  Evaluate, add, subtract, and multiply polynomial functions 

 Recognize graphs of polynomial functions and describe their important fea-
tures 

 Find the zeros of higher order polynomial functions using the GC 

 Divide polynomial functions and relate the results to the remainder and the 
factor theorem  

Teachers Handouts 
Smart board presenta-
tions notes (available in 
class website) 
Textbook Chapter 6 

V. Exam Review 
 

3 days  Comprehensive Exam Review  Teachers Handouts 
Exam Review  
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Appendix C 

Task-Based Interview Protocol  

Session #:  5             Participant: ________ M  T  W  TH  F Date:   

Location:  Researcher Classroom Time: 9:30-10:30 Resources: Textbook/ Smart note /work-
sheets                         

Unit/Topic: QUADRATIC FUNCTION REVIEW Type of MR: Verbal, Graphical, Algebraic & Table of Values.   

Research Questions: How does the use of MR influence students’: (1) identification of PC; (2) transition from PC to CU; (3) transfer of their CU 
to other related concepts? 

                                                     TASK                     STU-
DENT’S 
RE-
SPONSE  
DISCUS-
SIONS/ 
ACTIVITY 

COMMENTS/REFLECTION 

Task 5:  

 
 
I. Given that the height of the lava fragment after 20 s is 600ft, use the information from the graph 
to write the quadratic function 𝐻(𝑡). Write the function in  
a. Intercept form 
b. Vertex form 
c. Standard form.  
 
 
II. Use this information to answer the following questions. 
 
i. For how long was the lava fragment in the air? How did you use the graph to get your answer?  
   
ii. Estimate the lava fragment’s maximum height above the ground. 
 
iii. Does 𝐻(𝑡) have a stretch/shrink factor? How can you tell? 
 
iv. Find the y-intercept of 𝐻(𝑡) what is the significance in this graph? 
 

 
 

Sample comments/reflection 
 
RQ2 identify the process. 
How did use of MR influence student 
recognition of sign (21.875, 0) & (0,0)  
How did participants use info 20s and 
600ft to relate to the three functions? 
 
How did the students make connec-
tions between the 3 functions, the 
graph and the verbal descriptions? 
 
How did students use info given to 
identify the flight time? What clues 
did they utilize?  
 
What signs/symbols supported their 
id of max height? 
 
Is there symbol they can use to ASAP 
id the y-int? 
 
Is there symbol they can utilize to id 
x-int/s?  
 
How did they use previous knowledge 
to find domain. What clues to find sig-
nificance of symbol?  Symbol H(10)? 
 
Find H (t) =1000. Did students realize 
2 values of x?  
Is there an emphasis on identifying 
symbols and their meanings? Ask why 
and how certain symbols  
 
 
Did this task questions provokes a 
closer examination of analytical-
graphical translation of the concept 
function. PC evident!  
How does the symbols in the quad-
ratic  function influence the transition 
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v. Find the x-intercept/s of 𝐻(𝑡). 
 
vi. Find the domain for which 𝐻(𝑡) ≥ 0. What is the significance of this symbol? 
 
vii. What was the height of the lava fragment after 10 seconds? What mathematical symbol would 
you use to show this height after 10s? 
   
viii. Estimate after how long it took the lava fragment to be at height of 1000 feet above ground? 
What mathematical symbol would you use to describe this height after a given time? 

from Analytic & Verbal  to graphing 
do all students see the same interpre-
tation?  
How important is it for students to ex-
plain the terms and expressions they 
are using.  
 
Emphasize on identifying symbols and 
their meanings. Ask why and how cer-
tain symbols  

Probing Questions 
In answering the question above, how did the use of the following influence how you responded to 

the question? 

i. Graphical representations (Cartesian graphs) 
 

ii. Numerical (Correspondence in a table of values), 

 
iii. Algebraic or symbolic representations (Equations expressing the relationship be-

tween two or more quantities) 

 
iv. Verbal descriptions (Natural language) 

 
Any other questions 
 
 
____________________________________________________________ 
 
Any other questions 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Any PC evident in the response? 
Why? 
Symbolic meaning initiated by stu-
dents. How does use of MR influence 
the understanding of this symbol? 
_____________________ 
Teacher emphasized meaning of each 
quad function H(t). Why? How do the 
students interpret this emphasis? 
How did the use of graph of H(t) influ-
ence conceptual understanding of 
various symbols in the graph? 
Did the graph influence understand-
ing of the clues in H(t)? 
_____________________ 
How does the use of MR result in dif-
ferent preference of the use of repre-
sentations? 
______________________ 
Why is it significant that students un-
derstand the type of questions/lan-
guage that is expected? What is the 
relation with verbal descriptions? 
Have a verbal description language? 
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Appendix D 

     Task-Based Interview Task1 

TASK 1 

I.  

