
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

8-2-2007

A Domain-Specific Conceptual Query System A Domain-Specific Conceptual Query System

Xiuyun Shen

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Shen, Xiuyun, "A Domain-Specific Conceptual Query System." Thesis, Georgia State University, 2007.
doi: https://doi.org/10.57709/1059391

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @
Georgia State University. It has been accepted for inclusion in Computer Science Theses by an authorized
administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_theses
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/1059391
mailto:scholarworks@gsu.edu

A DOMAIN-SPECIFIC CONCEPTUAL QUERY SYSTEM

by

XIUYUN SHEN

Under the Direction of Rajshekhar Sunderraman

ABSTRACT

 This thesis presents the architecture and implementation of a query system resulted

from a domain-specific conceptual data modeling and querying methodology. The query

system is built for a high level conceptual query language that supports dynamically user-

defined domain-specific functions and application-specific functions. It is DBMS-

independent and can be translated to SQL and OQL through a normal form. Currently, it has

been implemented in neuroscience domain and can be applied to any other domain.

INDEX WORDS: Bioinformatics, Database, Conceptual, Domain-Specific, Life Science

Data, Normal Form, Query Language, User-Defined Function

A DOMAIN-SPECIFIC CONCEPTUAL QUERY SYSTEM

by

XIUYUN SHEN

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in the College of Arts and Sciences

Georgia State University

2007

Copyright by

XIUYUN SHEN

2007

A DOMAIN-SPECIFIC CONCEPTUAL QUERY SYSTEM

by

XIUYUN SHEN

 Major Professor: Rajshekhar Sunderraman
 Committee: Yangqing Zhang
 Yingshu Li

Electronic Version Approved:

Office of Graduate Studies
College of Arts and Sciences
Georgia State University
August 2007

iv

ACKNOWLEDGMENTS

I am deeply indebted to my advisor, Dr. Rajshekhar Sunderraman, for his constant support.

Without his help, this work would not be possible. I also would like to thank the members of

my committee - Dr. Yanqing Zhang, and Dr. Ying shu Li. Their valuable comments and

suggestions enhanced the quality of this thesis work. I would also like to thank Hao Tian for

giving me so much advice on my thesis and teaching me how to solve problems.

I also wish to thank Shaochieh Ou, and my colleagues at GSU, their advice is appreciated.

Lastly, I would like to thank my whole family for their support. I dedicate this thesis to my

mother and my father.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iiv
LIST OF FIGURES ... vvii
LIST OF TABLES .. vivii
LIST OF ABBREVIATIONS ... viivii
CHAPTER 1 INTRODUCTION...1
CHAPTER 2 DATA MODELS AND QUERY LANGUAGES..3

2.1 Data Models ..13
2.1.1 Entity-Relationship data models ..5
2.1.2 Relational data models...6
2.1.3 Object-Oriented data models ...8
2.1.4 Object-Role modeling..10
2.1.5 Data models in XML ..10
2.1.6 Other data models ..112

2.2 Query Languages ..13
2.2.1 Traditional DBMS-supported query languages ...15
2.2.2 Conceptual query languages ..18
2.2.3 Domain-Specific query languages ...19

Chapter 3 DOMAIN-SPECIFIC CONCEPTUAL QUERY SYSTEM20
3.1 System Architecture..20
3.2 From DSC-DM to Database Schema..22

3.2.1 User-Defined functions - UDF.XML...22
3.2.2 Other information - DSC.XML..24
3.2.3 Mapping from DSC-DM to database schema - Mapping.XML24
3.2.4 Examples..266

3.3 From DSC-QL to SQL/OQL ..29
3.3.1 DSC-QL syntax..29
3.3.2 Normal form of DSC-QL...31
3.3.3 Translation of DSC-QL..32
3.3.4 DSC-QL to SQL/OQL Example..34

3.4 DSC-ML ...35
3.4.1 DSC-ML syntax...36
3. 4. 2 DSC-ML examples ..36

3.5 Source Code ..37
Chapter 4 CONCLUSION AND FUTURE WORK..38
Bibliography ..411

vi

LIST OF FIGURES

Figure 2.1 ER diagram of the grade book example ………………………………………..6

Figure 2.2 Relational data model and database example ………………………………….7

Figure 2.3 Object-Oriented data model and database example ……………………………9

Figure 2.4 Grade book database in XML format …………………………………………11

Figure 2.5 Query language history ………………………………………………………..14

Figure 3.1 System Architecture of Query System ………………………………………...20

Figure 3.2 a part of DSC-DM for neuroscience domain ………………………………….26

Figure 3.3 Data structure diagram of DSC-DM for an enrollment system ……………….37

vii

LIST OF TABLES

TABLE 2.1 SQL STANDARDS …………………………………………………………15

viii

LIST OF ABBREVIATIONS

Backus-Naur Form …………………………………………………………… BNF
Database Management System ………………………………………………. DBMS
Data Definition Language ……………………………………………………. DDL
Data Manipulation Language ………………………………………………… DML
Domain-Specific Conceptual Data Model …………………………………… DSC-DM
Domain-Specific Conceptual Manipulation Language DSC-ML
Domain-Specific Conceptual Query Language ……………………………… DSC-QL
Domain-Specific Function …………………………………………………… DSF
Enhanced Entity-Relationship ………………………………………….......... EER
Entity-Relationship …………………………………………………………... ER
Java Database Connectivity ………………………………………………….. JDBC
Object Definition Language ………………………………………………….. ODL
Object Database Management Group …………………………………........... ODMG
Object Management Group ……………………………………………........... OMG
Object-Oriented Database Schema …………………………………………... OODBS
Object-Oriented Data Model …………………………………………………. OODM
Object Query Language ……………………………………………………… OQL
Object-Role Modeling ……………………………………………………….. ORM
Relational Algebra .. RA
Relational Database Schema …………………………………………………. RDBS
Relational Data Model ………………………………………………….......... RDM
Structured Query Language ………………………………….......................... SQL
User-Defined Function ……………………………………………………….. UDF
Unified Modeling Language ……………………………………………......... UML
World Wide Web Consortium ……………………………………………….. W3C
Extensible Markup Language ………………………………………………... XML

1

CHAPTER 1 INTRODUCTION

 A new trend of current database applications is to provide a more and more powerful

query capability to end-users so that they can formulate complicated queries to interact with

the data in underlying databases directly. It is obvious that traditional query languages like

SQL and OQL cannot meet this requirement, and an alternative is conceptual query language

[1, 2]. Although form-based query interface is another readily usable solution, it typically

suffers the limited expressive power and supports only predefined types of queries. Form-

based query interfaces are application-dependent, can rapidly become obsolete as the

underlying database schema evolves, and have to be re-programmed.

 A domain-specific conceptual data modeling and querying methodology has been

proposed in [3]. It provides a new user-oriented conceptual query approach with the support

to dynamic user-defined functions (both domain-specific functions and application-specific

functions). In this thesis, we present the implementation of this methodology and illustrate the

conceptual query approach in neuroscience domain (built on an object-oriented DBMS,

EyeDB [4]). DSC-DM (domain-specific conceptual data model) and DSC-QL (domain-

specific conceptual query language) are two key components of the methodology. DSC-DM

includes a data structure diagram, user-defined functions (UDF), and two special tables (meta-

attribute table and annotation table). The data structure diagram is similar to the Enhanced

Entity-Relationship (EER [5]) model with a more restricted inheritance relationship that must

be total inheritance. UDF includes domain-specific functions (DSFs) and application-specific

functions (ASFs), which are defined by domain-experts and model creators. The signature,

semantics, and implementation of UDF are stored in an XML file (i.e. UDF.xml) that is

loaded by DSC-QL Normalizer at run time for query normalization. Therefore, UDF can be

2

easily updated at any time without changing rest parts of the system. DSC-QL is a high level

conceptual query language based on DSC-DM. It has simple syntax and uses only the

concepts, relationships, and functions defined in DSC-DM. Besides, the supports to super-

class and dot-path expression make it more practically usable and comfortable for end-users

to navigate the concepts in the model. Consequently, end-users can formulate their queries

only based on familiar concepts and functions in their research area. Through normalization

and translation, DSC-QL can be translated into SQL, OQL and others. The normal form and

semantics of DSC-QL have been formally defined in [6].

 In general, all information in DSC-DM created by domain-experts and database

specialists will be stored in several XML files and used to generate a matching database

schema. The DSC-QL query formulated by end-users will be parsed, validated, and

normalized. The normalized DSC-QL query, in turn, is translated into an equivalent query

that can be recognized by the underlying DBMS. This query system has been implemented in

neuroscience domain [7].

