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ABSTRACT

ESSAYS ON STATISTICAL ISSUES IN FINANCE

BY

HAITAO HUANG

JUNE 24, 2021

Committee Chair: Dr. Liang Peng

Major Academic Unit: Risk Management and Insurance

Empirical finance has growingly relied on statistical methods to draw inferences. Such fi-

nance applications require tailoring the methods to particular problems, especially when the

underlying assumptions are violated in the data. This dissertation studies the development

and application of statistical methodologies to address empirical problems in the contexts of

empirical asset pricing, household finance and investments.

The dissertation consists of four chapters. The first chapter gives an overview of the

empirical problems and associated statistical issues for three different finance settings: stock

return predictability, house price comovement and mutual fund performance. It also briefly

outlines the main contribution of this dissertation in each setting. The second chapter de-

velops a robust methodology of unit root testing and statistical inference for autoregressive

processes when the errors are heteroscedastic and heavy-tailed. Applications of the robust

test demonstrate that some commonly used financial ratios for stock return predictability

are highly persistent with unit roots. The third chapter introduces a new nonparametric



framework for estimating and testing comovements among U.S. regional home prices. Co-

movements are found to be strong in housing prices of four U.S. states, but there is little

empirical support for asymmetric tail dependence. The fourth chapter comprehensively stud-

ies the bootstrap inference problem in fund performance evaluation. It shows the inadequate

size and power properties of two existing bootstrap tests and develops the theory for a valid

bootstrap Hotelling’s T -squared test. The new bootstrap test, applied in a sequential testing

procedure, identifies a small set of skilled funds. Skilled funds are more engaged in active

management and hold stocks with higher expected anomalous returns.
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1

CHAPTER 1

Introduction

This dissertation is dedicated to developing statistical methodologies to understand some em-

pirical problems in finance research. In classical areas ranging from asset pricing to household

finance to active asset management, financial economists have increasingly embraced more

sophisticated statistical tools to extract information from data to test empirical hypotheses

and address economic questions. As a prime example, the mutual fund performance literature

has evolved from simply looking at the histogram of fund alphas and statistical significance

of individual t-statistics in Jensen (1968) to applying a multiple testing approach to control

for false discoveries in Barras, Scaillet, and Wermers (2010). Lending further support to this

burgeoning trend, as reviewed in Goldstein, Jiang, and Karolyi (2019) and Goldstein, Spatt,

and Ye (2021), is the applications of machine learning and big data techniques in emerging

fields such as financial technology and big data finance. The proliferation of data and rapid

development of statistics have arguably shifted the research landscape in the finance pro-

fession. This dissertation is uniquely situated at the interface of statistics and finance. It

tackles the challenges of validating and applying statistical approaches rigorous to distinctive

properties of financial data and suited to the specific economic question.

The dissertation begins with robust inference for financial ratios relevant for stock re-

turn predictability in Chapter 2. It is onerous to design an efficient predictability test as

the asymptotic property of the test depends on the properties of predictive variables. In
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particular, these variables are typically highly persistent and driven by heteroscedastic and

heavy-tailed innovations. Chapter 2 provides a robust and efficient inferential framework

for financial ratios following from possibly heavy-tailed AR-GARCH processes, including a

system of unit root tests and weighted least-squares estimation for the stationary case. The

methodology is applied to test the persistence of monthly financial ratios, confirming that

several commonly used ratios are unit root (non-stationary).

Chapter 3 is concerned with estimating and testing comovements in regional house

prices. Characterizations of house price comovements have important implications for the

risk management and valuation of mortgage-related securities. Existing approaches either

require restrictive parametric assumptions to estimate comovements or inefficient methods

to make inference. The chapter first introduces new measures of comovements that are more

coherent and interpretable than the existing one in literature. It then provides very flexible

nonparametric procedures to estimate comovements and conduct formal hypothesis test of

asymmetry in comovements. Empirically, the new measures and estimates reveal strong

evidence of both upper-tail and lower-tail comovements among several state housing prices.

On the contrary, the asymmetry test suggests very weak evidence of different degrees of

comovements between the two extreme tails or between two state pairs.

Motivated by the debate over whether any mutual funds are skilled, Chapter 4 system-

atically studies how to apply the bootstrap technique to separate skill from luck in mutual

funds. The chapter provides compelling insights into the inadequate size and power prop-

erties of existing bootstrap approaches in two influential finance studies. The main reason

is that existing methods adopt an unconventional test statistic and fail to account for the

unique features of mutual fund return data, in particular, a large cross-sectional dimension

relative to a small time-series dimension and the majority of funds having negative alphas.

Armed with the theoretical insights, the chapter further advances a valid bootstrap test

for independent fund residuals and extends the test to a more realistic setting where fund

returns are serially correlated and cross-sectionally dependent. The bootstrap test is then

implemented in a sequential testing procedure to select skilled mutual funds. The proposed
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fund evaluation approach suggests that a minority of mutual funds have skills to deliver

positive returns to investors, thus reconciling the opposing evidence in prior literature. This

result shows that the debate over mutual fund performance could be an artifact of inade-

quate statistical methods in previous studies. Further analysis of portfolios formed by the

selected funds indicates that skilled funds and unskilled funds differ dramatically both in

fund attributes and stock holdings.

The dissertation highlights how rigorous methodological developments can lead to addi-

tional empirical insights and sometimes drastically different economic conclusions. The main

message is that opportunities for and challenges with deploying statistical tools both abound

in financial economics. On the one hand, the quest in classical areas and revolution in new

frontiers provide fertile grounds for statistical methods to facilitate credible investigation

and improve empirical understanding in finance research. The adoption of state-of-the-art

techniques could lead to large economic gains where more primitive methods are inadequate.

This has been well evidenced across such areas as empirical asset pricing and corporate fi-

nance (Loughran and McDonald, 2011; Barillas and Shanken, 2018; Chordia et al., 2020; Gu

et al., 2020; Feng et al., 2020; Li et al., 2021). On the other hand, although it has become

increasingly important to import statistical tools to finance research, many of the assump-

tions based on which traditional statistical theories work are violated in financial data. It

is thus essential to examine the properties of data at hand and assess the applicability of

statistical methods in the specific context. Equally important, it is unequivocal to bear in

mind the economic problems to be addressed in designing or adapting new methods. Echoing

the messages conveyed in some recent developments in the finance literature, such as Harvey

and Liu (2020a) and Giglio, Liao, and Xiu (2020), ignoring these statistical issues could be

economically costly in empirical research.

In the following, I provide an overview of the empirical problems and underlying statis-

tical issues for the three finance fields and briefly outline the contribution of this dissertation

to each individual field.
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1.1 Stock Return Predictability

1.1.1 Empirical Problems and Statistical Issues

A central task in finance is to predict stock returns (equity premia) using available public

information, such as financial ratios and macroeconomic variables. Despite significant re-

search devoted to this task over the past decades, whether stock returns can be predicted re-

mains highly debated. Some earlier studies, including Fama and French (1988) and Campbell

and Shiller (1991), argue that long-horizon stock returns are highly predictable. Campbell

and Yogo (2006) develop an efficient predictability test and find evidence for predictability

with several financial variables, including dividend–price ratio, the smoothed earnings–price

ratio, the short rate and the long-short yield spread. Ang and Bekaert (2007) empirically

show that dividend yields together with the short rate predict excess returns at short hori-

zons and the predictive power vanishes at long horizons. Welch and Goyal (2008) investigate

both in-sample and out-of-sample predictability of predictors in linear regressions and bring

disheartening evidence that the linear models have poor predictive ability and unstable per-

formance. Lettau and Van Nieuwerburgh (2008) and Cochrane (2008) seek to reconcile the

debate, who both defend return predictability. Using a novel methodology accounting for

the time-series properties of financial variables, Kostakis, Magdalinos, and Stamatogiannis

(2015) document short-horizon predictability, which disappears in more recent data. They

further find that the predictability weakens as the predictive horizon is increased. Rapach,

Ringgenberg, and Zhou (2016) argue that short interest, when aggregated across firms and

detrended, is a very strong predictor of future stock returns. McLean and Pontiff (2016)

suggest that investors learn about mispricing from academic research, which reduces stock

return predictability.

Among many others, a common challenge confronting this literature is that the pre-

dictability is inferred from predictive regressions and thus depends on the reliability of sub-

sequent hypothesis tests. In particular, a valid predictability test depends on the uncertainty
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in the degree of persistence in predictive variables. When the predictive variable is highly

persistent with autoregressive roots extremely close to unity or being unity, conventional

t-test leads to invalid inference. Recognzing this challenge, Campbell and Yogo (2006) pro-

pose a new test by taking into account the degree of persistence with a Bonferroni procedure

and constructing the confidence intervals for both the predictive regression parameter and

the persistence parameter. However, this method excludes the case where the predictor is

stationary and only applies for a univariate predictor. As a response, Kostakis, Magdali-

nos, and Stamatogiannis (2015) develop a testing procedure that is robust to the degree of

predictor’s persistence and can test the joint predictive ability of multivariate predictors.

The robustness of this test is achieved via an instrumental variable estimation (IVX) pro-

cedure. More recently, Liu et al. (2019) observe that even the construction of instrumental

variables depends heavily on the degree of persistence, which could reduce the power of the

IVX test. They further build the difference of the predicting variable into the simple linear

predictive model and propose a unified predictability test regardless of the properties of the

predicting variable. In short, statistical inference robust to the time-series properties of pre-

dictive variables is indispensable for empirically testing the predictability of stock returns.

An immediate first step for designing such tests is then to investigate the properties of the

predictive variables themselves, especially whether they are stationary or unit-root.

1.1.2 Contributions

Chapter 2 makes several contributions for robust inference on financial time series rele-

vant to stock return predictability. On the methodological side, the paper develops a robust

unit root test for an autoregressive process with heavy-tailed and heteroscedastic errors.

The test applies the empirical likelihood method to weighted score equations and attains

a chi-squared limiting distribution. The paper also provides a robust inference procedure

when the AR process is stationary based on the weighted least-squares. In both cases, the

robustness is achieved through using a data-driven weighting function such that the esti-

mation and inference are valid without requiring prior knowledge on the moments of the
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errors. The efficiency comes from utilizing empirical likelihood to construct the test statistic

or confidence region and conduct inference based on the asymptotic chi-squared distribution.

Simulation studies confirm that the proposed methods perform well in finite samples. On

the empirical side, the paper examines the time-series properties of several commonly used

predictive variables, such as dividend-price ratio, dividend yield and term spread. As these

variables exhibit heteroscedasticity and heavy-tails, the robust testing procedure is applied

to pretest their degrees of persistence. The test does not reject the unit root null hypothesis

for any of the variables. Although the paper does not directly test the predictability of

these financial ratios, it is informative for properly formulating the models for such a study.

For instance, the strong evidence of non-stationarity supports the adjustment to the linear

predictive regression in Liu et al. (2019), as the traditional regression would imply that stock

returns are nonstationary when the predictive variables are unit-root.

1.2 House Price Comovement

1.2.1 Empirical Problems and Statistical Issues

Comovements in regional house prices, or the phenomenon that house prices move in

tandem across geographic areas, especially during extreme market upswings and downswings,

is an important stylized fact in the housing market (Glaeser and Gyourko, 2006; Del Negro

and Otrok, 2007; Shiller, 2007; Cotter et al., 2011; Kallberg et al., 2014; Landier et al.,

2017; Cohen et al., 2021). The recent Great Recession is associated with the simultaneous

booms and busts of the housing market. The four Sand States (Arizona, California, Florida,

Nevada) with similar housing cycles are acutely impacted, accounting for over 40% of mort-

gage foreclosures initiated nationally.1 The defining role of the housing bubble in triggering

the financial crisis prompts academics and policymakers to take a second look at housing

1Olesiuk, S.M. and K. Kalser. (2009). The Sand States: Anatomy of a Perfect Housing Market Storm.
FDIC Quarterly. https://www.fdic.gov/analysis/quarterly-banking-profile/fdic-quarterly/2009-vol3-1/vol3-
1-sand-states.pdf
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price comovements.

Comovements in regional housing markets have important implications for both policy

design and risk management. Davis and Heathcote (2005) demonstrate that residential in-

vestment leads the business cycle. Leamer (2007, 2015) argue that housing is the leading

precursor of the US business cycle. As regional recessions tend to comove across states and

propagate into larger contraction (Hamilton and Owyang, 2012), comovements in regional

housing markets must be studied to understand the transmission of business cycles and to

make effective national policies. On the other hand, comovements in regional housing prices

is particularly relevant for assessing the risk of mortgage-backed securities, such as collateral-

ized debt obligations (CDOs), that package mortgages from different locations into tranches.

Prior to the housing crisis, CDOs were perceived by rating agencies and investors alike as

providing diversification benefits. The misbelief then was that house prices in noncontigu-

ous regions are unlikely to experience simultaneous large declines. This underestimation of

comovements led to substantial losses in CDOs during the housing crisis as house prices

across states plunged around the same time. Coval, Jurek, and Stafford (2009) systemat-

ically explains how the pooling of mortgages and issuance of tranches result in significant

exposure to and rating errors in the default risks, which are responsible for the rise and fall of

CDOs. Therefore, accurate modeling and understanding of comovements are of paramount

importance economically.

