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Key Points:

« Infrastructure systems should be
considered social-
ecological-technological systems
(SETSs), not simply technical or
socio-technical systems

« Underappreciated complexity and
reliance on techno-centric/
robustness-oriented solutions
contribute to lock-in and reduced
adaptive capacity

« A SETS lens aids in the identification
and prevention of system
vulnerabilities and illumination of
multidimensional adaptation
strategies
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Abstract Traditional infrastructure adaptation to extreme weather events (and now climate change) has
typically been techno-centric and heavily grounded in robustness—the capacity to prevent or minimize
disruptions via a risk-based approach that emphasizes control, armoring, and strengthening (e.g., raising the
height of levees). However, climate and nonclimate challenges facing infrastructure are not purely
technological. Ecological and social systems also warrant consideration to manage issues of overconfidence,
inflexibility, interdependence, and resource utilization—among others. As a result, techno-centric adaptation
strategies can result in unwanted tradeoffs, unintended consequences, and underaddressed vulnerabilities.
Techno-centric strategies that lock-in today’s infrastructure systems to vulnerable future design,
management, and regulatory practices may be particularly problematic by exacerbating these ecological and
social issues rather than ameliorating them. Given these challenges, we develop a conceptual model and
infrastructure adaptation case studies to argue the following: (1) infrastructure systems are not simply
technological and should be understood as complex and interconnected social, ecological, and technological
systems (SETSs); (2) infrastructure challenges, like lock-in, stem from SETS interactions that are often
overlooked and underappreciated; (3) framing infrastructure with a SETS lens can help identify and prevent
maladaptive issues like lock-in; and (4) a SETS lens can also highlight effective infrastructure adaptation
strategies that may not traditionally be considered. Ultimately, we find that treating infrastructure as SETS
shows promise for increasing the adaptive capacity of infrastructure systems by highlighting how lock-in and
vulnerabilities evolve and how multidisciplinary strategies can be deployed to address these challenges by
broadening the options for adaptation.

Plain Language Summary Instead of thinking of infrastructure as purely technological artifacts, we
instead propose considering infrastructure as linked social, ecological, and technological systems (SETS).
Adopting a SETS lens can help identify vulnerabilities that develop within infrastructure systems over time.
Ultimately, adopting this SETS perspective will not only help us better understand our infrastructure systems,
but also aid in the development strategies for adapting to the many challenges that our infrastructure will
continue to face (climate change, interdependencies, technological evolution, growing complexity, etc.)

1. Introduction and Background

Infrastructure systems have traditionally been designed to manage (and in some cases control) environmen-
tal systems and ensure that critical services and resources are available where and when they are needed
(McPhee, 1989). For example, dams, canals, aqueducts, and pipelines have been constructed throughout
the United States to provide water to population centers like Phoenix, Los Angeles, New York City, and others.
Similarly, in the context of weather events, levees, dams, drainage culverts, retention basins, and pumps have
been designed and sized to mitigate unwanted effects from extreme rainfall, storm surge, or riverine
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conditions. These control efforts are highly techno-centric in that they rely on the installation or upgrading of
physical infrastructure components (e.g., pumps and culverts) as opposed to more ecologically based efforts
like bioswales, constructed wetlands, or living shorelines that use vegetation or a mix of green and gray infra-
structure to provide necessary services (Casal-Campos et al, 2015; National Oceanic and Atmospheric
Administration, 2017; U.S. Environmental Protection Agency [U.S. EPA], 2017a; U.S. EPA, 2017b; Wang et al.,
2013). They also tend to emphasize strengthening and armoring infrastructure—an approach that fits best
under the robustness regime of resilience, where traditional risk analysis is used to determine the acceptable
likelihood and magnitude of an event to which infrastructure are expected to withstand (Kim et al., 2017; Park
etal,, 2013; Seager et al., 2017; Woods, 2015). For example, levees and stormwater management systems are
often designed to withstand the impacts from a storm that has a magnitude equivalent to a 1% chance of
occurring in any given year—also known as a 100-year storm event. The link between robustness and
techno-centric solutions is also used in forward looking analyses by establishing certain storm thresholds
as design objectives projected into the future, and then developing models to test how various engineering
adaptation strategies might perform with respect to the established threshold (e.g. lowa Department of
Transportation, 2015).

In well-constrained and understood circumstances, techno-centric, robustness-based strategies can be
effective at preventing major disruptions. However, there are limits to the applicability of solely
robustness/techno-centric practices, and our infrastructure systems appear to be increasingly running up
against these limits (McPhail et al., 2018). Markolf et al. (2018) point out that the effectiveness of robustness
strategies can be diminished by many challenges such as climate variability and unpredictability, changes in
demographics and preferences, complexity and interconnectedness within infrastructure systems, and
unpredictable human behavior—each of which are further discussed later in the manuscript. Thus, the true
concern with our infrastructure appears to be our ability to recognize and respond to these limits in a timely
manner, because when robust and techno-centric adaptations do fail, it is often to catastrophic effect.

While robustness appears to have been a relatively effective strategy for mitigating extreme events in the
past, and will certainly play a crucial role moving forward, there is a growing notion that the challenges facing
our infrastructure systems require more than techno-centric, robustness-only strategies. Robustness cannot
simply become synonymous with resilience. Instead, emphasis should be placed on increasing the ability of
our infrastructure systems to move across the following different resilience regimes as dictated by varying
internal and external conditions (Chester & Allenby, 2018; Seager et al., 2017; Woods, 2015):

1. Rebound—the ability of damaged/degraded systems to return to predisruption conditions

2. Robustness—the capacity to prevent or minimize disruptions via a risk-based approach and emphasis on
control and strengthening

3. Graceful extensibility—the ability to improvise solutions and extend system performance to mitigate the
consequences of surprising or sudden events

4. Sustained adaptability—the long-term ability to transform and balance system conditions in response to
constantly evolving external circumstances

Events like Hurricanes Harvey and Maria; the Southern California wildfires in December 2017; the ongoing
drought and water supply issues in Cape Town, South Africa; and the long history of extreme events in the
United States (National Oceanic and Atmospheric Administration National Centers for Environmental
Information, 2017) not only illustrate the challenges that extreme events continue to pose to our infrastruc-
ture systems but also bring attention to the fact that these challenges may not simply be a matter of having
the right technology in place or increasing robustness to correspond to a given hazard or threat level. For
example, after Hurricane Katrina, nearly $14.5 billion was spent to reinforce levees, install additional pumping
capacity, and construct the 1.8-mile-long Lake Borgne Surge Barrier (Burnett, 2015; U.S. Army Corps of
Engineers [USACE], 2013a, 2013b, 2015). Nonetheless, pumping and drainage capacity was still not sufficient
to prevent widespread flooding in several neighborhoods (and ultimately a declaration of a state of emer-
gency) during an August 2017 rain storm (Craig, 2017; G.R., 2017). Essentially, vulnerability to flooding in
New Orleans is not necessarily contingent on the height of the levees or the capacity of the pumping stations
(i.e., robustness). Similarly, unprecedented meteorological conditions notwithstanding, at least some portion
of the flooding that occurred during Hurricane Harvey is attributable to nontechnological issues such as rapid
population growth and urban development, the lack of consistent and strong zoning regulations, and
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widespread replacement of ecological systems with impervious surfaces (Fleming, 2017; U.S. EPA, 2008;
Wallace et al., 2018). The impact of this complex interaction between seemingly disparate factors is high-
lighted in multiple analyses related to flooding in the Houston area. For example, it was estimated that
Federal Emergency Management Agency (FEMA) 100-year floodplain maps failed to capture 75% of the
insured losses that occurred in Houston suburbs from five serious storm events between 1999 and 2009
(Blessing et al., 2017). Similarly, it was estimated that over 50% of the inundation in Harris County, Texas, dur-
ing Hurricane Harvey was located in areas designated as minimal flood hazard by FEMA (Fessenden et al.,
2017; Pinter et al., 2017). Essentially, the failure to fully account for social and ecological dynamics within
the Houston region greatly reduced the effectiveness of flood mapping and assessment, which in turn
resulted in misinformed flood prevention measures, zoning laws, and insurance mechanisms.