3

CHAPTER 2 DATA MODELS AND QUERY LANGUAGES

Data describe phenomena that reflect a perception of the world. That is, data correspond

to discrete, recorded facts about phenomena from which we gain information about the world

[13]. Data management is a very broad concept; it includes all the disciplines which are

related to managing data as a valuable resource. The official definition provided by Data

Management Association (DAMA) [14] is that “Data Resource Management is the

development and execution of architectures, policies, practices and procedures that properly

manage the full data lifecycle needs of an enterprise.” PC Magazine [15] gives another

definition that describes the data management at different levels: (1) the part of the operating

system that manages the physical storage and retrieval of data on a disk or other device; (2)

software that allows users to create, store, retrieve and manipulate files interactively; (3) the

function that manages data as an organizational resource; (4) the management of all

data/information in an organization, which includes data administration, the standards for

defining data and the way in which people perceive and use them. From the definitions above,

we can see that data management includes a variety of topics, each of which involves many

different technologies. Following are several common data management topics: data model,

data storage, data query, data collection, database administration, data backup and security,

data quality assurance, data warehousing and mining, data analysis, data integration and

distribution, data validation, data cleaning and curation, data monitoring, and so on. Data

model and data query are two most basic and common topics.

 2.1 Data Models

 A data model is a data representation in an organization or system. The representation

of data is the first step of data management. As it is mentioned above, data describe a

4

perception of the world, from which human beings. Information is an increment of knowledge

that can be inferred from data [16]. Since both data and information play the same significant

roles in data management, we do not distinguish them from each other in our research. And

we use the term “data” and “information” interchangeably in the following contents.

From the application perspective, the purpose of data modeling is to develop an accurate

model or graphical representation, of a client's information and its needs. That is, Data

modeling functions as a “blueprint” for building the physical database. The representation of

information previously uses natural language, and the main sources of data and knowledge

include papers, books, literatures and reports etc. However, natural language is a very

ambiguous tool for representing information. It is not precise and machine-processable even

though it works very well for the communication between human beings. As an alternative,

data model is devised for computer-oriented representation of information. Another goal of

data model is to provide a sufficiently abstract interpretation of an object in the world so that

minor difference in understanding will not change the nature of the object. A formal

mathematical definition of data model was given in [13].

There are different ways to categorize data models. One way is to divide them into two

groups: strictly typed and loosely typed data models. In strictly typed data models, all data

must belong to certain category, while loosely typed data models do not have this limitation.

The current commonly used categorization is to group data models based on their

functionality into conceptual data models and physical models. Conceptual data models which

sometimes called domain models are built to document high-level abstract ideas and are used

to identify and document domain concepts with project stakeholders. Logical data models

focuses on exploring domain concepts and their relationships and relationship cardinalities.

5

Thus, logical data models depict the logical entity types, the data attributes describing those

entities, and the relationships between the entities. Data definition languages (DDL) can be

generated at this level. Conceptual data models are often created as alternatives to logical data

models. Physical data models, also the best known data models, determine the actual design

of a database. They are used to design the internal schema of a database and depict data tables,

the data columns of those tables and the relationships between data tables.

The follow sections briefly introduce a few common used data models.

2.1.1 Entity-Relationship data models

 Entity-Relationship (ER) data model is one of the most common conceptual data

models. It was originally proposed by Chen in 1976 [19]. A basic component of this model is

the Entity-Relationship diagram which can be used to represent data objects. This data model

is very commonly used for database design by the database designer; The Entity-Relationship

Model is a conceptual data model, the basic constructs of the ER model includes entities,

relationships, and attributes. Entities are concepts, real or abstract, about which information is

being collected. Relationships are associations between the entities. Attributes are properties

which describe the entities or relationships between entities. There is no standard for

representing data objects in ER diagrams. Different methodologies can use their own notation.

The common ones are Bachman, crow’s foot, and IDEFIX. Most constraints in ER data model

are explicit, and can be expressed in the ER diagram using different notations. ER data model

has many limitations.Since Chen introduced the first ER model, ER data models have been

extended or revised in many different ways in order to overcome their limitations as described

by Teorey et al. (1986) [20], Gogolla and Hohenstein (1991) [21], Elmasri et al. [22], and

Badia (2004) [23]. Following is an example:

6

Figure 2.1 ER diagram of the grade book example

2.1.2 Relational data models

The relational data model for database management is a database model based on

predicate logic and set theory. It was first formulated and proposed in 1969 by Edgar

Codd [17] with aims that included avoiding, without loss of completeness, the need to

write computer programs to express database queries and enforce database integrity

constraints.

The Relation is the basic element in a relational data model. A relation consists of a

heading and a body. A heading is a set of attributes. A body (of an n-ary relation) is a set of n-

tuples. Strictly speaking, a relational database is a collection of relations (frequently called

tables). Examples of relational databases are Oracle, Microsoft SQL Server, MySQL, and

others. The major advantages of relational data models are that they have simple structures

and constraints; the strong mathematical foundation is also a very important advantage of

M

N

Student

SID FNAME LNAME MINIT

Course

TERM LINENO CNO B C D

Enroll

A

7

relational data model. The some major disadvantages of relational data models are that it is

very hard to model complex data and only support some primitive data types.

In this chapter, a company system from [5] is used as the example to illustrate the

different data models. Its relational data model and one sample database are as following.

Figure 2.2 Relational data model and database example [5]
 (a) The relational data model; (b) a database instance of a company system

SSN FNAME LNAME SALARY

ESSN PNO HOURS

Employee

Works-on

Project

Figure 2.2 (a)

PNO PNAME PLOCATION

SSN FNAME LNAME SALARY

123456789 John Smith 30000

333445656 Franklin Wong 40000

999887777 Alleta Zelaya 25000

ESSN PNO HOURS

123456789 1 32.5

123456789 2 7.5

333445656 2 10.0

333445656 3 10.0

99988777 30 30.0

PNO PNAME PLOCATION

1 ProductX Bellaire

2 ProductY Sugarland

3 ProductZ Houston

30 Newbenefit Stanford

Employe

Project

Works-on

Figure 2.2 (b)

8

The specification EMPLOYEE (SSN, FNAME, LNAME, SALARY) is an example of a

relation scheme. A relation scheme generally represents an entity type in relational data

models. Various restrictions on data can be specified on a relational database in the form of

constraints. Structured Query Language (SQL) is standard language for relational database.

And the operations based on relational data models are relational calculus and algebra.

2.1.3 Object-Oriented data models

 Object-Oriented data models (OODMs) are originated from the object-oriented concept.

An object-oriented data model consists of the following basic object-oriented concepts: (1)

object and object identifier: any entity in a real world is modeled as a object, each object

associates a unique object ID (OID) which is like primary keys of a relation in relational data

model. (2) Attributes and methods: any object has a state and a behavior which are accessed

from outside. (3) Class: class is a means of grouping all the objects which share the same set

of attributes and methods. Each object is a concrete instance of an object class defining the

attributes and operations of all its instances. (4) Class hierarchy and inheritance.

Compared to RDBMS, Object oriented data base systems have a lot of advantages:

composite objects and relationships, offering more complex data types and class hierarchy.

The disadvantage of OODBMS is that modification of database shema even the modification

limited to one class often means system recompiling.

OQL is standard query language for object-oriented database. Some common Object

Oriented Database Management Systems are Object Store, Ozone and EyeDB. Figure 2.3 has

an OODM and object-oriented database example of the grade book system example [18].

9

Figure 2.3 Object-Oriented data model and database example [18]
 (a) The OODM; (b) an object-oriented database of a grade book system

Class Student {
 attribute integer SID;
 attribute string FNAME;
 attribute string LNAME;
 attribute string MINIT;
 relationship set<Course> enroll inverse Course::enrolledBy;
};
Class Course {
 attribute string TERM;
 attribute integer LINENO;
 attribute string CNO;
 attribute integer A;
 attribute integer B;
 attribute integer C;
 attribute integer D;
 relationship set<Student> enrolledBy inverse Students::enroll;
};

Figure 2.3 (a)

Figure 2.3 (b)

OID: 1000006
TERM: SP97 LINENO: 1031
CNO: csc226 A: 90 B: 80
enrolledBy: C: 70 D: 50

OID: 1000003
SID:3333 FNAME: Elad
MINIT:G LNAME: Yam
Enroll:

OID: 1000001
SID:1111 FNAME: Sydney
MINIT:A LNAME: Com
Enroll:

OID: 1000002
SID:2222 FNAME: Susan
MINIT:B LNAME:Williams
Enroll:

OID: 1000004
TERM: F96 LINENO: 1031
CNO: csc226 A: 90 B: 80
enrolledBy: C: 65 D: 50

OID: 1000005
TERM: F96 LINENO: 1032
CNO: csc227 A: 90 B: 80
enrolledBy: C: 65 D: 50

10

2.1.4 Object-Role modeling

Object-Role Modeling (ORM) [24] is a powerful method used for designing and

querying database models at the conceptual level. It is a generic term for a conceptual

modeling approach which avoids the notion of attribute by picturing the application world in

terms of objects that play roles individually or in relationships. ORM facilates detailed

information modeling because it is sematically rich, it has rich graphic notion that often

makes it eable to capture more business rules, and its notions are easily populated. Compared

to other data models, ORM are also easier to validate and evolve.The use of ORM for

conceptual and relational database design is becoming more popular.

