Synthesis of Selective 5-HT7 Receptor Antagonists

Adam Ehalt
Georgia State University, aehalt1@student.gsu.edu

Follow this and additional works at: https://scholarworks.gsu.edu/chemistry_theses

Recommended Citation

This Thesis is brought to you for free and open access by the Department of Chemistry at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Chemistry Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact scholarworks@gsu.edu.
SYNTHESIS OF SELECTIVE 5-HT\textsubscript{7} RECEPTOR ANTAGONISTS

by

ADAM J. EHALT

Under the Direction of Dr. Lucjan Strekowski

ABSTRACT

The 5-HT\textsubscript{7} receptor is the most recent addition to the 5-HT receptor family and has been linked to a variety of physiological and pathophysiological processes. Well established antidepressant pharmaceuticals have recently been found to activate the 5-HT\textsubscript{7} receptor, supporting the role of the 5-HT\textsubscript{7} receptor in the antidepressant mechanism. The synthesis of potent selective 5-HT\textsubscript{7} receptor antagonists could afford a greater understanding of the 5-HT\textsubscript{7} receptor function as well as lead to potential drug candidates.

The synthesis of unfused biheteroaryl derivatives as 5-HT\textsubscript{7} receptor ligands has been described within. These compounds have been tested for biological activity on the 5-HT\textsubscript{6} and 5-HT\textsubscript{7} receptors. 4-(3’-Furyl)-2-(N-substituted-piperazino)pyrimidines were found to be potent 5-
HT₇ receptor ligands. 4-(2’-Furyl)-2-(N-substituted-piperazino)pyrimidines have shown high selectivity for the 5-HT₇ receptor over the 5-HT₆ receptor.

INDEX WORDS: Serotonin, 5-HT₇ receptor, Organic, Heterocyclic chemistry, Synthesis, Pyrimidine, Piperazine, Biheteroaryl
SYNTHESES OF SELECTIVE 5-HT_{7} RECEPTOR ANTAGONISTS

by

ADAM J. EHALT

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of
Masters of Science
in the College of Arts and Sciences
Georgia State University
2011
SYNTHESIS OF SELECTIVE 5-HT\textsubscript{7} RECEPTOR ANTAGONISTS

by

ADAM J. EHALT

Committee Chair: Dr. Lucjan Strekowski

Committee: Yujun Zheng

Markus Germann

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

December 2011
ACKNOWLEDGEMENTS

I would like to thank Dr. Strekowski for allowing me to work independently in his laboratory and for helping me develop my skills as a synthetic chemist. I would also like to thank Nilmi Fernando and Shirish Paranjpe for their help and support in the lab, for both work and non-work related issues. To my fellow 688 Kell Hall researchers, Reid Daniel, Beth Raux, Jamie Gragg, Ava Blake and Jeff Klenc, you all made working in this lab an incredible and unforgettable experience.

I would also like to thank my parents, Jay and Becky Ehalt, for their continued support of my endeavors. Without their encouragement this achievement would not have been possible.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES ... vii

LIST OF FIGURES ... viii

1 INTRODUCTION (LITERATURE REVIEW) ... 1
 1.1 Discovery of Serotonin .. 2
 1.2 The 5-HT Receptor .. 4
 1.3 Discovery of the 5-HT\textsubscript{7} Receptor ... 5
 1.4 5-HT\textsubscript{7} Receptor Function ... 10

2 SYNTHESIS OF UNFUSED BIHETERARYLS (THIS WORK) ... 11
 2.1 Synthesis of Substituted Pyrimidines ... 11

3 BIOLOGICAL ACTIVITY ... 15
 3.1 5-HT\textsubscript{7} and 5-HT\textsubscript{6} Receptor Binding Affinity ... 15

4 CONCLUSION ... 20

5 EXPERIMENTAL ... 21
 5.1 General .. 21
 5.2 Lithium Reagents ... 22
 5.3 Synthesis of Pyrimidines ... 22
 5.4 Hydrobromic Salt Preparation .. 24
 5.5 Compound Characterization ... 24
6 REFERENCES ... 27
7 SPECTRA ... 30
LIST OF TABLES

Table 1.1: Binding Affinity Results for 4-(2’-Furyl) and 4-(3’-Furyl) pyrimidine derivatives............16

Table 1.2: Binding Affinity Results for Di- and Tri- Substituted Pyrimidines................................18
LIST OF FIGURES

Figure 1. 5-Hydroxytryptamine (5-HT, Serotonin)...1

Figure 2. Lysergic Diethyl Amide (LSD-25, LSD)...4

Figure 3. 8-hydroxy-2(di-n-propylamino)-tetralin (8-OH DPAT)..6

Figure 4. Selective and Non-Selective 5-HT$$\text{$_7$}$$ Receptor Ligands.....................................7

Figure 5. Pharmacophore Model for Selective 5-HT$$\text{$_7$}$$ Antagonists...................................9

Figure 6. Cis- and trans- 4-(2'-Furyl) and 4-(3'-Furyl)pyrimidine conformations.................19
1 INTRODUCTION (LITERATURE REVIEW)

Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter responsible for a variety of biological functions in animals.\(^1\) In humans, the effects of 5-HT are achieved through interactions with seven different serotonin receptor families, 5-HT\(_{1-7}\).\(^1\)

![5-HT Structure](image)

Figure 1. 5-Hydroxytryptamine (5-HT, Serotonin)

In the central nervous system (CNS), many processes are directed by serotonin such as feeding, mood, cognition and memory.\(^1,2\) In the peripheral nervous system (PNS), serotonin regulates cardiovascular and gastrointestinal functioning, smooth muscle contractions, and platelet aggregation.\(^1,2\) Given the many processes governed by serotonin, 5-HT receptors have proven to be successful medicinal targets for the treatment of many physiological disorders.\(^2,6\) Many current therapeutic agents disrupt or modulate activity of 5-HT receptors through various chemical interactions.\(^2\) Each of the seven 5-HT receptor families fills a specific role in achieving the physiological and pathophysiological functions regulated by serotonin.\(^2,6\) Synthesis of a 5-HT ligand with receptor family selectivity could afford more specific and efficient treatment and consequently minimize drug side effects.

