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STATISTICAL MODELS AND ANALYSIS OF GROWTH PROCESSES IN BIOLOGICAL 

TISSUE  

 

by 

 

JUN XIA 

 

Under the Direction of Remus Osan, PhD 

 

ABSTRACT 

The mechanisms that control growth processes in biology tissues have attracted continuous 

research interest despite their complexity. With the emergence of big data experimental approaches 

there is an urgent need to develop statistical and computational models to fit the experimental data 

and that can be used to make predictions to guide future research.  In this work we apply statistical 

methods on growth process of different biological tissues, focusing on development of neuron 

dendrites and tumor cells.  

We first examine the  neuron cell growth process, which has implications in neural tissue 

regenerations, by using a computational model with uniform branching probability and a 

maximum overall length constraint.    One crucial outcome is that we can relate the parameter fits 

from our model to real data from our experimental collaborators, in order to examine the usefulness 

of our model under different biological conditions.  Our methods can now directly compare 

branching probabilities of different experimental conditions and provide confidence intervals for 

these population-level measures.  In addition, we have obtained analytical results that show that 



 

 
 

the underlying probability distribution for this process follows a geometrical progression increase 

at nearby distances and an approximately geometrical series decrease for far away regions, which 

can be used to estimate the spatial location of the maximum of the probability distribution.  This 

result is important, since we would expect maximum number of dendrites in this region; this 

estimate is related to the probability of success for finding a neural target at that distance during a 

blind search.   

We then examined tumor growth processes which have similar evolutional evolution in the 

sense that they have an initial rapid growth that eventually becomes limited by the resource 

constraint. For the tumor cells evolution, we found an exponential growth model best describes 

the experimental data, based on the accuracy and robustness of models. Furthermore, we 

incorporated this growth rate model into logistic regression models that predict the growth rate of 

each patient with biomarkers; this formulation can be very useful for clinical trials. Overall, this 

study aimed to assess the molecular and clinic pathological determinants of breast cancer (BC) 

growth rate in vivo. 

 

INDEX WORDS: Neuronal Tree, Stochastic Models, Maximum Length Constraint, Breast 

Cancer, Tumor Size Growth Rate, Survival Analysis, Kaplan-Meier Estimate, Cox Proportional 

Hazard Ratio, Model Selection 
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1 INTRODUCTION  

1.1 Motivation for Studying Neural Growth  

Injuries to the central nervous system often result in extreme functional deficits because of 

physical damage to neurons in the brain and/or spinal cord. Currently, there is no 

neuroengineering solution to either traumatic brain injury (TBI) or spinal cord injury (SCI) despite 

intense research in both of these areas, likely because the central nervous system has a limited 

capacity to regenerate itself [1]. Especially in the mammalian central nervous system, the 

regeneration ability of axons is quite limited after injury. Thus, the axonal damage will lead to 

functional deficits, such as paralysis, Alzheimer and so on. Therefore, in the recovery process 

after central nervous system injury, axonal regeneration plays a key role and influences the speed 

of recovery. In this study, we model neuronal growth with the aim that the insight gained would 

help develop therapies aimed at fostering connection regrowth.  

With the subject of regeneration in mind, we assumed that the neural tree is formed as a result 

of a branching process, which is subjected to limited resources, such as maximum total neural 

tree length [2]. Since traditional branching processes do not have such limitations, making it easy 

to obtain the mean and variance along with each step, we aim to extend that formula to the 

practical process with the limitations mentioned above. We believe that the regeneration 

process with limited resources can be applied to so many other fields, which have the similar 

scenarios; such examples can be seen in the marketplace, nuclear, chemistry and so on.  Usually, 

for these regeneration processes, we are interested in the size of the whole tree for each step, 

under limited resources. 

1.1.1  Previous studies 

Much effort has been devoted to understanding the mechanisms that govern dendritic 

outgrowth in neurons because proper dendrite morphology is essential to neuronal 

communication. The shape of the dendritic arbor determines which neurons receive and process 

information, thereby affecting postsynaptic activity and the way neurons are integrated into the 

network [2]. During disease or after trauma [3], dendritic morphology is often negatively affected, 

resulting in either too few or too many dendrites. The structure of the network is then disrupted, 
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which can result in network dysfunction and cognitive deficits. Moreover, it has been shown that 

dendrites are not merely passive structures that deliver information to the soma. Rather, 

dendrites have the ability to perform computations, influence synaptic output, and regulate 

protein translation [4-6]. These studies illustrate the importance of a properly formed dendritic 

arbor, which not only receives and conducts information but also influences the nature of the 

information. 

During neuronal development, dendrite outgrowth is influenced by the simultaneous ingrowth 

of axons as well as the formation of synapses. Similar to axonal growth, dendritic growth is 

characterized by the appearance of filopodia that may develop into growth cones and lead to 

mature branches [5]. Importantly, dendrites are highly dynamic and undergo both growth and 

retraction during development, and most filopodia do not develop into dendrites. Early in 

development, dendrite outgrowth is encouraged by the presence of synaptic activity, and then 

later in development, synaptic activity stabilizes dendrites [5, 7]. While fewer cues are present 

during two-dimensional in vitro development, neurons proceed through similar steps, in which 

filopodia-like structures develop into immature neurites. One of these neurites becomes the 

axon, and the rest may become dendrites if they continue to grow [8,9]. Similar to in vivo 

development, neurons that develop in vitro are also highly dynamic. This similarity of maturation 

processes allows us to study the effects of extrinsic and intrinsic regulators of branching, and 

researchers have identified many of these factors that modulate dendrite number in-vitro and in 

vivo [10]. Being able to study neuronal developments in vitro has allowed us and others to 

identify the protein-protein interactions and cellular processes necessary for neuronal 

development. For example, the Firestein laboratory has identified cytosolic PSD-95 interactor 

(cypin) as an intrinsic regulator of dendrite branching [6]. They have found that cypin significantly 

increases primary and secondary branching by promoting microtubule polymerization (figure 1). 

Additionally, they recently found that brain-derived neurotrophic factor (BDNF), a very well-

known extrinsic growth factor, increases proximal dendrite branching through transcriptional 

regulation of cypin [6]. Many other factors have also been shown to modulate dendrite branching 

in specific ways; studying neuronal development in vitro is allowing scientists to determine which 

factors may be useful as therapeutic strategies for neurodegenerative diseases and CNS injury.  
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Figure 1 Overexpression of vypin from DIV 6-10 increases proximal branching and total dendrite 
number but decreases average dendrite length 

(A) Representative images of hippocampal neurons overexpressing GFP or GFP-cypin (cypin) from 
DIV 6–10. Scale bar = 100 μm. (B) Sholl analysis of all orders of branches (Total Sholl) shows that 
overexpression of cypin significantly increases dendrite branching at 0–42 μm from the cell body 
(***p < 0.001). Statistics were calculated using Two-Way ANOVA followed by Bonferroni multiple 
comparisons test.(C) Overexpression of cypin results in a significant increase in the total number 
of dendrites (****p < 0.0001). A total number of dendrites represents the sum of all dendrites, 
regardless to what category they belong. Statistics were calculated by unpaired, two-tailed 
Student's t-test. (D) Overexpression of cypin results in a significant decrease in the average 
length of dendrites (**p < 0.001). The average length is the mean length of all dendrites, 
regardless to what category they belong. Statistics were calculated by unpaired, two-tailed 
Student's t-test with Welch's correction. Error bars indicate SEM. n = 50 neurons for GFP, and n = 
55 neurons for cypin. Figure 1 was reproduced from [1] with the permission from the authors. 

 

To assess the overall shape of the dendritic arbor, several tools have been developed, the most 

widely known being Sholl analysis (figure 2) [11]. This method counts dendrites by drawing 

concentric circles at fixed distances from the cell body and counting the number of intersections 
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at each distance. When performed manually, the process is time-consuming and prone to errors. 

To this end, several groups have developed automated or semi-automated Sholl analysis 

software packages to increase the accuracy of results and decrease analysis time. Sholl is an 

invaluable tool in the field of neuroscience because it allows for the comparison of branch 

number at specific distances from the soma, which provides more information than total branch 

number alone. However, statistical analyses such as two-way analysis of variance only take into 

account only differences at specific distances, not between the different probability distributions. 

For example, a Sholl curve shifted to the left or the right from the control curve will show 

statistical significance at several locations, but no single parameter indicates this specific shift.  

With our model, we were also able to discriminate between different Sholl curves of control 

neurons versus treated neurons.  

 

Figure 2 Three different scenarios during the neural tree regeneration [14]. 

Figure 2 Time sequences showing branching and pruning of dissociated E11 chick dorsal root 
ganglion neurites. (a) Branching (red arrow) and extension (blue arrowheads) of primary axons. 
(b) Extension and retraction (blue arrowheads) of neurite tip. (c) Tertiary branching and pruning 
(encircled). Cultures are grown in the presence of glia in 5% CO2/ 37uC on Poly-L-lysine/laminin 
in N3 complete serum-free media. Phase- contrasts l i v e imaging at 28 hrs post-plating. The time 
interval between acquisitions for each time series is as follows: (a) 30 mins, (b) 75 mins, (c) 75 
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mins. Snapshots are contrast enhanced for visual clarity of the neurites. Figure 2 was reproduced 
with permissions from authors.  

 

While the arborization patterns of neurons have received extensive attention in experiments, it 

is not clear what the rules are that govern the final shape of neurons despite multiple 

computational models that were proposed [2, 4, 6,12]. Some of the simplest models assume that 

outgrowth is a result of a stochastic process, where the neuron starts with an initial branch that 

generates additional branches uniformly at the periphery. Osan et al. ([2]) examined these 

growth rules in a computational model [2] in which a blind search for targets was performed. To 

accomplish this, they cultured neurons under conditions mimicking SCI, then compared the 

results with our model. In order to derive analytical expectations for these computations, they 

also introduced the use of a probabilistic realization of all possible trees to compute the average 

length of no-longer-evolving branches. In this current study, we extend these results to 

determine the probabilistic performance profiles for all trees of a given maximum length. 

Importantly, we then show that our model is consistent with experimental data gathered from 

hippocampal neurons cultured in vitro.  

1.1.2 Modeling neural dendritic tree growth using stochastic processes 

Branching process is a Markov process that models the regeneration of population under the 

assumption that each individual in the generation k can produce a random number of individuals 

for next generation k+1. In our case, each branch of the neural tree can generate a random 

number of next level of branches.  

In our study, we first made some naïve assumptions, for example, the probability for each 

individual to produce next generation is independent of others. The probability mass function for 

offspring is often called the offspring distribution and is given by  

𝑝𝑖  =  𝑃(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 =  𝑖),  

𝑓𝑜𝑟 𝑖 =  0, 1, 2, . ..  

 We first assume that each individual in our model can only generate no more than 2 individuals 
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for next generation, which means that: 

𝑝𝑖 = 0                 𝑓𝑜𝑟 𝑖 > 2 

This model was introduced by F. Galton, in the late 1800s, to study the disappearance of family 

names; in this case 𝑝𝑖 is the probability that a man has 𝑖 sons. We will start with a single individual 

in generation 0, and generate the resulting random family tree. This tree is either finite (when 

some generation produces no offspring at all) or infinite — in the former case, we say that the 

branching process dies out, and in the latter that it survives.  

Proposition 1: Any recurrent class is a closed subset of states. [13] 

This process is equivalent to a Markov chain, where 𝑋𝑛 is the number of individuals at generation 

n. Let’s start with the following observations. 

• If 𝑋𝑛 reaches 0, it stays there, therefore 0 is an absorbing state.  

• If 𝑝0  >  0, 𝑃(𝑋𝑛+1  =  0|𝑋𝑛  =  𝑘)  >  0 for all k, which means  

• Therefore, by Proposition 1, all states other than 0 are transient if 𝑝0  >  0; the population 

must either die out or increase to infinity. If 𝑝0  =  0, then the population cannot decrease, 

and increases each generation with probability at least 1 − 𝑝1, therefore must increase to 

infinity.  

It is possible to write down the transition probabilities for this chain, but they have an explicit 

form, as  

𝑃(𝑋𝑛+1 =  𝑖|𝑋𝑛  =  𝑘)  =  𝑃(𝑊1  +  𝑊2 + . . . + 𝑊𝑘  =  𝑖) 

where 𝑊1 , . . . ,𝑊𝑘 are independent random variables, each with the offspring distribution. Recall 

that we are assuming that 𝑋0  =  1.  

Let  

𝛿𝑛  =  𝑃(𝑋𝑛  =  0)  

be the probability that the population is extinct by generation (which we also think of as time) n. 

The probability π0 that the branching process dies out is then the limit of these probabilities:  
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𝜋0  =  𝑃(𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑖𝑒𝑠 𝑜𝑢𝑡)  =  𝑃(𝑋𝑛 =  0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛)  = lim
𝑛→∞

𝑃(𝑋𝑛  =  0) =  lim
𝑛→∞

𝛿𝑛 

Note that 𝜋0  =  0 if 𝑝0  =  0. Our main task will be to compute 𝜋0 for general probabilities 𝑝𝑘. 

We start, however, with computing expectation and variance of the population at generation n.  

Let µ and 𝜎2 be the expectation and variance of the offspring distribution, that is,  

µ =  𝐸𝑋𝑛  =  ∑𝑘𝑝𝑘

∞

𝑘=0

   

and  

𝜎2  =  𝑉𝑎𝑟(𝑋𝑛).  

Theorem 1: Expectation and variance of sums with a random number of terms: Assume that 

𝑋1, 𝑋2, … is an 𝑖. 𝑖. 𝑑 sequence of random variables with finite 𝐸(𝑋) =  𝜇 and 𝑉𝑎𝑟(𝑋) =   𝜎2. Let 

𝑁 be a nonnegative integer random variable, independent of all 𝑋𝑖, and let 𝑆 = ∑ 𝑋𝑖
𝑁
𝑖=1   

Then 

𝐸(𝑆) =  𝜇𝐸(𝑁) 

𝑉𝑎𝑟(𝑆) =  𝜎2𝐸(𝑁) + 𝜇2𝑉𝑎𝑟(𝑁) 

Let 𝑚𝑛  =  𝐸(𝑋𝑛)  and 𝑣𝑛  =  𝑉𝑎𝑟(𝑋𝑛) . Now, 𝑋𝑛+1  is the sum of a random number, which 

equals𝑋𝑛, of independent random variables, each with the offspring distribution. Thus, we have, 

by Theorem 1 above,  

𝑚𝑛+1  =  𝑚𝑛µ,  

and  

𝑣𝑛+1  =  𝑚𝑛𝜎
2  +  𝑣𝑛µ

2 .  

Together with initial conditions 𝑚0  =  1, 𝑣0  =  0, the two recursive equations determine 𝑚𝑛 

and 𝑣𝑛 . We can very quickly solve the first recursion to get 𝑚𝑛  =  µ
𝑛  , and consequently we 

obtain:  

𝑣𝑛+1  =  µ
𝑛𝜎2  +  𝑣𝑛µ

2 .  
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This recursion has a general solution of the form 𝑣𝑛  =  𝐴µ
𝑛  +  𝐵µ2𝑛  . The constant A must 

satisfy  

𝐴µ𝑛+1  =  𝜎2µ𝑛  +  𝐴µ𝑛+2 ,  

so that, when µ ≠  1,  

𝐴 =
𝜎2

 µ(1 −  µ)
 .  

From 𝑣0  =  0,  we get 𝐴 +  𝐵 =  0 and the solution is given in the next theorem. 

So, we have the Theorem1.1.1: Expected 𝑚𝑛 and variance 𝑣𝑛 of the 𝑛𝑡ℎ  generation count 

We have 

{
 
 

 
 

𝑚𝑛 = 𝜇
𝑛

𝑎𝑛𝑑

𝑣𝑛 = {

𝜎2

𝜇(1 − 𝜇)
𝜇𝑛 −

𝜎2

𝜇(1 − 𝜇)
𝜇2𝑛      𝑖𝑓 𝜇 ≠ 1

𝑛𝜎2                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

1.1.3 Our study on the discrete neural growth model under limited resource 

condition 

The structure of neuronal trees is essential for individual cell and network function, yet neuronal 

synaptic and membrane dynamics have received significantly more attention in the experimental 

and computational neuroscience community.  This is in part due to the fact that our 

understanding of experimental data has traditionally focused on descriptive approaches of the 

network structure, and conversely, the corresponding mathematical models are much less 

developed.   

In the current study, we extend our work to hippocampal neurons that develop normally. We 

study these neurons as they are often damaged as a result of traumatic brain injury and are also 

subject to alteration due to neurodegeneration, such as Alzheimer’s Disease, or neurocognitive 

disorders, such as schizophrenia. Our results can be used to determine the probabilistic 
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performance profiles for all trees of a given maximum length. Importantly, we then show that 

our model is consistent with experimental data gathered from primary cultures of rat 

hippocampal neurons. More precisely, the Sholl curves predicted by our model exhibit the same 

trends seen in the experiments: a region of geometric growth in the nearby regions, which soon 

slows down to produce a peak in expected number of branches that is followed by a steady 

approximately geometric decrease at long distances. Furthermore, our model allows us to 

generate accurate fits of the experimental data using a small number of parameters, with the 

uniform branching probability playing a crucial role. Based on our results, we now have a baseline 

for dendritic growth and can compare this model to ones in which neurons are damaged due to 

trauma or disease, in order to work toward predicting which intrinsic or extrinsic factors can be 

targeted therapeutically to treat patients. Our goal is to compare features such as the branching 

probabilities under different conditions and generate statistical tests for these comparisons in 

order to determine statistical significance. Our future work will examine the effects induced by 

uniform rate pruning as well as parameter-based branching and pruning. 