2.1.5 Data models in XML

The term “Data models in XML” used in our research refers to models defined or

expressed in XML. We talk about “Data models in XML” here because many life science data

models such as CellML [54], BrainML [53] and SBML [55] are currently defined in a markup

language which follows XML standards.

The Extensible Markup Language (XML) is general-purpose markup language which is

recommended by W3C, and has recently emerged as a new standard for data representation

and exchange on the internet. XML document has a tree-like structure and its specification

defines a standard way to add markup to documents. In current database community, XML

gains more and more attation and there are already several XML database management

system developed. One significant advantage of XML document is that it is a simultaneously

human- and machine-readable format. Figure 2.4 (next page) gives the XML schema and

representation of grade book sample database.

11

Figure 2.4 Grade book database in XML format
(a) XML schema; (b) XML document

 <xsd:schema …>
 <xsd:element name="Course">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="TERM" type="xsd:string"
 use="required"/>
 <xsd:element name="LINENO" type="xsd:string"
 use="required"/>
 <xsd:element name="CNO" type="xsd:string"

use="required"/>
 <xsd:element name="A" type="xsd:decimal"

use="required"/>
 <xsd:element name="B" type="xsd:decimal"

use="required"/>
 <xsd:element name="C" type="xsd:decimal"

use="required"/>
 <xsd:element name="D" type="xsd:decimal"

use="required"/>
 </xsd:sequence>
 </xsd:complexType>

</xsd:element>

<xsd:element name="Student">

 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="SID" type="xsd:string"

use="required"/>
 <xsd:element name="FNAME" type="xsd:string"

use="required"/>
 <xsd:element name="LNAME" type="xsd:string"

use="required"/>
 <xsd:element name="MINIT" type="xsd:string"/>
 <xsd:sequence minOccurs="0" maxOccurs="5">
 <xsd:element ref="Course"/>
 </xsd:sequence>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="GradeBook">
 <xsd:complexType>
 <xsd:sequence minOccurs="1"
 maxOccurs="unbounded">
 <xsd:element ref="Student"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

<BradeBook>
 <Student>
 <SID>1111</SID>
 <FNAME>Sydney</FNAME>
 <LNAME>Corn</LNAME>
 <MINIT>A</MINIT>
 <Course>
 <TERM>F96</TERM>
 <LINENO>1031</LINENO>
 <CNO>csc226</CNO>
 <A>90
 80
 <C>65</C>
 <D>50</D>
 </Course>
 </Student>
 <Student>
 <SID>2222</SID>
 <FNAME>Susan</FNAME>
 <LNAME>Williams</LNAME>
 <MINIT>B</MINIT>
 <Course>
 <TERM>F96</TERM>
 <LINENO>1031</LINENO>
 <CNO>csc226</CNO>
 <A>90
 80
 <C>65</C>
 <D>50</D>
 </Course>
 <Course>
 <TERM>F96</TERM>
 <LINENO>1032</LINENO>
 <CNO>csc227</CNO>
 <A>90
 80
 <C>65</C>
 <D>50</D>
 </Course>
 </Student>
 <Student>
 <SID>3333</SID>
 <FNAME>Elad</FNAME>
 <LNAME>Yam</LNAME>
 <MINIT>G</MINIT>
 </Student>
</GradeBook>

Figure 2.4 (a) Figure 2.4 (b)

12

2.1.6 Other data models

 UML Data Models

The Unified Modeling Language (UML) [25] is becoming widely used for both database

and software modeling; it is Object Management Group’s (OMG) most-used specification.

UML classifies instances into objects and data values, like other ER notations, UML

allows relationships to be modeled as attributes. UML uses class diagrams for analysis

when UML is used for data modeling purpose.

Strictly speaking, UML is a language designed for the software engineering modeling,

rather than the data modeling.

 Network Data Models

The network model is conceived as a flexible way of representing objects and their

relationships. It was originally introduced by Charles Bachman, and developed into a standard

specification published in 1969 by the CODASYL Consortium. Unlike in hierarchical data

models where each object can only have one parent and many children, network data models

allow each object to have multiple parent and child objects. Therefore, network data models

form a lattice structure, while hierarchical data models form a tree structure. One example is

the DBTG-network data model introduced by the Database Task Group (DBTG) [26, 27]. The

DBTG-network data model uses two constructs: the record and the link. The record represents

the entity types, and the link represents the relationship between the records. Although

network data models were implemented and used, they failed to become dominant and were

eventually displaced by relational data models.

13

 Hierarchical Data Models

Hierarchical data models define hierarchically-arranged data. They are similar to network data

models except that they impose a further restriction on the relationship types. The arcs in the

data structure diagram of a hierarchical data model must form an ordered tree. The placement

of the nodes (such as, parent node or children node, left or right node of each other) in the tree

is significant. Hierarchical data models were widely used in the first mainframe database

management systems, for example the IBM’s Information Management System (IMS) [28, 29]

and Adabas [30]. However, this kind of models creates repetition of data and cannot handle

many-to-many relationships. They often cannot model many kinds of information existing in

the real world.

 Binary Data Models

A binary data model refers to (or can be) any graph data model in which the nodes

represent simple and single attributes and the arcs represent binary relationship types between

two attributes. It served as a basis for many proposed data models [31, 32].

2.2 Query Languages

After the data is stored in a database, how to efficiently retrieve them is another important

issue that needs to be considered in a particular application. Our research focuses on three

most commonly used data queries languages: Structure Query Language (SQL), Object Query

Language (OQL), and XQuery.

Database query languages are computer languages used to make queries to the databases.

They are normally DBMS-dependent, and designed for a certain type of DBMS. For example,

SQL is a well known query language for relational databases, OQL is a query language for

object-oriented databases, and XQuery is the query language for XML data sources.

14

Figure 2.5 shows the history of query languages [33].

Figure 2.5 Query language history [33]

6
6

6
6

6
6

6
6

6
7

7
7

7
7

7
7

7
7

7
8

8
8

8
8

8
8

8
8

8
9

9
9

9
9

9
9

9
9

9
0

0
0

0
0

196
200

R
esearch (m

ostly by

R
elational D

atabase
outlined by

C
odd published 12 rules

defined a R
elational

D
atabases capable of an
of data developed by

The first O
bject O

riented
M

anagem
ent S

ystem
s had begun to

First com
m

ercially available
database system

 released by H
oneyw

ell

SQ
L-92 by

S
ystem

 R

operation

IB
M

 developed first
of ‘S

E
Q

U
E

L’ or ‘S
E

Q
U

E
L-

S
E

Q
U

E
L-X

R
M

 com
pletely re-

support m
ulti-table and m

ulti-user
and renam

ed to

SQ
L Standardised by

SQ
L3 Standardised by

O
D

M
G

-93 O
Q

L

15

2.2.1 Traditional DBMS-supported query languages

Three major traditional DBMS-supported query languages are SQL, OQL, and XQuery.

Structured Query Language (SQL):

 SQL (sometimes expanded as Structured Query Language) is a computer language used

to create, retrieve, update and delete data from relational database management systems

(DBMSs). SQL was adopted as a standard by ANSI (American National Standards Institute

[34]) in 1986 and ISO (International Organization for Standardization [35]) in 1987. SQL can

only be used to query data contained in a relational database. SQL is not an imperative

language but a set-based, declarative programming language. It has gone through a number of

revisions (see Table 2.1 [36]).

TABLE 2.1 SQL STANDARDS [36]

SQL statements are often divided into three categories:

Year Name Alias Comments

1986 SQL-86 SQL1 First published by ANSI. Ratified by6 ISO in 1987

1989 SQL-89 Minor revision

1992 SQL-92 SQL2 Major revision

1999 SQL:1999 SQL3
Added regular expression matching, recursive queries, triggers, non-
scalar types and some object-oriented features. (The last two are
somewhat controversial and not yet widely supported.)

2003 SQL:2003
Introduced XML-related features, window functions, standardized
sequences and column with auto-generated values (including identity-
columns).

2006 SQL:2006

ISO/IEC 9075-14:2006 defines ways in which SQL can be used in
conjunction with XML. It defines ways of importing and storing
XML data in an SQL database, manipulating it within the database
and publishing both XML and conventional SQL-data in XML form.
In addition, it provides facilities that permit applications to integrate
into their SQL code the use of XQuery, the XML Query Language
published by the World Wide Web Consortium (W3C), to
concurrently access ordinary SQL-data and XML documents.

16

DML (Data Manipulation Language): These SQL statements are used to retrieve and

manipulate data. This category encompasses the most fundamental commands including

DELETE, INSERT, SELECT, and UPDATE. DML SQL statements have only minor

differences between SQL variations. DML SQL commands include the following:

o DELETE to remove rows.

o INSERT to add a row.

o SELECT to retrieve row.

o UPDATE to change data in specified columns.

DDL (Data Definition Language): These SQL statements define the structure of a database,

including rows, columns; tables, indexes, and database specifics such as file locations. DDL

SQL statements are more part of the DBMS and have large differences between the SQL

variations. DML SQL commands include the following:

o CREATE to make a new database, table, index, or stored query.

o DROP to destroy an existing database, table, index, or view.

o DBCC (Database Console Commands) statements check the physical and logical

consistency of a database.