The New Orleans and Houston examples highlight that perhaps resilience should be thought of as more than
just a technological and/or robustness challenge—necessitating a deeper consideration of the social and
ecological context of a given infrastructure system. In the case of New Orleans, resilience is not simply a mat-
ter of increasing robustness by adding more pumps or raising levees. While these types of interventions play
an important role and may prove to be effective against the next major hurricane, they were ineffective dur-
ing (and possibly even exacerbated) the August 2017 flooding (Carr, 2017; Craig, 2017; Domonoske, 2017;
Reckdahl, 2017). In this case, one cannot help but wonder if the sunk costs (in terms of money, time, knowl-
edge, and other resources) associated with the levee and pump systems encouraged renewed investment in
these interventions after Katrina at the expense of making other parts of the city more susceptible to flooding
from rainfall. Systems can usually be designed to handle higher levels of stress or be inspected daily to ensure
all components are functioning properly, but achieving these tasks will eventually be financially exhausting.
Eventually, the right hazard or system degradation characteristics will emerge and lead to some level of
failure. Thus, social response and the public safety system appear to be at least as important as the physical
infrastructure systems. As illustrated to devastating effect during Katrina, people’s location relative to hazards
and the services and protections available to them prove to be vitally important (Bullard & Wright, 2009;
Colten, 2007; Layzer, 2012).

Similarly, for Houston, resilience is not simply a techno-centric matter of widening bayous and reinforcing dams
in preparation for the next Harvey. The fact that flood maps captured no more than 50% of the actual damages
associated with flooding events in the Houston area since 1999 points to a major gap in how we currently think
about and try to mitigate risk in our cities. There are many likely causes for this gap, but at least in the case of
Houston, a primary factor appears to be the failure to fully account for the changing social, ecological, and tech-
nological dynamics associated with years of population growth and land development (Boburg & Reinhard,
2017; Bogost, 2017; McGuire, 2016). These conflating factors, and the poor modeling results in Houston,
highlight the fault in the common assumption that design storm standards and floodplain mapping informa-
tion are highly accurate and reliable. In fact, this may even be a case of disinformation being worse than no
information, in the sense that the existing flood mapping data may have provided a false sense of security
for many residents and businesses. Given the exacerbating factors of climate change and constantly transform-
ing urban land use patterns, it is reasonable to expect continued difficulties with flood mapping information.
Nonetheless, even the existence of prescient information does not guarantee effective protective strategies
and management of flood risk. Prior to Hurricane Harvey, Houston had experienced several large flooding
events (including 500-year storm events in 2015 and 2016) that provided key insights into existing flood prone
areas and system vulnerabilities. Yet little action was taken to address these vulnerabilities or implement stra-
tegies for mitigating the impacts of future storms (Ingraham, 2017; Lind, 2017; Resnick, 2017; Shaw et al., 2016).

Recognizing that a very large literature exists related to defining and assessing vulnerability (e.g., Adger,
2006), this manuscript considers that vulnerability consist of the exposure and sensitivity of a
system/component/individual/group to a hazard or stressor (i.e., increased exposure and/or sensitivity to a
stressor translate to increased vulnerability to that stressor). All of this is to say, technically oriented strategies
are dependent on the social, institutional, and ecological context in which they are implemented. Thus, a
transition toward resilience that considers more regimes than robustness should combine new design prac-
tices that do not require predicting future extreme events as tightly, are based on new design criteria distinct
from hazard and risk thresholds, and incorporate social and ecological elements. The challenge facing
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infrastructure resilience efforts is finding complementary approaches to current design practices, rather than
deepening our commitment to them.

We posit that expanded perspectives on the complex, multidisciplinary, and interconnected nature of infra-
structure systems that reveal lock-in and path dependency offer a crucial first step toward resilient infrastruc-
ture services. We define lock-in as constraints on infrastructure today as an outcome of past decisions and
actions, even in the context of changing operating conditions or the emergence of more effective alterna-
tives (Corvellec et al., 2013). Lock-in is perpetuated and often exacerbated by the related concept of path
dependency, which refers to constraints on a system’s ability to change (e.g., adapt or transform), in that it
is often very costly and difficult to alter an existing infrastructure system from its current trajectory (Arthur,
1989; Payo et al,, 2016). For the purpose of simplicity, these concepts will collectively be referred to as
lock-in for the duration of this manuscript. Additionally, we refer to infrastructure complexity as the unpre-
dictable, yet unchaotic nature of infrastructure systems and dynamics. For example, infrastructure complexity
is revealed when systems fail due to tractable and seemingly predictable reasons, yet the causality behind
these failures remains a mystery prior to their onset. We argue that overconfidence in infrastructure robust-
ness is the consequence of ignoring infrastructure complexity by narrowly understanding infrastructure
systems as technological systems.

In contrast to this constrained perspective, infrastructure systems appear to warrant treatment as complex
social, ecological, and technological systems (SETSs) where feedback between humans, infrastructure, and
the environment dictate failures and their consequences (or the lack thereof; Miller et al., 2018). For example,
the impacts and failures associated with Hurricane Katrina may not have been as profound if more substantial
social considerations and protections had been in place (Bullard & Wright, 2009; Colten, 2007; Layzer, 2012).
The SETS perspective, in particular, helps reveal the complex causality of infrastructure failures due to lock-in
and demonstrates how a reliance on historical information for environmental and social drivers locks infra-
structure into fragile designs (i.e., shocks bring higher harm as their intensity increases; Aven, 2015; Taleb,
2012). Subsequently, complex SETS interactions, initiated by the construction of new infrastructure or the
rebuilding of old infrastructure, create escalating risks (due to increasing consequences of disruption) that
are difficult to avoid. Together, a SETS perspective highlights how infrastructure systems become locked-
in, and how this increases fragility and erodes the adaptive capacity needed to address new hazards and risks.
Although previous work has been done on incorporating various S, E, and T elements, for example, in indices
to ascertain overall vulnerabilities (Borden et al., 2007) and case studies of infrastructure related failures
(Layzer, 2012), the full integration of these elements and recognition of the role of lock-in in providing a
perspective for such integration has not been the focus of these earlier works.

In this manuscript, we explore SETS as a perspective on infrastructure complexity, show how SETS interac-
tions reveal lock-in, and then demonstrate this approach through multiple case studies. Ultimately, we argue
that by not accounting for the emergent and interconnected nature of SETS within our infrastructure, we are
limiting our ability to (1) fully comprehend the fragility and inflexibility (i.e., the inability to effectively respond
to changing system dynamics) within our infrastructure systems, in terms of both the built materials and the
social and institutional rules and norms—particularly related to lock-in, and (2) fully explore and develop the
solution space related to resilience to changing environments and extreme events.