1.2 Motivation for Tumor Growth Project 

1.2.1 Previous study 

Breast cancer is the heterogeneous disease with different clinicopathological features, 

recurrence patterns, and survival. [14] The major molecular subtypes: estrogen receptor (ER) 

positive, human epidermal growth factor receptor (HER2) positive and Triple Negative are widely 

used to predict prognosis and response to treatment in breast cancer patients [15].  Risk factors 

for breast cancer range from excessive use of exogenous hormones to age at menarche and age 

at menopause. [16]  Family history of breast cancer is also considered a highly important risk 

factor while the non-reproductive factors include age, high BMI, the excessive alcohol intake, 

sedentary lifestyle, poor diet and exposure to medical radiation. [16-18] 

Breast cancer has highly variable rates of growth. Contemporary thoughts assume that the gross 

tumor growth rate decelerates with increasing tumor mass. The study of tumor growth rates is 

necessary to understand the biology and natural history of the malignant diseases[19]. In 

developed countries, mammography screening is becoming an established part of health services. 
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However, there is an ongoing discussion related to optimization of the mammography screening, 

including the determination of optimal time intervals between screening and which age group to 

initiate. Therefore, the knowledge of tumor growth is important in planning and evaluation of 

screening programs. [20] Despite these facts, Mammography has a number of limitations 

wherein it yields false-positive results, leading to an increased number of breast biopsies 

especially among young patient. [21]  Breast cancers that are detected in the interval after a 

negative mammographic result are the interval cancer. [22] It is now a known fact that breast 

cancer screening has been proven to save lives and helps in better treatment regimens wherein 

Mammography remains the mainstay of screening[23]. But In US, the overall progress in reducing 

the breast cancer-related mortality following screening has not been reduced instead the 

probability of death is snoring. [24]  

The tumor growth rate has not been implicated as a prognostic variable in clinical practice 

because of its difficulty in evaluating it in the short interval of diagnosis and treatment. However, 

Yoo  demonstrated that there is no any association of tumor growth rate with patient’s survival. 

[25] Also, in the study carried out by Tubiana [26], there was no any survival difference between 

the subgroups of patients with rapid or intermediate growth rate after the follow-up exceeding 

8 years. [26] 

In vivo, breast cancer growth rate is carefully regulated. There is a precise balance between 

growth fraction – the proportion of tumor cells that are proliferating – rate of tumor cell loss by 

apoptosis, (and necrosis) and cell doubling time. [27, 28] Heterogeneities in growth rate between 

individual tumor cells, the degree of angiogenesis, [29] and interactions between the tumor and 

surrounding stromal cells also play a part. [30] The growth rate holds vital importance in 

prognostication, as it been shown that tumors with a faster growth rate in vivo, are more 

aggressive and thus offer a worse prognosis. [31, 32]  

Essentially, tumor growth progression is characterized by a net increase in the number of tumor 

cells, which could be due to increased proliferation and/or decreased apoptosis or both. Although 

a lot of such correlative studies are available in cultured cells, no study has yet systematically 

evaluated proliferation and apoptosis during in vivo progression of tumor growth. From a clinical 
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standpoint, several proliferation markers have demonstrated utility in the clinic for 

prognostication. The study aims to identify correlations between clinic-pathological parameters, 

biomarker expression and in vivo tumor growth rate, determined by the change in tumor size 

between sequential mammograms. Tumor growth rate may be a significant consideration when 

subtyping breast carcinomas, and consequently could be important in determining patient 

outcome.  The study is expected to improve our understanding of breast cancer biology and 

growth determinates but also will provide prognostic information and evidence-based data that 

can be used in the medicolegal practice. 

1.2.2 Models for tumor growth process 

There are so many continuous models for the growth rate that can be used to model tumor 

growth [33-36]. The simple list one is linear growth model: 

𝑉(𝑡 = 𝑡1) =  𝑉0 + 𝛼(𝑡1 − 𝑡0) 

Here 𝑉0 is the initial tumor size, 𝑡0 and 𝑡1 are the time of diagnostic and time of revisit, 𝛼 is the 

tumor growth rate. And we have the result for growth rate is: 

𝛼 =
𝑉𝑡1 − 𝑉𝑡0
𝑡1 − 𝑡0

 

We also tried the second model, which is Exponential Linear Model [38]: 

{
 
 

 
 
𝑑𝑉

𝑑𝑡
= 𝑎0𝑉,        𝑡 ≤ 𝜏

𝑑𝑉

𝑑𝑡
= 𝑎1,        𝑡 > 𝜏

𝑉(𝑡 = 0) = 𝑉0

 

Here, coefficient 𝑎0 is the coefficient for the exponential growth part, which is the parameter 

that we are interested in predicting. The coefficient  𝑎1 is the coefficient for the linear growth 

part.  

The theory behind this model is that all cells proliferate with constant cell cycle duration𝑇𝑐. Thus, 

this leads to an exponential growth model. This model also valid when the fraction of proliferative 

of the tumor size is constant or when the cell cycle period is a random variable with exponential 
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distribution. Here for our model, we assume the exponential phase to be followed by a linear 

growth phase.  

In our study, since there were only have two screening results and only a limited number of 

samples (less than 100 trials), we simply set 𝑇𝑐  to be the maximum of time between two 

screenings. Then the solution to obtain the growth rate for our model is: 

𝑎0 =
log (

𝑉1
𝑉0
)

𝑡1 − 𝑡0
=
log(𝑉1) − log(𝑉0)

𝑡1 − 𝑡0
 

Where 𝑉0 and 𝑉1 are the tumor volume at the time of diagnosis and time of the first revisit, at 

the time 𝑡0 and 𝑡1 respectively.  

The last model we tried to fit the growth model is Logistic and Gompertz models [36]: 

{

𝑑𝑉

𝑑𝑡
= 𝑎𝑉 (1 −

𝑉

𝐾
)

𝑉(𝑡 = 0) = 1
 

Here 𝑎 is a coefficient related to proliferation kinetics, 𝐾 stands for the carrying capacity, where 

all tumor volumes converge. This model can be interpreted as growth model under limited 

carrying capacity. Again, due to lack of enough data and making calculation simple, we set the 

carrying capacity to be the maximum of tumor size screened. Here an approximation of the 

solution for the growth rate is: 

𝑎 =
log(𝑉𝑡1) − log(𝑉𝑡0)

(1 − 𝑒−
𝑡1−𝑡0
𝐾 )

 

 

1.2.3 Application of growth rate models in the survival analysis 

As described above, the growth rate has been less studied or used in clinical trials to classify the 

type of breast cancer patients. Part of the reason is it is not linked to biomarkers, which are widely 

used for prognostication. In order to connect change in tumor size and type of breast cancer, we 

further apply survival analysis on the data.  
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We first try to find the best cut point for the growth rate, which would be used later to separate 

fast growth patients from slow growth patients. The practice of dichotomizing continuous 

covariates is widely used in medical and epidemiological research for both clinical and statistical 

reasons. From the clinical perspective, we can use a cutpoint split continuous variables into ‘low’ 

and ‘high’, establishing a threshold for future studies. Using the criteria, patients can be classified 

into these two groups and their prognosis can be estimated, which will be used for choosing 

proper treatments. From the statistical perspective, binary covariate provides a simpler 

interpretation of effect measures, such as odds ratios and relative risks. In our study, by 

comparing hazard ratios between groups, we can have not only a clearer understanding of the 

results but also an easier way for future implementation. Another benefit of using binary 

covariates is that one does not need to check statistical assumptions before using them to build 

up our model [39].  

 The way to choose the best cut point is choosing the one that provides the greatest difference 

between survival functions of two groups. After that, we fit a logistic regression to predict growth 

rate mode with biomarkers, such as KI67 scores, CASPS3 scores. 

 

1.2.4 Using survival analysis to analyze breast cancer data 

Survival analysis is a set of methods for analyzing data with the outcome as ‘time to event’, which, 

in our study, is time to death and later was extended to time to recurrence.  

There are several common terms defined in our survival analysis: 

 Event: In our study, the events we are interested in is Death and Recurrence; 

 Time: The time from the diagnosis to the event of interest; 

 Censoring: If a subject does not have an event during the observation time, then these 

cases are defined as censored. There is no information about the occurrence of the event 

after observation; 

 Survival function: The probability that a patient survives longer than time 𝑡, in which 

‘survives’ was defined as still being alive at observation time.  
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In our study, we mainly used Kaplan-Meier curves and Cox proportional hazard regression to 

analyze the breast cancer data.  

Kaplan-Meier curve is a non-parametric statistic used to estimate the survival function, which 

was used in our study to measure the length of survival time for patients with breast cancer [40].  

There are three assumptions that are important in this analysis. First, all the censored patients 

have the same survival pattern as those patients who remains in the study. Secondly, all patients 

have the same survival probability no matter when they joined the study. Thirdly, we can only 

observe the event at the specified time, which means we can only know what happened when 

carrying out the follow-up. And the survival probability at particular time is calculated by the 

formula given below [40]: 

𝑆𝑡 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑒𝑑 𝑎𝑙𝑖𝑣𝑒 𝑎𝑡 𝑒𝑛𝑑 𝑡𝑖𝑚𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑎𝑙𝑖𝑣𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒
 

Another survival analytic tool we used is Cox proportional hazard model, where the hazard at 

time 𝑡 for an individual with covariates 𝑥𝑖  is assumed to be 

𝜆𝑖(𝑡|𝑥𝑖) =  𝜆0(𝑡)exp (𝑥𝑖′𝛽) 

In this model, 𝜆0(𝑡) is a baseline hazard function that describes the risk for individuals with 𝑥𝑖 =

0. In our study, we select the lowest level of each biomarker to be the baseline. Here exp (𝑥𝑖′𝛽)is 

the relative risk, a proportional increase or decrease in risk, which is what we want to estimate 

from the model.  

 

1.2.5 Fit Logistic regression model to predict growth rate with biomarkers 

In our study, we tried to build up model to predict the type of growth rate for each patient with 

their prognostic characteristics. This model will be used in the future to predict whether the 

patient has a fast growth rate or a slow growth rate, which indicates whether he or she would 

face a high or low risk to death.  
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The model we choose is logistic regression model. There are several reasons why we made this 

choice: 

 The outcome of our data is a categorical variable, so our model should be the probability 

of belonging to each class.  

 Our model would be applied to the clinical practice, which means our model should not 

be too complicated for implementation.  

 When selection the biomarkers in the model, the logistic regression is an easy way to 

compare the results from different models. We choose the best model based on the 

predicting accuracy and model diagnostic result. 

 

1.2.6 Extension of the survival analysis to recurrence of breast cancer 

After we obtain the connection between growth rate and risk to death, we want to extend the 

usage on more clinical practice. Since the idea of survival analysis can be applied to some other 

time to event study, we just need to change the event of interest to the recurrence of breast 

cancer. Since people from public health are interested in comparing risks to recurrence among 

difference races, I extended the survival analysis to the recurrence of breast cancer and tried to 

compare that of patients with different races. 

Clinical studies have revealed a higher risk of breast tumor recurrence in African-American (AA) 

patients compared to European-American (EA) patients, contributing to the alarming inequality 

in clinical outcomes among the ethnic groups. However, distinctions in recurrence patterns upon 

receiving hormone, radiation, and/or chemotherapy between the races remain poorly 

characterized. 

The significant divide in breast cancer mortality between African-American (AA) and European-

American (EA) patients remains a challenge for clinicians. Despite a similar number of reported 

incidences of breast cancer among AA and EA women, AAs experience notably higher severity in 

clinical outcomes and exhibit a 40% higher death rate than EAs among premenopausal and 

menopausal breast cancer patients [41-43]. Recurrent breast cancer has impeded successful 
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management of the disease for decades and is one of the primary factors for this racial division 

in prognosis [44]. Statistics demonstrate that approximately 40% of all breast cancer survivors 

will experience a recurrence episode during their lifetime, which has been suggested to play a 

principal role in breast cancer mortality [45]. Clinical studies have revealed a higher risk of 

recurrence in AA compared to EA, presumably contributing to the inequality in clinical outcomes 

among the ethnic groups [41]. This statistic has provided an impetus for clinicians to devise and 

implement robust prognosticative measures to preclude recurrence in AA breast cancer patients. 

However, distinctions in recurrence rates and patterns following various forms of treatment 

between the races have not been thoroughly evaluated. This warrants more investigation to 

potentially attenuate the observed racial disparity in recurrence in the clinic. Hence, we 

conducted a large institutional study based in Atlanta, Georgia, in which we analyzed rates and 

patterns of tumor recurrence post hormone, radiation, and chemotherapy among AA and EA 

breast cancer patients. This retrospective clinical study uncovered previously unrecognized 

distinctions in recurrence patterns following each conventional form of treatment among racially 

distinct breast populations and may impart valuable clinical insight into preclusive measures for 

mitigating the ethnic disparity in breast tumor recurrence.  

We compared patterns and rates (per 1000 cancer patients per 1 year) of recurrence following 

each form of treatment between AA (n=1850) and EA breast cancer patients (n=7931) from a 

cohort of patients (n=10504) treated between 2005-2015 at Northside Hospital in Atlanta, GA. 

Multivariate models were used to examine the effect of age, grade, and stage on our results and 

95% confidence intervals were used to determine if there are significant difference between the 

two groups. 
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2 METHODS 

2.1 Neuronal Culture and Analysis 

We used data from the Firestein laboratory at Rutgers University to verify the validity of our 

models against experimental results, all the data were used with the permission from them. The 

neuronal images used for this study were previously analyzed [46]. But were reanalyzed using 

the Firestein laboratory’s method of semi-automated Sholl analysis, called Bonfire [47, 48]. The 

Sholl curves generated for this study were not included in previous study [46]. The experimental 

procedures used are as follows Cell culture, transfection, and immunostaining: 

Hippocampal neurons were isolated from embryonic rats at 18 days of gestation (E18) as 

previously described [47, 48]. Briefly, the hippocampi from Sprague-Dawley rats were isolated 

and mechanically dissociated. Hippocampal neurons were then plated on poly-D-lysine (PDL)-

coated glass coverslips (12 mm diameter) at a density of approximately 1800 cells/mm2. Cells 

were cultured in Neurobasal medium supplemented with B27, Glutamax, and 1% 

penicillin/streptomycin (Life Technologies). At 5 days in vitro (DIV), neurons were transfected 

with cDNA encoding green fluorescent protein (GFP) in the pEGFP-C1 vector (Clontech) using 

Lipofectamine 2000 (Invitrogen). GFP is expressed throughout the entire neuron and ensures 

accurate assessment of dendrite number. At 7 DIV, immunostaining was performed to enhance 

the natural fluorescence of GFP. Neurons were fixed in 4% paraformaldehyde (PFA) in phosphate 

buffered saline (PBS), after which they were incubated in blocking buffer. Primary antibody 

incubation (1:1000 dilution of rat anti-GFP from Dr. Shu-Chan Hsu of Rutgers University) occurred 

at 4˚C overnight. Coverslips were washed 3 times with PBS and then incubated with secondary 

antibody (1:250 dilution of Cy2-anti rat IgG from Jackson Immunoresearch) for 1 hour at room 

temperature. Coverslips were washed twice more with PBS and then incubated with Hoechst for 

5 min at room temperature to stain the nuclei. Coverslips were washed a final time with PBS and 

were then mounted onto glass microscope slides using Fluoromount (Southern Biotechnology).  

Transfected cells were imaged using an Olympus Optical IX50 microscope with a Cooke SensiCam 

charge-coupled device (CCD) cooled camera fluorescence imaging system and ImagePro software 

(Media Cybernetics). All images were taken at 200x magnification. 
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Images were processed as previously described [47, 48], using customs scripts written in Matlab 

(MathWorks). Briefly, cell bodies and dendrites were traced in ImageJ using the NeuronJ plugin 

(NIH, Bethesda, MD). The data were exported to NeuronStudio and checked to ensure proper 

connectivity of dendrites. Sholl analysis was then performed at 6 μm intervals starting at 0 μm 

from the soma using the Bonfire program [47, 48]. 

2.2 Discrete statistical model for neural growth without restriction 

2.2.1 Recurrence formulas for the probability distribution of all possible neural trees 

The results from the previous section can be proven using the discrete probability distribution 

function at any time step N, with 𝑝  as the branching probability and q is the elongation 

probability.  The evolution of all possible trees may be described using a recursive function 

𝑓𝑛(𝑝, 𝑞) as follows:  For the first step (step 0), use f0(p, q) = 1 to denote a single branch (see Table 

1, step 0).  At step 1, 𝑓1(𝑝, 𝑞)  =  𝑝 +  𝑞, (see Table 1, step 1), indicates the existence of two trees: 

the first with two active branches and probability of instantiation p, and the second containing a 

single branch and instantiated with probability q.  Note that since 𝑝 +  𝑞 =  1, the sum of all 

probabilities adds up to 1, as needed.  At step 2, we can describe the existing trees using 

 𝑓2(𝑝, 𝑞) = 𝑞 ∗ 𝑝 +  q ∗ q +  p ∗ (p
2  +  2 p q + q2) = (q + p(p + q)) ∗ (p + q).   

These trees can be identified in the tree evolution (Figure 1) for steps 1-2, and are listed in Table 

1 for step 2.  A summary figure is listed in Figure 3.  
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Figure 3 Summary figure for the evolution of the trees for the first three time steps. 

The number of terminal branches is listed for each tree, followed by the probability of obtaining 
that particular outcome starting from the previous step.  The overall probability of a certain 
outcome can be obtained by multiplying the probabilities along the path.  

 

Intuitively, the single-branch tree can evolve on two possible paths (extend or branch) as 

indicated by the first two terms.  The tree with two terminal branches can generate trees with 4, 

3 and 2 terminal branches, respectively.  The formula for step 3, 𝑓2(𝑝, 𝑞), can now be obtained 

by substituting 𝑝 by 𝑝 ∗ (𝑝 +  𝑞) in formula 𝑓1(𝑝, 𝑞) and multiplying the result with (𝑝 +  𝑞).  