DCL (Data Control Language): These SQL statements control the security and permissions of

the objects or parts of the database(s). DCL SQL statements are also more part of the DBMS

and have large differences between the SQL variations. DML SQL commands include the

following:

o GRANT to allow specified users to perform specified tasks.

17

o DENY disallowing specified users from performing specified tasks.

o REVOKE to cancel previously granted or denied permissions.

Object Query Language (OQL):

OQL is the standard object-oriented SQL-like query language with special features

dealing with complex objects, values and method for object-oriented database management

systems modelled after SQL, which is specified by Object Data Management Group (ODMG)

[37] as part of the ODMG2.0 standard. OQL can be used in two different ways, one is that it

can be used as an embedded function in a programming language like C++ or Java to make

programs simpler, as an embedded language, OQL allows querying denotable objects that are

supported by the native language through expressions producing atoms, collections and

literals; another is that it can be used interactively as an ad hoc query language allowing

database queries from users. OQL uses ODL as its shema definition portion and OQL syntax

has the SQL-like syntax. OQL concerns object-oriented notions like complex objects, object

identity, path expression, polymorphism, and late binding.

XQuery:

XML is a versatile markup language; it can label the information content of diverse data

sources including structured and semi-structured documents, relational databases, and object

repositories. There are several query languages proposed for XML like XSL [39], XPath [40],

XQL [41], XML-QL [42], Lorel [43], and YATL [44]. XQuery [38] is a new query language

designed by W3C to be broadly applicable across many types of XML data sources.

XQuery aims to use the best features offered by previous query languages. That is,

XQuery is derived from an XML query language called Quilt [45], which in turn borrowed

features from several other languages including: XSL, XPath, XQL, XML-QL and traditional

18

database query languages. From XPath, XSL and XQL it took the path expression syntax

suitable for hierarchical documents. From XML-QL it took the notion of binding variables

and then using the bound variables to create new structures. From SQL it took the idea of a

series of clauses based on keywords that provide a pattern for restructuring data (the

SELECT-FROM-WHERE pattern in SQL). From OQL it took the notion of a functional

language composed of several different kinds of expressions that can be nested with full

generality. XQuery uses the document-oriented approach that forms a tree of nodes based on

the DOM model.

2.2.2 Conceptual query languages

Traditional query languages are less than ideal for end user queries because they require

user to know the underlying database structure rather than just conceptual schema. Compared

to traditional query languages, conceptual query languages have some advantages: (1)

conceptual query languages are usually DBMS-independent. (2) Conceptual query languages

enable users to formulate queries directly on the conceptual schema without knowing much

about underlying database.

Conceptual query languages are usually implemented using either a query generator to

evaluate the query and then return the results to users or a query translator to translate the

conceptual query into some DBMS-supported query statements. Many conceptual query

languages have been proposed, some are based on ER model and some are not. ERQL [46] is

a SQL-like conceptual query language based on ER or EER and it is texual. ERQL has the

advantage over SQL in that relational details are hidden from users that make it very easier

for user to write a query. CBQL [47] is a conceptual query language based on deductive

models; it is a first-order like query language where users can specify the attributes and then

19

constrain the result set with logical constraints. ConQuer [48] is a conceptual query language

built on ORM, which exposes semantic domains as conceptual object types, thus aloowing

user to formulate the queries in terms of the relationships and operators such as “AND” and

“NOT” .

2.2.3 Domain-Specific query languages

There are usually two approaches for any problem in the world, a generic approach or

specific approach. Genetic approach usually provides a general solution for many problems in

a certain area, but such a solution may be suboptimal. To a smaller set of problems, a specific

approach will be good because it can provide a much better solution.

Domain-Specific query language is a query language works on a particular data domain,

for some specific area like Web Search Engine [49], High Energy Physics [50], and Intrusion

Analysis [51] Domain-Specific query language are very powerful to provide some advanced

support for domain-specific data types and functions, but this kind of power usually is

restricted to a particular data domain. Genomics Algebra [52] has been proposed based on the

Genomics Ontology and is a new, integrating data model, language, and tool for processing

and querying genomic information.

Because domain-specific query languages have more power when used just for a

particular domain, they cannot be applied to other domains. So we believe that the general

conceptual query language with the support for user-defined data types and functions will be

the next generation of query languages.

20

CHAPTER 3 DOMAIN-SPECIFIC CONCEPTUAL QUERY SYSTEM

In this chapter, our Domain-Specific Conceptual Query System is introduced. In general,

this system aims to provide a conceptual data model (DSC-DM) to capture more domain

semantics and a user-oriented conceptual query language (DSC-QL) that uses only the

abstract concepts and functions defined in DSC-DM. The methodology also enables end-users

to define and add new domain-specific and application-specific functions into DSC-DM and

DSC-QL at run time. It can be applied to any particular domain and work on any major type

of database management system.

3.1 System Architecture

The architecture of the domain-specific conceptual query system is shown in Fig.3.1 [3]

Figure 3.1 System Architecture of Query System

Relational DB Object-Oriented DB …

DSC-DM
Grammar

DSC-QL Translator

DSC.XML

DSC-QL Domain Knowledge

SQL

DB Generator

OQL …

Mapping.XML

XML Converter

Things that end-users need to know

UDF.XML

UDF

DSC-QL Normalizer

DSC-QL Normal Form

ODL/SQL DDL/etc

Grammar DSC-ML

DSC-ML interpreter

21

Our methodology includes DSC-DM, DSC-QL and DSC-ML; DSC-DM consists of a data

structure diagram which is similar to Enhanced Entity-Relationship (EER [5]), definition of

user-defined functions (UDFs), and two special tables for capturing additional domain

semantics such as meta-information, annotation, and the relationship between entities and

attributes. DSC-QL relies on DSC-DM and is a concept query language. It only uses the

abstract concepts, relationships, and user-defined functions defined by domain experts and/or

data model creators. So, the end-users can be easily write a query even they don’t know the

details of underlying database schemas. DSC-QL also integrates some features of OQL like

dot-path expression and super-class; those features really make it much easier for end-users to

write a query. DSC-QL queries can be translated into SQL, OQL or other query languages

based on underlying database system. It is DBMS-independent and can be automatically

updated when the underlying database schema evolves. DSC-ML is conceptual manipulation

language. It is DBMS-independent and can be implemented as a DSC-ML interpreter which

can be deployed to any database.

The right part of the architecture above is database creation. DSC-DM is converted into

DSC.XML and UDF.XML firstly. DSC.XML stores all information in DSC-DM except

definitions of UDF that are stored in UDF.XML. The conversion from DSC-DM to

DSC.XML is done by XML Converter. DB Generator takes DSC.XML as input and generates

SQL_DDL statements for relational DBMS or ODL for object-oriented (OO) DBMS. The

database schema definition statements, in turn, are executed to create a database schema

matching DSC-DM. Meanwhile, Mapping.XML is populated with the mapping information

from DSC-DM to database schema. Like UDF.XML, DSC.XML can also be created

manually so that the query system can be integrated into an existing application system.

22

The other part of the system is query evaluation. A DSC-QL query is firstly sent to DSC-

QL Normalizer for parsing, validating, and normalizing. Any valid DSC-QL query can be

transformed into a normal form [6], in which UDFs are replaced by corresponding DSC-QL

sub-queries according to their definitions in UDF.XML. DSC-QL Translator will take as input

the normalized DSC-QL query and output an equivalent SQL or OQL query according to the

type of underlying database system. The mapping functions used in DSC-QL Translator are

from Mapping.XML.For data manipulation(insert, updata, delete), the DSC-ML language is

sent to DSC-ML Parser (using JFlex/JCUP) included in DSC-ML interpreter to check and

verify the syntax and semantic, then the operations to the database will be implemented.

3.2 From DSC-DM to Database Schema

During the generation process of database schema, three XML files are created to store the

corresponding information. The signature, semantics, and implementation of UDF are stored

in UDF.XML file. Except UDF, other information in DSC-DM are converted into XML

format and stored in DSC.XML. The mappings from concepts and relationships in DSC-DM

to classes/tables in a database schema are stored in Mapping.XML.

3.2.1 User-Defined functions - UDF.XML

 UDF includes domain-specific functions (DSFs) and application-specific functions

(ASFs), which are defined by domain-experts and model creators. The signature, semantics,

and implementation of UDF are stored in an XML file (i.e. UDF.xml) that is loaded by DSC-

QL Normalizer at run time for query normalization. UDF.XML is part of DSC-DM; it is

anually created by domain-experts and model creators. One UDF.XML example is given in

section 3.2.4. Following is the XML schema of UDF.XML.

