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NOVEL NONPARAMETRIC METHODS FOR ROC CURVES

by

YUEHENG AN

Under the Direction of Yichuan Zhao, PhD

ABSTRACT

The receiver operating characteristic (ROC) curve is a widely used graphical method for

evaluating the discriminating power of a diagnostic test or a statistical model in various areas

such as epidemiology, industrial quality control and material testing, etc. One important

quantitative measure summarizing the ROC curve is the area under the ROC curve (AUC).

The accuracy of two diagnostic tests with right censored data can be compared using the

difference of two ROC curves and the difference of two AUC’s. Moreover, the difference

of two volumes under surfaces (VUS) is investigated to compare two treatments for the



discrimination of three-category classification data, extending the ROC curve to the ROC

surface in the three-dimensional case.

A few scientific progresses have been achieved in ROC curves and its related fields

over the past decades. In this dissertation, we propose a plug-in empirical likelihood (EL)

procedure combining placement values and weighting of inverse probability techniques, to

construct stable and precise confidence intervals of the ROC curves, the difference of two

ROC curves, the AUC’s and the difference of two AUC’s with right censoring. We proved

that the limiting distribution of the EL ratio is a weighted χ2 distribution. Furthermore,

we introduce a jackknife empirical likelihood (JEL) procedure to explore the difference of

two correlated VUS’s with complete data. We proved that the limiting distribution of the

proposed JEL ratio is a χ2 distribution, i.e., the Wilk’s theorem holds. Extensive simula-

tion studies demonstrate that the new methods have better performance than the existing

methods in terms of coverage probability of confidence intervals in most cases. Finally,

the proposed methods are applied to analyze data sets of Primary Biliary Cirrhosis (PBC),

Alzheimer’s disease, etc.

INDEX WORDS: Area under an ROC curve, Empirical Likelihood, Jackknife empirical
likelihood, Receiver operating characteristic curve, Right censored data,
Volume under an ROC surface.
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CHAPTER 1

INTRODUCTION

1.1 Receiver Operating Characteristic Curve

In statistical research, a critical goal related to diagnostic medicine is to estimate and

compare the accuracies of diagnostic systems. With accurate diagnostic systems, we will be

able to provide reliable information about a patient’s condition. Therefore, we can improve

the patient care. The receiver operating characteristic curve (ROC) has been extensively

applied in epidemiology, medical research, industrial quality control, signal detection, diag-

nostic medicine and material testing, etc. As a popular statistical tool, ROC analysis has

been successfully discussed in Zweig and Campbell (1993), Metz et al. (1998b), Obuchowski

(2003), Fawcett (2006), Davis and Goadrich (2006), Cook (2007), Zhou et al. (2009) and Bi

et al. (2012), etc.

ROC analysis is a part of ”Signal Detection Theory” developed during World War II for

the analysis of radar images. Radar operators determined if a blip on the screen was a signal

of a friendly ship, an enemy target or noise, etc. The ROC curve measures the ability of

radar operators to make these important distinctions. In 1970’s, the signal detection theory

was considered as useful for interpreting medical test results.

The ROC curve describes the performance of a binary classifier system for its various

discrimination thresholds. In Figure 1.1, two bell shape curves represent two populations of

interest. Suppose the one on the right represents a population with disease, and the left one

shows the population without disease. If a medical test value is positive, then the object

is diseased. Alternatively, the test result would be negative if the test value is below the

threshold. Therefore, the object is non-diseased. Sensitivity is defined as the probability of

a positive test result among the population of disease, which is also called true positive rate,

or TPR. Specificity is the probability of a negative test result among those without disease
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Figure 1.1: Discrimination.

referred to as true negative rate, or TNR, correspondingly. The ROC curve is a function of

the sensitivity and the specificity for a measure or a model.

Let T be a continuous measurement of the results in a medical test. The disease is

diagnosed if T > t, for a given threshold t. Denote D as the disease status with

D =

 1, diseased,

0, non-diseased,

and let the corresponding true positive rate and false positive rate at t be TPR(t) and

FPR(t), respectively:

TPR(t) = Pr(T ≥ t|diseased) = Pr(T ≥ t|D = 1) = sensitivity = Se,

and

FPR(t) = Pr(T ≥ t|non− diseased) = Pr(T ≥ t|D = 0) = 1− specificity = 1− Sp.

The ROC curve is the entire set of possible true and false positive rates attained by di-

chotomizing T with different thresholds (see Pepe (2003) and Zhou et al. (2009)). That is,
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the ROC curve is

ROC(·) = {(θ, κ) : (FPR(t) = θ, TPR(t) = κ), t ∈ (−∞,∞)}.

Both FPR(t) and TPR(t) decrease when t increases. Therefore, the ROC curve is a mono-

tonically increasing function in the positive quadrant as in Figure 1.2.

Figure 1.2: ROC curve.

Assume the distribution function of T is F (t) conditional on non-disease and G(t)

conditional on disease. The ROC curve is defined as the graph of (1 − G(t), 1 − F (t)) for

various values of the threshold t, where is sensitivity versus (1−specificity), for a test with

its critical region {T > t}. At a given level q = (1 − specificity), the ROC curve can be

rewritten as

∆ = 1−G(F−1(1− q)), for 0 < q < 1,

where F−1 is the inverse function of F , i.e., F−1(q) = inf{t : F (t) ≥ q}.
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1.2 Area under an ROC Curve and Volume under a Surface

The area under the ROC curve, abbreviated AUC, provides a scalar value to summarize

the performance of the learning algorithms and to compare two ROC curves in the entire

range. Popular machine learning algorithms using AUC’s have been found to exhibit several

desirable properties when compared to accuracy, a common summary measure of medical

tests (Bradley (1997)). For example, AUC has increased sensitivity in Analysis of Variance

(ANOVA) tests, which is independent to the decision threshold and is invariant to a priori

class of probability distributions.

In order to justify the effect of a new medicine or a new cure, physicians and medical

researchers impose significant concentrations on the comparison of two treatments in clinical

trials and related medical studies. A critical goal of statistical research related to diagnostic

medicine is to estimate and to compare the accuracies of diagnostic systems.

As Ling et al. (2003) discussed that an AUC is a better measure than accuracy, we can

choose classifiers with better AUC’s, and produce better rankings. Also, Ling and Zhang

(2002) showed that such classifiers produce not only better AUC’s , but also better accuracy,

compared to classifiers that optimize the accuracy.

Another effective method of evaluating the difference between the diagnostic accuracy

of two tests is to compare areas under the receiver operating characteristic curves (AUC’s).

The applications of diagnostic statistical methods will help people to choose the most reliable

diagnostic systems and forecast the survival times of patients with their profiles. Recent

interesting literatures include Endrenyi et al. (1991), Lin et al. (1993), Hand and Till (2001),

Dodd and Pepe (2003), Pencina et al. (2008), Lobo et al. (2008), Kurtcephe and Guvenir

(2013), and Yang et al. (2017), among others.

The AUC’s measure discrimination, i.e., the ability of the test to correctly classify those

with and without the disease. Consider the situation in which patients are already correctly

classified into two groups. We randomly pick one from the diseased group and one from the

non-diseased group and test both. The patient with the more abnormal test result should
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be the one from the diseased group. The AUC is the percentage of randomly drawn pairs

for which this is true, that is, the test correctly classifies the two patients of the random

pair. As in Figure 1.3, AUCB represents a test that performs better than that for AUCA,

and AUCC is theoretically for the best test of the three AUC’s.

Figure 1.3: area under a ROC curve.

A multi-category classification technique is necessary if the subjects are supposed to be

assigned to more than two groups simultaneously. A three-category classification treatment,

for instance, can be evaluated by the volume under the ROC surface (VUS), according to

Mossman (1999), Nakas and Yiannoutsos (2004), Wan (2012), etc. It is proposed as a similar

measure to the AUC, extending the ROC curve to the ROC surface in a three dimensional

case.

1.3 Right Censored Data

In clinical studies, the occurrence of incomplete data is common. One of the circum-

stances, censoring, occurs when a value occurs outside the range of a measuring instrument.

The models based on censored data have many applications in medical areas, such as heart
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attack, cancer and HIV researches, etc. They are also widely used in engineering reliability,

actuarial science, economics, finance, among others.

Figure 1.4: Right censored data.

A right censored value is one that is known only to be more than some value. Right

censoring occurs when a subject leaves the study before an event occurs, or the study ends

before the event has occurred. For example, we consider patients in a clinical trial to study

the effect of treatments on stroke occurrence, and the study ends after 5 years. Those

patients who have had no strokes by the end of the year are right censored. If the patient

leaves the study at time te, then the event occurs in (te,∞). Recent related work can be

found in Lin and Ying (1993), Stute and Wang (1993), Stute (1995), Wang et al. (2009),

Yang and Zhao (2012), and Bai and Zhou (2013), etc.

1.4 A Brief Review of Empirical Likelihood (EL) and Jackknife EL

Empirical likelihood, a nonparametric method of statistical inference, uses likelihood

methods without having to assume that the data come from a known family of distributions.

In other words, the empirical likelihood is a likelihood without parametric assumptions and

a bootstrap without re-sampling. The approach was established by Owen in 1990’s, and

related work can be found in Gine and Zinn (1984), Owen (1990, 1998, 2001), Hjort et al.

(2009), and Yang and Zhao (2012, 2013, 2015).
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The empirical likelihood method possesses many advantages over competitors. The

most appealing feature is an increase of accuracy in coverage, resulting from using easy

implementation and auxiliary information. Also, the shape of the confidence regions re-

flects the distribution. The side information through constraints or prior distributions are

incorporated straightforwardly using the empirical likelihood method.

However, empirical likelihood looses its computational advantage in applications involv-

ing nonlinear statistics, especially when the Lagrange multiplier problem reduces to solving a

large number of simultaneous equations. U-statistics, for instance, exponentially aggravate

the computational load when empirical likelihood is applied directly to them. Jing et al.

(2009) introduce the jackknife empirical likelihood (JEL) method. It effectively resolves the

computational difficulties in one and two-sample U-statistics, and applies for other nonlinear

statistics as well. Also see Tian et al. (2011), Wan (2012), Kurtcephe and Guvenir (2013),

and Yang and Zhao (2012, 2013, 2015), among others.

1.5 Structure

This dissertation is organized as follows. In Chapter 2, we construct the confidence in-

tervals for ROC curves with right censored data using the empirical likelihood method. We

prove that the limiting distribution of the empirical log-likelihood ratio statistic is a weighted

χ2-distribution. Then we report the results of our simulation study on the finite sample per-

formance of the empirical likelihood based confidence intervals. Compared with the normal

approximation based confidence intervals, the empirical likelihood based confidence inter-

vals provide shorter average lengths and more precise coverage probability. In Chapter 3,

a similar procedure is conducted on the difference of two ROC curves with right censored

data. In Chapter 4 and Chapter 5, we move to the empirical likelihood inference on AUC’s

and the difference of two AUC’s with right censored data. We give the asymptotic distribu-

tions of the corresponding statistics. We conduct simulation studies and report the results

and corresponding conclusions. In Chapter 6, we explore the jackknife empirical likelihood

confidence intervals for the difference of two volumes under the ROC surfaces with complete



8

data. We prove that the limiting distribution of the empirical log-likelihood ratio statistic

follows a χ2-distribution. The proposed method is supported by our intensive simulation

studies as well as real applications. In addition, at the end of Chapter 2 through Chapter 6,

the proposed methods are applied to analyze data sets of Primary Biliary Cirrhosis (PBC),

Alzheimer’s disease, etc. In Chapter 7, we conclude that empirical likelihood method on the

topics above outperforms the normal approximation method theoretically and practically.

All the proofs are provided in the appendices.
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CHAPTER 2

EMPIRICAL LIKELIHOOD FOR ROC CURVES WITH RIGHT

CENSORING

2.1 Background

The receiver operating characteristic (ROC) curve is a plot of sensitivity versus 1-

specificity for all possible cut-off points. It provides a summary of sensitivity and specificity

across a range of cut-off points for a continuous predictor. Therefore, it offers a graphical

summary of the discriminatory accuracy of the diagnostic test. The ROC curve is a good

statistical tool in evaluating the accuracy of tests with two-category classification data in

diagnostic medicine, epidemiology, industrial quality control, and material testing, among

others.

An excellent summary of recent studies is provided by Pepe (2003) and Zhou et al.

(2009). Claeskens et al. (2003) has developed smoothed empirical likelihood confidence in-

tervals for continuous-scale ROC curves with censored data. Recent interesting research work

can be found in Swets and Pickett (1982), Tosteson and Begg (1988), Hsieh and Turnbull

(1996), Zou et al. (1997), Lloyd (1998), Pepe (1997), Metz et al. (1998a), Lloyd and Yong

(1999), Yang and Zhao (2015), etc.

The rest of this chapter is organized as follows. In Section 2.2, we construct the empirical

likelihood based confidence intervals for ROC curves with right censoring for various cut-

off points. The limiting distribution of the log-empirical likelihood ratio is proved to be a

weighted χ2 distribution as in Theorem 2.1. Section 2.3 reports the results of a simulation

study on the finite sample performance of the empirical likelihood based confidence intervals,

which outperform the confidence intervals based on the normal approximation method in

terms of average length and coverage probability. In Section 2.4, we applied the proposed

method to a PBC data set. All the proofs are provided in Appendix A.
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2.2 Main Results

2.2.1 ROC Curves with Censoring

Let X and Y represent the populations of non-diseased and diseased patients. Let X0

and Y 0 be the results of a continuous-scale test for the non-diseased and diseased subjects,

respectively. Let F and G be the distribution functions of X0 and Y 0. The ROC curve is

defined as

R(p) = 1−G(F−1(1− p)), 0 < p < 1.

We use the same notations like Wang et al. (2009). Let X0
1 , X

0
2 , ..., X

0
n, and Y 0

1 , Y
0

2 , ..., Y
0
m

be the random samples with distribution functions F and G. Two censoring times are

U1, U2, ..., Un, and V1, V2, ..., Vm with distribution functions K and Q and their survival func-

tions are H = 1 − K and L = 1 − Q. Rather than observing X0
i ’s and Y 0

j ’s directly, we

observe (Xi, ξi), i = 1, 2, ..., n and (Yj, ηj), j = 1, 2, ...m only, where

Xi = min(X0
i , Ui), ξi = I(X0

i ≤ Ui),

Yj = min(Y 0
j , Vj), ηj = I(Y 0

j ≤ Vj),

where I(·) denotes the indicator function.

X0
i , Ui, Y

0
j , Vj are assumed mutually independent in this dissertation, where i = 1, 2, ..., n

and j = 1, 2, ...m. We denote τf = inf{t : f(t) = 1} for the function f . Throughout this

dissertation, we assume τF ≤ τK and τG ≤ τQ, and without loss of generality, we assume

τF ≤ τG.

2.2.2 Empirical Likelihood with Censoring

Pepe (2003) and Pepe and Cai (2004) defined the placement value as U = 1 − F (Y 0).

Since the CDF of the placement value

E(I(U ≤ p)) = P (1− F (Y ) ≤ p) = P (Y ≥ F−1(1− p)) = R(p),



11

the ROC curve can be interpreted as the distribution function of U as well. Based on the

weighting of inverse probability, one has

E
I(1− F (Y ) ≤ p)η

1−Q(Y )
= ROC(p).

That is,

E
[I(1− F (Y ) ≤ p)−ROC(p)]η

1−Q(Y )
= 0.

Now we define empirical likelihood ratio for the ROC curve ROC(p). Let

wj =
F (Yj)−ROC(p)

1−Q(Yj)
ηj,

then

R(ROC(p)) = sup

{
m∏
j=1

(mpj),
m∑
j=1

pj = 1, pj > 0,
m∑
j=1

wjpj = 0

}
.

Since F is unknown, we use the Kaplan-Meier estimator F̂ to estimate it.

1− F̂ (t) =
∏
X(i)≤t

(
n− i

n− i+ 1
)ξ(i) ,

where X(i) is the ith order statistic of X-sample, that is, X(1) ≤ X(2) ≤ ... ≤ X(n). ξ(i) is the

corresponding ξ associated with X(i).Then we have

ŵj =
[I(1− F̂ (Yj) ≤ p)−R(p)]ηj

1− Q̂(Yj)
,

where

1− Q̂(t) =
∏
Y(j)≤t

(
m− j

m− j + 1
)1−η(j) .

Then, the estimated empirical likelihood ratio for ROC(p) = R(p) is

R̂(R(p)) = R̂(ROC(p)) = sup

{
m∏
j=1

(mpj),
m∑
j=1

pj = 1, pj > 0,
m∑
j=1

ŵjpj = 0

}
.
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By the method of Lagrange multipliers, we have

l̂(R(p)) = −2 log R̂(R(p)) = 2
m∑
j=1

log(1 + λŵj),

where λ satisfies

1

m

m∑
j=1

ŵj
1 + λŵj

= 0.

Theorem 2.1. Let R0(p) be the true value of R(p). If the density functions f(x) of F and

g(x) of G are continuous at x = θp := F−1(1− p) ; f ′(x) and g′(x) are continuous at x = θp

and lim
n→∞

n/m = ρ > 0, we have

l̂(R(p))
D→γ(R0(p))χ2

1,

where the scaled constant γ(R0(p)) =
σ2(p)

σ2
1(p)

, and

σ2
1 =

∫ ∞
0

I(1− F (t) ≤ p)− 2R(p)I(1− F (t) ≤ p) +R2(p)

1−Q(t)
dG(t),

σ2 = R2
0(p)σ2

y + (R′0(p))2p2ρσ2
x,

σ2
y =

∫ θp

0

dG(s)

(1−G(s))2L(s)
,

σ2
x =

∫ θp

0

dF (s)

(1− F (s))2H(s)
.

Using Theorem 2.1, we obtain 100(1 − α)% EL confidence intervals for ∆ = R(p) as

follows,

I2 = {∆ : l̂(∆) ≤ γ̂χ2
1(α)},

where γ̂ is obtained from γ by replacing the corresponding estimators, γ̂ =
σ̂2

σ̂2
1

, and

σ̂2
1 =

1

m

m∑
j=1

ŵ2
j
P→ σ2

1 =

∫ ∞
0

(I(1− F (t) ≤ p)− 2R(p)I(1− F (t) ≤ p) +R2(p)

1−Q(t)
dG(t).
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The consistent estimator σ̂2 of σ2 is obtained by replacing τF , F , G, H, L, by X(n), F̂n, Ĝm,

Ĥn, and L̂m, as defined in Section 2.2.1. Please see Appendix A for the proof in details.

2.3 Simulation Study

For the empirical likelihood procedures, the confidence intervals are given by the asymp-

totic distributions of the empirical log-likelihood ratios. We also implement the existing

normal approximation (NA) method for the ROC curves in comparison with the empiri-

cal likelihood method, in order to justify the advantage of our proposed method. For NA

method, please check the following result in Yang and Zhao (2012), Bai and Zhou (2013),

√
m+ n[R̂(p)−R0(p)]

D→N(0, σ2(p)).

In the simulation study, the diseased population X is distributed as the exponential

distribution with λ1 = 2, while the non-diseased population Y follows the exponential distri-

bution with λ2 = 4. Random samples x and y are independently drawn from the population

X and Y . The censoring rates for x and y are chosen as (c1, c2) = (0.1, 0.1) and (0.2, 0.2),

combined with the sample sizes for x and y of (m,n) = (50, 50), (100, 100), (150, 150). For

a certain response rate and certain sample sizes, 1000 independent random samples of da-

ta {(xi, δxi), i = 1, ...,m; (yj, δyj), j = 1, ..., n} are generated. Without loss of generality,

the proposed empirical likelihood confidence intervals are constructed for the ROC curve at

q = 0.3, 0.5, 0.7 and 0.9. The nominal levels of the confidence intervals are 1−α = 95% and

1− α = 90%.

From Tables 2.1 - 2.4, we make the following conclusions.

1. For each censoring rate and sample size, the coverage probability is close to the nominal

level, and the average lengths of the empirical likelihood based confidence intervals are shorter

those based on normal approximation method;

2. In almost all the scenarios, as the censoring rates decrease or the sample sizes increase,

the coverage probabilities get closer to the nominal level, and the average lengths of the
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intervals decreases respectively. This is reasonable since either smaller censoring rates or

bigger sample sizes provide more information of the data under study. For all different

sample sizes, empirical likelihood bands are more stable and more consistent overall;

3. Empirical likelihood based confidence intervals outperform the normal approximation

method.

In summary, simulation studies show that the empirical likelihood based confidence

intervals outperform the normal approximation confidence intervals for small sample sizes in

the sense that they yield closer coverage probabilities to the given nominal levels.

2.4 Real Application

The proposed EL method is illustrated by a data set of patients with primary biliary

cirrhosis (PBC), a fatal chronic liver disease. The database is developed by the Mayo Clinic,

and Fleming and Harrington (1991) has tabulated it in Appendix D.1 of their book. This

randomized clinical trial includes 312 patients, 158 of whom received D-penicillamine and

154 received placebo. Among all the patients, 187 of them are censored. The censoring rate

of the study is very heavy.

In this section, we construct 95% confidence intervals for the ROC curve which sepa-

rates the treatment population from the placebo population. The above empirical likelihood

method is implemented. We set the (1− specificity) varies from 0.01 to 0.99 by 0.01. Also,

we utilize the bootstrap method to improve the accuracy, and B = 400 in our real data

analysis. For comparison purposes, the NA method is also implemented to constructed con-

fidence intervals for each sensitivity. In Figure 2.1, the EL confidence intervals are thinner

than the NA confidence intervals, which implies that our EL method outperforms the NA

method overall.
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Figure 2.1: The ROC curve for the PBC data.



16

Table 2.1: Empirical likelihood confidence intervals for the ROC curves with right censored
data at the nominal level of 1− α = 95%, X ∼ exp(2), Y ∼ exp(4), and the censoring rates
c1 = c2 = 0.1.

(m,n) q
EL NA

CP(%) AL CP(%) AL

(50, 50) 0.3 97.0 0.252 99.0 0.349
0.5 93.4 0.370 94.8 0.392
0.7 95.2 0.439 88.9 0.382
0.9 95.1 0.352 84.6 0.262

(100, 100) 0.3 96.2 0.173 98.6 0.242
0.5 94.7 0.272 94.9 0.274
0.7 94.0 0.320 89.9 0.269
0.9 93.6 0.265 85.1 0.192

(150, 150) 0.3 94.7 0.141 98.7 0.196
0.5 95.3 0.221 94.5 0.223
0.7 94.7 0.264 88.3 0.219
0.9 95.1 0.216 84.1 0.155

NOTE:
EL: empirical likelihood,
NA: normal approximation,
CP(%): coverage probability,
AL: average length of a confidence interval.
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Table 2.2: Empirical likelihood confidence intervals for the ROC curves with right censored
data at the nominal level of 1− α = 90%, X ∼ exp(2), Y ∼ exp(4), and the censoring rates
c1 = c2 = 0.1.