We thus hypothesize the following recurrence formula for generating all trees at step n: 

𝑓𝑛+1(𝑝, 𝑞) = 𝑓𝑛(𝑝 ∗ (𝑝 + 𝑞), 𝑞) ∗ (𝑝 + 𝑞)        (5) 

A proof of this formula is provided in the next section.  This explicit recursive description of the 

discrete probability distribution now allows us to compute the expected number of mean 
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branches and the associated variance in the general case, extending the enumerative example 

shown in Table 1.  As a result, when the number of steps is small enough such that all trees have 

total lengths below the maximum allowed value (i.e. before they run out of resources and cannot 

extend anymore), we can prove that the expected mean indeed follows the general formula 

𝐸(𝑛) = (1 + 𝑝)𝑛.  Furthermore, we were able to derive a recurrence formula that described the 

associated variance:  

𝑉𝑎𝑟(𝑆𝑛) = 𝑝 ∗ (1 − 𝑝) ∗ (1 − 𝑝)
𝑛−1 ∗ 𝑔(𝑛)       (6) 

where𝑔(𝑛 + 1) = 𝑝 ∗ 𝑔(𝑛) + 𝑔(𝑛) + 1,  with 𝑔(1) = 1 

This has the following solution:  

Varn(X) = (1 + p)2∗(n−1) ∗ (1 − p2) + (1 + p)n−1 ∗ (p − 1)  n = 1,2, ……  (7) 

 

2.2.2 Derivation of the recurrence formula for all possible neuronal trees 

We now prove the formula for generating all trees: 𝑓𝑛+1(𝑝, 𝑞) = 𝑓𝑛(𝑝. (𝑝 + 𝑞), 𝑞). (𝑝 + 𝑞). We 

write the formula for step n as 𝑓𝑛(𝑝, 𝑞) = ∑ 𝑝𝑘𝑔𝑘(𝑞)
2𝑛−1
𝑘=1 where 𝑔𝑘(𝑞)  are polynomials in q.  

Obviously, this is true for the first 3 time steps considered in Table 1.  Each individual term in 

the𝑓𝑛(𝑝, 𝑞), of the form 𝑝𝑘  𝑔𝑘(𝑞) represents the probability of generating a tree with 𝑘 +  1 

active branches.  Some of the trees are isomorphs, for simplicity that will be absorbed into the 

coefficients from𝑔𝑘(𝑞). In order to derive the general formula for 𝑛 +  1 step, we note that the 

trees that contain a 𝑝𝑘 term have k + 1 terminal or active branches (see Table 1).  Then, at the 

next step, these active branches can generate between 0 and (𝑘 +  1) new active branches.  

Taking into account the degeneration (isomorph trees), the probabilities for these new branches 

are described by the combinations from the (𝑝 +  𝑞)𝑘+1 formula.  We then obtain the following: 

𝑓𝑛+1(𝑝, 𝑞) = ∑ 𝑝𝑘(𝑝 + 𝑞)𝑘+1𝑔𝑘(𝑞) =

2𝑛−1

𝑘=1

(𝑝 + 𝑞) ∑ 𝑝𝑘(𝑝 + 𝑞)𝑘𝑔𝑘(𝑞)

2𝑛−1

𝑘=1

=(𝑝 + 𝑞) ∑ (𝑝(𝑝 + 𝑞))𝑘𝑔𝑘(𝑞)

2𝑛−1

𝑘=1

= (𝑝 + 𝑞)𝑓𝑛(𝑝, 𝑞) 



 

21 
 

This proves the validity of formula of mean and variance. 

 

2.2.3 Derivation for the expected number at distance k: 𝑷(𝒏) = (𝟏 + 𝒑)𝒏 

We want now to prove that the expected number of branches at step n is (1 +  𝑝)𝑛.  In order to 

achieve this, we need to prove the following intermediary steps.  First, we can determine the 

expected number of active branches at step 𝑛 as the derivative of the 𝑓𝑛 ∗ 𝑝 function: (𝑓𝑛(𝑝, 𝑞) ∗

𝑝)’, where the symbol ’ stands for derivative with respect to p.  Since the terms in the sum of 

𝑓𝑛(𝑝, 𝑞) are all the entries in the global probability table, we now have the expected number of 

active branches at time step n (and distance 𝑛 +  1 away from the origin): 

𝐸(𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑐𝑡𝑖𝑣𝑒 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑛) = 𝐸(𝑏𝑛)

= ∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑐𝑡𝑖𝑣𝑒 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 𝑜𝑛 𝑡𝑟𝑒𝑒 ∗ 𝑡𝑟𝑒𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑘=𝑎𝑙𝑙 𝑡𝑟𝑒𝑒𝑠

 

We rewrite this to be:  

𝑓𝑛(𝑝, 𝑞) = ∑ 𝑝𝑘𝑔𝑘(𝑞)

2𝑛−1

𝑘=1  

We now obtain the following: 
 

𝐸(𝑏𝑛) = ∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑐𝑡𝑖𝑣𝑒 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 𝑜𝑛 𝑡𝑟𝑒𝑒 ∗ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑦 𝑡𝑟𝑒𝑒

𝑘=𝑎𝑙𝑙 𝑡𝑟𝑒𝑒𝑠

= ∑ (𝑘 + 1)𝑝𝑘𝑔𝑘(𝑞)

2𝑛−1

𝑘=0

= (∑𝑝𝑘+1𝑔𝑘(𝑞)

𝑛

𝑘=1

)

′

= (𝑝.∑𝑝𝑘𝑔𝑘(𝑞)

𝑛

𝑘=1

)

′

= (𝑝. 𝑓𝑛+1(𝑝, 𝑞))
′ 

Using these intermediary results, the expected number of branches evaluates as (1 + p)n, as 

proved by induction below. 

𝐸(𝑏𝑛) = (1 + 𝑝)𝑛 
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𝐸(𝑏𝑛) = (𝑝. 𝑓𝑛+1(𝑝, 𝑞))
′ = (𝑝. ∑ 𝑝𝑘(𝑝 + 𝑞)𝑘+1𝑔𝑘(𝑞)

2𝑛−1

𝑘=0

)

′

= (∑ 𝑝𝑘+1(𝑝 + 𝑞)𝑘+1𝑔𝑘(𝑞)

2𝑛−1

𝑘=0

)

′

= (∑ (𝑝. (𝑝 + 𝑞))𝑘+1𝑔𝑘(𝑞)

2𝑛−1

𝑘=0

)

′

= ∑ (𝑘 + 1)(2𝑝 + 𝑞)(𝑝. (𝑝 + 𝑞))𝑘𝑔𝑘(𝑞)

2𝑛−1

𝑘=0

= ∑ (𝑘 + 1)(1 + 𝑝)(𝑝. (𝑝 + 𝑞))𝑘𝑔𝑘(𝑞)

2𝑛−1

𝑘=0

= (1 + 𝑝) ∑ (𝑘 + 1)(𝑝. (𝑝 + 𝑞))
𝑘
𝑔𝑘(𝑞)

2𝑛−1

𝑘=0

= (1 + 𝑝) ∑ (𝑘 + 1)(2𝑝 + 𝑞)𝑝𝑘𝑔𝑘(𝑞)

2𝑛−1

𝑘=0

= (1 + 𝑝)(𝑝. 𝑓𝑛(𝑝, 𝑞))
′
= (1 + 𝑝)𝑛+1 

Furthermore, we can extend this approach and compute the variance for this expected number, 

using 𝑣𝑎𝑟(𝑋)  =  𝐸(𝑋2) –  𝐸(𝑥)2  =  ((𝑓𝑛(𝑝, 𝑞) ∗ 𝑝)’ ∗  𝑝)’ – ((1 +  𝑝)
𝑛)2 

After simplifications, this can also be written as a recursion formula: 

𝑉𝑎𝑟(𝑆𝑛) = 𝑝. (1 − 𝑝). (1 − 𝑝)
𝑛−1. 𝑔(𝑛) 

𝑔(𝑛 + 1) = 𝑝. 𝑔(𝑛) + 𝑔(𝑛) + 1 

𝑔(1) = 1 

After solving this difference equation, we obtain the solution for the general formula of the 

variance: 

Varn(X) = (1 + p)
2(n−1). (1 − p2) + (1 + p)n−1. (p − 1)  n = 1,2, 
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2.3 Neural Growth Model with Restrictions 

2.3.1 Optimal targeting region for trees with size restrictions 

At larger distances from the origin, some trees should be eliminated from the analysis.  For 

example, if the maximum length of the tree is equal to 7, the larger trees will not generate any 

additional subtrees after time step 3.  However, the smaller ones do, and the formulas for the 

number of searching sites at distance n that allow for a tree of maximum size 7 are the following: 

Table 1 List of the trees that can be generated when maximum length of the tree is equal to 7. 

Step 1 𝑝 +  1 enough resources 

Step 2 (𝑝 +  1)2 enough resources 

Step 3 (𝑝 −  1)2 ∗ (2 ∗ 𝑝3  +  5 ∗ 𝑝 +  1) some trees are eliminated 

Step 4 −(𝑝 −  1)3 ∗ (− 2 ∗ 𝑝2  +  3 ∗ 𝑝 +  1) some trees are eliminated 

Step 5 (𝑝 −  1)4 ∗ (𝑝 +  1) 

the one that does not branch at all 

and the one that branches after 4 

steps 

Step 6 (𝑝 −  1)6 
only the tree that does not branch 

at all reaches this far 

 

 

2.3.2 Right tail series expansion up to order 𝒑𝟑 

The series expansion for the right tails follows the formula 
𝑓(𝑁−𝑘)

𝑓(𝑛−𝑘+1)
= 𝑓1(𝑘) ∙ 𝑝 + 𝑓2(𝑘) ∙ 𝑝

2 +

𝑓3(𝑘) ∙ 𝑝
3 +⋯ = ∑ 𝑓𝑗(𝑘) ∙ 𝑝

𝑗𝑘
𝑗=1 , where the fj functions are defined below: 

𝑓1(0) = 𝑞𝑁 , 𝑓2(0) = 0, 𝑓3(0) = 0, 𝑓4(0) = 0 

𝑓1(1) = 𝑞
𝑁−1, 𝑓2(1) = 2𝑝𝑞𝑁−2, 𝑓3(1) = 0, 𝑓4(1) = 0, 𝑓1(𝑘) = 𝑞𝑁−𝑘 
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 𝑓2(2) = 2𝑝𝑞
𝑁−2 + 2𝑝𝑞𝑁−3, 𝑓3(2) = 0, 𝑓4(2) = 0 

 𝑓2(𝑘) = 2𝑝𝑞
𝑁−2∑𝑝𝑖−𝑘

𝑘

𝑖=1

, 𝑓3(2) = 0, 𝑓4(2) = 0 

 𝑓3(3) = 6𝑝
2𝑞𝑁−4, 𝑓4(3) = 0 

𝑓3(4) = 6𝑝2𝑞𝑁−4 + 6𝑝2𝑞𝑁−4, 𝑓4(4) = 4𝑝3𝑞𝑁−6 

𝑓3(𝑘) = 6𝑝
2𝑞𝑁−4∑𝑔(𝑖)𝑝𝑖−𝑘

𝑘

𝑖=3

 

𝑔(0) = 𝑔(1) = 𝑔(2) = 0, 𝑔(3) = 1, 𝑔(4) = 1, 𝑔(5) = 2, 𝑔(𝑘) = 𝑔(𝑘 − 2) + 1 

𝑓4(𝑘) = 4𝑝3𝑞𝑁−6∑ℎ(𝑖)𝑝𝑖−𝑘
𝑘

𝑖=5

 

ℎ(0) = ℎ(1) = ℎ(2) = ℎ(3) = ℎ(4) = 0, ℎ(5) = 1, ℎ(6) = 1, ℎ(7) = ℎ(5) + 6 = 7 

ℎ(8) = ℎ(6) + 7 = 8, ℎ(9) = ℎ(7) + 7 = 14 

ℎ(3𝑗 + 4) = ℎ(3𝑗 + 2) + 6𝑗 

ℎ(3𝑗 + 5) = ℎ(3𝑗 + 3) + 6𝑗 + 1 

ℎ(3𝑗 + 6) = ℎ(3𝑗 + 4) + 6𝑗 + 1 

 

Therefore, up to the 4th order approximation in p we have:  

𝑅(𝑁 − 𝑘) =
𝑓(𝑘 + 1)

𝑓(𝑘)
=
𝑓1(𝑘 + 1) + 𝑓2(𝑘 + 1) + 𝑓3(𝑘 + 1) + 𝑓4(𝑘 + 1)

𝑓1(𝑘) + 𝑓2(𝑘) + 𝑓3(𝑘) + 𝑓4(𝑘)
 

𝑅(𝑁 − 𝑘)

=
𝑞𝑁−(𝑘+1) + 2𝑝𝑞𝑁−2∑ 𝑝𝑖−𝑘𝑘+1

𝑖=1 + 3𝑝2𝑞𝑁−4∑ 2𝑔(𝑖)𝑝𝑖−𝑘𝑘+1
𝑖=3 + 4𝑝3𝑞𝑁−6∑ ℎ(𝑖)𝑝𝑖−𝑘𝑘+1

𝑖=5

𝑞𝑁−𝑘 + 2𝑝𝑞𝑁−2∑ 𝑝𝑖−𝑘𝑘
𝑖=1 + 3𝑝2𝑞𝑁−4∑ 2𝑔(𝑖)𝑝𝑖−𝑘𝑘

𝑖=3 + 4𝑝3𝑞𝑁−6∑ ℎ(𝑖)𝑝𝑖−𝑘𝑘
𝑖=5

 

 

Table 2 Coefficients of first 3 orders from the proportions between steps of an example with 
26 steps. 
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𝑆𝑡𝑒𝑝 (𝑁 − 1)𝑡ℎ

𝑆𝑡𝑒𝑝 𝑁𝑡ℎ
 Coefficient of 1st order Coefficient of 2nd order Coefficient of 3rd order 

N = 26 3 5 7 

N = 25 3 -1 3 

N = 24 3 -1 17 

N = 23 3 -7 47 

N = 22 3 -7 55 

N = 21 3 -13 135 

N = 20 3 -13 141 

 

 

2.3.3 Determining the approximation for the peak location 

We can use this table 2 to derive a better, second order approximation that improves the first 

order approximation derived in formula (3), namely 𝑘 =
3+5𝑝

6𝑝
.  Similar to the derivation of this 

equation, the exact location where the ratio becomes 1 can be used to approximate where the 

spatial location of the peak of the distribution occurs. This occurs at step N – k, when 
𝑃(𝑁−𝑘−1)

𝑃(𝑁−𝑘)
, 

which starts with an initial value of (1 + 3𝑝 + 5𝑝2 + 𝑓3(𝑘)𝑝
3) , reaches a value of 1 after 

experiencing continuous decreases in value.  This is determined by:  

1 +  3𝑝 + (5 –  6𝑘)𝑝2 + 𝑓3(𝑘)𝑝
3 = 1 

which can be easily rewritten as  

3 + (5 –  6𝑘)𝑝 + 𝑓3(𝑘)𝑝
2 = 0 

which can only be solved numerically in 𝑘 due to the complicated expression for the function 

𝑓3(𝑘). 
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The condition that all neurite tips reach a target distance D translates to:  

𝐷 =  𝐿0𝑁𝑚𝑎𝑥    =  𝐿0 log2(1 +
𝐿𝑚𝑎𝑥
𝐿0

) 

Now we can set up the comparison: using the geometrical series result, we determine that the 

average number of branches at time step 𝑘 is (1 + 𝑝)𝑘, and therefore we obtain the total length 

of the tree after completion of n steps:  

1 + (1 + 𝑝) + (1 + 𝑝)2 +⋯+ (1 + 𝑝)𝑛 =∑(1 + 𝑝)𝑘
𝑛

𝑘=0

=
(1 + 𝑝)𝑛+1 − 1

1 + 𝑝 − 1
=
(1 + 𝑝)𝑛+1 − 1

𝑝
 

Setting up the condition that the tree stops expanding when it reaches maximal allowed length 

L, we get:  

𝐿 =
(1 + 𝑝)𝑛+1 − 1

𝑝
 

We can now compute p from this equation: 𝑝 ⋅ 𝐿 = (1 + 𝑝)𝑛+1 − 1, or equivalently 1 + 𝑝 ⋅ 𝐿 =

(1 + 𝑝)𝑛+1 Taking log on both sides: ln(1 + pL) = (𝑛 + 1)ln (1 + 𝑝), or equivalently 𝑛 + 1 =

ln(1+𝑝𝐿)

ln(1+𝑝)
. We finally obtain:  

𝑛 =
ln(1 + 𝑝𝐿)

ln(1 + 𝑝)
− 1 

Note that when p → 0, the single-branch tree expands all the way to x = N (in N - 1 time steps) 

since  

lim
𝑝→0

𝑛 = lim
𝑝→0

(
ln(1 + 𝑝𝐿)

ln(1 + 𝑝)
− 1) = 𝐿′𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙′𝑠 𝑅𝑢𝑙𝑒 = lim

𝑝→0
(
𝑙𝑛′(1 + 𝑝𝐿)

𝑙𝑛′(1 + 𝑝)
) − 1

= lim
𝑝→0

(

𝐿
1 + 𝑝𝐿
1

1 + 𝑝

) − 1 = 𝐿 − 1 

Because the probability of this tree is 𝑓(𝑝)  =  (1 −  𝑝)𝑁−1, the function f is obviously maximized 

at 𝑝 =  0.  Not surprisingly, the symbolic/numeric evaluation yields the same result.  At the other 
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end of the spectrum, when p → 1, the tree expands as 1 +  2 +  4 +  8 +  16 + …  =  𝑁 and 

runs out of resources.  As an example, when 𝐿 =  32, we obtain:  

𝑛 =
ln(1 + 1𝐿)

ln(1 + 1)
− 1 =

ln(1 + 𝐿)

ln(2)
− 1 = 𝑙𝑛2(1 + 𝐿) − 1 = 𝑙𝑛2(1 + 31) − 1 = 5 − 1 = 4 

These results assume that the number of tree branches doubles without fail at each time step 

until the tree will finally run out of resources.  At that point, the number of terminal branches 

will be maximal, meaning that the tree peaked at the right location and it will have the highest 

chance to find a target in this blind search there.  Note that in contrast to previous results, what 

we seek here is the optimal branching probability that would allow this to happen. The 

optimization problem here first selects the distance at which maximal performances are sought, 

then the uniform branching probability is determined.  