Pursuit of a potent ligand that expresses selectivity for a specific 5-HT receptor family would not be modeled after 5-HT because the native ligand 5-HT is inherently non-selective. The molecule must maintain the 5-HT receptor binding pocket specifications but must be chem-
ically distinct to avoid unwanted biological interactions. The 5-HT$_7$ receptor is the most recently discovered 5-HT receptor and it has generated the interest of medicinal chemists as a potential therapeutic target for the treatment of clinical depression. The development of more potent and selective 5-HT$_7$ receptor ligands is driven by the potential for the future medicinal applications.

1.1 Discovery of Serotonin

5-HT was discovered independently by two American research groups. In the early 1930’s Erspamer was investigating the chemical responsible for smooth muscle tissue contractions in rats. Erspamer’s investigation led to the successful isolation of 5-HT from the enterochromaffin cells in the gut from which he named it enteramine. Erspamer researched the role of 5-HT on smooth muscle contractions for many years and published volumes of literature under the enteramine title. Aside from being produced in large quantities the enterochromaffin cells in the gut by, 5-HT is stored in considerable quantities on blood platelets to aid in aggregation. In 1948, 5-HT was isolated from blood serum by a research group consisting of Page, Rapport, and Green. Their search for a chemical component in blood responsible for hypertension would eventually lead to the isolation of 5-HT. The name serotonin was born from the marriage of the two ideas that 5-HT was isolated from blood serum ("ser") and increases tone ("tonin") or constriction in blood vessels. Soon it was revealed that enteramine and serotonin were actually the same substance. The consolidation of enteramine and serotonin literature combined with the commercial synthesis of 5-HT in 1952 afforded a surge in 5-HT investigation.
In 1953, Twarog, a Harvard PhD candidate at the time, published an important discovery under the advisement of Page, co-discoverer of serotonin. Twarog had produced a sensitive bioassay to quantitatively detect serotonin in mammalian tissues using mollusk heart. Mammalian tissues were pulverized and organic tissue extracts were then tested on Twarog’s serotonin bioassay. Her bioassay detected 5-HT in many tissues, but most importantly the concentration of 5-HT throughout brain tissue. Twarog’s findings opened the door for investigators to probe the role of serotonin in the brain. Research would soon be jump started by an important observation of the structural similarities between 5-HT and a well known psychotropic drug.

Woolley and Shaw were one of the first research groups to realize the connection between the powerful mind altering substance lysergic acid diethylamide (LSD-25, LSD, Figure 2) and 5-HT. At this time it was well known that compounds structurally related to naturally occurring hormones cause disturbances to normal biological function of endogenous ligands. After Hoffman’s total synthesis of LSD-25 in 1938, it was clear that LSD-25 and 5-HT shared structural similarities. In fact LSD-25 contains 5-HT as a molecular scaffold. Woolley and Shaw noted that the hallucinogenic affects caused by LSD consumption were strikingly similar to symptoms of mental disorders and soon proposed the cause for mental disturbances to be attributed to serotonin deficiency. Soon after, the discovery that LSD-25 inhibited the function of serotonin provided support for their hypothesis. Research concerning serotonin receptors as drug targets would soon become a very exciting and intriguing area of investigation.
1.2 The 5-HT Receptor

The 5-HT receptor has been found widely expressed throughout the CNS and PNS with receptor functions linked to a variety of physiological processes. 5-HT receptor regulation has been linked to developmental, cardiovascular, gastrointestinal, endocrine function, sensory perception, aggression, appetite, sleep, sex, mood, and memory.1-2,6 The 5-HT\textsubscript{1-7} receptors belong to a family of proteins called G-protein coupled receptors (GPCRs), with the exception of the ligand-gated ion channel 5-HT\textsubscript{3} receptor.6 G-protein coupled receptors consist of seven non-polar alpha helices spanning the cell membrane with an N-terminus extracellular portion involved with ligand binding and an intracellular carboxy-terminus portion involved with signal communications within the cell.6,28-29 Binding occurs when a ligand docks to the extracellular portion of the GPCR, and the ligand is held in place through specific ligand- receptor protein residue interactions.6 Binding activates a structural change in the receptor protein conformation. This structural change generates a cascade of intracellular events that will ultimately communicate the extracellular transmission and result in the appropriate biological response.6,28-29

Activation of a 5-HT receptor begins with the docking of a molecule to the extracellular binding pocket of the receptor protein. A molecule with affinity towards binding to the receptor active site is called a receptor ligand. Different ligands can activate a receptor and achieve vari-
ous responses, which results in the distinction between receptor agonists, antagonists, and inverse agonists. The term receptor agonist refers to a molecule that has affinity for binding to a receptor and upon docking the ligand mimics the effect of the native ligand, in other words increasing the signal for serotonin function expression. A receptor antagonist, however, refers to a molecule that binds in the receptor active site and inhibits agonist docking and thereby blocking the expression of the native ligand function. There is a third type of receptor ligand which is called an inverse-agonist. An inverse agonist is a ligand that binds in the receptor active site and decreases intracellular signaling, posing the negative effect of a receptor agonist.

The existence of multiple 5-HT receptors has allowed serotonin to achieve such a wide variety of physiological control. In fact, there are fourteen different subtypes that have been grouped into seven families, 5-HT1-7 respectively. This classification does not include the multiple receptors arising from alternate gene splicing or the 5-HT receptor mRNA. The seven 5-HT receptor families have been extensively investigated for the role each play in the processes regulated by serotonin. This has been aided by the advancement in receptor cloning technologies, gene knock-out mice studies and utilization of potent and selective 5-HT receptor ligands. Elucidation of which 5-HT receptor is responsible for specific biological processes would allow for future drug design of selective 5-HT receptor ligands as therapeutic agents.