The modeling of comovements and evaluation of CDO ratings mainly relied on the

Gaussian copula before the housing crisis, but its undesirable feature of tail independence

precludes the interdependence of house prices in extreme housing downturns and underes-

timates the magnitude of comovements. Due to the inadequacy of the Gaussian copula to

accommodate tail dependence, Zimmer (2012) proposes alternative copula specifications to

model comovements in housing prices. Zimmer (2012) estimates upper and lower tail de-

pendence through fitting parametric copulas (such as Clayton and Gumbel copulas) as the

joint distributions and a parametric family of marginal distributions (normal and student

t) to house price indices after filtering out the AR(1)-GARCH(1,1) components. A major
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drawback in this approach is that its success relies heavily on correct specifications of both

the copula and marginal distributions. To overcome the restrictive parametric specifications,

Ho, Huynh, and Jacho-Chávez (2016) propose to adopt a nonparametric copula estimator

and nonparametric smoothing distribution estimators for the marginals and construct boot-

strap confidence intervals to assess the asymmetry in tail dependence. While more flexible

and robust, the confidence intervals used in their inference are too wide to reach a convincing

conclusion surrounding the asymmetric tail dependence. A further concern for both studies

lies with the measure of comovements, defined as conditional probabilities of house price

changes in one location in relation to another. The measure, when used to test asymmetric

tail dependence, is inherently biased in the event of asymmetric house price distributions.

An earlier study by Croux, Forni, and Reichlin (2001) discusses the empirical relevance of

defining appropriate comovement measures for economic variables.

1.2.2 Contributions

Chapter 3 makes the following contributions. Methodologically, it improves the AR-

GARCH estimation procedure by taking into account the heavy-tailed feature of house price

indices. It also provides a novel set of comovement measures by correcting the bias in

the previous measure along with a very flexible nonparametric estimator. The measures

are defined based on either original house price changes or filtered price changes with AR-

GARCH estimation. Formal statistical tests for different degrees of tail dependence are

further proposed based on distance-based test statistics and bootstrapped critical values.

Empirically, the new comovement measures indicate that extreme house price movements

exhibit strong upper-tail and lower-tail dependence among the Sand States, and lower-tail

comovement dominates in most cases when the original house price changes are used. There

is little evidence that the comovements in market upturns and downturns are significantly

different, except for some neighboring states such as Arizona, California and Nevada. The

asymmetric tail dependence is only revealed when using the original series. Finally, the

chapter argues that the measures based on original observations instead of residuals are more
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advantageous for portfolio management. The state pairs with asymmetric tail dependence

are associated with larger diversification benefits when built into portfolios.

1.3 Mutual Fund Performance

1.3.1 Empirical Problems and Statistical Issues

A chief question sought after by a large finance literature is whether actively managed

mutual funds can create value to their clients. The literature stems from the foundational

work of Jensen (1968), who finds that mutual funds on average do not outperform even

gross of management expenses. The empirical evidence that mutual fund managers in gen-

eral perform below the market is viewed as in favor of the efficient markets hypothesis in

Fama (1965, 1970). This belief is further reinforced by the seminal work of Carhart (1997),

who concludes that there is little evidence to support the existence of skilled or informed

mutual fund managers. In a rational model, Berk and Green (2004) argue that, in equilib-

rium, the expected returns net of fees for investors are zero due to the competitive allocation

of capital to mutual funds and decreasing returns to scale in managerial ability. The con-

ventional wisdom has been challenged by a number of studies suggesting evidence of mutual

fund skill. Berk and van Binsbergen (2015) and Cremers et al. (2019) provide extensive

reviews on this literature. Despite this voluminous research, the debate over mutual fund

performance remains unresolved for many. If actively managed mutual funds cannot add

value to investors, the large active mutual fund industry would be only puzzling to com-

prehend. As of April 2021, a total of nearly 3000 US equity mutual funds manage over 20

trillion dollars of assets, accounting for around 40% of the total number and total net assets

of US mutual funds.2 On the contrary, the existence of skilled mutual fund managers would

imply that these agents have access to information to allow them to earn returns above the

markets, violating the market efficiency models.

2Release: Trends in Mutual Fund Investing, April 2021. (2021, May 27). ICI. Retrieved June 5, 2021,
from https://www.ici.org/research/stats/trends 04 21
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A major challenge in investigating fund performance is that skill is not directly observ-

able and has to be estimated in a risk-return framework, thus plagued by estimation noises

(luck). It is essential to distinguish whether a fund is genuinely skilled or appears to be so due

to luck. To separate skill from luck in fund performance, Kosowski et al. (2006) and Fama

and French (2010) apply bootstrap techniques to examine the cross-sectional distribution of

fund’s net alphas by simulating hypothetical funds with ex ante zero alpha. The bootstrap

procedures in the two studies differ over how to handle the dependence in fund returns.

The former is a standard fund-by-fund residual bootstrap whereas the latter bootstraps the

factors and fund residuals simultaneously in the cross-section. In essence, the bootstrap

approaches are used to conduct hypothesis tests on the statistical significance of the extreme

alphas. The two studies arrive at quite opposing conclusions on the extent to which skill

exists. Kosowski et al. (2006) conclude that a substantial number of fund managers have

superior stock-picking abilities. To the contrary, Fama and French (2010) find little evidence

of outperformance. Although the two intuitive bootstrap approaches have since gained wide

popularity in the financial economics literature, the strikingly different conclusions from the

studies fueled many to probe into comparing the two bootstrap tests. Recently, Harvey and

Liu (2020a) find through a simulation study that the Fama and French approach lacks test

power to detect skilled funds and suggest it as helping to reconcile the different findings in

Kosowski et al. (2006) and Fama and French (2010). Harvey and Liu (2020b) further com-

pare a variety of bootstrap implementations in terms of test size and power using simulations

from mutual fund data. They argue that the Kosowski et al. (2006) approach is substantially

over-sized while the Fama and French (2010) approach is under-sized and recommend adjust-

ing the Fama and French (2010) approach for future research. While the studies by Harvey

and Liu provide useful perspectives on thinking about the pitfalls of bootstrap approaches,

they do not give theoretical insights into statistical inference based on bootstrap. A formal

analysis is thus warranted for guiding future research in applying the bootstrap approach to

the evaluation of fund performance.
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1.3.2 Contributions

Chapter 4 contributes to the mutual fund performance literature in several aspects. It

first shows that the two bootstrap tests have inadequate properties when applied to mutual

fund data. Both tests have size distortions as the number of funds is much larger than the

typical time-series length of monthly returns. They could suffer from low power due to the

presence of a significant number of negative-alpha funds. The theoretical and analytical

insights are confirmed by Monte Carlo simulations. The chapter further validates a zero-

alpha test using Hotelling’s T -squared statistic with bootstrap calibration. This new test

is extended to the practical setting where fund residuals are serially correlated and cross-

sectionally dependent. Implemented with a sequential testing procedure, the new bootstrap

test is applied to select skilled funds. Empirical analyses indicate the existence of a small

minority of skilled funds. Skilled funds are more engaged in active management and hold

stocks with significantly different characteristics associated with higher expected anomalous

returns.
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CHAPTER 2

Robust Inference for an AR Process

Regardless of Finite or Infinite

Variance GARCH Errors
1

Abstract

Statistical inference in finance often depends on certain moment conditions such as finite or

infinite variance, yet it is practically challenging to disentangle these conditions. This article

develops a class of unified unit root tests for AR(1) models and a weighted least squares

estimator along with robust inference for a stationary AR(r) model regardless of finite or

infinite variance GARCH errors. The inferential framework applies the empirical likelihood

method to some weighted score equations without estimating the GARCH errors. In contrast

to extant unit root tests relying on bootstrap or subsampling methods to approximate critical

values, the proposed unit root tests can be easily implemented with critical values obtained

directly from a chi-squared distribution using the Wilks theorem. Extensive simulation

studies confirm the good finite sample performance of the proposed methods before we

1This chapter is based on the joint work: Huang, H., Leng, X., Liu, X., & Peng, L. (2020). Unified
inference for an AR process regardless of finite or infinite variance GARCH errors. Journal of Financial
Econometrics, 18(2), 425-470.
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illustrate them empirically with financial ratios for stock return predictability and HKD/USD

exchange rate returns.

2.1 Introduction

Start with the first-order autoregressive process (AR(1) process)

Xt = φXt−1 + et for t = 1, · · · , n, (2.1)

where et’s are random errors with zero mean. Testing for a unit root (i.e., H0 : φ = 1) has

a longstanding tradition in econometrics; see, for example, the recent review paper by Xiao

(2014). The recent research efforts in predictive regression highlight the complications in

deriving efficient tests of stock return predictability when the predictive variable is highly

persistent as a local-to-unity process (Phillips and Lee, 2013; Kostakis, Magdalinos, and

Stamatogiannis, 2015). A classical unit root test for model (2.1) is based on the least-

squares estimator (LSE) of φ, and the asymptotic theory of such a test depends on whether

et’s are independent or dependent and whether et has finite or infinite variance. We first

overview some existing studies on unit root testing, with particular focus on how the limit

is affected by the dependence and tail heaviness of et.

• When {et} is a stationary sequence with finite variance, Phillips (1987) derived the

asymptotic distribution of a t-test based on the LSE of φ when φ = 1− d/n, which is

non-normal.

• When et’s are independent with infinite variance, Chan and Tran (1989) derived the

asymptotic distribution of the LSE under the unit root null hypothesis, which has a

non-normal limit distinct from the case of finite variance. Chan (1990) further derived

the limit for the case of near unit root. Since the limit depends on the tail index of et

and tabulating critical values is impossible, Jach and Kokoszka (2004) developed unit

root tests using the subsampling method to approximate the null distribution of test

statistics, but the tests critically hinge on a practical choice of the subsample size and
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can be quite over-sized in finite samples. Samarakoon and Knight (2009) considered

Dickey-Fuller-type tests with infinite variance innovations based on M -estimators.

• When {et} is a linear stationary sequence with infinite variance, Phillips (1990) derived

the asymptotic distribution of the LSE, which is nonnormal and depends on the tail

index of et.

• When {et} is a stationary sequence with barely infinite variance in the sense that

E |et|δ < ∞ for any δ ∈ (0, 2), Kourogenis and Pittis (2008) proposed a unit root test

with a pivotal limit, but this test is not applicable to most cases of infinite variance,

where E|et|δ =∞ for some δ ∈ (0, 2).

• When et =
∑∞

j=0 cjσt−jεt−j with E ε4t <∞ and σt non-stochastic and strictly positive,

Cavaliere and Taylor (2007) proposed a unit root test with its limiting null distribution

depending on the behavior of σt, and the test requires simulation methods to operate

since, unlike the test in Phillips and Perron (1988), critical values cannot be tabulated.

• When the dependence of {et} follows some heteroscedastic time series model, Cava-

liere and Taylor (2009) proposed a unit root test with an asymptotic distribution not

requiring finite variance of et, but depending on both the standardized error process

and the conditional volatility process. By assuming the independence between the

conditional volatility process and the standardized error process, which excludes the

well-known stationary GARCH models (defined in Equation (2.2) below) for et, Cava-

liere and Taylor (2009) justified the applicability of a wild bootstrap scheme to obtain

critical values.

• When {et} is a GARCH(1,1) process, Chan and Zhang (2010) derived the asymptotic

distribution of the LSE for φ under the unit root null hypothesis, which is nonnormal

and different for the cases of finite and infinite variance of et.

• When et =
∑∞

i=0 γiεt−i, εt has infinite variance and is in the domain of attraction

of a stable law with index between zero and two, Cavaliere et al. (2018) derived the
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asymptotic null distributions of two augmented Dicky-Fuller (ADF) test statistics for

unit root inference, which depend on the unknown stable law index, and provided a

sieve wild bootstrap algorithm to approximate the critical values under the assumption

that εt has a symmetric distribution.

It is clear from the above theoretical developments that dependence and infinite variance

in innovations complicate a unit root test. Although the distinction between finite and

infinite variance is typically ambiguous to practitioners, a unit root test heavily depends on

how to handle extreme values when infinite variance innovations may be present. When a

parametric distribution family is fitted to data, one can test for finite variance via parameter

estimation. However, nonparametric test for finite variance is extremely challenging. In

practice, one often assumes that the underlying distribution is heavy-tailed and employs

tail index estimation in extreme value theory such as the pervasively used Hill estimator in

Hill (1975). To further motivate the unit root test robust against dependence and infinite

variance of innovations proposed in the present paper, we refer the readers to the real data

analysis on financial ratios for stock return predictability in Section 2.4. There we employ

the Hill estimator to estimate the tail indexes for several predictive variables using monthly

data during the periods 1953–2016 and 1976–2016. The Hill estimates indicate that the data

after 1976 may have infinite variance. Therefore, for robustness in theory and applicability

in practice, there is certainly a need to develop valid unit root inference procedures without

a prior on finite or infinite variance in innovations.

There have been some efforts in response to search for robust unit root tests suited to

heavy-tailed errors. For unit root testing with independent et’s, the m-out-of-n bootstrap

method based on the LSE can be employed to obtain critical values under infinite variance

(Ferretti and Romo, 1996). However, this test is not powerful and has difficulty in choosing

the bootstrap sample size m, which satisfies m = m(n) → ∞ and m/n → 0 as n → ∞.

When et is a linear process with symmetrically distributed innovations, a sieve wild bootstrap

approach can be validly applied in ignorance of whether the innovations display finite or

infinite variance (Cavaliere et al., 2018). The sieve wild bootstrap ADF unit root test allows
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for AR(∞) errors, but cannot deal with cases involving GARCH errors. The restrictive

symmetry assumption also hinders its applicability in practice. A common limitation these

tests share is the necessity of computational intensive bootstrap simulations to compute

critical values to conduct inference.