 

2.4 Tumor Growth Models 

2.4.1 Materials and methods for predicting tumor growth rate 

Patients: A total of 114 patients were derived from the database of screen-detected primary 

breast carcinoma patients presented to Nottingham City Hospital (UK) from 1988 to 2008 with 

interval cancer, and for whom revision of the previous screening mammography showed a 

previously undetected cancer at the same affected site, all the data was used with permission 

from our collaborators. This misdiagnosis might be due to a minimal visible diagnosis in the 

previous mammogram. The maximum tumor dimension identified by the mammography was 

available for each case. We excluded cases presented with predominant calcification. All the 

clinicopathological information was available for 92 patients. For each case, information relating 

to changes in tumor size between the time of screening and of diagnosis as well as the dates of 

screening and diagnosis was used to estimate tumor growth rate. Clinical and pathological data 

of the patients including age, histological tumor type, primary tumor size, lymph node status, 

histological status, NPI and vascular invasion were obtained in a standard manner at the time of 

diagnosis was compiled.  
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Calculated Tumor volume: The two measurements in the mammogram screening were assumed 

as tumor diameter and tumor height. The highest mammogram reading was assumed as height 

and the other as diameter to calculate the volume using the formula 
4

3
𝜋𝑎𝑏2 (assuming the tumor 

to be ellipsoidal). The measured tumor height was introduced into the formula in the position b 

after dividing by 2 whereas the tumor diameter was introduced in the position of 𝑎 after dividing 

by 2. We simply used the formula 

𝑇𝑢𝑚𝑜𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 =
4

3
𝜋𝑎𝑏2 

 to calculate the tumor volume at the time of diagnosis and tumor volume at the time of 

screening to determine the change in volume.  

 

Figure 4 Ellipsoid Tumor 

Ellipsoid tumor calculated by tumor diameter and tumor height with the formula 4/3 πab2. Graph reproduced 

from Richtig study [80].  

 

2.4.2 Model selection for growth rate 

As described in the introduction part, we have three models to calculate the growth rate. And 

based on the results, we choose the Exponential model, which provides the best result from 



 

29 
 

survival analysis, more results will be shown in the Result section 3.4.2.  

  

           (a)                           (b) 

  

(c) 

Figure 5 Histogram of individual growth rate from three models 

Figure 5 shows the histogram of growth rate from three models. (a) is from the linear model 
which gives most skewed results, which is not useful for further study. (b) and (c) are from the 
exponential model and the logistic model, both of which are less skewed. The plot for (c) however 
shows that there are more outliers from the third model. Since (b) is closer to a bell shaped 
distribution, we choose it for further studies.  

 

Calculated Tumor Growth Rate:  

𝛼 =
log(𝑉𝑜𝑙𝑢𝑚𝑒𝑡) − log(𝑉𝑜𝑙𝑢𝑚𝑒𝑡0)

𝑡 − 𝑡0
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Where,  

𝑉𝑜𝑙𝑢𝑚𝑒𝑡 is volume at time of diagnosis calculated as: 

𝑉𝑜𝑙𝑢𝑚𝑒𝑡 =  𝑉𝑜𝑙𝑢𝑚𝑒𝑡0 ∗ 𝑒
𝛼(𝑡−𝑡0) 

𝑉𝑜𝑙𝑢𝑚𝑒𝑡0 is volume at time of screening. 𝑒𝑡−𝑡0 is an exponential function with 𝛼 being growth 

rate and 𝑡 − 𝑡0is the time difference between screening and diagnosis. 

2.4.3 Biomarkers in the model 

Immunohistochemistry: For each patient, a representative formalin-fixed paraffin wax-

embedded tumor block was obtained from the Nottingham breast tumor bank. 4 μm thick full-

face sections were prepared and placed onto glass slides (Xtra®, Surgipath).  

ER, PR, HER2, CK5/6, Ki67, BCl2, and MCM2 staining: We applied IHC to FFPE tissue sections using 

Novolink™ Max Polymer Detection System from Leica Biosystems (Leica, Newcastle, UK). Heat-

induced retrieval of antigen epitopes was performed in citrate buffer (pH 6) using a microwave 

for 20 minutes, followed by immediate cooling. The slides were rinsed with Tris Buffered Saline 

(TBS, pH 7.6). The primary antibody was applied for 30 minutes at room temperature. Optimal 

antibody dilutions have based on a study by El Rehim et al, (2005). Dako® Antibody Diluent (ref 

# 50809, let # 10032882) was used. To visualize antibody binding, 3-3’ Diaminobenzidine 

tetrahydrochloride (Novolink DAB substrate buffer plus) was freshly prepared and used as a 

chromogen. The tissue sections were counter stained with Mayer’s hematoxylin for 6 minutes. 

Slides were dehydrated in alcohol, cleared in Xylene then mounted with DPX. 

Cleaved Caspase-3 Staining: This marker was stained for using a pre-fabricated detection kit 

(SignalStain® Cleaved Caspase-3 (Asp175) IHC Detection Kit #8120, Cell Signaling Technology) 

following manufacturer’s instructions. As before, slides were de-waxed and rehydrated before 

antigen retrieval was carried out. Pre-diluted cleaved caspase-3 Primary Antibody (# 9661, clone 

D175, polyclonal rabbit) was applied and incubated overnight at 4°C ensuring they did not dry 

out. Following incubation, prediluted Biotinylated Secondary Antibody was applied. Slides were 

closely monitored after the application of NovaRedTM Substrate Chromogen solution and were 

immersed in dH20 when red-brown staining was observed (typically after approximately 7-8 
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minutes). They were counterstained with Haematoxylin for 6 minutes, dehydrated in denatured 

ethanol and xylene as before, before mounting with cover slips.  

Assessment of IHC staining:  

For each slide, only the invasive tumor component was scored. Cases were scored twice using 

light microscopy; the second time blind to the first results. Scores were then averaged. The cases 

were scored without the prior knowledge of patients’ clinicopathological data. For ER and PR 

nuclear immunoreactivity, H-Score was employed. An H-score of 10 was used as the cut-off, in 

accordance with normal clinical practice at Nottingham. 

For HER-2, overall membranous staining intensity was scored on a 0-3 basis using guidelines by 

the American Society of Clinical Oncology and College of American Pathologists, with 0 

representing no visible staining, and 3 representing extremely intense membranous staining.  

For Ki67, only nuclear immunoreactivity of proliferating cells was recorded, whilst for cleaved 

Caspase-3, only cells undergoing apoptosis were noted. For both markers, the invasive tumor 

component in each case was scanned until the staining “hot-spot” was identified. At 40x 

magnification, the number of cell nuclei stained regardless of staining pattern or intensity per 

1000 invasive tumor cells was then counted. The % staining in the “hot-spot” field was then 

calculated.  

CK5/6 was scored as the overall percentage of positively staining cells within the whole invasive 

tumor component. For the purposes of this study, and based previous studies a cut-off of 10% 

staining was used to distinguish between positive and negative expression groups.  Breast cancer 

molecular subtypes were defined based on their IHC expression profile for ER, PgR, HER2, CK5/6 

into1) luminal (ER+ and/or PR+ /HER2-), 2) HER2+ (HER2 positive), 3) Triple negative (TN; ER-, PR-, 

HER2-) and Basal-like Breast cancer (BLBC: TN+ CK5/6 +). [50]  

2.4.4 Statistical analysis on the growth rate 

All the statistical analysis in this paper was performed using Statistical Analysis System (SAS 9.4, 

Cary, North Carolina, US). For the following analysis, P-value less than 0.05 were taken as 

significant, for both one-tailed tests and two-tail tests. Spearman’s Rank-Order Correlations were 
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used to test the correlation between the growth rate and each biomarker. We also apply Fisher’s 

exact test on the contingency table to examine the association between type of breast cancer 

and each biomarker. To compare the growth rate among patients with different levels of 

biomarkers, we did the analysis of variance (ANOVA) on the biomarkers, which are associated 

with growth rate determined by Spearman’s Rand-Order correlation test. At last, Multivariate 

Cox Proportional Hazard Model was fitted with growth rate and potential confounders selected 

from the previous analysis, in order to determine the effect of a unit increment in the growth 

rate on the change of hazard rate.  

2.4.5 Choose the cut point for growth rate 

In order to find the optimal cut point, we first have a set of possible of candidates and then 

choose the best one based on the results of dichotomizing the patients with different 

performances.  The maximum number of candidate cut points is k- 1, where k is the number of 

unique values in the data of that continuous covariate. Some researchers have suggested 

excluding the outer 10-20% of the continuous covariate distribution to avoid having small 

numbers in one of the groups the following dichotomization, thereby preventing substantial 

losses in statistical power [39]. The inner 80-90% of the distribution from which a cutpoint is 

chosen is referred to as the selection interval. For each candidate cutpoint within a specified 

selection interval, an appropriate two-sample test with concomitant test statistic and p-value (Pc) 

is determined. A cutpoint model may be appropriate if any 𝑃𝑐  is less than or equal to some 

allowable level of Type I error. The optimal cutpoint is often defined as that candidate cutpoint 

with the smallest Pc. This method for estimating a cutpoint is referred to as the minimum p-value 

approach, or alternatively the maximum statistic approach. Other criteria for choosing an optimal 

cutpoint have been suggested, including maximum effect size and the maximum precision of 

estimates, but have received less support. 

We first choose all possible candidates of cutpoints, then we calculated the p-values from log-

rank test [51]. Each log-rank test is trying to test the hypothesis that the survival curves of two 

groups are the same. Then the cutpoint with the lowest p-value is the one that split the covariates 

best.  
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After I find the optimal cutpoint, I used SAS proc lifetest to test the efficiency of separating the 

patients into two distinct groups with different level of risk to death. First, the survival curve is 

estimated by Kaplan-Meier method.  

Then, in order to test the difference between the risks to death of two groups, I used log-rank 

test which is well known and widely used [52]. It is used to test the null hypothesis that survival 

curves of two populations have no significant difference. The test statistic is calculated as follows: 

𝜒2(log 𝑟𝑎𝑛𝑘) =
(𝑂1 − 𝐸1)

2

𝐸1
+
(𝑂2 − 𝐸2)

2

𝐸2
 

Where the 𝑂1 and 𝑂2 are the total numbers of observed events in group 1 and 2, respectively, 

and 𝐸1 and 𝐸2 the total number of expected events. The total expected number of events for a 

group is the sum of the expected number of events at the time of each event. The expected 

number of events at the time of an event can be calculated as the risk to death at that time 

multiplied by the number alive in the group. Under the null hypothesis, the risk to death can be 

calculated from the combined data for both groups.  

2.4.6 Fitting the logistic regression model to predict growth rate 

In order to build up model to predict the growth rate, we fitted a logistic regression model with 

patient’s biomarker. Here we used backward model selection method to choose the best model 

for the future use, which has been done with following steps: 

Variable transformation: Our prognostic data include different types of variables, such as strings, 

numeric and symbolic. Before we use them in the model, we transformed them into proper form 

based on both statistical and clinical reasons. From the statistical perspective, all variables that 

have potential problem of multicollinearity and non-normality must be transformed, by either 

factorized or scaled. From the clinical perspective, we need to transform variables in order to 

make them easy to be used in the future implementation. 

Step-wise model selection: We put all variables in the model in the beginning and calculate all 

the statistics of the model, such as R-squared, AIC, ANOVA, and so on. Then, based on the 

significance of the coefficients, we eliminated the least influencing variable from the model and 
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calculated the statistics again.  We kept doing this until obtaining a model with all significant 

variables.  

Cross validation: In order to make our model robust for new data, we used cross-validation 

method to assess our model. We choose 80% of the data to be the training data, with 20% of the 

data to be the validation set. The best model is the one not only works well for training data, but 

also works well for the validation set.  

 

2.5 Extending survival analysis on the recurrence of breast cancer 

2.5.1 Cohort study 

In this study, a large cohort of breast cancer patients treated at Northside Hospital (NH) in Atlanta, 

Georgia from 2005 to 2015, were examined, all data was used with permission from our 

collaborator Ritu. We received approval and permission by the institutional review board at 

Northside Hospital to access patient clinico-pathological information used in this study and have 

a written human subject’s assurance on file. The demographics and clinico-pathological 

characteristics of each patient were recorded to generate a database of 10,504 patients. Patient 

demographic information recorded in the database included age at the time of diagnosis and 

ethnicity. Age at diagnosis among patients was divided into three subgroups, comprised of 

patients below the age of 48 (premenopausal), over the age of 55 (postmenopausal), and in 

between (premenopausal), to precisely describe menopausal status. The races of patients in the 

database were primarily comprised of African-Americans (AA) and European-Americans (EA). The 

“unknown/others” subcategory denote patients of all other ethnicities (excluding AA and EA) and 

patients lacking race information. Ethnicity was reported according to the patient’s claim. Breast 

tumor characteristics that were recorded for each patient consisted of nuclear grade, 

Nottingham (NGH) grade, stage, nodal status, T (primary tumor), N (lymph node metastasis) and 

M (distant metastasis) classifications. The 7th edition of the American Joint Committee on Cancer 

(AJCC)/Union for International Cancer Control (UICC) TNM Classification and Stage groupings for 

breast carcinoma was used in this article. All patient treatments were recorded, including 

chemotherapy, hormone, and radiation therapy. Patients that underwent chemotherapy were 
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subcategorized into neoadjuvant and adjuvant depending on the timing of treatment. 

Additionally, any combination of the hormone, radiation, and chemotherapy that patients 

received was labeled as a combination of adjuvant therapies. Follow-up data was collected to 

determine breast cancer recurrence episodes, as well as the site of recurrence, such as local, 

regional or distant sites. Local recurrences comprise recurrence of the tumor in the primary site. 

Regional recurrence encompasses recurrence of the breast cancer in adjacent lymph nodes. 

Distant recurrences involve metastatic breast cancer in remote organs such as distant lymph 

nodes, bone, liver or others. 

2.5.2 Follow up 

Both follow-up of patients and initial diagnosis occurred between the years of 2005 and 2015. 

Initial diagnosis dates, as well as treatment start and completion dates for any therapies, were 

documented. Dates of the last contact for all patients were recorded. Survival status (alive/dead) 

was reported for each patient along with survival time. Dates of the first recurrence were noted. 

February 19, 2015, was the final follow-up for the last patient seen. 

2.5.3 Statistical Analysis 

A significance level of 0.05 and 95% confidence intervals were selected for all analyses. Sample 

sizes were based on the available patients that comprised each category in the NH database and 

not power analysis. Chi-square tests were performed to examine significant differences in clinico-

pathological characteristics, therapy administration, and recurrence characteristics between 

recurrence and non-recurrence patients as well as between AA and EA breast cancer patients. 

Recurrence rates were calculated as per 1000 person-years (incidence rate) from the date of 

diagnosis until the first incidence of recurrence over a 10-year period irrespective of specific 

treatment and for each form of treatment administered. Recurrence was identified as tumors 

that either reformed from the primary tumor or cells that metastasized from the primary site and 

colonized at a distant site. Test statistics were computed using MATLAB (MATLAB and Statistics 

Toolbox Release 2015a, The MathWorks, Inc., Natick, Massachusetts, United States) program and 

1-tailed univariate p-values were reported. The one-tailed analysis was preferred over two-tailed 

for this particular study to adequately reflect the presumption that treatment is expected to 
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improve patient outcome. Multivariate Cox proportional hazard models were computed to 

determine significant differences in recurrence rates and patterns between the racial groups (6, 

7). These statistical models were additionally modified to control for variables of age, grade, and 

stage. The Kaplan-Meier analysis was conducted in SAS 9.4 program to estimate survival function 

for AA and EA with the recurrent disease over a 10-year period from the time of first tumor 

reappearance until death or end of follow-up. A log-rank test was conducted to evaluate 

significance level for between-race differences in survival. Finally, a t-test was used to compare 

mean time from first recorded recurrence event until death among patients with distant 

recurrence. 

In order to extend the survival analysis on the recurrence of breast cancer, we borrowed the 

concept of time to death and applied on the time to recurrence. Then instead of risk to death, 

now we can compare the risk to recurrence among different groups.  
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3 RESULTS 

3.1 Discrete Model 

3.1.1 Unrestricted neural growth model 

In this study, we used a simplified stochastic model to investigate how changes in branching 

probability influence a neuron’s success in targeting locations that differ in distance from the 

initiation point. Since our model aims to mimic experimental results that occur in laboratory 

tissue growth, we assume that each neuron performs a blind search in their quest to connect to 

the other neurons, and as such, it cannot benefit from the chemical cues that exist during normal 

development.  Therefore, success in finding a target within a certain region depends on the 

number of active branches that reach that portion of space.  The rules for generating a simplified 

neuronal tree, described in our previous work [2], are as follows.  Initially, there is one active 

branch that at each discrete time step can branch into two neurites with probability p or further 

extend with probability𝑞 =  1 −  𝑝.  Furthermore, each active branch then acts independently 

of the others and can further extend or branch out to create one additional new neurite.  We 

only account for an extra neurite because we can make sure that the probability to create more 

than two branches is too small to be included in our model, by choosing small enough time 

intervals. As a result, multiple branching processes shape the structure of the resulting neuronal 

tree in a random fashion. While in our previous work each branch is allowed to evolve 

stochastically in space, here we ignore the spatial structure of these branches and assume that 

they evolve linearly after branching at small angles to facilitate the statistical estimates for the 

resulting probability distribution. This simplification allows us to obtain analytical results while 

taking into account the most important feature of the stochastic neuronal tree, namely the 

random generation of extra neurites. The advantage of this approach is that for each step, we 

can generate the full probability distribution for each possible outcome. An illustration for all 

possible outcomes is shown in Figure 6 for the first three time steps, reproduced from [2].  
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Figure 6 Diagram of all possible tree instantiations after 3 time steps. 