1.3 Discovery of the 5-HT7 Receptor

The 5-HT7 receptor (5-HT7R) was discovered independently by three research laboratories in 1993, making it the most recent addition to the serotonin receptor subtype family and bringing the grand total of serotonin receptor subtypes to fourteen. This receptor was discovered by analysis of brain cDNA libraries searching for sequences sharing homology to known
Studies on the 5-HT7R have relied heavily on the use of selective antagonists and 5-HT7R knockout mice. Being the most recently discovered, the 5-HT7 receptor still remains one of the least understood 5-HT receptors.

After the discovery of 5-HT7, it became apparent that many previously established 5-HT receptor mediated processes may have been interpreted erroneously. One such example is the role of 8-hydroxy-2(di-n-propylamino)-tetralin (8-OH-DPAT, Figure 3), which was previously thought to be a selective agonist for the 5-HT1A receptor, but has since been discovered to potent agonist activity for the 5-HT7 receptor.

![Figure 3. 8-hydroxy-2(di-n-propylamino)-tetralin (8-OH-DPAT)](image)

In fact, many compounds with structural diversity have been shown to possess affinity for the 5-HT7 receptor. A figure has been compiled below including structural examples of non-selective and selective ligands for the 5-HT7 receptor.
Figure 4. Selective and Non-Selective 5-HT₇ Receptor Ligands

(1) 2-Br-LSD
(2) Modified Aporphine
(3) Clozapine
(4) LCAP
(4) LCBC
(5) Arylsulfonamidoalkylamines
(6) Diaminotriazines

Figure 4. Examples from the six general classes of 5-HT₇ receptor antagonists as outlined by Kolaczkowski et al. and have been numbered according to each class are shown. (1) ergoline derivatives, (2) aporphine derivatives, (3) tricyclic psychotropic agent derivatives, (4) arylpiperidine, arylpiperazine derivatives [LCAPs] and β-carboline derivatives [LCBCs], (5) arylsulfonamidoalkylamine derivatives, (6) compounds reserved for selective antagonists that are structurally more diverse than the previous five classes.

In fact, the 5-HT₇R antagonists have shown to display a wide variety of structural components. The above figure has been compiled to visualize six classes of 5-HT₇R antagonists that have been generalized by Kolaczkowski et al.: (1) nonselective ergolines, (2) nonselective
aporphines, (3) nonselective tricyclic psychotropic agents, (4) arylpiperidines, arylpiperezines [LCAPs] and β-carbolines [LCBCs], (5) selective arylsulfonamidoalkylamines, (6) and other diverse structure selective antagonists such as diaminotriazines.

A crystal structure for the 5-HT7R has not been achieved, making binding pocket 3-D evaluation to rely heavily on molecular modeling using potent ligand binding information. The first pharmacophore model was developed by Lopez-Rodriguez et al in 2000.

This receptor pharmacophore was developed to reveal key structural components for 5-HT7 receptor antagonist binding and employed 30 ligands with structural diversity.

The molecular modeling calculations predict the minimum structural requirements for binding include an aromatic ring, a basic nitrogen atom (positive ionizable center, PI) hydrogen bond acceptor (HBA), and a hydrophobic region (HB) 4.9-5.9 Å apart from the basic center.

An updated pharmacophore model was published by Lopez-Rodriguez in 2003 using a series of different ligands making minor changes to the structural requirements.

In 2006, Kolaczkowski et al published a pharmacophore model using selective structurally variant 5-HT7 ligands and reported an interesting discovery.

It has been reported that there may be more than one binding pocket for the 5-HT7 receptor, which would account for such structural diversity showing such high affinity.

A pharmacophore model recently developed in the Strekowski lab by Jeff Klenc was employed to design more potent and selective 5-HT7 receptor antagonists.

Using available compounds synthesized in the Strekowski lab our pharmacophore model calculations agree with the literature Lopez-Rodriguez pharmacophore model.
Figure 5. The pharmacophore model created by Jeff Klenc in the Strekowski laboratory is shown. \(^{31}\) Compound **AE-001-39** has been placed side by side with this model to show how this molecule satisfies spatial requirements.

HYD\(_3\) is a predicted hydrophobic pocket that exists inside of the 5-HT\(_7\) binding pocket model. This hydrophobic pocket appears to be less essential for high binding affinity than the HBA and PI. In fact, addition of a butyl group to satisfy this 5-HT\(_7\) model parameter has shown only a slight increase in binding affinity which may be biologically insignificant. In contrast, 5-HT\(_6\) binding affinity increased dramatically for compounds with this hydrophobic addition. A more detailed discussion of compound affinity results can be seen later in the Biological Activity section.
1.4 5-HT\textsubscript{7} Receptor Function

In recent studies, evidence reveals that the 5-HT\textsubscript{7} receptor might be a novel target for medicinal chemists for the treatment of various physiological and pathophysiological disorders.17 The 5-HT\textsubscript{7} receptor has suggested involvement in depression,6 body thermoregulation,9 circadian rhythm,10 learning and memory,11-12 endocrine and mood regulation,15 and smooth muscle relaxation in cerebral arteries.14 These findings indicate that regulation of the 5-HT\textsubscript{7} receptor could be manipulated therapeutically for treatment of such disorders as depression, insomnia, and migraines.6,10,14 Considering the many processes that could be controlled by inhibiting the 5-HT\textsubscript{7} receptor, is a matter of great importance and opportunity to develop more potent selective 5-HT\textsubscript{7} receptor antagonists for investigation as potential drug candidates.