The first contribution of this paper is to provide an empirical likelihood based unit root

test when {et} follows from a GARCH(p, q) model in Engle (1982) and Bollerslev (1986),

defined as

et = σtεt, σ2
t = α0 +

p∑
i=1

αie
2
t−i +

q∑
j=1

βjσ
2
t−j, (2.2)

where α0 > 0, αi ≥ 0 (i = 1, 2, ..., p), βj ≥ 0 (j = 1, 2, ..., q) and {εt} is a sequence of

independent and identically distributed random variables with zero mean and unit variance.

The proposed unit root test applies the empirical likelihood method to some weighted score

equations and attains a chi-squared limiting null distribution. As a consequence, it can

be implemented without estimating the unknown parameters in et’s and without using a

bootstrap or simulation method to obtain critical values. Note that under some conditions

given in Section 2.2, {et} in model (2.2) may have infinite variance. Hence, the test is robust

against infinite variance innovations.

The test for model (2.1) is extended to models where deterministic components may be

present, in particular, the model with a constant term, i.e.,

Xt = µ+ φXt−1 + et for t = 1, · · · , n, (2.3)

and the model with both a constant and a time trend, i.e.,

Xt = µ+ γt+ Ut, Ut = φUt−1 + et for t = 1, · · · , n. (2.4)

It is well-known that the test for a unit root based on the LSE has a different limit with

a different rate of convergence depending on whether µ is zero or nonzero (Phillips, 1987).

Importantly, unit root tests under our empirical likelihood framework for these models all

have the Wilks-type asymptotic null distribution for both finite and infinite variance innova-

tions without knowledge of whether µ = 0. Unlike Cavaliere et al. (2018), the test developed
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in this paper does not impose the symmetry assumption on the innovations and allows for

straightforward computation of the exact critical values from the chi-squared null distribu-

tion, but depends on the order in the GARCH errors and needs a pseudo sample when the

AR(1) model includes a deterministic component. In cases of models (2.1) and (2.3), further

extensions are made to deal with higher-order AR models admitting the ADF form.

Once the unit root hypothesis is rejected, one may be interested in inference for a sta-

tionary autoregressive process of order r (AR(r) process) driven by possibly infinite variance

innovations, without using a bootstrap or simulation method to obtain critical values for in-

terval estimation or hypothesis testing. Before providing such an inference procedure which

fully exploits the heavy tails of the innovations, we again first review extant results on in-

ferring a stationary AR(r) process. The recurring feature of this literature is that the limit

theory is contingent on the dependence structure and heavy tails in innovations.

For a stationary AR(r) process with independent errors, the limiting distribution of the

LSE is normal (nonnormal) for finite (infinite) variance errors (Davis and Resnick, 1985,

1986). Extension to infinite variance linear processes is given by Cavaliere et al. (2016).

Statistical inference regardless of finite or infinite variance requires some computationally

intensive method such as m-out-of-n bootstrap or wild bootstrap to obtain critical values

when the errors are independent or follow a linear process.

For a stationary AR(r) process with G-GARCH noises, which includes GARCH(p, q)

model as a special case, Zhang and Ling (2015) derived the asymptotic distribution of the

LSE for the coefficients in the AR(r) part, which depends on whether the tail index of the

G-GARCH noises belongs (or is equal) to (0, 2), 2, (2, 4), 4 or (4,∞). In particular, the

LSE is inconsistent when the tail index is less than 2, which is different from the case of

independent errors. Hence, the LSE cannot be used in inference for φ regardless of the tail

heaviness of et when {Xt} in model (2.3) is stationary with {et} being a GARCH sequence.

Note that, for model (2.3) with |φ| < 1 and et’s satisfying model (2.2), Lange (2011) showed

Xt has the same tail index as et.

For a stationary ARMA process with GARCH errors, the asymptotic normality of the
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quasi-maximum likelihood estimator requires finite fourth moment for both the sequence

itself and the standardized errors in the GARCH model, i.e., both Ee4
t < ∞ and Eε4t < ∞

(Francq and Zakoian, 2004). For a stationary AR process with ARCH errors, Lange et al.

(2011) proposed estimators with a normal limit when the noise in the ARCH errors has a

symmetric distribution and the ARCH errors have finite variance. For a stationary ARMA

process with GARCH errors, Hill (2015) proposed a trimmed estimator with a normal limit

when the noise in the GARCH errors, i.e., εt in model (2.2), has a symmetric distribution

and the density of the GARCH error, i.e., the density of et, is bounded, and Zhu and

Ling (2015) proposed a self-weighted least absolute deviation estimator (SLADE) for the

coefficients in the ARMA part without restriction on the moments of GARCH errors and

without estimating the unknown parameters in GARCH errors when the innovations in the

GARCH model have zero median instead of zero mean. Therefore, in order to employ this

SLADE to perform inference for φ in model (2.3) regardless of the tail heaviness of et, a model

transformation is indispensable to change the assumption of zero mean for εt in model (2.2)

to that of zero median. This would be a significant change for skewed data. Some other

issues on reparameterization for GARCH sequences are discussed in Fan et al. (2014).

The above review motivates the second contribution of this paper, which is a robust in-

ference procedure for the parameters in a stationary AR process allowing for infinite variance

GARCH errors. Specifically, since the LSE may be inconsistent as showed in Zhang and Ling

(2015), we propose a weighted least squares estimator (WLSE) and an empirical likelihood

method to construct a confidence region for AR parameters, which work without restriction

on the moments of ARCH errors and under the assumption of a little more than finite first

moment for GARCH errors. Like Zhu and Ling (2015), the new method does not need to

estimate the unknown parameters in the GARCH model; hence it is robust and computa-

tionally convenient. But unlike Zhu and Ling (2015), we assume εt in model (2.2) has zero

mean rather than zero median. An empirical comparison shows that the proposed WLSE

performs better than the SLADE in Zhu and Ling (2015). Since the proposed estimator has

an explicit formula, it requires neither an initial value nor an optimization procedure for
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implementation unlike the SLADE in Zhu and Ling (2015). We refer the readers to Section

2.3 for details.

We also remark that the proposed empirical likelihood method is totally different from

the empirical likelihood inference in Hill and Prokhorov (2016) since we are interested in the

AR part without estimating the GARCH part except exploiting the GARCH structure, while

Hill and Prokhorov (2016) considered GARCH models rather than AR-GARCH models.

Indeed, it is not straightforward to generalize the method in Hill and Prokhorov (2016) to

AR-GARCH models, which will require trimming et and εt simultaneously.

We organize this article as follows. Section 2.2 presents the methodologies and main

results for the proposed unit root tests via an empirical likelihood method, a weighted

least squares estimator and the associated empirical likelihood inference for stationary AR

processes. The results of simulation studies and comparison with existing methods in finite

samples are summarized in Section 2.3. Applications to several data sets in finance are

provided in Section 2.4. Section 2.5 concludes. All proofs are given in Section 2.6.

2.2 Methodologies and Main Results

This section proceeds as follows. Subsection 2.2.1 introduces the basic assumptions. Subsec-

tion 2.2.2 expounds the empirical likelihood based unit root test. Subsection 2.2.3 develops

the robust estimation and inference for stationary AR processes through the weighted least

squares and empirical likelihood approaches. While the results in these two subsections are

derived when the AR processes are driven by ARCH errors, we demonstrate in Subsection

2.2.4 that they can be conveniently generalized to the case of GARCH errors.
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2.2.1 Assumptions

Define the (p + q− 1)× (p + q− 1) matrix

At =



α1ε
2
t + β1 β2 . . . βq−1 βq α2 α3 . . . αp

1 0 . . . 0 0 0 0 . . . 0

0 1 . . . 0 0 0 0 . . . 0

...
...

. . .
...

...
...

...
. . .

...

0 0 . . . 1 0 0 0 . . . 0

ε2t 0 . . . 0 0 0 0 . . . 0

0 0 . . . 0 0 1 0 . . . 0

...
...

. . .
...

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . 1 0



,

and denote the Euclidean norm in Rp+q by | · | and the operator norm for matrix At by

‖At‖ = sup|x|=1 |Atx|. Then the Lyapunov exponent for the sequence of random matrices

{At} is given by

γ = inf

{
1

n
E (ln ‖A1 · · ·An‖), n ∈ N

}
.

When Equation (2.2) holds with α0 > 0 and γ < 0, it follows from Theorem 3.1 of Basrak

et al. (2002) that i) there exists a unique strictly stationary causal solution to Equation

(2.2) if E ln(max(|ε1|, 1)) < ∞; ii) {et} is strongly mixing with geometric rate if ε1 has a

density positive in an interval containing zero; iii) et has a regularly varying tail under some

conditions.

Hence, throughout the paper, we impose the following assumptions for the GARCH(p, q)

model in Equation (2.2):

C1. α0 > 0, γ < 0, and E |ε1|2+d∗ <∞ for some d∗ > 0;

C2. E ln(max(|ε1|, 1)) <∞;
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C3. {εt} is a sequence of independent and identically distributed random variables

with E εt = 0, E ε2t = 1 and a density positive in an interval containing zero.

Note that C1 still allows Ee2
t =∞ and the distribution of εt can be asymmetric.

2.2.2 Empirical Likelihood Based Unit Root Test

To better appreciate the new methodologies, we first consider the AR(1) model without

a constant term in Equation (2.1) driven by ARCH(p) errors, i.e., Equation (2.2) holds with

p ≥ 1, q = 0. In order to construct an interval for φ, Chan et al. (2012) proposed to apply

the empirical likelihood method in Qin and Lawless (1994) to the weighted score equation

n∑
t=1

{Xt − φXt−1}
Xt−1√

1 +X2
t−1

= 0

when E e2
t <∞. We refer to Owen (2001) for an overview of the empirical likelihood method.

As argued above, when et follows Equation (2.2), we could have E e2
t =∞. In this case, the

methods in Chan et al. (2012) and Hill et al. (2016) fail. Since we still have E ε2t < ∞,

we could use another weight to bound σt by noting Xt − φ0Xt−1 = σtεt so as to apply the

empirical likelihood method to the independent and identically distributed εt’s, which have

finite variance. Here and throughout, φ0 denotes the true value of φ. Under H0 : φ0 = 1, we

could use the simple weight function 1 +
∑m

k=1(Xt−k −Xt−k−1)2 for some m ≥ p to bound

σ2
t since

σ2
t = α0 +

∑p
k=1 αk(Xt−k −Xt−1−k)

2

≤ max{α0, α1, · · · , αp}{1 +
∑m

k=1(Xt−k −Xt−1−k)
2}.

This motivates us to consider the following empirical likelihood method.

Put

Yt(φ) = {Xt − φXt−1}
Xt−1√

(1 +X2
t−1)

{
1 +

∑m
k=1 (Xt−k −Xt−k−1)2} for t = 1, ..., n.

We then define the empirical likelihood function for φ as

L(φ) = sup

{
n∏
t=1

(npt) : p1 ≥ 0, ..., pn ≥ 0,
n∑
t=1

pt = 1,
n∑
t=1

ptYt(φ) = 0

}
.
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By the Lagrange multiplier technique, we obtain pt =
1

n{1 + λYt(φ)}
and the log empirical

likelihood ratio

l(φ) = −2 logL(φ) = 2
n∑
t=1

log{1 + λYt(φ)},

where λ = λ(φ) satisfies

1

n

n∑
t=1

Yt(φ)

1 + λYt(φ)
= 0. (2.5)

The following theorem shows that the proposed empirical likelihood method gives a unit

root test regardless of finite or infinite variance ARCH errors.

Theorem 2.1. Suppose models (2.1) and (2.2) with p ≥ 1, q = 0 satisfy conditions C1–C3.

Choose m ≥ p. Then, under H0 : φ0 = 1, we have l(1)
d→ χ2

1 as n→∞, where χ2
1 denotes a

chi-squared random variable with one degree of freedom.

Based on Theorem 2.1, we reject H0 : φ0 = 1 at the significance level τ if l(1) > χ2
1,1−τ ,

where χ2
1,1−τ denotes the (1− τ)th quantile of a chi-squared distribution with one degree of

freedom.

Note that the key idea in the above proposed test is to find a proper weight function

to bound σt. Hence the proposed methodology works for other forms of σt as long as such a

weight function is available.

To evaluate the power of the above proposed empirical likelihood test, we further assume

that

C4. There exist δ ∈ (1, 2] and a slowly varying function L(n) (i.e., L(nx)/L(n) → 1

for any x > 0 as n → ∞) such that
∑[ns]
t=1 et

n1/δL(n)
weakly converges to W̃δ(s) in D([0, 1])

(the space of functions on [0, 1] which are right-continuous and have left-hand limits,

see Billingsley, 1999), where {W̃δ(s) : 0 < s ≤ 1} is a stable process for δ < 2 and a

Gaussian process for δ = 2.

Remark 2.1. When et has a heavy-tailed distribution with index δ, the above condition C4

is true under some regularity conditions on the stationarity. For example, Theorem 2.1 of
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Chan and Zhang (2010) shows that conditions C1–C3 imply condition C4. Following the

proofs of Lemmas 1–3 of Zhang and Ling (2015) in deriving the convergence of
∑n

t=1 etet−l,

it is less complicated to derive the convergence of
∑n

t=1 et. Hence, we could also show that

C4 holds for G-GARCH errors with the same regularity conditions as in Zhang and Ling

(2015).

Theorem 2.2. Suppose conditions of Theorem 2.1 and condition C4 hold. Then under

Ha : φ0 = 1− d1
n1/2+1/δL(n)

for some constant d1 ∈ R, we have

l(1) =

{
sgn(J̃δ(1)) 1√

n

∑n
t=1

et√
1+

∑m
k=1 e

2
t−k
− d1∆2

∫ 1

0
|J̃δ(s)| ds

}2

∆1

+ op(1),

where ∆1 = E
(

σ2
t

1+
∑m
k=1 e

2
t−k

)
, ∆2 = E

(
1√

1+
∑m
k=1 e

2
t−k

)
, J̃δ(s) = W̃δ(s) −

d1d̄1

∫ s
0
W̃δ(r)e

−(s−r)d1d̄1 dr, d̄1 = limn→∞
n

n1/2+1/δL(n)
and sgn(x) is the sign function.