<xs:schema>
 <xs:element name="udfs">

23

 <xs:complexType>
 <xs:sequence>
 <xs:element name="udf" minOccurs="0"
 maxOccurs="unbounded">

 <xs:complexType>
 <xs:sequence>

 <xs:element ref="signature" minOccurs="1"
 maxOccurs="1"/>
 <xs:element ref="semantics" minOccurs="1"
 maxOccurs="1"/>
 <xs:element ref="implementation" minOccurs="1"
 maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="semantics" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xs:element name = "signature">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string"
 minOccurs="1" maxOccurs="1"/>
 <xs:element name="parameter" type="xs:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name = "implementation">
 <xs:complextType>
 <xs:sequence>
 <xs:element name="operator" type="xs:string"
 minOccurs="1" maxOccurs="1"/>
 <xs:element name="result" type="xs:string"
 minOccurs="1" maxOccurs="unbounded"/>
 <xs:element name="declaration" type="xs:string"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="comparison" type="xs:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

</xs:schema>

UDF can be defined either by domain experts and/or data model creators at the time of

system creation or by end-users at run time. After UDF.xml and the data structure for UDF in

the system memory get updated, new functions are available for use.

24

3.2.2 Other information - DSC.XML

Except UDF, other information in DSC-DM are converted into XML format and stored in

DSC.XML. This file is typically created by XML Converter and sent to DB Generator to

generate the database schema definition statements (e.g. SQL CREATE statements or ODL

statements). Following are the XML schemas of property, entity and relationship elements in

DSC.XML and one example is given in section 3.2.4.

<xs:element name = "property">
 <xs:complexType><xs:sequence>
 <xs:element name="name" type="xs:string"
 minOccurs="1" maxOccurs="1"/>
 <xs:element name="primary_key" type="xs:boolean"
 minOccurs="1" maxOccurs="1"/>
 <xs:element name="structure" type="xs:string"
 minOccurs="1" maxOccurs="1"/>
 <xs:element name="data_type" type="xs:string"
 minOccurs="1" maxOccurs="1"/>
 </xs:sequence></xs:complexType>
 </xs:element>
 <xs:element name = "entity">
 <xs:complexType><xs:sequence>
 <xs:element name="name" type="xs:string"
 minOccurs="1" maxOccurs="1"/>
 <xs:element ref="property" type="xs:string"
 minOccurs="1" maxOccurs="unbounded"/>
 <xs:element name= "superClass" type= "xs:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence></xs:complexType>
 </xs:element>
<xs:element name = "relationship">
 <xs:complexType><xs:sequence>
 <xs:element name="name" type="xs:string"
 minOccurs="1" maxOccurs="1"/>
 <xs:element ref="property" type="xs:string"
 minOccurs="1" maxOccurs="unbounded"/>
 <xs:element ref="participants" minOccurs="2"
 maxOccurs="n"/>
 </xs:sequence></xs:complexType>
</xs:element>

3.2.3 Mapping from DSC-DM to database schema - Mapping.XML

The mappings from concepts and relationships in DSC-DM to classes/tables in a database

schema are stored in Mapping.XML. It is created with DSC.XML together by DB Generator

25

or model creators. The purpose of this file is to provide the mapping functions to DSC-QL

Translator to translate the normalized DSC-QL expression into an equivalent SQL or OQL

query.

A normalized DSC-DM schema S (defined in Chapter 4) is used to define the mappings. S

is represented by a five-tuple S = (C, R, P, T, L), where

• C is a set of non-super class entity types in DSC-DM

• R is a set of non-inheritance relationships, where the relationship involving a super-

class is distributed to all its sub-classes at the leaf level.

• P = PS ∪ PP, where PS is a set of set-attributes and PP is a set of primitive attribute with

a single value including meta-attributes. For each p ∈ P, p must belong to an owner o

∈ C ∪ R (represented as owner(p) = o). The attributes of a super class are copied to all

its subclasses at the leaf level. The component attributes of a composite attributes are

bound to the owner entity/relationship directly.

• T includes annotation-table, meta-attribute-table, and UDFs.

• L is set of names of entity types, relationship types, attributes, and predefined names

for set-attributes.

The mapping function ∆: S = (C, R, P, T, L) → RDBS (relational database schema)

• (∀e ∈ C ∪ R ∪ PS) (∆(e) = relation r in RDBS, where name(r) = name(e))

• (∀p ∈ PP) (if p is not meta-attribute, then ∆(p) = a column c of relation r in RDS,

where name(c) = name(p) and name(r) = name(owner(p)). The data type of p is

specified in Meta-attribute-table).

• (∆(Annotation-table) = relation Annotation in RDBS)

• (∆(Meta-attribute-table) = relation Meta-attribute in RDBS)

26

• (∆(constraint in Meta-attribute-table) = constraint(s) in RDBS)

The mapping function ∆: S = (C, R, P, T, L) → OODBS (object-oriented database

schema)

• (∀e ∈ C ∪ R) (∆(e) = class c in OODBS, where name(c) = name(e))

• (∀p ∈ P) (if p is not meta-attribute, then ∆(p) = an attribute a of class c in OODBS,

where name(a) = name(p) and name(c) = name(owner(p)). The data type of p is

specified in Meta-attribute-table.)

• (∆(Annotation-table) = class Annotation in OODBS)

• (∆(Meta-attribute-table) = class Meta-attribute in OODBS)

3.2.4 Examples

Figure3.2 is a part of DSC-DM for neuroscience domain. We use this as an example to

illustrate how our query system generates a database schema from DSC-DM. The details of

the data model and query language created for neuroscience domain are described in [3, 7].

Figure 3.2 a part of DSC-DM for neuroscience domain

n

1

n

1
n

1

Neuron

Axon

Soma

Molecule

Connectio

ChemicalSynapse name

type

hasSoma

hasAxon

hasMolecule

connect

neuron

synonym

UDF.XML
c_connect

…

···

 nn

o
Neuromodulation

ElectricalSynapse
1

27

UDF example:

Signature:

c_connect(Neuron n, String s)
Semantics:

exist a chemical synapse from input neuron to another
neuron whose name is the input string
Implementation:

EXISTS(n2.neuronid)[Neuron n2,connect c,
 ChemicalSynapse cs,
 c.pre_neuronid= n.neuronid,
 c.post_neuronid= n2.neuronid,
 n2.name=s, c.conid=cs.conid]

Part of UDF.XML example is shown below:

<udfs>
<udf>
 <signature>
 <name>c_connect</name>
 <parameter>Neuron n</parameter>
 <parameter>String s</parameter>
 </signature>
 <semantics>exist a chemical synapse from input neuron to

another neuron whose name is the input string
 </semantics>
 <implementation>
 <operator>EXISTS</operator>
 <result>Neuron.neuronid</result>
 <declaration>Neuron n2</declaration>
 <declaration>Connect c</declaration>
 <declaration>ChemicalSynapse cs</declaration>
 <comparison>c.pre_neuronid=n.neuronid</comparison>
 <comparison>c.post_neuronid=n2.neuronid</comparison>
 <comparison>c.conid=cs.conid</comparison>
 <comparison>n2.name = String</comparison>
 </implementation>
</udf>
 ...
</udfs>

Part of DSC.XML example is shown below:

<entity>
 <name>Neuron</name>
 <property>
 <name>neuronid</name>
 <primary_key>True</primary_key>
 <structure>Simple</structure>
 <data_type>String</data_type>
 </property>
 <property>

28

 <name>synonym</name>
 <primary_key>False</primary_key>
 <structure>Set</structure>
 <data_type>String</data_type>
 </property>
 ...
 <superClass>none</superClass>
</entity>
...
<relationship>
 <name>hasMolecule</name>
 <participants>
 <entityName cardinality="n">Neuron</entityName>
 <entityName cardinality="n">Molecule</entityName>
 </participants>
</relationship>
<relationship>
 <name>connect</name>
 <participants>
 <entityName cardinality="n">Neuron</entityName>
 <entityName cardinality="n">Neuron</entityName>
 <entityName cardinality="1">Connection</entityName>
 </participants>
</relationship>
...

Corresponding ODL and SQL statements for Neuron table/class are shown below:

class Neuron {
 string neuronid;
 string name;
 set<string> synonym;
 ...;

 hasSoma *itsSoma inverse hasSoma::theNeuron;
 hasAxon *itsAxon inverse hasAxon::theNeuron;
 set<hasMolecule*> itsMolecule inverse
 hasMolecule::theNeuron;
 set<connect *> input inverse connect:: preNeuron;
 set<connect *> output inverse connect:: postNeuron;
};

 create table Neuron (
 neuronid varchar2(20) primary key;
 name varchar2(30);
 ...;

};

29

It should be reasonably easy to figure out the DB-schema-generation algorithm from

examples above (i.e. the mapping functions in Mapping.XML). The things that might not be

clear from the examples are mappings of relationships, set-attributes, and inheritances. Each

relationship in DSC-DM is mapped to a class/table in the schema that has references/foreign-

keys to every participant. In relational database schema, the set-attribute is converted into a

table, and inheritance is replaced by the distribution of all attributes and relationships of a

super-class to all its subclasses at the leaf level. In the object-oriented database schema, the

set-attribute and inheritance are handled in the normal fashion.