The 5-HT\textsubscript{7} receptor distribution throughout the brain has been studied using a combination of techniques including knock-out mice and radio-labeled 5-HT subtype receptor antagonists.15-16 Localization of the 5-HT\textsubscript{7} receptor throughout the brain has stimulated investigation of a potential relationship between this receptor and mental illness.16,20 High concentrations of the 5-HT\textsubscript{7} receptor were found in the hypothalamus, thalamus, and hippocampus.16 These findings support 5-HT\textsubscript{7} receptor involvement in behavior, cognition, and circadian rhythm regulation.10,16 Depression and schizophrenia are psychiatric disorders that have recently been evaluated the 5-HT\textsubscript{7} receptor as a target for potential treatment.20 These two disorders have been linked to this receptor using 5-HT\textsubscript{7} receptor KO mice and inhibition studies using selective 5-HT\textsubscript{7} antagonists. The results of both studies show comparable therapeutic profiles to known anti-psychotic and antidepressant drugs currently on the market.18-20
Currently, there is a need for more potent and selective 5-HT_7 receptor antagonists to progress investigation concerning the involvement of this receptor and the aforementioned mental disorders. These potential therapeutic applications emphasize the importance of future investigation and should continue to encourage medicinal chemists to develop more potent selective 5-HT_7 receptor antagonists.

2 SYNTHESIS OF UNFUSED BIHETERARYLS (THIS WORK)

2.1 Synthesis of Substituted Pyrimidines

The synthesis of pyrimidines with heteroaryl substituent at position 4 had gone unevaluated until the modifications made by Strekowski et al. were published. The earliest work focused on the addition of lithiated species to the pyrimidine ring, which led to the 1,6-dihydropyrimidine intermediate. This intermediate was oxidized back to pyrimidine with the use of 2,3-dichloro 5,6-dicyanobenzoquinone (DDQ) (Scheme 1).

Scheme 1.
After the lithium addition/substitution reaction was complete, an amine was used to displace the chlorine at the 2 position, which led to the desired products in moderate yields (Equation 1).

\[
\begin{align*}
\text{Cl} & \quad \text{HN} \quad \text{N} \quad \text{N} \\
& \quad \text{Toluene} \\
\rightarrow & \\
\text{N} & \quad \text{N} \\
& \quad \text{R}
\end{align*}
\]

(A)

A similar chemistry was used to synthesize the pyrimidine ligands discussed below. 2-Lithiofuran was generated in THF at low temperature by addition of \(n\text{-BuLi} \) to furan. After the lithiation reaction (Equation 2), the corresponding organolithium reagent was used \textit{in situ}.

\[
\begin{align*}
\text{O} & \quad \text{H} \\
& \quad \text{Li} \\
\rightarrow & \\
\text{THF, -78}^\circ & \\
\text{n-BuLi} & \\
\end{align*}
\]

(A)

A solution of 2-chloropyrimidine (1) in THF was added to the organolithium reagent at -78 °C (Scheme 2). Once the reaction was complete, the mixture was quenched with water/THF (1:1) and the intermediate dihydropyrimidine was rearomatized upon treatment with DDQ to give pyrimidine 2.
Compounds 5 and 6 were synthesized by treatment of 2-chloropyrimidine 2 with N- Boc protected piperazine yielding 3. Following acidic Boc deprotection the resultant secondary amine 4, was treated with the corresponding alkyl halide to produce compounds 5 and 6. Final products 5 and 6 were transformed to the hydrobromide salt and fully characterized.
Compounds 7-10 were synthesized using piperazine and the corresponding alkyl halide in a ratio of 2:1 to prevent dialkylation (Equation 3). The resulting products 7-10 were used in the following reactions without purification (Scheme 3).

Scheme 3.

Compounds 11-14 were synthesized using substituted piperazines 7-9 in toluene. Excess of a piperazine was necessary to achieve higher yield for products 11-14. This direct method seen above in Scheme 3 was preferred over the Boc-protected method seen in Scheme 2. This preference was determined due to less time spent on purification since compounds 7-9 could be used synthetically crude, and for economic factors, as the Boc protecting group added unnecessary expense. Final compounds 11-14 were transformed to the hydrobromide salt and fully characterized.
3 BIOLOGICAL ACTIVITY

Compounds synthesized in the Strekowski laboratory, including compounds prepared as part of this work, have been recently evaluated by the National Institute of Mental Health. Compounds were selected for binding affinity analysis for the 5-HT₆ and 5-HT₇ receptors. Ki determinations were generously provided by the National Institute of Mental Health's Psychoactive Drug Screening Program, Contract # HHSN-271-2008-00025-C (NIMH PDSP). The NIMH PDSP is directed by Bryan L. Roth MD, PhD at the University of North Carolina at Chapel Hill and Project Officer Jamie Driscol at NIMH, Bethesda MD, USA. These binding studies employ a radio-ligand assay using [H³]LSD at a 1 nM concentration with chlorpromazine as a reference in a standard binding buffer following the published procedure.33-34

3.1 5-HT₇ and 5-HT₆ Receptor Binding Affinity

Testing for compounds has been performed at the National Institute of Mental Health (NIMH) at the University of North Carolina Chapel Hill. The following table has been populated with binding affinity values for the 5-HT₆ and 5-HT₇ receptor. Abbreviations AE denote compounds of this thesis. Derivatives NF (Nilm Fernando) and SP (Shirish Paranjpe) are included in the following discussion for a comprehensive treatment.
Table 1.1: Binding Affinity Results for 4-(2’-Furyl) and 4-(3’-Furyl) pyrimidine derivatives

<table>
<thead>
<tr>
<th>Compound ID</th>
<th>Structure</th>
<th>5-HT₆ Kᵢ (nM)</th>
<th>5-HT₇ Kᵢ (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE - 001 - 39</td>
<td></td>
<td>N/A*</td>
<td>997.0</td>
</tr>
<tr>
<td>SP - 1 - 65</td>
<td></td>
<td>342.0</td>
<td>8.5</td>
</tr>
<tr>
<td>AE - 001 - 37</td>
<td></td>
<td>N/A*</td>
<td>58.0</td>
</tr>
<tr>
<td>NTF - 111 - 025</td>
<td></td>
<td>106.0</td>
<td>0.4</td>
</tr>
<tr>
<td>AE - 001 - 69</td>
<td></td>
<td>N/A*</td>
<td>57.0</td>
</tr>
<tr>
<td>NTF - 111 - 065A</td>
<td></td>
<td>70.4</td>
<td>1.6</td>
</tr>
</tbody>
</table>

N/A = Less than 50% inhibition in primary assays. Secondary assay not performed.