2, SETS Characteristics and Challenges for Infrastructure Systems

2.1. SETS Characteristics of Infrastructure Systems

Several authors have considered social-technical and social-ecological perspectives on resilience and infra-
structure systems. Examples of social-technical perspectives include Swilling et al. (2013), Bolton and
Foxon (2015), Walker (2015), Eisenberg et al. (2017), and Amir and Kant (2018). Examples of social-ecological
perspectives include Berkes and Folke (1998), Walker et al. (2002), Edwards (2003), Anderies et al. (2004),
Walker et al. (2004), Folke et al. (2005), Folke (2006), Walker et al. (2006), Ostrom (2009), Fischer et al.
(2015), Muneepeerakul and Anderies (2017), Bene and Doyen (2018), Garrick et al. (2018), and Walker et al.
(2018). Despite this wealth of literature, studies of infrastructure from the perspective of integrated SETS
are a relatively nascent concept. The citations above offer a variety of perspectives on social-ecological sys-
tems (SES) that form a strong foundation for our perspective. For example, the Stockholm Resilience
Center’s perspective on SES introduces important concepts such as an emphasis on nonlinear dynamics,
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Figure 1. Overview of social, ecological, and technological components and interactions of infrastructure systems.
Adapted from Depietri & McPhearson (2017), Grabowski et al. (2017), Labi (2014), and Rubin (2001).

thresholds, uncertainty, and surprise with respect to resilience (Berkes & Folke, 1998; Folke, 2006; Walker et al.,
2006). Frankfurt Social Ecology emphasizes societal relations to nature with the beliefs that nature and
society are distinct but cannot be treated as independent from one another and that observable patterns
characterize the relations between society and nature (Becker & Jahn, 2005; Hummel et al., 2017). Similarly,
the Institute of Social Ecology in Vienna describes SES as consisting of a natural sphere and a cultural
sphere that are mutually dependent and influential on each other (Haberl et al., 2016; Kramm et al., 2017;
Singh et al,, 2013). Although there is an acknowledgement that the relationship between nature and
society is often facilitated by technology (Kramm et al., 2017), most SES perspectives view technological
systems as a subset of social systems. For example, the Vienna perspective on social interactions with
nature emphasizes natural systems as the primary source of inputs and sinks for outputs of social
metabolism-implicitly facilitated by social-economic systems and their technological subsets (Haberl et al.,,
2016; Singh et al., 2013). However, as discussed throughout this manuscript, technological systems appear
to have meaningful influence and agency relative to social and ecological systems. Thus, we view resilience
and infrastructure systems from the collective perspective of SETS.

In general, a SETS perspective integrates socio-technical and socio-ecological perspectives and expands
upon them to also consider ecological-technological interactions (see Figure 1). Stokols (2018) expands on
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traditional SES perspectives by describing human environments as consisting of natural, built, sociocultural,
and virtual systems that occur at varying temporal, geographic, and social scales. Stokols (2018) also empha-
sizes the importance of interconnections, as in this paper, though the bounding of those elements may differ.
Other existing literature on SETS primarily focus on definitions and conceptual framing (Grabowski et al.,
2017; Grimm et al,, 2017; Hale et al., 2015; Krumme, 2016; McPhearson et al.,, 2016; Ramaswami et al., 2012)
or discuss the three components independently. Similar to analysis by Tellman et al. (2018), we expand on
existing SETS literature by directly applying the SETS lens to infrastructure development and management,
particularly in relation to identifying maladaptive lock-in processes and establishing approaches to help infra-
structure adapt to the effects of extreme events. Our manuscript supports many of the findings of Tellman
et al. (2018): human decision-making dynamics and environmental context shape the evolution of coupled
infrastructure systems, each adaptation decision exists in the context of (and is shaped by) previous deci-
sions, and attempts to increase robustness to specific threats in the present often result in increased vulner-
ability to unforeseen risks and unintended consequences. However, we also differentiate and expand upon
their analysis in several ways. First, our manuscript more explicitly emphasizes and explores the interactions
and shifting influence among SETS in the development of vulnerability and lock-in over time (see sections 2.2
and 3). In contrast, Tellman et al. (2018) place their emphasis much more on the implications of governance
decisions (i.e., social systems) over time—albeit with acknowledgement of the broader ecological and infra-
structural context in which these decisions are made. Second, due to our more explicit examination of the
shifting influence and interactions among SETS, our analysis not only allows for the identification of lock-in
but also highlights specific intervention points for possibly breaking said lock-in. Third, Tellman et al.
(2018) emphasize that one of the primary contributors to lock-in and unintended consequences of resilience
decision-making is the fact that previously externalized risks often eventually become endogenous to the
system. However, the lock-in and unintended consequences apparent in the case studies in our manuscript
appear to be relatively endogenous to the system from the beginning. Finally, in addition to using a SETS lens
to better identify and address lock-in, our manuscript also discusses how a SETS lens might help facilitate
more comprehensive and holistic resilience strategies (see section 4). Ultimately, our work appears to be a
nice complement to Tellman et al., and both papers seem well positioned to contribute to a better under-
standing of and response to the broader social, environmental, and historical context in which adaptation
and infrastructure decisions occur.

Similar to the SETS literature, lock-in literature for infrastructure systems is also limited and tends to focus on
defining concepts and identifying core characteristics, rather than relating to the realization of system failures
or extreme events (Hommels, 2005; Payo et al., 2016). We expand on the literature by more deeply exploring
how lock-in appears to evolve and how it contributes to increased fragility (lowered adaptive capacity) in
infrastructure systems. Furthermore, we outline possible strategies for interdicting maladaptive lock-in and
developing alternative anticipatory SETS pathways.

Figure 1 provides a broad, nonexhaustive overview of what constitutes SETS. Here we define social systems as
a broad domain that includes both human actors and their roles and activities, such as cultural and institu-
tional values, tacit knowledge, public discourse, policy, economics, governance, public health, financing,
citizens, regulators, managers, and the institutions in which these reside (Grabowski et al., 2017). Similar to
its discussion in the context of sustainable development (Speth, 2009; Sachs, 2015; UNDP, 2018), strong
and just governance is a key element within the social domain of SETS. Additionally, on a smaller scale, edu-
cation, communication, beliefs, values, attitudes, lifestyle choices, and decision making have been found to
influence people’s understanding, engagement, perception, and interaction with broader ecological and
technological systems (Goleman, 2010; Graham & Abrahamse, 2017; Meerow et al., 2016; Myers et al., 2012;
Revkin, 2007; Schultz & Kaiser, 2012; Swim et al., 2009). Therefore, these individual elements and characteris-
tics are also included with the social domain of SETS. The ecological domain encompasses natural resources,
pollution and environmental degradation, ecological structures, ecological functions, ecological behaviors,
and weather/climate effects (Grabowski et al., 2017). The technological domain includes physical and cyber
infrastructure, as well as any supporting knowledge systems, software, and other forms of decision-support
(Grabowski et al.,, 2017). In agreement with Stokols (2018), we view virtual and cyber-based features to be
of increasing influence and importance within the technological domain and beyond. Whether discussing
teleconferencing systems and social media, or emerging concepts like virtual and augmented reality,
the Internet of Things, the sharing economy, and artificial intelligence, cyber-based technologies are
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increasingly shaping how we perceive and engage with each other and our surrounding ecological systems
(Stokols, 2018). Although largely outside the scope of this manuscript, the emergence and growing influence
of virtual and cyber-based technologies on broader SETS appear to warrant considerable multidisciplinary
exploration moving forward.

