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ABSTRACT 

The gut microbiota is a complex ecosystem of microorganisms that form a 

bidirectional communication pathway with the brain, called the gut-brain axis.  In 

addition to their roles in mediating host metabolism and digestion, a wealth of research 

is identifying roles for the gut microbiota in neural development and function, immune 

modulation, and behavioral expression.  Many neural targets of gut-brain axis signaling 

have been identified, but little attention has been paid to vasopressin and oxytocin.  

Vasopressin and oxytocin are neuropeptides that are targets of immune signaling and 

are implicated in the control of anxiety-like, depressive-like, and social behaviors, 

making them likely mediators in the communication between the gut and the brain.  As 



the immune system is a main signaling pathway in the gut-brain axis, it is possible that 

vasopressin and oxytocin would be affected through immune system activation to result 

in behavioral alterations seen in microbiota dysbiosis.  To test these predictions, we 

used pro-inflammatory and anti-inflammatory microbiota manipulation mouse models to 

identify the roles of vasopressin and oxytocin in the gut-brain axis.  First, we 

demonstrated that microbiota is needed for proper vasopressin and oxytocin system 

development by using a germ-free mouse model.  Second, we explored the impacts that 

chronic intestinal inflammation has on behavior and neuropeptide expression in Toll-like 

receptor 5 knockout (T5KO) mice.  Third, we investigated whether the behavioral 

phenotype in T5KO mice is microbiota dependent.  Collectively, these experiments 

provide support to the hypothesis that microbiota alter the vasopressin and oxytocin 

systems through an immune-mediated pathway to alter the behavior of both mouse 

models.  They also support the use of T5KO mice in investigating the interplay between 

chronic, low-grade inflammation and psychiatric disorders.  Future experiments are 

needed to uncover the exact mechanisms underlying the microbiota-gut-brain-behavior 

axis and understanding this axis will provide a basis for developing microbiota-based 

therapeutics to treat CNS disorders. 
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1 INTRODUCTION  

1.1 Microbiota-Gut-Brain Axis 

Mammals and other animals are inhabited by millions of microorganisms on any 

surface that is exposed to the outside environment, including the skin, mouth, gut, and 

vaginal canal (Backhed et al., 2005).   These microorganisms, called the microbiota, 

consist of bacteria, fungi, parasites, and other microorganisms, and are estimated to 

equal or outnumber by up to ten times the host’s cells (Sender et al., 2016).  Bacteria 

comprise by far the largest portion of the microbiota and typically form a symbiotic 

relationship with the host (Chow et al., 2010).  The microbiota is a complex ecosystem 

and perturbations to the ecosystem can result in the proliferation of non-beneficial 

species, leading to a state of dysbiosis (Rojo et al., 2017).   While the definition of 

dysbiosis is generally unclear (reviewed in Fields et al., 2018), one can consider it to be 

a shift in the composition such that there is a pro-inflammatory effect on the 

body.  Dysbiosis has been shown to be a component of a number of disorders, such as 

inflammatory bowel disease and psychiatric disorders (Carding et al., 2015).  

While the microbiota is present throughout the body, the role of the gut 

microbiota has been particularly well-studied with regards to its relation to human 

health, as it plays roles in host digestion, metabolism, and even diet selection (Rezzi et 

al., 2007; Ley et al., 2008; Alcock et al., 2014; Andoh, 2016; Gentile and Weir, 2018).  

However, the gut microbiota has functions that extend past the intestines, achieved 

through numerous communication pathways with the rest of the body. For example, the 

microbiota can interact directly with the nervous system through activation of the vagus 

nerve or through the enteric nervous system (Yoo and Mazmanian, 2017). Gut 
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microbiota can produce metabolic byproducts such as short-chain fatty acids that signal 

the cells of the intestinal epithelium, or they can also produce neurotransmitters, such 

as serotonin, that can communicate with the rest of the body (Aidy et al., 2015; Morrison 

and Preston, 2016; Kennedy et al., 2017).  Finally, they can directly influence the 

immune system by stimulating immune cells to release pro- or anti-inflammatory 

cytokines, either locally or systemically, or by recruiting and activating immune cells in 

the gut or brain (Chassaing & Gewirtz, 2016; Fiebiger et al., 2016; Mcdermott & 

Huffnagle, 2014).  Signaling through this route is the main focus of investigation 

throughout this dissertation.  

Through these pathways, the gut microbiota can communicate with the brain to 

change behavior, as evidenced by their role in psychiatric disorders.  In fact, a wealth of 

research has been performed in the past 15 years on the effects changing the 

composition of the microbiota has on the brain and behavior.  One of the primary 

models used is germ-free (GF) mice.  GF mice, raised in sterile isolators, have a 

number of physiological and behavioral changes from conventionally colonized (CC) 

mice.  For example, they have ceca that are twice as large as normally colonized mice 

due to their inability to adequately digest fiber (Wostmann and Bruckner-Kardoss, 1959; 

Respondek et al., 2013).  They also have decreased anxiety-like behavior, decreased 

sociability, and cognitive impairments (Clarke et al., 2013; Desbonnet et al., 2014; 

Neufeld et al., 2011).  GF mice are a useful model for identifying neural systems 

affected by the microbiota, due to the severity of a global knockout of microbiota 

(Luczynski et al., 2016).  Furthermore, GF mice are excellent for identifying critical 

periods of microbiota influence on brain development, because experimenters can 
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recolonize them at specific developmental time points.  In fact, a number of studies 

have used this manipulation to identify temporal effects of microbiota on brain 

development and behavior (Diaz Heijtz et al., 2011; Erny et al., 2015; Lu et al., 2018; 

Neufeld et al., 2011). In addition, GF mice are useful as an anti-inflammatory 

physiological system, due to their immature immune systems and lack of immune 

challenges from the environment (Abrams et al., 1963; Clarke et al., 2013).  Despite the 

fact that GF mice are not an ethologically relevant model, they are an excellent way to 

identify neural systems affected by microbiota.  

There are a number of models that use different manipulations to mimic intestinal 

inflammation.  One way that is used frequently in the literature is to administer 

lipopolysaccharide (LPS), the component of the membrane of Gram-negative bacteria, 

either intraperitoneally or by oral gavage to result in a proxy of bacterial infection (Fields 

et al., 2018; Hug et al., 2018; Taylor et al., 2012).  Another way is to increase the 

inflammatory nature of the microbiota through introduction of pro-inflammatory bacterial 

species, such as Campylobacter jejuni or Escheria coli (Chassaing et al., 2014; Lyte et 

al., 1998).  Alternatively, there are genetic manipulations that result in chronic, low-

grade intestinal inflammation.  One such manipulation is the use of Toll-like receptor 5 

knockouts.  

Organisms use pattern recognition receptors to identify invading pathogens by 

recognizing conserved bacterial, fungal, or viral components on the pathogens in the 

body, and once activated, they begin a signaling cascade to promote an inflammatory 

response to rid the body of the pathogen (Takeuchi and Akira, 2010).  One such family 

of pattern recognition receptors are the toll-like receptors (TLRs); different TLRs each 
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recognize a different component (Rakoff-Nahoum et al., 2004; Yiu et al., 2016).  For 

example, TLR4 recognizes LPS and TLR5 recognizes flagellin, a component of the 

flagella of motile bacteria (Chow et al., 1999; Hayashi et al., 2001). TLR5 is most 

frequently located on the basolateral surface of the intestinal epithelial layer, indicating 

that bacteria need to pass through the epithelium to activate these receptors (Gewirtz et 

al., 2001).  In TLR5 knockout (T5KO) mice, TLR5 receptors are not present to catch any 

invading bacteria, giving the invading bacteria longer to reproduce and resulting in a 

more intense immune response once detected (Vijay-Kumar et al., 2008).  Over time, 

these immune challenges build to form a phenotype characterized by increased 

inflammation, glucose sensitivity, insulin insensitivity, increased triglycerides, and 

obesity, all characteristics of intestinal inflammation and metabolic syndrome (Vijay-

Kumar et al., 2007; Vijay-Kumar et al., 2010). 

Unlike many of the previously-discussed models that increase the inflammatory 

state of the gut, the physiological changes of the T5KO mouse model depend on the gut 

microbiota.  When GF wild-type (WT) mice are colonized with microbiota from T5KO 

mice, they develop the symptoms of metabolic syndrome seen in the T5KO mice (Vijay-

Kumar et al., 2010).  This is due to increased levels of Proteobacteria in the T5KO mice 

as well as an increased bacterial load (Carvalho et al., 2012).  In addition, the mucus 

layer that protects the intestinal epithelium from contact with the microbiota is also 

thinner in these mice, which allows bacteria to be closer and more adherent to the 

intestinal wall (Carvalho et al., 2012).  Unsurprisingly, the physiological phenotype of 

T5KO mice is due to the loss of TLR5 in the intestinal epithelial cells (IEC) (Chassaing 

et al., 2014a).  IEC-specific T5KO recapitulates the physiological phenotype of the 
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whole-body TLR5 deficiency.  T5KO mice are an excellent model to investigate the 

microbiota-gut-brain-behavior axis because they show microbiota-dependent chronic 

inflammation and their physiological changes are well characterized by our 

collaborators. Furthermore, unlike GF mice, T5KO mice are relevant to human 

health.  While humans with a 75% reduction in TLR5 function do not exhibit the same 

phenotype as our T5KO mice (Gewirtz et al., 2006), the phenotype of these mice is 

reminiscent of metabolic syndrome, which is increasingly plaguing Western society 

(Vijay-Kumar et al., 2010).  

Metabolic syndrome comprises a constellation of symptoms, including obesity, 

dyslipidemia, glucose intolerance, and hypertension, which increases the risk for 

cardiovascular disease and type 2 diabetes.  It is estimated that 20-25% of the adult 

population has metabolic syndrome, making it a significant health concern (Mazidi et al., 

2016).  Multiple studies have demonstrated an association between anxiety-like and 

depressive-like behaviors and metabolic syndrome in mice, rats, and humans (Dinel et 

al., 2011; de Cossío et al., 2017; Rebolledo-Solleiro et al., 2017; Penninx and Lange, 

2018a).  A similar pattern is seen in the comorbidity between functional gastrointestinal 

disorders like irritable bowel syndrome and psychiatric disorders (De Palma et al., 2014; 

Midenfjord et al., 2019; Zamani et al., 2019), underscoring the importance of 

understanding the factors that cause this association.  The TLR5 knockout mouse, with 

its phenotype resembling functional gastrointestinal disorders and metabolic syndrome, 

is an excellent choice for examining the gut-brain axis. 
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1.2 Microbiota and Neuropeptides 

There has been an explosion of research into identifying and understanding 

where and how gut microbiota manipulations affect neural circuitry, and a number of 

neurotransmitters have been implicated in this pathway, including serotonin, 

corticotropin-releasing hormone (CRF), brain-derived neurotrophic factor (BDNF), 

glutamate, and dopamine, among others (Baj et al., 2019; Bercik et al., 2011; 

Crumeyrolle-Arias et al., 2014; Guida et al., 2018a; Liu et al., 2016; Lukíc et al., 2019; 

Nishino et al., 2013; O’Leary et al., 2018; O’Mahony et al., 2015; Palomo-Buitrago et al., 

2019; Singhal et al., 2019).  Despite their roles in many behaviors affected by 

microbiota, including social, anxiety-like and depressive-like behaviors, little is known 

about the roles that the neuropeptides vasopressin and oxytocin play in the gut-brain 

axis (reviewed in Caldwell et al., 2008; Jurek & Neumann, 2018; Kormos & Gaszner, 

2013; Neumann & Landgraf, 2012).  Vasopressin and oxytocin both increase social 

behaviors but play opposite roles in anxiety-like behaviors (Neumann and Landgraf, 

2012).  Vasopressin has an anxiogenic effect, evidenced by increased central 

vasopressin mRNA in rats bred for high anxiety-like behavior, and reduced anxiety-like 

behavior in vasopressin receptor knockout mice (Bielsky et al., 2004; Wigger et al., 

2004).  Oxytocin is anxiolytic, shown by increased anxiety-like behavior in oxytocin 

knockout mice and reductions in anxiety-like behavior when oxytocin is administered 

centrally (Amico et al., 2004; Ring et al., 2006).  Similar patterns are seen in the 

moderation of depressive-like behavior by vasopressin and oxytocin (Arletti and 

Bertolini, 1987; Keck et al., 2003; Ring et al., 2010).  Furthermore, these systems are 
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sensitive to peripheral and immune signals, making these neuropeptides a likely target 

in the gut-brain axis (Nava et al., 2000). 

To date, very few studies have investigated the interaction between microbiota 

and vasopressin and oxytocin in the brain, and these studies are generally restricted to 

mRNA expression in the hypothalamus.  For example, Desbonnet and colleagues found 

that antibiotic treatment beginning at weaning reduced vasopressin and oxytocin mRNA 

in the hypothalamus in adulthood (Desbonnet et al., 2015), but they did not see any 

changes in vasopressin mRNA after treatment with the probiotic Bifidobacteria in rats 

(Desbonnet et al., 2008).  They also found that in a maternal separation paradigm, there 

was no effect of the probiotic Bifidobacterium infantis administration on vasopressin 

mRNA in the amygdaloid cortex or the hypothalamus (Desbonnet et al., 2010).  This 

same research group found that NIH Swiss mice showed a decrease in vasopressin 

receptor 1a mRNA expression in the hypothalamus in a maternal immune activation 

model that was associated with increased intestinal permeability and motility (Morais et 

al., 2018).  Furthermore, our lab found that rats with a naturally-occurring knockout of 

vasopressin show a sex-specific shift in gut microbiota composition that is correlated 

with anxiety-like behavior (Fields et al., 2018b).  While these studies point to a role of 

vasopressin in response to microbiota manipulations, or vice versa in the case of Fields 

et al. (2018b), they are restricted only to the hypothalamus and mRNA 

expression.  More detailed analysis is required to truly understand the role that 

vasopressin plays in the gut-brain axis. 

A series of elegant mechanistic experiments demonstrated that the probiotic 

Lactobacillus reuteri alleviates social deficits in multiple mouse models of autism 
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spectrum disorders (ASDs) by increasing oxytocin expression in the paraventricular 

nucleus of the hypothalamus (PVN; Buffington et al., 2016; Sgritta et al., 2019).  This 

suggests that oxytocinergic signaling is affected by the actions of bacteria, and it is 

possible that behavioral alterations from changes to the gut microbiota are occurring by 

disrupting the oxytocin system.  In addition, stressed mice treated with antibiotics from 

weaning had reduced oxytocin mRNA in the hypothalamus, and prenatal stress reduced 

oxytocin receptor mRNA in the cortex and altered the gut microbiota (Desbonnet et al., 

2015; Gur et al., 2019), suggesting an interaction between stress, microbiota and 

oxytocin expression.  Another study did not find any change in oxytocin expression in 

antibiotic-treated rats, which may point to species-specific effects of microbiota on 

oxytocin (Kentner et al., 2018).  Finally, human studies found that higher levels of 

circulating oxytocin is associated with increased Dialister genera, associated with 

glucose metabolism, but no correlation between plasma oxytocin and composition of the 

fecal microbiota was found in ASD patients (Tomova et al., 2015; Barengolts et al., 

2018).  While more is known about oxytocin’s place in the gut-brain axis than that of 

vasopressin, it is worthwhile to investigate it further for the potential therapeutic 

implications of oxytocin. 

1.3  Summary of Chapters 

The studies in this dissertation explore the microbiota-gut-brain axis in the 

context of the effect of microbiota on behavior.  While many studies recently have 

explored this axis, there is still a vast deficiency in our knowledge on how microbiota 

composition affects the body at the levels of microbiota ecosystem, gut physiology, gut 

to brain communication pathways, the brain, and behavior.  A primary deficiency is in 
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the roles vasopressin and oxytocin play in the gut-brain axis.  We hypothesize that 

microbiota change social, anxiety-like and depressive-like behaviors in part by affecting 

neuropeptide pathways implicated in those behaviors, namely vasopressin and 

oxytocin.  We investigate this through the use of an anti-inflammatory model, GF mice, 

that show decreases in anxiety-like behaviors, and a pro-inflammatory model, T5KO 

mice, that should show increases to anxiety-like behaviors.  We expand the findings that 

microbiota influence anxiety-like and social behaviors by investigating the role that the 

neuropeptides oxytocin and vasopressin may play in this pathway and correlating those 

roles with behavioral expression.   

In Chapter 2, I used an anti-inflammatory mouse model, GF mice, to investigate if 

the gut microbiota is necessary for proper development of the vasopressin and oxytocin 

systems.  GF mice show myriad behavioral abnormalities, including reduced anxiety-like 

behavior and decreased sociability, but the mechanisms underlying these behavioral 

changes are still not fully defined.  We hypothesized that oxytocin and vasopressin are 

involved in modulating behavior in response to signals from the microbiota, because 

these neuropeptides are sensitive to peripheral immune signals, and they are involved 

in the expression of anxiety-related and social behavior (Chikanza and Grossman, 

2002; Caldwell et al., 2008b; Li et al., 2017b; Jurek and Neumann, 2018b).  Thus, we 

characterized vasopressin and oxytocin immunoreactivity in weanling and adult mice in 

the production sites (paraventricular nucleus of the hypothalamus, supraoptic nucleus, 

suprachiasmatic nucleus), and projection sites of these neuropeptides (Rood and De 

Vries, 2011; Rood et al., 2013).  We were also interested in whether changes in these 

neuropeptides in GF mice could be rescued by colonization with conventional 
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microbiota at weaning.  We settled on this time point because puberty seems to be a 

critical period in the effects of microbiota on brain development (Markle et al., 

2013).  Finally, despite the well-characterized behavior of adult GF mice, less is known 

about their behavioral development.  Thus, we investigated anxiety-like and social 

behaviors in weanling-aged GF mice.  Overall, we found that the lack of microbiota 

affects vasopressin immunoreactivity in weanling-aged animals but has no effect in the 

adults, whereas oxytocin is increased both at weaning and in adulthood in GF mice.  

These changes to the vasopressin and oxytocin systems are associated with behavioral 

alterations.  Furthermore, recolonization at weaning is not sufficient to recapitulate 

normal vasopressin and oxytocin expression, which suggests that microbiota is needed 

for proper neuropeptide system development. 

In Chapter 3, we used a pro-inflammatory mouse model to explore whether 

chronic intestinal inflammation (1) affects anxiety-like and social behaviors, (2) is 

associated with changes to the oxytocin and vasopressin systems, and (3) whether 

these changes are due to microbiota changes.  The use of inflammatory agents in 

microbiota or behavioral research is not new.  A primary manipulation used is 

administration of LPS, which activates TLR4 and is responsible for inducing sickness 

behavior.  However, we were interested in what effect chronic intestinal inflammation, 

similar to what would occur in disorders like inflammatory bowel syndrome, has on 

neuropeptides and behavior.  We chose to use a T5KO model that has been well 

phenotyped by our collaborators and that has microbiota-dependent symptoms of 

chronic intestinal inflammation and metabolic syndrome.  First, we behaviorally 

phenotyped T5KO mice in a variety of anxiety-like, depressive-like and social behavior 
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tests.  Next, we examined vasopressin and oxytocin immunoreactivity in brain regions 

that receive signals from the periphery and are involved in mediating these behaviors.  

Finally, we used T5KO microbiota transplantation into GF mice to determine if the 

microbiota is sufficient to cause the T5KO behavioral phenotype.  We found that T5KO 

mice are characterized by increased anxiety-like behavior and reduced locomotion that 

is correlated with increased vasopressin immunoreactivity, and that this behavioral 

phenotype is not induced by T5KO microbiota transplant into GF mice. 

Combined these studies point to the need for future investigation into 

vasopressin as a mediator between microbiota composition changes and behavioral 

expression, as well as introduce a model of intestinal inflammation that should be 

utilized in gut-brain axis research.  More broadly, they point to the need for more 

mechanistic or pathway driven studies to uncover the effects that microbiota have on 

the central nervous system (CNS) in both health and disease states.  In Chapter 4, I 

discuss the larger context for the results of my experiments in the microbiota-gut-brain-

behavior axis as well as discuss the future directions of my research.  
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2 MICROBIOTA ARE NECESSARY FOR PROPER NEURAL VASOPRESSIN AND 

OXYTOCIN DEVELOPMENT IN MICE 

Nicole V. Peters, Mary K. Holder, Daniel Teuscher, Grace Signiski, Matthew J. Paul, Jack 

Whylings, Andrew T. Gewirtz, Benoit Chassaing and Geert J. de Vries 

 

2.1 Abstract 

Gut microbiota can influence anxiety-like, depressive-like and social behaviors, but 

the underlying mechanisms are still mostly unknown.  Because vasopressin (AVP) and 

oxytocin (OXT) play significant roles in the control of these behaviors, we investigated 

whether being raised in a germ-free (GF) environment permanently alters AVP and OXT 

circuits.  We found that compared to conventionally colonized (CC) mice, adult GF mice 

had region- and sex-specific alteration of AVP and OXT immunoreactivity, and these 

effects were not rescued by recolonization of GF mice at weaning.  There was also 

region- and sex-specific changes to microglia, a marker of neuroinflammation and 

measured by Iba-1 immunoreactivity and cell number, in AVP and OXT-expressing 

nuclei of GF mice.  Since AVP and OXT influence juvenile anxiety-like and social 

behaviors, this led us to investigate whether the behavioral and neural phenotype of GF 

mice is present at weaning.  We found that weanling-aged GF mice show decreased 

anxiety-like behavior and decreased social behavior, similar to adult GF mice, as well as 

changes to AVP and OXT immunoreactivity.  These results suggest that AVP, OXT, and 

microglia are influenced by microbiota during development, and the changes to these 

systems may contribute to the altered behavioral phenotype of GF mice. 
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2.2 Introduction 

 The microbiota that colonizes our gut, skin, oral cavity, and other regions of the 

body exposed to the external environment affects the physiology of the body as well as 

the brain (Foster and McVey Neufeld, 2013; Mayer et al., 2015; Dinan and Cryan, 

2017).  Germ-free (GF) mice, which are born and raised in sterile isolators, have been 

widely used to identify systems affected by microbiota (reviewed in Cryan & Dinan, 

2012; Luczynski et al., 2016).  Adult GF mice have a well-established behavioral and 

physiological profile, characterized by decreased anxiety-like, depressive-like, and 

social behaviors, particularly in less stress-responsive mouse strains (Borre et al., 2014; 

Desbonnet et al., 2014; Farzi, Fröhlich, & Holzer, 2018), as well as immature immune 

system development and low intestinal inflammation (Foster and McVey Neufeld, 2013; 

Luczynski et al., 2016).  Colonizing GF mice before puberty with conventional 

microbiota restores behavior to normal levels in GF mice (Desbonnet et al., 2014; Diaz 

Heijtz et al., 2011; Pan et al., 2019a), however, colonizing after puberty does not (Sudo 

et al., 2004).  This suggests a critical period for the effects of microbiota on behavior, 

and thus on the underlying neural circuitry.  