 The full population distribution can be generated by examining all possible tree configurations 
that can be achieved after each time step. For example, at 𝑡 =  3, the simplest tree is a single 
evolving branch of length 4 that is obtained with a probability of q3. At the opposite end of the 
spectrum, the most complex tree contains 8 active branches of length 1, obtained with 
probability p7. The associated probabilities can be determined by computing the products of 
individual probabilities along the arrows. Each tree has an associated probability and some of the 
trees listed have multiple replicates (shaded boxes) 
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3.1.2 Discrete probability distribution for the evolving family of trees 

An example of a probability table thus generated is shown in Table 3 for the first three 

time steps depicted in Figure 6.  We assume that the parameter most reflective of the probability 

of finding a target at a given distance from the starting point is the number of active branches at 

that distance. This is due to the fact that since in the first order approximation we do not care 

about the detailed neural structure at a distance from the origin, the probability of success in a 

blind search is proportional to the number of local branches.  The stepwise mean and variance 

of the expected number of branches at this distance from the origin can then be determined as 

a function of the branching probability p.  We use the following formulas for expected mean and 

variance: 𝑥 = ∑ 𝑥𝑖 ∙ 𝑝𝑖
𝑛
𝑖=1  and 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎2 = ∑ (𝑥𝑖 − 𝑥)

2  ∙ 𝑝𝑖
𝑛
𝑖=1  for the discrete probability 

distributions listed in Table 3 for the first few time steps. 

Table 3 Average number of active branches and the associated variances for the first two time 
steps. 

Tree Probability # active 

branches 

Total 

length 

Expected 

value 

Variance σ2 

Step 0    1 0 

1   1 1 1   

Step 1    (1+p)  - p2 + p 

1   q 1 2   

2   
p 2 3   

Step 2    (1 + p)2  - p4 - 2p3 + p2 + 

2p 

1  qq 1 3   

2  qp 2 4   
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3  

pq2 2 5   

4  

p (2pq) 

Two possible trees 

3 6   

5  

pp2 = p3 4 7   

 

These results suggest a clear formula for the expected mean:  

𝐸(𝑛) = (1 + 𝑝)𝑛 

This result is intuitive; for example, if there are 100 active branches and a 10% probability of 

branching, at the next time step we expect 110 active branches, followed by 121 at the next time 

step and so on.  We prove this formula analytically using the complete discrete probability 

distribution of possible neuronal trees in the Methods Section, where we also provide recurrence 

formulas and analytical solutions for the variances. The expected number of active branches, as 

well as the associated variances, for the first three time steps, are listed in Table 4. 

Table 4 Expected mean and variance for the active (terminal) branches after N timesteps 

N Expected mean Expected variance 

1 1 +  𝑝 − 𝑝2  +  𝑝 

2 (1 +  𝑝)2 − 𝑝4  −  2𝑝3  +  𝑝2  +  2𝑝 

3 (1 +  𝑝)3 
− 𝑝6  −  4𝑝5  −  5𝑝4  + 𝑝3  

+  6𝑝2  +  3𝑝 
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3.2 Model with conditional constraint 

3.2.1 Neuronal growth model with a length constraint 

Similar to our previous results, we assume that the family of neuronal trees is subject to a 

maximal length constraint since otherwise, the only optimal strategy would be to branch as 

much as possible, which is in contrast with experimental results. Obviously when the total 

length of the trees cannot exceed a set maximum value, some of the trees generated using 

formula cannot be instantiated. This is illustrated in Figure 7 for trees with a maximum length of 

7.   

 

 

Figure 7 All possible trees of lengths below a maximum value of 7. 

Trees that can no longer generate offspring have terminal branches shown in red.  For example, 
the 3-terminal branch tree listed at stage 3 already has a total length of 6. Therefore, even if all 
its terminal branches merely extend, the resulting tree will have a length of 9, exceeding the 
maximal possible value of 7.  All other trees will have even larger total lengths.  
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As a result, the expected geometrical growth is possible only near the origin, as the densest 

possible trees start exceeding length constraints at larger distances.  In fact, growth slows down 

further away from the origin, reaches a peak value, and achieves a longer tail of decaying values 

corresponding to neural trees that seldom branch. This is shown in Figure 8, again for the family 

of trees that cannot exceed a total length of 7.  

 

Figure 8 The expected number of branches as a function of distance for families of trees with 
maximum length 7 and branching probability p = 0.5. 

Close to the origin, the expected value of searching sites increases as a geometrical series (see 
performances at step 2).  However, this picture changes at large distances from the origin.  There 
is an optimal targeting region, indicated by the peak at step 3, and a long tail of decaying values 
for steps 4 to 7. There are no possible trees for steps 8 or larger since a tree of the maximal size 
of 7 cannot reach beyond a total distance of 7.  Only one tree, the one that does not branch at 
all and has a probability q6, will reach a distance d = 7 and will have only one active branch.  Error 
bars indicated the standard error at each iteration point and are computed for a sample size of 
39 (this is the sample size of one of the experimental data sets we later used for comparison). 
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As illustrated in Figure 9, we can use the probability distribution for all possible instantiation of 

neuronal trees to determine the expected search performances of trees of maximum length L.  

The coverage area extends from x = 1 to L.  The initial rise in performance follows a geometrical 

series trend that is determined by the exact value of the branching parameter p. The 

performance at large distances away from the origin has a long tail, corresponding to the 

increasingly smaller number of trees that can make it further and further.  In terms of the exact 

values of branching probability, trees that branch often will tend to cover the nearby area well 

and will have very small chances of extending far away.  In contrast, trees that seldom branch 

will have a much-improved chance to explore farther in space, albeit while sending out fewer 

branches.  It is then intuitive that the optimal targeting region is determined by the exact value 

of the branching probability parameter p, as illustrated in Figure 9. Here the average number of 

dendrites at different time steps is shown for different values of branching probability p.  This is 

essentially the equivalent of a Sholl plot for neuronal trees.  [53,54]. 



 

44 
 

 

Figure 9 Sholl plots for different branching probabilities p. 

Expected number of dendrites at each time step is plotted for a tree of maximum possible length 
of 16, for the branching probabilities in the set {0, 0.2, 0.4, 0.6, 0.8, 1}.  Since the tree starts with 
one branch, it can only extend for a maximum of 15 extra number of steps.  The tree with 𝑝 =  0, 
shown in blue, simply extends until it runs out of resources and generates a flat line of 1 expected 
branch at each time step.  In contrast, the tree with 𝑝 =  1 doubles the number of branches at 
each time step and runs out of resources at step 3, achieving a maximum at the time it stops.  In 
between these two extremes, families of trees shift their optimal targeting regions farther away 
as the branching probability decreases, at the cost of reducing the overall amplitude of the 
corresponding peak values (success rates).   

 

3.2.2 Long-range expected performances are also characterized by geometrical 

series 

Surprisingly, the right tail of the probability distribution also follows a geometrical distribution 

with a factor of (1 +  3𝑝), although higher order corrections are needed when p takes on larger 

values.  This trend can be determined by examining the trees that have the furthest reach, which 
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is listed in Figure 10.  

 

Figure 10 Illustration of trees generated at very long distances. 

Figure 10: We use the longest possible tree to generate all the trees that can be instantiated at 
the previous time steps.  For the cases listed here, only trees with a small number of terminal 
branches, 1 to 4, can be instantiated, as the trees are back-generated for 5 time steps. 

Using Figure 10, it is easy to see the expected number of branches at large distances, computed 

under the assumption that we ignore trees with more than 4 terminal branches, follows the 

recursive structure listed in column 2 of table 5.  This approximation becomes more and more 

accurate as the branching probability p goes to 0.  Consequently, the ratio of performances at 

successive time steps (going backward) is approximately 1 +  3𝑝, as shown in column 3 of table 

5.    
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Table 5 Approximate geometrical series for the right tail of the probability distribution. 

Step Expected number Ratio 
𝑃(𝑘)

𝑃(𝑘 + 1)
 

N qN  

N – 

1 
qN-1 + 2pqN-2 1 + 3p + 5p2 + 7p3 + 9p4 + 11p5 + 0(p6) 

N – 

2 
qN-2 + 2pqN-3 + 2pqN-2 1 + 3p - p2 + 3p3 - p4 + 3p5 + 0(p6) 

N – 

3 
qN-3 + 2pqN-4 + 2pqN-3 + 2pqN-2 1 + 3p - 7p2 + 29p3 - 99p4 + 357p5 + 0(p6) 

N – 

4 
qN-4 + 2pqN-5 + 2pqN-4 + 2pqN-3 + 2pqN-2 

1 + 3p - 13p2 + 85p3 + 507p4 + 3073p5 + 

0(p6) 

N – 

5 

qN-5 + 2pqN-6 + 2pqN-5 + 2pqN-4 + 2pqN-3 + 

2pqN-2 

1 + 3p - 19p2 + 171p3 - 1447p4 + 12341p5 

+ 0(p6) 

 

Summarizing the results from table 5, for very small branching probability p, we obtain the 

following approximation: 

𝑃(𝑁−2𝑘−1)

𝑃(𝑁−2𝑘)
=  1 +  3𝑝 + (5 –  6𝑘)𝑝2 , 

𝑃(𝑁−2𝑘−2)

𝑃(𝑁−2𝑘−1)
=  1 +  3𝑝 + (5 –  6(𝑘 + 1))𝑝2                  (1) 

This approximation is correct when discounting trees with more than two terminal branches, as 

these trees will introduce corrections of order 𝑝2 and larger.  We note while high values of the 

branching probability 𝑝 render this approximation more and more inaccurate, in fact, low values 

of p are needed for the neural trees to be able to reach large distances; therefore, this is a useful 

approximation.   
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3.2.3 Approximating the location of optimal targeting performances 

We can now use the formula for long-range expected performances to compute an 

approximation for the location of optimal targeting region.  The ratio of performances that is 

initially larger than 1 keeps decreasing as one moves away from the longest possible tree of 

length L toward and closer to the origin.  Eventually, this ratio, again based on extensions of 

formula (1), will become 1 before further decreasing at distances closer and closer to the origin.  

The exact location where the ratio becomes 1 can be used to approximate where the spatial 

location of the peak of the distribution occurs. This occurs at step N – k, when 
𝑃(𝑁−𝑘−1)

𝑃(𝑁−𝑘)
, which 

starts with an initial value of (1 + 3𝑝 + 5𝑝2), reaches a value of 1 after experiencing continuous 

decreases in value.  This is determined by the following equation:  

1 +  3𝑝 + (5 –  6𝑘)𝑝2 = 1 

which can be easily rewritten as 3 + (5 –  6𝑘). 𝑝 = 0, yielding the following value of the peak:  

𝑘 =
3 + 5𝑝

6𝑝
, 6𝑝𝑘 = 3 + 5𝑝, (6𝑘 − 5)𝑝 = 3, 𝑝 =

3

(6𝑘 − 5)
  

A recurrence formula that takes into account terms up to order 𝑝3 is provided in the Methods 

Section.  When allowing for correction terms of orders up to p3, only numerical solutions for this 

equation can be obtained since the coefficients have relatively complex recurrence formulas.   

We now list another way of approximating the optimal targeting region.  In previous study 

[2], we derived an estimate of the location of optimal targeting performances by examining a 

tree with neurites that branches periodically until growing a fixed length 𝐿0, which is determined 

by the branching probability 𝑝.  After computing how L0 depends on 𝑝, we now can determine 

the optimal targeting region after 𝑛 steps:  

𝑛 =
ln(1 + 𝑝𝐿)

ln(1 + 𝑝)
− 1 

Derivation of this equation is listed in the Methods Section. This equation determines the optimal 

targeting region for a tree with branching probability 𝑝.  Note that here 𝑛 is a continuous function 

of 𝑝 since the branching probability can take continuous values. This ‘naïve’ approximation is in 
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very good agreement with the results from the discrete probability distribution obtained by 

instantiating all possible trees that do not exceed the maximal value  𝐿  up to time step 𝑛, as 

shown in Figure 11.  

 

Figure 11 Comparison of naïve vs exact results for a tree of maximum length L = 31. 

We use the explicit discrete probability distribution to determine the optimal targeting regions, 

shown as blue circles, while the red line is given by equation𝑛 =
ln(1+𝑝𝐿)

ln(1+𝑝)
− 1. For the discrete 

distribution, since the total length of the tree is 31, there are enough resources for all possible 
trees until step 4. Therefore, the optimal branching probability is𝑝 =  1 , corresponding to 
creation of the densest trees.  As a result, steps 1-4 are excluded from the comparison.  The blue 
points are computed using the explicit symbolic equation (polynomials in𝑝) for the expected 
value 𝑠𝑘 at different locations𝑘 <  𝑛.  Then the solution for the probability 𝑝 that maximizes the 
expected value 𝑠𝑘(𝑝) is computed and plotted at location k as a blue circle.  Values for p are 
restricted to be between 0 and 1 to exclude other potential solutions for the polynomial 
equations.  The graph indicates that while the red curve obtained from the ‘naïve’ theoretical 
expectation overestimates the analytical expected results, these curves are in agreement and 
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exhibit the same trends.  Furthermore, as expected, the approximation used in equation 𝑝 =
3

(6𝑘−5)
, shown here in green, works relatively well at large distance, but it loses accuracy at 

distances close to the origin.  Nevertheless, higher order terms need to be used in order to obtain 
a more useful approximation.  

 

3.3 Comparison with lab data 

3.3.1 Comparison of the theoretical and experimental results for neural growth 

In order to assess the validity of our model, we performed a comparison with experimental data 

from neuronal growth tissue from the Firestein laboratory.  An illustration of two sample neurons 

is provided in Figure 12.  We performed Sholl analysis for the family of neurons used here in order 

to generate the targeting profiles.  We fit our models to these profiles by allowing changes in the 

following parameters: spatial distance covered in between two potential branching events (width 

of the distribution), the number of initial branches (peak of the distribution) and branching 

probability/total length.  We were able to produce very accurate fits for the Sholl analysis curves 

(Fig 12), indicating that our model is in very good agreement with the experimental data.  
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Figure 12 Comparison of experimental and theoretical results. 

Arborization profiles for two example neurons (A and B) result in typical profile curves (blue 
curve in panel C) for this family of neurons (n = 30).  Fits of the probabilistic neuronal growth 
model are in excellent agreement (red curve in panel C).  

 

Our model suggests that the logarithm of the number of active branches is a more appropriate 

way of constructing Sholl plots, as the average function of the neuronal tree population is 

predicted to have a linear component near the origin and approximate linear component at 

large distances.  The use of both of these components can provide a better statistical 

determination of branching values.  Also, if the large-distance component is in disagreement 
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with the near-origin component, this may indicate other effects, such as pruning at larger 

distances or parameter-dependent branching.  

With our model, we are able to connect branching parameters with real branching probabilities 

and also reflect the effect of chemicals on branching probability, such as Cypin , GFP and NOS.. 

 Cypin: a guanine deaminase that increases dendrite number by binding to tubulin 

heterodimers and promoting microtubule assembly [55]. In our study, it is taken as a 

chemical that increases the branching probability.  

 Green fluorescent protein (GFP): a protein composed of 238 amino acid residuals that 

exhibit bright green fluorescence when exposed to light in the blue to ultraviolet range. 

Iin our study, it is used as a control group [56].  

 Nitric Oxide synthase: a family of enzymes catalyzing the production of nitric oxide from 

L-arginine [57]. In our study, it is taken as a chemical that decreases the branching 

probability.  

 

In order to accomplish this task, we first tried to build up our model with data from our 

collaborator to estimate the branching probability.  We set the total length to be 34, due to the 

limitation of our capacity in generating all possible trees Results show below: 



 

52 
 

 

Figure 13 Results from estimating the branching probability 

Figure13: The figure shows the comparison between the expected value from our model (in 
blue) and the real data (in red). The estimate of branching probability was obtained when we 
have the least difference between the model and real data. Meanwhile, horizontal shift was 
applied to the model, in order to have the proper initial number of branches. We can see that 
their confidence intervals overlap, which means that our model fits well with the real data. 

We also have the ANOVA result: 

Table 6 ANOVA results from estimating branching probability 

Nonlinear Regression Model: 

𝑦 ~ 𝑓𝑖𝑡 (𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑆𝑡𝑒𝑝) 

 

Estimated Coefficients: 

 Estimate SE tStat P-value 
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Branching probability 0.1465 0.0059766 24.512 2.127e-21 

 

Number of observations: 31, Error degrees of freedom: 30 

Root Mean Squared Error: 0.186 

R-Squared: 0.965, Adjusted R-Squared: 0.965 

F-statistic vs. zero model: 1.83e+03, P-value: 1.9e-28 

 

From the results, we can see that our model fits well and R-square looks promising for applying 

the model for new data. Then we tried to compare the branching probability between neural 

growth processes controlled by different chemicals, which influence the branching probability.   

We first compared NOS vs GFP, expecting a reduction of branching probability between NOS 

condition and control (GFP), [55-57]: 

 

Figure 14 Comparison between NOS vs GFP 

Figure 14: comparison between two regeneration controlled by NOS (left) and GFP(right). With 
our model, we estimate the branching probability to obtain the best fit. We also move our 
model horizontally with different units, according to the different initial number of branches. 
We also have the comparison between the estimate two branching probabilities listed below 

 

0 5 10 15 20 25 30 35
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30
-0.5

0

0.5

1

1.5

2

2.5



 

54 
 

Table 7 Comparison between branching probabilities of two processes 

 NOS GFP 

 Estimate 95% Confidence Interval  95% Confidence Interval 

Branching 

probability 
0.1 0.0962 0.1038 0.1465 0.1405 0.1525 

 

Then, we compared Cypin vs GFP: 

 

Figure 15 Comparison between GFP and Cypin 

Figure 15: comparison between two regeneration controlled by GFP (left) and Cypin(right). 
Same as first pair, we obtain the estimate the branching probability based on the goodness  of 
fit. Horizontal shift was also applied here to have the proper initial number of branches. We 
also have the comparison between two estimate of branching probabilities listed below 
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Branching 

probability 
0.0788 0.0708 0.0868 0.1284 0.1216 0.1352 

 

So from the results above, we can see that the differences between branching probabilities are 

significant, none of the confidence intervals overlap. This tells us that our model is capable 

reflecting the effect from these medicals on the branching probability. For example, Cypin was 

expressed early in culture and continued to be expressed as neurons matured [58 in invivo]. So 

it is expressed in developing dendrites and increases the branching probability, which is in 

accordance with our results in table 8. The branching probability of process with Cypin is 

significantly higher than the other.  