The components described in Figure 1 are divided into separate S, E, and T domains to provide clarity about
what is meant by SETS. When analyzing and discussing SETS, we acknowledge that social, ecological, and
technological components do not always fit neatly into distinct, decoupled classifications. In particular, eco-
logical and social systems are continually interacting with and influencing each other via technological sys-
tems. Technological systems are often the mechanisms by which social systems affect ecological systems via
pollution, resource consumption, land use change, etc. Similarly, technological systems also tend to be the
mechanisms that enhance the services (or disservices) provided by ecological systems to social systems.
For example, water infrastructure systems are used to purify and deliver drinking water; electric power sys-
tems are used to gather and convert natural resources (coal, natural gas, wind, sunlight, etc.) to electrical
energy. Finally, technological systems are often used as the primary mechanism for protecting social systems
from unfavorable ecological conditions. For example, buildings and space heating/cooling protect people
from extreme heat or cold, and dams and levees protect people and property from flooding.

In addition to technological systems commonly serving as the intermediary between social and ecological
systems, it is important to recognize that each of the SETS domains have varying degrees of agency and influ-
ence on the other systems. Ecological systems can exist in the absence of social and technological systems—
although this is rarely the case anymore. Perhaps more appropriately, ecological systems rely on the proper
functioning of technological systems and stewardship from social systems to function unperturbed. Social
systems rely on both ecological systems (for basic resources like food, water, and materials) and technological
systems (to access and utilize ecological goods and services at any meaningful scale and to increase stan-
dards of living). Finally, technological systems could not exist independently of social systems nor ecological
systems—they are developed from natural resources to meet certain needs and functions deemed necessary
by society. Overall, the strength and directionality of these relationships point to a certain level of intercon-
nectedness that can be instructive when thinking about the evolution of lock-in in the context of system resi-
lience. Ultimately, social and technological systems appear to be interdependent—in modern times, one
cannot function or be decoupled from the other. For example, energy and water systems are interconnected
with food systems, which in turn are linked to social concerns and the technological systems that enable food
production (Zimmerman et al., 2016). The relationships between ecological and social systems and ecological
and technological systems appear to be best characterized as interconnected. Both of these instances are
described as interconnections rather than interdependencies because ecological systems can function in
the absence of both technological and social systems, but the inverse does not necessarily hold true.
Nonetheless, these relationships are increasingly moving toward interdependencies as the social and
technological systems of humankind have reached such a scale and scope that it is hard to find any ecologi-
cal systems that are not at least influenced by human activity in some way (Allenby, 2007; Allenby, 2012;
Syvitski, 2012; Thomas, 1956; Turner, 1993).

In conjunction with Ostrom et al. (1999) and Stokols (2018), SETS dynamics and interactions occur at a variety
of social, temporal, and geographic scales. Ecological systems consist of individual organisms all the way up
to entire ecosystems and planetary dynamics (e.g., the carbon cycle and the water cycle). Social systems can
range from individuals and personal behavior/decision-making up to wide-ranging institutions and policy
decisions (e.g., local, state, national, or international governance). Technological systems can range from indi-
vidual infrastructure components to large-scale national/international networks (especially in the case of
cyber features), and there may be additional value to be gained by more effectively coupling decentralized
infrastructure (e.g., small-to-medium-scale systems like rooftop solar panels) with centralized infrastructure
(e.g., large-scale power plants and transmission/distribution lines) (Tomlinson et al., 2015). Each of these
SETS-specific scale dynamics will exhibit their own characteristics and behaviors that are important to
acknowledge for future directions, but are beyond the scope of the current paper’s theme. Nonetheless, as
detailed in the case studies presented in section 3, applying a SETS lens to identify and address the evolution
of vulnerability and lock-in within infrastructure systems appears particularly well suited for the meso level of
social relations to nature as described by Hummel et al. (2017). In this context, organizations and institutions
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epitomize the social systems, and ecological-technological interactions primarily relate to addressing the col-
lective needs of society (e.g., provisioning food, energy, and water; protecting against extreme events; and
enabling mobility and communication). From a temporal perspective, a SETS lens on lock-in and resilience
appears particularly well suited for scales on the order of multiple years (sections 3.2 and 3.3) to multiple dec-
ades (section 3.1). However, as applied in this manuscript, SETS also implicitly captures social (e.g., the initial
decision to settle in a river delta; section 3.1) and ecological (e.g., natural variation and meandering of river
flow; section 3.1 ; and climate change dynamics; Sections 3.1 and 3.2) dynamics that span hundreds of years.

2.2. SETS Challenges for Infrastructure

Aside from expanding our thinking to consider infrastructure systems as SETS (rather than simply technolo-
gical systems), some of the primary challenges facing infrastructure are SETS-based, rather than single-
system issues. For example, difficulties associated with infrastructure utilization, inflexibility, complexity,
interdependence, nonstationarity, perceived protection, and social equity are all multidimensional SETS
issues that can contribute to vulnerabilities of our infrastructure systems.

One of the primary challenges facing our infrastructure systems is the relatively inflexible, rigid, and long-
lasting (i.e., obdurate) nature of most infrastructure components, the institutions that manage and maintain
them, and the uncertain and changing levels of utilization that occur during the lifetime of an infrastructure
system (Chester & Allenby, 2018). Typically, infrastructure systems are designed to meet demands decades
into the future, but accurately anticipating, projecting, and capturing the complexity of future demands
and system characteristics are often very challenging—especially when disruptive technologies, climate
uncertainty, and changing behaviors are considered. Moreover, infrastructure are typically playing catch-
up with an ever-changing and usually expanding user base, while the ability to meet those needs in a reason-
able time period is constrained by the fact that current infrastructure systems are in need of trillions of dollars
of investment in the United States (ASCE, 2017). As a result, infrastructure systems can end up being overu-
tilized (in cases where demand exceeds capacity) or underutilized (in cases where capacity exceeds demand).
These challenges will likely be exacerbated in the context of climate nonstationarity—the poor correlation
between past data/trends and future conditions. The natural environment in which infrastructure exists is
changing in unprecedented and uncertain ways (Butchart et al., 2010). However, from a socio-technical per-
spective, we traditionally design infrastructure for climate conditions that may no longer apply (Emanuel,
2017; Forsee & Ahmad, 2011; Milly et al., 2008; Slater & Villarini, 2016). From the perspective of social systems,
our constantly evolving and changing preferences and demands, as well as our ability (or inability) to recog-
nize and predict these changes, contribute to this infrastructural challenge. Thus, in response to emerging
ecological changes (i.e., changes in the weather and climate conditions under which infrastructure systems
operate) and social changes (i.e., changes in preferences and demands), technological systems will likely
need to evolve to be able to perform under a wider variety of operating conditions that the social and eco-
logical dimensions introduce. Additionally, the related institutional dimensions of social systems will need to
adjust the planning, governance, and management of infrastructure to better account for the uncertainty
associated with nonstationarity.

Another challenge is related to the growing complexity and interconnectedness of our infrastructure systems
(Garrick et al., 2018; Miller et al., 2018; Rinaldi et al., 2001; Zimmerman et al., 2016, 2017). Although there
are several different types of interdependences among infrastructure systems (Rinaldi et al., 2001), the two
that appear to be most prevalent are physical—where the output of one system is a direct input to another
system, and geographic—where multiple infrastructure systems share a common location or are located in
close proximity to one another (Rinaldi et al., 2001). An example of physical interdependency is that electricity
is required to operate the pumps and other components of water treatment and distribution, while water is
often a critical input for the creation and cooling of steam in thermal-electric power systems. An example of
geographic interdependency is the burying of fiber-optic cables, water pipelines, and electric transmission
lines underneath roadways or along transportation right-of-ways. Failure in one of these systems is likely
to disrupt the other co-located systems. These relationships pose challenges because the technological evo-
lution of our infrastructure systems appears to be moving toward increased complexity and interconnected-
ness (e.g., electric vehicles, autonomous vehicles, smart water and electricity systems), and the social
components of our infrastructure systems (e.g., governance, regulation, management, and planning) appear
increasingly less adept at fully recognizing and reacting to these interconnections. Thus, in the context of
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resilience, recognizing and accounting for these complex relationships will be crucially important. As
infrastructure systems become more intertwined and interdependent, it will likely become easier for a disrup-
tion in one system to propagate to other systems, thereby increasing the susceptibility to widespread and
high impact cascading failures.