 It is still unclear what neural circuitry is affected by the low inflammatory status of 

GF mice to change their behavior.  Others have shown that monoamines, including 

noradrenaline, dopamine, and serotonin, as well as brain-derived neurotrophic factor, 

and corticotropin-releasing factor are affected in the brains of GF mice (Guida et al., 

2018b; Baj et al., 2019; Lukić et al., 2019; Palomo-Buitrago et al., 2019; Pan et al., 

2019b; Singhal et al., 2019).  However, relatively little attention has been paid to the 

neuropeptides AVP and OXT, despite their major roles in anxiety, depression, and 
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social behavior (reviewed in Bredewold & Veenema, 2018; Caldwell, 2017; Jurek & 

Neumann, 2018). Previous experiments show that antibiotic treatment reduced AVP 

and OXT mRNA expression in the hypothalamus and altered anxiety-like and social 

behaviors (Desbonnet et al., 2015).  Furthermore, OXT is needed during probiotic 

treatment to ameliorate social behavior impairments in a maternal high fat diet model 

(Buffington et al., 2016; Sgritta et al., 2019).  These results point to the need to further 

investigate how the microbiota affects these neuropeptides. 

 As gut inflammation can cause neuroinflammation (Rizzetto et al., 2018; Serra et 

al., 2019), we used microglia, the macrophages of the central nervous system, as a 

marker of neuroinflammation (Colonna and Butovsky, 2017).  GF mice tend to have an 

immature microglia profile, including increased microglial number, disturbed neural 

surveillance parameters, and diminished response to pathogens (Erny et al., 2015; 

Castillo-Ruiz et al., 2018; Thion et al., 2018), and recolonization with microbiota before 

puberty restores the microglia to a more mature profile.  

 In the present study, we examined the immunoreactivity of AVP, OXT, and 

microglia in adult GF and conventionally colonized (CC) mice, and in GF mice colonized 

with microbiota at weaning (recolonized; RE) in brain regions implicated in the control of 

social and anxiety-like behaviors.  We found that OXT immunoreactivity was increased 

in GF mice in some regions, whereas there was no difference in AVP immunoreactivity 

between GF and CC mice. We also found site- and sex-specific effects of lack of 

microbiota to Iba-1 (a marker of microglia) immunoreactivity and Iba-1 positive cell 

count.  Recolonization did not rescue immunoreactivity to the levels of CC mice in any 

of the three systems we examined, but rather increased AVP immunoreactivity. 
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 This discovery led us to question whether the deficits in AVP, OXT, and microglia 

were already present in weanling-aged mice.  To do this, we first established that 

weanling-aged mice show the same GF behavioral phenotype as described in adults, 

defined by decreased anxiety-like behavior and social behavior.  Then, we 

characterized AVP, OXT and Iba-1 immunoreactivity in the same regions as the 

previous experiment to determine if these systems are altered by weaning from the lack 

of microbiota in early life, and if changes to these systems may explain the changes in 

behavior in GF mice.   

2.3 Materials and Methods 

2.3.1 Animals 

Swiss-Webster mice (GF, CC, and RE) were obtained from our breeding 

program at Georgia State University.  All non-sterile mice (CC and RE) were housed in 

ventilated transparent Optimouse cages (35.6 x 48.5 x 21.8cm) lined with Bed-O-Cobs® 

bedding, with nestlets and shelters for enrichment.  Animals were kept on a 12h:12h 

light:dark cycle (lights off at 1900 EST) and ambient temperature was kept at 23°C.  

Food (Purina rodent chow no. 5001) and water were available ad libitum. Animals were 

weaned at postnatal day 21 (P21) and housed with littermates of the same sex and 

genotype.  All procedures were in accordance with the Guide for Care and Use of 

Laboratory Animals and were approved by the Animal Care and Use Committee at the 

Georgia State University. 

Germ-free mice were maintained in a Park Bioservices isolator as previously 

described (Chassaing et al., 2015) and allowed ad libitum access to autoclaved food 

(Purina rodent chow no. 5001) and water.  Adult and weanling-aged mice were obtained 
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from the established GF breeding colony at Georgia State University.  Recolonized mice 

were removed from the isolator at P21 and orally administered with 200uL of fecal 

suspension from a sex-matched donor, then kept in conventional animal housing as 

described above. 

Weanling CC Swiss Webster mice used for behavioral testing were obtained 

from Taconic (Germantown, NY) and allowed to habituate to the animal facility before 

use in the behavioral experiment, and weanling GF mice were obtained as described 

above. None of the animals used in behavioral testing were used for the anatomical 

experiments. 

2.3.2 Behavioral Testing 

 Weanling-aged mice (P21) were tested in the social interaction, marble burying, 

and elevated plus maze tests, in that order, after removal from the isolators or animal 

facility and an hour-long habituation to the testing room. The tests were ordered this 

way, from least to most anxiogenic, to reduce residual stress from the previous test 

(Mcilwain et al., 2001).  GF and CC mice were not tested on the same day to reduce the 

possibility of contamination of the GF mice.  Behavioral testing began 3 hours after the 

beginning of the light phase of the light:dark cycle, with overhead lights as illumination, 

and was completed within a 6-hour time frame in one day to minimize microbiota 

colonization.  Mice were immediately moved from the social interaction arena to the 

marble burying arena, then were returned to their home cage for between 30 minutes to 

3 hours between the marble burying and EPM. This variation in time was due to the 

animal order being randomized for each test.   Apparatuses were cleaned with 70% 

ethanol (between animals) or Vimoba solution (between treatment groups and at the 
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start and end of each testing day; chlorine dioxide; Quip Laboratories, Wilmington, DE) 

to remove the scent of the previous mouse.  An experimenter blind to treatment 

conditions scored all behavioral tests. 

2.3.2.1 Social Interaction 

 A Plexiglas arena (24cm W X 46 cm L) was filled with 2 cm of Alpha-dri bedding 

(Shepherd Specialty Paper, Fibercore, Cleveland, OH, USA).  Two mice from the same 

litter (and therefore the same treatment) were placed into the arena and video recorded 

for 10 minutes. Time spent walking, immobile, grooming, allogrooming, rearing, digging, 

and investigating the other mouse were scored using Observer XT 11.5 (Noldus 

Information Technology, Wageningen, The Netherlands). 

2.3.2.2 Marble Burying Test 

         A Plexiglas arena (24cm W X 46 cm L) was filled with 4 cm of Alpha-dri bedding 

(Shepherd Specialty Paper, Fibercore, Cleveland, OH, USA).  Mice were placed into the 

arena for a 5-minute habituation period, then removed in order to place 20 marbles 

(17mm) in an evenly spaced, 4x5 grid on top of the bedding.  Mice were returned to the 

center of the arena and their behavior was video-recorded for 10 minutes.  The number 

of marbles buried during this period, defined as being half or more covered by bedding, 

the latency to bury the first marble, and total time spent digging were quantified using 

Observer XT 11.5 (Noldus Information Technology, Wageningen, The Netherlands). 

2.3.2.3 Elevated Plus Maze 

         A standard mouse elevated plus maze (EPM) was used, with 2 open arms and 2 

closed arms.  The arms were 10 cm W x 50 cm L, connected by a 10 cm X 10 cm 

center square.  Closed arms had a wall height of 40 cm, and the maze was elevated 50 
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cm from the floor.  At the beginning of the test, mice were placed in the center square of 

the arena and allowed to freely explore for 5 min.  Video trials were recorded from a 

digital camera mounted above the apparatus that was connected to a computer.  The 

number of entries into the open and the closed arms of the apparatus, time spent in 

open and closed arms, and total distance traveled were quantified by AnyMaze version 

4.96 (Stoelting, Co., Wood Dale, IL). 

2.3.3 Euthanasia and Tissue Collections 

 After completion of behavioral testing, mice were deeply anesthetized using 

isoflurane (5%v/v).  Blood was collected by retrobulbar intraorbital capillary plexus.  

Hemolysis-free serum was collected by centrifugation of blood using serum-separator 

tubes (Becton Dickinson, Franklin Lakes, NJ).  Following blood collection, mice were 

euthanized by cervical dislocation.  The weight and length of the colon and weights of 

the spleen, liver, and perigonadal adipose fat depot were recorded and normalized to 

the body weight.  

2.3.4 Immunohistochemistry  

Brains were removed and fixed in 5% acrolein in sodium phosphate buffer (0.1M, 

pH 7.4) at 20°C for 24 hours, followed by cryoprotection in 30% sucrose in phosphate-

buffered saline (PBS: 0.05M, ph7.4) at 4°C until sectioning (at least 24 hours). Brains 

were sectioned (30µm) in the coronal plane with a cryostat and stored in a 

cryoprotectant solution (ethylene glycol/sucrose in sodium phosphate buffer) at -20°C 

until immunostained. 



19 

2.3.4.1 AVP Immunohistochemistry 

Free-floating sections were rinsed five times in Tris-buffered saline (TBS; 0.05 M 

Tris, 0,9% NaCl, pH 7.6), then incubated for 30 min in 0.05 M sodium citrate in TBS. 

After rinsing in TBS sections were placed in 0.1 M glycine in TBS for 30 min, rinsed 

again, and placed into block solution (10% normal goat serum (NGS), 0.4% Triton-X 

and 1% H2O2 in TBS) for 30 min. Sections were then incubated overnight(~18 hours) in 

anti-AVP (Bachem; 1:32000 dilution in TBS with 2% NGS and 0.4% Triton-X). The next 

day, sections were rinsed five times in TBS containing 1% NGS and 0.02% Triton-X and 

incubated in biotinylated secondary antiserum [goat anti-rabbit for AVP 

immunoreactivity (Vector Laboratories, Burlingame, CA)] diluted 1:250 in TBS with 2% 

NGS and 0.4% Triton-X for 1 h. This was followed by rinses in TBS containing 0.4% 

Triton X, incubated in avidin-biotin complex (Vectastain Elite ABC Kit; Vector 

Laboratories) diluted to 1:800 in TBS for 1 h, followed by four TBS rinses. Finally, the 

staining was visualized using nickel-enhanced diaminobenzidine (DAB) Substrate Kit 

(Vector Laboratories). Sections were mounted onto gelatin-coated slides and cover-

slipped with Permount. 

2.3.4.2 OXT Immunohistochemistry 

 Sections were subjected to the same procedure outlined above, with the 

exception of the sodium citrate step, and the secondary antibody and ABC steps were 

increased to 90 minutes.  Anti-OXT primary antibody (Peninsula Labs, 1:120,000) and 

goat anti-guinea pig secondary antibody (Vector Laboratories, 1:250) were used. 
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2.3.4.3 Iba-1 Immunohistochemistry 

 Sections were treated as outlined above with the following changes.  Sections 

were washed nine times in TBS before a 60 min sodium citrate step.  A concentrated 

blocking solution was used (TBS with 20% normal goat serum, 0.3% Triton-X, and 1% 

hydrogen peroxide), and sections were incubated overnight in rabbit anti-Iba-1primary 

antibody (Fisher, 1:20,000) diluted in TBS with 2% NGS and 0.3% Triton-X.  Slices were 

then rinsed in dilute blocking solution (TBS with 1% NGS and 0.02% Triton-X) three 

times before secondary antibody.  

2.3.5 Image Analysis 

Matched sections for each mouse were imaged using a Zeiss Axio Imager M2 

microscope connected to an ORCA-R2 CCD digital camera (Hamamatsu Photonics). 

Gray-scale images of the fiber density or positively labeled cell bodies in the 

photomicrographs were gray-level threshold analyzed in Image J 1.43u (National 

Institutes of Health, Bethesda, MD) in accordance to the methods previously described 

in Rood et al., 2012. The region of analysis was outlined in each section. Subjects for 

which the relevant sections were damaged or unavailable were dropped from a given 

analysis. Brain regions were selected from each of the three neuropeptide source and 

projection pathways: the PVN/SON pathway, the BNST-medial amygdala (MA) 

pathway, and SCN pathway (as described in Rood & De Vries, 2011).  The PVN/SON 

pathway includes the PVN.  The BNST-MA pathway includes the lateral habenula 

(LHb), ventral lateral septum (LS), and mediodorsal nucleus of the thalamus (MD).  The 

SCN pathway includes the SCN, subparaventricular zone (SPZ), paraventricular 

nucleus of the thalamus (PVT), and the dorsomedial nucleus of the hypothalamus 
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(DMH).  Cell counts were only available for OXT and Iba-1 staining, as the dense 

packing of cells and abundance of AVP-ir fibers made distinguishing individual cells 

impossible.  The SON was not included in AVP-ir analysis because the staining was too 

dark to discern cell bodies or fiber tracts. 

2.3.6 Statistical Analysis 

Data were analyzed and visualized using IBM SPSS Version 21 (IBM).  All data 

were analyzed by a two-way ANOVA with sex and treatment as factors, followed by 

Bonferroni post-hoc analyses.  Differences in the post-hoc comparisons were noted as 

significant *p<0.05. 

2.4 Results  

2.4.1 Animals 

 
 All animals used in this study were in good health with no impairments.  A total of 

55 adult mice were used in the adult IHC experiment (9 male GF, 8 female GF, 10 male 

CC, 7 female CC, 13 male RE, and 8 female RE).  In the weanling-aged IHC 

experiment, 29 mice were used (6 male GF, 9 female GF, 7 male CC, and 7 female 

CC).  Finally, in the weanling-aged behavioral experiment, 63 mice were used (16 male 

GF, 17 female GF, 19 male CC and 11 female CC), except for the social interaction 

test, where 8 male CC and 4 female CC were excluded due to being paired with 

strangers, not littermates.  
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2.4.2 Adult Immunoreactivity 

2.4.2.1 AVP Immunoreactivity 

2.4.2.1.1 Suprachiasmatic Nucleus and Projection Sites 

         In the subparaventricular zone (SPZ), an effect of microbiota on AVP-ir emerged 

that resulted in a sex by treatment interaction (Figure 2.1A, F(2, 53)= 5.880, p= 

0.005).  In this region, male CC mice had higher AVP-ir expression than the CC females 

(F(1, 53)= 8.961, p=0.004).  This sex difference was abolished in the GF mice but 

rescued in the RE mice.  The overall levels of AVP-ir in RE mice were decreased 

compared to the CC mice (main effect of treatment, F(2, 53)= 4.008, p= 0.025; 

Bonferroni post-hoc analysis, p= 0.052). 

         The PVT showed a different AVP-ir expression pattern than the SPZ. RE mice 

had higher levels of AVP-ir than CC mice (Figure 2.1B; main effect of treatment, F(5, 

53)= 8.578, p=0.001; Bonferroni post-hoc analysis, p<0.001) and a trend towards higher 

levels than GF mice (p=0.059).  Males had consistently higher AVP-ir than females (F(5, 

53)= 9.038, p=0.004). 

There was no effect of germ-free status or recolonization on AVP-ir in the 

suprachiasmatic nucleus (SCN; Figure 2.1C, p>0.05).  A projection site of the SCN, the 

DMH, also showed no differences between sex and treatment groups (p>0.05, data not 

shown). 

2.4.2.1.2 Bed Nucleus of the Stria Terminalis-Medial Amygdala Pathway Projection 

Sites 

 In the lateral habenula (LHb), RE mice had greater AVP-ir than GF or CC mice 

(Figure 2.1D; F(2, 54)= 8.532, p<0.001, post-hoc analysis p= 0.001 and p= 0.004, 
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respectively).  GF and CC males had higher levels of immunoreactivity than females 

(F(1, 54)= 30.563, p<0.001), and this sex difference was abolished in the RE mice.  In 

the mediodorsal nucleus of the thalamus (MD), RE mice showed an increase in AVP-ir 

compared to CC mice (Figure 2.1E; F(2, 52)= 5.278, p=0.009; Bonferroni post-hoc 

analysis, p=0.009).   Again, we replicated the sex difference seen in this region, in which 

males have a significant increase in immunoreactivity compared to the females (F(1, 

52)= 29.759, p<0.001). In the lateral septum (LS), a projection site of the BNST, we 

replicated the well-established sex difference in AVP-ir (F(1, 54)= 91.245, p<0.001, data 

not shown), in which males had almost twice the immunoreactivity levels as the females 

in each treatment group (Gatewood et al., 2006; Rood et al., 2013).  

2.4.2.1.3 Paraventricular Nucleus of the Hypothalamus 

         There was a trend towards a sex by treatment interaction on AVP-ir in the PVN 

(Figure 2.1F; F(2, 54)= 3.012, p= 0.058), where male RE mice had higher levels of 

AVP-ir than female RE mice (p= 0.003).     

2.4.2.2 OXT Immunoreactivity  

2.4.2.2.1 Paraventricular Nucleus of the Hypothalamus and Projection Areas 

         Germ-free mice had an increase in OXT-ir positive cells in the PVN compared to 

CC mice (Figure 2.2A; F(2, 54)= 4.165, p=0.021; Bonferroni post-hoc analysis, 

p=0.013).  Recolonization with CC microbiota only partially returned the number of 

immunoreactive cells to CC levels.  There was no difference in OXT-ir between groups 

in the PVN pixel number analysis despite an increase in OXT-ir cells in GF mice 

(p>0.05; data not shown).   



24 

         Recolonization had differing effects on OXT-ir in the AH and PVT.  In the AH, 

there was a trend towards RE mice having higher levels of OXT-ir than GF or CC mice 

(Figure 2.2B; F(2, 54)=2.431, p=0.098).  In the PVT, a sex difference emerged in the RE 

mice, in which the females had higher immunoreactivity than the males (t-test, p=0.003). 

This sex difference was large enough to result in a trend towards an interaction between 

sex and treatment in the overall ANOVA (Figure 2.2C; F(2, 54)= 2.926, p=0.063). 

         Converse to the previous regions, there was a decrease in OXT-ir positive cells 

in the BNST in GF and RE mice (Figure 2.2D; F(2, 54)= 4.178, p=0.021; Bonferroni 

post-hoc analysis, p=0.07 and p=0.087, respectively).  Despite the increase in OXT-ir 

positive cells, there was no difference in OXT-ir pixel number.  There was a sex 

difference in the CC and a trend towards significance in GF groups, where females 

show more immunoreactivity than males (F(1, 54)= 5.637, p=0.022; t-test, p=0.027 and 

0.096, respectively, data not shown). 

         There was no difference between treatment or sex in the SPZ (p>0.05). 

2.4.2.2.2 Supraoptic Nucleus 

         Germ-free females had more OXT-ir positive neurons than the males, who had 

similar levels to the other groups (Figure 2.2E; t-test, p=0.031).  Females had higher 

levels of OXT-ir than males, but this did not quite reach significance (F(1, 39)= 3.167, 

p=0.084). 

2.4.2.3 Iba-1 Immunoreactivity 

In the BNST, there was a sex by treatment interaction in Iba-1 immunoreactivity 

(Figure 2.3A; F(2, 52)= 5.883, p=0.005), driven by greater immunoreactivity in male CC 

mice, a reversal of the sex difference in the GF mice, and a decrease in 
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immunoreactivity in the GF and RE mice compared to CC mice (Bonferroni post hoc 

analysis, p=0.05 and p=0.003, respectively).  Iba-1 positive cell counts in the BNST 

showed a similar pattern to Iba-1 immunoreactivity (Figure 2.3E; sex by treatment 

interaction, F(2, 52)= 6.511, p= 0.003), including the reversal of the sex difference in the 

GF mice, but there were no significant differences between treatment groups 

(Bonferroni post-hoc analysis, p>0.05).  This pattern of sex differences and decrease 

from CC mice persisted in Iba-1 positive cell counts, resulting in a sex by treatment 

interaction (F(2, 37)= 5.233, p=0.011).  CC mice had higher cell counts than RE mice 

(p=0.034). 

         There was a sex by treatment interaction in Iba-1 immunoreactivity in the LS 

(Figure 2.3B; F(2, 37)= 4.059, p= 0.027), driven partially by the appearance of a sex 

difference in GF mice.  GF mice and RE mice had decreased immunoreactivity 

compared to CC mice (Bonferroni post-hoc analysis, p=0.027 and p=0.003, 

respectively).  There was a trend towards a sex by treatment interaction in Iba-1 positive 

cell counts (Figure 2.3F; F(2, 37)= 2.913, p=0.069), driven by a sex difference in the GF 

mice, with females showing higher numbers of microglia than males (main effect of sex, 

F(1, 37)= 4.972, p=0.033).   