Remark 2.2. When δ < 2 or δ = 2 but limn→∞ L(n) =∞, we have δ̄1 = 0. Note that

1√
n

n∑
t=1

et√
1 +

∑n
k=1 e

2
t−k

=
1√
n

n∑
t=1

εt
σt√

1 +
∑m

k=1 e
2
t−k

d→ N(0,∆1).

Therefore, the power of the above empirical likelihood unit root test tends to one as |d1| → ∞.

Remark 2.3. Let φ̂ =
∑n

t=1XtXt−1/
∑n

t=1X
2
t−1 denote the least squares estimator. When

{et} is a GARCH(1,1) sequence, i.e., Equation (2.2) with p = q = 1, Chan and Zhang

(2010) showed that n(φ̂ − φ0) = Op(1) regardless of the tail heaviness of et. When et’s are

independent, we still have n(φ̂ − φ) = Op(1) for either finite variance (Phillips, 1987) or

infinite variance (Chan, 1990). Therefore, a unit root test based on φ̂ has a nontrivial power

and is strictly less than one only when φ0 = 1−d0/n regardless of finite or infinite variance.

In comparison, as showed in Theorem 2.2, the power of the proposed empirical likelihood

unit root test tends to one when φ0 = 1− d0/n and et has infinite variance (i.e., d̄1 = 0 and

d1 =∞ in Theorem 2.2). In other words, the new unit root test is much more powerful than

a test based on the least squares estimator when the errors have infinite variance. This is not

surprising as the proposed test takes some information on the error structure into account.
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Next, we consider the AR(1) model with a constant term in Equation (2.3) with errors

satisfying Equation (2.2) and p ≥ 1, q = 0. As above, one may apply a similar empirical

likelihood method to the following weighted score equations
∑n

t=1{Xt − µ− φXt−1}
1√

1 +
∑m

k=1(Xt−k −Xt−k−1)2
= 0,∑n

t=1{Xt − µ− φXt−1}
Xt−1√

(1 +X2
t−1){1 +

∑m
k=1(Xt−k −Xt−k−1)2}

= 0.
(2.6)

It is easy to show that

1√
n

n∑
t=1

{Xt − µ0 − φ0Xt−1}
1√

1 +
∑m

k=1(Xt−k −Xt−k−1)2

has a normal limit with mean zero and variance E e2t
1+

∑m
k=1(Xt−k−Xt−k−1)2

under H0 : φ0 = 1.

Also, when φ0 = 1, we have |Xt|/
√

1 +X2
t

p→ 1 as t→∞, which implies that

1√
n

n∑
t=1

{Xt − µ0 − φ0Xt−1}
Xt−1√

1 +X2
t−1

√
1 +

∑m
k=1(Xt−k −Xt−k−1)2

converges in distribution to a normal distribution with mean zero and variance

E e2t
1+

∑m
k=1(Xt−k−Xt−k−1)2

. Unfortunately, when φ0 = 1 and µ0 = 0,

1

n

n∑
t=1

{Xt − µ0 − φ0Xt−1}2 Xt−1√
1 +X2

t−1{1 +
∑p

k=1(Xt−k −Xt−k−1)2}
does not converge in probability since the normalized X[ns] converges in distribution, where

[·] denotes the integer part and s ∈ (0, 1]. Therefore, the joint limit of the two normalized

terms in the left hand sides of Equation (2.6) is not bivariate normal, which means that a

direct application of empirical likelihood fails to achieve a chi-squared limit, i.e., the Wilks

theorem does not hold. As in Li et al. (2014), to solve this difficulty, we employ the idea of

adding a pseudo sample and changing the weight function
√

1 +X2
t−1 in the second equation

to another weight function {1 +X2
t−1}0.75, which has a faster rate of convergence to infinity

in the case of unit root. More specifically, we define

Ỹt1(µ, φ) = {Xt − µ− φXt−1}
1√

1 +
∑m

k=1(Xt−k −Xt−k−1)2
,

Ỹt2(µ, φ) = {Xt − µ− φXt−1}
Xt−1

{1 +X2
t−1}0.75

√
1 +

∑m
k=1(Xt−k −Xt−k−1)2

+Wt,
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and Ỹt(µ, φ) = (Ỹt1(µ, φ), Ỹt2(µ, φ))T , where Wt’s are simulated independent random vari-

ables from N(0, σ̄2), and σ̄2 > 0 is chosen to be larger than E {Ỹt2(µ0, 1) −Wt}2 with µ0

being the true value of µ. Note that, for a large n, E {Ỹt2(µ0, 1) − Wt}2 will be much

smaller than E Ỹ 2
t1(µ0, 1) in the case of near unit root or unit root due to the fact that

Xt−1/(1 + X2
t−1)0.75 p→ 0 as n → ∞. For the choice of σ̄, a large σ̄ results in an accurate

size, and a small σ̄ leads to a good power. In our simulation study and data analysis, we

choose σ̄ = 1.5
√

E Ỹ 2
t1(µ0, 1), where E Ỹ 2

t1(µ0, 1) can be estimated by using the weighted least

squares estimator µ̃ for µ via solving

n∑
t=1

{Xt − µ−Xt−1}
1√

1 +
∑m

k=1(Xt−k −Xt−k−1)2
= 0. (2.7)

The consistency of µ̃ under H0 : φ0 = 1 easily follows from the law of large numbers for mar-

tingale differences, the stationarity of {et} and the fact that σt/
√

1 +
∑m

k=1(Xt−k −Xt−k−1)2

is bounded by a constant uniformly for t = 1, · · · , n. The reason for choosing the weight

(1 +X2
t−1)0.75 in Ỹt2(µ, φ) is to have the first term disappear in the unit root case so that Wt

dominates. On the other hand, we do not want the first term to disappear too fast for the pur-

pose of power. More detailed explanations can be found in Li et al. (2014). Furthermore, in

order to avoid the effect of a random seed in generating Wt’s, we use Wt = 1√
10000

∑10000
i=1 Wt,i

in our simulation study, where the Wt,i’s are independent random variables from N(0, σ̄2).

Based on {Ỹt(µ, φ)}nt=1, we define the empirical likelihood function for (µ, φ) as

L̃(µ, φ) = sup

{
n∏
t=1

(npt) : p1 ≥ 0, · · · , pn ≥ 0,
n∑
t=1

pt = 1,
n∑
t=1

ptỸt(µ, φ) = 0

}
.

Since we are interested in φ, we consider the profile empirical likelihood function L̃P (φ) =

maxµ L̃(µ, φ) and put l̃(φ) = −2 log L̃P (φ). Note that µ̃ in solving Equation (2.7) can be

employed as an initial value for computing the above profile empirical likelihood function.

The following theorem shows that the proposed profile empirical likelihood method gives

a unit root test for H0 : φ0 = 1 without restriction on the moments of the errors.

Theorem 2.3. Suppose models (2.3) and (2.2) with p ≥ 1, q = 0 satisfy conditions C1–C3.

Choose m ≥ p. Then, under H0 : φ0 = 1, we have l̃(1)
d→ χ2

1 as n→∞.
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As before, a test for H0 : φ0 = 1 at the level τ is to reject H0 when l̃(1) > χ2
1,1−τ .

A similar power analysis as in Theorem 2.2 is presented in Theorem below, which clearly

shows that the power depends on whether µ0 = 0 or not. For this task, we need the following

assumption on the oscillation of a stable process:

C5. There exists δ ∈ (1, 2] such that Sn(s)/n1/δ weakly converges to W̃δ(s) in D([0, 1]),

where Sn(s) =
∑[ns]

t=1 et and {W̃δ(s) : 0 < s ≤ 1} is a stable process for δ < 2 and a

Gaussian process for δ = 2. Moreover, for α ∈ (0, 1), there exists a process Γα(s, t)

such that

sup
1≤s≤1,0≤r≤n1−α

∣∣∣∣Sn(s− srnα−1)− Sn(s)

nα/δ
− Γα(s, r)

∣∣∣∣ = op(1).

Theorem 2.4. Suppose conditions of Theorem 2.3 hold.

i) Assume µ0 = 0 and condition C5 holds with α = δ/(2δ − 1). Then under Ha : φ0 =

1− d1
nα

for some constant d1 > 0, we have

l̃(1) =
(n−1/2

∑n
t=1 Wt + d1d2∆2)2

EW 2
1

+ op(1),

where

d2 =

{∫ 1

0

L∗(s) ds

}{∫ 1

0

L∗(s)|L∗(s)|−3/2 ds

}
−
∫ 1

0

|L∗(s)|1/2 ds

with L∗(s) = −
∫∞

0
e−d1sr dΓα(s, r), and ∆2 is defined in Theorem 2.2.

ii) Assume µ0 6= 0 and condition C4 holds. Then under Ha : φ0 = 1 − d1
n

for some

constant d1 ∈ R, we have

l̃(1) =
(n−1/2

∑n
t=1 Wt + |µ0|1/2d1d3)2

EW 2
1

+ op(1),

where

d3 =
E
∫ 1
0

f(s;d1)√
1+

∑m
k=1

(−µ0e
−d1s+et−k)2

ds

E
∫ 1
0

1√
1+

∑m
k=1

(−µ0e
−d1s+et−k)2

E
∫ 1

0
f−1/2(s;d1)√

1+
∑m
k=1(−µ0e−d1s+et−k)2

ds

−E
∫ 1

0
f1/2(s;d1)√

1+
∑m
k=1(−µ0e−d1s+et−k)2

ds

with f(s; d1) = {1− e−sd1}/d1 ≥ 0 for s ≥ 0.



27

Remark 2.4. Theorem 2.4 shows that the power of the proposed empirical likelihood test

goes to one as |d1| → ∞. By noting that |1−φ0| in Theorem 2.2 is a smaller order than that

in Theorem 2.4 for the case of µ0 = 0, we conclude that the empirical likelihood method for

model (2.1) is more powerful than that for model (2.3), which is not surprising at all since

the method for model (2.3) accommodates a nonzero drift in AR processes.

The above proposed empirical likelihood methods can be extended straightforwardly to

an AR(r) model in the so-called ADF form as follows:

Xt = φXt−1 +
r∑

j=1

φj(Xt−j −Xt−j−1) + et (2.8)

and

Xt = µ+ φXt−1 +
r∑

j=1

φj(Xt−j −Xt−j−1) + et, (2.9)

where et satisfies model (2.2).

For model (2.8), put θ = (φ1, · · · , φr)
T and define for i = 1, · · · , r and t = 1, · · · , n

Y ∗t,1(φ,θ) =

{
Xt − φXt−1 −

r∑
j=1

φj(Xt−j −Xt−j−1)

}
Xt−1√

(1 +X2
t−1){1 +

∑m
k=1(Xt−k −Xt−k−1)2}

,

Y ∗t,i+1(φ,θ) =

{
Xt − φXt−1 −

r∑
j=1

φj(Xt−j −Xt−j−1)

}
Xt−i −Xt−i−1√

1 +
∑m

k=1(Xt−k −Xt−k−1)2
,

Y ∗t (φ,θ) = (Y ∗t,1(φ,θ), · · · , Y ∗t,r+1(φ,θ))T ,

and the empirical likelihood function as

L∗(φ,θ) = sup

{
n∏
t=1

(npt) : p1 ≥ 0, · · · , pn ≥ 0,
n∑
t=1

pt = 1,
n∑
t=1

ptY
∗
t (φ,θ) = 0

}
.

Again, we consider the profile empirical likelihood function LP∗(φ) = maxθ L
∗(φ,θ) and put

l∗(φ) = −2 logLP∗(φ).

Theorem 2.5. Suppose models (2.8) and (2.2) with p ≥ 1, q = 0 satisfy conditions C1–C3.

Further assume {Xt−Xt−1} is a strictly stationary sequence when φ0 = 1 and condition C4

holds. Choose m ≥ p + r. Then, under H0 : φ0 = 1, we have l∗(1)
d→ χ2

1 as n→∞.
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For model (2.9), put θ = (µ, φ1, · · · , φr)
T and define for i = 1, · · · , r and t = 1, · · · , n

Ỹ ∗t,1(φ,θ) =

{
Xt − µ− φXt−1 −

r∑
j=1

φj(Xt−j −Xt−j−1)

}
1√

1 +
∑m

k=1(Xt−k −Xt−k−1)2
,

Ỹ ∗t,2(φ,θ) =

{
Xt − µ− φXt−1 −

r∑
j=1

φj(Xt−j −Xt−j−1)

}
Xt−1

{1 +X2
t−1}0.75

√
1 +

∑m
k=1(Xt−k −Xt−k−1)2

+Wt,

Ỹ ∗t,i+2(φ,θ) =

{
Xt − µ− φXt−1 −

r∑
j=1

φj(Xt−j −Xt−j−1)

}
Xt−i −Xt−i−1√

1 +
∑m

k=1(Xt−k −Xt−k−1)2
,

Ỹ ∗t (φ,θ) = (Ỹ ∗t,1(φ,θ), · · · , Ỹ ∗t,r+2(φ,θ))T ,

and the empirical likelihood function as

L̃∗(φ,θ) = sup

{
n∏
t=1

(npt) : p1 ≥ 0, · · · , pn ≥ 0,
n∑
t=1

pt = 1,
n∑
t=1

ptỸ
∗
t (φ,θ) = 0

}
.