The obdurate, complex, and interdependent nature of many infrastructure systems also contributes to the
fallacy of control, where there is the inclination to overestimate the level of protection provided by techno-
logical systems and underestimate the variability and instability of ecological and social systems. The
channelization and damming of the Mississippi River are exemplary of this. Over time, we have implemented
a series of dams, levees, and other technologies to control how, when, and where the water moves. The
establishment of control structures then led to increased development along and near the river due to the
assumption that many of the threats posed by the river had been neutralized. However, as exhibited by
the Mississippi River floods of 1993 and 2011 and Hurricane Katrina in 2005, ecological systems do not remain
indefinitely predictable and can overwhelm control structures to highly impactful results. This is often a result
of misunderstanding the inherent unpredictability and variance of natural systems, of overconfidence in the
robustness of infrastructure systems, or some combination of the two. To make matters worse, the technolo-
gical systems put in place to protect people and property can exacerbate the impacts of an extreme event
when a failure does occur. For instance, it is likely that New Orleans would not have had as large of a popula-
tion or as much industrial/economic activity if not for the protection (real and perceived) provided by the
levees and pumping stations around and throughout the city. Thus, more people and property are exposed
if and when the levees and pumps fail. It is also important to note that the fallacy of control can occur across a
variety of different levels within social systems: the water crisis in Flint, Michigan (i.e., there were prolonged
water quality and health concerns associated with switching between water supply systems), is an example
of infrastructure planners, funders, and politicians believing that the system was under control (in addition to
other complicating social, economic, and political factors); the near catastrophic failure of the Oroville Dam is
an example of infrastructure operators and regulators believing that the system was under control (California
Department of Water Resources, 2018); and Hurricanes Harvey and Katrina are examples of the public believ-
ing that the system was under control.

Finally, without broader consideration of social and ecological conditions, physical infrastructure systems can
be implemented and managed in an inequitable manner where much of the vulnerability is wittingly or
unwittingly shifted to citizens of lower socio-economic standing. Historically, often as a result of broader
social and cultural power dynamics and inequities, citizens of lower socio-economic standing have lived in
locations with the poorest ecological conditions (e.g., little-to-no green space and higher exposure to
noncoastal flooding; Bullard & Wright, 2009; Chakraborty et al., 2014; Collins et al, 2018; Landry &
Chakraborty, 2009; Maldonado et al., 2016; Wolch et al., 2014). Similarly, physical infrastructure and resources
are not typically distributed evenly across urban areas—citizens of lower socio-economic standing often do
not have access to as much or as high-quality physical infrastructure or institutional protections (e.g., flood
insurance and preparedness programs) as citizens of higher socio-economic standing (Chakraborty et al.,
2014; Collins, 2010; Collins et al.,, 2018; Maldonado et al., 2016). Therefore, in the context of resilience from
a socio-ecological perspective, it appears that improvements can be made by not permitting
development/settlement in areas with poor ecological conditions—particularly for citizens of lower socio-
economic standing. Similarly, from a socio-technological perspective, it is important to think more critically
about how, when, and where physical infrastructure systems are implemented, and who is benefitting (or
harmed) by that implementation.

3. Using a SETS Lens to Identify How Vulnerability Develops Over Time:
Case lllustrations

The embeddedness of technological systems within larger social and ecological systems, and the resulting
complexity that emerges, can ultimately result in unintended consequences and trade-offs within the tech-
nological system and across SETS that are often undesirable and difficult to manage. One of the primary unin-
tended consequences that emerge within our infrastructure systems is lock-in. Thus, an important aspect of
increasing resilience within infrastructure systems will be identifying maladaptive lock-in—particularly in the
context of the aforementioned multidimensional challenges. The remainder of this section contains
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1. Unpredictability/variation in river leads
to desire to intervene/”control”

2. Dams, levees, locks, etc. are installed to
create more “control”/predictability

3. Dams, levees, locks, etc. lead to altered
ecosystems

4. Dams, levees, locks, etc. lead to
increased perception/assumption of
“control”/predictability

5. Increased perception of “control” leads
to more growth/development coupled
with increased fortification

6. Additional development further alters
ecosystems

7. Re-fortification leads to increased
perception of “control”

8. Ecosystem variation & tendency to
return to ‘steady state’ results in
potential major disruption

Figure 2. Summary of social, ecological, and technological system developments along the Atchafalaya and Mississippi
Rivers between the 1950s and the 2010s. The dashed line indicates a feedback loop between points 7 and 4. The dotted
line indicates that system dynamics and interactions continue into the future beyond point 8.

illustrative examples of how a SETS approach appears well suited for aiding decision-makers in this process
by (1) recognizing that changes to technical infrastructure systems influence and are influenced by aspects of
ecological and social systems and (2) analyzing the temporal dynamics of these influences to help identify
(and anticipate) points along a pathway where vulnerability/fragility may reach undesirable levels.

3.1. The Atchafalaya and Mississippi River Basins: SETS in a Historical/Diagnostic Context

One of the best illustrations of the temporal dynamics of SETS and the emergence of lock-in over time is the
Atchafalaya and Mississippi River Basins (Madrigal, 2011; McPhee, 1987; U.S. Army Corps of Engineers, 2009).
In the early 1950s, the Army Corps of Engineers determined that if left untouched, the Mississippi River would
change its course to the Atchafalaya River by 1990 (as part of the natural geologic process of avulsion)—an
ecological forcing on social systems. Should such a shift in the river occur, settlements within the Atchafalaya
River Basin would likely flood and Baton Rouge and New Orleans would be faced with the serious economic
ramifications of the Mississippi River drying up. Considering the relatively large number of people that could
be affected (roughly 800,000 people when considering the populations of New Orleans, Baton Rouge, and
the towns along the Atchafalaya River), and the high economic and cultural significance of Southeastern
Louisiana, a significant shift in flow from the Mississippi River to the Atchafalaya River, was determined to
be unacceptable. As a result, the Army Corps of Engineers constructed the Old River Control Structure in
1963 to prevent the main channel of the Mississippi River flow from deviating from its historical path—tech-
nological forcing on ecological systems in response to social concerns/desires. A severe flood in 1973 almost
caused catastrophic damage to the Old River Control Structure. In response to the 1973 flood, construction of
an auxiliary control structure was completed in 1986 to reduce pressure on the original floodgates. Finally, in
1990, the Murray Hydroelectric Station was added to provide additional flow and flood control at the site.
Figure 2 summarizes these developments over time from a SETS perspective.