         In the striatum, there was a trend towards a sex by treatment interaction (Figure 

2.3C; F(2, 37)= 3.051, p=0.061) in Iba-1 immunoreactivity.  CC mice had higher levels 

of immunoreactivity than GF or RE mice (F(2, 37)= 9.5, p=0.001, Bonferroni post-hoc 

analysis, p=0.044 and p<0.001, respectively).  There was an increase in 

immunoreactivity in the males of CC mice and RE mice, but not in the GF animals, 

contributing to a trend towards a main effect of sex (F(1, 37)= 3.509, p=0.07).  This 
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pattern of sex differences and decrease from CC mice persisted in Iba-1 positive cell 

counts, resulting in a sex by treatment interaction (Figure 2.3G; F(2, 37)= 5.233, 

p=0.011).  CC mice had higher cell counts than RE mice (t-test, p=0.034). 

         There was a sex by treatment interaction in Iba-1 immunoreactivity in the PVT 

(Figure 2.3D; F(2, 51)= 6.080, p=0.005), driven by greater immunoreactivity in the male 

CC mice (p= 0.001).  CC mice had higher numbers of Iba-1 positive microglia compared 

to both GF and RE mice (Figure 2.3H; F(2, 51)= 4.123, p= 0.023, Bonferroni post-hoc 

analysis, p= 0.019 and p= 0.039, respectively), driven by a similar increase in male CC 

Iba-1 cells (p= 0.006), leading to an almost significant main effect of sex (F(1, 51)= 

3.945, p=0.053). GF and RE mice did not have a sex difference in Iba-1 expression, 

indicating that this sex difference is established by microbiota exposure before weaning. 

         There were no treatment differences in Iba-1 immunoreactivity nor Iba-1 positive 

cell count in the PVN (p>0.05).   

2.4.3 Weanling-Aged Immunoreactivity 

 Due to the above results, showing that recolonization does not rescue GF mice 

to expression levels of CC mice, we were interested in whether weanling-aged GF mice 

show similar deficits in AVP, OXT and Iba-1 expression.  We first examined AVP, OXT, 

and Iba-1 expression in weanling-aged mice to establish whether changes to these 

systems are present at weaning.  In a cohort, we established the behavioral and 

morphological profile of weanling-aged mice, to determine if any changes in these 

neural circuits correlate with behavioral changes. 
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2.4.3.1 AVP Immunoreactivity 

2.4.3.1.1 Suprachiasmatic Nucleus and Projection Sites 

         In the SCN, GF mice showed less immunoreactivity than the CC mice (Figure 

2.4A; F(3, 28)= 15.877, p=0.001).  In a projection site from the SCN, the DMH, there 

was a similar decrease in AVP-ir in the GF mice (Figure 2.4B; F(3, 28)=5.954, 

p=0.022).  There was no effect of germ-free status on AVP-ir in the SPZ (p>0.05; data 

not shown). 

         A different pattern was seen in the anterior portion of the PVT.  GF mice had 

higher AVP-ir than CC mice (Figure 2.4C; F(3, 28)= 6.179, p=0.02), driven by a 

substantial increase in AVP-ir in the females (sex by treatment interaction, F(3, 28)= 

5.733, p= 0.024).   

2.4.3.1.2 Paraventricular Nucleus of the Hypothalamus 

         In the PVN, the GF mice had higher levels of AVP-ir than the CC mice, but this 

difference did not reach significance (Figure 2.4D; F(3, 28)= 2.992, p= 0.096).   

2.4.3.1.3 Bed Nucleus of the Stria Terminalis and Projection Sites 

At weaning, there was no visible staining in the lateral septum, lateral habenula 

or mediodorsal nucleus of the thalamus with the antibody for AVP used in this study, 

thus we were unable to quantify AVP-ir in these regions.  
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2.4.3.2 OXT Immunoreactivity 

2.4.3.2.1 Paraventricular Nucleus of the Hypothalamus and Projection Sites 

         Germ-free mice had increased OXT-ir compared to CC mice in the PVN (F(1, 

28)= 21.946, p<0.001, data not shown).  This may be partially attributed to an increase 

in OXT-ir positive cells in GF mice (Figure 2.5A, F(1, 28)= 21.54, p<0.001). 

         There was no effect of the lack of microbiota on OXT fiber projections from the 

PVN in the anterior hypothalamus (AH; Figure 2.5B), PVT (Figure 2.5C), DMH and SPZ 

(data not shown; p>0.05).  Females had increased OXT-ir in the BNST compared to 

males (F(1, 28)= 7.171, p=0.013, data not shown).  However, there was an interaction 

of sex and treatment in OXT-ir positive cells in the BNST (Figure 2.5D; F(1, 27)= 4.608, 

p= 0.042), where GF males had a trend towards increased OXT-ir cells than GF 

females (p=0.077). 

2.4.3.2.2 Supraoptic Nucleus 

         Germ-free mice had an increased number of OXT-ir positive cells in the SON 

(Figure 2.5E; F(1, 28)= 5.611, p=0.026).  This did not extend to an increase in OXT-ir in 

the SON area analyzed, however (p>0.05). 

2.4.3.3 Iba-1 Immunoreactivity 

GF mice showed less Iba-1 immunoreactivity (Figure 2.6A; F(1, 26)= 4.584, 

p=0.043) and less microglia cell counts (F(1, 26)= 9.656, p=0.005, data not shown) than 

CC mice in the BNST.  There was a sex by treatment interaction in the striatum (Figure 

2.6C; F(1, 19)= 6.937, p=0.018), in which the sex difference in Iba-1 immunoreactivity in 

the CC mice was abolished in GF mice. This interaction was driven by the greater 

immunoreactivity in CC males.  Microglia counts were decreased in the striatum in GF 
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mice compared to CC mice (F(1, 19)= 21.127, p<0.001, data not shown), and there was 

a trend towards a main effect of sex (F(1, 19)= 3.336, p=0.087).  In the PVN, there were 

no effects of sex or treatment on Iba-1 immunoreactivity, but there was a trend towards 

a sex by treatment interaction in microglia count (F(1, 27)= 3.219, p=0.085, data not 

shown).  There were no differences in sex or treatment in Iba-1 positive cells or 

immunoreactivity in the LS (Figure 2.6B) or PVT (Figure 2.6D; p>0.05). 

2.4.4 Weanling-Aged Behavior and Body Measures 

2.4.4.1 Social Behavior 

         GF mice spent less time interacting with a familiar mouse in the social interaction 

test than CC mice, (Fig. 2.7A, F(3, 59)= 19.149, p<0.001). Male CC mice showed 

similar levels of social interaction as both male and female GF mice, indicating that a 

lack of microbiota abolished the sex difference seen in the CC mice, whereas female 

CC mice spent more time socially with the target mouse, resulting in a main effect of 

sex, (F(3, 59)= 12.343, p<0.001), and an interaction between sex and treatment (F(1, 

59)= 13.457, p<0.001). This same pattern was seen in allogrooming behavior, where 

GF mice also spent less time allogrooming than CC female mice, but more than the CC 

males, resulting in a sex by treatment interaction (Fig. 2.7B, F(3, 17)= 9.052, p= 0.009). 

         There was an interaction between sex and treatment in time spent walking in the 

arena (Fig. 2.7C, F(3, 59)= 6.751, p= 0.012). This was driven by a reversal in the 

direction of sex differences from CC males walking more to GF females walking 

more.  When not walking or interacting with the other mouse, GF mice spent their time 

rearing, (Fig. 2.7D; F(3, 56)= 7.758, p=0.007), and showed a trend towards spending 

more time grooming than CC mice, (F(3, 57)= 3.602, p= 0.063; data not shown).  There 
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was no difference between GF and CC mice in time spent immobile or time spent 

digging in the bedding (p>0.05; data not shown).   

2.4.4.2 Marble Burying Test 

         Conventionally colonized males spent more time digging than CC females in the 

marble burying test (Fig. 2.8A; F(3, 74)= 4.788, p=0.032), but this sex difference is 

abolished in the GF mice.  Both GF and CC mice walked in the arena similar amounts 

of time (p>0.05; data not shown), but the main difference lied in their behavior when not 

walking and digging.  GF mice spent more time immobile (Fig. 2.8B; F(3, 74)= 15.268, 

p<0.001), in which they were not actively investigating the arena, versus the CC mice, 

who spent more time rearing against the walls of the arena (Fig. 2.8C; F(3, 74)= 11.647, 

p=0.001). 

2.4.4.3 Elevated Plus Maze 

         Weanling aged GF mice showed decreased anxiety behavior in the elevated plus 

maze, as measured by time spent in the open arms (Figure 2.9A; F(3, 74)=8.039, 

p=0.006).  This difference was due to GF mice spending more time in the outer half of 

the open arms of the apparatus than CC mice (Figure 2.9B; F(3, 62)=10.898, p=0.002), 

but not due to an increase in distance traveled in the GF mice (Figure 2.9C; 

p>0.05).  There was no difference in the time spent immobile in the apparatus between 

the GF and CC mice (p>0.05; data not shown). 

2.4.4.4 Body Measures 

Overall, weanling GF mice weighed less than the CC mice (Fig. 2.10A, F(3, 44)= 

40.43, p<0.001), driven by smaller gonadal adipose deposits (Fig. 2.10B, F(4, 62)= 

31.431, p<0.001).  Males of both treatments had larger gonadal fat pads than the 
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females, despite being prepubertal (Fig. 2.10B, F(4, 62)= 10.237, p=0.002).  As 

previously reported, GF mice had ceca that are twice as heavy as the CC mice to aid in 

digestion (Fig. 2.10C, F(4, 62)= 126.705, p<0.001). Furthermore, GF mice did not show 

morphological markers of inflammation, demonstrated by a trend towards smaller 

spleens and shorter colons than the CC mice (Fig. 2.10D, F(4, 62)= 2.97, p= 0.09; data 

not shown, F(3, 44)= 14.699, p<0.001, respectively).  GF mice showed a sex difference 

in colon weight, with females having heavier colons than males (data not shown, F(4, 

62)= 4.647, p=0.035). 

2.5 Discussion 

In this study, we demonstrated that the lack of microbiota alters AVP, OXT and 

microglia at weaning and in adulthood, but not necessarily in the same manner.  

Specifically, AVP-ir was decreased in weanling-aged GF mice, but there were no 

differences between GF and CC animals in adulthood, whereas OXT-ir was higher in 

both weanling-aged and adult mice.  Furthermore, Iba-1 immunoreactivity generally 

decreased in GF mice, but this was sex- and region-specific.  Recolonization was not 

sufficient to restore CC levels of immunoreactivity for all three neural markers, although 

it did increase AVP-ir in some regions and rescue some sex differences observed in the 

CC mice.  The changes in these neural systems were accompanied by reduced anxiety-

like and social behavior in weanling-aged mice.  These results suggest that microbiota 

is necessary for proper development of microglia and AVP systems, and changes to the 

microbiota during development may lead to behavior alterations downstream. 

Very few experiments have investigated the effects of microbiota on AVP, OXT, 

and microglia, and we wanted to investigate how and where germ-free status affects 
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these systems.  While we cannot use these results to make causative claims on the 

interaction between the microbiota, neuropeptides, and behavior, we can now use these 

results to perform hypothesis-driven experiments to elucidate the mechanism as to how 

microbiota contributes to the development of these systems.  We also did not replicate 

the adult GF behavioral profile to prevent behavioral testing-induced changes in their 

neurochemistry (Gagliano et al., 2008).  However, the behavioral phenotype of GF mice 

is well-established (reviewed in Luczynski et al., 2016) and the behavioral profile we 

observed in the weanling-aged mice is similar to that published in adult GF mice.   

We found that AVP immunoreactivity decreased in the SCN and its projections in 

juvenile GF mice.  In addition to its role in the control of circadian rhythms, the SCN and 

its projection sites modulate the HPA axis and depressive-like behavior (reviewed in 

Kalsbeek et al., 2010).  AVP derived from the parvocellular neurons of the SCN have an 

inhibitory effect on the HPA axis, and AVP release in the DMH from the SCN is 

responsible for lowering circulating levels of corticosterone during the first half of the 

light period (Kalsbeek et al., 1996; Kalsbeek et al., 1992).  Thus, the decreased AVP-ir 

we found may indicate more released AVP, which may reduce the level of 

corticosterone in circulation.  This would make sense, as GF mice have reduced 

anxiety-like behavior than CC mice, but elevated HPA axis activation (Sudo et al., 

2004).  Conversely, AVP-ir was increased in the PVT.  The PVT is involved in a number 

of behaviors, including food intake, food reward, emotional regulation and circadian 

rhythms, due to the variation in inputs and projections from this region (Kirouac, 

2015).  AVP has excitatory effects on PVT neurons (Zhang et al., 2005), so the effects 

of the increased AVP in the PVT is dependent on the recipients of the excitatory 
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signaling.  It is possible that its projections to the nucleus accumbens would increase 

the reward from food intake or would increase anxiety-like behavior through its 

activation of the extended amygdala (Heydendael et al., 2011; Stratford and Wirtshafter, 

2013).  However, the posterior PVT is heavily innervated by orexin neurons that 

increase anxiety when activated (Heydendael et al., 2011), suggesting that the 

anxiogenic role of the PVT is more posterior than the anterior region we analyzed.  

Finally, juvenile GF mice showed a trend towards an increase in AVP-ir in the PVN, 

which suggests that there may be alterations to the production of AVP or that the slight 

increase may contribute to the altered social and anxiety-like behavior in these mice. 

In the adult mice, we found that AVP-ir was increased in the RE mice in the PVT, 

LHb, and MD compared to CC mice.  In general, there was a slight increase in the GF 

mice, but it was not significantly different from CC or RE mice.  We expect that the 

increase AVP-ir in the RE mice is due to the combination of early-life stress of oral 

gavage, the immune stress of encountering microbiota for the first time, and the normal 

stress of weaning interacting to affect AVP-ir permanently.  Early life stress increases 

AVP-ir in males in the PVN and AVP receptor 1a (V1aR) binding in the amygdala and 

hypothalamus (Veenema et al., 2007).  These studies suggest that the maternal 

separation that occurs during weaning may affect AVP system function in 

adulthood.  Furthermore, colonization of GF mice corrects the deficits in mucosal 

immune system function (Umesaki et al., 1995), but little examination of how the 

immune stress of colonization impacts brain development has been done.   It would be 

interesting to examine the behavior of the recolonized mice to see if it correlates with 

the increased AVP-ir.  In the SPZ, we saw a decrease in AVP-ir in the RE mice.  The 
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SPZ receives AVP projections from the SCN, and the SPZ is involved in controlling 

body temperature rhythms, sleep rhythms and locomotor activity, with downstream 

functions in energy homeostasis and HPA axis regulation (Vujovic et al., 2016).  The 

reduction in AVP-ir in the SPZ may be due to increased AVP release from the SPZ or 

decreased production.  Reduced production may explain the anxiolytic nature of GF 

mice, due to decreased HPA axis activation.  Alternatively, increased release of AVP 

may be acting on other neural systems to result in the behavioral changes.   

In the PVN, we only saw trends towards an effect of treatment on AVP-ir in both 

adults and weanling-aged mice. It is possible that GF mice would show differences in 

immunoreactivity in projection sites from the PVN, similar to our results in the SCN and 

its projection sites.  More investigation into the PVN and its projections is needed to 

understand how the lack of a microbiota impacts this AVP pathway. 

We found increased OXT-ir in the PVN and SON of juvenile mice.  OXT 

production and release are activated by stressful stimuli and has an anxiolytic effect on 

the brain.  OXT administration either by ICV or into specific brain regions like the PVN 

results in decreased anxiety-like behavior in both rats and mice (Ring et al., 2006; 

Blume et al., 2008; Jurek et al., 2012).  An increase in OXT production or release may 

partially explain the anxiolytic behavior patterns of GF mice.  A similar pattern is seen in 

the adults, where GF mice have more OXT positive cells in the PVN.  Of interest, there 

was a trend towards a decrease in OXT positive cells in the BNST.  OXT actions in the 

BNST mediates social recognition, social vigilance, and acquisition of cued fear 

(Dumais and Veenema, 2016; Moaddab and Dabrowska, 2017; Duque-Wilckens et al., 

2018), suggesting that the decrease in this region may contribute to the deceased social 
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behaviors seen in GF mice (Desbonnet et al., 2014).  Alternatively, there may be less 

release of OXT, resulting in more OXT-ir in the PVN and SON, suggesting that the 

behavioral changes we saw may be due to OXT’s effects on the PVN and SON 

specifically. 

Our microglial results were divergent from those in previous experiments.  We 

found that mice lacking a microbiota had less microglial immunoreactivity and number, 

measured as Iba-1 positive cells, whereas others report that GF mice have an immature 

microglial phenotype, characterized by an increase in microglial number and increased 

ramification of protrusions (Erny et al., 2015; Castillo-Ruiz et al., 2018).  Furthermore, 

Thion and colleagues reported that female microglia are more perturbed by the lack of 

microbiota in adulthood, whereas males were more affected prenatally, which we did 

not replicate (Thion et al., 2018).  In fact, we found that GF females showed overall 

similar levels of microglia expression to CC females and were affected by recolonization 

more than males.  Male GF mice showed a decrease in microglia compared to CC 

mice, and in general were not affected by recolonization.  A few factors may account for 

these differences.  One, our experiments used Swiss-Webster mice as opposed to the 

C57Bl/6 mice used in the previous studies.  Another factor is that we did not measure 

cytokine expression or microglial activation level, so there may be other factors 

underlying these differences that are unknown. The fact that recolonization did not 

recapitulate the CC phenotype is interesting, because Erny and colleagues report that 

colonization with complex microbiota could restore deficient microglia (Erny et al., 

2015).  However, they recolonized the GF mice in their experiment in adulthood, 

suggesting the timing of recolonization may be crucial to rescue the abnormal microglia 
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in GF mice.  Taken together, it is clear that more research must be done in order to 

tease apart the temporal factors that connect microglia and microbiota. 

 Our main behavioral finding is that weaning-aged GF mice show less anxiety-

related behavior than CC mice.  This change in basal anxiety-like behavior is well 

supported in the literature, where adult GF mice spent more time in the open arms of 

the EPM compared to SPF mice (Diaz Heijtz et al., 2011; Neufeld et al., 2011b, 2011a; 

Clarke et al., 2013).  Interestingly, Lu and colleagues (2018) found that GF mice spent 

less time in the center of the open field area and no difference in time spent in the 

closed arms of the EPM for C57Bl/6 mice at 4 weeks of age (Lu et al., 2018).  As our 

study used Swiss-Webster mice, as did the experiments done by Neufeld and Clarke, 

the differences in results suggest these differences may be due to the effects of mouse 

strain.  It is worth noting that GF mice in our study showed decreased anxiety behavior 

at weaning, which suggests that these patterns of behavior are developing before 

puberty, and that puberty may be a critical period for microbiota’s effects on anxiety-like 

behavior.  Evidence for this is seen in the addendum by Neufeld and colleagues (2011), 

who demonstrated that colonization of GF mice in adulthood was not sufficient to rescue 

the anxiolytic phenotype of GF mice.  Mice that were treated with a cocktail of antibiotics 

form weaning to adulthood to produce a model similar to germ-free mice showed an 

anxiolytic phenotype as well, further suggesting that puberty is a sensitive period for 

effects of microbiota (Desbonnet et al., 2015). 

We found that our juvenile GF mice showed deficiencies in social behavior in a 

sex-dependent manner.  Our findings are partially supported by experiments by 

Desbonnet et al. (2014), in which they found that male GF mice spent less time 
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investigating a novel mouse in the three-chamber sociability test than CC males, 

whereas we observed that only female GF mice were less social than female CC mice 

(Desbonnet et al., 2014).  There are a number of factors that may account for this 

difference.  Our study used weanling-aged mice in a different behavioral assay, 

suggesting that age and experimental paradigm are important factors in the expression 

of social behavior in microbiome manipulation studies.  Other studies found increased 

sociability (Arentsen et al., 2015) or no difference (Lu et al., 2018) between GF and CC 

mice.  These studies differed in the strain of stimulus mouse used, age of subjects, and 

use of both sexes. The contradiction in results from social behavior assays using germ-

free mice further supports the importance of considering mouse strain, age, and 

experimental paradigm (such as using littermates versus novel mice) when interpreting 

behavioral results.   

The reduction in social behavior in GF mice may be due to changes in odor cues 

and odor processing. We used either two GF or two CC mice in our social interaction 

paradigm to control for differences what odor signals the mouse receives and how they 

are processed.  Interestingly, Singh and colleagues demonstrated that rats cannot 

discriminate between urine of two genetically dissimilar GF rats (Singh et al., 1990), nor 

between two GF mice (Schellinck et al., 1995), suggesting that microbiota may be 

necessary for individual odors to develop.  However, mice can be trained to differentiate 

between two germ-free mice in the Y-maze task, indicating that not all individual odor is 

due to microbial factors, or that not all differentiation between animals is olfactory 

(Yamazaki et al., 1990).  Furthermore, recent evidence suggests that GF mice have 

reduced olfactory epithelium cilia thickness and cellular turnover, reduced olfactory 
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transduction expression genes, and a stronger electro-olfactogram response to number 

of odorants, which may alter how a GF mouse may receive and process social odors 

(François et al., 2016).  Thus, the discrepancy in social behavior between our and other 

studies may be due to differences in odor cues and processing.  