In the future, we aim to test our model on processes controlled by same chemical substances, 

but with different concentrations, as experimental data becomes available.  

 

3.4 Results for Tumor growth rate 

3.4.1 Tumor volume and growth rate:  

Tumor volume at the time of screening ranged from 33-25918mm3 (mean=1382.7mm3 and 

median 472.29mm3). This contrasted with tumor volume at diagnosis, which was found to range 

from 9 to 37819mm3 (mean=4591.74mm3 and median =2365.80mm3). 

Overall, change in volume between screening and diagnosis in each patient varied significantly. 

Six cases showed no change in size, while the largest change in tumor volume was 18438.1mm3. 

The mean time difference between dates of screening and that of diagnosis was 18 months, 

(median = 17.5 months), and ranged from 4 to 47 months.  

The growth rate was found to differ considerably from patient to patient, ranging from 0 to 1390 

mm3/month. (Figure 18) Tumors with a growth rate of <92mm3 per month were deemed slow-

growing and comprised 47 cases (49.5%). In contrast, those with a growth rate of ≥92mm3 per 

month (n = 48, 50.5%) were placed in the fast-growing group.  
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Figure 16 Histogram of tumor volume at diagnosis and screening and also histogram of the 
change in tumor size 

Age at the time of diagnosis ranged from 50 to 73 years of age (mean = 60.3 years, median = 61.0 

years). Most cases (n=60) were negative for vascular invasion (66.2%), whilst 21 (22.8%) were 

found to demonstrate definite vascular invasion, and 11 (11.0%) were rated as probable. The 

majority of tumors (60, 65.2%) were stage 1, 24 were stage 2 (26.1%), and 7 cases were stage 3 

(8.7%). 16 tumors were graded as 1 (17.4%), using the Nottingham Grading System, 42 cases 

(45.7%) were grade 2, and 34 (36.9%) grade 3. DCIS was not observed in 21 cases (22.8%). Of the 

remaining 73 cases, 20-showed low-grade DCIS (21.7%), 16 were of intermediate grade (17.4%), 

5 were intermediate/high grade (5.9%), and the remaining 29 high grade (31.5%). The mean NPI 

value was 4.00, with a range of 2.08 to 6.56 (median = 4.01). The clinicopathologic features of 

patients are summarized in the following table 9.  
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Table 9 Clinicopathological features of cases 

Parameters Number of cases (N) Percentage (%)  

Age     

≤65 74 77.9 

>65 18 22.1 

Tumor Grade     

1 16 17.4 

2 42 45.7 

3 34 36.9 

Clinical stage     

I 60 65.2 

II 24 26.1 

III 7 8.7 

HORMONE STATUS     

ER Positive 78 84.8 

PR Positive 59 64.1 

HER2 Expression     

Positive 5 5.85 

Negative 81 94.2 

Tumor type     

NST 50 54.3 

LOB 17 18.5 

TUB 11 12.0 

MUC 2 2.2 

MIX 12 13 

Vasicular Invasion     

NEG 60 66.2 

DEFINITE 21 22.8 

PROBABLE 11 11.0 

KI67     

High 44 47.8 

Low 48 52.2 

CK5/6     

Negative 80 87 

Positive 12 13 

Caspase3     

0 45 49 

≥1 47 51 

Subtypes     

Luminal 69 75 

Her2 8 8.7 

Basal 4 4.3 

TN 11 12 
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Vital Status     

Alive 62 67.4 

Dead 30 32.6 

 

Tumor Biomarker Profiles  

Of the 92 cases, 78 cases were positive for ER (84.8%) and 59 cases were positive for PR (64.1%) 

while only 5 cases were positive for HER-2 based on protein expression (5.8%). The degree of 

Ki67 staining ranged from 0 to 96% of tumor cells stained. In the case of CK5/6, 80 cases (87%) 

were negative, and just 12 (13%) showing positive staining. Cleaved caspase-3 immunoreactivity 

ranged from 0 to 6.0% of tumor cells (Table: 10). 

3.4.2 Results from neural growth model selection 

Here we have the results from three models.  

The first model is linear model, with formula: 

𝑉𝑡 = 𝛼 ∗ ∆𝑡 + 𝑉0 

Then, we fit the linear model based on the formula and estimate the growth rate. 

The results from linear model: 

Table 10 ANOVA results from linear model 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

Model 1 58924223 58924223 2.57 0.1123 

Error 90 2062334567 22914829     

Corrected Total 91 2121258789       

 

Root MSE 4786.94355 R-Square 0.0278 

Dependent Mean 3208.99969 Adj R-Sq 0.0170 

Coeff Var 149.17245     
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Parameter Estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| 

Intercept 1 1649.30376 1093.20595 1.51 0.1349 

input_linear 1 86.64977 54.03545 1.60 0.1123 

 

Figure 17 Fit plot of linear neural growth rate model 

From the results, we can see that the p-value of F-test is greater than 0.05, which means that the 
model is not good at overall fitting. The r-squared is 0.02, which means that the model only 
explains 2% of the variation of output. This indicates that the linear model might not be a good 
choice for the neural growth rate. 
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We also have the model diagnostic results as shown in figure 18. 

 

Figure 18 Diagnostic results of linear neural growth model 

Figure 18 is the results from model diagnosis. From the top residual plots, we can see that the 
residuals are not normally distributed and also have clear pattern as the predicted value increases, 
which mean the model can be improved. Also from the qq-plot and residual histogram, we can 
see that the model violates several modelling assumptions. Therefore, the linear model is not a 
good choice to predict the growth rate. 

 

The second model we tried is exponential model with the formula: 

𝑉𝑡 = 𝑉0 ∗ 𝑒
𝛼∗∆𝑡 

Before we fit the model to estimate the growth rate, we did the transformation to have the 

linear form as: 
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ln (
𝑉𝑡
𝑉0
) =  𝛼 ∗  ∆𝑡 

Then we have the results from exponential model: 

Table 11 ANOVA results from exponential neural growth model 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

Model 1 15.08707 15.08707 15.87 0.0001 

Error 90 85.55486 0.95061     

Corrected Total 91 100.64193       

 

Root MSE 0.97499 R-Square 0.1499 

Dependent Mean 1.47208 Adj R-Sq 0.1405 

Coeff Var 66.23239     

 

Parameter Estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| 

Intercept 1 0.68286 0.22266 3.07 0.0029 

input_exp 1 0.04385 0.01101 3.98 0.0001 
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Figure 19 Fit plot for exponential neural growth rate model 

From the results, we can see that the p-value of F-test is less than 0.0001, which means that the 
model is good at overall fitting. The r-squared is 0.1499, which means that the model only 
explains 14% of the variation of output. 
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We also have the model diagnostic results as shown in figure 20. 

 

Figure 20 Diagnostic results of exponential neural growth model 

Figure 20 is the results from model diagnosis. From the top residual plots, we can see that there 
are not clear patterns in the residual plots, which mean the model has good robustness. Also 
from the qq-plot and residual histogram, we can see that the model meet most of modelling 
assumptions. Therefore, the exponential model is a good choice to predict the growth rate. 

 

The last model we tried is Gompertz model:  

𝑉𝑡 = 𝑉0 ∗ 𝑒

𝛼

1−
∆𝑇
𝑘  

We also transformed it into linear form as: 
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ln (
𝑉𝑡
𝑉0
) =

𝛼

1 −
∆𝑇
𝑘

  

The result from fitting Gompertz model: 

Table 12 ANOVA results from Gompertz neural growth model 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

Model 1 12.51102 12.51102 12.78 0.0006 

Error 90 88.13091 0.97923     

Corrected Total 91 100.64193       

 

Root MSE 0.98956 R-Square 0.1243 

Dependent Mean 1.47208 Adj R-Sq 0.1146 

Coeff Var 67.22212     

 

Parameter Estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| 

Intercept 1 1.90810 0.15976 11.94 <.0001 

input_third 1 0.39765 0.11125 3.57 0.0006 
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Figure 21 Fit plot of Gompertz neural growth model 

From the results, we can see that the p-value of F-test is 0.0006, which means that the model is 
good at fitting. The r-squared is 0.1243, which means that the model only explains 12% of the 
variation of output. 
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We also have the model diagnostic results as shown in figure 22. 

  

Figure 22 Diagnostic results of Gompertz neural growth model 

Figure 22 is the results from model diagnosis. From the top residual plots, we can see that there 
are clear expanding patterns in the residual pattern as the prediction increases, which mean the 
model is good in predicting. But from the qq-plot and residual histogram, we can see that the 
model meets the modelling assumptions. In sum, the Gompertz model is the best choice to 
predict the growth rate. 

Based on the results above, we have the conclusion that exponential model is the best one among 
the three candidates.  

 

3.4.3 Correlation study on growth rate and biomarkers 

We also tested the correlation between the growth rate and biomarkers, trying to define the 

effect of the biomarkers on determining the growth rate. By doing this, we will test the 

hypothesis that patients at higher cancer stage tend to have faster tumor growth rate. What is 
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more, this study will help us to choose the biomarkers to build the model predicting the tumor 

growth rate. 

Correlations between Other Clinicopathological Parameters and Growth Rate: 

The Growth rate in breast cancer was significantly and positively correlated with tumor grade (p 

= 0.0247), histological size (p=0.001) and vascular invasion (p = 0.011). When sub-dividing tumor 

grade into its 3 components, the degree of tumor differentiation was found to have no significant 

relationship with growth rate (p = 0.486), however, mitotic index was significantly correlated (p 

= 0.0032). Stage showed no significant relationship with growth rate (Table: 13). 

Correlations between Biomarker Expression, clinicopathological parameters, and Growth Rate :  

A highly significant correlation was found between the proliferative marker Ki67 and tumor 

growth rate. (Pearson correlation coefficient=0.36457; p=0.0004). Higher growth rate was also 

positively correlated with increasing Mitosis (Pearson correlation coefficient=0.31, p=0.0019), 

higher Grade (Pearson correlation coefficient=0.23411, p=0.0247), NPI (Pearson correlation 

coefficient=0.27698, p=0.0075) and Caspase3 (Pearson correlation coefficient=0.30380, 

p=0.0373) as shown in figure 23. 

 

                                            (a)                                                                                (b) 
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                                            (c)                                                                                (d) 

 

(e) 

Figure 23 Significant correlation between tumor growth rate with (A) Ki67; (B) Caspase3; (C) 
Grade; (D) NPI and (E) Mitosis 

 

Correlation among tumor biomarkers: A highly significant relationship was observed between 

cleaved Caspase-3 and Ki67 expression, with the two being positively correlated (p = 0.001, 

Pearson’s correlation coefficient = 0.259, Figure 24).  
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Figure 24 Relationship between Ki67 and Caspase-3 expression 

We also have  

Table 13 Relationship between growth rate and biomarkers 

Variables Growth rate     

  Low (<92 mm3/month) High (≥92mm3/month 
 

  

  # % # % X2  

P-

VALUE 

Grade 
     

  

1 4 8.16 12 27.91 

11.2813 0.0036 2 20 40.82 22 51.16 

3 25 51.02 9 20.93 

Total 49 
 

43 
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T 
     

  

1 2 4.08 2 4.65 

2.5772 0.2757 2 14 28.57 19 44.19 

3 33 67.35 22 51.16 

Total 49 
 

43 
  

  

  
     

  

P 
     

  

1 0 0.00 3 6.98 

5.7439 0.0566 2 18 36.73 21 48.84 

3 31 63.27 19 44.19 

Total 49 
 

43 
  

  

  
     

  

M 
     

  

1 18 36.73 30 69.77 

11.5204 0.0032 2 10 20.41 7 16.28 

3 21 42.86 6 13.95 

Total 49 
 

43 
  

  

  
     

  

TYPE 
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LOB 11 22.45 6 13.95 

5.5343 0.2367 

MED 0 0.00 0 0.00 

MIX 5 10.20 7 16.28 

MUC 0 0.00 2 4.65 

NST 29 59.18 21 48.84 

TUB 4 8.16 7 16.28 

Total 49 
 

43 
  

  

  
     

  

STAGE 
     

  

1 28 57.14 33 76.74 

4.6488 0.0978 2 17 35.42 7 16.28 

3 4 8.33 3 6.98 

Total 49   43 
  

  

  
     

  

Vi 
     

  

Negative 24 48.98 36 83.72 

13.599 0.0011 Probable 7 14.29 4 9.30 

Definite 18 36.73 3 6.98 

Total 49 
 

43 
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Histological 

size 
     

  

≤15mm 8 16.32 24 55.81 

14.7778 0.0001 

>15mm 41 83.68 19 44.19 

Total 49   43 
  

  

  
     

  

NPI 
     

  

GPG  10 20.40 26 60.46 

16.3576 0.0003 MPG 31 63.26 15 34.88 

PPG 8 16.32 2 4.65 

Total 49   43       

Table13: Grade = overall tumor grade, (based on Nottingham grading System), Type = histological 
tumor type (Lobular, Atypical Medullary, Mixed, Mucinous, Non-specific Type, Tubular), Stage = 
tumor stage, Vi = degree of vascular invasion, Hist. Size = histological tumor size (15mm being 
the standard clinical cut-off for dichotomization), NPI = Nottingham prognostic index (using 
standard clinical cut-offs). Components of the Nottingham grading system; T= degree of tumor 
differentiation, P = nuclear pleomorphism, M = mitotic index. NPI calculated as (0.2 x Hist Size in 
cm) / (stage + grade), GPG = Good prognostic group (NPI<3.41), MPG = Moderate prognostic 
group (NPI >=3.41 and <=5.40), PPG = Poor prognostic group (NPI >5.4)  

 

Furthermore, we also tested the correlation between the growth rate and the difference 

between Ki67 and cleaved Caspase-3. We observed a significant correlation (p = 0.0017) 

indicating that the tumor growth rate is correlated with the balance between ki67 and caspase3. 
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Table 14 Relation between Ki67 and Caspase3 expression 

 

 

Difference in Ki67 and 

cleaved Caspase3 

Change in growth rate 

Pearson correlation 

Coefficient 

P-value 

0. 41766 <0.001 

 

Correlation between breast cancer subtype and growth rate: 

A highly significant positive correlation (p<0.05) was observed between subtypes of breast cancer 

and tumor growth rate. The tumor growth rate varied significantly between the breast cancer 

subtypes (Figure: 25).  Furthermore, when growth rate between TNBC and non-TNBC subtypes 

were compared we observed a higher tumor growth rate among TNBC cohort compared to other. 

 

                                             (a)                                                                                  (b) 

Figure 25 Comparison of growth rate among different type of Breast Cancer 
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3.4.4 Results from survival analysis on the tumor growth data 

The increase in tumor growth rate significantly increases the risk to death: When tumor growth 

rate was considered as the predictive marker for survival, a univariate analysis revealed that the 

risk to death increases as the growth rate increases. With every unit of positive change in tumor 

growth change, the risk to death also increases (HR=1.073, P=0.0268) Table: 15.  Furthermore, 

when Age, Grade, and ki67 were adjusted in the multivariate approach, tumor growth rate is still 

a significant predictor of overall survival (HR= 1.071 and p= 0.0435) 

Table 15 Survival analysis for monthly growth rate 

Variable Univariate Analysis 

Hazard Ratio 95% Confidence interval P-value 

Growth rate 1.073 1.008-1.143 0.0268 

 

Table 16 Survival analysis with adjusting age, Ki67, and grade 

Variable  

Multivariate analysis 

Hazard Ratio 

95% Confidence 

interval 

P-value 

Growth rate    1.071 1.002-1.145 0.0435 

Age   0.995 0.976-1.014 0.6111 

Grade   1.033 0.545-1.96 0.9204 

Ki67   1.002 0.977-1.027 0.8894 
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3.4.5 Results from optimize the cutpoint 

After finding the best cutpoint 0.1, we plot the survival curves for both fast growth group and 

slow growth group. The difference between them is significant. We have the p-value for Chi-

Square Log-Rank test as 0.0245, which means that the patients with fast growth rate have a 

higher risk to death. 