(m,n) q
EL NA

CP(%) AL CP(%) AL

(50, 50) 0.3 93.1 0.212 96.8 0.293
0.5 88.0 0.325 90.3 0.329
0.7 89.7 0.376 80.6 0.321
0.9 90.4 0.299 76.9 0.220

(100, 100) 0.3 91.9 0.145 96.8 0.203
0.5 90.5 0.230 90.0 0.230
0.7 90.3 0.270 81.8 0.225
0.9 89.5 0.224 78.4 0.161

(150, 150) 0.3 89.8 0.118 97.9 0.164
0.5 91.0 0.187 89.3 0.187
0.7 90.9 0.223 80.6 0.184
0.9 90.7 0.182 74.7 0.130

NOTE:
EL: empirical likelihood,
NA: normal approximation,
CP(%): coverage probability,
AL: average length of a confidence interval.
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Table 2.3: Empirical likelihood confidence intervals for the ROC curves with right censored
data at the nominal level of 1− α = 95%, X ∼ exp(2), Y ∼ exp(4), and the censoring rates
c1 = c2 = 0.2.

(m,n) q
EL NA

CP(%) AL CP(%) AL

(50, 50) 0.3 96.5 0.276 97.2 0.397
0.5 94.6 0.383 95.0 0.415
0.7 95.3 0.450 87.4 0.388
0.9 94.2 0.359 83.2 0.259

(100, 100) 0.3 95.3 0.190 98.4 0.285
0.5 95.3 0.282 95.4 0.291
0.7 94.2 0.325 87.6 0.273
0.9 93.8 0.267 82.6 0.188

(150, 150) 0.3 95.7 0.156 96.8 0.223
0.5 95.0 0.231 89.0 0.198
0.7 95.6 0.270 88.6 0.224
0.9 95.3 0.219 83.2 0.153

NOTE:
EL: empirical likelihood,
NA: normal approximation,
CP(%): coverage probability,
AL: average length of a confidence interval.
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Table 2.4: Empirical likelihood confidence intervals for the ROC curves with right censored
data at the nominal level of 1− α = 90%, X ∼ exp(2), Y ∼ exp(4), and the censoring rates
c1 = c2 = 0.2.

(m,n) q
EL NA

CP(%) AL CP(%) AL

(50, 50) 0.3 93.4 0.233 95.5 0.333
0.5 88.7 0.327 90.9 0.348
0.7 90.8 0.385 80.7 0.326
0.9 89.7 0.304 76.1 0.218

(100, 100) 0.3 90.9 0.159 96.8 0.239
0.5 89.5 0.238 91.1 0.244
0.7 89.6 0.276 80.2 0.229
0.9 89.1 0.225 76.1 0.158

(150, 150) 0.3 90.9 0.131 94.9 0.187
0.5 89.6 0.195 89.0 0.198
0.7 91.2 0.227 81.6 0.188
0.9 89.9 0.185 74.9 0.129

NOTE:
EL: empirical likelihood,
NA: normal approximation,
CP(%): coverage probability,
AL: average length of a confidence interval.
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CHAPTER 3

EMPIRICAL LIKELIHOOD METHOD FOR THE DIFFERENCE OF 2 ROC

CURVES WITH RIGHT CENSORING

3.1 Background

In medical studies, comparative benefits for alternative diagnostic algorithms, diagnostic

tests, or therapeutic regimens are catching the great attention of researchers. Receiver

operating characteristic (ROC) curves are widely used as a popular technique for describing

and comparing the performance of diagnostic technology and diagnostics. An ROC curve is

used to evaluate the discrimination ability of a diagnostic test in distinguishing the diseased

population from the non-diseased population, as it visualizes the decision rule at various

thresholds. Moreover, many methods are established to compare correlated or independent

ROC estimates.

In clinical trials, it is appealing to select a more powerful diagnostic test from another.

Two criteria can be compared in the sense of the ROC curve, and it is natural to study the

differences between the two correlated ROC curves. For example, a parametric model of the

difference of two ROC curves was established by Hanley and McNeil (1983), and DeLong

et al. (1988) provided a nonparametric method for the difference of two correlated ROC

curves. After that, Linnet (1987), Wieand et al. (1989) and Venkatraman and Begg (1996)

conducted the comparison of two diagnostic tests.

The remainder of this chapter is organized as follows. In Section 3.2, we construct the

empirical likelihood confidence intervals for the difference of two ROC curves with right cen-

soring. The empirical log-likelihood ratio follows a weighted χ2 distribution asymptotically,

and the empirical likelihood based confidence intervals for various cut-off points on the ROC

curve are constructed. In Section 3.3 we report the results of a simulation study on the finite

sample performance of the empirical likelihood based confidence intervals. In Section 3.4,
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we applied the method to a PBC data set. Please see the proofs in Appendix B.

3.2 Main Results

3.2.1 The Difference of Two ROC’s

Let X = (X1, X2) and Y = (Y1, Y2) represent the populations of non-diseased and dis-

eased patients. Here X1 is independent of X2, and the sample size of X1 is equal to that of

X2. Similarly, Y1 is independent of Y2, and the sample size of Y1 is equal to that of Y2. Let

X0 = (X0
1 , X

0
2 ) and Y 0 = (Y 0

1 , Y
0

2 ) be the test results for the non-diseased and diseased sub-

jects, respectively. We use (X0
11, X

0
21), ..., (X0

1m1
, X0

2m1
) to denote the bivariate random sam-

ples of X0 = (X0
1 , X

0
2 ) with the distribution function F (x1, x2), and (Y 0

11, Y
0

21), ..., (Y 0
1m2

, Y 0
2m2

)

to denote the bivariate random samples of Y 0 = (Y 0
1 , Y

0
2 ) with the distribution function

G(y1, y2). Censoring times are U11, U12, ..., U1m1 , and U21, U22, ..., U2m1 with distribution func-

tions K1 and K2 for X = (X1, X2), and V11, V12, ..., V1m2 and V21, V22, ..., V2m2 with distribu-

tion functions Q1 and Q2 for Y = (Y1, Y2), respectively.

Instead of observing (X0
1i, X

0
2i)’s, we observe (X1i, X2i, ξ1i, ξ2i), i = 1, 2, ...,m1, where

X1i = min(X0
1i, Ui), ξ1i = I(X0

1i ≤ Ui),

X2i = min(X0
2i, Ui), ξ2i = I(X0

2i ≤ Ui).

That is, ξi = (ξ1i, ξ2i) is the indicator function of censoring, i = 1, 2, ...,m1. Similarly, instead

of observing (Y 0
1j, Y

0
2j)’s, we observe (Y1j, Y2j, η1j, η2j), j = 1, 2, ...,m2, where

Y1j = min(Y 0
1j, Vj), η1j = I(Y 0

1j ≤ Vj),

Y2j = min(Y 0
2j, Vj), η2j = I(Y 0

2j ≤ Vj),

That is, ηj = (η1j, η2j) is the indicator of censoring, j = 1, 2, ...,m2.

X0
ki, Uki, Y

0
kj, Vkj are assumed mutually independent in this dissertation, where i =
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1, 2, ...,m1, j = 1, 2, ...m2, and k = 1, 2. We denote τfk = inf{t : fk(t) = 1} for the function

fk’s. Throughout this dissertation, we assume τFk ≤ τKk and τGk ≤ τQk , and without loss of

generality, we assume τFk ≤ τGk , where k = 1, 2. We define the ROC curve with respect to

the first component as

R1(p) = 1−G1(F−1
1 (1− p)), 0 < p < 1,

and the ROC curve with respect to the second component as

R2(p) = 1−G2(F−1
2 (1− p)), 0 < p < 1.

Then the difference of ROC curves is

D(p) = R1(p)−R2(p),

and the nonparametric estimator of D(p) is

D̂(p) = R̂1(p)− R̂2(p),

where R̂k(p) = 1− Ĝk(F̂
−1
k (1− p)), 0 < p < 1, k = 1, 2, F̂k’s and Ĝk’s are the Kaplan-Meier

estimators of Fk’s and Gk’s.

3.2.2 Empirical Likelihood with Censoring

Next, the inference of empirical likelihood (EL) based confidence intervals is discussed.

Pepe (2003) and Pepe and Cai (2004) defined the placement value as U = 1 − F (Y 0). For

the two-sample model here, we define U1 = 1 − F1(Y 0
1 ), and U2 = 1 − F2(Y 0

2 ). Since the
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expectation of the placement value is

E(I(U1 ≤ p)) =P (1− F1(Y 0
1 ) ≤ p)

=E(I(F1(Y 0
1 ) ≥ 1− p))

=E(I(Y 0
1 ≥ F−1

1 (1− P )))

=1−G1(F−1
1 (1− p))

=R1(p).

The ROC curve with respect to the 1st component can be interpreted as the distribution

function of U1. And

E(I(U2 ≤ p)) = 1−G2(F−1
2 (1− p)) = R2(p),

thus the distribution function of U2 is also the ROC curve for the 2nd component. Therefore,

the difference of two ROC curves is

D(p) = R1(p)−R2(p) = E(I(U1 ≤ p))− E(I(U2 ≤ p)).

Using the weighting of the inverse probability, we have the ROC curves with right

censoring as

E
I(1− F1(Y1) ≤ p)η1

1−Q1(Y1)
= R1(p)⇒ E

[I(1− F1(Y1) ≤ p)−R1(p)]η1

1− Q̂1(Y1)
= 0,

and

E
I(1− F2(Y2) ≤ p)η2

1−Q2(Y2)
= R2(p)⇒ E

[I(1− F̂2(Y2) ≤ p)−R2(p)]η2

1− Q̂2(Y2)
= 0.
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Then, we define empirical likelihood (EL) ratio for D(p) = R1(p)−R2(p).

R(D(p)) = sup
{ 2∏
k=1

mk∏
j=1

(mkpkj) :

mk∑
j=1

pkj = 1, pkj > 0, D(p) = R1(p)−R2(p),

mk∑
j=1

I(1− Fk(Ykj) ≤ p)ηkj
1−Qk(Ykj)

pkj = Rk(p), k = 1, 2
}
.

Since Fk’s are unknown, we use the Kaplan-Meier (K-M) estimators F̂k to estimate

them:

1− F̂k(t) =
∏

Xk(i)≤t

(
n− i

n− i+ 1
)ξk(i) ,

where Xk(i) is the ith order statistics of Xk-sample, that is, Xk(1) ≤ Xk(2) ≤ ...Xk(n). ξk(i) is

the corresponding ξk associated with Xk(i).

Denote

ŵkj(p) =
[(I(1− F̂k(Ykj)) ≤ p)−Rk(p)]ηkj

1− Q̂k(Ykj)
,

where

1− Q̂k(t) =
∏

Yk(j)≤t

(
mk − j

mk − j + 1
)1−ηk(j) .

Define the estimated empirical likelihood (EL) for D(p). By the Lagrange multiplier

method, we have

l(D(p)) =− 2 logR(D(p))

=2
{ m1∑

j=1

log[1 + 2λŵ1j(p)] +

m2∑
j=2

log[1− 2λŵ2j(p)]
}
,

where λ, R1(p), and R2(p) are the solutions of the following three equations:



1

m1

m1∑
j=1

ŵ1j(p)

1 + 2λŵ1j(p)
= 0,

1

m2

m2∑
j=1

ŵ2j(p)

1− 2λŵ2j(p)
= 0,

D(p) = R1(p)−R2(p).
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Theorem 3.1. Let D0(p) be the true value of the difference of two ROC curves D(p). If

(X1, Y1) and (X2, Y2) satisfy the conditions in Theorem 2.1 and lim
n→∞

m1

m2

= γ , we have

l̂(D0(p))
D→c(p)χ2

1,

where

c(p) =
σ2

1(p) + γσ2
2(p)

σ2
1,1(p) + γσ2

1,2(p)
.

(σ2
1(p), σ2

1,1(p)) denote the same definition of (σ2(p), σ2
1(p)) in Theorem 2.1 for (X1, Y1) and

(σ2
2(p), σ2

1,2(p)) denote the same definition of (σ2(p), σ2
1(p)) in Theorem 2.1 for (X2, Y2).

Furthermore, we obtain 100(1− α)% EL confidence intervals for ∆ = D0(p) as follows,

I2 = {∆ : l̂(∆) ≤ ĉ(p)χ2
1(α)},

where

ĉ(p) =
σ̂2

1(p) + γσ̂2
2(p)

σ̂2
1,1(p) + γσ̂2

1,2(p)
,

and we use the same method in Chapter 2 to get the consistent estimators σ̂2
1(p), σ̂2

2(p),

σ̂2
1,1(p) and σ̂2

1,2(p). Theorem 3.1 can be extended to general bivariate cases, (X1, Y1) and

(X2, Y2), when X1 and X2 are dependent, and Y1 and Y2 are dependent.

3.2.3 Normal Approximation Method

Related statistical inferences can be found in pg. 7-11 of Yao (2007), and bootstrap

method can be applied to construct confidence intervals for D(p). Wieand et al. (1989)

showed the asymptotic distribution for the complete data,

√
m+ n(D̂0(p)−D0(p))

d→ N(0, σ2),
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where

σ2 =σ2
1 − 2σ12 + σ2

2,

σk =(1− λ)−1Rk(p0)(1−Rk(p0)) + λ−1(1− p0)p0
g2
k(F

−1
i (p0))

f 2
k (F−1

i (p0))
, k = 1, 2,

σ12 =(1− λ)−1[G(F−1
1 (p0), F−1

2 (p0))−G1(F−1
1 (p0))G2(F−1

2 (p0))]+

λ−1[F (F−1
1 (p0), F−1

2 (p0))− p2
0]
g1(F−1

1 (p0))g2(F−1
2 (p0))

f1(F−1
1 (p0))f2(F−1

2 (p0))
,

λ =m/(m+ n),

where fk’s and gk’s are the density functions of Fk’s and Gk’s respectively, k = 1, 2.

The normal approximation (NA) based confidence intervals can be applied to construct

for the difference of two ROC curves if σ2 was estimated properly. However, the estimation

of the density functions fk’s and gk’s are rather sensitive to the choice of the smoothing pa-

rameters. The situation is similar in estimating the bivariate distribution functions F (x1, x2)

and G(y1, y2), and the estimation of F−1
k (p). All of these estimations are required for the

estimation of σ2 according to the formula. Therefore, bootstrap based confidence intervals

are taken into consideration.

The bootstrap based method was developed in Qin and Zhou (2006). The normal ap-

proximation (NA) based confidence intervals do not need the estimation of density functions

or distribution functions. Another advantage is that it is convenient to construct bootstrap

based confidence intervals through computation.

3.3 Simulation Study

We conduct an extensive simulation study to evaluate the performance of the proposed

empirical likelihood confidence intervals for the difference of two ROC curves with right

censored data, for different censored rates, sample sizes and nominal levels.

Let the diseased population distribute as the exponential distribution with X1 ∼ exp(4),

and X2 ∼ exp(3)where X1 is independent of X2; while the non-diseased population follows
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the exponential distribution with independent Y1 ∼ exp(2) and Y2 ∼ exp(2). Random sam-

ples x and y are independently drawn from the populations X and Y . The censoring rates for

x and y are chosen as (cx1 , cx2 , cy1 , cy2) = (0.1, 0.1, 0.1, 0.1) and (0.2, 0.2, 0.2, 0.2), combined

with the sample sizes for x and y of (m1,m2, n1, n2) = (50, 50, 50, 50), (100, 100, 100, 100),

(150, 150, 150, 150). For a certain censoring rate and a certain sample size, 1000 independent

random samples of data {(xki, δxki), i = 1, ...,m; (ykj, δykj), j = 1, ..., n, k = 1, 2} are gener-

ated. Without loss of generality, the proposed empirical likelihood confidence intervals are

constructed for the ROC curve at q = 0.1, 0.3, 0.5, 0.7, and 0.9. The nominal levels of the

confidence intervals are 1− α = 95% and 1− α = 90%.

From Tables 3.1 - 3.4, we have the following results of the simulation study:

1. For each censoring rate, sample size and nominal levels, the coverage probability is close

to the nominal level, and the average lengths of the empirical likelihood based confidence

intervals are short;

2. In almost all the scenarios, as the censoring rates decrease or the sample sizes increase,

the coverage probabilities get closer to the nominal level, and the average lengths of the

intervals decreases respectively. This is reasonable since either smaller censoring rates or

bigger sample sizes provide more information of the data under the study.

3.4 Real Application

In the previous chapter, we have discussed the PBC data about the efficacy of D-

penicillamine. Moreover, in the PBC data there are also various covariates to describe the

situation of the subjects. Among the covariates, the presence of hepatomegaly, that is,

having an enlarged liver is a very important indicator of patients. The researchers face the

task of evaluating the specific efficacy of D-penicillamine for the symptom of hepatomegaly.

One way to carry out this task is to compare the ROC curves of two groups of patients with

and without hepatomegaly, where both ROC curves separate the treatment population from

the placebo population.

Here we construct 95% confidence intervals of the difference of 2 ROC curves at the
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same specificity. We set the (1 − specificity) varies from 0.07 to 0.93 by 0.01. Also, we

utilize the bootstrap method to improve the accuracy, and here B = 400.

Figure 3.1: The difference of two ROC curves for the PBC data.

Figure 3.1 displays the proposed EL confidence intervals and empirical estimates for

the difference of two ROC curves. Considering that the sensitivities of the 2 ROC curves

are close at the two ends where (1 − specificity) is getting close to 0 or 1, the difference

of two ROC curves is close to zero. When (1 − specificity) is from 0.3 to 0.7, it shows

that the lower bound roughly lies above the horizontal zero line. That is, the ROC curve

for the patients with hepatomegaly is higher than the ROC curve for the patients without

hepatomegaly. We conclude that it is more efficient to use D-penicillamine on the patients
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with hepatomegaly than on the patients without hepatomegaly.
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Table 3.1: Empirical likelihood confidence intervals for the difference of two ROC curves
with right censoring data at the nominal level of 1 − α = 95%, X1 ∼ exp(4), X2 ∼ exp(3),
Y1 ∼ exp(2), Y2 ∼ exp(2), and the censoring rates cX1 = cX2 = cY1 = cY2 = 0.1.

(m1,m2) (n1, n2) q
EL

CP(%) AL

(50, 50) (50, 50) 0.1 96.0 0.577
0.3 95.4 0.552
0.5 95.4 0.499
0.7 94.9 0.407
0.9 97.0 0.252

(100, 100) (100, 100) 0.1 95.9 0.399
0.3 94.9 0.390
0.5 94.9 0.349
0.7 94.9 0.289
0.9 96.0 0.178

(150, 150) (150, 150) 0.1 95.4 0.319
0.3 95.0 0.325
0.5 94.5 0.286
0.7 95.5 0.234
0.9 95.6 0.141

NOTE:
EL: empirical likelihood,
CP(%): coverage probability,
AL: average length of a confidence interval.
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Table 3.2: Empirical likelihood confidence intervals for the difference of two ROC curves
with right censoring data at the nominal level of 1 − α = 90%, X1 ∼ exp(4), X2 ∼ exp(3),
Y1 ∼ exp(2), Y2 ∼ exp(2), and the censoring rates cX1 = cX2 = cY1 = cY2 = 0.1.

(m1,m2) (n1, n2) q
EL

CP(%) AL

(50, 50) (50, 50) 0.1 91.9 0.481
0.3 91.1 0.464
0.5 90.4 0.419
0.7 89.4 0.341
0.9 92.4 0.211

(100, 100) (100, 100) 0.1 90.6 0.333
0.3 89.2 0.327
0.5 89.6 0.293
0.7 90.1 0.243
0.9 91.8 0.149

(150, 150) (150, 150) 0.1 90.1 0.267
0.3 90.4 0.264
0.5 90.2 0.240
0.7 91.1 0.196
0.9 90.6 0.118

NOTE:
EL: empirical likelihood,
CP(%): coverage probability,
AL: average length of a confidence interval.
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Table 3.3: Empirical likelihood confidence intervals for the difference of two ROC curves
with right censoring data at the nominal level of 1 − α = 95%, X1 ∼ exp(4), X2 ∼ exp(3),
Y1 ∼ exp(2), Y2 ∼ exp(2), and the censoring rates cX1 = cX2 = cY1 = cY2 = 0.2.

(m1,m2) (n1, n2) q
EL

CP(%) AL

(50, 50) (50, 50) 0.1 94.5 0.684
0.3 94.8 0.587
0.5 94.5 0.519
0.7 95.5 0.422
0.9 95.6 0.266

(100, 100) (100, 100) 0.1 95.5 0.460
0.3 94.0 0.414
0.5 94.1 0.360
0.7 94.6 0.296
0.9 95.9 0.185

(150, 150) (150, 150) 0.1 95.5 0.365
0.3 95.0 0.331
0.5 94.6 0.294
0.7 95.3 0.239
0.9 96.8 0.148

NOTE:
EL: empirical likelihood,
CP(%): coverage probability,
AL: average length of a confidence interval.
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Table 3.4: Empirical likelihood confidence intervals for the difference of two ROC curves
with right censoring data at the nominal level of 1 − α = 90%, X1 ∼ exp(4), X2 ∼ exp(3),
Y1 ∼ exp(2), Y2 ∼ exp(2), and the censoring rates cX1 = cX2 = cY1 = cY2 = 0.2.

(m1,m2) (n1, n2) q
EL

CP(%) AL

(50, 50) (50, 50) 0.1 89.4 0.577
0.3 90.1 0.491
0.5 90.7 0.435
0.7 90.5 0.354
0.9 92.5 0.223

(100, 100) (100, 100) 0.1 91.3 0.381
0.3 88.9 0.346
0.5 89.0 0.302
0.7 90.2 0.248
0.9 90.9 0.155

(150, 150) (150, 150) 0.1 91.1 0.303
0.3 89.8 0.277
0.5 89.5 0.247
0.7 90.5 0.200
0.9 91.6 0.124

NOTE:
EL: empirical likelihood,
CP(%): coverage probability,
AL: average length of a confidence interval.
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CHAPTER 4

EMPIRICAL LIKELIHOOD FOR THE AREA UNDER THE ROC CURVE

WITH RIGHT CENSORING

4.1 Background

Accurate diagnostic systems can provide reliable information about a patient’s con-

dition and improve patient care. Sometimes, an ROC curve is not very convenient as a

two-dimensional depiction of the classification performance because each ROC curve con-

sists a series of ordered pairs. In this case, the area under the curve (AUC) is proposed as

a commonly used summary index of the ROC curve telling the overall classification perfor-

mance. As the name implies, an AUC is the integral of the ROC curve at the interval (0, 1).

Larger AUC value indicates stronger discrimination ability. Thus, it represents a more ef-

fective treatment. The applications of the diagnostic statistical methods will help the users

to choose a more reliable diagnostic system over another, and forecast the survival times of

patients by looking at their profiles.