 We found that male CC mice spent more time digging in the marbled arena than 

female CC mice, but this sex difference was abolished in GF mice.  Males have been 

shown to bury more marbles females in some studies (Mitra et al., 2018), but most do 

not report sex differences in number of marbles buried (Kokras and Dalla, 2014; Taylor 

et al., 2017; Tucker and McCabe, 2017).  These studies used the number of marbles 

buried instead of time spent digging, meaning we may have captured more subtle sex 

differences than can be seen in the number of marbles buried alone to explain our 

findings.  Alternatively, the age of our mice and experimental procedure may account for 

the differences.  We used weanling-aged mice and only tested in the arena for 10 

minutes, when most experiments tested adults for 30 minutes (Çalişkan et al., 2017).  It 

is possible that males dig more in the first 10 minutes of testing than females, but the 

difference disappears over the full 30 minutes.  Thus, something about the lack of 

microbiota in males may decrease the amount of digging seen in the first 10 minutes of 

the marble burying test. 

 Our results show that GF upbringing is associated with changes to AVP and OXT 

expression, as well as dysfunctional microglial response to microbiota 

colonization.  These results show that microbiota is necessary for proper development 

of the AVP and OXT systems, and microbiota deficiency neonatally may alter the 

organization these systems that results in long term behavioral changes.  More 
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evidence is required to determine when and through what pathways the lack of 

microbiota affects AVP and OXT development, and what implications this has on 

behavior.  Understanding the mechanisms underlying this phenomenon may provide 

novel therapeutics for psychiatric and neurodevelopmental disorders with anxiety and 

social deficit components. 
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2.6 Figures 

 

Figure 2.1. Recolonization with microbiota generally increases AVP 

immunoreactivity in adult mice. 

Graphs depict AVP immunoreactivity (number of pixels above threshold) in the (A) SPZ, 

(B) PVT, (C) SCN, (D) LHb, (E) MD, and (F) PVN.  * represents a significant main effect 

of treatment, with significant post-hoc tests indicated (p<0.05).  # represents a 

significant sex difference when the ANOVA indicates a main effect of sex (p<0.05). 十 

represents a significant treatment by sex interaction (p<0.05).  Trends toward 

significance are represented with the p-value.  Data presented as +/- SEM (n=7-13). 
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Figure 2.2. Microbiota alter adult OXT-ir in sex- and region-specific ways. 

Graphs depict OXT immunoreactivity in the (A) PVN soma number, (B) AH 

immunoreactivity, (C) PVT immunoreactivity, (D) BNST soma number, and (E) SON 

soma number.  * represents a significant main effect of treatment, with significant post-

hoc tests indicated (p<0.05).  # represents a significant sex difference when the ANOVA 

indicates a main effect of sex (p<0.05).  十 represents a significant treatment by sex 

interaction (p<0.05).  Trends toward significance are represented with the p-value.  Data 

presented as +/- SEM (n=7-13). 
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Figure 2.3. Recolonization does not rescue the reduced microglia expression in 

GF mice. 

Graphs depict Iba-1 immunoreactivity (A-D) or Iba-1 positive cells (E-H) in the (A, E) 

BNST, (B, F) LS, (C, G) striatum, and (D, H) PVT.   * represents a significant main 

effect of treatment, with significant post-hoc tests indicated (p<0.05).  # represents a 

significant sex difference when the ANOVA indicates a main effect of sex (p<0.05).  十 

represents a significant treatment by sex interaction (p<0.05).  Trends toward 

significance are represented with the p-value.  Data presented as +/- SEM (n=7-13). 
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Figure 2.4. Lack of a microbiota alters AVP-ir at weaning in a region-specific 

manner. 

Graphs depict AVP-ir in the (A) SCN, (B) DMH, (C) PVT, and (D) PVN.   * represents a 

significant main effect of treatment (p<0.05).  十 represents a significant treatment by 

sex interaction (p<0.05).  Trends toward significance are represented with the p-value.  

Data are represented as means ± SEM (n=6-9).  
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Figure 2.5. Germ-free conditions in weanling-aged mice increase OXT-ir in some 

brain regions in a similar pattern to adults. 

Graphs depict OXT-ir (B, C) or OXT positive cells (A, D, E) in the (A) PVN, (B) AH, (C) 

PVT, (D) BNST, and (E) SON.   * represents a significant main effect of treatment 

(p<0.05).  十 represents a significant treatment by sex interaction (p<0.05).  Trends 

toward significance are represented with the p-value. Data are represented as means ± 

SEM (n=6-9).  
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Figure 2.6. Germ-free conditions reduce microglia expression in a brain region-

dependent manner. 

Graphs depict Iba-1 immunoreactivity in the (A) BNST, (B) LS, (C) striatum, and (D) 

PVT.   * represents a significant main effect of treatment (p<0.05).  # represents a 

significant sex difference when the ANOVA indicates a main effect of sex (p<0.05). 十 

represents a significant treatment by sex interaction (p<0.05).  Data are represented as 

means ± SEM (n=6-9).  
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Figure 2.7. Female GF mice spend less time interacting with a littermate than 

female CC mice at weaning. 

Graphs depict (A) Time spent actively investigating their littermate, (B) time spent 

grooming the other mouse, (C) time moving around the arena, and (D) time spent 

rearing against the side of the cage.   * represents a significant main effect of treatment 

(p<0.05).  # represents a significant sex difference when the ANOVA indicates a main 

effect of sex (p<0.05).  十 represents a significant treatment by sex interaction 

(p<0.05).  Data are represented as means ± SEM (n=10-22). 
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Figure 2.8. GF mice do not dig more in the marble burying test but spend more 

time immobile. 

(A) time spent digging in the bedding in the arena, (B) time spent sitting immobile in the 

arena, and (C) time spent rearing against the cage walls.  * represents a significant 

main effect of treatment (p<0.05).  # represents a significant sex difference when the 

ANOVA indicates a main effect of sex (p<0.05).   Data are represented as means ± 

SEM (n=10-22). 
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Figure 2.9. Weanling-aged GF mice show less anxiety-like behavior than CC mice. 

(A) Time spent in the open arms of the arena, (B) time spent in the outer (farthest from 

the center) 50% of the open arms, and (C) total distance traveled in the arena.  * 

represents a significant main effect of treatment (p<0.05).  Data are represented as 

means ± SEM (n=10-22).     
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Figure 2.10. Weanling-aged GF mice show adult-typical GF physiology. 

(A) Total body weight of mice, (B) normalized gonadal fat pad weight, (C) normalized 

cecum weight, and (D) normalized spleen weight.   * represents a significant main effect 

of treatment (p<0.05).   Trends toward significance are represented with the p-value.  

Data are represented as means ± SEM (n=10-22). 
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3 KNOCKOUT OF TOLL-LIKE RECEPTOR 5 RESULTS IN AN ANXIOGENIC 

PHENOTYPE ASSOCIATED WITH CHANGES IN NEURAL VASOPRESSIN 

THROUGH A MICROBIOTA-INDEPENDENT PATHWAY 

Nicole V. Peters, Benoit Chassaing, Mary K. Holder, Jack Whylings, Daniel 

Teuscher, Andrew T. Gewirtz, and Geert J. de Vries 

3.1 Abstract 

Inflammation contributes to the strong comorbidity between psychiatric and 

gastrointestinal disorders, but the exact mechanisms underlying this connection are still 

unclear.  To investigate this, we are using a model of chronic intestinal inflammation and 

metabolic syndrome, induced by the knockout of toll-like receptor 5 (T5KO), to 

determine: i) the effects of chronic inflammation and metabolic disruption on behavior, ii) 

the neural circuitry that may contribute to the changes in behavior, and iii) the role 

microbiota may play in this pathway.  First, we phenotyped adult male and female T5KO 

and wild-type (WT) mice in anxiety-like, depressive-like, and social behavior assays. 

Then we quantified neural OXT and vasopressin (AVP) immunoreactivity.  We found 

that T5KO mice have an anxiogenic and depressive-like phenotype that was associated 

with changes in AVP in projection sites of the paraventricular nucleus of the 

hypothalamus (PVN) and suprachiasmatic nucleus (SCN).  To test whether the 

behavioral phenotype is due to the actions of microbiota, we colonized GF mice at 

weaning with microbiota from T5KO or WT mice, then behaviorally analyzed the 

offspring of these microbiota-treated mice.  We found that while adult T5KO-gavaged 

(T5KO-g) mice show evidence of intestinal inflammation similar to T5KO mice, they did 

not show behavioral changes. Microbiota transplantation was not sufficient to induce 
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behavioral or physiological changes in juvenile mice.  Thus, intestinal inflammation 

promotes anxiety-like and depressive-like behavior, partially due to changes in AVP 

neural circuitry, through a microbiota-independent pathway. 

 

3.2 Introduction 

In the developed world, there has been a reduction in infectious diseases with a 

simultaneous increase in chronic inflammatory disorders (Powell et al., 2017).  While 

inflammatory disorders can affect all areas of the body, particular attention has been 

paid to those gastrointestinal and psychiatric in nature, such as irritable bowel syndrome 

or anxiety and mood disorders.  Recent evidence of the considerable cross-talk 

between the gut and the brain may explain the high levels of comorbidity between 

intestinal inflammation and psychiatric disorders (Dinan and Cryan, 2016).  In fact, 

signals from the brain can influence gut function, and vice versa.  To add to the 

complexity, the composition of gut microbiota can have an effect on both gut and brain 

function, due to the myriad of neural, endocrine, metabolic, and immune signals they 

send to the rest of the body (reviewed in Martin et al., 2018).  Thus, understanding the 

signaling pathways of the microbiota-gut-brain axis, particularly in the context of 

inflammation, can have significant implications for human mental health.   

There are a number of models of intestinal inflammation that are used to probe 

how inflammation affects the brain.  Dextran sodium sulfate is commonly used to elicit 

colitis, severe inflammation of the colon, but this provides a model of acute, not chronic, 

inflammation (Emge et al., 2016).  Others use dietary changes, such as diets containing 

high fat concentrations or dietary additives like emulsifiers or artificial sweeteners, to 
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illicit inflammation (Chassaing et al., 2015; de Sousa Rodrigues et al., 2017), but these 

models may have downstream effects on the body that are still unknown.  Another way 

is through the acute or chronic administration of lipopolysaccharide (LPS), a protein 

found on the outer membrane of pathogenic, Gram-negative bacteria, which increases 

gut inflammation and induces sickness behavior.  Recently, our lab found that orally-

gavaged LPS can increase anxiety-like and repetitive behaviors through sexually 

dimorphic mechanisms (Fields et al., 2018a).  Genetic models are also used to look at 

chronic intestinal inflammation, like interleukin (IL)-10 or MUC2 (a major glycoprotein in 

colonic mucus) knockouts (Leon et al., 1998; Kumar et al., 2017).  To best understand 

the gut-brain communication pathways in a chronic intestinal inflammatory and 

disrupted metabolic state, a Toll-like receptor 5 (TLR5) knockout model should be used 

for the reasons described below. 

Toll-like receptors (TLRs) are pattern-recognition receptors that respond to 

conserved protein patterns on the surfaces of bacterial membranes.  TLR5 specifically 

responds to flagellin, a component of flagellum on motile bacteria, and are primarily 

located along the basolateral surface of the gut epithelium (Gewirtz et al., 2001; 

Hayashi et al., 2001).  T5KO mice have a larger intestinal bacterial load and more 

epithelial-adherent bacteria, as well as a thinner protective layer of mucus along the gut 

epithelium (Carvalho et al., 2012b).  It is hypothesized that these changes to the gut 

epithelium lead to invasion of bacteria into the peritoneum, leading to a robust immune 

response to manage the intrusion (Carvalho et al., 2012; Etienne-Mesmin et al., 2016).  

Knockout of TLR5 results in chronic intestinal inflammation, as characterized by 

elevated levels of the systemic pro-inflammatory cytokines interleukin-1𝛽 (IL-1𝛽) and 
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tumor necrosis factor-𝛼 (TNF-𝛼), and other signs of inflammation like elevated lipocalin-

2, mild splenomegaly, and shorter and heavier colons (Carvalho et al., 2011; Carvalho 

et al., 2012). T5KO mice also show symptoms of metabolic syndrome, including obesity 

due to larger gonadal adipose deposits, insulin resistance and increased serum 

cholesterol levels (Vijay-Kumar et al., 2010). These symptoms take many weeks to 

develop (Vijay-Kumar et al., 2010).  Furthermore, while there are only some species 

level differences between the microbiota compositions of T5KO and wild-type (WT) 

mice, the T5KO phenotype is microbiota-dependent (Vijay-Kumar et al., 

2010).  Transplantation of T5KO microbiota into germ-free, WT mice induced the same 

metabolic syndrome and intestinal inflammation characteristics as knockout of TLR5.   

Inflammation contributes to the pathologies of anxiety and mood disorders; 

therefore, it is possible that T5KO mice will have a behavioral phenotype indicative of 

mild sickness behavior, including increased anxiety-like and depressive-like behaviors 

and decreased social motivation (Dantzer et al., 2008).  The neuropeptides OXT and 

AVP are sensitive to peripheral immune signals and have roles in mediating anxiety and 

social behaviors (reviewed in Bredewold & Veenema, 2018; Caldwell, 2017; Jurek & 

Neumann, 2018).  Thus, we hypothesize that intestinal inflammation increases anxiety- 

and depressive-like behaviors through affecting OXT and AVP. 

These factors led us to question 1) does knockout of TLR5 affect the behavior of 

the mouse, 2) are the neuropeptides OXT and AVP altered in T5KO mice and 3) are 

any behavioral changes microbiota-dependent? To test these questions, we first 

behaviorally phenotyped T5KO mice and characterized OXT and AVP expression in 

limbic brain regions.  Then, we tested the offspring of T5KO microbiota-transplanted GF 
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mice to determine if T5KO microbiota was sufficient to recapitulate the T5KO behavioral 

phenotype.  We found that while T5KO mice had an anxiogenic and depressive 

behavioral phenotype associated with changes to AVP, T5KO microbiota alone was not 

sufficient to produce this phenotype in WT mice. 

3.3 Materials and Methods 

3.3.1 Experiment 1 

3.3.1.1 Animals 

Adult male and female T5KO and WT C57Bl/6 mice were obtained from an in-

house breeding colony at Georgia State University. Mice were housed in ventilated 

transparent Optimouse cages (35.6 x 48.5 x 21.8cm) lined with Bed-O-Cobs® bedding, 

with nestlets and shelters for enrichment.  Animals were kept on a 12h:12h light:dark 

cycle (lights off at 1900 EST) and ambient temperature was kept at 23°C.  Food (Purina 

rodent chow no. 5001) and water were available ad libitum. Animals were weaned at 

postnatal day 21 (P21) and housed with littermates of the same sex and genotype 

group.  All procedures were in accordance with the Guide for the Care and Use of 

Laboratory Animals and were approved by the Animal Care and Use Committee at the 

Georgia State University. 

3.3.1.2 Behavioral Testing Schedule 

Behavioral tests were conducted in the following order:  Open Field Test, 

Elevated Plus Maze, Light/Dark Box, Marble Burying Task, Three-Chamber Sociability 

Task, and Forced Swim Test.  Tests were performed 3-4 days apart, with the exception 

of the sociability and swim tests, which only had 2 days between testing.  Behavioral 

testing occurred within the last 4 hours of the light phase of the light:dark cycle with 
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overhead lights as illumination.  Animals were allowed to habituate to the testing room 

for 1 hour prior to testing.  Apparatuses were cleaned with 70% ethanol between 

animals in a testing session to remove the scent of previously-tested mice and Vimoba 

solution (chlorine dioxide, Quip Laboratories, Wilmington, DE) to sterilize the arena at 

the end of testing sessions.  An experimenter blind to genotype conditions scored all 

behavioral tests.   

Two different cohorts were used in the three-chamber sociability test.  The first 

cohort used only WT stimulus animals for both T5KO and WT experimental mice.  The 

second cohort used a matched genotype stimulus mouse, such that T5KO mice were 

exposed to an unfamiliar T5KO mouse, and WT mice exposed to an unfamiliar WT 

mouse. 

3.3.2 Experiment 2 

3.3.2.1 Animals 

Germ-free Swiss-Webster mice were obtained from our breeding program at 

Georgia State University and maintained in a Park Biosciences isolator as previously 

described (Chassaing et al., 2015).  Mice were removed from isolator at weaning (P21) 

and were orally administered with 200 μL of fecal suspension from an age-matched 

designated donor. The fecal suspensions were sourced from wild-type or T5KO 

C57BL/6 mouse donors.  Transplanted mice were then housed in four breeding groups 

(one male, two females) in isolated ventilated cages, Isocages (Techniplast, West 

Chester, Pennsylvania, USA), and fed autoclaved Purina Rodent Chow # 5021, as 

previously described (Chassaing & Gewirtz, 2018).  Animals were kept on a 12h:12h 

light:dark cycle (lights off at 1900 EST) and ambient temperature was kept at 
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23°C.  Breeding groups were removed from Isocages once reaching adulthood (P60), 

once microbiota composition had stabilized, and kept in conventional animal housing as 

described in Experiment 1. 

 All mice were weighed weekly and dams were examined for signs of 

pregnancy.  Pregnant females were removed from the breeding groups and housed 

singly until the pups were weaned at P21.  Weaned mice were housed with littermates 

of the same sex and treatment group.  Mice were fed Purina Rodent Chow #5021 while 

in breeding groups and until weaning, at which point their food was changed to Purina 

Rodent Chow #5001.  All cage changes occurred in a biosafety cabinet to prevent 

microbiota cross-contamination and new gloves were used between openings of cages 

of each microbiota treatment during weighing and behavioral testing.   

3.3.2.2 Behavioral Testing Schedule 

All mice underwent behavioral testing at weaning, with half of the litters assayed 

on the Open Field Test and Elevated Zero Maze on P22 and Social Interaction Test and 

Tail Suspension Test on P24, with the other half tested on P23 and P25.  Behavior was 

conducted in the same manner as in Experiment 1. Half of the litters were allowed to 

grow into adulthood, and the other half were sacrificed at P29 to determine the effects 

T5KO microbiota have on development. 

Adult (12-14 weeks of age) mice were tested in the Open Field Test, Elevated 

Zero Maze, Light/Dark Box, Marble Burying Task, Three-Chamber Sociability Test, and 

Tail Suspension Test as described above.  

The elevated zero test was chosen in place of the elevated plus test due to its 

ability to be repeated without affecting the results of the test (Tucker and McCabe, 
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2017).  The tail suspension test was chosen in place of the forced swim test because 

the T5KO mice in experiment 1 did not move around the apparatuses as much as the 

WT mice, and we wanted to minimize the chance that changes in depressive-like 

behavior were just due to lack of movement.  Finally, we used a social interaction 

paradigm only for the weanling-aged mice due to the lack of age-matched stimulus 

mice. 

3.3.3 Descriptions of Behavioral Assays 

3.3.3.1 Open Field Test (OFT) 

Locomotor behavior was assessed in a Plexiglas arena (43.2 cm W X 43.2 L X 

30.5 cm H; Med Associates Inc., St. Albans, VT) containing 2 infrared transmitter strips 

(16 beams each) at the bottom of the arena in the X and Y planes, dividing the arena 

into 256 squares. Another infrared transmitter strip was located 14 cm from the bottom 

of the arena to assess behavior in the Z plane.  The center of the apparatus was 

defined as the center 8 beams in both the X and Y planes.  Each mouse was placed 

into the arena against the wall closest to the experimenter and allowed to freely explore 

the apparatus for 10 minutes.  The total distance traveled, and time spent in the center 

of the arena were automatically calculated by Activity Monitor (Med Associates, Inc.) on 

a computer connected to the open field arenas. 

3.3.3.2 Elevated Plus Maze (EPM) 

A standard mouse elevated plus maze (EPM) was used, with 2 open arms and 2 

closed arms.  The arms were 10 cm W x 50 cm L, connected by a 10 cm X 10 cm 

center square.  Closed arms had a wall height of 40 cm, and the maze was elevated 50 

cm from the floor.  At the beginning of the test, mice were placed in the center square of 
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the arena and allowed to freely explore for 5 min.  Video trials were recorded from a 

digital camera mounted above the apparatus that was connected by USB to a 

computer.  The time spent in open arms and total distance traveled were quantified by 

AnyMaze version 4.96 (Stoelting, Co., Wood Dale, IL). 

3.3.3.3 Elevated Zero Maze (EZM) 

A standard mouse elevated zero maze (EZM) was used.  The apparatus 

consisted of a 5.5 cm wide circular platform of internal diameter 35 cm, raised 50 cm off 

the ground, with two equally spaced enclosed compartments covering half the 

platform.   At the beginning of the test, mice were placed at the intersection of the 

enclosed and open sections of the arena and allowed to freely explore for 5 min.  Video 

trials were recorded from a digital camera mounted above the apparatus that was 

connected by USB to a computer.  The time spent in open and closed zones of the 

apparatus was quantified and broken down into time spent walking, immobile, rearing, 

and grooming.  Time spent in stretch-attend posture, defined as elongated body posture 

to investigate the open zone with at least 50% of the body in the closed zone (Grant and 

Mackintosh, 1963).  These behaviors were scored by a researcher blind to treatment 

condition using AnyMaze version 4.96 (Stoelting, Co., Wood Dale, IL).   

3.3.3.4 Light/Dark (L/D) Box 

An acrylic box (14.5 cm W X 30 cm L X 14 cm H) was split into a light chamber 

(20 cm long) made out of white acrylic, and a dark chamber (10 cm long) made out of 

opaque black acrylic and covered.  An opaque insert with a 5 cm W X 5 cm H opening 

separated the two chambers, in order to allow the animals to travel freely between the 2 

compartments.  Mice were placed in the light chamber by the edge farthest away from 
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the dark compartment and were allowed to investigate for 5 min.  Video trials were 

recorded from a digital camera mounted above the apparatus that was connected by 

USB to a computer.  The number of entries into the light chamber and the total time 

spent in the light were quantified by AnyMaze version 4.96 (Stoelting, Co., Wood Dale, 

IL). 