3.3 From DSC-QL to SQL/OQL

DSC-QL is designed as a high level conceptual language. It is DBMS-independent and

can be translated into SQL or OQL. Firstly, the query is sent to DSC-QL Parser (using

JFlex/JCUP) included in DSC-QL Normalizer to check and verify the syntax and semantic.

Then it is normalized into DSC-QL normal form, in which all UDFs are replaced by

predefined sub-queries in DSF.XML. DSC-QL Translator will translate normalized DSC-QL

expressions into SQL or OQL according to the mapping functions in Mapping.XML.

3.3.1 DSC-QL syntax

The syntax of DSC-QL is defined in [3], which has a very simple structure like (result-

list)[[query-criteria] OR [query-criteria]…]. The result-list can have declarations and

attribute references. The query-criteria is composed of a list of condition-terms such as

declaration, comparison-term, UDF, and sub-query. All terms in DSC-QL are the abstract

concepts or functions defined in DSC-DM. We give three examples to illustrate the general

syntax of DSC-QL.

Following is the grammar of DSC-QL in Backus-Naur Form (BNF) notation:

30

//general structure of DSC-QL
<compound-dscql> ::= <dscql> <set-operator> <dscql>
<dscql> ::= “(” <result-list> “)” [<query-criteria>]
<query-criteria> ::= “[”<condition-list>“]”|

 “[”<condition-list>“]” OR <query-criteria>
//syntax of result-list
<result-list> ::= [DISTINCT] <result-term> {“,” <result-term> }
<result-term> ::= <declaration> | <attr-ref> | <meta-attr-ref>
//syntax of condition-list
<condition-list> ::= <condition-term> { “,” <condition-term> }
<condition-term> ::= <declaration> | [NOT] <comparison>

 | [NOT] <udf> | [NOT] <sub-query>
//syntax of dot-path expression
<path-exp> ::= <data-sort> | <identifier> “.” <path-exp-trail>
<path-exp-trail> ::= <data-sort> {“.” <data-sort> }
//syntax of attribute reference and meta-attribute reference
<attr-ref> ::= <path-exp> “.” <attribute>
<meta-attr-ref> ::= <attr-ref> “.” <meta-attribute>
//syntax of declaration
<declaration> ::= <path-exp> “ ” <identifier>
//syntax of <comparison>
<comparison> ::= <operand> <logic-operator> <operand>
<operand> ::=<constant>|<attr-ref>|<operand><arithmetic-operator><operand>
//syntax of <sub-query>
<sub-query> ::= [<attr-ref>] <operator> <sub-query>
//syntax of <udf>
<udf> ::= <udf-name> “(“ <parameters> “)”
<parameters> ::= /*empty*/ | <parameter> {“,” <parameter>}
<parameter> ::= <declaration> | <constant> | <attr-ref> | <identifier>
//syntax of operators and other terms
<set-operator> ::= UNION | INTERSECT | MINUS
<logic-operator> ::= > | < | = | ≥ | ≤ | <> | LIKE
<arithmetic-operator> ::= + | - | * | /
<operator> ::= EXISTS | IN
<attribute> ::= <identifier> /*predefined in DSC-DM*/
<meta-attribute> ::= <identifier> /*predefined in DSC-DM*/
<data-sort> ::= <identifier> /*predefined in DSC-DM*/
<udf_name> ::= <identifier> /*predefined in DSC-DM*/
<identifier> ::= [A-Za-z_]{A-Za-z_0-9}
<constant> ::= 0 | [1-9]{0-9} | [A-Za-z_]{A-Za-z_0-9}

The following are some DSC-QL query examples:

Example 1: Find all neurons have molecule ‘5HT’ and connect to another neuron, whose

31

connid is ‘1’.

(Neuron n)[n.hasMolecule.Molecule.name=‘5HT’, n.connect.Connection.connid=’1’]

Example 2: Find the names of neurons whose soma’s coloration is ‘Orange Circle’ or ’Yellow

Circle’.

(Neuron n, n.name)[[n.hasSoma.Soma.coloration = ‘Orange Circle’] OR

 [n.hasSoma.Soma.coloration = ‘Yellow Circle’]]

Example 3: Find neurons which have molecule ‘5HT’ and connect to neuron

 ‘R3-13’ through a chemical synapse.

(Neuron n)[EXISTS (m)[n.hasMolecule.Molecule m, m.name = ‘5HT’], c_connect(n, ‘R3-

13’)]

Example 1-3 also shows the usage of super-class (Connection), dot-path expression

 (n.hasSoma.Soma.coloration), user-defined functions (c_connect (n, ‘R3-13’)), and sub-

query (EXISTS (m)[n.hasMolecule.Molecule m, m.name=‘5HT’]).

3.3.2 Normal form of DSC-QL

After syntax and semantics checking, DSC-QL query will be normalized to the normal

form. The definition of normal form and normalization algorithm are introduced in [6]. The

goal of normalization is to remove the mismatches between DSC-QL and DBMS-supported

query languages, especially SQL such as user-defined functions, inheritance, super-class, and

set and composite attributes. As a result, the translation function is simplified significantly

and its dependence on the flexible and extensible DSC-QL syntax is minimized. That is, as

long as DSC-QL is compatible to the normal form, DSC-QL translation function does not

have to be reprogrammed when DSC-QL is upgraded to a new version. Although the

normalization procedure adds some burden to the performance and might need to be modified

32

when DSC-QL is upgraded, the total cost should be considerably lower than a complicated

direct-translation process.

3.3.3 Translation of DSC-QL

DSC-QL is a high level conceptual language and can be translated into SQL and OQL.

We can divide the whole translation process into three steps, firstly, the query is sent to DSC-

QL Parser (using JFlex/JCUP) included in DSC-QL Normalizer to check and verify the

syntax and semantic. Secondly, it is normalized into DSC-QL normal form, in which all

UDFs are replaced by predefined sub-queries in DSF.XML. Lastly, DSC-QL Translator will

translate normalized DSC-QL expressions into SQL or OQL according to the mapping

functions in Mapping.XML. the translation algorithms from DSC-QL to SQL and DSC-QL

to OQL are presented below:

Algorithm: DSC-QL to SQL [6]

Input: A DSC-QL query in normal form
Output: A SQL query statement

Method:

Initialize a SQL query statement with empty SELECT, FROM, and WHERE clauses
Initialize tid_i and increase i whenever it is used
Scan the DSC-QL query from left to right

For each result-term enclosed in () (i.e. QR)
 Case 1: attribute reference e.g. v.p
 Append “v.p” into SELECT clause
 Case 2: meta-attribute reference e.g. v.p.pm, where v is of type E1
 Append “Meta-attribute tid_i” to FROM clause
 Append “tid_i.pm” to SELECT clause
 Append “tid_i.class = E1 and tid_i.attribute = ‘p’” to WHERE clause

For each declaration enclosed in [] (i.e. QD)
 Case 1: simple declaration
 Append the declaration into FROM clause
 Case 2: path declaration e.g. c.E2.E3 v, where c is of type E1
 Append following string into FROM clause
 “(select tid_1.pk as pk, tid_3.* fromE1 tid_1, E2 tid_2, E3 tid_3

33

 where tid_1.pk = tid_2.fkToE1 AND tid_2.pk = tid_3.fkTo E2) as v”
Append “c.pk = v.pk” into WHERE clause //JOIN condition

For each comparison in condition list (i.e. QC)

Append it into WHERE clause

For each sub-query in condition list (i.e. QQ)

Recursively call normal translation algorithm to transform sub-query into a SQL query
Append sub-query’s SQL translation into WHERE clause

The translation algorithm above scans the input normal DSC-QL query from left to right,

and outputs an equivalent SQL query. In general the SELECT clause of SQL is resulted from

QR, FROM clause is resulted from QD, and the WHERE clause is from QC and QQ. The dot-

path expression will be translated into a sub-query with a series of JOINs in the FROM clause

and a JOIN condition in WHERE clause.

Algorithm: DSC-QL → OQL

Input: A DSC-QL query in normal form
Output: A OQL query statement

Method:

Initialize a OQL query with empty SELECT, FROM, and WHERE clauses
Initialize cid_i and increase i whenever it is used

Scan the DSC-QL query from left to right

For each result-term enclosed in ()
 Case 1: attribute reference e.g. v.p
 Append “v.p” into SELECT clause
 Case 2: meta-attribute reference e.g. v.p.pm, where v is of type E1
 Append “Meta-attribute cid_i” to FROM clause
 Append “cid_i.pm” to SELECT clause
 Append “cid_i.class = E1 and cid_i.attribute = ‘p’” to WHERE clause

For each declaration enclosed in []
 Case 1: simple declaration
 Append the declaration into FROM clause

 Case 2: path declaration e.g. c.E2.E3 v, where c is of type E1, and assume c.E2 returns a set
Append “cid_i in c.E2, cid_i.E3 v” into FROM clause

For each comparison in condition list

34

 Append it into WHERE clause

For each sub-query in condition list
 Recursively transform sub-query into a OQL query

Append sub-query’s OQL translation into WHERE clause

The translation algorithm above scans the input normal DSC-QL query from left to right,

and outputs an equivalent OQL query. In general, the SELECT clause of OQL is resulted from

result-terms, FROM clause is resulted from declarations, and the WHERE clause is from

comparisons and sub-queries. During the translation, terms in DSC-QL are replaced according

to mapping functions in Mapping.XML. Therefore, domain-experts and data model creators

can define meaningful terminologies for end-users at the conceptual level and use different

ones at database leve.