As before, we consider the profile empirical likelihood function L̃P∗(φ) = maxθ L̃
∗(φ,θ) and

put l̃∗(φ) = −2 log L̃P∗(φ).

Theorem 2.6. Suppose models (2.9) and (2.2) with p ≥ 1, q = 0 satisfy conditions C1–C3.

Further assume {Xt−Xt−1} is a strictly stationary sequence when φ0 = 1. Choose m ≥ p+r.

Then, under H0 : φ0 = 1, we have l̃∗(1)
d→ χ2

1 as n→∞.

Remark 2.5. As we have to treat φi’s as nuisance parameters, it remains unknown how to

extend the proposed methods to the case of r =∞ in the above two theorems. Also we fail to

derive the asymptotic behavior of X[ns], which prevents us from analyzing the power of the

proposed tests in Theorems 2.5 and 2.6.

We now extend the unit root testing framework to the AR(1) model in Equation (2.4)

with both a constant and a time trend, which implies that

Xt = (µ− µφ+ φγ) + γ(1− φ)t+ φXt−1 + et.

For testing H0 : φ0 = 1, as before, we consider weighted scores with re-

spect to µ∗ := µ − µφ + φγ, γ∗ := γ(1 − φ) and φ. Specifically, define
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Ȳt1(µ∗, γ∗, φ) = {Xt − µ+ µφ− φγ − γ(1− φ)t− φXt−1}
1√

1 +
∑m

k=1(Xt−k −Xt−k−1)2
,

Ȳt2(µ∗, γ∗, φ) = {Xt − µ+ µφ− φγ − γ(1− φ)t− φXt−1}
t

n
√

1 +
∑m

k=1(Xt−k −Xt−k−1)2
,

Ȳt3(µ∗, γ∗, φ) = {Xt − µ+ µφ− φγ − γ(1− φ)t− φXt−1}
Xt−1

(1 +X2
t−1)0.75

√
1 +

∑m
k=1(Xt−k −Xt−k−1)2

+Wt,

Ȳt(µ
∗, γ∗, φ) = (Ȳt1(µ∗, γ∗, φ), Ȳt2(µ∗, γ∗, φ), Ȳt3(µ∗, γ∗, φ))T ,

where Wt’s are simulated independent random variables from N(0, σ̄2) given before. Then

we define the empirical likelihood function as

L̄(µ∗, γ∗, φ) = sup

{
n∏
t=1

(npt) : p1 ≥ 0, · · · , pn ≥ 0,
n∑
t=1

pt = 1,
n∑
t=1

ptȲt(µ
∗, γ∗, φ) = 0

}
,

and consider the profile empirical likelihood function L̄P (φ) = maxµ∗,γ∗ L̄(µ∗, γ∗, φ). Put

l̄(φ) = −2 log L̄P (φ).

Theorem 2.7. Suppose models (2.4) and (2.2) with p ≥ 1, q = 0 satisfy conditions C1–C3.

Choose m ≥ p. Then, under H0 : φ0 = 1, we have l̄(1)
d→ χ2

1 as n→∞.

Theorem 2.8. Suppose conditions of Theorem 2.7 hold.

i) Assume γ0 = 0 and condition C5 holds with α = δ/(2δ − 1). Then under Ha : φ0 =

1− d1
nα

for some d1 > 0, we have

l̄(1) =
{ 1√

n

∑n
t=1Wt + d1d4∆2}2

EW 2
1

+ op(1),

where

d4 = {4
∫ 1

0
L∗(s) ds− 6

∫ 1

0
sL∗(s) ds}

∫ 1

0
L∗(s)|L∗(s)|−3/2 ds

+{−6
∫ 1

0
L∗(s) ds+ 12

∫ 1

0
sL∗(s) ds}

∫ 1

0
sL∗(s)|L∗(s)|−3/2 ds−

∫ 1

0
|L∗(s)|1/2 ds,

∆2 and L∗(s) are defined in Theorem 2.2 and Theorem 2.4, respectively.

ii) Assume γ0 6= 0 and condition C4 holds. Then under Ha : φ0 = 1 − d1
n

for some

d1 ∈ R, we have l̄(1)
d→ χ2

1 as n→∞.

Remark 2.6. The above Theorem 2.8 ii) shows that the proposed test has no power under

the alternative Ha : φ0 = 1−d1/n
α when γ0 6= 0, which is not surprising because X[ns]/n

p→ s
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in this case, and distinguishing the terms t and Xt−1 becomes impossible. In other words,

one should prefer model (2.3) to model (2.4). Also note that models (2.3) and (2.4) are

equivalent when φ0 = 1 and tests for both models have comparable power when γ0 = 0.

2.2.3 Robust Estimation and Inference for Stationary AR Processes

When the above unit root hypothesis is rejected, an interesting question is to estimate

parameters µ and φ consistently. We consider the more general stationary AR(r) model:

Xt = µ+
r∑

j=1

φjXt−j + et. (2.10)

Since Zhang and Ling (2015) showed that the LSE may be inconsistent depending on the

moments of errors, we consider the following weighted least squares estimator (WLSE) θ̂ =

(µ̂, φ̂1, · · · , φ̂r)
T , which minimizes

n∑
t=1

{
Xt − µ−

r∑
j=1

φjXt−j

}2
1

1 +
∑m+1

k=1 X
2
t−k

(2.11)

with respect to θ = (µ, φ1, · · · , φr)
T .

Denote the true value of θ as θ0 = (µ0, φ1,0, · · · , φr,0)T . The following theorem states

the limit distribution of the proposed estimator θ̂.

Theorem 2.9. Suppose model (2.10) is strictly stationary, model (2.2) satisfies p ≥ 1, q = 0

and conditions C1–C3 hold. Choose m ≥ p + r. Then

√
nB(θ̂ − θ0)

d→ N(0,Γ)

as n→∞, where B = (bi,j)1≤i,j≤r+1, Γ = (γi,j)1≤i,j≤r+1,

b1,1 = E
1

1 +
∑m+1

k=1 X
2
t−k

, b1,i+1 = E
Xt−i

1 +
∑m+1

k=1 X
2
t−k

, bi+1,j+1 = E
Xt−iXt−j

(1 +
∑m+1

k=1 X
2
t−k)

2
,

γ1,1 = E
σ2
t

(1 +
∑m+1

k=1 X
2
t−k)

2
, γ1,i+1 = E

Xt−iσ
2
t

(1 +
∑m+1

k=1 X
2
t−k)

2
, γi+1,j+1 = E

Xt−iXt−jσ
2
t

(1 +
∑m+1

k=1 X
2
t−k)

2

for i, j = 1, · · · , r.
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For interval estimation of θ0, one could simply apply the empirical likelihood method

to the above score equations without estimating B and Γ. More specifically, define

Ŷt,1(θ) =

{
Xt − µ−

r∑
j=1

φjXt−j

}
1

1 +
∑m+1

k=1 X
2
t−k

,

Ŷt,i+1(θ) =

{
Xt − µ−

r∑
j=1

φjXt−j

}
Xt−i

1 +
∑m+1

k=1 X
2
t−k

,

for i = 1, · · · , r and put Ŷt(θ) = (Ŷt,1(θ), · · · , Ŷt,r+1(θ))T . Then the empirical likelihood

function for θ is

L̂(θ) = sup

{
n∏
t=1

(npt) : p1 ≥ 0, · · · , pn ≥ 0,
n∑
t=1

pt = 1,
n∑
t=1

ptŶt(θ) = 0

}
.

Theorem 2.10. Suppose model (2.10) is strictly stationary, model (2.2) satisfies p ≥ 1, q =

0, and conditions C1–C3 hold. Choose m ≥ p + r. Then −2 log L̂(θ0)
d→ χ2

r+1 as n→∞.

Remark 2.7. Confidence region at the confidence level 1− τ for θ0 is constructed as

{θ : −2 log L̂(θ) ≤ χ2
r+1,1−τ}.

Confidence region (interval) for a subset of θ0 can be obtained by using the profile empirical

likelihood method. However, it remains unknown to us how to deal with a stationary ARMA

process instead of the AR(r) model.

Remark 2.8. When εt in model (2.2) has zero median instead of zero mean, Zhu and Ling

(2015) proposed a SLADE for a stationary ARMA process without restriction on the mo-

ments of GARCH errors, and a random weighting approach for inference. This is different

from the proposed new inference procedures in Theorems 2.9 and 2.10. Since the asymptotic

variance matrices for both estimators are complicated, we compare these two methods nu-

merically in Section 2.3 instead of theoretically when the innovation in the GARCH errors

has simualtaneously zero mean and zero median, which shows that the proposed WLSE per-

forms better in finite samples than the SLADE in Zhu and Ling (2015). It is also worth
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mentioning that the proposed estimator has an explicit formula unlike the estimator in Zhu

and Ling (2015), which requires a proper optimization procedure with some initial value.

2.2.4 Extension to GARCH Errors

In this subsection, we shall generalize the results in the preceding two subsections for

ARCH errors to GARCH errors. Note that the key idea in the above methods is to bound

the conditional standard deviation σt in model (2.2) by some known weight function. When

et follows model (2.2) with p ≥ 1 and q ≥ 1, it is hard to find a simple weight function to

bound σt almost surely. However, proofs for Theorems 2.1–2.10 in Section 2.6 show that

we only need a finite (2 + δ)-th moment for a weighted σt with some positive δ. To better

understand the extensions, we look at the question of testing H0 : φ0 = 1 for model (2.1)

with errors satisfying model (2.2).

Write

σ2
t

1 +
∑max(p,q)

k=1 e2
t−k

≤ (p + 1) max(α0, α1, · · · , αp) +

∑q
j=1 βjσ

2
t−j

1 +
∑max(p,q)

k=1 e2
t−k

and for j = 1, · · · , q,

(
σ2
t−j

1 +
∑max(p,q)

k=1 e2
t−k

)1+(δ2−δ1)/2

= σ1+δ2
t−j |εt−j|−(1−δ1) |σt−jεt−j|1−δ1

(1 +
∑max(p,q)

k=1 e2
t−k)

1+(δ2−δ1)/2

≤ σ1+δ2
t−j |εt−j|−(1−δ1).

Hence, when Eσ1+δ2
t <∞ and E |εt|−(1−δ1) <∞ for some 0 < δ1 < δ2 < 1, there exists δ > 0

such that

E

(
σ2
t

1 +
∑max(p,q)

k=1 (Xt−k −Xt−k−1)2

)1+δ

<∞. (2.12)

Therefore, the following theorem can be established by using the above arguments and similar

proofs for Theorems 2.1–2.10.

Theorem 2.11. Assume Eσ1+δ2
t < ∞ and E |εt|−(1−δ1) < ∞ for some 0 < δ1 < δ2 < 1.

Choose m ≥ max(p + r, q + r). Then Theorems 2.1–2.10 hold when et follows model (2.2)

with p ≥ 1 and q ≥ 1.
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Remark 2.9. If the density of εt is finite at zero like normal distribution and t-distribution

(i.e., condition C3 holds), then E |εt|−(1−δ1) <∞ for any δ1 ∈ (0, 1).

2.3 Simulation Study

In this section, we examine the finite sample performance of the proposed unit root test,

robust estimation and inference. Comparison will be made with analogous tests, estimators

and inference methods. The R package emplik is used to compute the empirical likelihood

function, and the R function nlm is employed to calculate the profile empirical likelihood

function. To facilitate exposition of this section, we denote the empirical likelihood unit root

tests in Theorem 2.1 and Theorem 2.3 as well as their respective extension in Theorem 2.11

as ELT type I and ELT type II, respectively. In all simulations, we draw 10, 000 random

samples.

2.3.1 Unit Root Test

It is known that the commonly employed augmented Dickey-Fuller (ADF) test for a unit

root assumes uncorrelated and finite variance errors, and the Phillips-Perron (PP) test works

for stationary and finite variance errors. As reviewed in the introduction, the two tests with

a wild sieve bootstrap implementation proposed by Cavaliere et al. (2018), denoted by QT

and RT with tuning parameter κ, require that {et} is a linear process with symmetrically

distributed errors, i.e., the method may be invalid for model (2.1) and model (2.3) with

GARCH errors.

To demonstrate that these existing tests fail in the presence of infinite variance GARCH

errors, we draw samples from models (2.1) and (2.2) with p = 1, q = 0, φ0 = 1, α0 = 1, α1 =

2.5, εt following a standardized skew normal (0, 1, 10) distribution such that E εt = 0 and

E ε2t = 1, and sample size n = 1000, 2000 and 5000. To study ELT Type II under model

(2.3) with nonzero intercept, we draw separate samples from models (2.3) and (2.2) with the

same setup as above except µ0 = 0.01. Note that the above setup implies that E e2
t = ∞.
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As suggested in Cavaliere et al. (2018), we choose the tuning parameter κ = 4 and 12

for computing the lag length used in the ADF regression, and the bootstrap sample size

B = 1999 for implementing the sieve wild bootstrap method, and we use ‘NA’ to the denote

the case where the bootstrap method fails due to the algorithm of using a linear process

to approximate et in model (2.1). To implement the ADF test, we employ the R package

fUnitRoots, where ADF of type I, type II, type III correspond to the type of unit root

regression with no drift nor linear trend, with drift but no linear trend, and with both drift

and linear trend, respectively. P-values for both the PP test and ADT test are based on

interpolating the asymptotic critical values from Table 10.A.2 in Fuller (1996). To implement

ELT type II for model (2.3), the added pseudo sample {Wt : t = 1, . . . , n} are computed by

Wt = 1/
√

10000
∑10000

i=1 Wt,i, where Wt,i’s are independent and identically distributed random

variables from N(0, σ̄2) and

σ̄ = 1.5

√√√√ 1

n

n∑
t=1

Ỹ 2
t1(µ̃, 1),

where µ̃ is the solution to Equation (2.7).