Machine learning has become more and more popular in the academia and industry as a

branch of artificial intelligence in the recent years. The AUC has been proved to be a better

measure than the accuracy in the meanings of consistency and discriminancy when the two

evaluation measures for learning algorithms are compared. Ling et al. (2003) presented a

rigourous proof as well as empirical evaluations that the area under curves (AUC) is more

efficient than accuracy as a statistical measure (Valeinis (2007)).

The rest of this chapter is organized as follows. In Section 4.2, we present the confidence

intervals based on the empirical likelihood method for the AUCs with right censored data,

and the limiting distribution of the statistic is a weighted χ2 distribution. In Section 4.3 we

report the results of a simulation study on the finite sample performance of the empirical

likelihood based confidence intervals. Compared with the normal approximation method,
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empirical likelihood confidence intervals outperform in terms of average length and coverage

probability. In Section 4.4, we applied the proposed method to a PBC data set. All the

proofs are included in Appendix C.

4.2 Main Results

4.2.1 Area under the ROC Curves with Censoring

Let X and Y represent the populations of non-diseased and diseased patients. Let X0

and Y 0 be the results of a continuous-scale test for the non-diseased and diseased subjects,

respectively. Let F and G be the distribution functions of X0 and Y 0. The ROC curve is

defined as

R(p) = 1−G(F−1(1− p)), 0 < p < 1.

The area under the ROC curve (AUC) is defined as

∆ =

∫ 1

0

R(p)dp.

4.2.2 Normal Approximation Procedure for ∆ with Censoring

We use the same notations like Wang et al. (2009). Let X0
1 , X

0
2 , ..., X

0
n, and Y 0

1 , Y
0

2 , ..., Y
0
m

be the random samples with distribution functions F and G. Two censoring times are

U1, U2, ..., Un, and V1, V2, ..., Vm with distribution functions K and Q. Rather than observing

X0
i ’s and Y 0

j ’s directly, we were only able to observe only (Xi, ξi), i = 1, 2, ..., n and (Yj, ηj),

j = 1, 2, ...m, where

Xi = min(X0
i , Ui), ξi = I(X0

i ≤ Ui),

Yj = min(Y 0
j , Vj), ηj = I(Y 0

j ≤ Vj),

I(·) is the indicator function.

One supposes that X0
i , Ui, Y

0
j , Vj are mutually independent. We denote τf = inf{t :

f(t) = 1} for the function f . In this dissertation, we assume τF ≤ τK and τG ≤ τQ. Without
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loss of generality, we assume τF ≤ τG. Then the AUC is

∆ = P (X0 < Y 0) =

∫ τF

0

(1−G(t))dF (t).

F (t) and G(t) are unknown, so we replace them with Kaplan-Meier (KM) estimates F̂ (t)

and Ĝ(t) as follows:

1− F̂ (t) =
∏
X(i)≤t

(
n− i

n− i+ 1
)ξ(i) ,

1− Ĝ(t) =
∏
Y(j)≤t

(
m− j

m− j + 1
)η(j) ,

where X(i) is the ith order statistics of X-sample, and Y(j) is the jth order statistics of

Y-sample, ξ(i) and η(j) are the corresponding ξ and η associated with X(i) and Y(j).

Let H(t) = P (X ≤ t), and L(t) = P (Y ≤ t). Denote

ΛF (t) =

∫ t

0

dF (s)

1− F (s−)
,

and

ΛG(t) =

∫ t

0

dG(s)

1−G(s−)
.

Moreover, let Ĥn(t) =
1

n

n∑
i=1

I(Xi ≤ t), and L̂m(t) =
1

m

m∑
j=1

I(Yj ≤ t).

Wang et al. (2009) have shown the following theorem is true. Here we review it for

completeness.

Theorem 4.1 (Wang et al. (2009)). Let ∆0 be the true value of ∆. Under the regularity

conditions (1)-(5) given in Wang et al. (2009),

(1) n/m→ ρ, ρ > 0;

(2)

(i)
√
n+m

∫ τF
X(n)

F (t)dG(t)
P→0;

(ii)
√
n+m(G(τF )−G(X(n)))

P→0;

(iii)
√
n+m

∫ τF
X(n)

(1−G(t))dF (t)
P→0;
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(3)

(i) supt|
∫ τF
t

(1− F (s))dG(t)/(1− F (t))| <∞;

(ii) supt|
∫ τF
t

(1−G(s))dF (t)/(1−G(t))| <∞;

(4)

(i)
∫ τF

0
dF (t)/(1−K(t−)) <∞;

(ii)
∫ τF

0
dG(t)/(1−Q(t−)) <∞;

(5) Nxi and Nyj have no common jumps, respectively, where N(xi) = I(Xi ≤ t, ξi = 1),

N(yj) = I(Yj ≤ t, ηj = 1) for i = 1, 2, ..., n, and j = 1, 2, ...,m.

√
m+ n(∆̂−∆0)

D→N(0, σ2),

where σ2 = (1 + 1/ρ)σ2
x + (1 + ρ)σ2

y, ρ = limn/m,

σ2
x =

∫ τF

0

((1− F (t))(1−G(t))−
∫ τF

t

(1−G(s))dF (s))2 1− F (t−)

1− F (t)

1

1−H(t−)
dΛF (t),

σ2
y =

∫ τF

0

(

∫ τF

t

(1−G(s))dF (s))2 1−G(t−)

1−G(t)

1

1− L(t−)
dΛG(t).

The consistent estimator σ̂2 of σ2 is obtained by replacing τF , F , G, H, L, by X(n), F̂n,

Ĝm, Ĥn, and L̂m. Based on Theorem 4.1, the 100(1−α)% normal approximation confidence

interval for ∆ is

I1 =

∆ : |∆−∆0| ≤ Zα/2

√
σ̂2

m+ n

 ,

where Zα/2 is the upper α/2 critical value for the standard normal distribution N(0, 1).

4.2.3 Empirical Likelihood Procedure for ∆ with Censoring

Next, we make the inference using empirical likelihood method. Pepe and Cai (2004)

and Qin and Zhou (2006) defined the placement value as P = 1 − F (Y0), and E(1 − P ) =

E(F (Y0)) = ∆0. Based on the weighting of the inverse probability, we have

F (Y0) = P (X0 < Y0),
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∆0 = E
F (Y )η

1−Q(Y )
.

Let

Zj =
(F (Yj)−∆)ηj

1−Q(Yj)
.

We define empirical likelihood ratio for ∆0 as follows:

R(∆) = sup

{
m∏
j=1

(mpj),
m∑
j=1

pj = 1, pj > 0,
m∑
j=1

(F (Yj)−∆)ηj
1−Q(Yj)

pj = 0

}
.

Since F , Q are unknown, we use Kaplan-Meier estimator F̂ , Q̂ to estimate them. Thus

the estimated empirical likelihood ratio for ∆ is as follows. Let

Ẑj =
(F̂ (Yj)−∆)ηj

1− Q̂(Yj)
,

where

1− F̂ (t) =
∏
X(i)≤t

(
n− i

n− i+ 1
)ξ(i) ,

1− Q̂(t) =
∏
Y(j)≤t

(
m− j

m− j + 1
)1−η(j) .

Therefore

R̂(∆) = sup
{ m∏
j=1

(mpj),
m∑
j=1

pj = 1, pj > 0,
m∑
j=1

(F̂ (Yj)−∆)ηj

1− Q̂(Yj)
pj = 0

}
.

By the Lagrange multiplier method, we have

l̂(∆) = −2 log R̂(∆) = 2
m∑
j=1

log
(

1 + λ
(F̂ (Yj)−∆)ηj

1− Q̂(Yj)

)
,

where λ satisfies

1

m

m∑
j=1

Ẑj

1 + λẐj
= 0.

Next we state the following theorem and show how to construct confidence intervals for
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∆.

Theorem 4.2. Under the regularity conditions (1)-(5) given by Wang et al. (2009), as in

the above theorem, we have

l̂(∆0)
D→γ(∆0)χ2

1,

where γ(∆0) =
σ2

σ2
1

, and σ2
1 =

∫∞
0

(F −∆0)2

1−Q(t)
dG(t).

Remark 4.1. In special cases, the data is noncensoring, or complete, then

σ2
1 =

∫ ∞
0

(F −∆0)2dG(t)

=

∫ ∞
0

(F 2 − 2∆0F + ∆2
0)dG(t)

=

∫ ∞
0

F 2dG(t)−
∫ ∞

0

2∆0FdG(t) +

∫ ∞
0

∆2
0dG(t)

=

∫ ∞
0

F 2dG(t)− 2∆0∆0 + ∆2
0

=

∫ ∞
0

F 2dG(t)−∆2
0.

Theorem 4.2 can be proved using Theorem 2.1 in Hjort et al. (2009). Please check the

theorem in Appendix C. Furthermore, we obtain 100(1−α)% EL confidence intervals for ∆

as follows,

I2 = {∆ : l̂(∆) ≤ γ̂χ2
1(α)},

where γ̂ is obtained from γ by replacing the corresponding estimators, γ̂ =
σ̂2

σ̂2
1

, and σ̂2
1 =

1

m

m∑
j=1

Ẑ2
j .

4.3 Simulation Study

In this section, we conduct a simulation study to investigate the finite sample perfor-

mance of the proposed empirical likelihood confidence intervals for the AUCs with right

censored data, for different censored rates, sample sizes, nominal levels and different param-

eters of exponential distributions. For comparison purposes, we also construct the confidence
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intervals based on NA method. See Section 4.2.2 for details.

In the simulation studies, we have the same settings as in the ROC curve with right

censoring. The diseased population X is distributed as the exponential distribution with

λ1, while the non-diseased population Y follows the exponential distribution with λ2. Var-

ious values of λ1 and λ2 are chosen as follows. Random samples x and y are indepen-

dently drawn from the population X and Y . The censoring rates for x and y are chosen

as (c1, c2) = (0.2, 0.2), combined with the sample sizes for x and y of (m,n) = (50, 50),

(100, 100), (150, 150). For a certain response rate and a certain sample size, 1000 indepen-

dent random samples of data {(xi, δxi), i = 1, ...,m; (yj, δyj), j = 1, ..., n} are generated. The

nominal levels of the confidence intervals are 1− α = 95% and 1− α = 90%.

Tables 4.1 - 4.4 display the simulation results, and we make the conclusions as follows:

1. For each censor rate, sample size and parameters of the distribution, the coverage prob-

ability is close to the nominal level, and the average lengths of the confidence intervals are

short;

2. In almost all the scenarios, as the sample sizes increase or censor rates decrease, the cov-

erage probabilities get closer to the nominal level, and the average lengths of the intervals

decreases respectively. This is reasonable since either larger response rates or larger sample

sizes provide more information of the data under study;

3. Empirical likelihood based confidence intervals outperform the normal approximation

method.

4.4 Real Application

In this section, we implement the proposed empirical likelihood method on the same

PBC data for the randomized clinical trial of 312 patients, as in Chapter 2. Similar to Wang

et al. (2009), we employed the estimate of AUC instead of the true value of AUC. Also, we

utilize the bootstrap method to improve the accuracy, and B = 400 in our data analysis.

The 95% EL confidence interval is (0.435, 0.589), and the 90% EL confidence interval is

(0.448, 0.576). For comparison purpose, the NA method is also implemented to constructed
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confidence intervals. The 95% NA confidence interval is (0.406, 0.618), and the 90% NA

confidence interval is (0.423, 0.601). The two groups of confidence intervals both contain 0.5

which is consistent with the behavior of the ROC curve in Chapter 2. Meanwhile, the EL

confidence intervals are narrower than the NA confidence intervals which implies that EL

method will be more accurate.
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Table 4.1: Empirical likelihood confidence intervals for the area under ROC curves (AUC)
with right censoring data at the nominal level of 1 − α = 95%, and the censoring rates
c1 = c2 = 0.2.

(m,n) (λ1, λ2)
EL NA

CP(%) AL CP(%) AL
(50, 50) ( 2,10) 91.9 0.159 92.8 0.175

( 4, 8) 92.8 0.216 93.9 0.223
( 6, 6) 94.1 0.233 93.6 0.238
( 8, 4) 94.8 0.219 94.3 0.222
(10, 2) 91.9 0.159 94.3 0.174

(100, 100) ( 2,10) 94.4 0.097 93.6 0.120
( 4, 8) 93.9 0.155 93.6 0.156
( 6, 6) 94.2 0.166 94.4 0.167
( 8, 4) 95.7 0.155 94.1 0.155
(10, 2) 94.1 0.118 85.1 0.119

(150, 150) ( 2,10) 94.4 0.097 94.4 0.097
( 4, 8) 94.6 0.128 95.0 0.127
( 6, 6) 94.4 0.136 94.4 0.137
( 8, 4) 94.5 0.126 94.5 0.127
(10, 2) 94.4 0.097 93.8 0.097

NOTE:
EL: empirical likelihood,
NA: normal approximation,
CP(%): coverage probability,
AL: average length of a confidence interval.
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Table 4.2: Empirical likelihood confidence intervals for the area under ROC curves (AUC)
with right censoring data at the nominal level of 1 − α = 90%, and the censoring rates
c1 = c2 = 0.2.

(m,n) (λ1, λ2)
EL NA

CP(%) AL CP(%) AL
(50, 50) ( 2,10) 91.9 0.159 88.1 0.147

( 4, 8) 87.5 0.181 87.6 0.187
( 6, 6) 88.5 0.196 88.4 0.200
( 8, 4) 89.2 0.184 89.3 0.187
(10, 2) 85.2 0.133 89.9 0.146

(100, 100) ( 2,10) 88.9 0.098 89.2 0.101
( 4, 8) 89.2 0.130 88.8 0.131
( 6, 6) 90.2 0.140 88.8 0.140
( 8, 4) 90.1 0.130 89.5 0.130
(10, 2) 88.9 0.098 89.1 0.100

(150, 150) ( 2,10) 89.1 0.081 89.6 0.082
( 4, 8) 90.2 0.107 89.3 0.107
( 6, 6) 89.4 0.114 89.7 0.115
( 8, 4) 90.4 0.106 89.4 0.107
(10, 2) 89.1 0.081 88.9 0.081

NOTE:
EL: empirical likelihood,
NA: normal approximation,
CP(%): coverage probability,
AL: average length of a confidence interval.
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Table 4.3: Empirical likelihood confidence intervals for the area under ROC curves (AUC)
with right censoring data at the nominal level of 1 − α = 95%, and the censoring rates
c1 = c2 = 0.1.

(m,n) (λ1, λ2)
EL NA

CP(%) AL CP(%) AL
(50, 50) ( 2,10) 92.7 0.161 92.5 0.164

( 4, 8) 93.8 0.212 93.6 0.216
( 6, 6) 94.5 0.227 94.1 0.232
( 8, 4) 94.9 0.212 94.1 0.216
(10, 2) 94.4 0.164 93.4 0.165

(100, 100) ( 2,10) 94.8 0.117 93.4 0.115
( 4, 8) 94.1 0.152 94.1 0.152
( 6, 6) 94.8 0.162 93.4 0.163
( 8, 4) 95.7 0.150 94.1 0.151
(10, 2) 95.6 0.115 94.9 0.114

(150, 150) ( 2,10) 94.7 0.096 94.1 0.094
( 4, 8) 94.9 0.124 95.0 0.124
( 6, 6) 95.3 0.132 95.3 0.133
( 8, 4) 95.2 0.123 94.9 0.124
(10, 2) 94.0 0.094 93.8 0.094

NOTE:
EL: empirical likelihood,
NA: normal approximation,
CP(%): coverage probability,
AL: average length of a confidence interval.
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Table 4.4: Empirical likelihood confidence intervals for the area under ROC curves (AUC)
with right censoring data at the nominal level of 1 − α = 90%, and the censoring rates
c1 = c2 = 0.1.

(m,n) (λ1, λ2)
EL NA

CP(%) AL CP(%) AL

(50, 50) ( 2,10) 86.8 0.134 87.9 0.138
( 4, 8) 88.8 0.178 89.1 0.181
( 6, 6) 89.1 0.191 88.3 0.195
( 8, 4) 89.2 0.178 89.0 0.181
(10, 2) 89.6 0.137 89.2 0.138

(100, 100) ( 2,10) 89.3 0.097 88.2 0.097
( 4, 8) 89.5 0.127 88.0 0.127
( 6, 6) 89.8 0.136 89.2 0.136
( 8, 4) 91.1 0.126 88.6 0.127
(10, 2) 90.4 0.096 88.0 0.096

(150, 150) ( 2,10) 89.9 0.080 89.7 0.079
( 4, 8) 90.5 0.104 89.3 0.104
( 6, 6) 89.8 0.111 90.0 0.112
( 8, 4) 89.8 0.103 89.3 0.104
(10, 2) 89.9 0.078 90.2 0.079

NOTE:
EL: empirical likelihood,
NA: normal approximation,
CP(%): coverage probability,
AL: average length of a confidence interval.
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CHAPTER 5

EMPIRICAL LIKELIHOOD FOR THE DIFFERENCE OF 2 AUC’S WITH

UNIVARIATE CENSORING

5.1 Background

Another effective method to evaluate the difference between the diagnostic accuracy of

two tests is to find the difference of two AUC’s. The applications of diagnostic statistical

methods will help users to make a choice of the most reliable diagnostic systems and to

forecast the survival times of patients with their profile. Huang et al. (2012) have studied

the difference between two AUCs with complete data.

The rest of this chapter is organized as follows. In Section 5.2, we show the empirical

likelihood method confidence intervals for the difference of two AUCs with right censored

data and give the limiting distribution of the statistic. In Section 5.3, we display the results

from a simulation study on the finite sample performance of the empirical likelihood based

confidence intervals and the performance of the methods theoretically. Compared with those

from the normal approximation method, the confidence intervals based on empirical likeli-

hood method outperform in terms of average length and coverage probability. In Section

5.4, we applied the method to a PBC data set. All the proofs are provided in Appendix D.

5.2 Main Results

5.2.1 The Difference of Two AUC’s

We use the same notations as in Chapter 3. Please also see Lin and Ying (1993) for the

notations. We define the AUC with the first component as

∆1 = P (X0
1 < Y 0

1 ) =

∫ τF1

0

(1−G1(t))dF1(t).
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and the AUC with the second component as

∆2 = P (X0
2 < Y 0

2 ) =

∫ τF2

0

(1−G2(t))dF2(t).

Therefore, We define the difference of AUC’s

∆ = ∆1 −∆2.

5.2.2 Empirical Likelihood for ∆ with Censoring

The inference of empirical likelihood (EL) based confidence intervals are discussed in

the following way. Pepe and Cai (2004) defined the placement value as U = 1− F (Y0). For

the two-sample data here, we define Pk = 1 − Fk(Y0), and E(1 − Pk) = E(Fk(Yk0)) = ∆k0,

k = 1, 2. Using the weighting of the inverse probability for right censoring data, we have

E
Fk(Yk)ηk

1−Qk(Yk)
= ∆k0,

that is,

E
(Fk(Yk)−∆k0)ηk

1−Qk(Yk)
= 0.

We define empirical likelihood ratio for ∆ = ∆1 −∆2 as

R(∆0) = sup
{ 2∏
k=1

mk∏
j=1

(mkpkj),

mk∑
j=1

pkj = 1, pkj > 0,

mk∑
j=1

[ Fk(Ykj)ηkj
1−Qk(Ykj)

−∆k0

]
pkj = 0, k = 1, 2,

m1∑
j=1

F1(Y1j)η1j

1−Q1(Y1j)
p1j −

m2∑
j=1

F2(Y2j)η2j

1−Q2(Y2j)
p2j = ∆0

}
,

or

R(∆0) = sup
{ 2∏
k=1

mk∏
j=1

(mkpkj),

mk∑
j=1

pkj = 1, pkj > 0,

mk∑
j=1

(wkj −∆k0)pkj = 0, k = 1, 2,

∆0 = ∆10 −∆20 =

m1∑
j=1

w1jp1j −
m2∑
j=1

w2jp2j

}
,
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where wkj =
Fk(Ykj)ηkj

1−Qk(Ykj)
, and ∆k0 =

∑mk
j=1 wkjpkj.

Since Fk’s are unknown, the Kaplan-Meier (K-M) estimator F̂k is applied to estimate

them.

1− F̂k(t) =
∏

Xk(i)≤t

(
n− i

n− i+ 1
)ξk(i) ,

where Xk(i) is the ith order statistics of Xk-sample, that is, Xk(1) ≤ Xk(2) ≤ ... ≤ Xk(m1).

ξk(i) is the corresponding ξk associated with Xk(i).

Denote

ŵkj =
F̂k(Ykj)ηkj

1− Q̂k(Ykj)
,

where

1− Q̂k(t) =
∏

Y(kj)≤t

(
mk − j

mk − j + 1
)1−η(kj) .

By the Lagrange multiplier method, we have

l(∆) =− 2 logR(∆)

=2
{ m1∑

j=1

log[1− 2λ(ŵ1j −∆1)] +

m2∑
j=1

log[1 + 2λ(ŵ2j −∆2)]
}
,

where λ, ∆1, and ∆2 are the solutions to the following three equations,

1

m1

m1∑
j=1

ŵ1j −∆1

1− 2λ(ŵ1j −∆1)
= 0,

1

m2

m2∑
j=1

ŵ2j −∆2

1 + 2λ(ŵ2j −∆2)
= 0,

1

m1

m1∑
j=1

ŵ1j

1− 2λ(ŵ1j −∆1)
− 1

m2

m2∑
j=1

ŵ2j

1 + 2λ(ŵ2j −∆2)
= ∆1 −∆2 = ∆.

Theorem 5.1. Let ∆1 − ∆2 = ∆0 be the true value of the difference of two AUC’s. If
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(X1, Y1) and (X2, Y2) satisfy the conditions in Theorem 4.1 and lim
n→∞

m1

m2

= γ , we have

l̂(∆0)
D→c(∆0)χ2

1,

where

c(∆0) =
σ2

1 + γσ2
2

σ2
1,1 + γσ2

1,2

.

(σ2
1, σ

2
1,1) denote the same definition of (σ2, σ2

1) in Theorem 4.1 for (X1, Y1) and (σ2
2, σ

2
1,2)

denote the same definition of (σ2, σ2
1) in Theorem 4.1 for (X2, Y2).

Using Theorem 5.1, we obtain the asymptotic 100(1 − α)% EL confidence interval for

∆ as follows,

I2(∆) = {∆ : l̂(∆) ≤ ĉχ2
1(α)},

where

ĉ =
σ̂2

1 + γσ̂2
2

σ̂2
1,1 + γσ̂2

1,2

,

and we use the same method in Chapter 4 to get the consistent estimators σ̂2
1, σ̂2

2, σ̂2
1,1 and

σ̂2
1,2.

5.3 Simulation Study

Based on the conclusions from the inference procedure, we conduct an extensive sim-

ulation study to evaluate the performance of the proposed empirical likelihood confidence

intervals for the difference of two areas under the ROC curves with right censored data, for

different censored rates, sample sizes, and nominal levels.