The compounds listed in the table above have been arranged to ease comparison between the K_i values of three N'-substituted piperazines for both 4-(2’-Furyl) and 4-(3’-Furyl) pyrimidine derivatives. The N/A* corresponds to primary assay binding affinity below the threshold required by the NIMH to proceed with secondary assay testing. Analysis of the data pre-
sented in this table yields a noteworthy difference between the 5-HT$_6$ receptor binding profile for the 2’- and 3’-Furyl isomers. The 2’-Furyl derivatives, AE-001-37, AE-001-39, and AE-001-69, lack 5-HT$_6$ affinity. These compounds show high selectivity for the 5-HT$_7$ receptor over the 5-HT$_6$ receptor.

The 3’-Furyl isomers, NTF-111-025, SP-1-65, and NTF-111-032, show higher affinity (lower K_i values) for the 5-HT$_7$ receptor than the 2’-Furyl isomers. The 3’-Furyl moiety appears to increase affinity towards both the 5-HT$_6$ receptor and the 5-HT$_7$ receptor. These results indicate the positioning of the hydrogen bonding acceptor (HBA) plays a critical role in the active site for both 5-HT$_6$ and 5-HT$_7$ receptors. The positioning of the HBA is essential for binding to the 5-HT$_6$ receptor, as observed by absence of 5-HT$_6$ affinity from the 2’-Furyl pyrimidine derivatives. Exploitation of the HBA positioning will likely prove an important feature in future synthesis of compounds expressing receptor selectivity.

Recently in the Strekowski lab, Nilmi Fernando (NTF) and Shirish Paranjpe (SP) have synthesized 2, 4, 6- tri-substituted pyrimidines using the more potent 3’-Furyl derivatives. A table has been presented below comparing two N’-substituted piperazines and the K_i values for the corresponding di- and tri-substituted pyrimidines.
Table 1.2: Binding Affinity Results for Di- and Tri- Substituted Pyrimidines

<table>
<thead>
<tr>
<th>Compound ID</th>
<th>Structure</th>
<th>4,6 Pyrimidine Substituents</th>
<th>5-HT$_6$ K_i (nM)</th>
<th>5-HT$_7$ K_i (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE-001-37</td>
<td></td>
<td>2-furyl, H</td>
<td>N/A*</td>
<td>58.0</td>
</tr>
<tr>
<td>NTF-111-025</td>
<td></td>
<td>3-furyl, H</td>
<td>106.0</td>
<td>0.4</td>
</tr>
<tr>
<td>NTF-111-065A</td>
<td></td>
<td>3-furyl, C$_4$H$_9$</td>
<td>72.0</td>
<td>9.0</td>
</tr>
<tr>
<td>AE-001-39</td>
<td></td>
<td>2-furyl, H</td>
<td>N/A*</td>
<td>997.0</td>
</tr>
<tr>
<td>SP-1-65</td>
<td></td>
<td>3-furyl, H</td>
<td>342.0</td>
<td>8.5</td>
</tr>
<tr>
<td>SP-1-67</td>
<td></td>
<td>3-furyl, C$_4$H$_9$</td>
<td>202.0</td>
<td>7.7</td>
</tr>
</tbody>
</table>

N/A = Less than 50% inhibition in primary assays. Secondary assay not performed.
Table 1.2 compares 5-HT₆ and 5-HT₇ Ki values for two N’-substituted piperazines attached to the 2 position on three pyrimidine derivatives. Compounds NTF-111-065A and SP-1-67 are 4-(3’-Furyl) homologues. The addition of the butyl group to the pyrimidine in SP-1-67 adds a flexible hydrophobic character to the compound.

For the two butyl compounds NTF-111-065A and SP-1-67, there is an increase in affinity for the 5-HT₆ receptor. However, the very potent NTF-111-025 loses 5-HT₇R affinity upon addition of the butyl group as seen in NTF-111-65A, with Ki values of 0.4 and 9.0 respectively.

For compounds with high affinity for receptor binding, ligand structural geometry must conform to the receptor-bound conformation. Using unfused biheteroaryl compounds has allowed for a modeling advantage by restricted conformation possibilities. The use of rigid molecules for receptor modeling allows less room for conformational ambiguity in the natural receptor-bound conformation. The pyrimidine substituted with a furan is limited to two low energy conformations referred to as s-cis and s-trans (Figure 6). These low energy conformations occur due to maximal electron delocalization at 0° and 180° torsion angles, or s-cis and s-trans respectively.

Figure 6. Cis- and trans- 4-(2’-Furyl) and 4-(3’-Furyl)pyrimidine conformations

![Cis- and trans- 4-(2’-Furyl) and 4-(3’-Furyl)pyrimidine conformations](image)

Figure 6. Using the unfused biheteroaryl scaffold of furan and pyrimidine limits the low energy structure conformations.
The 2’-Furyl substituent on the pyrimidine has been shown to display a preferred low energy s-trans conformation. Molecular modeling predictions support the 2’-Furyl s-trans conformation preference while the 3’-Furyl derivatives possess slight preference for the s-cis conformation. Only a slight preference is observed for the 3’-Furyl derivatives as the two conformers are spatially similar. These low energy conformation predictions have been supported experimentally by NOESY 2-D NMR spectroscopy.

4 CONCLUSION

In recent years, the 5-HT$_7$ receptor has attracted the interest of medicinal chemists as a therapeutic target for treating many physiological and pathophysiological illnesses. Lacking a crystal structure for this receptor, investigators have relied on modern molecular modeling techniques and potent receptor ligands to attain some insight into the three-dimensional 5-HT$_7$ receptor binding pocket. A 5-HT$_7$ pharmacophore model previously developed in the Streckowski lab has provided minimum structural requirements for potent ligand binding and has been used to develop compounds with high 5-HT$_7$ receptor affinity.