In Table 2.1, we report the empirical size for our proposed empirical likelihood tests

based on (2.1) and (2.3) as well as for the abovementioned PP test, ADF tests, and QT and

RT tests at levels τ = 0.05, 0.10, 0.25. Results in this table clearly show that the proposed

empirical likelihood tests are correctly sized for infinite variance ARCH errors, while the other

tests have an incorrect size with PP and ADF tests significantly over-sized and the sieve wild

bootstrap tests under-sized. This is in line with the theoretical arguments. Additionally, the

merit of ELT type II encompassing the cases of zero and nonzero intercept is well exhibited

by its accurate size for model (2.3) with both zero and nonzero µ0.

We further investigate the size and power properties of these tests by drawing samples

from models (2.1) and (2.2) with local alternatives φ0 = 1− d/n, where we set d = 0, 5, 10,

and

α0 = 4.7170e−07, (α1, β1) = (0.1216, 0.8329), (0.1216, 0.8784), (0.1266, 0.8784),
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εt being a standardized skew normal random variable with location parameter 0, shape

parameter 1, slant parameters 0 and 10. To render the simulation studies of unit root tests

more informative and empirically relevant, we tailor the features of simulated data such that

the parameters (α0, α1, β1) = (4.7170e−07, 0.1216, 0.8329) are extracted from fitting models

(2.1) and (2.2) to the monthly long-term yield in the period 1976/01–2016/12 in Section

2.4. Note that α1 + β1 ≥ 1 implies E e2
t = ∞, and results for d = 0 and d 6= 0 represent

the empirical size and power of the tests, respectively. Since Theorem 2.4 i) shows that

ELT type II for model (2.3) with zero intercept has no power under the local alternative

φ0 = 1 − d/n, we instead choose φ0 = 1 − d/(5
√
n) to study this test for models (2.3) and

(2.2). With the same configuration on the GARCH errors as above, we consider µ0 = 0.01

and φ0 = 1− d/(5n) for ELT type II under model (2.3) with nonzero intercept as suggested

by Theorem 2.4 ii). To implement QT and RT tests in Cavaliere et al. (2018), we again

choose κ = 4 and 12. As α0 is very small, most values of et’s and σt’s will be quite small.

Consequently, the constant one in the weight (1 + X2
t−1)1/2(1 +

∑m
k=1(Xt−k − Xt−k−1)2)1/2

could be significantly larger than
∑m

k=1(Xt−k−Xt−k−1)2 for a finite sample size, which is used

to bound σt. That is, this simple weight function, albeit plausible theoretically, overweights

σt for a finite n. Due to this reason, we replace the constant one by

∆n = min

1,

(
1

n− 1

n∑
s=2

∣∣∣∣Xs −Xs−1 −
Xn −X1

n− 1

∣∣∣∣
)2
 ,

where (Xn − X1)/(n − 1), the average of {Xs − Xs−1}ns=2, estimates µ under the unit root

hypothesis. Hence, we construct the following weight function

{
∆n +X2

t−1

}1/2

{
∆n +

m∑
k=1

(
Xt−k −Xt−k−1 −

Xn −X1

n− 1

)2
}1/2

for the study of ELT type II here and for its application to predictive variables in Section

2.4. Note that the phenomenon of very small α0 in model (2.2) is common in the literature

of financial time series modeling. For example, Zhu and Ling (2015) reported a very small

estimate of α0 for exchange rate returns; McElroy and Jach (2019) also reported very small α0

estimates in fitting GARCH(1,1) models to the CAC 400 returns and FTSE 100 returns; Li
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et al. (2018) proposed a first-order zero-drift GARCH model via omitting α0 in the classical

GARCH model in Equation (2.2).

Results with respect to d = 0 in Table 2.2 show that the proposed ELT type I, along

with ELT type II when µ0 6= 0, has an accurate size regardless of finite or infinite variance.

ELT type II when µ0 = 0 tends to be over-sized when the sample size is small, but over-

sizing for this test significantly improves as the sample size increases. These observations are

well supported by theoretical results as inference for the model with a nonzero intercept is

usually more powerful than that with zero intercept, and ELT type II with µ0 = 0 sacrifices

the efficiency in unifying the cases of zero and nonzero intercept. PP test and ADF test, as

expected, are infeasible for the case of infinite variance. Strikingly, the wild bootstrap QT

and RT ADF tests, developed for a linear process driven by infinite unconditional variance

innovations in Cavaliere et al. (2018), have quite robust performance against the infinite

variance GARCH errors as seen from their good finite sample size, especially when κ = 4.

Nonetheless, the presence of ‘NA’s for the QT and RT tests when κ = 12 indicates the

practical infeasibility in implementing the wild bootstrap algorithm with a large lag length,

at least under the GARCH setting. Turning to empirical power, results with respect to d = 5

and 10 show that the proposed empirical likelihood tests have a nontrivial power, although

ELT type I is less powerful than the wild bootstrap tests. Note that comparing the power

between the two empirical likelihood tests is not meaningful since we set φ0 = 1 − d/n for

ELT type I, φ0 = 1− d/(5
√
n) for ELT type II when µ0 = 0, and φ0 = 1− d/(5n) for ELT

type II when µ0 6= 0. We do not report the power for ELT type II under µ0 = 0 and the

local alternative φ0 = 1 − d/n here, which indeed shows it is much less powerful than ELT

type I.

To provide further evidence that all the above unit root tests except our proposed

empirical likelihood test are problematic for infinite variance GARCH errors, although these

extant tests have already been demonstrated to have an inaccurate size in this case, we

study the size performance under the setting (α0, α1, β1) = (4.7170e − 07, 0.1266, 0.8784),

εt ∼ standardized skew normal(0, 1, 10), and sample size n = 10, 000. Using such a large
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sample size is to ensure that some extreme values from the model will be generated. Figure

2.1 plots the histograms of P-values of these tests under the unit root hypothesis from

10,000 replications. The distributions of P-values of the proposed empirical likelihood tests

are largely uniform, while the P-values from other tests fail to have a correct asymptotic

uniform distribution. In particular, the wild bootstrap tests from Cavaliere et al. (2018)

have 5 ‘NA’s when κ = 12, and are asymptotically invalid under infinite variance GARCH

errors with skewed innovations.

2.3.2 Estimation and Inference for Stationary AR Processes

We examine the finite sample performance of the WLSE in Theorem 2.9 and compare it

with the LSE and the SLADE in Zhu and Ling (2015) by generating data from the AR(1)-

ARCH(3) model with

(µ, φ, α0, α1, α2, α3) = (1.9037e−03,−0.1954, 8.4511e−05, 0.6228, 0.4040, 0.2898).

We take sample size n = 500, 2000, 5000, and choose εt to follow a standardized tν distribution

with ν = 2.8, 5, 10 such that E εt = 0 and E ε2t = 1, or a standard normal distribution. The

AR(1)-ARCH(3) parameter setting with εt ∼ t2.8 is obtained from modeling the log-returns

of daily HKD/USD exchange rate, to which we will apply our methods in Section 2.4, with

the R package fGarch. In implementing WLSE here and in analyzing the exchange rate in

Section 2.4, due to the very small value of α0, we change the weight function in Equation

(2.11) to

min

1,

(
1

n

n∑
s=1

|X∗s |

)2
+

m+1∑
k=1

X∗2t−k,

where X∗t = Xt − 1
n

∑n
s=1 Xs. The rationale behind using this new weight function is the

same as that in the above unit root tests, i.e., the new weight is comparable to σ2
t as X∗t is

comparable to et. For computing the SLADE, we use the weight in equation (2.5) in Zhu and

Ling (2015) with the tuning parameter C selected as the 95% quantile of the observations

{X1, . . . , Xn} as suggested therein. Moreover, we set the WLSE of (µ, φ) as the initial value
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for minimizing L̃sn in equation (2.1) in Zhu and Ling (2015) and employ the R function optim

since the function L̃sn is not differentiable. Table 2.3 reports the mean, standard deviation

(SD) and root-mean-square error (RMSE) of WLSE, SLADE and LSE. It is apparent that

LSE is uniformly inferior in terms of SD and RMSE. Comparing WLSE with SLADE, WLSE

has smaller biases than and comparable SD and RMSE to SLADE for µ, and outperforms

SALDE for φ in terms of bias, SD and RMSE. In summary, WLSE performs better than

SLADE under our considered AR-ARCH setup.

We further assess the performance of the empirical likelihood inference method in Theo-

rem 2.10 by computing the coverage probabilities with the above settings, which are reported

in Table 2.4. The coverage probabilities remarkably close to the nominal levels even when

n = 500 demonstrate the good finite sample performance of the proposed empirical likelihood

inference procedure.

2.4 Applications

2.4.1 Unit Root Testing in Predictive Variables

We test for unit roots for the monthly dividend-price ratio (d/p), dividend yield (d/y),

book-to-market value ratio (b/m), long-term yield (lty) and term spread (tms), which are

some commonly employed predictive variables for testing the predictability of stock returns

in the predictive regression literature; see Kostakis et al. (2015) for details.

Before applying the proposed unified unit root tests to these variables, we fit model

(2.1) for each variable and plot the residuals and Hill estimates for estimating the tail index

of the residuals in Figures 2.2–2.5 for the time periods 1953/01–2016/12 (post-war) and

1976/01–2016/12 (after the oil shock recession), respectively. Figures 2.2 and 2.4 suggest

that et’s in model (2.1) for each variable exhibit a similar pattern to a GARCH sequence.

Figures 2.3 and 2.5 suggest that errors for the 1976–2016 period may have infinite variance

and a heavier tail than errors for the 1953–2016 period. Therefore, it is interesting to see

how results from the tests in the above simulation study change with regard to these two
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periods. Theoretically, PP test, ADF test, and the sieve wild bootstrap implementation of

the ADF tests fail for the case of infinite variance GARCH errors. It is known that these

unit root tests need X0/n
p→ 0 to derive the asymptotic limit. To eliminate the effect of

initial value X0 in model (2.1) for a medium sample size, we apply these unit root tests to

{Xt − X1}nt=2 instead of {Xt}nt=1. We choose m = 1 and 2 in implementing the proposed

unified empirical likelihood tests and report P-values in Tables 2.5 and 2.6 for the periods

1953/01–2016/12 and 1976/01–2016/12, respectively. Results in Tables 2.5 and 2.6 show

that at the 5% level, none of the tests rejects the unit root hypothesis for the dividend-

price ratio, dividend yield, book-to-market value ratio and long-term yield, but all tests

except the empirical likelihood test with drift reject the unit root hypothesis for the term

spread for the period 1953/01–2016/12. When the period 1976/01–2016/12 is concerned,

the empirical likelihood tests do not reject the unit root hypothesis for any of the variables

whereas all other tests reject the unit root hypothesis for term spread at the 5% level, and

the PP test and ADF test (type III) reject the unit root hypothesis for long-term yield at

the 10% level. When the dividend-price ratio, book-to-market value ratio and long-term

yield become more heavy-tailed for the period 1976/01–2016/12, P-values for the empirical

likelihood test without drift are considerably larger than those for QT test and RT test. Due

to their robustness to heavy tails and ease of computation, the proposed unified unit root

tests thus provide practitioners a powerful tool for pretesting the time series properties of

predictive regressors without the need to distinguish whether the errors have finite or infinite

variance.

2.4.2 Inference for HKD/USD Exchange Rate

We re-investigate the daily HKD/USD exchange rate from January 21, 1998 to July 6,

2000 studied in Zhu and Ling (2015). We note that the log-returns of the series have 621

observations, which is different from the 600 observations mentioned therein. Denote the

log-returns (×100) of the data by {yt}621
t=1.

As a benchmark result, we first obtain the estimates and confidence intervals for µ



40

and φ by using the garchFit function in the R package fGarch to fit an AR(1)-ARCH(3)

model. The obtained intervals require finite fourth moment of GARCH errors since they are

constructed based on a normal limit of the maximum likelihood estimator (MLE). However,

the Hill estimates reported in Zhu and Ling (2015) indicate yt has infinite variance, which

implies that the intervals obtained from the MLE are inaccurate. We then obtain the WLSE

of (µ, φ) in Theorem 2.9 with m = 3 and employ the empirical likelihood method in Theorem

2.10 and the profile empirical likelihood procedures in Remark 2.7 to construct their confi-

dence intervals. We re-estimate model (2.3) using the SLADE method in and implement

the citeZhuLing2015JASA random weighting procedure with J = 500 developed in the same

paper for estimating the standard errors and constructing the confidence intervals.

The estimates and corresponding confidence intervals at levels 90% and 95% for the

three estimators are reported in Table 2.7. Estimates for µ are close for all estimators, but

the SLADE estimate is quite different from the other two estimates for φ. Examining the

confidence intervals, it is noteworthy that the confidence intervals for µ at both levels 90%

and 95% based on WLSE contain zero whereas the confidence intervals based on MLE and

WLSE do not.

2.5 Conclusion

The contribution of this paper is two-fold. For an AR(1) model with GARCH errors, the

limiting null distributions of existing unit root tests depend on the tail index of the errors,

i.e., whether the errors have finite or infinite variance, thus requiring bootstrap or simula-

tion methods to approximate the asymptotic null distributions for inference. This paper

proposes unit root tests for an AR(1) model with GARCH errors, which are asymptotically

valid without prior on the moments of ARCH errors and with a little more than finite mean

of GARCH errors. Unlike the tests in Cavaliere et al. (2018), the proposed tests permit

asymmetric innovations, but involve choosing some tuning parameter based on the order

in the GARCH errors and requires simulating a pseudo sample when the model has deter-
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ministic terms. The tests are generalized to an AR(r) model with GARCH errors in the

so-called augmented Dickey-Fuller form. Since the proposed unit root tests do not estimate

the unknown parameters in the GARCH errors and always have a chi-squared limit, they

are robust and computationally fast in implementation.