3.3.4 DSC-QL to SQL/OQL example

 DSC-QL is normalized to DSC-QL normal form by DSC-QL Normalizer and then the

normal form can be translated to SQL or OQL by DSC-QL translator. The following is an

example to show how the DSC-QL is translated to SQL or OQL.

Example:

Consider the query: find all neurons having molecule “5HT” and a chemical synapse

connection with neuron “R3-13”.

This query can be expressed as follows:

(Neuron n)[c_connect(n, ‘R3-13’), n.hasMolecule.Molecule.name=
‘5HT’]

 The query’s normal form after normalization:

(n.name)[Neuron n, n.hasMolecule.Molecule sid_0,
 sid_0.name=‘5HT’,
 EXISTS(sid_1.neuronid)[Neuron sid_1,connect sid_2,
 ChemicalSynapse sid_3,
 sid_2.pre_neuronid=sid_1.neuronid,
 sid_2.post_neuronid=n.neuronid,
 sid_1.name=’R3-13’, sid_2.conid=sid_3.conid]]

35

SQL query is presented below after DSC-QL to SQL translation:

 SELECT n.name
 FROM Neuron n,(SELECT tid_0.neuronid AS pk, tid_2.*
 FROM Neuron tid_0, hasMolecule tid_1,
 Molecule tid_2
 WHERE tid_0.neuronid=tid_1.neuronid AND
 tid_1.moleculeid=tid_2.moleculeid)
 AS sid_0

WHERE n.neuronid = sid_0.pk AND
 sid_0.name=’5HT’ AND
 EXISTS

 (SELECT sid_1.neuronid
 FROM Neuron sid_1, connect sid_2,
 ChemicalSynapse sid_3
 WHERE sid_2.conid=sid_3.conid AND

 sid_2.pre_neuronid=sid_1.neuronid AND
 sysid_1.name=’R3-13’AND
 sid_2.post_neuronid=n.neuronid)

 OQL query is presented below after DSC-QL to OQL translation:

SELECT n.name
FROM Neuron n, cid_0 IN n.itsMolecule,
 cid_0.theMolecule sid_0
WHERE sysid_0.name=‘5HT’ AND
 EXISTS
 (SELECT sid_1.neuronid

 FROM Neuron sid_1, connect sid_2,
 ChemicalSynapse sid_3
 WHERE sid_2.preNeuron=sid_1 AND
 sid_2.postNeuron=n AND
 (ChemicalSynapse)sid_2.theConnection=sid_3
 AND sid_1.name=’R3-13’)

3.4 DSC-ML

DSC-ML is designed as a high level conceptual manipulation language. It is DBMS-

independent and can be implemented as a DSC-MLinterpreter which can be deployed to any

database. Because ODMG standard does not provide an OML specification so we don’t

translate the DSC-ML to SQL/OQL. Firstly, the DSC-ML is sent to DSC-ML Parser (using

36

JFlex/JCUP) included in DSC-ML interpreter to check and verify the syntax and semantic.

Then it is implemented on related database.

3.4.1 DSC-ML syntax

 Following is the grammar of DSC-ML in Backus-Naur Form (BNF) notation:

<dscml>::=”INSERT” <identifier> “(“ <property-values> “)”

 | “DELETE” <identifier>

 | “UPDATE” <identifier> “(“ <property-values> “)”

<property-values>::=<property-value> | <property-value> “,” <peoperty-value>

<property-value>::= <identifier> “=” <identifier> | <identifier> “=” <constant>

 | <identifier> “=” “[“ <values> “]”
<values>::=<value> | <value> “,” <value>
<value>::= | <identifier>| <constant>

3.4.2 DSC-ML examples

The following is some examples of DSC-ML (use enrollment system shown in Figure 3.3

next page):

Consider the INSERT operation: insert a student with sid 111, one course with cno 222 and
this student enroll this course all those information to database.

Insert operations can be expressed as follows:

DSC-Int> X:=INSERT student
 (sid=’111’, name=’tom’, phone=[‘404-231-
 5678’,’678-211-9000’],advisor=’Dr.Li’).
DSC-Int> Y:=INSERT course(cno=’222’,ctitle=’database’).
DSC-Int> INSERT enroll(student=X,course=Y,grade=90).

Consider the DELETE operation: delete all students whose advisor is Dr.Li from the
database.

Delete operations can be expressed as follows:

DSC-Int> S:= (student s)[advisor=’Dr.Li’].

37

DSC-Int> DELETE S.

Consider the UPDATE operation: Change student’s advisor to Dr.Zhou and this student sid
is 111.

Update operations can be expressed as follows:

DSC-Int> T:=(student s)[sid=’111’].
DSC-Int> UPDATE T (advisor=’Dr.Zhou’).

Figure 3.3 Data structure diagram of DSC-DM for an enrollment system

3.5 Source Code

The query system has been partially implemented and tested on a relational DBMS,

Oracle 10g and an object-oriented DBMS, EyeDB 2.7.9. Current version is a standalone Java

application with a command line input query interface. A web-based query interface is under

development now and will be released very soon. The source code can be downloaded at

http://tinman.cs.gsu.edu/~xshen2/DSC_QL.zip.

Student
gradute

name

enroll

sid
phone

 n

+

undergraduate m

grade

Course

cno title

advisor

38

CHAPTER 4 CONCLUSION AND FUTURE WORK

This research presents the architecture of a domain-specific conceptual data model and

query system and its implementation details. Domain-specific conceptual data model (DSC-

DM) consists of three components, a data diagram, definitions of user-defined functions

(UDF), and two tables for meta-information and annotation. The data diagram in DSC-DM is

similar to Enhanced Entity-Relationship (EER) data model because EER data model is very

simple and easy-to-understand for naïve users. The two tables for meta-information and

annotation enable DSC-DM to capture more domain semantics than EER. User-defined

functions (UDFs) include domain-specific functions (DSF) and application-specific functions

(ASF) which are defined by domain experts and/or data model creators during the system

creation. The signature, semantics, and implementation of UDF are stored in an XML file (i.e.

UDF.xml) that is loaded by DSC-QL Normalizer at run time for query normalization.

Therefore, UDF can be easily updated at any time without changing rest parts of the system.

DSC-QL is another important component of domain-specific conceptual query system. It

is based on DSC-DM; DSC-QL only uses the abstract concepts, relationships, and functions

in DSC-DM and is designed to be flexible, extensible, and readily usable to end-users.

Comparing to SQL or OQL queries, DSC-QL queries are very simple and eas to write based

on its specific features. It also integrates dot-path expression and super-class those object-

oriented concepts. DSC-QL is DBMS-independent so that end-users don’t need to know

details of underlying database schemas when they write a query. It can be translated into SQL

or OQL. Firstly, the query is sent to DSC-QL Parser (using JFlex/JCUP) included in DSC-QL

Normalizer to check and verify the syntax and semantic. Then it is normalized into DSC-QL

normal form, in which all UDFs are replaced by predefined sub-queries in DSF.XML. DSC-

39

QL Translator will translate normalized DSC-QL expressions into SQL or OQL according to

the mapping functions in Mapping.XML.

Compared to traditional query language like SQL, OQL etc. traditional query system are

too complicated and difficult for end-users because they all need end-users know the database

knowledge and details. Except traditional query language, form-based query system also

requires end-users to have a lot of knowledge about underlying database. Even some form-

based interfaces have no requirement to end-users for having knowledge of database details,

they still have a lot of limitation like limited expressive power, re-programming required

when the underlying database schema evolves. Although many conceptual query languages

have been proposed so far [1, 8-11], most of them do not have implementation reports and

those ones being implemented are often designed as a part of some software or combined with

fixed query interface. As a consequence, they cannot exist independently and be applied to

other existing applications.

. ConQuer [12] is another conceptual query language based on Object-Role Modeling. It

has been commercially released with specific query interface. Compared to ConQuer and

other conceptual query languages, our query system has following unique features:

• It supports domain-specific and application-specific functions that are defined by

domain-experts and data model creators. The query system can dynamically load

these user-defined functions without reprogramming and recompiling. As a result,

user-defined functions can be easily upgraded at any time.

• It adopts the normal form to solve the mismatches between the high level

conceptual query language DSC-QL and DBMS-supported query languages like

SQL and OQL. It also minimizes the dependence of translation function on the

40

flexible and extensible syntax of DSC-QL. Thus, it is easier to extend or upgrade

the query language in the future.

• The underlying data model (DSC-DM) can capture more domain semantics such

as meta-attributes and annotation relationship between a reference entity and an

attribute.

• The conceptual query system is designed to be general enough to be applied to

any domain and any type of DBMS, and even existing applications.