 

Figure 26 Survival Curve for different groups 

Figure 26 shows the results for the survival curves of two groups when we choose 0.1 as the 
cutpoint to separate fast growth group from slow growth group. The p-value for the Chi-Square 
test Log-Rank test is 0.0245 

 

3.4.6 Results from logistic regression modeling on the growth rate 

After applying the method described in the section 2.4.6, we obtained the best model as 

following: 

ln (
𝑝

1 − 𝑝
) =  𝛽0 + 𝛽1 ∗ 𝐶𝑎𝑠𝑝𝑠3𝑆𝑐𝑜𝑟𝑒 + 𝛽2 ∗ 𝐺𝑟𝑎𝑑𝑒 + 𝛽3 ∗ 𝐻𝐸𝑅 + 𝛽4 ∗ 𝐾𝑖67𝑆𝑐𝑜𝑟𝑒 + 𝛽5 ∗ 𝑀

+ 𝛽6 ∗ 𝐴𝑔𝑒 + 𝛽7 ∗ 𝐴𝑔𝑒 ∗ 𝑇 + 𝛽8 ∗ 𝐶𝑎𝑠𝑝𝑠3𝑆𝑐𝑜𝑟𝑒 ∗ 𝐴𝑔𝑒 
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Model Fit Statistics 

Criterion Intercept Only Intercept and 

Covariates 

AIC 117.059 115.036 

SC 119.547 142.411 

-2 Log L 115.059 93.036 

 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 22.0231 10 0.0150 

Score 20.2071 10 0.0274 

Wald 14.7686 10 0.1407 

 

Type 3 Analysis of Effects 

Effect DF Wald 

Chi-Square 

Pr > ChiSq 

CASP3_SCORE 1 1.3969 0.2372 

Grade 2 4.3468 0.1138 

HER11 1 1.1243 0.2890 

KI67_SCORE 1 3.9386 0.0472 

M 2 3.5307 0.1711 

AGE 1 2.9366 0.0866 

AGE*T 1 2.8339 0.0923 

CASP3_SCORE*AGE 1 1.4302 0.2317 

 

Analysis of Maximum Likelihood Estimates 

Parameter   DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Intercept   1 -0.7431 2.3468 0.1003 0.7515 

CASP3_SCORE   1 3.4762 2.9412 1.3969 0.2372 

Grade 1 1 -1.4743 0.7986 3.4085 0.0649 

Grade 2 1 0.5804 0.5030 1.3317 0.2485 

HER11 0 1 -0.7044 0.6643 1.1243 0.2890 

KI67_SCORE   1 -0.0365 0.0184 3.9386 0.0472 

M 1 1 1.2064 0.8127 2.2032 0.1377 

M 2 1 -0.6599 0.4431 2.2178 0.1364 

AGE   1 0.0830 0.0484 2.9366 0.0866 

AGE*T   1 -0.0183 0.0109 2.8339 0.0923 
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Analysis of Maximum Likelihood Estimates 

Parameter   DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

CASP3_SCORE*AGE   1 -0.0577 0.0483 1.4302 0.2317 

 

3.5 Results from extending the survival analysis on the breast cancer recurrence 

3.5.1 Clinico-pathological characteristics of patients 

The demographics, breast clinico-pathological characteristics, therapies administered and 

patterns of recurrence among the patients in the cohort are illustrated in the figure 27. From this 

cohort of 10,504 NH patients, 225 were recorded as having experienced a recurrence episode 

and 6,009 were determined as displaying no breast tumor recurrence. The remaining patients 

did not have recorded data indicating the presence of recurrence or lack thereof. Among patients 

displaying recurrence, higher risk of recurrence was more prevalent among younger patients 

(p<0.0001).  



 

78 
 

 

Figure 27 NH demographics and breast cancer clinico-pathological characteristics compared 
between patients with or without tumor recurrence 

This result is consistent with previous studies that have observed an association between 
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younger age and increased risk for recurrence [58, 59]. Among patients with no missing 

recurrence data, approximately 61% of patients who experienced recurrence were under the age 

of 48, compared to only 39% who did not experience any recurrence. Among breast clinico-

pathological characteristics, recurrence was significantly more associated with higher nuclear 

grade, NGH grade, stage, as well as T, N, and M classifications (p<0.0001). Moreover, recurrence 

was weakly associated with lymph node metastasis with roughly 35% of patients with recurrence 

displaying a positive nodal status compared to only 15% of non-recurrence patients (p=0.121). 

These results further confirm previous findings of increased risk of recurrence associated with 

more aggressive tumor characteristics (48). Regarding treatment, there were significant 

differences in the distribution of recurrence and non-recurrence patients who were administered 

neoadjuvant and adjuvant chemotherapy, hormone therapy, and a combination of adjuvant 

therapies (p<0.0001). There was a weak statistical significant difference between the proportion 

of recurrence and non-recurrence patients that received radiation therapy (p=0.065). Please visit 

Table 17 for details. 

Table 17 NH demographics and breast cancer clinico-pathological compared between patients 
with or without tumor recurrence 

  Recurrence No recurrence   

Clinical 

characteristic 
n=225 % n=6009 % P  

Ethnicity           

AA 49 21.78 1047 17.42 

0.2014 
                                          

EA 
166 73.78 4607 76.67 

Unknown/Other 10 4.44 355 5.91 

Menopausal status           
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<48 89 39.56 1496.00 24.90 

<0.0001 48-55 41 18.22 1236.00 20.57 

>55 95 42.22 3277 54.53 

Nuclear grade           

1 23 10.22 1641.00 27.31 <0.0001 

2 82 36.44 2472.00 41.14   

3 105 46.67 1484.00 24.70   

Missing 15 6.67 412.00 6.86   

Nottingham grade           

1 13 5.78 1128.00 18.77 <0.0001 

2 31 13.78 1448.00 24.10   

3 35 15.56 890.00 14.81   

Missing 146 64.89 2543.00 42.32   

Stage           

0 24 10.67 1518.00 25.26 <0.0001 

I 76 33.78 2793.00 46.48   

IIa,b 77 34.22 1360.00 22.63   

IIIa,b,c,NOS 32 14.22 271.00 4.51   

IV 10 4.44 26.00 0.43   
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Missing/unknown 6 2.67 41.00 0.68   

Nodal status           

Positive 78 34.67 911.00 15.16 0.121 

Negative 106 47.11 3920.00 65.24   

Missing/unknown 41 18.22 1170.00 19.47   

TNM Staging           

T           

T0 2 0.89 6.00 0.10 <0.0001 

TX 2 0.89 30.00 0.50   

Tis 24 10.67 1518.00 25.26   

T1 100 44.44 3245.00 54.00   

T2 67 29.78 1034.00 17.21   

T3 14 6.22 123.00 2.05   

T4 13 5.78 43.00 0.72   

Unknown 3 1.33 10.00 0.17   

N           

N0 141 62.67 5011.00 83.39 <0.0001 

NX 1 0.44 9.00 0.15   

N1 56 24.89 783.00 13.03   
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N2 17 7.56 150.00 2.50   

N3 7 3.11 46.00 0.77   

Unknown 3 1.33 10.00 0.17   

M           

M0 211 93.78 5962.00 99.22 <0.0001 

MX 1 0.44 11.00 0.18   

M1 10 4.44 26.00 0.43   

Unknown 3 1.33 10.00 0.17   

Lymph node 

surgery 
          

Yes 158 70.22 3793 63.12 0.0169 

No 67 29.78 2216 36.88   

Unknown 0 0.00 0 0.00   

Chemotherapy           

Neoadjuvant 40 17.78 625 10.40 <0.0001 

Adjuvant 78 34.67 1272 21.17   

None 92 40.89 3952 65.77   

Missing 15 6.67 160 2.66   

Hormone therapy           
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Yes 90 40.00 3123 51.97 <0.0001 

No 119 52.89 2705 45.02   

Unknown 16 7.11 181 3.01   

Radiation therapy           

Yes 109 48.44 2963 49.31 0.0649 

No 96 42.67 2732 45.47   

Unknown 20 8.89 314 5.23   

Adjuvant therapy           

Yes 78 35.94 1272 21.42 <0.0001 

No 132 60.83 4577 77.07   

Unknown 15 6.91 160 2.69   

 

3.5.2 Recurrence pattern among racially distinct patients 

Recurrence rates and patterns, expressed in terms of incidence rates, were compared broadly 

between AA and EA patients (Table 18); the analysis indicated that AA exhibited higher overall 

tumor recurrence rates than EA (p=0.002; HR: 1.676; CI: 1.210-2.323). AA also displayed higher 

rates of distant recurrence than EA (p=0.023; HR: 1.699; CI: 1.075-2.684); however, these 

differences did not remain statistically significant after controlling for age, grade, and stage, likely 

owing to low patient numbers. Additionally, AA experienced higher rates of single tumor 

recurrence episodes than EA (p=0.003; HR: 1.758; CI: 1.208-2.557) and higher rates of distant 

recurrence to a single site than EA breast cancer patients (p=0.012; HR: 1.742; CI: 1.130-2.684), 

although statistical significance was not maintained after adjusting for age, grade, and stage 
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Table 18 Broad spectrum recurrence patterns among racially distinct populations 

  EA AA p value; HR (95% CI) p value; HR (95% CI) 

  n IR n IR Unadjusted Model Adjusted Model 

Overall 166 13.44 49 21.77 
0.002; 1.676 (1.210, 

2.323) 

0.319; 1.192 (0.844, 

1.683) 

Recurrence site  

Local 48 3.89 12 5.33 
0.373; 1.349 (0.698, 

2.606) 

0.665; 0.857 (0.428, 

1.718) 

Regional 27 2.19 10 4.44 
0.188; 1.701 (0.772, 

3.747) 

0.151; 1.749 (0.815, 

3.752) 

Distant 84 6.8 27 12 
0.023; 1.699 (1.075, 

2.684) 

0.280; 1.299 (0.809, 

2.085) 

Number of recurrences 

Single 131 10.6 41 18.21 
0.003; 1.758 (1.208, 

2.557) 

0.218; 1.287 (0.861, 

1.923) 

Multiple 35 2.83 8 3.55 
0.754; 1.139 (0.505, 

2.573) 

0.315; 0.652 (0.283, 

1.503) 

Distant recurrence  

Single site 73 5.91 24 10.66 
0.012; 1.742 (1.130, 

2.684) 

0.451; 1.220 (0.728, 

2.043) 

Multiple sites 11 0.89 3 1.33 
0.492; 1.566 (0.436, 

5.625) 

0.617; 0.672 (0.142, 

3.187)  
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Abbreviations: AA, African-American; EA, European-American; HR, hazard rate; IR, incidence rate 

(1000 person-years); CI, confidence interval.  

Adjusted Cox hazard model variables: age at diagnosis, grade (1,2,3), and stage (I,II,III,IV).  

*P values were calculated using the student t-test. 

 

3.5.3 Recurrence patterns among racially distinct patients following each form of 

treatment 

Incidence rates and patterns of recurrence were compared between AA and EA after they 

received hormone, radiation, chemotherapy, and/or any combination of adjuvant therapy to 

determine distinctions in recurrence patterns between therapies among the racial groups (Table 

19). AA exhibited unadjusted higher rates of recurrence (p=0.041; HR: 1.612; CI: 1.021-2.545) and 

a trend towards higher incidence of distant recurrence than EA post radiation therapy (p=0.065; 

HR: 1.732; CI: 0.967-3.100). The same trend of higher overall and distant recurrence was 

observed among recurrent patients who received hormone therapy and any combination of 

adjuvant therapies. Among patients who underwent hormone therapy, AA displayed stronger 

overall tendencies than EA to suffer from recurrence (p=0.112; HR: 1.541; CI: 0.906-2.623) and 

distant recurrence (p=0.123; HR: 1.692; CI: 0.868-3.301). Following any combination of adjuvant 

therapy, AA displayed higher recurrence rates than EA after adjusting for age, grade, and stage 

(p=0.015; HR: 1.699; CI: 1.108-2.606). Moreover, unadjusted analyses reveal AA displayed higher 

rates of distant recurrence than EA (p=0.003; HR: 2.164; 1.290-3.629) as well as stronger 

tendencies toward regional recurrence (p=0.104; HR: 2.043; CI: 0.863-4.837) after receiving any 

combination of adjuvant therapy. 

Table 19 Recurrence rates and patterns after receiving any form of treatment among racially 
distinct populations 

  EA AA p value; HR (95% CI) p value; HR (95% CI) 
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Treatment n IR n IR Unadjusted model Adjusted model 

Chemotherapy 

Overall 85 22.73 23 26.66 
0.466; 1.181 (0.755, 

1.846) 

0.807; 0.943 (0.587, 

1.514) 

Local 13 3.48 7 7.46 
0.125; 2.053 (0.818, 

5.151) 

0.394; 1.548 (0.567, 

4.226) 

Regional 20 5.35 6 6.4 
0.594; 1.284 (0.512, 

3.219) 

0.749; 1.169 (0.450, 

3.041) 

Distant 50 13.37 12 12.79 
0.832; 0.934 (0.498, 

1.751) 

0.613; 0.840 

(0.426,1.653) 

Neoadjuvant chemotherapy 

Overall 32 28.95 6 19.77 
0.373; 0.673 (0.281, 

1.609) 

0.409; 0.690 (0.286, 

1.664) 

Local 2 1.81 4 13.18 
0.026; 6.857 (1.256, 

37.447) 

0.024; 7.134 (1.295, 

39.313) 

Regional 7 6.33 0 0 N/A N/A 

Distant 23 20.81 2 6.59 
0.112; 0.310 (0.073, 

1.315) 

0.136; 0.332 (0.078, 

1.417) 

Adjuvant chemotherapy 

Overall 57 20.96 18 26.16 
0.405; 1.253 (0.737, 

2.130) 

0.891; 1.039 (0.603, 

1.788) 
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Local 12 4.41 3 4.36 
0.865; 0.897 (0.255, 

3.153) 

0.500; 0.645 (0.181, 

2.303) 

Regional 15 5.52 6 8.72 
0.333; 1.598 (0.619, 

4.125) 

0.843; 1.102 (0.421, 

2.885) 

Distant 30 11.03 9 13.08 
0.664; 1.179 (0.561, 

2.480) 

0.100; 1.000 (0.463, 

2.159) 

Hormone therapy 

Overall 69 10.45 17 15.94 
0.112; 1.541 (0.906, 

2.623) 

0.949; 1.020 (0.568, 

1.830) 

Local 15 2.27 2 1.87 
0.676; 0.731 (0.169, 

3.172) 

0.290; 0.332 (0.043, 

2.558) 

Regional 14 2.12 4 3.75 
0.369; 1.654 (0.552, 

4.959) 

0.580; 1.380 (0.442, 

4.305) 

Distant 40 6.06 11 10.31 
0.123; 1.692 (0.868, 

3.301) 

0.482; 1.307 (0.619, 

2.757) 

Radiation therapy 

Overall 79 12.62 23 19.34 
0.041; 1.612 (1.021, 

2.545) 

0.986; 1.004 (0.609, 

1.658) 

Local 22 3.52 6 5.04 
0.450; 1.414 (0.575, 

3.475) 

0.689; 0.816 (0.302, 

2.205) 

Regional 10 1.6 3 2.52 
0.532; 1.503 (0.419, 

5.392) 

0.736; 1.264 (0.324, 

4.490) 
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Distant 47 7.51 15 12.61 
0.065; 1.732 (0.967, 

3.100) 

0.810; 1.083 (0.568, 

2.063) 

Adjuvant radiation, hormone, and chemotherapy 

Overall 101 11.94 30 19.63 
0.013; 1.678 (1.115, 

2.524) 

0.015; 1.699 (1.108, 

2.606) 

Local 31 3.66 3 1.96 
0.279; 0.520 (0.159, 

1.698) 

0.145; 0.405 (0.121, 

1.364) 

Regional 19 2.25 7 4.58 
0.104; 2.043 (0.863, 

4.837) 

0.558; 1.310 (0.531, 

3.230) 

Distant 51 6.03 20 13.09 
0.003; 2.164 (1.290, 

3.629) 

0.101; 1.607 (0.912, 

2.833) 

Abbreviations: AA, African-American; EA, European-American; HR, hazard rate; IR, incidence rate 

(1000 person-years); CI, confidence interval. 

Adjusted Cox hazard model variables: age at diagnosis, grade (1,2,3), and stage (I,II,III,IV).  

*P values were calculated using the student t-test. 

 

3.5.4 Recurrence rates among racially distinct breast cancer patients in different 

stages 

Overall incidence rates of recurrence were compared between AA and EA in both early (I–II) and 

late stage (III-IV) breast cancer patients (Table 20). Our data revealed that AA displayed higher 

recurrence rates than EA among stage I patients (p=0.001; HR: 2.165; CI: 1.348-3.476), even after 

adjusting for age, grade, and stage (p=0.031; HR: 1.736; CI: 1.052-2.864). Among early stage (I-II) 

patients, AA also exhibited higher recurrence rates than EA (p=0.002; HR: 1.793; CI: 1.252-2.567), 

and trending higher in AA after controlling for age, grade, and stage (p=0.131; HR: 1.339; CI: 
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0.917-1.956). Furthermore, AA displayed higher recurrence rates than EA among T1 classified 

patients, irrespective of age, grade, and stage (p=0.003; HR: 2.009; CI: 1.263-3.197). Moreover, 

unadjusted models reveal that AA displayed higher rates of recurrence than EA among N0 

(p=0.005; HR: 1.777; CI: 1.186-2.661) and M0 (p=0.002; HR: 1.682; CI: 1.210-2.338) classified 

patients. However, rates of recurrence were not significantly higher in AA as compared to EA 

among late stage patients. Thus, these results suggest that AAs are at higher risk than EAs for 

tumor recurrence among patients with non-invasive or minimally invasive breast cancer. 

 

Table 20 Overall recurrence rates among racially distinct staged breast cancer patients 

  EA AA 
p value; HR (95% 

CI) 

p value; HR (95% 

CI) 

  n IR n IR Unadjusted Model Adjusted Model 

Grouped stage 

Early (I-II) 130 11.14 39 19.08 
0.002; 1.793 (1.252, 

2.567) 

0.131; 1.339 (0.917, 

1.956)  

Late (III-IV) 31 55.17 9 50.65 
0.857; 0.934 (0.445, 

1.962) 

0.637; 0.823 (0.366, 

1.850) 

Individual Stage 

I 70 7.76 23 15.84 
0.001; 2.165 (1.348, 

3.476) 

0.031; 1.736 (1.052, 

2.864) 

II 60 22.67 16 27.02 
0.447; 1.239 (0.713, 

2.154) 

0.823; 0.936 (0.523, 

1.674) 
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III 25 48.01 7 45.01 
0.902; 0.949 (0.410, 

2.195) 

0.590; 0.774 (0.306, 

1.959) 

IV 6 145.8 2 90.29 
0.822; 0.832 (0.167, 

4.152) 

0.967; 0.964 (0.168, 

5.518) 

TNM Staging 

T             

T0 2 130.83 0 N/A  N/A N/A 

T1 67 9.75 28 25.63 
<0.0001; 2.776 

(1.781, 4.326) 

0.003; 2.009 (1.263, 

3.197) 

T2 54 28.48 11 22.3 
0.504; 0.801 (0.419, 

1.534) 

0.215; 0.647 (0.325, 

1.287) 

T3 12 49.67 1 13.31 
0.215; 0.275 (0.035, 

2.115) 

0.161; 0.228 (0.029, 

1.796) 

T4 9 106.73 4 121.36 
0.680; 1.282 (0.394, 

4.173) 

0.983; 1.015 (0.241, 

4.270) 

N             

N0 101 9.81 31 16.89 
0.005; 1.777 (1.186, 

2.661) 

0.211; 1.319 (0.854, 

2.037) 

N1 44 27.05 12 39.2 
0.201; 1.518 (0.801, 

2.877) 

0.828; 1.079 (0.545, 

2.136) 

N2 13 46.45 4 53.23 
0.744; 1.207 (0.391, 

3.719) 

0.965; 0.970 (0.258, 

3.646) 
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3.5.5 Survival outcomes among racially distinct patients displaying recurrence 

Survival duration after the initial recorded recurrence was compared between the racial groups 

(Figure 28). AA exhibited only a very weak trend toward shorter survival time than EA after 

experiencing their first episode of recurrence (p=0.231). The average time until death was 

compared between EA and AA patients who experienced distant recurrences. Interestingly, AA 

and EA patients exhibiting distant recurrence were comprised of similar percentages of alive 

patients, however, AA (n=26) died considerably sooner than EA (n=80) (p=0.015). More precisely, 

AA patients who experienced distant recurrences died approximately one year earlier than EA 

distant recurrent patients. However patient numbers were too low to control for variables of age, 

grade, and stage. 