When the unit root hypothesis is rejected by the above unit root inference, statistical

inference for a stationary AR process with GARCH errors is of interest. Least squares

estimator for the AR parameters without estimating the GARCH errors may be inconsistent

when the sequence has infinite variance, and has a non-normal limit when the sequence

has infinite fourth moment. The asymptotic normality of the quasi-maximum likelihood

estimator requires the finite fourth moment of both the sequence itself and the errors in the

GARCH model. Some existing estimation procedures valid in the presence of infinite variance

innovations require that the innovations in the GARCH model have a symmetric distribution

or zero median. Complementing existing methods, this paper develops an inference procedure

regardless of the tail heaviness of the GARCH errors via minimizing a weighted least squares

distance. The proposed estimator has an explicit formula without estimating the unknown

parameters in the GARCH errors and the empirical likelihood inference attains a chi-squared

limit.

2.6 Proofs

Let Ft = σ{εt, εt−1, . . .} be the σ-field generated by the sequence {εt, εt−1, . . .}.

Lemma 2.1. Under conditions of Theorem 2.1, we have as n→∞,

1√
n

n∑
t=1

Yt(1)
d−→ N(0, σ2), (2.13)

1

n

n∑
t=1

Y 2
t (1)

p−→ σ2, (2.14)

max
1≤t≤n

|Yt(1)| = op(n
1/2), (2.15)
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where σ2 = E σ2
t

1+
∑m
k=1 e

2
t−k

.

Proof of Lemma 2.1. Note that

Yt(1) =
etXt−1√

(1 +X2
t−1)(1 +

∑m
k=1 e

2
t−k)

.

When φ0 = 1, |Xt|
p−→ ∞ as t → ∞, i.e., X2

t /(1 + X2
t )

p→ 1, hence it follows from the

stationarity of {σ2
t } such that

V 2
n = 1

n

∑n
t=1 E (Y 2

t (1)|Ft−1) = 1
n

∑n
t=1

σ2
tX

2
t−1

(1+X2
t−1)(1+

∑m
k=1 e

2
t−k)

= 1
n

∑n
t=1

σ2
t

1+
∑m
k=1 e

2
t−k

+ op(1)
p→ σ2.

(2.16)

Put α∗ = max{α0, . . . , αp}, which is positive. We have for any c > 0,

1

n

n∑
t=1

E [Y 2
t (1)I(|Yt(1)| > c

√
n)|Ft−1] ≤ (c

√
n)−d

∗
α

1+ d∗
2

∗ E |ε1|2+d∗ p−→ 0. (2.17)

Hence, (2.13) follows from (2.16), (2.17) and Corollary 3.1 of Hall and Heyde (1980).

Since

sup
n

P (V 2
n > λ) ≤ P (α∗ > λ) = 0 as λ→∞,

(2.14) follows from (2.17) and Theorem 2.23 of Hall and Heyde (1980).

Further, (2.15) follows from that max
1≤t≤n

|Yt(1)| ≤ √α∗max
1≤t≤n

|εt| and E|εt|2+d∗ <∞. Hence

Lemma 2.1 follows.

Proof of Theorem 2.1. It follows from Lemma 2.1 and standard arguments in Chapter 11 of

Owen (2001) that

λ =

∑n
t=1 Yt(1)∑n
t=1 Y

2
t (1)

+ op(1/
√
n)

and

l(1) = 2
∑n

t=1{λYt(1)− 1
2
λ2Y 2

t (1)}+ op(1)

=
(
∑n
t=1 Yt(1))2∑n
t=1 Y

2
t (1)

+ op(1)

d→ χ2(1) as n→∞,

i.e., Theorem 2.1 follows.
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Proof of Theorem 2.2. Like the proof of Lemma 1 in Phillips (1987), it follows from condition

C4 that

X[ns]

n1/δL(n)
= 1

n1/δL(n)

∑[ns]
t=1 φ

[ns]−t
0

∫ t/n
(t−1)/n

dSn(r) + op(1)

= 1
n1/δL(n)

∑[ns]
t=1

∫ t/n
(t−1)/n

φ
(s−r)n
0 dSn(r) + op(1)

= 1
n1/δL(n)

∫ s
0
φ

(s−r)n
0 dSn(r) + op(1)

= 1
n1/δL(n)

{Sn(s) +
∫ s

0
Sn(r)φ

(s−r)n
0 n log(φ0) dr}+ op(1)

= W̃δ(s)− d1d̄1

∫ s
0
W̃δ(r)e

−(s−r)d1d̄1 dr + op(1)

= J̃δ(s) + op(1),

(2.18)

where Sn(r) =
∑[nr]

t=1 et, and

X[ns] −X[ns]−1 = e[ns] + op(1) uniformly in s ∈ [0, 1]. (2.19)

Write

Yt(1) = Yt(φ0)−
d1X

2
t−1

n1/2+1/δL(n)
√

(1 +X2
t−1)(1 +

∑m
k=1(Xt−k −Xt−k−1)2)

.

Put S∗n =
∑n

t=1
et√

1+
∑m
k=1 e

2
t−k

and S∗0 = 0. Then it follows from (2.18) and (2.19) that

1√
n

∑n
t=1 Yt(φ0)

= 1√
n

∑n
t=1(S∗t − S∗t−1) Xt−1√

1+X2
t−1

= 1√
n

∑n
t=1 S

∗
t

Xt−1√
1+X2

t−1

− 1√
n

∑n−1
t=1 S

∗
t

Xt√
1+X2

t

= 1√
n
S∗n

Xn−1√
1+X2

n−1

+ 1√
n

∑n−1
t=1 S

∗
t
Xt−1−Xt
(1+ξ2t )3/2

= sgn(J̃δ(1)) 1√
n

∑n
t=1

et√
1+

∑m
k=1 e

2
t−k

+ op(1),

(2.20)

where ξt lies between Xt−1 and Xt. Like the proof of Lemma 2.1, under Ha : φ0 = 1 −
d1

n1/2+1/δL(n)
, using (2.18) and (2.19), we have

1

n

n∑
t=1

Y 2
t (φ0) = E (W 2(1))E (

σ2
t

1 +
∑m

k=1 e
2
t−k

) + op(1), (2.21)

1√
n

∑n
t=1

d1X2
t−1

n1/2+1/δL(n)
√

(1+X2
t−1)(1+

∑m
k=1(Xt−k−Xt−k−1)2)

= 1
n

∑n
t=1

d1X2
t−1

n1/δL(n)
√

1+X2
t−1

√
1+

∑m
k=1 e

2
t−k

+ op(1)

= d1E ( 1√
1+

∑m
k=1 e

2
t−k

)
∫ 1

0
|J̃δ(s)| ds+ op(1)

(2.22)
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and

1

n

n∑
t=1

d2
1X

4
t−1

n1+2/δL2(n)(1 +X2
t−1){1 +

∑m
k=1(Xt−k −Xt−k−1)2}

p→ 0. (2.23)

Therefore, it follows from (2.20)–(2.23) and arguments in Chapter 11 of Owen (2001) that

λ =

∑n
t=1 Yt(1)∑n
t=1 Y

2
t (1)

+ op(n
−1/2) = Op(n

−1/2)

and

l(1) = 2
∑n

t=1 log(1 + λYt(1))

=
(
∑n
t=1 Yt(1))2∑n
t=1 Y

2
t (1)

+ op(1)

=

{
sgn(J̃δ(1)) 1√

n

∑n
t=1

et√
1+

∑m
k=1

e2
t−k
−d1∆2

∫ 1
0 |J̃δ(s)| ds

}2

∆1
+ op(1),

i.e., the theorem holds.

Lemma 2.2. Under conditions of Theorem 2.3, we have 1√
n

∑n
t=1 Ỹt(µ0, 1)

d−→ N(0, Σ̃) as

n→∞, where Σ̃ = (σ̃ij)1≤i,j≤2 with σ̃11 = E σ2
t

1+
∑m
k=1(µ0+et−k)2

, σ̃22 = σ̄2, and σ̃12 = σ̃21 = 0.

Proof of Lemma 2.2. Note that
Ỹt1(µ0, 1) = σtεt√

1+
∑m
k=1(µ0+et−k)2

,

Ỹt2(µ0, 1) = Xt−1σtεt

(1+X2
t−1)0.75

√
1+

∑m
k=1(µ0+et−k)2

+Wt.

(2.24)

Similar to the proof of Lemma 2.1, we obtain 1√
n

∑n
t=1 Ỹt1(µ0, 1)

d−→ N(0, σ̃11), by noting

that

σ2
t

1 +
∑m

k=1( µ0 + et−k)2
≤ α0 + 2

∑p
k=1 αk(µ0 + et−k)

2 + 2µ2
0

∑p
k=1 αk

1 +
∑m

k=1(µ0 + et−k)2

≤ max

{
α0 + 2µ2

0

p∑
k=1

αk, 2α1, · · · , 2αp

}
.

Next, when φ0 = 1, since |Xt|
p−→∞ as t→∞, we have

1

n

n∑
t=1

σ2
tX

2
t−1

(1 +X2
t−1)1.5{1 +

∑m
k=1(Xt−k −Xt−k−1)2}

p−→ 0, (2.25)

which implies 1√
n

∑n
t=1 Ỹt2(µ0, 1) = 1√

n

∑n
t=1 Wt + op(1)

d−→ N(0, σ̃22).
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Observing that 1
n

∑n
t=1 E

(
Ỹt1(µ0, 1)Ỹt2(µ0, 1)|Ft−1

)
= op(1), Lemma 2.2 follows from the

Cramér-Wold device.

Lemma 2.3. Under conditions of Theorem 2.3, we have as n→∞,

1

n

n∑
t=1

Ỹt(µ0, 1)Ỹ T
t (µ0, 1)

p−→ Σ̃ and max
1≤t≤n

‖Ỹt(µ0, 1)‖ = op(n
1/2),

where Σ̃ is defined in Lemma 2.2.

Proof of Lemma 2.3. The lemma follows from (2.24)–(2.25) and the weak law of large num-

bers for martingale differences (see Hall and Heyde, 1980).

Lemma 2.4. Under conditions of Theorem 2.3, as n → ∞, with probability one, L̃(µ, 1)

attains its maximum value at µ̄ such that |µ̄− µ0| < n−1/d0 for some d0 ∈ (2, 2 + d1), and µ̄

and λ̄ satisfy Q1n(µ̄, λ̄) = 0 and Q2n(µ̄, λ̄) = 0, where

Q1n(µ,λ) :=
1

n

n∑
t=1

Ỹt(µ, 1)

1 + λT Ỹt(µ, 1)
and Q2n(µ,λ) :=

1

n

n∑
t=1

1

1 + λT Ỹt(µ, 1)

(
∂Ỹt(µ, 1)

∂µ

)T

λ.

Proof of Lemma 2.4. This can be shown in the same way as Lemma 1 of Qin and Lawless

(1994) by using Lemmas 2.2 and 2.3.

Proof of Theorem 2.3. Using the same arguments as in the proof of Theorem 1 in Qin and

Lawless (1994), it follows from Lemmas 2.2 and 2.3 that λ̄

µ̄− µ0

 = S−1
n

−Q1n(µ0,0) + op(n
−1/2)

op(n
−1/2)

 ,

where

Sn =

∂Q1n(µ0,0)
∂λT

∂Q1n(µ0,0)
∂µ

∂Q2n(µ0,0)
∂λT

0

 p−→

S11 S12

ST12 0


with S11 = −Σ̃ = −

σ̃11 0

0 σ̃22

 and S12 =

(
−E 1√

1+
∑m
k=1(µ0+et−k)2

, 0

)T
:= (s12,1, 0)T ,

where σ̃11 and σ̃22 are defined in Lemma 2.2.
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By the standard arguments of empirical likelihood method (see the proof of Theorem 1

in Owen, 1990) and Lemmas 2.2 and 2.3, we have

l̃(1) = 2
∑n

t=1 log{1 + λ̄T Ỹt(µ̄, 1)}

= 2n(λ̄T , µ̄− µ0)
(
QT

1n(µ0,0), 0
)T

+n(λ̄T , µ̄− µ0)Sn(λ̄, µ̄− µ0)T + op(1)

= −n(QT
1n(µ0,0), 0)S−1

n

(
QT

1n(µ0,0), 0
)T

+ op(1)

= −(ZT , 0)

S11 S12

ST12 0

−1

(ZT , 0)T + op(1)

as n→∞, where Z = (Z1,Z2)T ∼ N(0, Σ̃). SinceS11 S12

ST12 0

−1

=

S−1
11 − S−1

11 S12∆
−1ST12S

−1
11 S−1

11 S12∆
−1

∆−1ST12S
−1
11 −∆−1

 ,

where ∆ = ST12S
−1
11 S12 = −s2

12,1/σ̃11, we have S−1
11 =

σ̃−1
11 0

0 σ̃−1
22

 and

−(ZT ,0)

S11 S12

ST12 0

−1

(ZT ,0)T = −ZT
(
S−1

11 − S−1
11 S12∆

−1ST12S
−1
11

)
Z

= ZT

0 0

0 σ̃−1
22

Z = (Z2/
√
σ̃22)2

d→ χ2(1).