Overall, this example highlights a few key issues: (1) at various points in time, different S, E, and T elements are
exerting influence on the overall system; (2) any S concerns are addressed almost exclusively via technologi-
cal systems (i.e,, the Old River Control Structure)—even in the aftermath of a near failure, the response was to
strengthen commitment to T systems by installing the auxiliary control structure and the Murray
Hydroelectric Station; (3) the increased reliance on T systems increased lock-in and fragility within the system;
and (4) a feedback loop (illustrated by the dashed line in Figure 2) appears to emerge related to the
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installation/enhancement of T, increased perception of control, increased growth and development related
to the perceived control, and increased fragility and vulnerability associated with the increased growth
and development. The intersection and interaction of S, E, and T systems in the Atchafalaya River Basin have
resulted in the flows of the Mississippi and Atchafalaya Rivers being locked into a 70/30 split since 1963 and
likely for perpetuity. As a result, virtually all people and economic activity down river are reliant on the con-
tinued performance of the Old River Control Structure, and as population and economic activities continue
to grow within the area, the criticality and fragility of the Old River Control Structure rises. As the criticality
rises, it becomes increasingly difficult and costly to pursue any alternative approaches—thereby increasing
lock-in. Therefore, the vulnerability to and impact from the possible (if not probable) failure of the Old River
Control Structure are continually increased by the complex interactions of SETS and lock-in within the
overarching system.

3.2. Nuisance Flooding in Miami Beach: SETS in a Contemporary/Anticipatory Context

Recent developments in Miami Beach illustrate how a SETS perspective might also assist with anticipatory
efforts. A combination of a dense, relatively impervious urban environment, old and degrading stormwater
infrastructure, intense precipitation events, and rising sea levels have led to increased occurrences of
street-level flooding in Miami Beach. Historically, flooding in Miami Beach has been the result of intense rain
events. However, more recently, sea level rise has led to more occurrences of sunny-day floods. These floods
are common during particularly large high tide events (or, King Tides) and are the result of overtopping sea-
walls and seawater entering through stormwater outlets and bubbling up into the streets via storm drains or
seeping up through porous limestone bedrock (Cohen, 2017; Di Liberto, 2017; Neal, 2017). In response to
these flooding events, in 2014, the City of Miami Beach announced a series of flood prevention projects that
include $300-$500 million in new investments to enhance stormwater and flood mitigation infrastructure
(Clark, 2016; Fagenson, 2014; Flechas, 2017, 2018; Flechas & Staletovich, 2015; Waldheim et al,, 2017).
These investments include the installation of pumping stations (to pump excess storm water and seawater
from the land surface), the raising of roads, and the raising of seawalls—another illustration of the emphasis
placed on technological solutions.

The primary concern with the current strategy for mitigating the flood events (the installation of pumping
stations throughout the island) is with the quality of the water pumped into Biscayne Bay. Preliminary water
sample results found that water pumped into the Bay had elevated levels of nitrogen, phosphorus, and E. coli
(Flechas, 2018; Flechas & Staletovich, 2015; Gidley, 2016; Jones, 2018; Peterson & Weiland, 2016; Staletovich,
2016a; Staletovich, 2016b; Wendel, 2016). While efforts are being made to address these water quality
concerns, continued damage to the water quality and ecosystems of Biscayne Bay could also damage tourism
and development. Figure 3 summarizes the SETS elements of this system over time.

Another potential concern relates to the fail-safe nature of the pumping systems and road changes. While the
City of Miami Beach acknowledges that these actions are only meant as short-term solutions, it is believed
that the pumps can only handle up to 6 inches of sea level rise—a level that could be reached as early as
2030 (South Florida Regional Climate Change Compact, 2015; Sweet et al., 2017). Returning to the topic of
lock-in, one might begin to wonder if the city has now locked itself into this pumping system indefinitely.
Once 6 inches of sea level rise occurs, will more pumps continually need to be added or will the pumps need
to be replaced with larger units? An interesting (and potentially troubling) feedback loop might emerge in
this situation: the initial pumps were installed with tax revenue; to help offset some of these costs, additional
development might be encouraged in the area to raise more revenue from property or sales tax; the combi-
nation of additional development and sea level rise can potentially increase the vulnerability to flooding and
the need for more pumping capacity (or other interventions); more pumping capacity will require more pub-
lic funding, which will likely need to come from additional property or sales tax; and so on. Additionally, the
pumps were installed to mitigate fairly predictable events (i.e., the timing of the King Tide events is fairly well
understood even if the extent of the flooding still has some uncertainty), but it is unclear how well they will
function during less predictable/more extreme events (e.g., hurricanes or extreme precipitation events). In
other words, was a T solution put in place at the expense of future social and economic well-being?
There is also the possibility that raising the street levels may lead to increased vulnerability of shops,
storefronts, and residences to flooding during extreme precipitation events (Flechas, 2016, 2017, 2018;
Waldheim et al., 2017).
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Figure 3. Summary of social, ecological, and technological system dynamics related to addressing tidal flooding in Miami
Beach. The dotted line indicates that system dynamics and interactions continue into the future beyond point 6.

In the Atchafalaya and Miami Beach cases, there appears to be a feedback loop of fragility emerging in these
examples (e.g., the dashed line in Figure 2). First, T is used to address S concerns. Second, installed/upgraded
T increases the perception of control in the S domain. Then, this increased perception of control results in
increased development and population growth in high exposure areas. Fourth, variation in E and S systems
leads to increased fragility within the T and increasing concerns of vulnerability within S systems—which ulti-
mately leads us back to where we began and the cycle repeats. Given the presence of these recurrent pat-
terns, Figures 2 and 3 (as well as Figure 4) are presented in a quasi-cyclical nature. This representation
expands upon the adaptation pathways perspective implemented by Tellman et al. (2018). However, in con-
trast the idea that adaptation pathways primarily consist of socially driven decision cycles that have distinc-
tive start and end points, we view these systems as a continuum of SETS interactions that can have recurring
patterns, but not necessarily a distinctive beginning and end point. Therefore, an open loop depiction of
these case studies appeared to be appropriate given the fact that in reality, the dynamics illustrated in
Figures 2-4 began long before point #1, are still playing out beyond point #8 (or point #6 in case of
Figures 3 and 4), and are constantly evolving. Increasing our ability to recognize this feedback loop (and
break from it when necessary) appears to be a crucial factor in ensuring the longevity and effectiveness of
our infrastructure systems—a role that a SETS lens appears well suited to fill.

3.3. Flooding and Combined Sewer Overflows in Syracuse, NY: Breaking the Cycle Through
Political Change

Syracuse, New York provides an illustrative example of how the voting process, public engagement, and
responsive governance can stop, or at least slow, the trajectory of SETS headed in an undesirable direction.
As was true in other cities, many Syracuse residents in the 1970s-1990s decided to move from the inner city
out to the suburbs where taxes were lower, houses were larger, and new infrastructure systems were being
installed. With this sprawl, the total area of impervious surface also grew, causing stormwater-induced flood-
ing and combined sewer overflows (CSOs) to become increasingly problematic. In 1988, the Atlantic States
Legal Foundation sued Onondaga County over CSOs, which would be likely to worsen in the future due to
climate change. A contentious situation resulted, with the county deciding to build regional treatment facil-
ities to comply with the initial consent judgment and later amended consent judgments. The locations cho-
sen for these new treatment plants were in low-lying areas in poor neighborhoods, leading to social unrest
and cries of environmental injustice. Despite widespread protests, construction of the treatment plants
began. Thus, the initial social problem—perceived undesirable conditions in the inner city—was replaced
by a different problem which would commit the region to inefficient treatment of diluted wastewater for
the indefinite future. It would also subject impoverished residents to living near odiferous treatment plants
for the indefinite future (Flynn et al., 2014; Flynn & Davidson, 2018).
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Figure 4. Summary of social, ecological, and technological system developments leading to widespread adoption of green
infrastructure in the Syracuse metropolitan area. The dotted line indicates that system dynamics and interactions continue
into the future beyond point 6.