Let the diseased population X = (X1, X2) and the non-diseased population Y = (Y1, Y2)

distributed as the same settings in Section 3.3. For a certain censoring rate and a certain

sample size, 1000 independent random samples of data {(xki, δxki), i = 1, ...,m; (ykj, δykj), j =

1, ..., n, k = 1, 2} are generated. The nominal levels of the confidence intervals are 1−α = 95%

and 1− α = 90%.
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From Tables 5.1 - 5.4, we have the following observations:

1. For each censoring rate, sample size and nominal levels, the coverage probability is close

to the nominal level, and the average lengths of the empirical likelihood based confidence

intervals are short;

2. In almost all the scenarios, as the censoring rates decrease or the sample sizes increase,

the coverage probabilities get closer to the nominal level, and the average lengths of the

intervals decreases respectively. This is reasonable since either smaller censoring rates or

bigger sample sizes provide more information of the data under study.

5.4 Real Application

In this section, the proposed EL method is illustrated by the same PBC data set as in

Chapter 3. We construct 90% and 95% confidence intervals for the difference of 2 AUC’s.

Similarly to Wang et al. (2009), we use the estimates of AUC’s instead of the true values of

AUC’s, and the difference of estimates is employed instead of the true value of the difference.

We utilize the bootstrap method to improve the accuracy, and B = 400 in our data analysis.

The 95% EL confidence interval is (0.062, 0.377), and the 90% EL confidence interval is

(0.088, 0.353). Both lower bounds are larger than zero, which implies that the AUC for

the group with hepatomegaly is larger than that for the group without hepatomegaly. This

conclusion is consistent with the result we have made in section 3.4.
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Table 5.1: Empirical likelihood confidence intervals for the difference of two AUCs with right
censoring data at the nominal level of 1−α = 95%, X1 ∼ exp(4), X2 ∼ exp(λx), Y1 ∼ exp(2),
Y2 ∼ exp(λy), and the censoring rates cX1 = cX2 = cY1 = cY2 = 0.2.

(m1,m2) (n1, n2) (λx, λy)
EL

CP(%) AL

(50, 50) (50, 50) (8, 2) 94.9 0.296
(6, 4) 94.8 0.326
(4, 6) 94.2 0.325
(2, 8) 94.3 0.287

(100, 100) (100, 100) (8, 2) 93.9 0.207
(6, 4) 94.4 0.229
(4, 6) 94.8 0.228
(2, 8) 94.8 0.203

(150, 150) (150, 150) (8, 2) 95.1 0.167
(6, 4) 95.4 0.186
(4, 6) 95.4 0.186
(2, 8) 94.7 0.165

NOTE:
EL: empirical likelihood,
CP(%): coverage probability,
AL: average length of a confidence interval.
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Table 5.2: Empirical likelihood confidence intervals for the difference of two AUCs with right
censoring data at the nominal level of 1−α = 90%, X1 ∼ exp(4), X2 ∼ exp(λx), Y1 ∼ exp(2),
Y2 ∼ exp(λy), and the censoring rates cX1 = cX2 = cY1 = cY2 = 0.2.

(m1,m2) (n1, n2) (λx, λy)
EL

CP(%) AL

(50, 50) (50, 50) (8, 2) 90.9 0.248
(6, 4) 90.1 0.272
(4, 6) 90.3 0.271
(2, 8) 90.0 0.240

(100, 100) (100, 100) (8, 2) 89.9 0.173
(6, 4) 89.3 0.191
(4, 6) 88.6 0.191
(2, 8) 87.9 0.169

(150, 150) (150, 150) (8, 2) 90.4 0.140
(6, 4) 90.9 0.156
(4, 6) 91.0 0.155
(2, 8) 90.5 0.138

NOTE:
EL: empirical likelihood,
CP(%): coverage probability,
AL: average length of a confidence interval.
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Table 5.3: Empirical likelihood confidence intervals for the difference of two AUCs with right
censoring data at the nominal level of 1−α = 95%, X1 ∼ exp(4), X2 ∼ exp(λx), Y1 ∼ exp(2),
Y2 ∼ exp(λy), and the censoring rates cX1 = cX2 = cY1 = cY2 = 0.1.

(m1,m2) (n1, n2) (λx, λy)
EL

CP(%) AL

(50, 50) (50, 50) (8, 2) 94.0 0.275
(6, 4) 94.6 0.307
(4, 6) 94.2 0.307
(2, 8) 94.4 0.274

(100, 100) (100, 100) (8, 2) 94.7 0.195
(6, 4) 94.0 0.218
(4, 6) 94.4 0.218
(2, 8) 94.3 0.195

(150, 150) (150, 150) (8, 2) 94.4 0.159
(6, 4) 94.9 0.178
(4, 6) 94.9 0.179
(2, 8) 95.5 0.160

NOTE:
EL: empirical likelihood,
CP(%): coverage probability,
AL: average length of a confidence interval.
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Table 5.4: Empirical likelihood confidence intervals for the difference of two AUCs with right
censoring data at the nominal level of 1−α = 90%, X1 ∼ exp(4), X2 ∼ exp(λx), Y1 ∼ exp(2),
Y2 ∼ exp(λy), and the censoring rates cX1 = cX2 = cY1 = cY2 = 0.1.

(m1,m2) (n1, n2) (λx, λy)
EL

CP(%) AL

(50, 50) (50, 50) (8, 2) 88.2 0.230
(6, 4) 89.4 0.257
(4, 6) 89.5 0.257
(2, 8) 89.4 0.230

(100, 100) (100, 100) (8, 2) 89.4 0.163
(6, 4) 88.6 0.183
(4, 6) 88.7 0.183
(2, 8) 89.7 0.163

(150, 150) (150, 150) (8, 2) 91.0 0.134
(6, 4) 90.7 0.150
(4, 6) 90.8 0.149
(2, 8) 89.6 0.134

NOTE:
EL: empirical likelihood,
CP(%): coverage probability,
AL: average length of a confidence interval.
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CHAPTER 6

JACKKNIFE EMPIRICAL LIKELIHOOD FOR THE DIFFERENCE OF 2

VOLUMES UNDER ROC SURFACES

6.1 Background

A multi-category classification technique is necessary if the subjects are supposed to

be assigned to more than two groups simultaneously. Mossman (1999) evaluated a three-

category classification treatment using the volume under the ROC surface (VUS). It is pro-

posed as an analogous measure to the AUC, extending an ROC curve to an ROC surface in

a three dimensional case. Also, the VUS provides a scalar measure as the AUC does. Tian

et al. (2011) showed that the difference of two correlated VUS’s is an efficient summary for

the comparison of diagnostic accuracy with three ordinal diagnostic groups using parametric

methods. Here the ’difference’ between two VUS’s implies the amount by which one of them

is subtracted by the other.

Since a VUS identifies a three-category data as in Wan (2012), where it has one more

category than an ROC curve or an AUC, the estimating equations for the difference of two

VUS’s are much more complex than the difference of two ROC curves or that of two AUC’s,

even for complete data. Thus, it is rather difficult to construct a confidence interval of such

difference until Jing et al. (2009) introduced the jackknife empirical likelihood (JEL) method

making such kind of problems tractable. JEL employs a U-statistic to avoid the nuisance

parameters in the estimating equations, it therefore provides a reliable confidence interval

by solving a simpler estimating equation of a pseudo mean, which is based on U-statistics

(Korolyuk and Borovskikh (1994)). The orginal JEL considers univariate problems. Pan

et al. (2013) made nonparametric statistical inference for the VUS’s using JEL.

In this paper, we proposed a novel U-statistic for the JEL method to deal with the

difference of trivariate problems. Our results show that JEL confidence intervals outperform
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the normal approximation (NA) method for the difference of two correlated VUS’s, as Owen

(1988, 1990)’s empirical likelihood (EL) method is too complicated to be employed.

The rest of this chapter is organized as follows. In Section 6.2, the JEL method is

employed to construct the confidence intervals for the difference of two VUS’s. We prove

that the limiting distribution of the empirical log-likelihood ratio statistic follows a χ2-

distribution. In Section 6.3, we present the results of intensive simulation studies on the JEL

confidence intervals, which have better performance than those based on the NA method

in terms of coverage probability. In Section 6.4, the proposed method is illustrated by an

Alzheimer’s Disease (AD) data. All the proofs are provided in Appendix E.

6.2 Main Results

6.2.1 The Difference of Two VUS’s

Let (XT
1 , X

T
2 , ..., X

T
n1

), (Y T
1 , Y

T
2 , ..., Y

T
n2

) and (ZT
1 , Z

T
2 , ..., Z

T
n3

) represent i.i.d. samples of

three independent populations, where Xi = (X1i, X2i)
T , i = 1, 2, ..., n1, Yj = (Y1j, Y2j)

T ,

j = 1, 2, ..., n2, and Zk = (Z1k, Z2k)
T , k = 1, 2, ..., n3. We define the VUS with respect to the

first component as P (X11 < Y11 < Z11), and the VUS with respect to the second component

as P (X21 < Y21 < Z21), respectively. Therefore the difference of two VUS’s can be defined

as

θ =P (X11 < Y11 < Z11)− P (X21 < Y21 < Z21)

=E(I(X11 < Y11 < Z11))− E(I(X21 < Y21 < Z21))

=E(I(X11 < Y11 < Z11)− I(X21 < Y21 < Z21)),

which can be estimated by

θ̂ =
1

n1n2n3

∑
i=1,...,n1,
j=1,...,n2,
k=1,...,n3

[I(X1i < Y1j < Z1k)− I(X2i < Y2j < Z2k)].
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6.2.2 U-statistics

A U-statistic of degree (1, 1, 1) with a kernel h(x; y; z) is defined as

Un =
1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

h(Xi;Yj;Zk),

which is a consistent and unbiased estimator of the parameter θ = Eh(Xi;Yj;Zk). In

particular, if

h(Xi;Yj;Zk) = I(X1i < Y1j < Z1k)− I(X2i < Y2j < Z2k),

then θ = P (X11 < Y11 < Z11)− P (X21 < Y21 < Z21). Therefore we define the U-statistic for

inference on θ as

Un =
1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

[I(X1i < Y1j < Z1k)− I(X2i < Y2j < Z2k)].

In addition, for i = 1, 2, ..., n1, j = 1, 2, ..., n2, and k = 1, 2, ..., n3, we denote

(1) the original statistics for all observations as U0
n1,n2,n3

= Un;

(2) the statistic after removing Xi′ as

U−i
′,0,0

n1−1,n2,n3
= ((n1 − 1)n2n3)−1

n1∑
i=1,
i 6=i′

n2∑
j=1

n3∑
k=1

[I(X1i < Y1j < Z1k)− I(X2i < Y2j < Z2k)];

(3) the statistic after removing Yj′ as

U0,−j′,0
n1,n2−1,n3

= (n1(n2 − 1)n3)−1

n1∑
i=1

n2∑
j=1,
j 6=j′

n3∑
k=1

[I(X1i < Y1j < Z1k)− I(X2i < Y2j < Z2k)];

(4) the statistic after removing Zk′ as

U0,0,−k′
n1,n2,n3−1 = (n1n2(n3 − 1))−1

n1∑
i=1

n2∑
j=1

n3∑
k=1,
k 6=k′

[I(X1i < Y1j < Z1k)− I(X2i < Y2j < Z2k)].
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6.2.3 JEL for the Difference of Two VUS’s

Hence we define the jackknife pseudo-values by

Vi,0,0 = n1U
0
n1,n2,n3

− (n1 − 1)U−i,0,0n1−1,n2,n3
;

V0,j,0 = n2U
0
n1,n2,n3

− (n2 − 1)U0,−j,0
n1,n2−1,n3

;

V0,0,k = n3U
0
n1,n2,n3

− (n3 − 1)U0,0,−k
n1,n2,n3−1.

With some simple algebra,

Vi,0,0 =
1

n2n3

n2∑
j1=1

n3∑
k1=1

[I(X1i < Y1j < Z1k)− I(X2i < Y2j < Z2k)];

V0,j,0 =
1

n1n3

n1∑
i1=1

n3∑
k1=1

[I(X1i < Y1j < Z1k)− I(X2i < Y2j < Z2k)];

V0,0,k =
1

n1n2

n1∑
i1=1

n2∑
j1=1

[I(X1i < Y1j < Z1k)− I(X2i < Y2j < Z2k)];

and

V̄·,0,0 = V̄0,·,0 = V̄0,0,· = Un,

where V̄·,0,0, V̄0,·,0 and V̄0,0,· are the averages of Vi,0,0, V0,j,0 and V0,0,k, respectively.

We will also need the following notations for the inferences in the paper:

g1,0,0(x) = [P (x11 < Y11 < Z11)− P (x21 < Y21 < Z21)]− θ, σ2
1,0,0 = V ar(g1,0,0(X1));

g0,1,0(y) = [P (X11 < y11 < Z11)− P (X21 < y21 < Z21)]− θ, σ2
0,1,0 = V ar(g0,1,0(Y1));

g0,0,1(z) = [P (X11 < Y11 < z11)− P (X21 < Y21 < z21)]− θ, σ2
0,0,1 = V ar(g0,0,1(Z1));

where x = (x1, x2)T , y = (y1, y2)T , and z = (z1, z2)T .

Denote (T1, T2, ..., Tn) = (T1, T2, ..., Tn1 , Tn1+1, Tn1+2, ..., Tn1+n2 , Tn1+n2+1, ..., Tn1+n2+n3)
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= (XT
1 , X

T
2 , ..., X

T
n1
, Y T

1 , Y
T

2 , ..., Y
T
n2
, ZT

1 , Z
T
2 , ..., Z

T
n3

), where n = n1 + n2 + n3. A one-sample

U-statistic of degree 3 is defined as

Wn = Un(T1, T2, ..., Tn) =

(
n

3

)−1 ∑
1≤i<j<k≤n

h(Ti, Tj, Tk),

where the kernel function

h(Ti, Tj, Tk) =

(
n
3

)
n1n2n3

[I(X1i < Y1,j−n1 < Z1,k−n1−n2)− I(X2i < Y2,j−n1 < Z2,k−n1−n2)] (6.1)

for i = 1, 2, ..., n1, j = n1 + 1, n1 + 2, ..., n1 + n2, k = n1 + n2 + 1, n1 + n2 + 2, ..., n, and

1 ≤ i ≤ n1 < j ≤ n1 + n2 < k ≤ n, and h(Ti, Tj, Tk) = 0 otherwise. We can use the

U-statistic as an unbiased estimator of the parameter θ. Note that θ = Eh(Ti, Tj, Tk), and

Wn = Un. Define the U-statistics with Tl deleted as follows:

W
(−l)
n−1

=Un−1(T1, T2, ..., Tl−1, Tl+1, ..., Tn)

=

(
n− 1

3

)−1 (−l)∑
n−1,3

h(Ti, Tj, Tk)

=

(
n− 1

3

)−1

[
∑
i<j<k

h(Ti, Tj, Tk)−
∑
j<k

h(Tl, Tj, Tk)−
∑
i<k

h(Ti, Tl, Tk)−
∑
i<j

h(Ti, Tj, Tl)]

=

(
n− 1

3

)−1[(n
3

)
Wn −

∑
j<k

h(Tl, Tj, Tk)−
∑
i<k

h(Ti, Tl, Tk)−
∑
i<j

h(Ti, Tj, Tl)
]
,

where 1 ≤ l ≤ n, denote the removal of Tl as (−l) .
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Hence we define the jackknife pseudo-values by

V̂l =nWn − (n− 1)W
(−l)
n−1

=nWn − (n− 1)

(
n− 1

3

)−1(
n

3

)
Wn

+ (n− 1)

(
n− 1

3

)−1

[
∑
l<j<k

h(Tl, Tj, Tk) +
∑
i<l<k

h(Ti, Tl, Tk) +
∑
i<j<l

h(Ti, Tj, Tl)]

=− 2n

n− 3
Un +

6

(n− 2)(n− 3)
[
∑
l<j<k

h(Tl, Tj, Tk) +
∑
i<l<k

h(Ti, Tl, Tk) +
∑
i<j<l

h(Ti, Tj, Tl)].

Now plugging in equation (6.1), we have

V̂l

=− 2n

n− 3
Un +

6

(n− 2)(n− 3)

n(n− 1)(n− 2)

6n1n2n3

{
∑
j<k

[I(X1l < Y1,j−n1 < Z1,k−n1−n2)− I(X2l < Y2,j−n1 < Z2,k−n1−n2)]

I(1 ≤ l ≤ n1 < j ≤ n1 + n2 < k ≤ n)

+
∑
i<k

[I(X1i < Y1l < Z1,k−n1−n2)− I(X2i < Y2l < Z2,k−n1−n2)]

I(1 ≤ i ≤ n1 < l ≤ n1 + n2 < k ≤ n)

+
∑
i<j

[I(X1i < Y1,j−n1 < Z1,l)− I(X2i < Y2,j−n1 < Z2l)]

I(1 ≤ i ≤ n1 < j ≤ n1 + n2 < l ≤ n)}

=− 2n

n− 3
Un +

n(n− 1)

(n− 3)

1

n1n2n3

{
n1+n2∑
j=n1+1

n∑
k=n1+n2+1

[I(X1l < Y1,j−n1 < Z1,k−n1−n2)− I(X2l < Y2,j−n1 < Z2,k−n1−n2)]I(1 ≤ l ≤ n1)

+

n1∑
i=1

n∑
k=n1+n2+1

[I(X1i < Y1l < Z1,k−n1−n2)− I(X2i < Y2l < Z2,k−n1−n2)]I(n1 < l ≤ n1 + n2)

+

n1∑
i=1

n1+n2∑
j=n1+1

[I(X1i < Y1,j−n1 < Z1,l)− I(X2i < Y2,j−n1 < Z2l)]I(n1 + n2 < l ≤ n)}.
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Therefore,

E(V̂l) = − 2n

n− 3
θ+

n(n− 1)

(n− 3)

[ θ
n1

I(1 ≤ l ≤ n1)+
θ

n2

I(n1 < l ≤ n1+n2)+
θ

n3

I(n1+n2 < l ≤ n)
]
.

Let p = (p1, p2, ..., pn) be a probability vector, i.e.,
n∑
i=1

pi = 1 and pi ≥ 0 for 1 ≤ i ≤ n.

By employing the idea of Jing et al. (2009), the jackknife empirical likelihood ratio function

for θ is

R(θ) = sup
p1,...,pn,

{
n∏
i=1

(npi)|pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

piV̂i −
n∑
i=1

piEV̂i = 0}.

Using Lagrange multiplier method, we have logR(θ) = −
n∑
l=1

log(1 + γ(V̂l − EV̂l)), where γ

is the solution to the equation

1

n

n∑
l=1

V̂l − EV̂l
1 + γ(V̂l − EV̂l)

= 0. (6.2)

The Wilk’s theorem holds for θ.

Theorem 6.1. Assume that

(a) σ2
1,0,0 > 0, σ2

0,1,0 > 0, σ2
0,0,1 > 0, and

(b)
n

nt
→ ct <∞, where t = 1, 2, 3 and ct’s are finite constants.

The empirical log-likelihood ratio statistic at the true value θ0

l(θ0) = −2 logR(θ0)
d→ χ2

1,

as min(n1, n2, n3)→∞, where χ2
1 is a standard χ2-distribution with degree of freedom 1.

Thus, the asymptotic 100(1−α)% jackknife empirical likelihood confidence interval for

θ is given by

{θ : l(θ) ≤ χ2
1(α)},

where χ2
1(α) is the upper α-quantile of χ2

1.
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6.3 Simulation Study

In this section, we conduct extensive simulation studies to investigate the finite sample

performance of the proposed jackknife empirical likelihood method for the difference of two

VUS’s with different data sets. For comparison purpose, we also construct the confidence

intervals based on the normal approximation method. We present the conclusion for the

normal approximation method at Lemma E.1 in the Appendix. Based on Lemma E.1,

the 100(1 − α)% confidence intervals based on the normal approximation method can be

constructed as

I =
{
θ : |Un − θ| ≤ Zα/2σ̂

}
,

where Zα/2 is the upper α/2 critical value for the standard normal distribution, and σ̂ is

defined in Appendix A. In this paper, we evaluate the proposed methods in terms of average

length and coverage probability of confidence intervals.

For Table 6.1 and Table 6.2, the data follow the Marshall-Olkin bivariate exponen-

tial distribution (MOBVE), as in Marshall and Olkin (1967) and Balakrishnan (1996).

MOBV E(λ1, λ2, λ3) has a CDF

F (w1, w2) = 1− exp[−λ1w1 − λ2w2 − λ3max{w1, w2}],

where w1, w2 > 0, λt ≥ 0 and at least one λt is positive, t = 1, 2, 3. The marginal distri-

butions of (W1,W2) are exponential with expectations (λ1 + λ3) and (λ2 + λ3), respectively.

Their correlation c is λ3/(λ1 + λ2 + λ3). In this simulation study, the first population X =

(X1, X2) = (ρxX
∗
1 , X

∗
2 ), where (X∗1 , X

∗
2 ) ∼ MOBV E(λx1 , λx2 , λx3), and ρx = 3. The second

population Y = (Y1, Y2) = (ρyY
∗

1 , Y
∗

2 ), where (Y ∗1 , Y
∗

2 ) ∼MOBV E(λy1 , λy2 , λy3), and ρy = 2.

The third population Z = (Z1, Z2) = (ρzZ
∗
1 , Z

∗
2), where (Z∗1 , Z

∗
2) ∼ MOBV E(λz1 , λz2 , λz3),

and ρz = 1. The λxt , λyt , λzt ’s differ for various correlations, where the correlations c1, c2

and c3 are chosen as 0, 0.25, 0.5, 0.75, and 0.9. Additionally, we guarantee the marginal

distributions X∗1 ∼ exp(1), X∗2 ∼ exp(1), Y ∗1 ∼ exp(2), Y ∗2 ∼ exp(2), Z∗1 ∼ exp(3), and
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Z∗2 ∼ exp(3).

In Table 6.3 and Table 6.4, the data are generated from the bivariate normal distri-

butions. The distributions are: (X1, X2) ∼ N(µx,Σx), (Y1, Y2) ∼ N(µy,Σy), (Z1, Z2) ∼

N(µz,Σz), where µx = (5, 3), µy = (4, 2), and µz = (4, 2), and the covariance matrices are

Σx = Σy = Σz =

 1 c

c 1


as the correlation c varies.

The sample sizes for x, y and z of (nx1 , nx2 , ny1 , ny2 , nz1 , nz2) are (10, 10, 10, 10, 10, 10),

(20, 20, 25, 25, 30, 30), (30, 30, 30, 30, 30, 30), (60, 60, 60, 60, 60, 60), (80, 80, 80, 80, 80, 80) and

(100, 100, 100, 100, 100, 100). The nominal levels of the confidence intervals are 1−α = 95%

and 1 − α = 90%. For a certain correlation and certain sample size, 1000 iterations are

repeated.