3.3.3.5 Marble Burying Test 

A Plexiglas arena (24cm W X 46 cm L) was filled with 4 cm of Alpha-dri bedding 

(Shepherd Specialty Paper, Fibercore, Cleveland, OH, USA).  Mice were placed into the 

arena for a 5-minute habituation period, then removed in order to place 20 marbles 

(17mm) in an evenly spaced, 4x5 grid on top of the bedding.  Mice were returned to the 

center of the arena and their behavior was video recorded for 10 min.  The number of 

marbles buried during this period, defined as being half or more covered by bedding, 

time spent grooming, and total time spent digging were quantified using the Observer 

XT 11.5 (Noldus Information Technology, Wageningen, The Netherlands).  Distance 

traveled in the arena was calculated by AnyMaze version 4.96 (Stoelting, Co., Wood 

Dale, IL). 

3.3.3.6 Three-Chamber Sociability Test (TCT) 

A polycarbonate chamber (24cm W X 74cm L X 24 cm H) was split equally into 3 

equal sized chambers, with a 9 cm W opening between each to allow movement 

between them.  At either end of the apparatus was an opening (9cm W X 10 cm H) to 

allow access to the stimulus cages.  The stimulus cages were also made of 

polycarbonate (10cm W X 10 cm L X 10 cm H) with a 10 X 10 grid of 0.5cm diameter 

holes to allow transmission of odor and visual cues, while limiting physical contact to 
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whisking or nose contact.  The three-chamber sociability task was conducted in three 

phases, as described below. 

3.3.3.6.1 Habituation 

Animals were placed into the center of the apparatus, lined with absorbent lab 

paper, with empty stimulus cages in order to habituate the animals to the 

apparatus.  Animals were allowed to explore the apparatus for 5 minutes and were 

recorded using an overhead camera. 

3.3.3.6.2 Social Investigation 

After the habituation period, the experimental animals were removed from the 

apparatus and an unfamiliar, sex-matched C57Bl/6 mouse was placed in one of the 

stimulus chambers.  A novel object was placed in an identical stimulus chamber, and 

both stimulus chambers were placed against the side chambers on opposite sides of 

the apparatus.  The positioning of the mouse chamber and novel object chamber were 

alternated for each test, in order to avoid chamber preferences.  The experimental 

animal was placed back into the apparatus and freely allowed to explore for 10 minutes.  

The time spent in each chamber and number of chamber entries were quantified by 

Anymaze, and the amount of time spent actively investigating each chamber was hand 

scored by an investigator blind to the experimental groups. 

3.3.3.6.3 Social Preference 

A different cohort of mice were used in the social preference task.  Due to 

differing behavioral results from the genotype of mouse used as the stimulus animal 

during the investigation phase, we tested whether the experimental mice had a 

preference for investigating a T5KO or WT mouse.  These mice were allowed a 5-
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minute habituation to the apparatus, then they were removed and an unfamiliar, sex-

matched mouse of each genotype (WT or T5KO) was placed into the stimulus chamber 

to allow the experimental mouse to choose between investigating a T5KO or WT 

mouse.  The experimental mouse (either T5KO or WT) was allowed to investigate the 

arena freely for 10 minutes.  The time spent in each chamber and the amount of time 

spent actively investigating each stimulus mouse were by an investigator blind to 

experimental groups using Observer XT 11.5 (Noldus Information Technology, 

Wageningen, The Netherlands). 

3.3.3.7 Social Interaction 

A Plexiglas arena (24cm W X 46 cm L) was filled with 2 cm of Alpha-dri bedding 

(Shepherd Specialty Paper, Fibercore, Cleveland, OH, USA).  Two mice from the same 

litter (and therefore the same treatment) were placed into the arena and video recorded 

for 10 minutes. Time spent walking, immobile, grooming, allogrooming, rearing, digging, 

and investigating the other mouse were scored using Observer XT 11.5 (Noldus 

Information Technology, Wageningen, The Netherlands). 

3.3.3.8 Forced Swim Test (FST) 

Mice were placed into a Plexiglas cylinder containing 3L of water at 28°C±2° for 5 

min.  At the end of the test, mice were removed from the cylinder and gently dried with a 

clean towel.  The duration of mobility, defined as attempts to escape the cylinder and 

active swimming, and the duration of immobility, defined as absence of movement or 

small movement of posterior paws used for floatation only, were scored using Observer 

XT by an investigator blind to experimental groups. 
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3.3.3.9 Tail Suspension Test (TST) 

Animals were suspended by their tails by a strip of tape (~15 cm) attached to an 

overhang and recorded for 5 minutes.  A pipette tip was placed on their tail before the 

tape to prevent the mouse from holding onto their tail during the test.  Time spent 

struggling or hanging was analyzed using Noldus Observer. 

3.3.4 Euthanasia and Tissue Collections 

After completion of behavioral testing in both experiments, mice were deeply 

anesthetized using isoflurane (5%v/v).  Blood was collected by retrobulbar intraorbital 

capillary plexus.  Hemolysis-free serum was collected by centrifugation of blood using 

serum-separator tubes (Becton Dickinson, Franklin Lakes, NJ).  Following blood 

collection, mice were euthanized by cervical dislocation.  The weight and length of the 

colon and weights of the spleen, liver, and perigonadal adipose fat depot were 

recorded. Feces were collected for microbiota analysis.  Brains were removed and fixed 

in a 5% acrolein in sodium phosphate buffer (0.1M, pH 7.4) at 4°C, followed by 

cryoprotection in 30% sucrose in phosphate buffered saline (PBS: 0.05M, ph7.4). Brains 

were sectioned (30µm) in the coronal plane with a cryostat and stored in a 

cryoprotectant solution (ethylene glycol/sucrose in sodium phosphate buffer) until 

immunostained. 

3.3.5 Immunohistochemistry 

Free-floating sections were rinsed five times in Tris-buffered saline (TBS; 0.05 M 

Tris, 0,9% NaCl, pH 7.6), then incubated for 30 min in 0.05 M sodium citrate in TBS. 

After rinsing five times in TBS, sections were places for 30 min in 0.1 M glycine in TBS, 

rinsed again, and placed into block solution (10% normal goat serum (NGS), 0.4% 
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Triton-X and 1% H2O2 in TBS) for 30 min. Sections were then incubated overnight in 

one of the following primary antibodies: anti-AVP (Bachem; 1:32000) or anti-OXT 

(Peninsula Labs; 1:32000); all dilutions in TBS with 2% NGS and 0.4% Triton-X. The 

next day, sections were rinsed five times in TBS containing 1% NGS and 0.02% Triton-

X and incubated in biotinylated secondary antiserum [goat anti-rabbit for AVP 

immunoreactivity; goat anti-guinea pig for OXT (Vector Laboratories, Burlingame, CA)] 

diluted 1:800 in TBS with 2% NGS and 0.32% Triton-X for 1 h. This was followed by 

rinses in TBS containing 0.4% Triton X, incubated in avidin-biotin complex (Vectastain 

Elite ABC Kit; Vector Laboratories) diluted to 1:800 in TBS for 1 h, followed by three 

TBS rinses and three sodium acetate buffer rinses. Finally, the staining was visualized 

using nickel-enhanced diaminobenzidine (DAB) Substrate Kit (Vector Laboratories). 

Sections were mounted onto gelatin-coated slides and coverslipped with Permount. 

3.3.6 Colonic Myeloperoxidase Assay 

Colonic myeloperoxidase, a marker for neutrophils, was analyzed as previously 

described (Chassaing et al., 2015).  In brief, tissue was washed in PBS and 

homogenized in 0.5% hexadecyltrimethylammonium bromide (Sigma, St. Louis, 

Missouri) in 50mM PBS (pH 6.0), freeze-thawed three times, sonicated and centrifuged.  

Supernatant was analyzed for myeloperoxidase by adding dianisidine dihydrochloride 

(Sigma, St. Louis, Missouri) and H2O2 and measuring the optical density at 450nm.  

Human neutrophil myeloperoxidase (Sigma, St. Louis, Missouri) was used as a 

standard. 
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3.3.7 LCN2 ELISA 

Serum supernatant was analyzed for Lcn-2 using Duoset murine Lcn-2 ELISA kit 

(R&D Systems, Minneapolis, Minnesota) as previously described (Chassaing et al., 

2015).  Optical density was measured at 450nm. 

3.3.8 Image Analysis 

Matched sections based on the Mouse Brain Axis (Franklin and Paxinos, 2008) 

and location of staining for each mouse were imaged using a Zeiss Axio Imager M2 

microscope connected to an ORCA-R2 CCD digital camera (Hamamatsu Photonics). 

Brain regions were selected from each of the three neuropeptide source and projection 

pathways: the PVN/SON pathway, the BNST pathway, and SCN pathway (as described 

in Rood & De Vries, 2011).  The PVN/SON pathway includes the PVN.  The BNST-MA 

pathway includes the lateral habenula (LHb), ventral lateral septum (LS), and 

mediodorsal nucleus of the thalamus (MD).  The SCN pathway includes the SCN, 

subparaventricular zone (SPZ), paraventricular nucleus of the thalamus (PVT), and the 

dorsomedial nucleus of the hypothalamus (DMH).   Gray-scale images of the fiber 

density in the photomicrographs were analyzed in Image J 1.43u (National Institutes of 

Health, Bethesda, MD). The region of analysis was outlined in each section. Subjects 

for which the relevant sections were damaged or unavailable were dropped from a 

given analysis. 

3.3.9 Statistical analyses 

Data were analyzed and visualized using IBM SPSS Statistics Version 21 

(IBM).  Anxiety-like and social behaviors, as well as body and organ weights, were 

analyzed by a two-way ANOVA with treatment and sex as the factors, followed by 
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Bonferroni post hoc analyses. Data were analyzed by MANOVA followed by 

discriminant analysis to reveal patterns in the behavioral phenotype, as previously 

described (Fields et al., 2018a). 

3.4 Results 

3.4.1 Experiment 1: Behavioral and neural phenotyping of T5KO mice 

3.4.1.1 T5KO mice show symptoms of metabolic syndrome and low-grade 

inflammation 

As expected, T5KO showed morphological signs of metabolic syndrome, 

including increased body weight (Figure 3.1A; F(1, 67)= 14.61, p<0.001) and increased 

gonadal fat pad weight (Figure 3.1B; F(1, 72)= 24.126, p<0.001).  Males were heavier 

(F(1, 67)= 122.004, p<0.001) and had larger fat pads (F(1, 72)=52.585, p<0.001) than 

females. T5KO mice showed morphological signs of low-grade inflammation, including 

shorter (Figure 3.1C, F(1, 72)= 57.6, p<0.001) and heavier (Figure 3.1D; F(1, 72)= 

25.384, p<0.001) colons as well as mild splenomegaly (Figure 3.1E; F(1, 72)=23.491, 

p<0.001).  Females in both groups had heavier spleens than males (F(1, 72)= 8.844, 

p=0.004). Levels of Lcn-2 increased in female T5KO mice and decreased in male T5KO 

mice compared to their WT counterparts (Figure 3.1F; sex by treatment interaction, F(1, 

53)= 35.242, p<0.001).  There was no difference between genotypes in MPO levels, 

indicating that T5KO mice are not colitic (Figure 3.1G; p>0.05). 

3.4.1.2 T5KO mice have an anxiogenic and depressive phenotype 

Knockout of TLR5 in females resulted in decreased time spent in the center of 

the open field arena (Figure 3.2A, main effect of treatment, F(1, 72)= 5.896, p=0.01; 

main effect of sex, F(1, 72)= 4.585, p=0.036).  This behavior may be partially due to the 
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fact that T5KO mice traveled less distance in the arena (Figure 3.2B, main effect of 

treatment, F(1, 72)= 40.246, p<0.001), suggesting that T5KO mice were not exploring 

the arena as much as the WT mice.  When these data were analyzed using distance 

traveled as a covariate, there was a trend towards an interaction between sex and 

treatment (F(1, 72)=3.644, p=0.06), but there was no main effect of genotype on time 

spent in the center of the OFT (p>0.05). 

Similar to their behavior in the open field, female T5KO mice spent the least 

amount of time in the open arms of the EPM (Figure 3.2C, main effect of sex, F(1, 72)= 

4.025, p=0.049).  However, T5KO mice overall did not show differences in open arm 

time compared to WT mice, which led to a trend towards an interaction of treatment and 

sex (F(1, 72)= 3.682, p=0.059).  Again, T5KO mice traveled less in the EPM than the 

WT mice (Figure 3.2D, F(1, 72)=4.751, p=0.033), which may partially explain the 

difference in the female T5KO behavior.  When we use distance traveled as a covariate, 

there was no effect of genotype on time spent in the open arms of the elevated plus 

maze (p>0.05). 

T5KO mice spent half the time the WT mice did in the light chamber of the 

light/dark box (Figure 3.2E, F(1, 71)= 35.474, p<0.001).  We did not observe any sex 

differences in time in the light zone (p>0.05).  Because the dark chamber is covered 

from camera view, we used the number of light chamber entries as a proxy of distance 

traveled in the apparatus.  There was no difference between genotype in light zone 

entries (Figure 3.2F, p>0.05).  There was still a significant effect of genotype when the 

number of entries into the light zone was used as a covariate (F(1, 71)=33.325, 

p<0.001). 
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T5KO mice spent twice as long floating in the FST than WT mice (Figure 3.2G, 

F(1, 72)= 46.846, p<0.001), typically indicative of a depressive-like 

phenotype.  However, this effect may be confounded by the fact that T5KO mice were 

less mobile in the other behavioral assays and that T5KO had more fat tissue. Knockout 

of TLR5 had more of an effect on the males, resulting in a trend towards a sex 

difference (main effect of sex, F(1, 72)= 5.269, p=0.025, independent t-test, 

p=0.059).  T5KO mice also had a shorter latency to begin floating than WT mice (Figure 

3.2H, F(1, 40)= 14.886, p<0.001). 

The marble burying test is used as a measure of compulsive behavior (Angoa-

Pérez et al., 2013). There were no differences between T5KO and WT mice in number 

of marbles buried in the arena (Figure 3.3A, p>0.05), but males buried more marbles 

than females (F(1, 72)= 18.292, p<0.001).   Males spent more time digging in the 

bedding of the arena than the females (Figure 3.3B, F(1, 72)= 16.849, p<0.001).  While 

there were no differences between T5KO and WT mice in digging behavior, T5KO mice 

spent more time grooming in the arena than WT mice (Figure 3.3C, F(1, 71)= 16.589, 

p<0.001).  T5KO mice also traveled less distance than WT mice (Figure 3.3D, F(1, 71)= 

42.255, p<0.001).  When distance traveled was used as a covariate in the ANCOVA, we 

found that there was a trend towards an effect of genotype in the number of marbles 

buried (F(1, 71)= 3.099, p=0.083). 

3.4.1.3 T5KO mice were more social only with WT stimulus mice 

Three different cohorts of mice were used in the three-chamber sociability test: 

one with all WT stimulus mice, one with matched genotype stimulus mice, and one 

where a choice of T5KO or WT mouse was given.  T5KO mice investigated both the 
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stimulus WT mouse (Figure 3.4A, F(1, 40)= 25.237, p<0.001) and novel object (Figure 

3.4B, F(1, 40)= 19.81, p<0.001) more than the WT mice.  When the stimulus mouse 

was of matched genotype, there was a trend towards an increase in social interaction in 

the T5KO mice (Figure 3.4C, F(1, 31)= 3.98, p=0.056), and no difference in time 

investigating the novel object (Figure 3.4D, p>0.05).  When the distances traveled from 

the first two cohorts were combined, T5KO mice traveled less in the arena than WT 

mice (Figure 3.4E, F(1, 72)= 63.412, p<0.001).  WT females traveled more than WT 

males, and this sex difference was lost in the T5KO mice (F(1, 72)= 7.5, 

p=0.008).  Finally, when distance was used as a covariate, there was a main effect of 

genotype in time investigating the mouse in the first (WT only) cohort (F(1, 40)= 12.937, 

p=0.001, but there was no effect of genotype when the stimulus animals were of 

matched genotypes (p>0.05). 

Due to the fact that T5KO mice were more social when presented with a WT 

stimulus mouse than one of their own genotype, we decided to test the preference of 

T5KO and WT mice for a mouse of their same or different genotype. WT females, T5KO 

females and T5KO males preferred WT stimulus mice, as evidenced by a positive 

preference score (Figure 3.4F, sex by treatment interaction, F(1, 37)= 4.562, 

p=0.04).  WT males, however, greatly preferred T5KO mice. Thus, with the exception of 

WT females, mice prefer to investigate the different genotype stimulus. 

3.4.1.4 Knockout of TLR5 increased AVP in PVN and SCN projection sites  

In the PVN, T5KO mice had greater levels of AVP-ir than WT mice (Figure 

3.5A).  This difference was due to greater immunoreactivity in the T5KO males, 

resulting in main effects of both genotype (F(1, 35)=9.353, p=0.004) and sex (F(1, 
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35)=14.357, p=0.001).  A similar pattern was seen in the DMH, PVT, and SPZ, 

projection sites of the SCN.  In the DMH, T5KO mice had higher levels of AVP-ir (Figure 

3.5B, F(1, 35)= 10.238, p=0.003), due to greater immunoreactivity in the T5KO males 

(F(1, 35)= 5.633, p=0.024), but this did not reach significance in the PVT (Figure 3.5C; 

trend towards main effect of genotype, F(1,35)=3.037, p=0.091; trend towards main 

effect of sex, F(1,35)= 3.822, p=0.059), nor the SPZ (Figure 3.5D; trend towards main 

effect of genotype, F(1, 35)= 3.107, p=0.088, main effect of sex, F(1, 35)= 7.502, 

p=0.01). 

In the SCN, T5KO males had greater AVP-ir compared to the other groups 

(Figure 3.5E; F(1, 35)= 4.213, p=0.048), resulting in overall greater immunoreactivity in 

the T5KO mice, but this trend did not quite meet significance (F(1, 35)= 3.573, 

p=0.068). 

In the LHb, the typical sex difference in this region, where males have higher 

AVP-ir than females, was greater in the T5KO mice than WT mice, resulting in a sex by 

treatment interaction (Figure 3.5F; F(1, 35)= 17.93, p<0.001), such that AVP-ir 

decreased from WT to T5KO females and increased in the males.  The same pattern 

was seen in the ventral LS, albeit with a lesser increase in the sex difference (Figure 

3.5H; sex by treatment interaction, F(1, 35)=4.741, p=0.037).  There were no genotypic 

effects on AVP-ir in the MD, but a large sex difference was observed (Figure 3.5G; F(1, 

34)= 57.933, p<0.001), where males had higher immunoreactivity than the females, in 

accordance with the literature (Rood et al., 2013). 
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3.4.1.5 T5KO increased OXT in the BNSTmv and AH 

T5KO mice showed higher levels of OXT-ir in the medial ventral BNST (Figure 

3.6A; F(1, 37)=5.699, p=0.023).  There were no differences between the sexes in OXT-

ir (p>0.05). 

In the anterior hypothalamus, there was a sex by genotype interaction in the 

number of OXT positive cells (Figure 3.6B; F(1, 38)= 5.49, p=0.025).  This interaction 

was due to the increase in OXT-ir positive cells in the male T5KO mice compared to 

male WT and the abolishment of the sex difference in the T5KO mice.  This pattern was 

only seen in the number of OXT-positive cells, not the quantification of OXT-ir.  Female 

mice in both genotypes had higher levels of OXT-ir compared to the males (F(1, 

38)=6.153, p=0.018, data not shown).   

A sex difference emerged in the DMH in T5KO mice compared to WT mice, 

where female T5KO mice had greater OXT-ir than the males (Figure 3.6C; F(1, 

38)=4.323, p=0.045).  In the SPZ, female WT mice had higher levels of OXT-ir than the 

WT males, but there was no sex difference in the T5KO mice (Figure 3.6D; F(1, 

37)=3.233, p=0.081). 

Females showed a trend towards greater OXT-ir levels in the SON than males, 

but this did not reach significance (Figure 3.6E; F(1, 38)= 3.573, p= 0.067).  There were 

no differences in the number of OXT positive cells between genotypes or sexes 

(p>0.05; data not shown). 

There was no effect of genotype or sex on OXT-ir or OXT positive cells in the 

PVN (Figure 3.6F; p>0.05).  There were also no effects of sex or genotype on OXT 

immunoreactivity in the ventral LS, BNST, MnPO, or PVT. 
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3.4.1.6 Multivariate statistics separated groups by sex and genotype for both 

behavioral profile and neuropeptide expression 

We wanted to see if the behavioral changes we saw in the various assays 

resulted in an aggregate behavioral phenotype.  To do this, we used discriminant 

analysis to determine the contribution of each behavioral measured outcome to the 

overall phenotype (Figure 3.7A).  When subjects were designated to four groups based 

on sex and genotype, discriminant analysis revealed three canonical functions that 

maximize group separation along these factors.  Function 1 explains 79.9% of the 

variance (canonical R2= 0.856), function 2 explains 18% of the variance (canonical R2= 

0.617), and function 3 explains 2.1% of the variance (canonical R2= 

0.259).  Collectively, these discriminant functions significantly differentiated the sex and 

genotype groups (𝚲=0.154, X2(24)= 119.536, p<0.001).  Table 1 reveals the correlations 

between behavioral measures and the discriminant functions.  In this case, function 1 

primarily separated T5KO mice from WT mice and was driven by time spent floating in 

the TST, distance traveled in the OFT, time spent investigating the mouse in the TCT, 

and time spent self-grooming in the marble burying test.  Function 2, which primarily 

separated males from females, was driven by the number of marbles buried, time in 

light zone of the L/D box, and time in the center of the OFT.  This pattern is similar to 

that seen in the individual graphs, where the factors underlying function 1 had larger 

effects between genotypes, whereas the outcomes in function 2 showed sex 

differences.  