Describe the Domain and the Range of the following functions. Write 

the Domain and the Range in both, inequality notation and interval no-

tation.   

 

a. Constant function of the form 𝐺(𝑥) = 𝑐, 𝑤ℎ𝑒𝑟𝑒 𝑐 ∈ ℝ 

 

b. Linear function of the form 

    𝐹(𝑥) = 𝑚𝑥 + 𝑏, 𝑤ℎ𝑒𝑟𝑒 𝑚& 𝑏 ∈ ℝ 

 

c. Piecewise function 

           

 𝑅(𝑥) = {

1,         𝑖𝑓𝑥 < 0
2, 𝑖𝑓 0 < 𝑥 ≤ 2

−3, 𝑖𝑓 2 < 𝑥 < 5
0,       𝑖𝑓𝑥 ≥ 5

 

 

 

d. Piecewise function 

           

 𝑃(𝑥) = {

0,         𝑖𝑓 𝑥 = 0
3𝑥 − 1, 𝑖𝑓 𝑥 > 0

−𝑥, 𝑖𝑓 − 4 < 𝑥 < 0
−4,       𝑖𝑓 𝑥 ≤ −4

 

 

II 

Refer to the Smart Notes “Domain truck & Range car” graphical ani-

mations discussed in class.  Answer the following questions. 

 

Describe the Domain and the Range of each of the following functions 

in the light of the Smart Notes “Domain truck” and the “Range Car” 

discussion. Write the Domain and the Range in both, inequality nota-

tion and interval notation. 

 

 
 

a) Multiple representations of a Constant function of the form 

          𝐺(𝑥) = 𝑐, 𝑤ℎ𝑒𝑟𝑒 𝑐 ∈ ℝ using graphical animation. 
 

 

b). Multiple representations of a Linear function of the form 

  𝐹(𝑥) = 𝑚𝑥 + 𝑏, 𝑤ℎ𝑒𝑟𝑒 𝑚& 𝑏 ∈ ℝ using graphical animation. 

 

 
 

 

c) Multiple representation of the following Piecewise function (in-

volving constant functions).  

           𝑅(𝑥) = {

1,         𝑖𝑓𝑥 < 0
2, 𝑖𝑓 0 < 𝑥 ≤ 2

−3, 𝑖𝑓 2 < 𝑥 < 5
0,       𝑖𝑓𝑥 ≥ 5

 

 

 
 

d) Multiple representation of the following Piecewise function  

Piecewise function 

 

           𝑅(𝑥) = {

0,         𝑖𝑓 𝑥 = 0
3𝑥 − 1, 𝑖𝑓 𝑥 > 0

−𝑥, 𝑖𝑓 − 4 < 𝑥 < 0
−4,       𝑖𝑓 𝑥 ≤ −4
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Appendix E 

Task Based Interview Task 2 

TASK 2 

Use the following information to determine the absolute 

value function named 𝑃(𝑥).   
 

I. The vertex of 𝑃(𝑥) is (5, 3) 

 

II. 𝑃(−3) = 15,   𝑃(18) = 22.5,   𝑃(0) = 10.5   
 

III. The end behavior:  

       𝐴𝑠 𝑥 → ∞, 𝑦 → ∞, 𝐴𝑠 𝑥 → −∞, 𝑦 → ∞.   
________________________________________________ 

Using the information above 

a. Find two formulas for 𝑃(𝑥), one with absolute 

value symbol and one without the absolute value 

symbol.   

b. Find y-intercept of 𝑃(𝑥).   
 

c. Find the equation of the axis of symmetry. What is 

the significance of the axis of symmetry? 

 

d. Graph 𝑃(𝑥). Use a ruler and be neat. 

 

e. Explain using “sophisticated language” how the 

graph of 𝑃(𝑥)  was could be obtained from the 

parent function  𝑦 = | 𝑥 |.    