From Tables 6.1 - 6.4 we make the following conclusions:

1. For different correlations, sample sizes and parameters of the distributions, the coverage

probabilities of the confidence intervals based on the JEL methods and those based on the

NA methods are close to the nominal levels;

2. In almost all the scenarios, as the sample sizes increase, the coverage probabilities of the

confidence intervals for the two methods get closer to the nominal level, and the average

lengths of the intervals decrease respectively. This is reasonable since larger sample sizes

provide more information of the data under study;

3. For the same sample sizes, as the correlations increase, the coverage probabilities of the

confidence intervals for the two methods are closer to the nominal level, and the average

lengths of the intervals decrease respectively. Jackknife empirical likelihood based confi-

dence intervals outperform the normal approximation method for various sample sizes and

correlation coefficients.
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6.4 Real Application

In this section, the proposed method for the confidence intervals of the difference of two

VUS’s is illustrated via a data set of the diagnosis for early stage Alzheimer’s Disease (AD)

from the Alzheimer’s Disease Research Center (ADRC) at Washington University (See Xiong

et al. (2006)). The severity of dementia of Alzheimer type could be staged by the clinical

dementia rating (CDR), a score based on several clinical evaluations and neuropsychometric

measurements. The purpose of the study is to investigate the early stage Alzheimer’s Disease.

Thus we concentrate on the following three diagnostic groups: non-demented group (CDR

0), very mildly demented group (CDR 0.5), and mildly demented group (CDR 1). The data

set includes 14 neuropsychometric markers from 118 cases aged 75 falling into the three

diagnostic categories mentioned above. Out of the 14 measures, we compare the diagnostic

accuracies between the scores from two neuropsychometric tests. One of them is a measure

of semantic memory, named as the Information subset of the Wechsler Adult Intelligence

Scale (WAIS), see Wechsler (1955). The other is an untimed visuospatial measure called

Visual Retention Test (Form D, copy), as in Storandt and Hill (1989).

By deleting the individuals with results of missing values, we have 22 patients from

mildly demented group (CDR 1), 44 patients from very mildly demented group (CDR 0.5),

and 45 participants from non-demented group (CDR 0).

For CDR 1 group, the sample mean is (−2.125,−1.769), and the sample covariance

matrix is  1.298 0.786

0.786 5.751

 .

The correlation of the two attributes is 0.288.

For CDR 0.5 group, the sample mean is (−0.607,−0.551), and the sample covariance

matrix is  1.167 1.302

1.302 3.476

 .

The correlation of the two attributes is 0.647.
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For CDR 0 group, the sample mean is (0.631, 0.202), and the sample covariance matrix

is  0.712 0.164

0.164 0.445

 .

The correlation of the two attributes is 0.292.

The interval estimate of the difference of the two VUS’s based on the JEL method is

(0.350, 0.634) at α = 90%, and (0.324, 0.662) at α = 95%. The NA confidence interval is

(0.375, 0.604) at α = 90%, and (0.353, 0.627) at α = 95%. Therefore, we can conclude that

the Information subset of the WAIS possesses a stronger discrimination power than that of

Visual Retention Test (Form D, copy).
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Table 6.1: Jackknife empirical likelihood confidence intervals for the difference of volume
under ROC surfaces (VUS) at the nominal level of 1 − α = 95%. The distribution-
s are (X∗1 , X

∗
2 ) ∼ MOBV E(λx1 , λx2 , λx3), (Y ∗1 , Y

∗
2 ) ∼ MOBV E(λy1 , λy2 , λy3), (Z∗1 , Z

∗
2) ∼

MOBV E(λz1 , λz2 , λz3). The correlations c1 = c2 = c3 = c, and sample sizes nx1 = nx2 = n1,
ny1 = ny2 = n2, nz1 = nz2 = n3.

c (λx1 , λx2 , λx3 ;λy1 , λy2 , λy3 ;λz1 , λz2 , λz3) (n1, n2, n3)
JEL NA

CP(%) AL CP(%) AL
0 (1, 1, 0; 2, 2, 0; 3, 3, 0) ( 10, 10, 10) 90.8 .203 90.0 .190

( 20, 25, 30) 94.1 .126 92.4 .120
( 30, 30, 30) 94.8 .108 93.6 .104
( 60, 60, 60) 94.6 .074 94.5 .072
( 80, 80, 80) 94.5 .064 94.7 .063
(100,100,100) 95.5 .057 95.3 .056

0.25 (3
5
, 3

5
, 2

5
; 6

5
, 6

5
, 4

5
; 9

5
, 9

5
, 6

5
) ( 10, 10, 10) 91.1 .188 89.6 .176

( 20, 25, 30) 94.4 .112 93.5 .106
( 30, 30, 30) 94.9 .096 93.7 .093
( 60, 60, 60) 95.9 .066 95.2 .064
( 80, 80, 80) 94.2 .056 93.5 .055
(100,100,100) 94.2 .050 93.6 .049

0.5 (1
3
, 1

3
, 2

3
; 2

3
, 2

3
, 4

3
; 1, 1, 2) ( 10, 10, 10) 89.6 .167 86.9 .158

( 20, 25, 30) 94.4 .100 93.0 .094
( 30, 30, 30) 94.2 .087 93.0 .083
( 60, 60, 60) 92.8 .058 90.8 .056
( 80, 80, 80) 95.3 .049 94.6 .049
(100,100,100) 95.7 .044 95.1 .044

0.75 (1
7
, 1

7
, 6

7
; 2

7
, 2

7
, 12

7
; 3

7
, 3

7
, 18

7
) ( 10, 10, 10) 90.1 .151 87.1 .144

( 20, 25, 30) 95.1 .088 92.4 .084
( 30, 30, 30) 95.9 .075 93.1 .073
( 60, 60, 60) 94.8 .051 93.6 .050
( 80, 80, 80) 95.9 .044 94.7 .043
(100,100,100) 93.5 .039 92.2 .038

0.9 ( 1
19
, 1

19
, 18

19
; 2

19
, 2

19
, 36

19
; 3

19
, 3

19
, 54

19
) ( 10, 10, 10) 93.5 .143 90.1 .136

( 20, 25, 30) 94.6 .080 92.3 .078
( 30, 30, 30) 94.7 .069 93.7 .067
( 60, 60, 60) 95.4 .046 94.9 .046
( 80, 80, 80) 94.9 .040 94.6 .039
(100,100,100) 95.4 .035 94.6 .035

NOTE:
JEL: Jackknife Empirical Likelihood,
NA: Normal Approximation,
CP(%): Coverage Probability,
AL: Average Length.
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Table 6.2: Jackknife empirical likelihood confidence intervals for the difference of volume
under ROC surfaces (VUS) at the nominal level of 1 − α = 90%. The distribution-
s are (X∗1 , X

∗
2 ) ∼ MOBV E(λx1 , λx2 , λx3), (Y ∗1 , Y

∗
2 ) ∼ MOBV E(λy1 , λy2 , λy3), (Z∗1 , Z

∗
2) ∼

MOBV E(λz1 , λz2 , λz3). The correlations c1 = c2 = c3 = c, and sample sizes nx1 = nx2 = n1,
ny1 = ny2 = n2, nz1 = nz2 = n3.

c (λx1 , λx2 , λx3 ;λy1 , λy2 , λy3 ;λz1 , λz2 , λz3) (n1, n2, n3)
JEL NA

CP(%) AL CP(%) AL
0 (1, 1, 0; 2, 2, 0; 3, 3, 0) ( 10, 10, 10) 87.2 .168 85.0 .190

( 20, 25, 30) 88.7 .105 87.8 .101
( 30, 30, 30) 89.8 .090 88.3 .087
( 60, 60, 60) 89.7 .062 88.9 .061
( 80, 80, 80) 90.2 .053 89.4 .053
(100,100,100) 88.8 .047 88.6 .047

0.25 (3
5
, 3

5
, 2

5
; 6

5
, 6

5
, 4

5
; 9

5
, 9

5
, 6

5
) ( 10, 10, 10) 86.9 .156 85.8 .148

( 20, 25, 30) 90.6 .093 88.9 .089
( 30, 30, 30) 90.4 .080 89.5 .078
( 60, 60, 60) 90.5 .055 90.3 .054
( 80, 80, 80) 90.0 .047 89.8 .046
(100,100,100) 90.3 .042 88.7 .041

0.5 (1
3
, 1

3
, 2

3
; 2

3
, 2

3
, 4

3
; 1, 1, 2) ( 10, 10, 10) 85.7 .139 83.7 .133

( 20, 25, 30) 90.0 .083 87.5 .080
( 30, 30, 30) 90.5 .072 89.5 .071
( 60, 60, 60) 87.3 .048 86.4 .047
( 80, 80, 80) 91.2 .041 90.8 .041
(100,100,100) 90.0 .037 89.9 .037

0.75 (1
7
, 1

7
, 6

7
; 2

7
, 2

7
, 12

7
; 3

7
, 3

7
, 18

7
) ( 10, 10, 10) 86.3 .126 83.3 .121

( 20, 25, 30) 90.4 .073 89.1 .070
( 30, 30, 30) 91.4 .062 89.8 .061
( 60, 60, 60) 88.5 .042 87.6 .042
( 80, 80, 80) 91.0 .037 89.2 .036
(100,100,100) 87.7 .032 87.3 .032

0.9 ( 1
19
, 1

19
, 18

19
; 2

19
, 2

19
, 36

19
; 3

19
, 3

19
, 54

19
) ( 10, 10, 10) 90.0 .119 87.1 .114

( 20, 25, 30) 91.0 .067 88.7 .065
( 30, 30, 30) 91.3 .057 89.1 .056
( 60, 60, 60) 90.1 .039 89.6 .038
( 80, 80, 80) 91.9 .033 91.0 .033
(100,100,100) 90.2 .029 90.0 .029

NOTE:
JEL: Jackknife Empirical Likelihood,
NA: Normal Approximation,
CP(%): Coverage Probability,
AL: Average Length.
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Table 6.3: Jackknife empirical likelihood confidence intervals for the difference of volume
under ROC surfaces (VUS) at the nominal level of 1−α = 95%. The marginal distributions
are X1 ∼ N(µx1 , 1), X2 ∼ N(µx2 , 1), Y1 ∼ N(µy1 , 1), Y2 ∼ N(µy2 , 1), Z1 ∼ N(µz1 , 1),
Z2 ∼ N(µz2 , 1). The correlations c1 = c2 = c3 = c, and sample sizes nx1 = nx2 = n1,
ny1 = ny2 = n2, nz1 = nz2 = n3.

c (µx1 , µx2 , µy1 , µy2 , µz1 , µz2) (n1, n2, n3)
JEL NA

CP(%) AL CP(%) AL
0 (5, 3, 4, 2, 4, 1) ( 10, 10, 10) 90.1 .182 89.2 .171

( 20, 25, 30) 93.6 .112 92.7 .106
( 30, 30, 30) 94.8 .097 93.3 .093
( 60, 60, 60) 95.7 .067 94.0 .065
( 80, 80, 80) 95.4 .057 94.8 .056
(100,100,100) 94.8 .051 94.5 .050

0.25 (5, 3, 4, 2, 4, 1) ( 10, 10, 10) 91.3 .176 90.0 .165
( 20, 25, 30) 94.1 .107 93.1 .101
( 30, 30, 30) 93.9 .092 93.5 .088
( 60, 60, 60) 94.6 .063 93.7 .062
( 80, 80, 80) 95.1 .054 94.3 .053
(100,100,100) 94.6 .048 92.3 .047

0.5 (5, 3, 4, 2, 4, 1) ( 10, 10, 10) 89.2 .163 88.0 .153
( 20, 25, 30) 93.6 .101 92.1 .096
( 30, 30, 30) 93.9 .084 91.4 .081
( 60, 60, 60) 94.7 .058 93.9 .056
( 80, 80, 80) 95.1 .050 94.6 .049
(100,100,100) 95.2 .044 93.8 .043

0.75 (5, 3, 4, 2, 4, 1) ( 10, 10, 10) 89.6 .148 87.6 .140
( 20, 25, 30) 93.9 .088 91.4 .084
( 30, 30, 30) 94.7 .075 91.5 .072
( 60, 60, 60) 94.9 .051 93.3 .050
( 80, 80, 80) 95.3 .043 94.0 .042
(100,100,100) 95.5 .039 95.0 .038

0.9 (5, 3, 4, 2, 4, 1) ( 10, 10, 10) 91.3 .134 88.4 .127
( 20, 25, 30) 93.8 .079 91.3 .075
( 30, 30, 30) 95.6 .067 92.3 .065
( 60, 60, 60) 95.6 .046 94.8 .045
( 80, 80, 80) 95.6 .039 95.1 .038
(100,100,100) 95.1 .035 94.7 .034

NOTE:
JEL: Jackknife Empirical Likelihood,
NA: Normal Approximation,
CP(%): Coverage Probability,
AL: Average Length.
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Table 6.4: Jackknife empirical likelihood confidence intervals for the difference of volume
under ROC surfaces (VUS) at the nominal level of 1−α = 90%. The marginal distributions
are X1 ∼ N(µx1 , 1), X2 ∼ N(µx2 , 1), Y1 ∼ N(µy1 , 1), Y2 ∼ N(µy2 , 1), Z1 ∼ N(µz1 , 1),
Z2 ∼ N(µz2 , 1). The correlations c1 = c2 = c3 = c, and sample sizes nx1 = nx2 = n1,
ny1 = ny2 = n2, nz1 = nz2 = n3.

c (λx1 , λx2 , λy1 , λy2 , λz1 , λz2) (n1, n2, n3)
JEL NA

CP(%) AL CP(%) AL
0 (5, 3, 4, 2, 4, 1) ( 10, 10, 10) 86.1 .151 85.3 .143

( 20, 25, 30) 88.9 .093 88.1 .089
( 30, 30, 30) 90.9 .080 89.2 .078
( 60, 60, 60) 91.0 .056 90.3 .055
( 80, 80, 80) 90.3 .048 89.8 .047
(100,100,100) 89.5 .043 89.5 .042

0.25 (5, 3, 4, 2, 4, 1) ( 10, 10, 10) 86.9 .146 85.0 .138
( 20, 25, 30) 90.1 .089 88.7 .085
( 30, 30, 30) 90.9 .076 89.5 .074
( 60, 60, 60) 89.9 .053 88.5 .052
( 80, 80, 80) 90.9 .045 90.0 .045
(100,100,100) 88.5 .040 87.4 .039

0.5 (5, 3, 4, 2, 4, 1) ( 10, 10, 10) 86.5 .135 83.8 .128
( 20, 25, 30) 89.7 .084 88.0 .081
( 30, 30, 30) 88.5 .070 86.5 .068
( 60, 60, 60) 91.4 .048 89.6 .047
( 80, 80, 80) 92.3 .041 91.7 .041
(100,100,100) 88.2 .037 88.3 .036

0.75 (5, 3, 4, 2, 4, 1) ( 10, 10, 10) 86.8 .123 85.0 .117
( 20, 25, 30) 90.7 .073 87.4 .070
( 30, 30, 30) 89.6 .062 87.2 .060
( 60, 60, 60) 90.6 .043 89.1 .042
( 80, 80, 80) 90.8 .036 90.0 .036
(100,100,100) 90.4 .032 89.7 .032

0.9 (5, 3, 4, 2, 4, 1) ( 10, 10, 10) 87.8 .111 85.0 .107
( 20, 25, 30) 90.5 .065 87.3 .063
( 30, 30, 30) 90.9 .055 88.1 .054
( 60, 60, 60) 92.9 .038 91.2 .038
( 80, 80, 80) 91.6 .032 90.8 .032
(100,100,100) 90.6 .029 90.0 .029

NOTE:
JEL: Jackknife Empirical Likelihood,
NA: Normal Approximation,
CP(%): Coverage Probability,
AL: Average Length.
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CHAPTER 7

CONCLUSIONS

7.1 Summary

The dissertation is expected to have a broader impact on the practice of statistics and

other research fields. The ROC- and AUC-type measures of diagnostic accuracy is due to

the significance of diagnostic conclusions on the treatment phase of clinical trials and engi-

neering reliability evaluations. Improvements in diagnostic accuracy will result in budgetary

economy and ethical relief. In this dissertation, we focus on providing a reliable alterna-

tive in evaluating diagnostic tests with censoring through the plug-in empirical likelihood

procedure.

Also, we make elaborate efforts by providing a reliable alternative in evaluating diag-

nostic tests through the jackknife empirical likelihood procedure. A new inference technique

is constructed to compare the diagnostic treatments in discriminating three-category data.

We used paired three-sample U-statistics to estimate the difference of the volumes and es-

tablished the Wilk’s theorem for the U-statistics rigorously. The corresponding coverage

probability and average length of the confidence intervals are calculated based on the Wilk’s

theorem. Our JEL method for paired three-sample U-statistics is different from the existing

JEL methods of univariate multi-sample U-statistics (see Jing et al. (2009) and Pan et al.

(2013)). We also proposed the nonparametric normal approximation method, to make s-

tatistical inference for the difference of two volumes under the three-class ROC surfaces.

The intensive simulation studies show the advantages of the JEL method over the normal

approximation method in terms of coverage probability.
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7.2 Future Work

In the future, we continue the study in more than one way. For example, jackknife

empirical likelihood may be applied for the ROC curve with right censoring, the difference

of two ROC curves with right censoring, the AUC with right censoring, and the difference

of two AUC’s with right censoring. In addition, we will investigate the adjusted JEL confi-

dence intervals for the difference of two VUS’s. On the other hand, we will also study the

partial volume under surface (PVUS), which is another important and powerful quantity

for the evaluation of the diagnostic tests. Finally, we will explore the VUS and PVUS with

incomplete data.
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Appendix A

PROOFS OF CHAPTER 2

Denote φ(t) = I(1 − F (t) ≤ p) − R(p), H̄(t) = P (Y > t), H̃i(t) = P (Y > t, δ = i),

i = 0, 1, we have

γ0(t) = exp[

∫ t−

0

dH̃0(s)

H̄(s)
], C(t) =

∫ t−

0

dQ(s)

(1−H(s))(1−Q(s))
.

Theorem A.1. The empirical log-likelihood ratio for R(p) is

l(R0(p)) = 2
m∑
j=1

log(1 + λŵj) = 2
m∑
j=1

(λŵj −
1

2
(λŵj)

2) +Rn,

where

|Rn| ≤ c
m∑
j=1

|λŵj|3 = c|λ|3
m∑
j=1

|ŵj|3 ≤ c|λ|3 max
1≤j≤m

|ŵj|
m∑
j=1

ŵ2
j ,

where wj =
I(1− F (Yj) ≤ p)−R(p)

1−Q(Yj)
ηj. With Central Limit Theorem, we can prove that

1

m

∑
w2
j = Op(1) <∞.

Before the proof of Theorem A.1, we will first prove that

∣∣∣ 1

m

m∑
j=1

ŵj
2 − 1

m

m∑
j=1

w2
j

∣∣∣ ≤ 1

m

m∑
j=1

(ŵj − wj)2 + 2
∣∣∣ 1

m

m∑
j=1

(ŵj − wj)wj
∣∣∣.

The ROC curve is defined as

R0(p) = 1−G(F−1(1− p)) = EI(1− F (Y ) ≤ p).
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For the ROC curves with right censoring, one has

E(η) = EI(Y0 ≤ ν) = P (Y0 ≤ ν) = 1− P (ν ≤ Y0) = 1−Q(Y0),

and

R(p) = E
I(1− F (Y ) ≤ p)η

1−Q(Y )
,

E
I(1− F (Y ) ≤ p)η

1−Q(Y )
− ER(p)

η

1−Q(Y )
= 0,

E
[I(1− F (Y ) ≤ p)−R(p)]η

1−Q(Y )
= 0.

Then, we define that

wj =
[I(1− F (Yj) ≤ p)−R(p)]ηj

1−Q(Yj)
,

w̃j =
[I(1− F (Yj) ≤ p)−R(p)]ηj

1− Q̂(Yj)
, ŵj =

[I(1− F̂ (Yj) ≤ p)−R(p)]ηj

1− Q̂(Yj)
,

where F̂ , Q̂ are the Kaplan-Meier estimators of F , Q. Moreover, the empirical likelihood

ratio for R(p) is

R̂(R(p)) = sup
{ m∏
j=1

(mpj),
m∑
j=1

pj = 1, pj > 0,
m∑
j=1

ŵjpj = 0
}
.

By the Lagrange multiplier method, we have the empirical log-likelihood ratio as

l̂(R(p)) = −2 log R̂(R(p)) = 2
m∑
j=1

log(1 + λŵj),

where λ satisfies
1

m

m∑
j=1

ŵj
1 + λŵj

= 0.

Proof of Theorem A.1. By the Lagrange multiplier method, we make the following transfor-
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mations:

max
[ m∏
j=1

(mpj)
]
⇔ max

[ m∏
j=1

(pj)
]
⇔ max

[
log

m∏
j=1

(pj)
]
⇔ max

[ m∑
j=1

log(pj)
]
.

And we have the following conditions:

1. pj > 0, j = 1, 2, ...,m;

2.
m∑
j=1

pj = 1⇔
m∑
j=1

pj − 1 = 0;

3.
m∑
j=1

ŵjpj = 0.

Define

H(p) =
m∑
j=1

log(pj)− λ1

( m∑
j=1

pj − 1
)
− λ2

( m∑
j=1

ŵjpj

)
,

and let
∂H(p)

∂pj
= 0, j = 1, 2, ...,m. Then

1

pj
− λ1 − λ2wj = 0 ⇒ λ1 = m.

And 1 − mpj − λ2wjpj = 0. Without loss of generality, we can replace λ2/m with λ2.

Therefore,

mpj =
1

1 + λ2wj
,

then

R(p) =
m∏
j=1

(mpj) =
m∏
j=1

1

1 + λ2wj
.

On the other hand,

m∑
j=1

wjpj = 0⇒
m∑
j=1

(mpj)wj = 0⇒
m∑
j=1

wj
1 + λ2wj

= 0.

Since we assume that R(0) = 0, R(1) = 1, and 0 ≤ p ≤ 1. Without loss of generality,
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we only consider R(p) for 0 < p < 1. Moreover, we assume that τG = sup
t
{t : G(t) = 0},

τF = sup
t
{t : F (t) = 0}, and τG ≤ τF . Then, 0 < R(p) < 1 when 0 < p < 1.

Lemma A.1. Under some regularity conditions,

1√
m

m∑
j=1

wj → N(0, σ2(x)).

Proof of Lemma A.1. The proof can be referred to Corallary 1.2 in Stute (1995).

Lemma A.2. Under the same regularity conditions,

1

m

m∑
j=1

ŵ2
j = Op(1).