N3 5 55.06 1 43.27 
0.742; 0.697 (0.081, 

5.970) 

0.974; 0.962 (0.095, 

9.711) 

M             

M0 157 12.82 46 20.8 
0.002; 1.682 (1.210, 

2.338) 

0.288; 1.210 (0.851, 

1.721) 

M1 6 145.8 2 90.29 
0.822; 0.832 (0.167, 

4.152) 

0.967; 0.964 (0.168, 

5.518) 

Abbreviations:  AA, African-American; EA, European-American; HR, hazard rate; IR, incidence 

rate (1000 person-years); CI, confidence interval. 

Adjusted Cox hazard model variables: age at diagnosis, grade (1,2,3), and stage (I,II,III,IV).  

*P values were calculated using the student t-test. 
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Figure 28 AA exhibit lower survival duration than EA among recurrent breast cancer patients 

Figure 28: (A) Survival time from first recurrence episode until death was compared between 
AA and EA breast cancer patients. The log-rank analysis was conducted to determine statistical 
differences between the racial groups. AA exhibited a weakly significant lower survival time 
than EA (p=0.231). (B) The mean time (days) until death was compared between AA and EA 
breast cancer patients displaying distant recurrence. AA died notably sooner than EA patients 
(p=0.015). A t-test was performed to determine significant differences between the racial 
groups. 
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4 CONCLUSIONS 

4.1 Conclusion part for neural growth model 

Our analysis of the discrete probability distributions corresponding to stochastic neuronal growth 

models indicates that the most important component of our model, namely the branching 

probability p, has a clear impact on targeting performances.  More precisely, the expected 

success near the origin increases as a geometrical series with a factor of (1 +  𝑝).  Furthermore, 

the decrease in targeting performance at large distances approximately follows a geometrical 

series with (1 +  3𝑝) and additional higher order corrections. In addition to computing the 

values of the expected number of branches as a function of distance, we also determined an 

expression for the corresponding variance values, as well as approximations for the optimal 

targeting regions.  

These probabilistic models are in excellent agreement with experimental data from the Firestein 

laboratory and indicate that the parameters used in the theoretical model capture most of the 

variability seen in the experimental data. One particularly interesting finding in this study is that 

our model very accurately predicts dendrite growth for relatively young neurons in culture, at 

days in vitro (DIV) 7 and 8.  From our results, we can see that the estimate of growth rate varies 

when we have different chemicals controlling the evolution process, for example, estimate of 

branching probability of control is lower than that of Cypin. All the results from our model were 

in the agreement with previous researches, which means our model can detect the change in the 

regeneration process when the condition changes. 

An interesting outcome of these results is to suggest that the logarithm of the number of active 

branches might be a more appropriate way of constructing Sholl plots, as this transformation of 

the expected values for the dendritic tree population is predicted to have a linear component 

near the origin and approximate linear component at large distances. This is due to the fact that 

logarithm transformation of geometric series results in linear sequences. The use of both of these 

short and long-range components can provide a better statistical determination of branching 

values, for example examining the data at those scales using linear regression models. If the 

large-distance component is in disagreement with the predicted linear trend, this may indicate 
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other effects, such as pruning at larger distances or parameter-dependent branching. 

When neurons are injured in the brain or spinal cord, they may lose dendritic or axonal branches, 

depending on the severity of the injury. Losing branching will disrupt the network and lead to a 

loss of function. To this end, much work in regenerative neuroscience has focused on promoting 

nerve growth after injury as a means of restoring function. Our goal with this computational 

model is to better understand the rules that govern neuronal branching under control and injury 

conditions and to confirm these findings with an in vitro system (cultured hippocampal neurons). 

Future iterations of this model will allow us to determine whether promoting a particular type of 

branching pattern – for example, that characteristic of treatment with BDNF – will allow a neuron 

to best reach the target area after injury and become reintegrated with the network after injury.  

Additionally, we were able to use these models to derive statistical tests for determining 

differences between conditions, such as normal neurons versus neurons treated with growth 

factors (e.g. BDNF; [60]) or neurons engineered to overexpress a particular protein (e.g. cypin; 

[61, 62]). Such tests could replace the less informative methods currently used, including variance 

analysis, which only provide information regarding statistical differences at specific distances as 

opposed to analysis of the whole curve. In contrast, our analysis will produce a test of hypothesis 

for relevant parameters, such as branching probability, in order to determine if different 

experimental conditions produce changes in the fit values of these parameters that are 

statistically significant. As an illustration, imagine comparing families of neurons with fewer 

resources and a slower evolution speed to ones that have more resources but a higher growth 

speed; while the branching rates are similar, the dendritic trees become scaled up or scaled down 

versions of each other. The resulting Sholl curves would have the same overall shape but are 

“stretched out” or “compressed” when compared to each other. In this imagined scenario, the 

ANOVA analysis would indicate statistical differences between these two types of Sholl curves at 

many locations without providing any intuition about their similarities. 

In the future, we will continue to apply our model on different neuron growth process controlled 

by the same chemical, but with different concentration. By doing this, we will be able to 

quantitatively connect the change in branching probability with the change in the concentration. 
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This will definitely be useful in the future in the clinical practice, in order to help to control the 

development of neuron cells.  

 

4.2 Conclusion part for tumor growth model 

The relation between tumor size and biological parameters has been well documented and 

widely used in prognostication. However, less attention was paid on the effect of   

clinicopathological factors, such as grade, stage, ki_67 score, on the in vivo breast cancer growth 

rate [63-67]. 

This study was aimed not only to reaffirm our current knowledge but also to explore the impact 

of more novel histological biomarkers on tumor growth rate. Of particular interest was the 

balance between pro-apoptotic and anti-apoptotic signaling proteins. Those investigated were 

the proliferative marker Ki67 and the apoptotic marker cleaved Caspase-3, an activated protease 

enzyme acting in the late stages of the apoptotic pathway. [68] Additionally, the correlation 

between growth rates – calculated as the change in volume over time across sequential 

mammograms - and ER, PR, and HER-2 status were investigated, as well as that of the basal 

marker CK 5/6. However, one problem with studies looking at early screen-detected tumors is 

that, by their very nature, most tumors being investigated will be small slower-growing Luminal 

tumors, expressing mostly ER and PR (75% of cases). This made the study somewhat biased, as 

very few tumors of the HER-2 or basal (CK 5/6 expressing) or TNBC subtypes were studied (8.7%, 

4% and 12% of cases respectively). These tumor subtypes are typically more aggressive and much 

faster growing, making them far less likely to be screening detected [69,70]. It was, therefore, 

difficult to establish significant correlations between these markers/subtypes and other 

parameters.  

Interestingly, different studies looking at patient outcome have used a wide range of different 

positive/negative cut-off points for both Ki67 and apoptotic marker staining. This has led to 

debate as to the most appropriate cut- off point. Some studies have proposed that the cut-off 

should vary depending on the clinical objective of the study.[71-73]  
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Few studies have looked at the growth rate in terms of the balance between pro-and anti- 

apoptotic signaling proteins, and so no consensus on cut-off has been agreed in this context. In 

this study, in order to keep the data as unbiased as possible, Ki67 and cleaved Caspase-3 were 

analyzed as continuous variables. It was shown that increasing Ki67 expression correlated 

significantly with increased tumor growth rate. This was to be expected, with Ki67 being a 

proliferative marker expressed during all active phases of the cell cycle, peaking during the 

mitotic phase. [71-74]  A significant association was also seen between cleaved Caspase-3 and 

growth rate. Moreover, Cleaved Caspase-3 was found to positively correlate with Ki67 expression, 

suggesting that an increase in proliferative markers in breast tumor cells is usually accompanied 

by an increase in apoptotic proteins as a counter-balancing measure. A previous larger breast 

cancer study showed similar observations. [75]  

Correlations were observed between growth rate and tumor grade and mitotic index. The 

relationship with grade has previously been observed in many studies and reflects the fact that 

mitotic index is the most powerful component of tumor grade. [74, 76] In fact, some studies have 

shown tumor size to be positively correlated with Ki67 expression, whilst have others found no 

significant relationship. [74] Degree of vascular invasion also significantly correlated with growth 

rate. This is accounted for by the increased provision of nutrients to the tumor cells from the 

newly invaded blood vessels, allowing a greater degree of cell proliferation. Other studies have 

made similar findings, and it has been shown that extensive vascular invasion is also closely 

related to poorer prognosis, and pronounced Ki67 expression. [76]  

A previous study adopted an approach to measure tumor growth rate as the change in tumor 

size over time in only one dimension – the largest tumor dimension. [77] However this method 

introduced considerable inaccuracy into the growth rate calculations and was based on the 

assumption that the proportional increase in tumor size was the same in all three dimensions. In 

fact, it has been shown that growth rate is influenced heavily by stromal-tumor interactions and 

the presence of limiting anatomical barriers. [78, 79] A tumor thus is unlikely to grow uniformly 

in all directions, and will most probably favor the direction of least resistance. A more accurate 

approach would have been to measure the change in tumor size in two or even three dimensions 

(tumor volume) if possible. Here we calculate tumor volume from mammogram readings. We 
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assumed the breast cancer tumor to be ellipsoidal and the highest mammogram reading was 

assumed as height and the other as diameter. The tumor volumes were between 9 to 37819mm3 

with a mean of 4591.74mm3. Thus the tumor volume calculated could serve as a factor for 

demonstrating the tumor expansion rate rather than tumor size alone, which is a biased 

parameter. [80] 

Interestingly, a previous study has suggested that tumor growth rate, independent of stromal 

interactions, is non-linear, and grows in a so-called “stepwise” manner, undergoing phases of 

relative stability intermittently interrupted by sudden surges in growth. It is proposed that these 

periods of inactivity may be due to: (a) periods of balanced proliferation and apoptosis, or (b) 

periods when the growth fraction is zero. The latter would presumably be accompanied by a 

massively decreased expression of proliferative signaling proteins such as Ki67. [81]  In this study, 

the mean time between screening and diagnosis was just 18 months. In future studies growth 

rate could be calculated over a longer time period, offering a more accurate long-term picture of 

changes in tumor volume.  

In our study, we observed a significant correlation between breast cancer subtypes and tumor 

growth rate. Tumor growth rate varied significantly between the subtypes with higher growth 

rate among TNBC patients. Thus, the growth rate may be a significant consideration when we try 

to separate the breast cancer into different subtypes.   

Furthermore, we investigated the relationship between growth rate and patient outcome.  Our 

analysis revealed that increase in growth rate increases the risk to death. However, the tumor 

growth rate has not been implicated as a prognostic variable in clinical practice because of its 

difficulty in evaluating it in the short interval of diagnosis and treatment. Many studies have 

addressed that faster growing tumors have a worse survival. [24, 82-84] However, some studies 

demonstrated that there is no any association of tumor growth rate with patient’s survival. [25] 

Also, in the other study carried out by Tubiana et.al, there was no any survival difference between 

the subgroups of patients with rapid or intermediate growth rate after the follow-up exceeding 

8 years [26].  

One final avenue that could be explored more is the possible correlations between growth rate 
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and other aspects of mammographic appearance, and also between biomarker expression and 

mammographic appearance. Some work has already been done in this area, which shows that 

luminal tumors showed more speculate lesions on mammographic shadow, whilst HER-2 positive 

and basal tumors were characterized by more ill-defined masses on mammography. [57, 66]  

However there is certainly scope for further investigation in this area, looking at density, 

calcifications, and other features.  

In conclusion, the study has demonstrated the relationship between breast cancer growth rate 

and the expression of the proliferative marker Ki67. Well-documented relationships between 

various biomarkers and clinicopathological parameters classically used in breast cancer 

prognostication have also been reaffirmed. The activity of the pro-apoptotic protein cleaved 

Caspase-3 in counterbalancing proliferative activity – controlled by Ki67 – was clearly observed. 

Overall the study proposes that growth rate is a significant consideration when separating the 

type of breast carcinomas, provide the basis for further refinement of the current classification 

system, as well as the discovery of new molecular subtypes and consequently, it is important in 

determining patient outcome. This study has revealed prognostic information and evidence-

based data that can be used in the medicolegal practice. 

 

4.3 Conclusion from extending survival analysis on breast cancer recurrence 

Our analysis revealed higher incidence rates of recurrence in AA compared to EA among patients 

that received any combination of adjuvant therapy. Moreover, our data demonstrates an 

increased risk of tumor recurrence in AA than EA among patients diagnosed with minimally 

invasive disease. Additionally, this is the first clinical study to suggest that neoadjuvant 

chemotherapy improves breast cancer recurrence rates and patterns in AA. 

This clinical study is the first extensive investigation into the rates and patterns of tumor 

recurrence in breast cancer patients following conventional treatments among racially distinct 

populations. Our study has revealed notable distinctions in recurrence patterns among EA and 

AA patients. First, AA displayed considerably higher rates of recurrence than EA. Second, 
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intriguingly, we observed higher severity in recurrence patterns displayed by AA for whom we 

discerned stronger trends in AA of tumor recurrence to regional and distant sites. This trend was 

evident after patients received radiation, hormone, and any combination of adjuvant therapies. 

Overall, these observed trends were quite significant since local recurrence tends to elicit a more 

favorable clinical prognosis compared to distant recurrence, while the latter trends type precedes 

a poorer clinical prognosis. Triple-negative breast cancer (TNBC) patients have been shown to 

display an increased risk for recurrence and particularly for recurrence to distant sites, while non-

TNBC patients exhibit higher trends of recurrence to local sites [58]. These findings parallel our 

observations of an increased risk of overall and especially distant recurrence in AA, as well as an 

increased risk of local recurrences in EA. This tendency reflects the well-reported higher 

incidence of TNBC phenotypes in AA patients and a higher prevalence of non-TNBC subtypes in 

EA patients. Furthermore, we observed a trend of a higher number of recurrence episodes in AA 

compared to EA. The more recurrence episodes of the patient experiences, the more fatal the 

outcome is likely to be, and the more the patient’s quality of life is potentially compromised. 

Additionally, we discerned stronger inclinations of distant recurrence to multiple organs in AA 

compared to EA. These observed aggressive recurrence patterns reveal that AA patients exhibit 

an increased prospect of a poor clinical prognosis, theoretically contributing to their higher 

mortality rates than EA patients. Recurrence rates were also found to be higher in AA than EA 

among early stage, minimally invasive breast cancer patients, irrespective of age, grade, or stage. 

This data presents an intriguing paradox as the advanced stage upon diagnosis is typically 

associated with increased risk for recurrence. Thus, these findings suggest that AA patients of all 

clinical stages should be closely evaluated for the prospect of tumor recurrence. Neoadjuvant 

chemotherapy seemed to reverse these observed recurrence trends. Among patients who 

received neoadjuvant chemotherapy, AA displayed a lower rate of recurrence than EA; however 

due to a low number of recorded patients that received neoadjuvant chemotherapy, statistical 

significance was diminished. In addition, higher incidences of aggressive recurrence patterns in 

AA were notably attenuated after these patients underwent neoadjuvant chemotherapy. This 

data suggest preoperative chemotherapy may reduce the severity of recurrence rates and 

patterns in AA patients. This study suggests that neoadjuvant chemotherapy should be 
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recommended for AA patients who are at higher risk for developing tumor recurrence. A recent 

clinical study reported that in fact, neoadjuvant chemotherapy is administered more frequently 

to AA than EA patients likely as a result of their higher prevalence of advanced stage, grade, and 

triple negative receptor status [59]. Biological research is needed to be conducted to understand 

the molecular basis underlying inequalities in recurrence patterns among EA and AA patients for 

potential therapeutic targets. Augmented prognosticative clinical measures need to be exploited 

in order to foretell the likelihood of disease recurrence. Hence, rigorous and intensive supervision 

of the prospect of recurrence is conceivably compulsory to palliate the elevated risk of recurrent 

breast cancer demonstrated by AA patients.  

Although prior clinical studies have exposed disparities in recurrence risk among EA and AA, this 

study is one of the first to uncover distinctions in rates and patterns of tumor recurrences 

following conventional forms of breast cancer treatments among the racial groups and thus 

highlights the need for further investigation and surveillance. Our comprehensive analysis has 

also illuminated previously unrecognized differences in the rates and patterns of recurrence post-

chemotherapy among racially distinct populations by suggesting that AAs respond better to 

neoadjuvant chemotherapy. Additionally, no study has yet elucidated the significantly higher risk 

for recurrence among early stage AA patients. Overall, this study further advocates that race 

should be considered among the potential decisive risk factors in the clinic for recurrence. 

Awareness of the higher rate of recurrence in AA may compel clinicians to consider race as a 

critical factor in evaluating the prospect of cancer returning after patients enter remission, and 

allow this factor to play a major role in treatment decisions. Hereinafter, enriched comprehensive 

screening programs and tailored treatment plans may be imperative to impede augmented the 

risk of tumor recurrence and aggressive recurrence patterns in AA patients that may be 

reinforcing their poor clinical outcomes.  
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