The development of more potent and selective receptor antagonists will help aid in better model calculations and receptor active site understanding. As more selective antagonists are discovered, the availability for research into the true 5-HT$_7$R therapeutic potential will be expanded accordingly. Biological results from the recently synthesized set of furylpyrimidine derivatives show minute structural changes have a profound effect on the affinity for the 5-HT$_6$ and 5-HT$_7$ receptor. Exploitation of the HBA positioning will play a crucial role in producing
more potent and selective 5-HT\textsubscript{7} antagonists as well as other structural and functional modifications to make potent ligands more selective.

5 EXPERIMENTAL

5.1 General

THF was purified by distillation from sodium benzophenone ketyl under a nitrogen atmosphere. All reagents were purchased from a commercial source and used as received. Glassware was dried in an oven at 120 °C, assembled hot and cooled to room temperature under a continuous nitrogen flow prior to use. 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were obtained in CDCl\textsubscript{3} at 27 °C on a Bruker instrument. Elemental analysis was obtained from Atlantic Microlabs, Inc. Melting points are uncorrected. Compound intermediates not sent for biological testing have not been fully characterized. Final products were fully characterized by 1H NMR, 13C NMR, mass spectrometry, and elemental analysis.

Radio-ligand binding studies for the 5-HT\textsubscript{7} and 5-HT\textsubscript{6} receptors were performed according to the published procedure by the National Institute of Mental Health.33,34 These binding studies employ a radio-ligand assay using tritiated [H3]LSD at a 1 nM concentration and chlorpromazine as a reference in a standard binding buffer. The “standard binding buffer” was composed of 50 mM Tris HCl, 10 mM MgCl\textsubscript{2}, and 0.1 mM EDTA at pH 7.4. Cell membrane fractions expressing the 5-HT\textsubscript{6} and 5-HT\textsubscript{7} receptor target were used in the 5-HT\textsubscript{6} and 5-HT\textsubscript{7} binding studies respectively. The inhibition constant (IC\textsubscript{50}) value is estimated from the data which is then used to calculate the molecular binding affinity (K\textsubscript{i}) using the Cheng-Prusoff equation:

\[
K_i = \frac{IC_{50}}{1 + [\text{ligand}] / K_D}
\]
[Ligand] is the radio-ligand concentration and K_D is the radio-ligand affinity constant for the target receptor, specifically the 5-HT$_6$ or 5-HT$_7$ receptor.33,34 K_i is a measure of ligand affinity for a specific receptor. This value is defined as the minimum ligand concentration required for binding to half of the receptor protein population without the presence of a radio-labeled ligand.$^{33-34}$

5.2 Lithium Reagents

n-Butyllithium (2.5 M in hexanes) was purchased as a commercial reagent. 2-Lithiofurane was generated by treatment of furan with n-butyllithium and used immediately.27

5.3 Synthesis of Pyrimidines

General procedure for synthesis of 4-(2-furyl)-2-(4-N-substituted-piperazino)pyrimidines 5 and 6

Compounds 5 and 6 were prepared as previously described with slight modifications.$^{23-24}$ A solution of 2-furyllithium (8.7 mmol) in tetrahydrofuran (THF, 5.0 mL) was treated dropwise with 2-chloropyrimidine (1.0 g, 8.7 mmol) in THF (30 mL) at -5 °C under nitrogen atmosphere. The mixture was stirred for 30 min at -5 °C and then quenched with water (5.0 mL) in THF (5.0 mL). After treatment with 2,3-dichloro-5,6-dicyanoquinone (DDQ, 1.9 g, 8.7 mmol), the mixture was stirred for 5 min to reach room temperature. The mixture was basified with sodium carbonate (saturated) till pH = 9 and was then extracted with diethyl ether (2 × 30 mL), dried over magnesium sulfate, and concentrated in vacuo to provide crude product. The crude product 2 was purified by chromatography eluting with hexanes/diethyl ether (70:30) to provide 2-Chloro-4-(2′-furyl)pyrimidine to be utilized in the next step. A solution of compound 2 and N-
Boc-piperazine in toluene was heated to 80 °C for 48 hours, after which the mixture was cooled to room temperature. The reaction mixture was basified with sodium carbonate, extracted with Et₂O (2 × 20 mL), dried (MgSO₄), filtered and concentrated in vacuo. The crude residue was purified on a chromatotron with EMD 60PF254 silica gel eluting with dichloromethane/methanol (100:0 for 100 mL, then 95:5 for 250 mL) to provide 4-(2'-furyl)-2-(N-Boc-piperazino)pyrimidine. Subsequent de-protection of the Boc group was accomplished by dissolving 3 in 30% trifluoroaceticacid/dichloromethane (3 mL : 7 mL) and stirring the solution under a nitrogen atmosphere. The mixture was basified with sodium carbonate, extracted with Et₂O (2 × 20 mL), dried (MgSO₄), filtered and concentrated in vacuo. Complete deprotection was achieved yielding 4 with minimal impurities allowing for progression to the next synthetic step without further purification. A solution of compound 4-(2'-furyl)-2-(piperazino)pyrimidine and the corresponding alkylhalide in toluene was heated to 80 °C for 72 h, after which the mixture was cooled to room temperature. The mixture was basified with sodium carbonate, extracted with EtOAc (2 × 20 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified on a chromatotron with EMD 60PF254 silica gel eluting with dichloromethane/methanol (100:0 for 100 mL, then 95:5 for 250 mL) to afford 5 or 6.

General procedure for synthesis of 4-(2-furyl)-2-(4-N-substituted-piperazino)pyrimidines 11 - 14

Compounds 11 – 14 were prepared as previously described with slight modifications.⁹²⁻²⁴ A mixture of piperazine (58.1 mmol) and K₂CO₃ (29.0 mmol) in acetonitrile (30 mL), was added a corresponding alkyl halide (29.0 mmol) and heated to reflux overnight. The mixture was allowed to cool to room temperature and then quenched with deionized water and extracted.
with EtOAc. Organic extracts were combined, dried (MgSO₄), filtered and concentrated in vacuo. The resulting compounds 7 - 10 were considered to be of satisfactory purity and used in the following reactions without further purification. A solution of compound 2 and compounds 7 - 10 in toluene was heated to 80 °C for 48 hours, after which the mixture was cooled to room temperature. The mixture was basified with sodium carbonate, extracted with EtOAc (2 × 20 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified on a chromatotron with EMD 60PF254 silica gel eluting with dichloromethane/methanol (100:0 for 100 mL, then 9:1 for 250 mL) to provide compounds 11 - 14.