In the midst of this social unrest in the mid-2000s, a new candidate for County Executive emerged—with a
call to stop construction of the regional treatment plants and instead promote a combination of green and
gray infrastructure. The candidate won in 2008, and a new Amended Consent Judgment was entered in
2009: the final 10% CSO volume reduction (from 85 to 95%) was required to be satisfied by 6.3% green infra-
structure and 3.7% gray infrastructure. This represents the first time that the use of green infrastructure was a
required condition for control of CSOs in the United States. Between 2011 and 2017, more than 200 green
infrastructure projects throughout the County were constructed, many funded with public-private partner-
ships through innovative financing (Flynn et al., 2014; Flynn & Davidson, 2018).

This sequence of events was used to develop a SES framework for green infrastructure in stormwater man-
agement by Flynn and Davidson (2016). This is similar to the SETS framework used in the current study.
Data collected from Syracuse and other cities showed that the limited amounts of funding and restrictive
funding schemes, as well as various regulations related to zoning, building codes, demolition practices,
and stormwater management, all served as potential barriers to green infrastructure adoption. It was found
that the attributes of various actors (individuals and organizations) could also promote or hinder adoption. In
the case of Syracuse, the election of a new County Executive, S, caused a change that led to the adoption of
green infrastructure, T-E, across the region. Figure 4 illustrates the key SETS dynamics of this example.

For all three of the examples presented, it is important to keep in mind that each of the SETS elements and
the manner in which they are interconnected are likely to vary dramatically across cases, yet the common
theme of promoting the integration is highlighted.

4, Using a SETS Lens to Move Beyond Technologically Focused Resilience Strategies

In addition to helping identify the development of vulnerabilities over time (as shown in the varying cases
above), a SETS lens may also help open the design and decision space to more than just technologically-
based strategies for responding to extreme events—especially considering that there may be cheaper or
more effective socially or ecologically focused solutions. As highlighted by many of the examples in the pre-
vious section, the historical response to undesirable natural conditions and extreme weather events has typi-
cally been to fortify and rebuild the infrastructure stronger, taller, or larger. However, we posit that a SETS
approach to infrastructure, as opposed to a solely T or S-T approach, can potentially increase the adaptive
capacity of a system by illuminating new strategies (and serve as a means to explore the potential implica-
tions of alternative pathways) that may not have been recognized or fully realized under a techno-centric per-
spective. A number of examples illustrate the intersection of the three SETS dimensions simultaneously and
how they enhance the understanding of the problems, and thus point toward more anticipatory solutions.
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One of the best examples of a SETS approach to resilience is the Room for the River strategy to riverine flood
prevention in the Netherlands. In contrast to the techno-centric approach of levee building and channeliza-
tion, Room for the River has the following key elements: (a) development is set back from the banks of the
river to accommodate natural variation in river levels; (b) land directly along the banks of the river is dedi-
cated to farming, which allows for additional economic development while also providing an ecologically-
based buffer for absorbing flood waters during extreme events; and (c) in the case that crops are lost during
flood events, farmers are reimbursed with public funds (Rijke et al., 2012; Roth & Warner, 2007; Warner & van
Buuren, 2011; Wiering & Arts, 2006). This example highlights social and ecological elements that may not be
present in strategies typically employed to prevent flooding. In particular, social systems play a key role in
Room for the River in the form of the subsidies provided to farmers for lost crops, and in the initial decision
to keep nonagricultural development away from the river. Similarly, ecological systems play an important role
in the form of the natural flood water buffer that is provided by the crops adjacent to the river.

Returning to the Miami Beach example described earlier, the current solutions fit almost exclusively within
the T domain and are implemented as T solutions to S concerns (i.e., technical/engineering solutions of instal-
ling pumps and raising roads were put in place to allow tourists and residents of Miami Beach to maintain
certain quality of life and standards of service without being impacted by periodic flooding). The E domain
was almost entirely absent from initial project planning and implementation and is just now starting to get
recognition. Had a complete SETS outlook been adopted from the very beginning of the project, the addi-
tional costs of retroactively developing water quality systems within the pumps could have potentially been
avoided. For example, initial pumping systems might have been designed with built-in water treatment sys-
tems to ensure that the water leaving the pumps is contaminant free. Under this scenario, stormwater that is
historically a diffuse source of contaminated runoff can be concentrated into a point source that is easier to
treat—potentially enhancing the health and ecosystem services of Biscayne Bay. Concurrently, more ecolo-
gically based water treatment systems could be established, such as placing wetland and estuarine habitats
just off the pump evacuation points to filter some of the contaminants from the runoff. Additionally, E-based
approaches could be implemented to help mitigate runoff and flood waters. Strain on the stormwater system
could potentially be reduced by increasing the amount of vegetated and pervious surfaces throughout the
city via increased incorporation of green infrastructure and landscape ecology (Waldheim et al., 2017). For
example, bioswales (or similar solutions) could be placed at stormwater drains to help absorb excess water
being pushed back through the drain and onto the street during sunny-day floods. Finally, given the relatively
predictable nature of these events, certain S solutions could also be implemented. For example, residents
may alter their commute pattern or schedule during expected King Tide events. Similarly, businesses and
home owners in areas known to be affected by these tidal floods could install a mix of vegetation and phy-
sical barriers to help minimize the impact of the flooding. In the long-run, adaptive changes might be needed
in building and development codes (Waldheim et al., 2017), and policies that focus on incentive-based
approaches to managed retreat (i.e., “the strategic relocation of structures and abandonment of land to man-
age natural hazard risk; Hino et al., 2017") may warrant strong consideration—in terms of both the associated
land use planning implications and the potential implications for local residents and businesses.

Another example of a SETS approach to mitigate the effects of extreme weather conditions is the ongoing
efforts to protect public transit riders and infrastructure from extreme heat in Phoenix. Technologically
oriented strategies include shade structures, evaporative cooling systems, stations with solar-powered cool-
ing systems, and tracking systems for buses and trains (City of Phoenix, 2017; Valley Metro, 2018). If needed,
there is also the possibility of installing enclosed, air-conditioned transit stops similar to those deployed in
Dubai and Miami (Ahmed, 2008; Gulf News Staff, 2015; Miami-Dade County Transportation and Public
Works, 2016). Ecologically based solutions include trees for shading (especially as a component of the city’s
Master Tree and Shading Plan) and increased vegetation at and around transit corridors to provide natural
cooling (City of Phoenix, 2010; lwaniec & Wiek, 2014). Some of the socially based strategies being explored
include altering route schedules (e.g., increased frequency of buses and trains to decrease wait times) and
service levels (e.g., pickup /dropoff anywhere along the route instead of at designated stops, supplementary
first/last mile service to reduce need for walking and cycling between transit stops and trip origin/destination;
City of Phoenix, 2017; Fraser & Chester, 2017). An important aspect of implementing these strategies is to
ensure that they are executed in an integrated manner to avoid conflicts and promote synergies among
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different approaches. For example, although the City of Phoenix and Maricopa County provide heat refuge
locations throughout the region, there does not appear to be an established transportation plan for citizens
to get from their house to these refuge centers (Fraser et al., 2016; Fraser & Chester, 2017). Similarly, installing
trees near a transit stop that already has a substantial shade structure or an evaporative cooling system may
provide relatively lower benefits—having cool and comfortable transit stops may not do much good if rider-
ship cannot get from their origin to a transit stop (or from a transit stop to their destination) in an effective
and timely manner. Finally, another element of effectively integrating SETS solutions is monitoring for unde-
sirable feedback loops. For example, the installation of evaporative cooling systems or trees may conflict with
water management and conservation goals (Iwaniec & Wiek, 2014). Similarly, installation of air-conditioned
transit stops may conflict with energy and environmental goals.