Proof of Lemma A.2. From the LLN,

1

m

m∑
j=1

ŵ2
j = E(w2

j ) + op(1) = Op(1),

and ∣∣∣ 1

m

m∑
j=1

ŵ2
j −

1

m

m∑
j=1

w2
j

∣∣∣ ≤∣∣∣ 1

m

m∑
j=1

ŵ2
j −

1

m

m∑
j=1

w̃2
j

∣∣∣+
∣∣∣ 1

m

m∑
j=1

w̃2
j −

1

m

m∑
j=1

w2
j

∣∣∣
=D1 +D2,

where

D2 =
∣∣∣ 1

m

m∑
j=1

w̃2
j −

1

m

m∑
j=1

w2
j

∣∣∣
=
∣∣∣ 1

m

m∑
j=1

(wj − w̃j)(wj − w̃j + 2w̃j)
∣∣∣

≤ 1

m

m∑
j=1

(wj − w̃j)2 + 2
∣∣∣ 1

m

m∑
j=1

(wj − w̃j)w̃j
∣∣∣

= I1 + I2,
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I1 =
1

m

m∑
j=1

(wj − w̃j)2

=
1

m

m∑
j=1

( 1

1−Q(Yj)
− 1

1− Q̂(Yj)

)2

[I(1− F (Yj) ≤ p)−R(p)]2η2
j

≤ sup
t≤Y(m)

∣∣∣Q̂(t)−Q(t)

1− Q̂(t)

∣∣∣2 1

m

m∑
j=1

[I(1− F (Yj) ≤ p)−R(p)]2η2
j

[1−Q(Yj)]2
.

By the fact in Zhou (1992), we have

sup
t≤Y(m)

∣∣∣Q̂(t)−Q(t)

1− Q̂(t)

∣∣∣2 = Op(1).

And,

1

m

m∑
j=1

[I(1− F (Yj) ≤ p)−R(p)]2η2
j

[1−Q(Yj)]2
≤ 1

m

m∑
j=1

( ηj
1−Q(Yj)

)2

,

where

1

m

m∑
j=1

( ηj
1−Q(Yj)

)2

= E
[ ηj

1−Q(Yj)

]2

+ op(1) = Op(1).

Moreover,

E
( ηj

1−Q(Yj)

)
= E

( η1

1−Q(Y1)

)
= 1.

Thus I1 = Op(1). On the other hand, I2 =
∣∣∣ 1

m

m∑
j=1

(wj − w̃j)w̃j

∣∣∣. Similarly, I2 = Op(1).

Therefore, D2 = I1 + I2 = Op(1). Next, consider D1:

D1 ≤
1

m

m∑
j=1

(ŵj − w̃j)2 + 2
∣∣∣ 1

m

m∑
j=1

(ŵj − w̃j)w̃j
∣∣∣ = K1 + 2K2.
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Because of the fact that |I(1− F̂ (Yj) ≤ p)− I(1− F (Yj) ≤ p)| ≤ 1, it leads to that:

K1 =
1

m

m∑
j=1

(ŵj − w̃j)2

=
1

m

m∑
j=1

( ηj

1− Q̂(Yj)

)2

[I(1− F̂ (Yj) ≤ p)− I(1− F (Yj) ≤ p)]2

≤ 1

m

m∑
j=1

( ηj

1− Q̂(Yj)

)2

.

Using the consistency of Kaplan-Meier estimators, we have

1

m

m∑
j=1

( ηj

1− Q̂(Yj)

)
⇒ 1

m

m∑
j=1

( ηj
1−Q(Yj)

)
CLT⇒ E

( η1

1−Q(Y1)

)
= Op(1).

Therefore, K1 = Op(1).

K2 =
∣∣∣ 1

m

m∑
j=1

(ŵj − w̃j)w̃j
∣∣∣

=
∣∣∣ 1

m

m∑
j=1

ηjw̃j

1− Q̂(Yj)
[I(1− F̂ (Yj) ≤ p)− I(1− F (Yj) ≤ p)]

∣∣∣
= Op(1).

Thus, D1 = K1 + 2K2 = Op(1). Together with the fact that D2 = Op(1), we have

∣∣∣ 1

m

m∑
j=1

ŵ2
j −

1

m

m∑
j=1

w2
j

∣∣∣ ≤ D1 +D2 = Op(1).

Proof of Theorem 2.1. l̂(R0(p)) = 2
m∑
j=1

log(1 + λŵj), where λ satisfies
m∑
j=1

ŵj
1 + λŵj

= 0.

Combining Lemma A.2 and the same argument in Owen (1991), we have λ = Op(n
−1/2). By

Lemma 11.2 in Owen (1991), and Ew2
j <∞,

max
1≤j≤m

|wj| = op(n
1/2).
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max
1≤j≤m

|w̃j| ≤ max
1≤j≤m

|w̃j − wj|+ max
1≤j≤m

|wj|,

where

max
1≤j≤m

|w̃j − wj| ≤ sup
t≤Y(m)

∣∣∣Q̂(t)−Q(t)

1− Q̂(t)

∣∣∣ max
1≤j≤m

[I(1− F (t) ≤ p)−R(p)]ηj
1−Q(t)

≤ op(n
1/2),

where the 1st term, sup
t≤Y(m)

∣∣∣Q̂(t)−Q(t)

1− Q̂(t)

∣∣∣, can be proved by Zhou (1992), and the 2nd term

is wj. Then, max
1≤j≤m

|w̃j − wj| = op(n
1/2).

max
1≤j≤m

|ŵj| ≤ max
1≤j≤m

|ŵj − w̃j|+ max
1≤j≤m

|w̃j|,

where

max |ŵj − w̃j| = max
∣∣∣I(1− F̂ (Yj) ≤ p)− I(1− F (Yj) ≤ p)

1− Q̂(Yj)
ηj

∣∣∣
= max

∣∣∣I(1− F̂ (Yj) ≤ p)− I(1− F (Yj) ≤ p)

I(1− F (Yj) ≤ p)−R(p)

∣∣∣∣∣∣I(1− F (Yj) ≤ p)−R(p)

1− Q̂(Yj)
ηj

∣∣∣.
The 2nd term is w̃j, and the 1st term is OP (1) for a fixed p ∈ (0, 1), and R(p) ∈ (0, 1). Thus

max |ŵj − w̃j| ≤ Op(1)op(n
1/2) = op(n

1/2).

Together with max |w̃j| = op(n
1/2), we have max |ŵj| = op(n

1/2). By Lemma 11.3 in Owen

(1991), and Ew2
j <∞,

1

m

m∑
j=1

|wj|3 = op(n
1/2).

1

m

m∑
j=1

|w̃j|3 =
1

m

m∑
j=1

(|w̃j|3 − |wj|3) +
1

m

m∑
j=1

|wj|3.
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1

m

m∑
j=1

(|w̃j|3 − |wj|3) =
1

m

m∑
j=1

[(|w̃j| − |wj|)(w̃2
j + w2

j + |w̃j||wj|)]

≤ max |w̃j − wj|
( 1

m

m∑
j=1

w̃2
j +

1

m

m∑
j=1

w2
j +

1

m

m∑
j=1

|w̃j||wj|
)

≤ max(w̃j − wj)
{ 1

m

m∑
j=1

w̃2
j +

1

m

m∑
j=1

w2
j +

1

m

√√√√ m∑
j=1

w̃2
j

m∑
j=1

w2
j

}
= op(n

1/2)(Op(1) +Op(1) +Op(1))

= op(n
1/2).

Thus 1/m
m∑
j=1

|w̃j|3 = op(n
1/2). Similarly, we have

1

m

m∑
j=1

|ŵj|3 = op(n
1/2). From the Taylor’s

expansion of the empirical log-likelihood ratio,

l̂(R(p)) = 2
m∑
j=1

log(1 + λŵj) = 2
m∑
j=1

(
λŵj −

1

2
(λŵj)

2
)

+Rn,

where

|Rn| ≤ c
m∑
j=1

|λŵj|3 ≤ c|λ|3
m∑
j=1

|ŵj|3 = Op(1)op(n
−3/2)op(n

3/2) = op(1).

On the other hand, we have

1.
m∑
j=1

ŵj
1 + λŵj

= 0,

m∑
j=1

ŵj − λ
m∑
j=1

ŵ2
j +

m∑
j=1

λ2ŵ3
j

1 + λŵj
= 0,

λ =
( m∑
j=1

ŵ2
j

)−1( m∑
j=1

ŵj

)
+
( m∑
j=1

ŵ2
j

)−1( m∑
j=1

λ2ŵ3
j

1 + λŵj

)
,

where |ŵj| ≤ max
1≤j≤m

|ŵj| = op(n
1/2). Thus

( m∑
j=1

ŵ2
j

)−1

= op(n
−1), and

λŵj ≤ |λ|
m∑
j=1

|ŵj| = Op(n
−1/2)op(n

1/2) = Op(1).
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We know that 1 + λŵj = Op(1).

λ2

m∑
j=1

ŵ3
j

1 + λŵj
≤ Op(n

−1)op(n
3/2)Op(1) = op(n

1/2),

( m∑
j=1

ŵ2
j

)−1( m∑
j=1

λ2ŵ3
j

1 + λŵj

)
= op(n

−1/2),

λ =
( m∑
j=1

ŵ2
j

)−1( m∑
j=1

ŵj

)
+ op(n

−1/2).

2.
m∑
j=1

ŵj
1 + λŵj

= 0,

m∑
j=1

λŵj −
m∑
j=1

(λŵj)
2 +

m∑
j=1

(λŵj)
3

1 + λŵj
= 0,

m∑
j=1

λŵj =
m∑
j=1

(λŵj)
2 −

m∑
j=1

(λŵj)
3

1 + λŵj
=

m∑
j=1

(λŵj)
2 + op(1),

because
∣∣∣λ3

m∑
j=1

ŵ3
j

1 + λŵj

∣∣∣ ≤ Op(n
−3/2)op(n

3/2)Op(1) = op(1). Applying Taylor’s expansion,

we have

σ2
1(p)

σ2(p)
l̂(R0(p)) =

σ2
1(p)

σ2(p)
2

m∑
j=1

(
λŵj −

1

2
(λŵj)

2
)

+Op(1)

=
σ2

1(p)

σ2(p)
2
[ m∑
j=1

(λŵj)
2 + op(1)

]
− σ2

1(p)

σ2(p)

m∑
j=1

(λŵj)
2 + op(1)

=
σ2

1(p)

m−1

m∑
j=1

ŵ2
j

1

mσ2(p)

(
m∑
j=1

ŵj

)2

+ op(1)

=
σ2

1(p)

m−1

m∑
j=1

ŵ2
j

[ m∑
j=1

ŵj

√
mσ(p)

]2

+ op(1)
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and

lim
σ2

1(p)

m−1

m∑
j=1

ŵ2
j

= 1,

1√
mσ(p)

m∑
j=1

ŵj
D→ N(0, 1),

[
1√

mσ(p)

m∑
j=1

ŵj

]2

→ χ2
1.

Thus, l̂(R0(p))
D→ γ(R0(p))χ2

1, as m→∞.
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Appendix B

PROOFS OF CHAPTER 3

We observe (X1i, X2i, ξ1i, ξ2i), i = 1, 2, ..., n, where

X1i = min(X0
1i, Ui), ξ1i = I(X0

1i ≤ Ui); X2i = min(X0
2i, Ui), ξ2i = I(X0

2i ≤ Ui);

and similarly, we observe (Y1j, Y2j, η1j, η2j), j = 1, 2, ...,m, where

Y1j = min(Y 0
1j, Vj), η1j = I(Y 0

1j ≤ Vj); Y2j = min(Y 0
2j, Vj), η2j = I(Y 0

2j ≤ Vj);

where I(·) denotes the indicator function. Denote

ŵ1i =
[I(1− F̂1(X2i) ≤ p)−R1(p)]ξ2i

1− Q̂1(X2i)
, ŵ2j =

[I(1− F̂2(Y2j) ≤ p)−R1(p) +D]η2j

1− Q̂2(Y2j)
,

∆ = D(p) = R1(p)−R2(p).

Let θ = R1(p) = ROC1(p), and

α̂1i =
∂ŵ1i

∂θ
= − ξ2i

1− Q̂1(X2i)
, α̂2j =

∂ŵ2j

∂θ
= − η2j

1− Q̂2(Y2j)
.

Refer to Assumption 4 on page 36 of Valeinis (2007). (a) For the 1st sample X1, ...Xn,

denote R1(p) = θ, we make the following assumptions:

(A1) EFw
2
1(X, θ, ĥ) > 0, α1(X, θ, ĥ) is continuous in a neighborhood of θ0, α1(X, θ, ĥ),

w3
1(X, θ, ĥ) > 0 are bounded by some integrable function G1(X) in this neighborhood,

EFα1(X, θ, ĥ) is nonzero.

(A2) For some subset H̄ of H such that P{ĥ ∈ H} → 1, and for some η ∈ (1/3, 1/2), the

class functions F = {w1(., θ, h) : |∆| = |θ − θ0| ≤ cn−η, h ∈ H̄} with a positive constant
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c <∞ has the strong Gilvenko-Cantelli property with the almost sure convergence rate

sup
|∆|≤cn−η

∣∣∣ 1
n

n∑
i=1

{w1(Xi, θ, h)− Ew1(X, θ, h)}
∣∣∣ = O(β1),

where β1 = o(n−η).

(A3) For the functions w2
1(X, θ, h), w3

1(X, θ, h) and α1(X, θ, h) we assume that the strong

Gilvenko-Cantelli property holds, i.e., the above equation holds.

(A4) Assume that Ew1(X, θ0, ĥ) a.s., where β2 = o(n−η).

(b) Assume that for the 2nd sample Y1, ...Ym, (A1) - (A4) also hold for the functions

w2(Y, θ, h), w2
2(Y, θ, h), w3

2(Y, θ, h) and α2(Y, θ, h).

Proof of (A1). 1. (Eŵ2
1 > 0.)

Eŵ2
1 =E

{ [I(1− F̂1(X2) ≤ p)−R1(p)]ξ2

1− Q̂1(X2)

}2

=E
{ [I(1− F̂1(X2) ≤ p)−R1(p)]2

[1− Q̂1(X2)]2
I(X0

1 ≤ U1)
}

=E
{ [I(1− F̂1(X2) ≤ p)−R1(p)]2

[1− Q̂1(X2)]2
|X0

1 ≤ U1

}
.

P (X1 ≤ U1) > 0, and

E
(
E
{ [I(1− F̂1(X2) ≤ p)−R1(p)]2

[1− Q̂1(X2)]2

∣∣∣X0
1 ≤ U1

})
=

[(I(1− F̂1(X2)) ≤ p)−R1(p)]2

[1− Q̂1(X2)]2
> 0.

Therefore Eŵ2
1 > 0.

2. (α̂1 is continuous in a neighbourhood of θ0.)

α̂1 is a constant for R1(p), then α̂1 is continuous in a neighbourhood of θ0 = R1(p).

3. (α1 and w3
1 are bounded by some integrable function G1(X) in this neighbourhood.)

4. (Eα̂1 is nonzero.)

Eα̂1 = E
{ −1

1− Q̂1(X2)
|X1 ≤ U1

}
.
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P (X1 ≤ U1) > 0, and
−1

1− Q̂1(X2)
< 0, then Eα̂1 < 0(6= 0).

Proof of (A2). Let H̄ = {F1, Q1}. P (F̂1 = F1, Q̂1 = Q1)→ 1, by Wang (1987). We have

E
I(1− F̂1(X2) ≤ p)−R1(p)−∆

1− Q̂1(X2)
ξ2 =E

I(1− F̂1(X2) ≤ p)−R1(p)

1− Q̂1(X2)
ξ2 − E

( ∆ξ2i

1−Q1(X2)

)
=0−∆E(

ξ2i

1−Q1(X2)
)

=−∆.

For η ∈ (1/3, 1/2), c <∞,

sup
|∆|≤cn−η

∣∣∣ 1
n

n∑
i=1

I(1− F̂1(X2i) ≤ p)−R1(p)−∆

1− Q̂1(X2i)
ξ2i − E

I(1− F̂1(X2) ≤ p)−R1(p)−∆

1− Q̂1(X2)
ξ2i

∣∣∣
= sup
|∆|≤cn−η

∣∣∣ 1
n

n∑
i=1

I(1− F̂1(X2i) ≤ p)−R1(p)−∆

1− Q̂1(X2i)
ξ2i + ∆

∣∣∣
= sup
|∆|≤cn−η

∣∣∣ 1
n

n∑
i=1

I(1− F̂1(X2i) ≤ p)−R1(p)

1− Q̂1(X2i)
ξ2i +

1

n

n∑
i=1

∆
(

1− ξ2i

1−Q1(X2i)

)∣∣∣
≤
∣∣∣ 1
n

n∑
i=1

I(1− F̂1(X2i) ≤ p)−R1(p)

1− Q̂1(X2i)
ξ2i

∣∣∣+ sup
|∆|≤cn−η

|∆|
∣∣∣ 1
n

n∑
i=1

(
1− ξ2i

1−Q1(X2i)

)∣∣∣
∆
=D1 +D2.

By Marcinkiewicz-Zygmund strong law of large number (SLLN), one has

1

np1

n∑
i=1

I(1− F̂1(X2i) ≤ p)−R1(p)

1− Q̂1(X2i)
ξ2i − E

( 1

np1

n∑
i=1

I(1− F̂1(X2i) ≤ p)−R1(p)

1− Q̂1(X2i)
ξ2i

)
=

1

np1

n∑
i=1

I(1− F̂1(X2i) ≤ p)−R1(p)

1− Q̂1(X2i)
ξ2i − 0

→0 a.s.

for 1
2
< p1 ≤ 1.

n1−p1 1

n

n∑
i=1

I(1− F̂1(X2i) ≤ p)−R1(p)

1− Q̂1(X2i)
ξ2i = o(1) a.s.
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for 0 ≤ 1− p1 <
1
2
. That is,

D1 =
1

n

n∑
i=1

I(1− F̂1(X2i) ≤ p)−R1(p)

1− Q̂1(X2i)
ξ2i = o(np1−1) a.s.

for 0 ≤ 1− p1 <
1
2
. On the other hand, we have

D2 = sup
|∆|≤cn−η

|∆|
∣∣∣ 1
n

n∑
i=1

(1− ξ2i

1−Q1(X2i)
)
∣∣∣ ≤ cn−η

∣∣∣ 1
n

n∑
i=1

(1− ξ2i

1−Q1(X2i)
)
∣∣∣.

By the SLLN,
∣∣∣ 1
n

∑n
i=1

ξ2i

1−Q1(X2i)
− 1
∣∣∣ = o(1) a.s. and cn−η = O(n−η). Thus D2 ≤

O(n−η)o(1) = o(n−η). That is, D2 = O(β0), where β0 = o(n−η). Set η0 = η ∈ (1/3, 1/2) ⊂

(0, 1/2), then D1 = o(nη). Thus,

sup
|∆|≤cn−η

∣∣∣ 1
n

n∑
i=1

I(1− F̂1(X2i) ≤ p)−R1(p)−∆

1− Q̂1(X2i)
ξ2i−E

I(1− F̂1(X2) ≤ p)−R1(p)−∆

1− Q̂1(X2)
ξ2

∣∣∣ = O(β1),

where β1 = o(n−η). Thus we proved that

w1 =
1

n

n∑
i=1

I(1− F̂1(X2) ≤ p)−R1(p)−∆

1− Q̂1(X2)

has the strong Gilvenko-Cantelli property.

Proof of (A3). (For p ∈ (0, 1), w1 is bounded. By Dudley (1998), both w2
1 and w3

1 have the

strong Gilvenko-Cantelli property.)

g is bounded, say, ‖g‖∞ <∞, i.e., sup
x
|g(x)| = ‖g‖∞ <∞. Denote

g1 = g∗1 · I[−M,M ](·), g∗1 = x2, g2 = g∗2 · I[−M,M ](·), g∗2 = x3.

Since w3
1 is assumed to be bounded, w1 is bounded as well. Suppose w3

1(X, θ, ĥ) is bounded

by an integrable function G1(x) in the neighbourhood of θ0, w1 is bounded by G
1
3
1 (x). By
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Stute and Wang (1993), we have

sup
x
|F̂1(x)− F1(x)| → 0 a.s.; sup

x
|Q̂1(x)−Q1(x)| → 0 a.s.

Assume that h0 ∈ H, ĥ ∈ H̄ ⊂ H and t ∈ T , where T is some interval. Then ∀h,

ĥ→ h, we have w3
1(X, θ, ĥ) ≤ G1(x). Thus w3

1(X, θ, h) ≤ G1(x). If G(x) is integrable, then

G(x) is bounded a.s. Thus w3
1(X, θ, h) is bounded a.s.

α1 = − ξ2

1− Q̂1(X2)
does not vary as R1(p) or ∆. Then

sup
|∆|≤cn−η

∣∣∣ 1
n

n∑
i=1

−ξ2i

1−Q1(X2i)
− E ξ2

1− Q̂1(X2)

∣∣∣ = − 1

n

n∑
i=1

ξ2i

1−Q1(X2i)
+ 1.

By Marcinkiewicz-Zygmund strong law of large number (SLLN),

1− 1

n

n∑
i=1

ξ2i

1−Q1(X2i)
= O(β′1),

where β′1 = o(n−η2), η2 ∈ (1/3, 1/2). Then w1, w2
1, w3

1, and α1 have the strong Gilivenko-

Cantelli property.

Proof of (A4). Now we rewrite Êw1 as

Eŵ1 =
(
Eŵ1 −

1

n

n∑
i=1

ŵ1i

)
+
( 1

n

n∑
i=1

ŵ1i −
1

n

n∑
i=1

w1i

)
+
( 1

n

n∑
i=1

w1i

)
∆
= E1 + E2 + E3.

By Marcinkiewiz-Zygmund strong law of large number,

|E1| =
∣∣∣Eŵ1 −

1

n

n∑
i=1

ŵ1i

∣∣∣ = O(β
(1)
2 ),

where β
(1)
2 = o(n−η

(1)
3 ), η

(1)
3 ∈ (1/3, 1/2).

|E3| =
∣∣∣ 1
n

n∑
i=1

w1i

∣∣∣ =
∣∣∣0− 1

n

n∑
i=1

w1i

∣∣∣ =
∣∣∣Ew1 −

1

n

n∑
i=1

w1i

∣∣∣ = O(β
(2)
2 ),



95

where β
(2)
2 = o(n−η

(2)
3 ), η

(2)
3 ∈ (1/3, 1/2). Next, we define

w1i =
I(1− F1(X2i) ≤ p)−R1(p)

1−Q1(X2i)
ξ2i;

ŵ1i =
I(1− F̂1(X2i) ≤ p)−R1(p)

1− Q̂1(X2i)
ξ2i, w̃1i =

I(1− F̂1(X2i) ≤ p)−R1(p)

1−Q1(X2i)
ξ2i.