5.4 Hydrobromic Salt Preparation

Formation of the hydrobromide salt was achieved by dissolving compounds 5 - 6, 11, and 13 - 14 (0.608 mmol) in MeOH (3 mL) and adding 62% hydrobromic acid (0.608 mmol) drop-wise. After five minutes the reaction flask was diluted with Et₂O (5 mL) to encourage precipitation and the resulting solid was filtered and dried in vacuo.

5.5 Compound Characterization

2-Chloro-4-(2’-furyl)pyrimidine (2, AE-001-35): This compound was obtained as a white solid in 72 % yield (556 mg); mp 57 - 59 °C; ¹H NMR: δ 8.60 (d, J = 5.2 Hz, 1H), 7.64 (d, J = 2.3 Hz, 1H), 7.54 (d, J = 5.2 Hz, 1H), 7.40 (d, J = 4.1 Hz, 1H), 6.63 (t, J = 5.2 Hz, 1H); ¹³C NMR: δ 160.6, 158.7, 156.9, 149.34, 145.1, 113.4, 112.0, 112.0

4-(2’-Furyl)-2-(N-Butoxycarbonyl-piperazino)pyrimidine (3, AE-001-64): This compound was obtained as a cream colored solid in 69 % yield (750 mg); ¹H NMR: δ 8.36 (d, J = 5.1 Hz, 1H), 7.57 (t, J = .8 Hz, 1H), 7.18 (d, J = 2.8 Hz, 1H), 6.90 (d, J = 5.1 Hz, 1H), 6.56 (d, J = 1.6 Hz, 1H), 3.88
(t, J = 4.9 Hz, 4H), 3.54 (t, J = 4.9 Hz, 4H), 1.52 (s, 9H); 13C NMR: δ 160.6, 157.4, 154.9, 153.9, 151.6, 143.5, 111.2, 110.3, 103.2, 78.9, 42.59, 27.5;

4-(2’-Furyl)-2-(piperazino)pyrimidine (4, AE-001-67): This compound was obtained as a brown oil in 91 % yield (978 mg); 1H NMR: δ 8.34 (d, J = 5.1 Hz, 1H), 7.55 (t, J = .7 Hz, 1H), 7.16 (d, J = 3.4 Hz, 1H), 6.86 (d, J = 5.1 Hz, 1H), 6.53 (q, J = 2.5 Hz, 1H), 3.85 (t, J = 5.1 Hz, 4H), 2.95 (t, J = 5.1 Hz, 4H), 1.99 (s, 1H); 13C NMR: δ 160.6, 157.4, 154.9, 151.6, 143.5, 111.2, 110.3, 103.2, 78.9, 42.59, 27.5;

4-(2’-Furyl)-2-(4-(3-phenylpropyl)piperazino)pyrimidine (5, AE-001-69): This compound was obtained as an amber oil in 62 % yield (88 mg); 1H NMR: δ 8.36 (d, J = 5.1 Hz, 1H), 7.56 (d, J = 1.5 Hz, 1H), 7.34-7.3 (m, 2H), 7.24-7.22 (m, 3H), 7.20-7.18 (m, 1H), 6.88 (d, J = 5.0 Hz, 1H), 6.54 (q, J = 5.1 Hz, 1H), 3.93 (t, J = 4.9 Hz, 4H), 2.69 (q, J = 12.1 Hz, 2H), 2.53 (t, J = 4.9 Hz, 4H), 2.43 (q, J = 11.7 Hz, 2H), 1.91 (m, 2H); 13C NMR: δ 160.7, 157.3, 154.9, 151.8, 143.4, 141.1, 127.5, 127.4, 124.8, 111.1, 110.2, 102.9, 57.1, 52.2, 42.8, 32.7, 27.6; Highresolution MS (ESI, positive ion mode): calcd. for C$_{21}$H$_{25}$N$_4$O (M + 1)$^+$, m/z 349.2028, found m/z 349.2039. A hydrobromide salt, mp > 250 °C. Anal Calcd. for C$_{21}$H$_{24}$N$_4$O•2HBr: C, 49.43; H, 5.14; N, 10.98. Found: C, 49.51; H, 5.36; N, 10.66.

4-(2’-Furyl)-2-(4-propylpiperazino)pyrimidine (6, AE-001-68): This compound was obtained as an amber oil in 54 % yield (45 mg); 1H NMR: δ 8.36 (d, J = 5.1 Hz, 1H), 7.56 (q, J = 1.3 Hz, 1H), 7.17 (q, J = 2.1 Hz, 1H), 6.87 (d, J = 5.1 Hz, 1H), 6.55 (q, J = 2.6 Hz, 1H), 3.91 (t, J = 5.1 Hz, 4H), 2.54 (t, J = 5.1 Hz, 4H), 2.37 (m, 2H), 1.59 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H); 13C NMR: δ 160.6, 157.3, 154.9, 151.7, 143.4, 111.1, 110.2, 102.9, 59.9, 52.2, 42.7, 19.0, 11.0. A hydrobromide salt, mp >
250 °C. Anal Calcd. for C_{15}H_{20}N_{4}O•2HBr: C, 42.78; H, 5.18; N, 12.55. Found: C, 41.50; H, 5.11; N, 12.90.