SETS approaches have also been recently applied (or proposed) for reducing the impacts of drought in
California. Technologically oriented options being implemented or explored include desalination (such as
the 50 million gallons per day Carlsbad Desal Plant near San Diego), groundwater drilling, and wastewater
recycling (Cooley et al., 2014; Gorman, 2015; Howard & Millsap, 2014; Kang & Jackson, 2016; McKenzie,
2015; San Diego County Water Authority, 2018; Underwood, 2016). Ecologically based solutions include the
use of more native vegetation in landscaping and the implementation of fog harvesting systems inspired
by nature (California Water Service, 2018; FogNet, 2018; Goldstein, 2015; Knickmeyer, 2016; Weiss-penzias
etal, 2016). Socially oriented solutions include mandatory water restrictions for homes and businesses, beha-
vioral water efficiency techniques (e.g., indication of one’s water usage compared to neighbors and tiered pri-
cing schemes based on usage), and altered agricultural practices (e.g., shifting away from water-intensive
products like citrus, almonds, and cattle). While each of these strategies are categorized as having a specific
emphasis, many of them are multidimensional. For example, although wastewater recycling might primarily
be considered a technical issue and increased use of native vegetation might primarily be considered an eco-
logical issue, both of them require a cultural shift and social buy-in (Dolnicar & Scha, 2009; Fielding et al., 2018;
Po et al, 2003; Rott, 2018). Similarly, although fog harvesting could be considered a more ecologically
inspired approach, there are still substantial technical elements associated with designing and implementing
such systems. The multidimensionality seen in these examples further emphasizes the importance of think-
ing across SETS rather than individual disciplines or systems.

Ultimately, the SETS-based strategies outlined in this section appear to exhibit inherent levels of flexibility
and agility that are not always found in more techno-centric strategies. Flexibility and agility have been
suggested as important competencies to adaptive capacity (Chester & Allenby, 2018; Markolf et al., 2018).
Thus, to the extent that more SETS-based, rather than T-based resilience strategies are implemented, we
expect adaptive capacity to increase. In turn, increased adaptive capacity allows systems to more effectively
move between and across the rebound, robustness, graceful extensibility, and sustained adaptability regimes
of resilience (Markolf et al., 2018; Seager et al., 2017; Woods, 2015).

5. Conclusions

The primary goal of this manuscript is to begin to frame the options and encourage continued research that
supports the generation and application of knowledge about the complex, interconnected, and transdisci-
plinary nature of infrastructure systems in the context of extreme events. In turn, proposing new empirical
methods for quantifying SETS interactions, lock-in, or resilience is left for follow-up studies. Thus, from the
framing and case studies developed in this paper, we advance the following key concepts: (1) infrastructure
systems are not simply technological (or even socio-technical or socio-ecological) artifacts—they are com-
plex and interconnected SETS; (2) in addition to infrastructure being complex and multidimensional, the
challenges facing our infrastructure are also SETS issues (e.g., inflexibility, utilization, and social equity); (3)
by not thinking of infrastructure systems (and their related challenges) as SETS, the complexity inherent in
our infrastructure systems can often be overlooked and underappreciated—potentially leading to cata-
strophic effects if left unchecked; (4) by underappreciating the complexity of our infrastructure systems,
we become susceptible to incorrectly predicting future conditions and overestimating the predictability of
future conditions, which in turn tends to encourage and perpetuate a strong emphasis on robustness and
techno-centric practices; and (5) overconfidence in the predictability of future conditions and the reliance
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on techno-centric/robustness-oriented solutions can contribute to lock-in that is ultimately antithetical to the
adaptive capacity (and thus resilience) of our infrastructure systems.

Overall, a SETS lens to infrastructure resilience appears well suited to help researchers, practitioners, and
managers better identify (and prevent) lock-in and vulnerabilities that evolve within our infrastructure
systems over time. This is particularly true for cases like the Old River Control Structure on the Atchafalaya
River and the pumping stations in Miami Beach that have simultaneously become increasingly critical and
fragile. Ideally, the SETS approach can help detect and address this criticality and fragility before a major
disruption or failure occurs. At the opposite end of the spectrum, extreme events and surprises have been
identified as primary mechanisms for breaking lock-in (Cowan & Hultén, 1996; Graham & Thrift, 2007;
Unruh & Carrillo-Hermosilla, 2006), but with deleterious outcomes for human well-being, ecological integrity,
and physical infrastructure. While proactive and preventive strategies should receive absolute precedent, the
unfortunate reality is that major system disruption and failures can (and likely will) still occur. In these
instances, the SETS lens can at least help mitigate the element of surprise, while also aiding the development
of transformative strategies that help prevent the system from returning to a state of maladaptive lock-in.

Additionally, a SETS lens can also shed light on options that may not traditionally be considered—thereby
increasing the adaptive capacity of the system to respond to surprising and unprecedented events and con-
ditions. Moving forward, another potential resilience benefit from a SETS perspective worthy of further
exploration is an examination of how different S, E, and T systems process and respond to stressors in differ-
ent manners and at different rates. For example, vegetation in the Caribbean has been observed to exhibit
widespread recovery from hurricanes within a few months (Bellingham et al, 1994; Tanner et al,, 1997;
Voiland, 2017)—rates that may not be mirrored by social and technological systems. Gaining a better under-
standing of these differences and catering to them may help further enhance the adaptive capacity of our
infrastructure systems and their ability to move across different resilience regimes as needed. Additionally,
with the growing influence of cyber systems on social elements like the spread of information (and misinfor-
mation) and environmental elements such as the growing energy and resource demands of digital systems
(Belkhir & EImeligi, 2018; Coroama et al., 2013; Stokols, 2018; Zanella et al., 2014), further examination of SETS
interactions and dynamics in an increasingly cyber-influenced world will be an important avenue of future
study. As cyber-technical systems continue to evolve, grow in complexity, and become increasingly auto-
mated, will the technological domain start to have an outsized influence on the social and ecological
domains? Will lock-in related to cyber-based SETS interactions develop and evolve in similar matters to phy-
sical infrastructure systems or will new dynamics of lock-in emerge?

As we advance toward the use of SETS frameworks in the planning, design, and implementation of infrastruc-
ture, it is important to keep sight of the constant need to integrate the SETS dimensions in order to avoid con-
flict, prevent maladaptive dynamics, and promote resilient, mutually reinforcing systems. Finally, it seems
evident that the challenges and issues outlined in this manuscript cannot be fully addressed or solved from
the perspective of a single discipline or sectoral expertise. In order to advance the science and effective man-
agement of SETS, a new generation of scholars and practitioners will need to develop a wide variety of skills
and competencies such as an emphasis on real-world problems, integration of knowledge from all sources
(i.e., academia, practitioners, and citizens), acknowledgement of science as an actor in the systems it sets
out to analyze, embracing complexity and interdependency, and acceptance of theoretical and practical plur-
alism rather than dualism (Hummel et al., 2017; Kramm et al., 2017; Miller et al., 2014; Munoz-Erickson et al.,
2017; Stokols, 2018; Wiek et al., 2011). Thus, to effectively develop a SETS perspective on infrastructure, we
must begin to address the lack of transdisciplinarity in our training and education, our institutions, and our
governance practices.
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