Then, E2 can be rewritten as

E2 =
1

n

n∑
i=1

ŵ1i −
1

n

n∑
i=1

w1i =
1

n

n∑
i=1

ŵ1i −
1

n

n∑
i=1

w̃1i +
1

n

n∑
i=1

w̃1i −
1

n

n∑
i=1

w1i,

where

∣∣∣ 1
n

n∑
i=1

w̃1i −
1

n

n∑
i=1

w1i

∣∣∣ =
∣∣∣ 1
n

n∑
i=1

I(1− F̂1(X2i) ≤ p)− I(1− F1(X2i) ≤ p)

1−Q1(X2i)
ξ2i

∣∣∣
≤ 1

n

n∑
i=1

|I(1− F̂1(X2i) ≤ p)− I(1− F1(X2i) ≤ p)|
1−Q1(X2i)

ξ2i

≤max
i
|I(1− F̂1(X2i) ≤ p)− I(1− F1(X2i) ≤ p)| 1

n

n∑
i=1

ξ2i

1−Q1(X2i)
.

By the law of large numbers,

1

n

n∑
i=1

ξ2i

1−Q1(X2i)
= E

ξ2

1−Q1(X2)
+ o(1),

and we have

max
i
|I(1− F̂1(X2i) ≤ p)− I(1− F1(X2i) ≤ p)|

= max
i
|I(F̂1(X2i) ≥ 1− p)− I(F1(X2i) ≥ 1− p)|

= max
i
I{min

i
[F̂1(X2i, F1(X2i] < 1− p ≤ max

i
[F̂1(X2i), F1(X2i)]}.
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By Stute and Wang (1993), sup
x
|F̂1(x)− F1(x)| → 0, a.s., i.e.,

sup
x

[max(F̂1(x), F1(x))−min(F̂1(x), F1(x))]→ 0, a.s.

Then we have

max
i
I{min

i
[F̂1(X2i, F1(X2i] < 1− p ≤ max

i
[F̂1(X2i), F1(X2i)]} = 0, a.s.

Therefore,

1

n

n∑
i=1

w̃1i −
1

n

n∑
i=1

w1i = 0, a.s.

Next, consider
1

n

n∑
i=1

ŵ1i −
1

n

n∑
i=1

w̃1i. We know that
1

n

n∑
i=1

w1i = O(β
(2)
2 ),

1

n

n∑
i=1

w̃1i = O(β
(5)
2 ), a.s.,

where β
(5)
2 = o(n−η

(5)
3 ), η

(2)
3 ∈ (1/3, 1/2). Thus,

∣∣∣ 1
n

n∑
i=1

ŵ1i −
1

n

n∑
i=1

w̃1i

∣∣∣
=

1

n

n∑
i=1

{I(1− F̂1(X2i) ≤ p)−R1(p)

1− Q̂1(X2i)
ξ2i −

I(1− F̂1(X2i) ≤ p)−R1(p)

1−Q1(X2i)
ξ2i

}
≤ sup

s≤X(n)

∣∣∣Q̂1(s)−Q1(s)

1− Q̂1(s)

∣∣∣∣∣∣ 1
n

n∑
i=1

I(1− F̂1(X2i) ≤ p)−R1(p)

1−Q1(X2i)
ξ2i

∣∣∣,
where

sup
s≤X(n)

∣∣∣Q̂1(s)−Q1(s)

1− Q̂1(s)

∣∣∣ = O(1),

∣∣∣ 1
n

n∑
i=1

w̃1i

∣∣∣ =
∣∣∣ 1
n

n∑
i=1

I(1− F̂1(X2i) ≤ p)−R1(p)

1−Q1(X2i)
ξ2i

∣∣∣ = O(β
(5)
2 ).

1

n

n∑
i=1

ŵ1i −
1

n

n∑
i=1

w̃1i = O(β
(5)
2 ).
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Therefore,

E2 =
1

n

n∑
i=1

ŵ1i −
1

n

n∑
i=1

w1i

=
1

n

n∑
i=1

ŵ1i −
1

n

n∑
i=1

w̃1i +
1

n

n∑
i=1

w̃1i −
1

n

n∑
i=1

w1i

=O(β
(6)
2 ),

where β
(6)
2 = o(n−η

(6)
3 ), η

(6)
3 ∈ (1/3, 1/2). Moreover,

Eŵ1 = E1 + E2 + E3 = O(β2),

where β2 = o(n−η3), η3 ∈ (1/3, 1/2).

Thus Assumption 4 in Valeinis (2007) is proved. Next consider Assumption 5. (a) For

the 1st sample X1, ...Xn, we make the following assumptions:

(B1) n1/2M1n(θ0, t, ĥ)
d→ U1(t), where U1(t) ∼ N(0, V1(t)).

(B2) sup
t∈T
|S1n(θ0, t, ĥ)− V2(t)| p→ 0.

(B3) sup
t∈T
|n−1

n∑
i=1

α(Xi, θ0, ĥ)− V3(t)| p→ 0.

(B4) w3
1(X, θ0, ĥ) is bounded by some integrable function G11(X).

(B5) For R∗1(p) ∈ (R1(p)− c0n
−η, R1(p) + c0n

−η), where c0 > 0, θ0 = R1(p), θ = R∗1(p)

1

n

n∑
i=1

∂S1n(R∗1(p), t, ĥ)

∂R∗1(p)
= Op(1);

1

n

n∑
i=1

α(Xi, θ, ĥ) = Op(1);

1

n

n∑
i=1

w3
1(Xi, θ, ĥ) = Op(1).

(b) Assume that for the 2nd sample Y1, ...Ym, (B1)-(B5) also hold for the functions

w2(Y, θ, h), w2
2(Y, θ, h), w3

2(Y, θ, h) and α2(Y, θ, h), and S2m(θ, t, h) with functions M1(t),

M2(t) and M3(t) instead of V1(t), V2(t) and V3(t).
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(B1) and (B2) can be proved similar to the one sample case, that is, empirical confidence

intervals for the ROC curves with right censored data.

Proof of (B3). Q̂1(X2i) is the Kaplan-Meier (K-M) estimator of Q, then Q̂1(X2)
P→ Q1(X2)

point-wise, and

ξ2

1− Q̂1(X2)

D→ ξ2

1−Q1(X2)
.

By the law of large number,

1

n

n∑
i=1

−ξ2

1− Q̂1(X2)
= −E ξ2

1−Q1(X2)
+ op(1).

Assume that α̂ =
ξ2

1− Q̂1(X2)
is bounded by an absolute integrable function, then

E
ξ2

1− Q̂1(X2)
→ E

ξ2

1−Q1(X2)
= 1,

by the Lebesgue’s Dominated Convergence Theorem. Thus,

1

n

n∑
i=1

−ξ2i

1− Q̂1(X2i)
= −1 + op(1),

that is,

1

n

n∑
i=1

−ξ2i

1− Q̂1(X2i)

P→ −1.

Proof of (B4). The bounded conditions in (B4) can be directly proved by the assumptions

as those in (A1).
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Proof of (B5). (1) For R∗1(p) ∈ (R1(p)− c0n
−η, R1(p) + c0n

−η), c0 > 0,

∣∣∣ ∂

∂R∗1(p)

1

n

n∑
i=1

[I(1− F̂1(X2i) ≤ p)−R∗1(p)

1− Q̂1(X2i)

]2

ξ2i

∣∣∣
=
∣∣∣ 1
n

n∑
i=1

{
2
I(1− F̂1(X2i) ≤ p)−R∗1(p)

1− Q̂1(X2i)

−1

1− Q̂1(X2i)
ξ2i

}∣∣∣
=2
∣∣∣ 1
n

n∑
i=1

{I(1− F̂1(X2i) ≤ p)−R∗1(p)

1− Q̂1(X2i)
ξ2i

ξ2i

1− Q̂1(X2i)

}∣∣∣
≤2 max

i

∣∣∣I(1− F̂1(X2i) ≤ p)−R∗1(p)

1− Q̂1(X2i)
ξ2i

∣∣∣∣∣∣ 1
n

n∑
i=1

ξ2i

1− Q̂1(X2i)

∣∣∣
∆
=S1 + S2,

where

S1 = 2 max
i

∣∣∣I(1− F̂1(X2i) ≤ p)−R∗1(p)

1− Q̂1(X2i)
ξ2i

∣∣∣,
S2 =

∣∣∣ 1
n

n∑
i=1

ξ2i

1− Q̂1(X2i)

∣∣∣.
By the conclusion in (B3),

S2 =
∣∣∣ 1
n

n∑
i=1

ξ2i

1− Q̂1(X2i)

∣∣∣ P→ 1,

thus S2 = Op(1).

S1 ≤ 2 max
i
|I(1− F̂1(X2i) ≤ p)−R∗1(p)|max

i

∣∣∣ ξ2i

1− Q̂1(X2i)

∣∣∣,
where max

i

∣∣∣ ξ2i

1− Q̂1(X2i)

∣∣∣ is bounded by a constant c00 ∈ R as given in the assumptions in
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(B4) and (A1).

2 max
i
|I(1− F̂1(X2i) ≤ p)−R∗1(p)|

=2 max
i
|I(1− F̂1(X2i) ≤ p)−R1(p)− cn−η|

≤2{max
i
|I(1− F̂1(X2i) ≤ p)|+ max |R1(p)|+ max |cn−η|}

≤2(1 + 1 + c0n
−η)

=4 + 2c0n
−η,

where c ∈ (−c0, c0), η ∈ (1/3, 1/2). Thus, S1 ≤ c00 = 4+2c0n
−η, i.e., S1 = Op(1). Therefore,

∣∣∣ ∂

∂R∗1(p)

1

n

n∑
i=1

[I(1− F̂1(X2i) ≤ p)−R∗1(p)

1− Q̂1(X2i)

]2

ξ2i

∣∣∣ = Op(1).

(2) By the conclusions in (B3), we have
∣∣∣ 1
n

n∑
i=1

ξ2i

1− Q̂1(X2i)

∣∣∣ = Op(1).

(3)

∣∣∣ 1
n

n∑
i=1

ŵ3
1

∣∣∣ =
∣∣∣ 1
n

n∑
i=1

(
I(1− F̂1(X2i) ≤ p)−R1(p)

1− Q̂1(X2i)
ξ2i)

3
∣∣∣

≤ 1

n

n∑
i=1

∣∣∣I(1− F̂1(X2i) ≤ p)−R1(p)

1− Q̂1(X2i)
ξ2i

∣∣∣3
≤max

i
|I(1− F̂1(X2i) ≤ p)−R∗1(p)|3 1

n

n∑
i=1

( ξ2i

1− Q̂1(X2i)

)3

≤(max
i
I(1− F̂1(X2i) ≤ p) + max

i
R1(p) + c0n

η)3 1

n

n∑
i=1

( ξ2i

1− Q̂1(X2i)

)3

≤(2 + c0n
−η)3 1

n

n∑
i=1

( ξ2i

1− Q̂1(X2i)

)3

≤(2 + c0n
−η)3

[
max
i

ξ2i

1− Q̂1(X2i)

]2 1

n

n∑
i=1

ξ2i

1− Q̂1(X2i)
,

where c ∈ (−c0, c0), η ∈ (1/3, 1/2). We know that
ξ2i

1− Q̂1(X2i)
is bounded and
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1

n

∑n
i=1

ξ2i

1− Q̂1(X2i)

P→ 1 from (B3), then

1

n
ŵ3

1 =
1

n

n∑
i=1

(I(1− F̂1(X2i) ≤ p)−R1(p)

1− Q̂1(X2i)
ξ2i

)3

= Op(1).

As in the proof of (A3), we know that |w3
1(x, θ0, ĥ)| ≤ M00, |α1(x, θ0, ĥ)| ≤ M00 in

probability. Similarly, |w3
2(x, θ0, ĥ)| ≤ M00, |α2(x, θ0, ĥ)| ≤ M00 in probability. For λ′1 ∈

[0, λ0
1], λ′2 ∈ [0, λ0

2], and θ ∈ [θ0 − cnη, θ0 + cnη],

∂2Q1,n(θ, 0, 0)

∂θ2
=
∂2Q2,n(θ, 0, 0)

∂θ2
= 0.

∂2

∂λ2
1

Q1,n(θ, 0, 0)
∣∣∣ θ=θ0,
λ1=λ′1,
λ2=0

= 2
1

n

n∑
i=1

[ w1(x, θ0, ĥ)

1 + λ′1w1(x, θ0, ĥ)

]3

.

When λ′1 = 0,

∂2

∂λ2
1

Q1,n(θ, 0, 0)

∣∣∣∣∣ θ=θ0,
λ1=λ′1,
λ2=0

= 2
1

n

n∑
i=1

w1(x, θ0, ĥ)3 <∞,

in probability. When λ′1 = λ0
1,

1

n

∑n
i=1

w1(x, θ0, ĥ)

1 + λ′1w1(x, θ0, ĥ)
= 0, and

1

n

n∑
i=1

[ w1(x, θ0, ĥ)

1 + λ′1w1(x, θ0, ĥ)

]3

<∞,

in probability. Given θ = θ0, and λ2 = 0, we know that
∂2

∂λ2
1

Q1,n(θ, 0, 0)
∣∣∣ θ=θ0,
λ1=λ′1,
λ2=0

is a

continuous function of λ′1. Thus for λ′1 ∈ [0, λ0
1],
∣∣∣ ∂2

∂λ2
1

Q1,n(θ, 0, 0)| θ=θ0,
λ1=λ′1,
λ2=0

∣∣∣ < M i.e.,
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∂2

∂λ2
1

Q1,n(θ, 0, 0)| θ=θ0,
λ1=λ′1,
λ2=0

= Op(1). Similarly,
∂2

∂λ2
2

Q2,n(θ, 0, 0)
∣∣∣ θ=θ0,
λ1=0,
λ2=λ′2

= Op(1) for λ′2 ∈ [0, λ0
2].

∂2

∂λ2
1

Q3,n(θ, 0, 0)

∣∣∣∣∣ θ=θ0,
λ1=λ′1,
λ2=0

= − 2

n

n∑
i=1

α1(x, θ0, ĥ)
w1(x, θ0, ĥ)

[1 + λ′1w1(x, θ0, ĥ)]3
.

When λ′1 = 0,

∣∣∣∣∣ ∂2

∂λ2
1

Q3,n(θ, 0, 0)
∣∣∣ θ=θ0,
λ1=λ′1,
λ2=0

∣∣∣∣∣ =
∣∣∣− 2

n

n∑
i=1

α1(x, θ0, ĥ)w1(x, θ0, ĥ)
∣∣∣ < M.

When λ′1 = λ0
1,

∣∣∣∣∣ ∂2

∂λ2
1

Q3,n(θ, 0, 0)
∣∣∣ θ=θ0,
λ1=λ′1,
λ2=0

∣∣∣∣∣ =
∣∣∣− 2

n

n∑
i=1

α1(x, θ0, ĥ)
w1(x, θ0, ĥ)

[1 + λ′1w1(x, θ0, ĥ)]2

∣∣∣ < M.

∂2

∂λ2
1

Q3,n(θ, 0, 0) is continuous for λ′1, thus for λ′1 ∈ [0, λ0
1],

∂2

∂λ2
1

Q3,n(θ, 0, 0)

∣∣∣∣∣ θ=θ0,
λ1=λ′1,
λ2=0

= Op(1).

Similarly,

∂2

∂λ2
2

Q3,n(θ, 0, 0)

∣∣∣∣∣ θ=θ0,
λ1=0,
λ2=λ′2

= Op(1).

Therefore, Assumption 6 holds, and therefore Assumptions 3-6 hold. By Theorem 21 in

Valeinis (2007),

−2 logR(∆, θ, t, ĥ)
D→ V 2

3 (t)M2(t) + kM2
3 (t)V2(t)

M1(t)V3(t)2 + kV1(t)M2
3 (t)

χ2
1.
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Appendix C

PROOFS OF CHAPTER 4

Theorem C.1 (Theorem 2.1 in Hjort et al. (2009)). Suppose that

(A0) P{ELn(θ0, ĥ)→ 0}.

(A1) Σn
i=1mn(Xi, θ0, ĥ)

D→ U .

(A2) anΣn
i=1m

⊗2
n (Xi, θ0, ĥ)

pr→ V2.

(A3) an max1≤i≤n ‖mn(Xi, θ0, ĥ)‖ pr→ 0.

If (A0)-(A3) hold, then

−2a−1
n logELn(θ0, ĥ)

D→ UTV −1
2 U.

We will show (A0)-(A3) hold first. Thus Theorem 4.2 can be proved using Theorem

C.1. Here we prove that (A1) holds in the first place.

Lemma C.1.

1√
m

m∑
j=1

Ẑj =
1√
m

m∑
j=1

(F̂ (Yj)−∆)ηj

1− Q̂(Yj)
→ N(0, σ2).

Proof of C.1. Let

Zj =
(F (Yj)−∆)ηj

1−Q(Yj)
,

then replace F and Q with their Kaplan-Meier estimators,

Ẑj =
(F̂ (Yj)−∆)ηj

1− Q̂(Yj)
,



104

that is, let mn(Xi, θ0, ĥ) be the estimate of m(Xi, θ0, h). mnj =
1√
m
Ẑj, and

m∑
j=1

mnj −∆ =
1√
m

m∑
j=1

F̂ (Yj)ηj

1− Q̂(Yj)
−∆

=
1√
m

∫
(F̂ (Yj)−∆)dĜ(t)

=
1√
m

[ ∫ x

0

F̂ (t)dĜ(t)−∆
]

=
1√
m

(∆̂−∆)

D→N(0, σ2),

i.e.,
m∑
j=1

mnj
D→ U , where U ∼ N(0, σ2). Thus, (A1) holds.

Next let us prove (A2).

Lemma C.2.

σ̂2
1 =

1

m

m∑
j=1

Ẑ2
j + o(p),

where Ẑj =
(F̂ (Yj)−∆)ηj

1− Q̂(Yj)
, and σ̂2

2 =
(F̂ (Yj)− ∆̂)ηj

1− Q̂(Yj)
.

Proof of C.2.

1

m

m∑
j=1

Ẑ2
j =

1

m

m∑
j=1

(F̂ (Yj)−∆)2η2
j

[1− Q̂(Yj)]2

=
1

m

m∑
j=1

F̂ (Yj)
2 − 2∆F̂ (Yj) + ∆2

[1− Q̂(Yj)]
[Ĝ(Yj)− Ĝ(Yj−)]

=

∫ ∞
0

F̂ (t)2 − 2∆F̂ (t) + ∆2

[1− Q̂(t)]
dĜ(t)

P→
∫ ∞

0

F (t)2 − 2∆F (t) + ∆2

1−Q(t)
dG(t) = σ2

1.
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Let

∣∣∣ m∑
j=1

(
1√
m
Ẑj)

2 − σ̂2
1

∣∣∣ =
∣∣∣ 1

m

m∑
j=1

(F̂ (Yj)−∆)2 − (F̂ (Yj)− ∆̂)2

1− Q̂(Yj)2
η2
j

∣∣∣
=
∣∣∣ 1

m

m∑
j=1

(∆− ∆̂)(2F̂ (Yj)− ∆̂−∆)

1− Q̂(Yj)2
η2
j

∣∣∣
≤|∆− ∆̂|

( 1

m

m∑
j=1

η2
j

1− Q̂(Yj)2

)
sup
Yj

∣∣∣2F̂ (Yj)− ∆̂−∆
∣∣∣.

For any Yj, |2F̂ (Yj)− ∆̂−∆| ≤ 4, one has

∣∣∣ m∑
j=1

(
1√
m
Ẑj)

2 − σ̂2
1

∣∣∣ ≤4|∆− ∆̂| 1
m

m∑
j=1

[ ηj

1− Q̂(Yj)

]2

=4|∆− ∆̂|
{
E(

ηj

1− Q̂(Yj)
)2 + op(1)

}
.

Since ∆̂n → ∆, and E
ηj

1− Q̂(Yj)
<∞, we have

σ̂2
1 =

1

m

m∑
j=1

Ẑ2
j + o(p).

Let an = 1, then

an

m∑
j=1

m2
nj

=
m∑
j=1

( 1√
m
Ẑj

)2

=
1

m

m∑
j=1

Ẑ2
j

pr→ σ̂2
1.

The condition (A2) holds.

For condition (A3), we have

max
i

∥∥∥ 1√
m
Ẑj

∥∥∥ =
1√
m

max
i
‖Ẑj‖ = o(p),

i.e., max
i

∥∥∥ 1√
m
Ẑj

∥∥∥ pr→ 0. Denote N = N(0, 1), then U = σ1N ∼ N(0, σ2
1). Denote V2 = σ̂2

1,

then

1

σ̂2
1

U2 =
1

σ̂2
1

σ2N2 =
σ2

σ̂2
1

N2 ∼ σ2

σ̂2
1

χ2
1.
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Using Theorem C.1, we have

l̂(∆0)
D→γ(∆0)χ2

1,

where γ =
σ2

σ2
1

. That is, Theorem 4.2 is proved.
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Appendix D

PROOFS OF CHAPTER 5

For the notations of X, Y , ξ, and η, please refer to Chapter 5. Denote

ŵ1i =
F̂1(X2i)− A1

1− Q̂1(X2i)
ξ2i; ŵ2j =

F̂2(Y2j)− A1 +D]

1− Q̂2(Y2j)
η2j.

Define the difference of two AUC’s as D = A1 − A2, and

α̂1i =
∂ŵ1i

∂θ
= − ξ2i

1− Q̂1(X2i)
, α̂2j =

∂ŵ2j

∂θ
= − η2j

1− Q̂2(Y2j)
.

We will prove the assumptions in Valeinis (2007). Similar to Appendix B, we prove

(A1)-(A4) for Assumption 4.

Proof of (A1). 1. (Eŵ2
1 > 0.)

Eŵ2
1 = E

{[ F̂1(X2i)− A1

1− Q̂1(X2i)
ξ2i

]2}
= E

{ [F̂1(X2i)− A1]2

[1− Q̂1(X2)]2
|X0

1 ≤ U1

}
.

Since P (X1 ≤ U1) > 0, and
( F̂1(X2i)− A1

1− Q̂1(X2)

)2

> 0, we have

E
{( F̂1(X2i)− A1

1− Q̂1(X2)

)2

|X2

}
> 0.

Thus Eŵ2
1 > 0.

2. (α̂1 is continuous in a neighbourhood of A1.)

α̂1 is a constant for A1, that is, α̂1 is continuous in a neighbourhood of A1.
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4. (Eα̂1 is nonzero.)

Eα̂1 = E
( −1

1− Q̂1(X2)
ξ2

)
= E

( −1

1− Q̂1(X2)
|X1 ≤ U1

)
.

Since
−1

1− Q̂1(X2)
< 0, E(

−1

1− Q̂1(X2)
|X1) < 0. P (X2 ≤ U2) > 0, then Eα̂1 < 0 and Eα̂1 is

nonzero.

Proof of (A2) and (A3). Let H̄ = {F1, Q1}, P (F̂1 = F1, Q̂1 = Q1) → 1, by Wang (1987).