The same procedure was done for neuropeptide expression (Figure 

3.7B).  Function 1 explained 74.8% of the variance (canonical R2=0.921), function 2 
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explained 22.7% of the variance (canonical R2=0.793), and function 3 explained 2.5% of 

the variance (canonical R2=0.398).  Collectively, these functions differentiated between 

sex and genotype as well (𝚲=0.047, X2(33)= 74.798, p<0.001).  Function 1 separated 

the cases mostly by sex, so it was unsurprising that this was driven by AVP-ir in the LHb 

and MD, as both of these regions had distinct sex differences.  Function 2, which split 

the cases by genotype, was driven by AVP-ir in the DMH, PVN, and PVT, and OXT-ir in 

the DMH.  These results suggest that AVP is the main neuropeptide contributing to the 

separation between sex and genotype. 

3.4.2 Experiment 2:  T5KO and WT microbiota transplantation to WT mice 

In this experiment, we examined the offspring of microbiota-transplanted GF 

mice at weaning and adulthood to see if the behavioral phenotype described above was 

due to microbiota composition.  The offspring were used in behavioral studies because 

we wanted the experimental mice to have had T5KO or WT microbiota throughout their 

lifetimes.  However, we predicted that there would be no effect of T5KO microbiota 

transplantation in the weanling-aged mice, because the physiological effects of T5KO 

and T5KO microbiota transplantation take many weeks to develop (Vijay-Kumar et al., 

2010). 

3.4.2.1 T5KO microbiota have little effect on physiology in juvenile mice 

WT-g mice had a higher body weight than T5KO-g mice at P29 (F(1, 56)= 

12.719, p=0.001) and males were heavier than females (Figure 3.8A; F(1, 56)= 7.673, 

p=0.008).  This was due in part to smaller adipose deposits in the T5KO-g mice (Figure 

3.8B; F(1, 56)=83.444, p<0.001).  A sex difference appeared in the T5KO-g mice, where 

males had heavier adipose pads than females (F(1, 56)= 8.742, p=0.005).  There was 
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no difference between groups in colon weight (Figure 3.8C; p>0.05), but T5KO males 

had longer colons than T5KO females (Figure 3.8D; F(1, 56)=6.213, p=0.016).  Males 

had heavier ceca than females (Figure 3.8E; F(1, 56)= 18.002, p<0.001).  Spleen 

weight decreased in T5KO males compared to WT males (Figure 3.8F; sex by 

treatment interaction, F(1, 56)=4.947, p=0.03), and males had heavier spleens than 

females. 

3.4.2.2 T5KO microbiota had no effect on anxiety-, depressive-like, or social 

behaviors at weaning 

There was no effect of sex or treatment group on time spent in the center of the 

apparatus nor distance traveled in the arena in the OFT (Figures 3.9A and 3.9B; 

p>0.05), time in the open zones of the EZM (Figure 3.9C; p>0.05), nor time spent 

hanging in the TST (Figure 3.9D; p>0.05).   

Treatment with T5KO microbiota had the biggest impact on movement in the 

social interaction test.  For example, WT-g mice spent more time moving than T5KO-g 

(Figure 3.10A; significant treatment by sex interaction; F(1, 99)=6.682, p=0.011), 

particularly the females, and spent less time immobile (Figure 3.10B; trend towards 

main effect of treatment, F(1, 83)= 3.311, p=0.073).  In addition, a number of sex 

differences in behavior were seen.  Males spent more time in the arena investigating the 

other mouse (Figure 3.10C; F(1, 95)= 6.469, p=0.013) and grooming themselves 

(Figure 3.10D; F(1, 97)= 11.4, p=0.001), whereas females spent more time digging 

(Figure 3.10E; F(1, 59)= 5.255, p=0.026) and rearing (Figure 3.10F; trend towards main 

effect of sex, F(1, 75)= 3.717, p=0.058). 
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3.4.2.3 T5KO microbiota is sufficient to recapitulate T5KO physiological 

phenotype in adult mice 

Adult T5KO-g mice had characteristics of metabolic syndrome and chronic 

intestinal inflammation.  T5KO-g mice had a higher body weight than WT-g mice at the 

time of death (Figure 3.11B; F(1, 55)= 30.321, p<0.001), and males were heavier than 

females (F(1, 55)=48.497, p<0.001).  This effect did not appear until week 14 (Figure 

3.11A), suggesting that T5KO microbiota takes multiple weeks to have their effect on 

body weight (Vijay-Kumar et al., 2010). This was due to heavier adipose pads in the 

T5KO-g mice (Figure 3.11C, F(1, 55)= 4.459, p=0.04).  T5KO-g mice had heavier 

(Figure 3.11D; F(1, 55)=19.608, p<0.001) and longer (Figure 3.11E; F(1, 55)= 16.396, 

p<0.001) colons than WT mice.  Females had shorter colons than males (F(1, 55)= 

9.585, p=0.003).   T5KO-g mice had heavier ceca than WT mice (Figure 3.11F, F(1, 

55)=29.84, p<0.001).  T5KO-g mice also had mild splenomegaly (Figure 3.11G; F(1, 

55)= 12.278, p=0.001), and females had heavier spleens than males (F(1, 55)= 23.509, 

p<0.001).   

3.4.2.4 T5KO microbiota has a mild effect on anxiety-like, but not depressive-like 

or social, behavior in adult mice 

Overall, T5KO-g mice spent less time in the center of the open field test than 

WT-g mice, suggesting that T5KO-g mice have a more anxious phenotype than WT-g 

mice. Male WT-g mice spent more time in the center of the arena than female WT-g 

mice, but this sex difference was reversed in the T5KO-g groups, resulting in a sex by 

treatment interaction (Figure 3.12A; F(1, 55)=4.354, p=0.042).  This interaction was not 

due to differences between groups in distance traveled in the whole arena or the center 
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of the arena (Table 3.3; p>0.05).  There was no difference between T5KO-g and WT-g 

mice in time spent in the open arms of the elevated zero maze (Figure 3.12B; p>0.05), 

nor time spent walking in the EZM (Table 3.3, p>0.05).  T5KO-g and WT-g mice showed 

no differences in time spent struggling or hanging in the tail suspension test (Figure 

3.12C; p>0.05).  Furthermore, there were no differences in the time spent in the light 

zone of the light-dark box between treatment groups (Figure 3.12D; p>0.05).  However, 

T5KO-g mice spent less time in a stretch-attend posture, in which mice stretch their 

midsections to explore the light zone while still remaining in the safety of the dark zone 

(Figure 3.12E; F(1, 55)=4.552, p=0.038), which may suggest that T5KO-g mice are less 

willing to risk exploring a novel area.  There were no differences between zone entries 

between treatment groups (Table 3.3; p>0.05). 

There was a trend towards a sex difference in the number of marbles buried 

during a 10-minute marble burying test, in which male T5KO-g mice buried more 

marbles than female T5KO-g mice (Figure 3.12F; F(1, 55)=2.874, p=0.096).  However, 

this trend was not seen when the amount of digging behavior was quantified (data not 

shown; p>0.05).  There was a sex difference in time spent grooming, where females 

from both treatment groups groomed themselves more than males (data not shown; 

F(1, 55)=4.359, p=0.042). There were no sex or treatment differences in time spent 

walking, rearing, or immobile (Table 3.3; p>0.05). 

In the three-chamber test, there was a trend towards an interaction of sex and 

microbiota treatment on time spent in the chamber with the stimulus mouse (Figure 

3.13A; F(1, 53)= 3.827, p-0.056), driven by a reversal in sex difference from WT-g to 

T5KO-g.  Of interest, this did not translate into differences in time spent actively 
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investigating the mouse (Figure 3.13B; p>0.05).  WT-g mice spent less time walking in 

the stimulus mouse chamber (Figure 3.13C; F(1, 52)= 4.603, p=0.037), but there were 

no differences in any other behaviors in this chamber.  While there was no difference in 

time spent in the object chamber (p>0.05; data not shown), there was a trend towards 

an interaction between sex and treatment in time spent investigating the novel object 

(Figure 3.13D; F(1, 53)= 5.325, p=0.084.  This interaction was driven by a significant 

increase in female WT mice, resulting in a main effect of sex (F(1, 53)= 4.115, p=0.048) 

and a main effect of treatment (F(1, 53)= 4.22, p=0.045).  T5KO-g mice spent more time 

walking throughout each chamber than WT-g mice (Figure 3.13G; F(1, 53)=30.25, 

p<0.001). 

3.4.2.5 Multivariate statistics reveal no pattern of behavior in microbiota treated 

mice 

Discriminant analysis did not reveal separation of sex or genotype in the behavior 

of T5KO-g and WT-g mice (Figure 3.14 and Table 3.4, 𝚲=0.48, X2(27)= 31.931, 

p>0.05), further supporting the numerous non-significant behavioral results.   

3.5 Discussion 

We found that knockout of TLR5 results in an anxiogenic and depressive-like 

behavioral phenotype that was primarily due to changes in locomotion.  Females 

seemed more susceptible to anxiety-like behavior, whereas males showed a slight 

elevation to depressive-like behavior.  This behavioral phenotype was associated with 

greater AVP immunoreactivity.  Characteristics of chronic intestinal inflammation and 

metabolic syndrome (Vijay-Kumar et al., 2010) were replicated in both sexes.  While the 

physiological phenotype of T5KO was conferred to WT mice by microbiota transfer, 
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these mice did not show the T5KO behavioral phenotype.  As expected, juvenile mice 

treated with T5KO microbiota did not show the behavioral or physiological 

characteristics of T5KO.  These results suggest that there is another factor aside from 

microbiota that is responsible for the behavioral changes in T5KO mice. 

One possible limitation of this study is the use of whole-body deletion of TLR5.  

TLR5 mRNA is expressed constitutively throughout the body, with the highest 

expression in the lungs and liver, and excluding the kidney (Sebastiani et al., 

2000).  There are low levels of TLR5 mRNA expression in the brain (Letiembre et al., 

2007; Qiao et al., 2012), with expression in astrocytes and neurons in the cerebral 

cortex as well.  Thus, it is entirely possible that the behavioral and neurochemical 

effects seen in the T5KO mice may be due to knockout in tissue other than the 

intestines.  Although not directly tested here, it is likely that the results are from the loss 

of TLR5 in the intestine. Intestinal epithelial cell-specific knockout of TLR5 results in the 

same physiological phenotype as whole-body knockout (Chassaing et al., 2014), but the 

behavioral phenotype of these mice is unknown.  Another limitation is the use of a 

different mouse strain, due to GF mouse availability, between experiments 1 and 2, 

which may contribute to the lack of behavioral differences after microbiota 

transplantation.  However, C57Bl/6J and Swiss-Webster mice are shown to have similar 

anxiety-related traits (Crawley, 2008), suggesting that the behavioral differences 

between the strains used in this study are minor, and it is likely other factors are 

contributing to our behavioral results.  Finally, it is difficult to interpret what changes to 

immunoreactivity indicate about the vasopressin and oxytocin systems.  Greater 

immunoreactivity may indicate either increased production of the neuropeptide or less 
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release from the examined brain region.  To truly identify how T5KO affects vasopressin 

and oxytocin, in situ hybridization could be used to measure vasopressin or oxytocin 

mRNA production, or microdialysis could measure vasopressin or oxytocin release. 

T5KO mice display a behavioral profile reminiscent of mild sickness 

behavior.  Sickness behavior is the behavioral complement to an infection and is 

defined as a motivational state that allows the organism to rest and recover from the 

infection (Dantzer et al., 2008).  Thus, sickness behavior is characterized by increases 

in anxiety-like and depressive-like behavior, as well as aversions to movement, 

exploration and social interactions.   Female T5KO mice showed more anxiogenic 

behavior in the OFT and EPM, but not L/D box, suggesting that T5KO may affect 

components of anxiety-like behavior differently between the sexes.  The OFT has been 

described as better measure of passive coping behavior, while the L/D box and EPM 

are measures of active coping behavior (Bourin and Hascoët, 2003; Bourin et al., 2007; 

Nosek et al., 2008). It may be that the responses to different stressors may differ 

between T5KO males and females.  When we examined the behavioral phenotype of 

T5KO mice using multiple discriminant analysis, we found that time spent floating in the 

FST, distance traveled in the OFT, time investigating the mouse in the TCT, and time 

spent in repetitive grooming were the factors that most differentiated the T5KO and WT 

mice.  This is unsurprising, as examination of these behaviors individually showed 

significant genotypic differences (refer to Figures 3.2-3.4).  Interestingly, the behaviors 

that differentiate the genotypes are components of locomotion, depressive-like and 

social behavior, suggesting that the phenotype is more reminiscent of sickness behavior 

than an anxiety-like behavior model.  
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T5KO mice show higher levels of inflammatory markers like Lcn-2, suggesting 

that this pro-inflammatory state may contribute to the anxiogenic phenotype.  Lcn-2 

modulates both peripheral and CNS responses to an infection, and Lnc-2 knockout 

experiments show that it is protective against exacerbated neuroinflammation and more 

severe sickness behavior (Ferreira, 2014; Kang et al., 2018).  While we saw that 

females had a more severe anxiety-like phenotype than males, despite higher levels of 

Lcn-2, we did not investigate Lcn-2 levels in the brain, so we cannot say with certainty 

the role Lcn-2 is playing in the expression of this behavioral phenotype.  It is also 

possible that serum Lcn-2 levels are correlated with systemic proinflammatory cytokine 

expression, which may account for the more severe phenotype in females. Elevated 

levels of pro-inflammatory cytokines are associated with increased anxiety-like and 

depressive-like behavior, and systemic injection of these cytokines can induce anxiety 

(Maes et al., 2012).  T5KO results in colonic increase of the pro-inflammatory cytokines 

IL-1B and TNF-a, suggesting that the peripheral inflammation may contribute to the 

elevated anxiety-like behavior in T5KO mice (Vijay-Kumar et al., 2007).  Furthermore, 

peripheral injection of LPS activates the PVN, and therefore the HPA axis, through an 

IL-1𝛃 dependent mechanism (Quan et al., 2003).  It is possible that these cytokines are 

signaling to the brain through afferent nerves in the colon, exacting the neural and 

behavioral changes summarized here. Taken together, the increased inflammation seen 

in T5KO mice results in mild sickness behavior, with some behaviors differentially 

affected by sex, and future experiments will need to probe into the exact immune factors 

regulating this behavioral phenotype. 
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Converse to canonical sickness behavior, T5KO mice were more investigatory in 

the three-chamber test than WT mice, especially when WT mice were the stimulus 

animals.  T5KO mice actively investigated the WT stimulus mice in the first three-

chamber sociability cohort more than WT mice investigated the WT stimulus, 

suggesting that T5KO mice had more motivation for social interaction than the WT 

mice.  However, it is possible that the T5KO mice were responding to a different series 

of odor cues from the WT mice than they are normally exposed to.  It is well-established 

that mice and other animals use odor cues in a variety of social situations, including kin 

recognition and mate selection (Bienenstock et al., 2018).  In addition, gut microbiota 

can produce many odorants (Ezenwa and Williams, 2014), so it is likely that the gut 

microbiota contributes to the differences in social behavior we observed.  In fact, rats 

raised in a germ-free environment lost their odors of individuality (Singh et al., 1990), 

and experimental rats could not distinguish between the odors of two germ-free MHC-

congenic stimulus rats (Schellinck et al., 1995).  Furthermore, mice treated with LPS 

alters urine odor such that mice could distinguish between LPS- and control-treated 

urine in a Y maze (Kimball et al., 2014).  This evidence suggests that either the changes 

in gut microbiota of the T5KO mice and/or the immune system activation could have 

altered their body odor, resulting in increased investigation of the novel-scented WT 

mice.  When given the choice between a WT or T5KO mouse, both sexes of T5KO 

mouse showed a preference for investigating the WT mouse.  This pattern goes the 

other way as well, where male WT mice greatly preferred to investigate the T5KO 

mouse, suggesting both WT and T5KO have a preference for odor novelty in a 

controlled environment. 
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We found that AVP immunoreactivity is greater in the SCN and PVN and their 

projection sites, in response to T5KO.  These regions control circadian rhythms and 

motivated behaviors, respectively, and both have been shown to contribute to sickness 

behavior through regulation of anxiety-like and depressive-like behaviors (Dantzer, 

2006; Andries Kalsbeek et al., 2010; Landgraf et al., 2016).  The hypothalamus and 

thalamus receives input from the gut by way of the vagus nerve and the nucleus of the 

solitary tract, so it is likely that inflammatory signals in T5KO mice affect OXT and AVP 

producing neurons in the hypothalamus, which could then project to other areas of the 

brain to enact behavioral changes (Goehler et al., 2005).  Specifically, greater AVP 

immunoreactivity in the SCN coupled with decreases in AVP mRNA production may 

underlie the lethargy involved in depressive-like behaviors, and depressed patients 

have higher numbers of AVP-ir positive neurons in the SCN (Dai et al., 1998; Zhou et 

al., 2001).  This suggests that the greater AVP immunoreactivity in the SCN, as well as 

the projection sites the DMH, PVT, and SPZ, may have disrupted the circadian rhythms 

of T5KO, contributing to increased lethargy and depressive-like behavior.  AVP 

signaling from the SCN can disrupt the HPA axis as well through GABAergic 

interneurons in the DMH and SPZ, which also may contribute to the increased anxiety-

like behavior (Kalsbeek et al., 2010).  More thorough examination of HPA activation is 

prudent to understand the interplay between T5KO and anxiety-like and stress 

behaviors.   

The increases we see in AVP immunoreactivity in the PVN and its projection 

sites may be contributing to the anxiogenic behavioral phenotype in T5KO mice.  AVP 

produced in the PVN is projected to a number of brain regions, including the lateral 
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septum and central amygdala, as well as is released into the median eminence to 

stimulate adrenocorticotropin from the anterior pituitary (Csikota et al., 2016; Hernández 

et al., 2016), indicating that AVP from the PVN can affect anxiety-like behavior through 

its effects in other brain regions and through HPA activation.  For example, AVP 

infusion into the central amygdala in rats (Hernández et al., 2016), and overexpressing 

the Avpr1a gene in the lateral septum in mice (Bielsky et al., 2005), increases anxiety-

like behavior.  Mouse models of anxiety tend to have increased HPA axis activity, which 

is associated with increased AVP, and perturbing the stress response results in anxiety-

like behavior (Landgraf, Wigger, Holsboer, & Neumann, 1999; Niraula, Witcher, 

Sheridan, & Godbout, 2019), but this is not always the case (Neufeld et al., 2011; Sudo 

et al., 2004).  More investigation is needed to determine how T5KO affects AVP and the 

HPA axis, especially to delineate whether the greater immunoreactivity is due to 

increased production of AVP mRNA or less release from the PVN. 

We found that OXT is not very affected by inflammation in T5KO mice.  Ample 

evidence suggests that OXT both anxiolytic and anti-inflammatory in the brain 

(Neumann and Landgraf, 2012; Yuan et al., 2016a; Wang et al., 2018), so it is not 

surprising that OXT was only mildly affected in our experiments.  We did see elevated 

OXT immunoreactivity in the BNSTmv, which is important for the regulation of social 

behavior (Lebow and Chen, 2016), indicating that the increased sociability in T5KO 

mice may be due to this increase in OXT.  As mentioned previously, the greater OXT-ir 

may be either increased mRNA production or decreased neuropeptide release.  Thus, 

more investigation is needed to identify what effect T5KO has on oxytocin. 
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Our T5KO mice replicated the physiological phenotype previously reported 

(Chassaing et al., 2014; Vijay-Kumar et al., 2010).  This is true for adult WT mice 

colonized with T5KO microbiota as well, albeit to a less severe degree, but not for 

juvenile T5KO-g mice.  This is not surprising, as T5KO requires multiple weeks for 

metabolic syndrome to develop (Carvalho et al., 2012; Vijay-Kumar et al., 2010).  While 

T5KO microbiota is sufficient to promote intestinal inflammation and characteristics of 

metabolic syndrome in the adult offspring of microbiota-transplanted mice, this was not 

the case for the behavioral phenotype, suggesting that the behavior of T5KO mice is 

modulated by more than just the microbiota.  It is unclear what other factors may 

underlie this microbiota-independent pathway, as we only measured behavioral 

expression in these animals.  It is possible that the intestinal inflammation did not 

extend past the gut, for example to the brain, because the T5KO-g mice did have 

functioning TLR5 receptors.  Even if the T5KO-g mice had an increased bacterial 

burden, thinner mucus layer and more bacteria invading the gut epithelium, the 

presence of TLR5 should catch any invading bacteria before a large-scale immune 

response is mounted.  It is also possible that more time was needed for the microbiota 

transplant to fully affect behavior, which could be achieved by testing the mice at a later 

age (20 weeks instead of 15), colonizing the parents at an earlier age than weaning, or 

colonizing the experimental mice at birth.  It is also possible that our procedure of 

colonizing the GF mice at weaning resulted in microbiota shift to a more similar 

microbiota between WT-g and T5KO-g mice.  A recent experiment by Fulde and 

colleagues found that GF mice colonized with T5KO microbiota as neonates had 

microbiota compositions that grew more similar to WT microbiota over 28 days than 
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T5KO microbiota given to adults (Fulde et al., 2018).  This suggests that we may need 

to administer T5KO microbiota to the parents in adulthood to maintain separation 

between T5KO and WT mice.  Future studies warrant investigation of systemic and 

neural cytokines as well as neuropeptide expression to better pinpoint the deviation 

from the T5KO phenotype. 