• DSC-QL has very simple structure and is easy to write for end-users. It also

dynamically supports new user-defined functions without reprogramming the

application system.

 The future work of this research is as following:

• The translation from DSC-QL to XQuery will be implemented in order to support

the use of our query system on a native XML database system.

• The query interface and the result report interface need to be improved as well.

Develop a graphical user interface (GUI) or web-based interface to replace current

command-line interface in prototypes.

• Evaluate the usability of DSC-QL

• Simplify the integration process of our query system to existing database

application system.

• Design a graphical query language based on current text-based DSC-QL.

• Add DSC-ML into DSC-QL so that it can be used as DML as well.

41

BIBLIOGRAPHY

[1] Lawey, M., Topor, R.: A Query Language for EER Schemas. ADC’94 Proceedings of
the 5th Australian Database Conference, Global Publications Service, (1994) 292-304.

[2] Owei, V.: Development of a Conceptual Query Language: Adopting the User-
Centered Methodology. The Computer Journal, 46(6), (2003) 602-624.

[3] Hao T., Sunderraman R., Hong Y.: A Domain-Specific Conceptual Data Modeling
and Querying Methodology. 1st International Conference on Information Systems,
Technology and Management, March 2007, New Delhi, India

[4] EyeDB: website – www.eyedb.org

[5] Elmasri, R. and Navathe, S.B.: Fundamentals of database systems, third Edition.
Addison Wesley (2000).

[6] Tian, H., Sunderraman, R.: A Query Normal Form and Graph-Based Semantics for
Conceptual to Relational Mappings, Unpublished manuscript

[7] Tian, H., Sunderraman, R., Calin-Jageman, R., Yang, H., Zhu Y., and Katz, P.S.: A
Domain-Specific Query Language for Neuroscience Data. 11th International
Workshop on Foundations of Models and Languages for Data and Objects: Query
Languages and Query Processing, (as EDBT2006 Workshop), (2006) 613-624.

[8] Amaral, V., Helmer, S., Moerkotte, G.: A Visual Query Language for HEP Analysis.
Nuclear Science Symposium Conference Record, IEEE, 2, (2003) 829-833.

[9] Aslam, J., Bratus, S., Kotz, D., Peterson, R., Tofel, B., Rus, D.: The Kerf Toolkit for
Intrusion Analysis. IEEE Security and Privacy, 2(6), (2004) 42-52.

[10] Collberg, C.,: A Fuzzy Visual Query Language for a Domain-Specific Web Search
Engine. Proceedings of Second International Conference on Diagrammatic
Representation and Inference, (2002) 176-190.

[11] Hammer, J., Schneider, M.: The GenAlg Project: Developing a new integrating data
model, language, and tool for managing and querying genomic information. SIGMOD
Record, ACM, 33(2) (2004).

[12] Bloesch, A.C., Halpin, T.A.: ConQuer: a conceptual query language. Proc. ER’96:
15th Int. Conf. on conceptual modeling, Springer LNCS, 1157, (1996) 121-33.

[13] Dionysios C. Tsichritzis and Frederick H. Lochovsky, “Data Models,” Prentice-Hall,
1982.

[14] The Data Management Association: http://www.dama.org

[15] PC Magazine: http://www.pcmag.com

42

[16] Langefors, B., “Information systems theory,” Inf. Syst. 2, pp. 207-219, 1977.

[17] E. F. Codd, “A relational model of data for large shared data banks,” Commun. ACM
13, 1970, pp, 377-387.

[18] Rajshekhar Sunderraman, Oracle 9i Programming: A Primer, Addison-Wesley, 2004.

[19] P. P. Chen, “The entity-relationship model: Toward a unified view of data,” ACM
Trans. Database Syst. 1, 1976, pp. 9-36.

[20] T. Teorey, D. Yang, and J. Fry, “A logical design methodology for relational
databases using the extended entity-relationship model,” ACM Computing Surveys,
18:2, June 1986.

[21] M. Gogolla, and U. Hohenstein, “Towards a semantic view of an extended entity-
relationship model,” TODS, 16:3, September 1991.

[22] R. Elmasri, J. Weeldreyer, and A. Hevner, “The category concept: an extension to the
entity-relationship model,” International Journal on Data and Knowledge Engineering,
1:1, May 1985.

[23] A. Badia, “Entity-relationship modeling revisited,” SIGMOD Record, Vol. 33, No. 1,
March 2004.

[24] Object Role Modeling (ORM): http://www.orm.net/

[25] Unified Modeling Language (UML): http://www.uml.org/

[26] CODASYL Data Base Task Group Report. Conf. On Data System Language, ACM,
New York, 1971.

[27] Taylor, R.W., and Frank, R. L., “CODASYL data-base management systems.” ACM
Comput. Surv. 8, pp.67-103, 1976.

[28] Information Management System/Virtual Storage (IMS/VS) publications: General
Information Manual, GH20-1260-3; System/Application Design Guide, SH20-9025-2;
Application Programming Reference Manual, SH20-9026-2; System Programming
Reference Manual, SH20-9027-2; Operator’s Reference Manual, SH20-9028-1;
Utilities Reference Manual, SH20-9030-2. IBM Corp., White Plains, NY.

[29] McGee, W.C., “The information management system IMS/VS,” IBM Syst. J. 16,
pp.84-168, 1977.

[30] Software AG: http://www.softwareag.com

[31] Senko, M.E., “Information systems: records, relations, set, entities, and things,” Inf.
Syst. 1, pp 3-13, 1975.

43

[32] Bracchi, G., Paolini, P., and Pelagatti, G., “Binary logical associations in data
modeling,” in Modelling in Data Base Management Systems (Nijssen, G. M., ed.),
pp.125-148. North-Holland, Amsterdam, 1979.

[33] OQL vs. SQL report,
http://www.soc.napier.ac.uk/module/op/resources/moduleid/CO42009

[34] American National Standards Institute (ANSI): http://www.ansi.org/

[35] International Organization for Standardization (ISO): http://www.iso.org/

[36] SQL history: http://en.wikipedia.org/wiki/Sql

[37] Object Data Management Group (ODMG) website: http://www.odmg.org/

[38] XQuery 1.0: An XML Query Language: http://www.w3.org/TR/xquery

[39] XSL Transformations (XSLT) Version 1.0: http://www.w3.org/TR/xslt

[40] XML Path Language (XPath) 2.0: http://www.w3.org/TR/xpath20

[41] Hiroshi Ishikawa, Kazumi Kubota, and Yasuhiko Kanemasa, “XQL: A Query
Language for XML Data,” http://www.w3.org/TandS/QL/QL98/pp/flab.txt

[42] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu, “XML-
QL: A Query Language for XML,” http://www.w3.org/TR/1998/NOTE-xml-ql-
19980819

[43] Roy Goldman, Jason McHugh, and Jennifer Widom, “Lore: A Database Management
System for XML, A SQL-like system for XML data,”
http://www.ddj.com/documents/s=886/ddj0004i/0004i.htm

[44] Sophie Cluet, and Jérôme Siméon, “YATL: a Functional and Declarative Language
for XML,” draft manuscript, 2000.

[45] Jonathan Robie, Don Chamberlin, and Daniela Florescu, “A Quilt: an XML Query
Language for Heterogeneous Data Sources,” Lecture Notes in Computer Science, vol.
1997, 2001.

[46] Lawley, M. and Topor, R., “A query language for EER schemas”, Proceedings of the
5th Australian Database Conference, Global Publications Service, 1994, pp. 292-304.

[47] Staudt, M., ., Nissen, H.W., Jeusfeld, M.A. 1994, Query by Class, Rule and Concept.
Applied Intelligence, Special Issue on Knowledge Base Management, vol. 4, no. 2, pp.
133-157.

44

[48] Bloesch, A.C. and Halpin, T.A., “ConQuer: a conceptual query language”, 15th
International Conference on Conceptual Modeling, Springer LNCS, No. 1157, 1996,
pp.121-33.

[49] Collberg, C., “A fuzzy visual query language for a domain-specific web search
engine”, Proceedings of Second International Conference on Diagrammatic
Representation and Inference, 2000, pp.176-190.

[50] Auddino, A., Amiel, E., and Bhargava, B., “Experiences with SUPER, a database
visual environment,” DEXA’91 Database and Expert System Applications, 1991,
pp.172-178.

[51] Aslam, J., Bratus, S., Kotz, D., Peterson, R., Tofel, B., and Rus, D., “The kerf toolkit
for intrusion analysis”, IEEE Security & Privacy, Vol. 2, No. 6, 2004, pp. 42-52.

[52] Hammer, J. and Schneider, M., “Genomics algebra: a new, integrating data model,
language, and tool for managing and querying genomic information”, 1st Biennial
Conference on Innovative Data Systems Research (CIDR), 2003, pp.176-187.

[53] BrainML.org: http://www.brainml.org

[54] CellML.org: http://www.cellml.org

[55] SBML: Systems biology markup language: http://www.sbml.org

	A Domain-Specific Conceptual Query System
	Recommended Citation

	Microsoft Word - master thesis after modification----xiuyun shen_2_.doc