For η ∈ (1/3, 1/2), c <∞,

sup
A1+∆,|∆|≤cn−η

∣∣∣ 1
n

n∑
i=1

F1(X2i)− A1 −∆

1− Q̂1(X2i)
ξ2i − E

F1(X2i)− A1 −∆

1− Q̂1(X2)
ξ2

∣∣∣
= sup

A1+∆,|∆|≤cn−η

∣∣∣ 1
n

n∑
i=1

F1(X2i)− A1 −∆

1− Q̂1(X2i)
ξ2i + ∆

∣∣∣
= sup
|∆|≤cn−η

∣∣∣ 1
n

n∑
i=1

F1(X2i)− A1

1− Q̂1(X2i)
ξ2i +

1

n

n∑
i=1

∆(1− ξ2i

1−Q1(X2i)
)
∣∣∣

≤
∣∣∣ 1
n

n∑
i=1

F1(X2i)− A1

1− Q̂1(X2i)
ξ2i

∣∣∣+ sup
|∆|≤cn−η

|∆|
∣∣∣ 1
n

n∑
i=1

(1− ξ2i

1−Q1(X2i)
)
∣∣∣

∆
=D1 +D2.

By Marcinkiewicz-Zygmund strong law of large number,

1

np1

n∑
i=1

F1(X2i)− A1

1− Q̂1(X2i)
ξ2i − E

( 1

np1

n∑
i=1

F1(X2i)− A1

1− Q̂1(X2i)
ξ2i

)
=

1

np1

n∑
i=1

F1(X2i)− A1

1− Q̂1(X2i)
ξ2i − 0

→0 a.s.

for 1
2
< p1 ≤ 1.

D1 = n1−p1
[ 1

n

n∑
i=1

F1(X2i)− A1

1− Q̂1(X2i)
ξ2i

]
= o(np1−1) a.s.
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for 0 ≤ 1− p1 <
1
2
. On the other hand, we have

D2 = sup
|∆|≤cn−η

|∆|
∣∣∣ 1
n

n∑
i=1

(1− ξ2i

1−Q1(X2i)
)
∣∣∣

≤cn−η
∣∣∣ 1
n

n∑
i=1

(1− ξ2i

1−Q1(X2i)
)
∣∣∣.

By the SLLN,
∣∣∣ 1
n

∑n
i=1

ξ2i

1−Q1(X2i)
− 1
∣∣∣ = o(1) a.s. and cn−η = O(n−η). Thus D2 ≤

O(n−η)o(1) = o(n−η). That is, D2 = O(β0), where β0 = o(n−η). Set η0 = η ∈ (1/3, 1/2) ⊂

(0, 1/2), then D1 = o(nη).

sup
|∆|≤cn−η

∣∣∣ 1
n

n∑
i=1

F1(X2i)− A1

1− Q̂1(X2i)
ξ2i − E

F1(X2i)− A1

1− Q̂1(X2i)
ξ2

∣∣∣ = O(β1),

where β1 = o(n−η). Thus we proved that

w1 =
1

n

n∑
i=1

F1(X2i)− A1

1− Q̂1(X2i)

has the strong Gilvenko-Cantelli property. For p ∈ (0, 1), w1 is bounded. By Dudley (1998),

both w2
1 and w3

1 have the strong Gilvenko-Cantelli property.

Next, we prove that g is bounded, ‖g‖∞ <∞, i.e., sup
x
|g(x)| = ‖g‖∞ <∞. Denote

g1 = g∗1 · I[−M,M ](·), g∗1 = x2, g2 = g∗2 · I[−M,M ](·), g∗2 = x3.

Since w3
1 is assumed to be bounded, w1 is bounded as well. Suppose w3

1(X, θ, ĥ) is bounded

by an integrable function G1(x) in the neighbourhood of θ0, w1 is bounded by G
1
3
1 (x). By

Stute and Wang (1993), we have

sup
x
|F̂1(x)− F1(x)| → 0 a.s.; sup

x
|Q̂1(x)−Q1(x)| → 0 a.s.

Then ∀h, as ĥ → h, we have w3
1(X, θ, ĥ) ≤ G1(x). Thus w3

1(X, θ, h) ≤ G1(x). If G(x) is
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integrable, then G(x) is bounded a.s. Thus w3
1(X, θ, h) is bounded a.s.

Since α1 = − ξ2

1− Q̂1(X2)
does not vary as R1(p) or ∆ changes,

sup
|∆|≤cn−η

∣∣∣ 1
n

n∑
i=1

−ξ2i

1−Q1(X2i)
− E ξ2

1− Q̂1(X2)

∣∣∣ = − 1

n

n∑
i=1

ξ2i

1−Q1(X2i)
+ 1.

By Marcinkiewicz-Zygmund strong law of large number,

1− 1

n

n∑
i=1

ξ2i

1−Q1(X2i)
= O(β′1),

where β′1 = o(n−η2), η2 ∈ (1/3, 1/2). Thus, w1, w2
1, w3

1, and α1 have the strong Gilivenko-

Cantelli property. Now we rewrite Êw1 as

Eŵ1 =
(
Eŵ1 −

1

n

n∑
i=1

ŵ1i

)
+
( 1

n

n∑
i=1

ŵ1i −
1

n

n∑
i=1

w1i

)
+
( 1

n

n∑
i=1

w1i

)
∆
=E1 + E2 + E3.

By Marcinkiewiz-Zygmund strong law of large number,

|E1| =
∣∣∣Eŵ1 −

1

n

n∑
i=1

ŵ1i)
∣∣∣ = O(β

(1)
2 ),

where β
(1)
2 = o(n−η

(1)
3 ), η

(1)
3 ∈ (1/3, 1/2).

|E3| =
∣∣∣ 1
n

n∑
i=1

w1i

∣∣∣ =
∣∣∣0− 1

n

n∑
i=1

w1i

∣∣∣ =
∣∣∣Ew1 −

1

n

n∑
i=1

w1i

∣∣∣ = O(β
(2)
2 ),

where β
(2)
2 = o(n−η

(2)
3 ), η

(2)
3 ∈ (1/3, 1/2). Next, we define

ŵ1i =
F̂1(X2i)− A1

1− Q̂1(X2i)
ξ2i, w̃1i =

F̂1(X2i)− A1

1−Q1(X2i)
ξ2i, w1i =

F1(X2i)− A1

1−Q1(X2i)
ξ2i.
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Then E2 can be rewritten as

E2 =
1

n

n∑
i=1

ŵ1i −
1

n

n∑
i=1

w1i

=
1

n

n∑
i=1

ŵ1i −
1

n

n∑
i=1

w̃1i +
1

n

n∑
i=1

w̃1i −
1

n

n∑
i=1

w1i,

where ∣∣∣ 1
n

n∑
i=1

w̃1i −
1

n

n∑
i=1

w1i

∣∣∣ =
∣∣∣ 1
n

n∑
i=1

F̂1(X2i)− F1(X2i)

1−Q1(X2i)
ξ2i

∣∣∣
≤ 1

n

n∑
i=1

|F̂1(X2i)− F1(X2i)|
1−Q1(X2i)

ξ2i

≤max
i
|F̂1(X2i)− F1(X2i)|

1

n

n∑
i=1

ξ2i

1−Q1(X2i)
,

by Holder’s inequality. By Smirnov’s result in Shorack and Wellner (1986), and

3
√
n <

√
2n

ln(ln(n))
<
√
n,

when n is large enough, we have

lim
n→∞

sup

√
2n

ln(ln(n))
sup
x
|F̂1(x)− F1(x)| = 1 a.s.

Thus supx |F̂1(x)− F1(x)| = Op(β
(3)
2 ), where β

(3)
2 = o(n−η), η ∈ (1/3, 1/2). By the SLLN,

1

n

n∑
i=1

ξ2i

1−Q1(X2i)
→ E

ξ2

1−Q1(X2)
= 1 a.s.

Thus ∣∣∣ 1
n

n∑
i=1

w̃1i −
1

n

n∑
i=1

w1i

∣∣∣ = O(β
(3)
2 ) a.s.
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Next consider
1

n

∑n
i=1 ŵ1i −

1

n

∑n
i=1 w̃1i. We know that

1

n

∑n
i=1w1i = O(β

(2)
2 ),

1

n

n∑
i=1

w̃1i = O(β
(5)
2 ), a.s.,

where β
(5)
2 = o(n−η

(5)
3 ), η

(2)
3 ∈ (1/3, 1/2). Thus,

∣∣∣ 1
n

n∑
i=1

ŵ1i −
1

n

n∑
i=1

w̃1i

∣∣∣ =
1

n

n∑
i=1

{ F̂1(X2i)− A1

1− Q̂1(X2i)
ξ2i −

F̂1(X2i)− A1

1−Q1(X2i)
ξ2i

}
≤ sup

s≤X(n)

∣∣∣Q̂1(s)−Q1(s)

1− Q̂1(s)

∣∣∣∣∣∣ 1
n

n∑
i=1

F̂1(X2i)− A1

1−Q1(X2i)
ξ2i

∣∣∣,
where

sup
s≤X(n)

∣∣∣Q̂1(s)−Q1(s)

1− Q̂1(s)

∣∣∣ = O(1),

∣∣∣ 1
n

n∑
i=1

w̃1i

∣∣∣ =
∣∣∣ 1
n

n∑
i=1

F̂1(X2i)− A1

1−Q1(X2i)
ξ2i

∣∣∣ = O(β
(5)
2 ).

1

n

n∑
i=1

ŵ1i −
1

n

n∑
i=1

w̃1i = O(β
(5)
2 ).

Therefore,

E2 =
1

n

n∑
i=1

ŵ1i −
1

n

n∑
i=1

w1i

=
1

n

n∑
i=1

ŵ1i −
1

n

n∑
i=1

w̃1i +
1

n

n∑
i=1

w̃1i −
1

n

n∑
i=1

w1i

=O(β
(6)
2 ),

where β
(6)
2 = o(n−η

(6)
3 ), η

(6)
3 ∈ (1/3, 1/2). Moreover, Eŵ1 = E1 + E2 + E3 = O(β2), where

β2 = o(n−η3), η3 ∈ (1/3, 1/2). Assumption 4 in Valeinis (2007) is proved.

Similar to Appendix B, we consider Assumption 5. (B1) and (B2) can be proved similar

to the one sample case, that is, the AUC’s with right censored data.

Proof of (B3). Q̂1(X2i) is the Kaplan-Meier (K-M) estimator of Q, thus Q̂1(X2)
p→ Q1(X2)
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point-wise, and

ξ2

1− Q̂1(X2)

D→ ξ2

1−Q1(X2)
.

By the law of large number (LLN),

1

n

n∑
i=1

−ξ2

1− Q̂1(X2)
= −E ξ2

1−Q1(X2)
+ op(1).

Assume α̂ =
ξ2

1− Q̂1(X2)
is bounded by an absolute integrable function, then

E
ξ2

1− Q̂1(X2)
= E

ξ2

1−Q1(X2)
= 1,

by the Lebesgue’s Dominated Convergence Theorem. Thus,

1

n

n∑
i=1

−ξ2i

1− Q̂1(X2i)
= −1 + op(1),

that is,

1

n

n∑
i=1

−ξ2i

1− Q̂1(X2i)

p→ −1.

Proof of (B4). The bounded conditions in (B4) can be directly proved by the assumptions

as those in (A1).

Proof of (B5). (1) For R∗1(p) ∈ (R1(p)− c0n
−η, R1(p) + c0n

−η), c0 > 0,

∣∣∣ ∂

∂A1

1

n

n∑
i=1

[ F̂1(X2i)− A1

1− Q̂1(X2i)

]2

ξ2i

∣∣∣ =2
∣∣∣ 1
n

n∑
i=1

[ F̂1(X2i)− A1

1− Q̂1(X2i)
ξ2i

ξ2i

1− Q̂1(X2i)

]∣∣∣
≤2 max

i

∣∣∣ F̂1(X2i)− A1

1− Q̂1(X2i)
ξ2i

∣∣∣∣∣∣ 1
n

n∑
i=1

ξ2i

1− Q̂1(X2i)

∣∣∣
∆
=S1 + S2,
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where

S1 = 2 max
i

∣∣∣ F̂1(X2i)− A1

1− Q̂1(X2i)
ξ2i

∣∣∣, S2 =
∣∣∣ 1
n

n∑
i=1

ξ2i

1− Q̂1(X2i)

∣∣∣.
By the conclusion in (B3),

S2 =
∣∣∣ 1
n

n∑
i=1

ξ2i

1− Q̂1(X2i)

∣∣∣ p→ 1.

S1 ≤ 2 max
i
|F̂1(X2i)− A1|max

i

∣∣∣ ξ2i

1− Q̂1(X2i)

∣∣∣,
where max

i

∣∣∣ ξ2i

1− Q̂1(X2i)

∣∣∣ is bounded by a constant c00 ∈ R as given in the assumptions in

(B4) and (A1).

2 max
i
|F̂1(X2i)− A1| =2 max

i
|F̂1(X2i)− A1 − cn−η|

≤2{max
i
|F̂1(X2i)|+ max |A1|+ max |cn−η|}

≤2(1 + 1 + c0n
−η)

=4 + 2c0n
−η,

where c ∈ (−c0, c0), η ∈ (1/3, 1/2). Thus, S1 ≤ c00 = 4+2c0n
−η, i.e., S1 = Op(1). Therefore,

∣∣∣ ∂

∂A1

1

n

n∑
i=1

[ F̂1(X2i)− A1

1− Q̂1(X2i)

]2

ξ2i

∣∣∣ = Op(1).

(2) By the conclusions in (B3), we have
∣∣∣ 1
n

∑n
i=1

ξ2i

1− Q̂1(X2i)

∣∣∣ = Op(1).
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(3) ∣∣∣ 1
n

n∑
i=1

ŵ3
1

∣∣∣ =
∣∣∣ 1
n

n∑
i=1

( F̂1(X2i)− A1

1− Q̂1(X2i)
ξ2i

)3∣∣∣
≤max

i
|F̂1(X2i)− A1|3

1

n

n∑
i=1

( ξ2i

1− Q̂1(X2i)

)3

≤(max
i
F̂1(X2i) + max

i
A1 + c0n

η)3 1

n

n∑
i=1

( ξ2i

1− Q̂1(X2i)

)3

≤(2 + c0n
−η)3 1

n

n∑
i=1

( ξ2i

1− Q̂1(X2i)

)3

≤(2 + c0n
−η)3

[
max
i

ξ2i

1− Q̂1(X2i)

]2 1

n

n∑
i=1

ξ2i

1− Q̂1(X2i)
,

where c ∈ (−c0, c0), η ∈ (1/3, 1/2). Then
ξ2i

1− Q̂1(X2i)
is bounded and

1

n

∑n
i=1

ξ2i

1− Q̂1(X2i)

p→

1 from (B3), then

1

n
ŵ3

1 =
1

n

n∑
i=1

( F̂1(X2i)− A1

1− Q̂1(X2i)
ξ2i

)3

= Op(1).

The proofs of the rest of the assumptions can be found in Qin and Zhao (2000). Thus

Theorem 5.1 is proved.
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Appendix E

PROOFS OF CHAPTER 6

The variance V ar(Un) can be estimated by a consistent estimator σ̂2 as in Sen (1960)

and Arvesen (1969),

σ̂2 =
1

n1(n1 − 1)

n1∑
i=1

(Vi,0,0−V̄·,0,0)2+
1

n2(n2 − 1)

n2∑
j=1

(V0,j,0−V̄0,·,0)2+
1

n3(n3 − 1)

n3∑
k=1

(V0,0,k−V̄0,0,·)
2.

Lemma E.1. Assume that

(a) The U-statistic Un
a.s.→ θ as min(n1, n2, n3)→∞;

(b) Assume that σ2
1,0,0 > 0, σ2

0,1,0 > 0, σ2
0,0,1 > 0 and denote S2

n1,n2,n3
= σ2

1,0,0/n1 + σ2
0,1,0/n2 +

σ2
0,0,1/n3. Then

Un − θ
Sn1,n2,n3

d→ N(0, 1), as min(n1, n2, n3)→∞, (E.1)

and

σ̂2 − S2
n1,n2,n3

= op((min(n1, n2, n3))−1). (E.2)

For the proof of part (a) and equations (E.1) and (E.2) in part (b), we may refer to

Arvesen (1969) and Kowalski and Tu (2007).

Lemma E.2. Let Sn = n−1

n∑
l=1

(V̂l − EV̂l)2. We assume the same conditions as (a) and (b)

in Theorem 6.1. Then as n1 →∞,

Sn = nS2
n1,n2,n3

+ op(1), a.s.

Proof of Lemma E.2. For 1 ≤ l ≤ n1, we have

V̂l − EV̂l =
n(n− 1)

(n− 3)n1

(Vl,0,0 − Un) +
n(n− 2n1 − 1)

(n− 3)n1

(Un − θ),



117

and

1

n1

n1∑
l=1

(Vl,0,0 − Un)(Un − θ)

=(Un − θ){
1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

[I(X1i < Y1j < Z1k)− I(X2i < Y2j < Z2k)]− Un}

=0.

Thus,

n1∑
l=1

(V̂l − EV̂l)2 =
[ n(n− 1)

(n− 3)n1

]2
n1∑
l=1

(Vl,0,0 − Un)2 +
[n(n− 2n1 − 1)

(n− 3)n1

]2

n1(Un − θ)2.

Similarly, for n1 < l ≤ n1 + n2,

n1+n2∑
l=n1+1

(V̂l − EV̂l)2 =
[ n(n− 1)

(n− 3)n2

]2
n1+n2∑
l=n1

(V0,l,0 − Un)2 +
[n(n− 2n2 − 1)

(n− 3)n2

]2

n2(Un − θ)2.

And for n1 + n2 < l ≤ n,

n∑
l=n1+n2+1

(V̂l − EV̂l)2 =
[ n(n− 1)

(n− 3)n3

]2
n∑

l=n1+n2

(V0,0,l − Un)2 +
[n(n− 2n3 − 1)

(n− 3)n3

]2

n3(Un − θ)2.

Therefore,

Sn =
1

n

[n(n− 1)

(n− 3)

]2[ 1

n2
1

n1∑
l=1

(Vl,0,0 − V̄·,0,0)2 +
1

n2
2

n1+n2∑
l=n1+1

(V0,l,0 − V̄0,·,0)2 +
1

n2
3

n∑
l=n1+n2+1

(V0,0,l − V̄0,0,·)
2
]

+
1

n

[ n

(n− 3)

]2[(n− 2n1 − 1)2

n1

+
(n− 2n2 − 1)2

n2

+
(n− 2n3 − 1)2

n3

]
(Un − θ)2.

(E.3)

From the LLN of U-statistics, we have Un − θ = Op(n
−1/2
1 ). Hence, the second term in

equation (E.3) is equal to

n

(n− 3)2

[(n− 2n1 − 1)2

n1

+
(n− 2n2 − 1)2

n2

+
(n− 2n3 − 1)2

n3

]
(Un − θ)2 = Op(n

−1).
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Moreover, the 1st term of equation (E.3) is equal to

n(
n− 1

n− 3
)2
[ 1

n2
1

n1∑
l=1

(Vl,0,0 − V̄·,0,0)2 +
1

n2
2

n1+n2∑
l=n1+1

(V0,l,0 − V̄0,·,0)2 +
1

n2
3

n∑
l=n1+n2+1

(V0,0,l − V̄0,0,·)
2
]

=nσ̂2 + op(1).

Note that σ̂2 − S2
n1,n2,n3

= op((min(n1, n2, n3))−1), we prove Lemma E.2.

Lemma E.3. Let Qn = max
1≤l≤n

|V̂l − θ|. Under the assumptions as in Lemma E.2, we have

Qn = op(n
1/2) a.s. and n−1

n∑
l=1

|V̂l − θ|3 = op(n
1/2), a.s.

Proof of Lemma E.3. For 1 ≤ l ≤ n1, we have

|V̂l − EV̂l| ≤
∣∣∣ n
n1

n− 1

n− 3
Vl,0,0

∣∣∣+
∣∣∣ n
n1

n− 1

n− 3
Un

∣∣∣+
∣∣∣n(n− 2n1 − 1)

(n− 3)n1

(Un − θ)
∣∣∣.

Note that |Vl,0,0| ≤ H̃n, and |Un| ≤ H̃n, where

H̃n = max
1≤i≤n1<l≤n1+n2<k≤n

|h(Xi, Yj, Zk)|.

Therefore, |V̂l − EV̂l| ≤ c∗H̃n + c∗H̃n + c∗|Un − θ|, where c∗ is a constant. Similar to Wang

(2010), H̃n = op(n
1/2) a.s. and Un− θ = Op(n

−1/2). Hence, |V̂l −EV̂l| = op(n
1/2) for 1 ≤ l ≤

n1. Similarly, for n1 < l ≤ n1 +n2, |V̂l−EV̂l| ≤ 2c∗H̃n+c∗|Un−θ|.Thus, |V̂l−EV̂l| = op(n
1/2)

for n1 < l ≤ n1 + n2. And, for n1 + n2 < l ≤ n, |V̂l−EV̂l| ≤ 2c∗H̃n + c∗(Un− θ)|. Therefore,

|V̂l − EV̂l| = op(n
1/2) for n1 + n2 < l ≤ n. Denote Qn = max

1≤i≤n
|V̂i − θ|, then Qn = op(n

1/2)

a.s. Therefore,

n−1

n∑
l=1

|V̂l − EV̂l|3 = op(n
1/2)(nS2

n1,n2,n3
+ op(1)) = op(n

1/2).

Proof of Theorem 6.1. Recall Un =
1

n

n∑
l=1

V̂l and θ =
1

n

n∑
l=1

EV̂l. Then |Un − θ| =
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∣∣∣ 1
n
γ

n∑
l=1

(V̂l − EV̂l)2

1 + γ(V̂l − EV̂l)

∣∣∣. Thus,

|Un − θ| ≥ |γ|
1

1 + |γ|max |V̂l − EV̂l|
1

n

n∑
l=1

(V̂l − EV̂l)2 ≥ |γ| Sn
1 + |γ|Qn

.

Then |γ| = Op(n
−1/2). By Taylor’s expansion,

−2 logR(θ) =2
n∑
l=1

{γ(V̂l − EV̂l)−
1

2
[γ(V̂l − EV̂l)]2}+ op(1). (E.4)

Let F0 =
1

n

n∑
l=1

γ2(V̂l − EV̂l)3

1 + γ(V̂l − EV̂l)
. Then by equation (6.2), we have γ =

Un − θ
Sn

+
F0

Sn
. In

equation (E.4), we replace γ with the above terms,

2nγ(Un − θ)− nSnγ2 = n
(Un − θ)2

Sn
− nF 2

0

Sn
.

Combining
1

n

n∑
l=1

|V̂l − EV̂l|3 = op(n
1/2) and γ = Op(n

−1/2), F0 = op(n
−1/2). Thus,

−2 logR(θ) = n
(Un − θ)2

Sn
+ op(1).

By Lemma E.1 and Lemma E.2, one has that
n(Un − θ)2

Sn

d→ χ2
1. By the Slutsky’s theorem,

we finish the proof of Theorem 6.1.
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