Our results suggest that the physiological changes in T5KO may induce mild 

sickness behavior through the elevation of hypothalamic AVP immunoreactivity in a gut 

microbiota-independent mechanism.  While TLR5 deficiency in humans does not result 

in the same chronic inflammation that it causes in mice (Gewirtz et al., 2006), T5KO 

mice are a novel model for investigating the microbiota-gut-brain communication 

pathways that contribute to the association between inflammation and 

behavior.  Anxiety and depression are strongly associated with inflammation and 

metabolic syndrome in humans, so identifying the mechanisms underlying this 

relationship is imperative for developing novel therapeutics.   
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3.6 Figures  

 

Figure 3.1. T5KO mice replicate metabolic syndrome and low-grade inflammatory 

phenotype. 

T5KO mice show morphological phenotypes of metabolic syndrome (A-B) and intestinal 

inflammation (C-E). (A) Body weight, (B) gonadal fat pad mass, (C) colon length, (D) 

colon weight, and (E) spleen weight were recorded.  Markers of intestinal inflammation 

(F) Lcn-2 from blood serum and (G) colonic MPO tissue show T5KO mice have low-

grade, but not colitic, inflammation.  * represents a significant main effect of treatment 

(p<0.05).  # represents a significant main effect of sex (p<0.05). 十 represents a 

significant treatment by sex interaction (p<0.05).  Data presented as +/- SEM (n= 16-

22). 
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Figure 3.2. T5KO mice have an anxious and depressive phenotype. 

Behavior of T5KO and WT mice were analyzed in the open field test (A-B), elevated 

plus maze (C-D), light/dark box (E-F) and forced swim test (G-H). (A) Time spent in the 

center of the arena. (B) Distance traveled in the entire arena. (C) Time spent in the 

open arms of the EPM. (D) Distance traveled in the apparatus. (E) Time spent in the 

light chamber. (F) Number of entries into the light chamber.  (G) Time spent floating in 

the forced swim test. (H) Latency to begin floating. * represents a significant main effect 

of treatment (p<0.05). # represents a significant main effect of sex (p<0.05). 十 

represents a significant treatment by sex interaction (p<0.05). Trends toward 

significance are represented with the p-value. Data presented as +/- SEM (n= 16-22). 
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Figure 3.3. T5KO mice show increased repetitive grooming in the marble burying 

test. 

(A) Number of marbles buried. (B) Time spent digging in the bedding of the arena. (C) 

Time spent grooming. (D) Distance traveled in the arena. * represents a significant main 

effect of treatment (p<0.05). # represents a significant main effect of sex (p<0.05). Data 

presented as +/- SEM (n= 16-22). 
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Figure 3.4. T5KO mice are more social than WT mice when WT mice are used as a 

stimulus. 

(A-B) T5KO and WT mice were given the choice between a WT mouse and a novel 

object (n=8-13).  Time actively investigating the mouse (A) or object (B) were analyzed. 

(C-D) A separate cohort (n=7-10) of T5KO and WT mice were given the choice between 

a matched genotype mouse (C) or an object (D).  (E) Combined distance traveled data 
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from cohorts in A-D (n=16-22). (F) A separate cohort of mice were given the choice 

between a T5KO or WT mouse (n= 9-10).  Preference score was determined by 

subtracting time investigating the T5KO mouse from the WT mouse.  Positive score 

indicates preference for the WT mouse.  * represents a significant main effect of 

treatment (p<0.05). # represents a significant main effect of sex (p<0.05). 十 represents 

a significant treatment by sex interaction (p<0.05). Trends toward significance are 

represented with the p-value. 
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Figure 3.5. T5KO increased AVP-ir in PVN and SCN projection sites. 

AVP-ir was determined by gray-level thresholding in the (A) PVN, (B) DMH, (C) PVT, 

(D) SPZ, (E) SCN, (F) LHb, (G) MD, and (H) LSV.  * represents a significant main effect 

of treatment (p<0.05). # represents a significant main effect of sex (p<0.05). 十 

represents a significant treatment by sex interaction (p<0.05). Trends toward 

significance are represented with the p-value.  Data presented as +/- SEM (n= 8-9). 
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Figure 3.6. T5KO has little effect on OXT-ir. 

OXT-ir (A, C-F) or OXT-positive cell counts (B) were determined in the (A) BNSTmv, 

(B) AH, (C) DMH, (D) SPZ, (E) SON, and (F) PVN.   # represents a significant main 

effect of sex (p<0.05). 十 represents a significant treatment by sex interaction (p<0.05).  

Data presented as +/- SEM (n= 9-11).    
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Figure 3.7. Multivariate test statistics reveal a separation of sex and genotype in 

behavioral and neuropeptide expression in T5KO and WT mice. 

The canonical discrimination function plot revealed a significant separation of groups by 

sex and genotype along 3 different functions for (A) anxiety-like, depressive-like, and 

social behaviors and (B) AVP and OXT protein expression.  Individual contributions of 

each measured outcome are summarized in Table 1 for behavioral measures and Table 

2 for neuropeptides. 
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Table 3.1. Structure matrix for discriminant analysis of behavior. 

Measured Outcomes               Function 

1 2 3 

Time Floating in FST (s) .529* .005 -.031 

Distance Traveled in the OFT (cm) .510* -.002 .399 

Time Investigating Mouse in TCT (s) .415* .123 .198 

Time Grooming in Marble Burying 

Test (s) 

.304* -.183 .097 

Number of Marbles Buried  .202 .619* -.102 

Time in Light Zone of L/D Box (s) -.383 .498* -.255 

Time in Center of OFT (s) -.115 .479* .422 

Open Arm Time in EPM (s) .020 .338 .558* 

Pooled within-group correlations between discriminating variables and standardized 

canonical discriminant functions. The variables are ordered by absolute size of 

correlation within each of the functions (*indicates the largest absolute correlation 

between each variable and any discriminant function). 
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Table 3.2. Structure matrix for discriminant analysis of neuropeptide expression. 

Measured Outcomes                       Function 

1 2 3 

LHb AVP .805* .047 .264 

MD AVP .565* .224 -.426 

DMH AVP .214 .396* .351 

PVN AVP  .319 .392* .198 

PVT AVP .163 .281* .081 

DMH OXT -.192 -.193* -.083 

SON OXT -.149 .046 .410* 

SPZ OXT -.068 -.207 .370* 

BNST OXT -.002 .305 .331* 

SCN AVP .174 .209 .325* 

PVN OXT -.097 .118 .244* 

Pooled within-group correlations between discriminating variables and standardized 

canonical discriminant functions. The variables are ordered by absolute size of 

correlation within each of the functions (*indicates the largest absolute correlation 

between each variable and any discriminant function). 
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Figure 3.8. T5KO-g is not sufficient to induce morphological T5KO phenotype in 

juvenile (P29) mice. 

Morphological aspects of (A-B) metabolic syndrome and (C-F) intestinal inflammation 

were measured. (A) Body weight, (B) adipose weight, (C) colon weight, (D) colon 

length, (E) cecum weight, and (F) spleen weight were recorded at time of sacrifice.   * 

represents a significant main effect of treatment (p<0.05). # represents a significant 

main effect of sex (p<0.05). 十 represents a significant treatment by sex interaction 

(p<0.05). Trends toward significance are represented with the p-value.  Data are 

represented as means +/- SEM (n=5-23). 
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Figure 3.9. T5KO-g has no effect on anxiety- and depressive-like behavior in 

weanling-aged mice. 

(A) Time in the center zone and (B) distance traveled in the OFT. (C) Time spent in 

open zone of the elevated zero maze. (D) Time spent hanging in the tail suspension 

test.  Data are represented as means +/- SEM (n=13-39). 

 

 

 



97 

 

Figure 3.10. T5KO-g had no effect on weanling-aged social behavior. 

(A) Time spent moving in the arena, (B) time spent immobile, (C) time in active 

investigation of the other mouse, (D) time spent grooming, (E) time spent digging in the 

bedding, and (F) time spent rearing against the walls of the arena were recorded during 

a 10-minute social interaction test with a littermate.  # represents a significant main 

effect of sex (p<0.05). 十 represents a significant treatment by sex interaction (p<0.05). 

Trends toward significance are represented with the p-value.  Data are represented as 

means +/- SEM (n=13-39). 
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Figure 3.11. T5KO microbiota is sufficient to produce the morphological 

phenotype of T5KO in adult mice. 

Morphological aspects of (A-C) metabolic syndrome and (D-H) intestinal inflammation 

were measured.  (A) Body weight over time, beginning at weaning (3 weeks of age) to 

adulthood (14 weeks of age), (B) Body weight at time of sacrifice, (C) gonadal fat pad 

weight, (D) colon weight, (E) colon length, (F) cecum weight, (G) spleen weight, and (H) 

liver weight.  * represents a significant main effect of treatment (p<0.05). # represents a 

significant main effect of sex (p<0.05).  Trends toward significance are represented with 

the p-value.  Data are represented as means +/- SEM (n=11-16). 
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Figure 3.12. T5KO-g has a mild effect on adult anxiety-like and depressive-like 

behavior. 

(A) Time in the center zone of the open field test, (B) time in the open zone of the 

elevated zero maze, (C) time spent hanging in the tail suspension test, (D) time in the 

light zone of the light/dark box, and (E) time spent in the stretch-attend posture in the 

L/D box. * represents a significant main effect of treatment (p<0.05).  # represents a 

significant main effect of sex (p<0.05). 十 represents a significant treatment by sex 

interaction (p<0.05).  Data are represented as means +/- SEM (n=11-16). 
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Figure 3.13. T5KO-g had little effect on adult social behavior in the three-chamber 

apparatus. 

(A) Time spent in the mouse chamber, (B) time investigating the mouse, (C) time 

walking in the mouse chamber, (D) time investigating the object, (E) time spent 

immobile in the object chamber, (F) time spent grooming in the object chamber, and (G) 

total time spent walking in all three chambers.  * represents a significant main effect of 

treatment (p<0.05).  # represents a significant main effect of sex (p<0.05). 十 represents 

a significant treatment by sex interaction (p<0.05).  Data are represented as means +/- 

SEM (n=11-16). 
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Table 3.3 Behavioral Data for Microbiota-treated Mice 

Behavior Treatment Group 

Male 

T5KO-g 

Female 

T5KO-g 

Male WT-

g 

Female 

WT-g 

Distance Traveled in OFT (cm) 2,533+/- 

141 

2526+/- 

176 

2400+/- 

144 

2735+/- 

188 

Time Walking in EZM (s) 89.6 +/- 8.2 74.3 +/- 

7.1 

93.7 +/- 

5.4 

89.9 +/- 

7.1 

Light Entries in L/D Box 9.1 +/- 1.4 9.3 +/- 1.2 6.3 +/- .9 9.0 +/- 1.4 

Time Walking in Marbles (s) 211.6 +/- 

24.3 

172.4 +/- 

9.3 

169.9 +/- 

11.8 

167.1 +/- 

14.6 

Time Rearing in Marbles (s) 47.5 +/- 7.1 49.5 +/- 

4.5 

37.3 +/- 

6.1 

52.2 +/-

8.4 

Time Immobile in Marbles (s) 167.1 +/- 

30.2 

154.1 +/- 

13.5 

176.5 +/- 

25.7 

153.7 +/- 

24.4 

Time Digging in Marbles (s) 162.8 +/- 

22.2 

176.2 +/- 

20.2 

183.5 +/- 

21.7 

175.7 +/- 

20.1 

Measures of locomotion and other behaviors in anxiety-like behavioral assays.  Data 

are represented as the mean +/- SEM.  There were no significant differences between 

groups in any measures listed. 
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Figure 3.14. Discriminant analysis does not reveal a separation along sex or 

microbiota treatment for behavioral characteristics of T5KO-g or WT-g mice. 

The canonical discrimination function plot revealed a significant separation of groups by 

sex and genotype along 3 different functions for anxiety-like, depressive-like, and social 

behaviors. Individual contributions of each measured outcome are summarized in Table 

3. 
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Table 3.4. Structure matrix for discriminant analysis of behavior in microbiota 
treated mice. 

Measured Outcomes                  Function 

1 2 3 

Total Time Walking in TCT (s) -.574* .024 -.296 

Stretch Attend Posture in L/D Box (s) -508* -.178 .271 

Time in Center of OFT (s) .332* .302 -.199 

Time Walking in Mouse Chamber (s) -.151* -.013 -.139 

Time Investigating Mouse in TCT (s) .059 .683* .264 

Time in Light Chamber of L/D Box (s) .022 -.210* .101 

Time Spent Hanging in TST (s) .079 -.189* -.067 

Time Investigating Object in TCT (s) -.019 -.266 .615* 
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Open Zone Time of EZM (s) .261 -.036 .349* 

Pooled within-group correlations between discriminating variables and standardized 

canonical discriminant functions. The variables are ordered by absolute size of 

correlation within each of the functions (*indicates the largest absolute correlation 

between each variable and any discriminant function). 
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4 DISCUSSION 

The projects described in this dissertation serve to highlight the importance of 

considering vasopressin and oxytocin as targets of microbiota influence in the 

microbiota-gut-brain-behavior axis. Alterations in gut microbiota composition 

dysregulate the vasopressin and oxytocin systems, most likely through an immune 

signaling pathway, to result in disordered anxiety-like, depressive-like and social 

behaviors.  Within this discussion I will outline the importance of vasopressin and 

oxytocin in this pathway, propose a possible mechanism by which microbiota affects 

these neuropeptides in the regulation of behavior, and place these results in the larger 

context of human health.  These studies highlight the need for more investigation into 

the mechanisms underlying the microbiota-gut-brain-behavior axis in order to harness 

this axis in developing therapeutics for both gastrointestinal and psychiatric disorders. 

4.1 Vasopressin and Oxytocin in the Microbiota-Gut-Brain-Behavior Axis 

In Chapter 2, we found that recolonization with microbiota increased vasopressin 

expression, suggesting that something about colonization with microbiota resulted in 

greater vasopressin immunoreactivity.  It is possible that the GF mice we recolonized 

were exposed to pathogenic bacteria, which would elicit an immune response.  GF mice 

have a blunted immune response to pathogens, and recolonization with microbiota does 

not fully rescue splenic levels of macrophages (Khosravi et al., 2014; Pickard et al., 

2017), so an exposure to a pathogen may result in a more severe inflammatory 

response than in a CC mouse.  This could have downstream effects on vasopressin in 

the brain, as cytokines tend to have a stimulatory effect on vasopressin production 

(Palin et al., 2009).  Colonization with microbiota occurred by oral gavage at weaning, 
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each of which are stressful events to the mouse (Walker et al., 2012; Farshim et al., 

2016; Richter et al., 2016; Dong et al., 2017).  Stressful events in early life, like weaning 

or oral gavage, can increase vasopressin mRNA production in the hypothalamus 

(Veenema et al., 2007). The combination of these events suggest that the colonization 

of GF mice may increase vasopressin immunoreactivity through immune- and stress-

mediated mechanisms.  In Chapter 3, we found that intestinal inflammation increased 

vasopressin immunoreactivity, again pointing to gut-derived inflammation stimulating 

vasopressin production in the brain.  However, we cannot fully conclude this is the case, 

because we do not know whether the increase in immunoreactivity is due to elevated 

vasopressin production or rather reductions in vasopressin release.  We could 

investigate the effects on the vasopressin system further by either measuring 

vasopressin mRNA production through in situ hybridization, or vasopressin release 

through microdialysis. 

In Chapter 3, we found that vasopressin expression was associated with an 

anxiogenic phenotype and reduction in locomotion in the T5KO mice.  Vasopressin is 

implicated in the generation of anxiety states in rodents, especially its actions in the 

lateral septum (Liebsch et al., 1996).  Injections of vasopressin into the LS is 

anxiogenic, and blockade of V1aR through antagonists or genetic knockouts is 

anxiolytic (Landgraf et al., 1995; Liebsch et al., 1996; Beiderbeck et al., 2007).  We 

found that T5KO males had increased vasopressin in the LS, but there was no effect in 

females.  This is surprising, because T5KO females had a stronger anxiogenic 

phenotype.  This may suggest that vasopressin in the LS is less critical for the 

expression of anxiety-like behaviors in this model.  Vasopressin also modulates 
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voluntary locomotion, where systemic and hypothalamic vasopressin injections reduced 

voluntary wheel running in golden hamsters (Cormier et al., 2015), suggesting the 

reduction in movement we saw in the T5KO mice may be due to the actions of 

vasopressin.  However, more investigation into the base level of locomotion is important 

to determine if T5KO mice are moving less overall, or just in a novel environment. 

The main disruptions to the vasopressin system in both microbiota manipulations 

were found in the SCN and its projection sites. Vasopressin in the SCN is involved in 

maintaining circadian rhythmicity, responding to immune signals, and regulating the 

HPA axis (Kalsbeek et al., 2010).  Dysregulation of circadian rhythms can have 

deleterious effects on mood and anxiety, so it is possible that the behavioral changes 

we saw were due to a disruption of circadian rhythms (Kim et al., 2017).  There is a 

bidirectional interaction between circadian rhythms and microbiota.  Microbiota have 

their own diurnal rhythms that can affect the host’s rhythms, and disruption to the host’s 

circadian patterns can affect microbiota composition (Voigt et al., 2014; Liang et al., 

2015; Rosselot et al., 2016; Thaiss et al., 2016), which suggests that our microbiota 

alterations may have affected the rhythmicity of our mice.  In fact, GF mice show altered 

circadian rhythms in gene expression and metabolism (Wang et al., 2017; Weger et al., 

2019), which may contribute to the differences in behavior that GF mice possess. It is 

also possible that disruptions to the circadian rhythms may have resulted in behaviorally 

testing the different animal groups in different parts of their subjective photoperiods.  

The part of the photoperiod that behavioral testing occurs in can have numerous effects 

on behavioral expression (Huynh et al., 2011; Labots et al., 2016; Anyan et al., 2017).  

However, we do not know whether circadian rhythms are affected in the T5KO mice.  
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More experiments identifying the roles that microbiota play in the disruption of 

vasopressin in the SCN are needed. 

Inflammatory signals had minor effects on vasopressin from the BNST projection 

sites.  Inflammation affected vasopressin in the LHb differently between the sexes.  

Lateral habenula hyperactivity is associated with depressive-like behaviors and aversion 

in general (Yang et al., 2018), so increased vasopressin in this region may contribute to 

a depressive-like phenotype. In Chapter 2, recolonization eradicated the sex difference 

in vasopressin in BNST projection sites, and in Chapter 3, T5KO reduced AVP 

immunoreactivity in females but elevated it in males, which may have contributed to the 

increased depressive-like phenotype of the T5KO males.  We did not test the behavior 

of RE mice, but it is possible that the loss of a sex difference may lead to sex-

dependent changes in behavior. 

Oxytocin did not respond to inflammatory signals with the same intensity as 

vasopressin.  Oxytocin tends to be anxiolytic and anti-inflammatory (Neumann and 

Slattery, 2016; Yuan et al., 2016b), and cytokines can modulate the transcription and 

production of oxytocin.  This occurs in a conditional manner, based on the location of 

oxytocin and cytokines, as well as the individual (Wang et al., 2015).  Thus, it is possible 

that we did not see much effect of inflammation on oxytocin expression due to the 

chronic nature of our models.  Oxytocin may play more of a role in moderating immune 

activation during more acute insults but may exert less influence during chronic 

inflammation.  Furthermore, it is possible that the microbiota models we used 

permanently altered the oxytocin system in locations or ways that were not investigated 
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in these experiments, or oxytocin may be acting to reduce the damage from chronic 

inflammation. 

Oxytocin tends to reduce food intake, suggesting that the elevations in oxytocin 

immunoreactivity in GF mice may contribute to their obesity resistance (Bäckhed et al., 

2007; Herisson et al., 2016; Spetter and Hallschmid, 2017; Spetter et al., 2018).  

Oxytocin is also involved in motivation, parental behavior, and addiction (Love, 2014; 

Yoshihara et al., 2017; Leong et al., 2018), suggesting that there may be many other 

reasons for the increase in oxytocin immunoreactivity in the GF mice that we did not test 

in these experiments. More investigation into the roles of oxytocin in the gut-brain axis 

are needed. 

Taken together, gut-derived inflammation is associated with greater vasopressin 

immunoreactivity in SCN and PVN projection sites of the brain and contributes to 

disordered anxiety-like, depressive-like and social behaviors.  Oxytocin may be playing 

a role in the increased sociability of T5KO mice but have less influence over anxiety-like 

and depressive-like behaviors in these models.  Future experiments are needed to 

tease apart the exact actions each neuropeptide has in this axis. 

4.2 Commentary on Behavioral Testing 

 Unfortunately for behavioral neuroscientists interested in translational 

implications of their work, rodent behavior is not a perfect analog of human behavior.  

Thus, it is difficult to produce and validate mouse models of psychiatric disorders, 

especially when these disorders have large cognitive components that are not testable 

in rodents. It is also difficult to say whether the artificial assays we use for anxiety-like 

and depressive-like behaviors are truly testing the behaviors we think they are.  For 
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example, the marble burying test is used as a measure of anxiety-like behavior, 

repetitive behavior, and aversive behavior, among others, and is based on the idea that 

rodents bury items that are anxiogenic to them (Kedia and Chattarji, 2014; Sanathara et 

al., 2018; De Brouwer et al., 2019).  However, Njung’e and Handley found that there 

was no habituation to the marbles on repeated testing, they did not avoid the marbles 

when given a choice of a marble-filled or empty arena, and administration of anxiogenic 

agents did not increase the number of marbles buried (Njung’e and Handley, 1991).  