4-(2'-Furyl)-2-(4-ethylhexanoatepiperazino)pyrimidine (11, AE-001-37): This compound was obtained as a brown oil in 58 % yield (98 mg); 1H NMR: δ 8.33 (d, J = 5.1 Hz, 1H), 7.54 (d, J = 2.4 Hz, 1H), 7.15 (d, J = 4.1 Hz, 1H), 6.84 (d, J = 5.1 Hz, 1H), 6.52 (t, J = 5.2 Hz, 1H), 4.13 (q, J = 10.7 Hz, 2H), 3.89 (t, J = 4.9 Hz, 4H), 2.52 (t, J = 4.9 Hz, 4H), 2.39 (t, J = 7.7 Hz, 2H), 2.31 (t, J = 7.5 Hz, 2H), 1.65 (m, 2H), 1.57 (m, 2H) 1.36 (m, 2H), 1.26 (t, J = 7.1 Hz, 4H); 13C NMR: δ 172.7, 160.6, 157.3, 154.9, 151.7, 143.4, 111.1, 110.2, 102.9, 59.2, 57.6, 52.2, 42.6, 33.3, 26.1, 25.5, 23.9, 13.3; Highresolution MS (ESI, positive ion mode): calcd. for C_{20}H_{29}N_{4}O_{3} (M + 1)^+, m/z 373.2240, found m/z 273.2224. A hydrobromide salt, mp > 250 °C; Anal Calcd. for C_{20}H_{28}N_{4}O_{3}•2HBr•H_{2}O: C, 43.49; H, 5.84; N, 10.14. Found: C, 43.68; H, 5.84; N, 10.14.

4-(2'-Furyl)-2-(4-ethylhydroxypiperazino)pyrimidine (12, AE-001-39): This compound was obtained as a pale yellow solid in 86 % yield (240 mg); mp 109-111; 1H NMR: δ 8.34 (d, J = 5.1 Hz, 1H), 7.56 (d, J = 0.8 Hz, 1H), 7.17 (d, J = 3.4 Hz, 1H), 6.87 (d, J = 5.1 Hz, 1H), 6.53–6.54 (m, 1H), 3.91 (t, J = 4.9 Hz, 4H), 3.69 (t, J = 5.3 Hz, 2H), 2.87 (s, 1H), 2.59–2.62 (m, 4H); 13C NMR: δ 160.6, 157.3, 154.9, 151.7, 143.4, 111.1, 110.3, 103.0, 58.6, 56.8, 51.9, 42.7; Highresolution MS (ESI, positive ion mode): calcd. for C_{15}H_{20}N_{4}O (M + 1)^+, m/z 275.1508, found m/z 275.1497.; Anal Calcd. for C_{14}H_{18}N_{4}O_{2}: C, 61.30; H, 6.61; N, 20.42. Found: C, 61.36; H, 6.78; N, 20.42.

4-(2'-furyl)-2-(4-hexylpiperazino)pyrimidine (13, AE-001-77): This compound was obtained as a yellow oil in 58 % yield (150 mg); 1H NMR: δ 8.32 (d, J = 4.8 Hz, 1H), 7.53 (t, J = 0.8 Hz, 1H), 7.15 (d, J = 3.4 Hz, 1H), 6.83 (d, J = 5.1 Hz, 1H), 6.51 (q, J = 2.6 Hz, 1H), 3.89 (t, J = 5.1 Hz, 4H), 2.50 (t, J = 5.1 Hz, 4H), 2.36 (t, J = 7.8 Hz, 2H), 1.3 (m, 6H), 0.9 (q, J = 6.8 Hz, 3H); 13C NMR: δ 160.6,
157.3, 154.8, 151.8, 143.3, 111.0, 110.1, 102.8, 58.0, 52.2, 42.7, 30.8, 26.3, 21.6, 13.1; Highresolution MS (ESI, positive ion mode): calcd. for C\textsubscript{18}H\textsubscript{27}N\textsubscript{4}O (M + 1)+, m/z 315.2170, found m/z 315.2185. A hydrobromide salt, mp > 250 °C. Anal Calcd. for C\textsubscript{18}H\textsubscript{26}N\textsubscript{4}O\textsubscript{2}•2HBr•1.5H\textsubscript{2}O: C, 42.96; H, 6.21; N, 11.13. Found: C, 42.99; H, 5.97; N, 11.07.

4-(2'-furyl)-2-(4-ethylmethoxypiperazino)pyrimidine (14, AE-001-72): This compound was obtained as a yellow oil in 48 % yield (60 mg); 1H NMR: δ 8.33 (d, J = 5.0 Hz, 1H), 7.53 (s, 1H), 7.15 (d, J = 3.4 Hz, 1H), 6.84 (d, J = 5.1 Hz, 1H), 6.51 (t, J = 1.6 Hz, 1H), 3.91 (t, J = 4.9 Hz, 4H), 3.55 (t, J = 5.5 Hz, 2H), 3.37 (s, 3H), 2.62 (t, J = 5.6 Hz, 2H), 2.57 (t, J = 4.9 Hz, 4H); 13C NMR: δ 160.6, 157.3, 154.8, 151.7, 143.3, 111.1, 110.1, 102.8, 69.1, 57.9, 57.1, 52.5, 42.5; Highresolution MS (ESI, positive ion mode): calcd. for C\textsubscript{15}H\textsubscript{21}N\textsubscript{4}O\textsubscript{2} (M + 1)+, m/z 289.1658, found m/z 289.1665. A hydrobromide salt, mp > 250 °C. Anal Calcd. for C\textsubscript{15}H\textsubscript{21}N\textsubscript{4}O\textsubscript{2}•2HBr: C, 40.02; H, 4.93; N, 12.45. Found: C, 40.01; H, 5.01; N, 12.29.

6 REFERENCES

3. Whitaker-Azmitia; P.M. Neuropsychopharmacology. 1999, 21, No. 2S.
4. Twarog, B; Am. J. Physiol. 1953, 175, 157
5. Woolley, D.W.; Shaw, E.; National Academy of Science. 1954, 40, 228

29. Roth, B. et al; *Current Topics in Med. Chem.*, 2002, 2, 507-528

32. Klenc, Jeffrey D; *Chemistry Dissertations*. **2010**, *50*

34. Roth, B. *et al.* *J Pharmacol Exp Ther.* **1994**, *268*, 1403-1410