 

f. Find absolute max/min of  𝑃(𝑥).  How can you tell 

if it is absolute max or min? 

 

g. Determine the x-intercept/s of 𝑃(𝑥). Show your 

work analytically or (JYA) 

 

 

h. Find the domain and the range of 𝑃(𝑥). Write 

answer in interval notion. 

 

i. Find 𝑃(12).  Compare to 𝑃(20). Use symbols <, =
𝑜𝑟 >. 

 

j. Compare 𝑃(2) and 𝑃(8).  Use symbols <, = 𝑜𝑟 >. 

Explain your response. 
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Appendix F 

   Task-Based Interview Task 3 

TASK 3 

 

 
[Source: Larson, R. (2004). McDougal Littell Algebra. Evanston,  Ill.: 

McDougal Littell] 

 

 

a). In the space below, show how you devel-

oped your  answer. Be neat and organized. 
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Appendix G 

     Task-Based Interview Task 4 

TASK 4 

Use the following information to determine a quadratic func-

tion named 𝑄(𝑥). Write 𝑄(𝑥) in Standard Form.  

I.  The  linear coefficient is “2”    

 

 

II.  The constant is “5” 

 

 

III. The leading coefficient is an integer between -4 and -2.  

________________________________________________ 

Use this information to answer the following questions. .  

 

i. Find the concavity of 𝑄(𝑥).   How can you 

                        tell? 

 

ii. Find the y-intercept of 𝑄(𝑥).  
 

iii. Find 𝑄(0). 
 

iv. Find the value/s of x for which 𝑄(𝑥) = 0.  
JYA 

 

v. Find the absolute max or min. 

vi. Find the domain for 𝑄(𝑥) ≥ 0 . What is the 

meaning of this symbol? 

 

vii. Find the domain for 𝑄(𝑥) < 0 . 
 

viii. What is the meaning of this symbol? 

 

ix. Find 𝑄 (−
2

2(−3)
). What is the significance of 

this symbol? 

 

x. Find the domain if the range is given as 

−
22

4(−3)
+ 5. 

 

xi. Compare 𝑄(30) & 𝑄(40). Use <, =, > 

 

xii. Given that 𝑄(−1) = 0 𝑎𝑛𝑑 𝑄 (
5

3
) = 0, write 

the equation of the axis of symmetry. 
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Appendix H 

     Task-Based Interview Task 5 

TASK 5 

 

I. Given that the height of the lava fragment 

after 20 s is 600ft, use the information from 

the graph to write the quadratic function 

𝐻(𝑡). Write the function in  

a. Intercept form 

b. Vertex form 

c. Standard form.  

 

II. Use this information to answer the fol-

lowing questions. 

i. For how long was the lava fragment in 

the air? How did you use the graph to get 

your answer?  

   

ii. Estimate the lava fragment’s maximum 

height above the ground. 

 

iii. Does 𝐻(𝑡) have a stretch/shrink factor? 

How can you tell? 

 

iv. Find the y-intercept of 𝐻(𝑡) what is the 

significance in this graph? 

 

v. Find the x-intercept/s of 𝐻(𝑡). 

 

vi. Find the domain for which 𝐻(𝑡) ≥ 0. 

What is the significance of this symbol? 

 

vii. What was the height of the lava frag-

ment after 10 seconds? What mathematical 

symbol would you use to show this height 

after 10s? 

   

viii. Estimate after how long it took the lava 

fragment to be at height of 1000 feet above 

ground? What mathematical symbol would 

you use to describe this height after a given 

time? 
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Appendix I 

Ron’s task-based interview transcripts: Task 4 

1 Ron:  Umm… 𝑄(𝑥) = −3𝑥2 + 2𝑥 + 5. I substituted 𝑎 = −3,  𝑏 = 2, and  

2                  𝑐 = 5 in the standard form model 𝑄(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐.  

3 Ron: Concavity of 𝑄(𝑥) is opens down. Since the leading coefficient 𝑎 = −3 

4                 The y-intercept of 𝑄(𝑥) is (0, 5) (proceeds to substitute 0 for x in the function 

5                  𝑄(𝑥) = −3𝑥2 + 2𝑥 + 5). Y-intercept = 5.  