Some use the marble burying test alone as a measure of anxiety-like behavior (Nardo et 

al., 2014; Gawali et al., 2016), and others, us included, use the marble burying test as 

part of a test battery for anxiety-like behaviors and measure more behaviors than just 

the number of marbles buried.  It is imperative that if we are to use rodents to 

investigate the neural mechanisms of behavior in the context of developing therapies for 

psychiatric disorders, then we need to examine a wide variety of behaviors in numerous 

behavioral tests. 

 An intriguing way to gain an overall impression of a behavioral phenotype is to 

use multiple discriminant analysis to build a model that predicts future group inclusion in 

an unbiased manner (Fields et al., 2018a).  This statistical method determines the 

relationship between each variable and each individual in the analysis, create functions 

that explain the variance between each data point, and identify which dependent 

variables are contributing most to each function (Cooley and Lohnes, 1971).  We used 

discriminant analysis in Chapter 3 to gain a better understanding of the behavioral 

phenotype of T5KO mice and to see if there was a pattern to the behavior of T5KO-g 

mice that individual comparisons alone did not capture.  We conclude that T5KO mice 
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show mild sickness behavior because the factors that contributed the most to 

separating the genotypes in the model were ones indicating lethargy, increased 

depressive-like behavior, and repetitive grooming.  These behaviors are all dependent 

on activity level, which is a prime behavior affected during sickness behavior (Dantzer et 

al., 2008).  We saw significant changes in anxiety-like behavior in T5KO mice, but the 

discriminant analysis suggested that those behaviors were more responsible for 

separating the sexes from one another, and not genotypes.  This suggests that anxiety-

like behavior may be a more important factor in sickness behavior in females or that 

T5KO affects anxiety-like behavior in males and females differently.  While this analysis 

is not appropriate in all situations, it is a way to statistically mimic the way our brains 

identify patterns in behavior and may be a useful tool in further behavior research. 

4.3 Pathways of microbiota-gut-brain-behavior communication 

4.3.1 Microbiota to gut signaling 

 As mentioned in the introduction, there are a number of mechanisms through 

which microbiota can communicate with the gut, either to effect local change or to send 

signals to other organ systems like the brain.  Briefly, microbiota reside in the gut in the 

thick, outer layer of mucus, which provides a good support for the development of 

biofilms and provides an energy source if the host’s diet is insufficient (Russell et al., 

2011a; Kelly et al., 2015).  Underneath this layer is a relatively sterile, thin layer of 

mucus that is tightly adhered to the intestinal epithelial layer.  The epithelial layer is 

composed of a number of cell types, including enteroendocrine cells (EECs) that can 

produce hormones, including serotonin, Paneth cells that host TLRs to sense bacterial 

penetration, and other cells that are involved in sampling the intestinal milieu to ensure 
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homeostasis (Samuel et al., 2008; Vaishnava et al., 2008; Haghikia et al., 2015; Yano et 

al., 2015).  Microbiota can produce a number of metabolites like short chain fatty acids 

(SCFA), hormone precursors such as tryptophan, and other molecules like secondary 

bile acids that communicate with the EECs or the mucosal immune system (Wikoff et 

al., 2008; Tolhurst et al., 2012; Yano et al., 2015).  SCFAs are mainly produced through 

the fermentation of dietary fiber the host cannot digest alone, and the less dietary fiber 

present in the diet, the less SCFAs produced (Topping and Clifton, 2001; Russell et al., 

2011b).  SCFAs mediate the production of 5-hydroxytryptamine (5-HT) by EECs, so the 

gut microbiota can directly influence the amount of 5-HT produced by the gut, which has 

downstream implications for neural 5-HT and serotonin production (Clarke et al., 2013; 

Yano et al., 2015). 

 GF mice, despite lacking a microbiota, still produce gut-derived signaling 

molecules, including 5-HT.  Because they do not have microbiota to ferment indigestible 

starch, they do not have the microbiota regulation of tryptophan production, which 

affects the amount of 5-HT produced in the gut.  There are conflicting reports on the 

amount of circulating tryptophan and 5-HT production in GF mice (Wikoff et al., 2008; 

Clarke et al., 2013), but it is clear that the lack of microbiota disrupts the serotonin 

system.  Interestingly, when GF mice are colonized with microbiota, plasma 5-HT levels 

are normalized but hippocampal 5-HT is not (Clarke et al., 2013).  These experiments 

suggest that the lack of microbiota affects the production of enteric hormones which has 

long-lasting effects on brain structure and function.  5-HT can regulate vasopressin 

release, such that administration of 5-HT rapidly increases plasma vasopressin release 

(Pérgola et al., 1993), and there is a significant body of literature examining the interplay 
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between 5-HT and vasopressin in aggression (Morrison and Melloni, 2014; Terranova et 

al., 2016).  Thus, it is possible that the dysregulation of serotonin may have far-reaching 

effects on vasopressin and behavior. 

 T5KO mice have an increased bacterial load, thinner mucus layer, more 

adherent bacteria to the epithelial wall, and increased SCFA production, providing 

multiple avenues through which microbiota in this model can affect the gut (Carvalho et 

al., 2012b; Singh et al., 2015a).  Chronic inflammation can result in increased 

permeability of the intestinal epithelium and is further exacerbated by the encroachment 

of microbiota on the epithelial layer in T5KO mice, resulting in either a stronger immune 

response or more translocation of bacterial products, like SCFA, across the membrane.  

While SCFA are typically considered to be beneficial, in T5KO mice they aggravate 

metabolic syndrome by traveling to the liver and contributing to insulin resistance when 

added to the diet (Singh et al., 2015).  This suggests that elevated SCFA may disrupt 

other systems by modulating immune or metabolic activity, which may have 

downstream effects on the brain and behavior.  More investigation into whether SCFA 

are elevated in the brain will further elucidate the roles that SCFA play in this pathway. 

4.3.2 Gut to brain signaling 

 Similar to the number of ways microbiota can communicate with the gut, there is 

a myriad of pathways that transfer information from the microbiota to the brain.  A 

primary path is through vagal activation.  The vagus nerve innervates the heart, lungs 

and digestive tract and sends signals to the hypothalamus by way of the nucleus of the 

solitary tract (Chavan et al., 2017).  The vagus nerve expresses innate immune 

receptors and responds mainly to endocrine or immune signals.   Many actions of 
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microbiota on behavior are dependent on vagal nerve communication, as vagotomy 

abolished the anxiolytic effect of Bifidobacterium longum on mice with colitis and 

prevented the reduction in stress-induced depressive-like behavior in mice by 

Lactobacillus rhamnosus (Bercik et al., 2011; Bravo et al., 2011).  However, other 

experiments still found behavior-moderating effects of probiotics in vagotomized mice, 

suggesting that there are other mechanisms at play (van der Kleij et al., 2008).  It would 

be interesting to see if T5KO mice would still exhibit the same behavioral phenotype 

after vagotomy.  One study found that the number of TLR5-expressing neurons is 

increased after bleomycin treatment to induce pulmonary fibrosis (Jung et al., 2018), 

suggesting that the vagus nerve is involved in some cases involving TLR5.  It is also 

possible that activation of this neural pathway primes brain structures for the production 

and action of cytokines that propagate into the brain, essentially creating a mirror of the 

peripheral inflammation (Dantzer et al., 2008).  Thus, it is possible that the brains of 

T5KO mice would be continuously primed for inflammation, leading to dysregulation of 

neuropeptide expression and resulting in the anxiogenic phenotype described above. 

 Another pathway is the humoral route, in which circulating cytokines or microbial 

proteins bind to receptors on cerebral endothelial cells (CEC) or circumventricular 

organs (CVO) to elicit a neural immune response (D’Mello and Swain, 2014). CEC 

make up the blood-brain barrier (BBB) and the tight junctions between CEC are affected 

by microbial products, similar to the intestinal epithelium (Braniste et al., 2014).  For 

example, GF mice have a more permeable barrier than CC mice, likely due to deficits in 

bacterial products like SCFA (Braniste et al., 2014).  Binding of receptors for TNF-a and 

IL-1B found on CEC activates NF-kB, which in turn induces production of second 
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messengers like prostaglandins or nitric oxide (Rivest et al., 2000).  These second 

messenger systems can activate microglia and affect sickness behavior through 

expression in the hypothalamus and amygdala (Zhang and Rivest, 1999).  There are 

also cytokine transporters in the BBB that allow systemic cytokines into the brain 

through volume diffusion (Banks, 2006).  Monocytes can adhere to CEC and even 

transmigrate into the brain, providing another source of inflammation in the brain 

(Kerfoot et al., 2006; D’Mello et al., 2009).  Cytokines or microbial products may enter 

the brain through CVO, which are brain regions that lack a functional BBB and include 

regions like area postrema and the median eminence (Dantzer et al., 2008).  These 

regions produce c-fos mRNA, an immediate-early gene, in response to systemic TNF-a, 

and produce pro-inflammatory cytokines in the brain in response (Nadeau and Rivest, 

1999).  T5KO mice have increased systemic IL-1B and TNF-a, suggesting that these 

cytokines may be interacting with the brain through CEC or CVO (Carvalho et al., 

2012c).  More work needs to be done to elucidate whether the BBB is more permeable 

in T5KO mice and if T5KO mice show neuroinflammation.   

4.3.3 Brain to Behavior Signaling 

  Inflammatory signaling from the periphery may affect other neural systems than 

vasopressin and oxytocin, like microglia.  Microglia activation is associated with 

sickness and depressive-like behaviors, and inhibiting microglia ameliorated these 

behaviors (Henry et al., 2008; Corona et al., 2010; D’Mello et al., 2013).  We showed 

that GF mice have reductions in microglial number and immunoreactivity that were 

unresponsive to colonization with microbiota, which corroborates our behavioral findings 

of reduced anxiety-like behaviors.  Contrary to the social withdrawal associated with 
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activated microglia (Corona et al., 2010), we found that GF mice are less social than CC 

mice, suggesting that the deficits in social behavior may occur through a microglia-

independent pathway.  

 We do not know the state of neuroinflammation in our T5KO mice.  It is likely, 

based on their behavior profile and intestinal inflammation, that T5KO mice would have 

elevated cytokine expression, activated microglia, or another indication of 

neuroinflammation.  There is some tangential evidence of neuroinflammation in T5KO 

mice.  For example, T5KO mice show worse nerve regeneration after a crush injury and 

associated decreased BDNF expression (Hsieh et al., 2017).   Other experiments show 

a protective effect of TLR5 activation in post-conditioning treatment after ischemic 

stroke, where sublethal hypoxia from TLR5 activation can protect against future stroke 

(Gu et al., 2016; Jeong et al., 2017).  Furthermore, TLR5 expression is elevated in 

major depressive disorder and schizophrenia, and antidepressant and antipsychotic 

treatment, respectively, can normalize TLR5 expression (Hung et al., 2016; Kéri et al., 

2016, 2017).  These studies suggest that TLR5 activation induces inflammation in the 

brain and this activation can have behavioral consequences. It may be that T5KO will 

result in increased neuroinflammation, based on the peripheral inflammation in these 

mice, possibly through upregulation of other TLRs.  Future experiments can be done to 

determine how TLR5 deficiency affects neuroinflammation. 

4.3.4 Proposed Pathway 

It is difficult to determine exactly how TLR5 deficiency results in changes to 

vasopressin and behavior without direct experimental evidence.  However, we can 

predict a potential pathway.  It is likely that the increased SCFA and intestinal pro-



117 

inflammatory cytokines signal to the brain through the vagus nerve, which sends 

inflammatory signals to the hypothalamus, increasing vasopressin production.  This 

increased vasopressin will be projected to other regions of the limbic system to increase 

anxiety-like behaviors, as well as increasing activation of the HPA axis.  A secondary 

modulatory pathway may occur through translocation of bacteria through the gut 

epithelium, resulting in macrophage production of pro-inflammatory cytokines.  These 

systemic cytokines may either breach the BBB through downregulation of tight-junctions 

or cytokine transporters.  They may also bind to receptors on the CECs or CVOs to 

induce neuroinflammation, possibly through activation of microglia or production of 

cytokines in the brain. 

Many more experiments are needed to test this pathway.  A few possibilities 

would be to vagotomize T5KO mice to see if the behavioral effects are dependent on an 

intact vagus nerve, reducing intestinal inflammation by downregulating IL-1 and TNF- 

using nanoparticle-delivered siRNA (Neuhaus et al., 2015) to determine if inflammation 

in the gut is part of this pathway, or selectively knocking down vasopressin in the PVN 

or SCN using AVP-Cre mice to determine if vasopressin is necessary for the behavioral 

phenotype of T5KO mice.  These experiments could provide valuable information on 

how inflammatory signals transmit to the brain to effect behavior. 

It is still unclear why the T5KO-microbiota treated mice did not show the same 

behavioral phenotype as the TLR5 knockouts.  I predict that the inflammation was 

localized to the gut, which would explain the physiological markers of inflammation we 

saw but would also explain the lack of behavioral change.  The T5KO-microbiota treated 

mice still have functioning TLR5 receptors in the gut, so they may act to attenuate the 
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inflammatory response.  This may lead to less systemic pro-inflammatory cytokine 

production, and thus less of an impact on the brain.  To determine where this pathway is 

interrupted, we need to do a careful examination of the microbiota, intestinal 

inflammation, systemic inflammation, neuroinflammation, and neuropeptide expression 

of the microbiota-treated mice.  However, it is possible that this experimental paradigm 

is insufficient to test the effect that T5KO microbiota have on behavior.  Because we 

colonized the parents of the tested animals, it is likely that the microbiota composition 

shifted close to that of the WT microbiota-treated mice.  We will be able to determine if 

this is the case once we receive the results of microbiota sequencing from these 

animals. 

If we wanted to more directly test whether T5KO microbiota impacts the behavior 

of WT mice, we could either colonize WT GF mice at birth or at weaning and assess 

their behavior in adulthood.  We chose not to do this initially due to the feasibility 

constraints of recolonizing at birth, and we wanted the microbiota-transplanted mice to 

have microbiota for their entire lives.  Recolonizing at weaning may be a good choice, 

because T5KO microbiota transplantation stabilize better when administered later in life, 

and there does not seem to be a developmental effect of T5KO microbiota (Fulde et al., 

2018). 

4.4 Implications for Human Health 

4.4.1 Comorbidity between gastrointestinal and CNS disorders 

Dysbiosis of the microbiota can have important implications for human health.  A 

rapidly accumulating body of evidence shows that microbiota composition can influence 

the etiology and progression of neurological and psychiatric disorders, such as anxiety 
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disorders, major depressive disorder, and autism spectrum disorders (Dinan and Cryan, 

2016; Lach et al., 2018).  For example, anxiety disorders have been linked to increased 

inflammation (Felger, 2018) and are often comorbid with gastrointestinal symptoms, 

suggesting a role for the gut microbiota in the expression of these disorders (Powell et 

al., 2017).  Specifically, patients with generalized anxiety disorder had lower levels of 

Faecalibacterium, Eubacterium rectale, Lachnospira, Butyricicoccus, and Sutterella, all 

genera that produce SCFA (Jiang et al., 2018; van de Wouw et al., 2018).  This 

suggests that patients with anxiety disorders may have increased gut permeability, due 

to deficits in the protective SCFA.  Furthermore, patients with anxiety disorders have 

higher levels of pro-inflammatory cytokines (Pitsavos et al., 2006; O’Donovan et al., 

2010; Duivis et al., 2013), suggesting that dysbiosis of the gut can lead to increased 

inflammation, and subsequently anxiety disorders. 

Patients with major depressive disorder have been shown to have increased 

microbial diversity, specifically increases in Bacteriodetes, Proteobacteria, and 

Actinobacteria, with decreases in Firmicutes (Jiang et al., 2015), whereas another group 

found a decrease in microbial diversity (Kelly et al., 2016).  In the largest study to date, 

depressed patients had decreased levels of the Coprococcus and Dialister genera, and 

butyrate-producing bacteria were associated with higher qualities of life (Valles-Colomer 

et al., 2019).  The inconsistent pattern of results suggests more research is needed to 

understand the role that microbiota play in major depressive disorders (Dinan and 

Cryan, 2019). Perhaps more important than the bacterial composition is the 

inflammatory potential of the microbiota, as inflammation is a key contributor to 

depression for some individuals (Derry et al., 2015).  Interestingly, cytokine-induced 
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sickness behavior strongly resembles depression, and antidepressants can alleviate 

some components of sickness behavior (Yirmiya et al., 1999).  Cytokine-induced 

sickness behavior may result in depressive-like behavior through reduction of 

tryptophan due to increased activation of the tryptophan metabolizer, indoleamine 2,3 

dioxygenase (IDO) (Wirleitner et al., 2003; Ruhé et al., 2007). IDO breaks down 

tryptophan into kynurenine, which can be transported across the BBB, then either into 

3-hydroxykynurenine (3-HK) and quinolinic acid (QA), or kynurenic acid (KA).  3-HK and 

QA is preferentially produced by microglia and tend to cause oxidative stress, whereas 

KA is produced by astrocytes and can be neuroprotective (Cervenka et al., 2017).  

Thus, activation of microglia may trigger this pathway to produce more 3-HK and QA, 

increasing the likelihood of depression.  Furthermore, increased breakdown of 

tryptophan by IDO can result in less tryptophan available for conversion to serotonin in 

the brain, which may contribute to a depressive phenotype (Delgado, 2000).  Finally, 

major depressive disorder is more common in patients receiving immunotherapy and 

ones that have chronic inflammatory disorders (Raison et al., 2006). 

Children with ASD show an altered gut microbiota composition, such as an 

increase in Clostridium, Bacteriodetes, and Lactobacillus, compared to higher numbers 

of Firmicutes in neurotypical controls, suggesting an imbalance of beneficial bacteria 

(Finegold et al., 2010; Adams et al., 2011).  Treatment of children with ASD with the 

antibiotic vancomycin, which preferentially affects the gut microbiome, alleviates autism 

symptoms (Finegold et al., 2002). Furthermore, children with ASD have a correlation 

between the severity of autism and gastrointestinal symptoms (Mulle et al., 

2013).  While these measures are correlative and it is highly likely that external factors 
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can contribute to these measures, as the diets of children with ASD are often different 

from neurotypical controls, there is a high likelihood that the microbiota plays a 

significant role in the onset and expression of ASD. 

Inflammatory gastrointestinal disorders and metabolic syndrome have high 

comorbidity with ASD, anxiety, and mood disorders (Härter et al., 2003; Adams et al., 

2011; de Sousa Rodrigues et al., 2017; Tang et al., 2017; Fowlie et al., 2018; Penninx 

and Lange, 2018b), but it is still unclear the direction of causality in these cases.  Using 

mouse models like T5KO mice to mimic the relationship between obesity, inflammation, 

and psychiatric disorders will bring us closer to understanding and treating these 

disorders.   

4.4.2 Dietary Considerations 

An interesting consequence of the recent popularity of investigating the gut 

microbiota is a refocus on diet as a way to improve human health.  We are discovering 

that dietary additives like emulsifiers and artificial sugars, added to provide a specific 

texture to food or reduce consumption of sugars, both promote intestinal inflammation 

and weight gain, as well as alter the gut microbiota (Chassaing et al., 2015; Palmnäs et 

al., 2014; Pepino, 2015; Suez et al., 2014; Swithers, Martin, Clark, Laboy, & Davidson, 

2010).  In the case of emulsifiers, we recently found that the detrimental effects of 

emulsifier consumption can increase anxiety-like behavior and decrease preference for 

social novelty in a sex-dependent manner, suggesting that the chemicals we add to our 

food may directly influence our behavior (Holder et al., 2019).   

Our dietary patterns are correlated with human health, with gut microbiota 

composition acting as a mediator.  The gut microbiota is shaped by diet, and changes to 
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the diet can result in rapid alterations to microbiota composition (David et al., 2014; 

Sheflin et al., 2017), so it is unsurprising that our dietary choices can greatly affect our 

health.  For example, diets high in fat can facilitate LPS translocation across the 

epithelial barrier, which can generate chronic inflammation, but diets high in dietary fiber 

tend to increase microbiota diversity (Caesar et al., 2015; Tap et al., 2015).  We are 

beginning to understand the health benefits of some popular diets, like the ketogenic 

and gluten-free diets.  In fact, we are finding that the ketogenic diet decreases bacterial 

diversity due to the lack of carbohydrates, but actually increased beneficial strains of 

bacteria, including Lactobacillus (Ma et al., 2018).  A ketogenic diet can also alleviate 

some of the symptoms of ASDs and can manage epilepsy in children (Newell et al., 

2016; Olson et al., 2018).  Food intake patterns can affect the gut microbiota as well, 

such as in intermittent fasting.  Intermittent fasting increases bacterial diversity, reduces 

IL-17 producing T cells, decreases obesity, and can ameliorate the disease progression 

of multiple sclerosis in a mouse model (Li et al., 2017a; Cignarella et al., 2018).  

Investigating the effect dietary choices have on the microbiome, and human health, can 

provide us with ways to take preventative steps against disease progression. 

4.5 Conclusions 

Our organ systems communicate with each other and the environment in a vast 

number of ways that we are only beginning to uncover.  From the gut microbiota, the 

gut, the immune system, the endocrine system, to the brain and behavior, a delicate 

balance of homeostasis is maintained.  Perturbations anywhere along this system can 

have long-lasting, deleterious impacts on human health.  Future experiments are 
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needed to mechanistically identify interactions between these systems in order to 

develop more effective treatments for both gastrointestinal and psychiatric disorders. 
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