6 Ron: Concavity of 𝑄(𝑥) is opens down. Since the leading coefficient 𝑎 = −3  

7             The y-intercept of 𝑄(𝑥) is (0, 5) (proceeds to substitute 0 for x in the function 

8             𝑄(𝑥) = −3𝑥2 + 2𝑥 + 5). Y-intercept = 5. 𝑄(0) = 5 Since it represents the  

9             y-intercept.  

10             When x is zero, y is the y-intercept. For the value/s of x for which 𝑄(𝑥) = 0. I  

11              will substitute 0 for y and solve the equation (proceeds to solve equation 

12              0 = −3𝑥2 + 2𝑥 + 5 by factoring 0 = (−3𝑥 + 5)(𝑥 + 1)) the x-values are 

13              then 𝑥 = −1 &  𝑥 =  
5

3
 .  

14  I: What is the significance of the answer in part (iv)?  

15 Ron: You can use the GC to find the answer  (Entering the equation 

16              𝑦 = −3𝑥2 + 2𝑥 + 5  in the GC and graphing  and accessing the  

17              table of value mode) It looks like the answers to the  𝑄(𝑥) = 0 represents  

18              the x-intercepts. Because at the x-intercepts the y-coordinate is zero and this 

19               (points at the x-intercepts) is where the points are found. To find the abs max 

20               I will use the equation 𝑥 = − 
𝑏

2𝑎
 to identify the x-coordinate at vertex.  
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21               The x-coordinate is 𝑥 = − 
2

2(−3)
  which is equal to 

1

3
 . For the vertex coordinate 

22              is (− 
𝑏

2𝑎
 , Q (− 

𝑏

2𝑎
)) (proceeds to calculate the y-coordinate and writes) vertex is 

23              (
1

3
 , 

16

3
). The absolute max is 𝑦 =

16

3
 since the graph opens down.  

24               The domain for which 𝑄(𝑥) ≥ 0 is from here to here (on the whiteboard there is 

25                a projected graph of Q (x) he inscribes circles at both x-intercepts. He points at 

26               the parabolic portion of the graph above the x-axis). This is the area that covers 

27               the domain. The domain of 𝑄(𝑥) ≥ 0 in interval notation[−1,   
5

3
]. The symbol  

28               𝑄(𝑥) ≥ 0 represents the part of the graph that is above the x-axis. The domain of 

29               𝑄(𝑥) < 0 in interval notation (−∞, −1) ∪ ( 
5

3
, ∞). The symbol 𝑄(𝑥) < 0  and  

30                represents the part of the graph that is below the x-axis.  

31                To find  𝑄 (−
2

2(−3)
) umm… I think this is same as the y-coordinate of the 

32                vertex. Looking at   𝑥 = − 
𝑏

2𝑎
  a is -3, and b = 2. So  𝑄 (−

2

2(−3)
) is equals to 

33                𝑦 =
16

3
 . It is also same as the absolute max in part (v) (proceeds to compare the 

34                answer in part (v), the function  𝑄(𝑥) = −3𝑥2 + 2𝑥 + 5 and the answer to this 

35                question). If the range is −
22

4(−3)
+ 5 the domain will be  

1

3
 .   

36 I: How did you determine that?  

37 Ron: This number −
22

4(−3)
+ 5 represents the y-coordinate. Since at the vertex the  

38             x-coordinate is  𝑥 = − 
𝑏

2𝑎
  and the y-coordinate is  −

𝑏2

4𝑎
+ 𝑐, I think −

22

4(−3)
+ 5  

39            is the absolute max umm… the domain will be  the 𝑥 = − 
𝑏

2𝑎
  which is 
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40             − 
2

2(−3)
= 

1

3
    

41             In comparing  𝑄(30) &  𝑄(40) I think 𝑄(30) >   𝑄(40).   

42 I: Why do you think 𝑄(30) >   𝑄(40)?  

43 Ron: Because from end behavior as 𝑥 → ∞, 𝑦 → −∞ it means that the further the  

44             value of x is away from the vertex the lower the value of y.  

45             𝑄(−1) = 0 & 𝑄 ( 
5

3
) = 0. Since these two (pointing at 𝑄(−1) = 0 & 𝑄 ( 

5

3
))  

46             are the x-intercept the axis of symmetry is halfway between the two numbers. 

47            So the answer is 𝑥 =  
1

3
 . (he shows the following calculations on the board 

48            𝑥 =
5

3
−1

2
 as the calculation of the axis of symmetry).  
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