Proof of Theorem 2.4. Put

µ̃ = µ+
(φ0 − 1)

∑n
t=1

Xt−1√
1+

∑m
k=1(Xt−k−Xt−k−1)2∑n

t=1
1√

1+
∑m
k=1(Xt−k−Xt−k−1)2

and

µ̃0 = µ0 +
(φ0 − 1)

∑n
t=1

Xt−1√
1+

∑m
k=1(Xt−k−Xt−k−1)2∑n

t=1
1√

1+
∑m
k=1(Xt−k−Xt−k−1)2

.
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Then, we have

1√
n

n∑
t=1

Ỹt1(µ̃0, 1) =
1√
n

n∑
t=1

et√
1 +

∑m
k=1(Xt−k −Xt−k−1)2

and

1√
n

∑n
t=1 Ỹt2(µ̃0, 1)

= 1√
n

∑n
t=1Wt −

(φ0−1)
∑n
t=1

Xt−1√
1+

∑m
k=1

(Xt−k−Xt−k−1)
2∑n

t=1
1√

1+
∑m
k=1

(Xt−k−Xt−k−1)
2

1√
n

∑n
t=1

Xt−1

(1+X2
t−1)0.75

√
1+

∑m
k=1(Xt−k−Xt−k−1)2

+(φ0 − 1) 1√
n

∑n
t=1

X2
t−1

(1+X2
t−1)0.75

√
1+

∑m
k=1(Xt−k−Xt−k−1)2

+ op(1).

i) Like the derivation of (2.18), we can show that

X[ns]

nα/δ
=
∫ s

0
φ

(s−r)n
0 d{Sn(r)−Sn(s)

nα/δ
}

= −
∫ 1

0
φrsn0 d{Sn(s−sr)−Sn(s)

nα/δ
}

= −
∫ n1−α

0
φrsn

α

0 d{Sn(s−srnα−1)−Sn(s)

nα/δ
}

= −
∫∞

0
e−d1sr dΓα(s, r) + op(1) uniformly in s ∈ [0, 1],

(2.26)

which is used to show that X[ns] −X[ns]−1 = e[ns] + op(1) uniformly in s ∈ [0, 1],

1√
n

∑n
t=1 Ỹt2(µ̃0, 1)

= 1√
n

∑n
t=1Wt + d1{

∫ 1

0
L∗(s) ds}{∆2

∫ 1

0
L∗(s)|L∗(s)|−3/2 ds} − d1∆2

∫ 1

0
|L∗(s)|1/2 ds+ op(1)

= 1√
n

∑n
t=1Wt + d1d2∆2 + op(1),

1

n

n∑
t=1

Ỹ 2
t1(µ̃0, 1)

p→ ∆1,
1

n

n∑
t=1

Ỹ 2
t2(µ̃0, 1)

p→ EW 2
1 .

Hence it follows from the proof of Theorem 2.3 that

l̃(1) =
{
∑n

t=1 Ỹt2(µ̃0, 1)}2∑n
t=1 Ỹ

2
t2(µ̃0, 1)

+ op(1) =
{ 1√

n

∑n
t=1Wt + d1d2∆2}2

EW 2
1

+ op(1),

i.e., Theorem 2.4 i) holds.

ii) Write

Xt = µ0
1− φt0
1− φ0

+ φt0X0 +
t∑

j=1

φt−j0 ej.

Then, like the proof of (2.18), we can show that

X[ns]/n = µ0
1− e−d1s

d1

+ op(1) and X[ns] −X[ns]−1 = µ0e
−d1s + e[ns]
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uniformly in s ∈ [0, 1], which are used to show that

1√
n

∑n
t=1 Ỹt2(µ̃0, 1)

= 1√
n

∑n
t=1Wt + |µ0|1/2d1

E
∫ 1
0

f(s;d1)√
1+

∑m
k=1

(−µ0e
−d1s+et−k)2

ds

E
∫ 1
0

1√
1+

∑m
k=1

(−µ0e
−d1s+et−k)2

ds
E
∫ 1

0
f−1/2(s;d1)√

1+
∑m
k=1(−µ0e−d1s+et−k)2

ds

−|µ0|1/2d1E
∫ 1

0
f1/2(s;d1)√

1+
∑m
k=1(−µ0e−d1s+et−k)2

ds+ op(1)

= 1√
n

∑n
t=1Wt + |µ0|1/2d1d3 + op(1),

1

n

n∑
t=1

Ỹ 2
t1(µ̃0, 1)

p→ ∆1,
1

n

n∑
t=1

Ỹ 2
t2(µ̃0, 1)

p→ EW 2
1 .

Hence, it follows from the proof of Theorem 2.3 that

l̃(1) =
{
∑n

t=1 Ỹt2(µ̃0, 1)}2∑n
t=1 Ỹ

2
t2(µ̃0, 1)

+ op(1) =

{
1√
n

∑n
t=1 Wt + |µ0|1/2d1d3

}2

EW 2
1

+ op(1),

i.e., Theorem 2.4 ii) holds.

Proof of Theorem 2.5. Under C4, there exists a stable process W (s) such that

X[ns]

n1/δL(n)

D→ W (s) in D([0, 1]).

Like the proofs of Lemma 2.1 and (2.20), we can show that

1

n

n∑
t=1

Y ∗t (1,θ0)
d→ N(0,Σ∗),

1

n

n∑
t=1

Y ∗t (1,θ0){Y ∗t (1,θ0)}T p→ Σ∗,

1

n

n∑
t=1

∂Y ∗t,1(1,θ0)

∂θT
= sgn(W (1))b1 + op(1),

1

n

n∑
t=1

∂Y ∗t,i(1,θ0)

∂θT
= bi + op(1)

for i = 2, · · · , r + 1, where Σ∗ is a positive definite matrix and bi’s are vectors. Put S11 =

−Σ∗, S12 = (sgn(W (1))b1, · · · , br+1), ∆ = ST12S
−1
11 S12 and let Z ∼ N(0,Σ∗). Like the

proof of Theorem 2.3, we have

l∗(1) = −ZT (S−1
11 − S−1

11 S12∆
−1ST12S

−1
11 )Z + op(1)

= (Σ∗1/2Z)T (I(r+1)×(r+1) − S−1/2
11 S12∆

−1ST12S
−1/2
11 )(Σ∗1/2Z) + op(1),

where I(r+1)×(r+1) denotes the (r + 1)× (r + 1) identity matrix. Since

trace(I(r+1)×(r+1) − S−1/2
11 S12∆

−1ST12S
−1/2
11 ) = r + 1− trace(∆−1∆) = 1
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and the matrix I(r+1)×(r+1) − S−1/2
11 S12∆

−1ST12S
−1/2
11 is idempotent, we have l∗(1)

d→ χ2
1 as

n→∞.

Proof of Theorem 2.6. Like the proofs of Lemma 2.1 and (2.20), we can show that

1

n

n∑
t=1

Y ∗t (1,θ0)
d→ N(0,Σ∗),

1

n

n∑
t=1

Y ∗t (1,θ0){Y ∗t (1,θ0)}T p→ Σ∗,

1

n

n∑
t=1

∂Y ∗t,1(1,θ0)

∂θT
p→ b1,

1

n

n∑
t=1

∂Y ∗t,2(1,θ0)

∂θT
p→ 0,

1

n

n∑
t=1

∂Y ∗t,i(1,θ0)

∂θT
p→ bi

for i = 3, · · · , r + 2, where Σ∗ is a positive definite matrix and bi’s are vectors. Put S11 =

−Σ∗, S12 = (b1,0, b3 · · · , br+2), ∆ = ST12S
−1
11 S12 and let Z ∼ N(0,Σ∗). Like the proof of

Theorem 2.3, we have

l̄∗(1) = −ZT (S−1
11 − S−1

11 S12∆
−1ST12S

−1
11 )Z + op(1)

= (Σ∗1/2Z)T (I(r+2)×(r+2) − S−1/2
11 S12∆

−1ST12S
−1/2
11 )(Σ∗1/2Z) + op(1).

Since

trace(I(r+2)×(r+2) − S−1/2
11 S12∆

−1ST12S
−1/2
11 ) = r + 2− trace(∆−1∆) = 1

and the matrix I(r+2)×(r+2) − S−1/2
11 S12∆

−1ST12S
−1/2
11 is idempotent, we have l̄∗(1)

d→ χ2
1 as

n→∞.

Proof of Theorem 2.7. Under H0 : φ0 = 1, we have µ∗0 = γ0, γ∗0 = 0,

Ȳt1(µ∗0, γ
∗
0 , 1) = σtεt√

1+
∑m
k=1(γ0+et−k)2

,

Ȳt2(µ∗0, γ
∗
0 , 1) = tσtεt

n
√

1+
∑m
k=1(γ0+et−k)2

,

Ȳt3(µ∗0, γ
∗
0 , 1) = σtεt

(1+X2
t−1)0.75

√
1+

∑m
k=1(γ0+et−k)2

+Wt.

Like the proofs of Lemmas 2.2 and 2.3, we have
1√
n

∑n
t=1 Ȳt(µ

∗
0, γ
∗
0 , 1)

d→ N(0, Σ̄),

1
n

∑n
t=1 Ȳt(µ

∗
0, γ
∗
0 , 1)

p→ Σ̄,

max1≤t≤n ||Ȳt(µ∗0, γ∗0 , 1)|| = op(n
1/2),

(2.27)
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where

Σ̄ =


E σ2

t

1+
∑m
k=1(γ0+et−k)2

1
2
E σ2

t

1+
∑m
k=1(γ0+et−k)2

0

1
2
E σ2

t

1+
∑m
k=1(γ0+et−k)2

1
3
E σ2

t

1+
∑m
k=1(γ0+et−k)2

0

0 0 σ̄2

 .

Put Z̄ = (Z̄1, Z̄2, Z̄3)T ∼ N(0, Σ̄), S̄11 = −Σ̄,

S̄12 =


−E 1√

1+
∑m
k=1(γ0+et−k)2

−1
2
E 1√

1+
∑m
k=1(γ0+et−k)2

−1
2
E 1√

1+
∑m
k=1(γ0+et−k)2

−1
3
E 1√

1+
∑m
k=1(γ0+et−k)2

0 0

 ,

∆̄ = S̄T12S̄
−1
11 S̄12, a = E

σ2
t

1 +
∑m

k=1(γ0 + et−k)2
and b = E

1√
1 +

∑m
k=1(γ0 + et−k)2

.

Then

Σ̄−1 =


4/a −6/a 0

−6/a 12/a 0

0 0 σ̄2

 and ∆̄ =

 b2/a b2/(2a)

b2/(2a) b2/(3a)

 .

Like the proof of Theorem 2.3, we have

l̄(1) = −Z̄T (S̄−1
11 − S̄−1

11 S̄12∆̄
−1S̄T12S̄

−1
11 )Z̄ + op(1)

= Z̄T


0 0 0

0 0 0

0 0 σ̄−2

 Z̄ + op(1)

= (Z̄3/σ̄)2 + op(1)
d→ χ2(1).

(2.28)

Proof of Theorem 2.8. Put

Sn1 =
n∑
t=1

1√
1 +

∑m
k=1(Xt−k −Xt−k−1)2

, Sn2 =
n∑
t=1

t√
1 +

∑m
k=1(Xt−k −Xt−k−1)2

,

Sn3 =
n∑
t=1

Xt−1√
1 +

∑m
k=1(Xt−k −Xt−k−1)2

, Sn4 =
n∑
t=1

t

n
√

1 +
∑m

k=1(Xt−k −Xt−k−1)2
,

Sn5 =
n∑
t=1

t2

n
√

1 +
∑m

k=1(Xt−k −Xt−k−1)2
, Sn6 =

n∑
t=1

tXt−1

n
√

1 +
∑m

k=1(Xt−k −Xt−k−1)2
,
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µ̄∗ = µ∗ + (φ0 − 1)
Sn3Sn5 − Sn2Sn6

Sn1Sn5 − Sn2Sn4

, µ̄∗0 = µ∗0 + (φ0 − 1)
Sn3Sn5 − Sn2Sn6

Sn1Sn5 − Sn2Sn4

,

γ̄∗ = γ∗ + (φ0 − 1)
Sn3Sn4 − Sn1Sn6

Sn2Sn4 − Sn1Sn5

, γ̄∗0 = γ∗0 + (φ0 − 1)
Sn3Sn4 − Sn1Sn6

Sn2Sn4 − Sn1Sn5

.

Then, we have

1√
n

n∑
t=1

Ȳt1(µ̄∗0, γ̄
∗
0 , 1) =

1√
n

n∑
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et√
1 +
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∗
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∑n
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+ op(1).

i) Since µ∗0 = µ0(1 − φ0), γ∗0 = 0 and Xt = µ0(1 − φt0) + φt0X0 +
∑t

j=1 φ
t−j
0 ej, like the

proof of (2.26), we can show that

X[ns]

nα/δ
= −

∫ ∞
0

e−d1sr dΓα(s, r) + op(1) uniformly in s ∈ [0, 1],

which is used to show that X[ns] −X[ns]−1 = e[ns] + op(1) uniformly in s ∈ [0, 1],
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Hence it follows from the proof of Theorem 2.7 that

l̄(1) =
{
∑n

t=1 Ȳt3(µ̄∗0, γ̄
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EW 2
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+ op(1),

i.e., Theorem 2.8 i) holds.

ii) Since µ∗0 = µ0(1− φ0) + φ0γ0, γ∗0 = γ0(1− φ0) and

Xt = µ∗0
1− φt0
1− φ0

+ γ∗0

t∑
j=1

φt−j0 j +
t∑

j=1

φt−j0 ej + φt0X0,

like the proof of (2.18), we have
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= γ0s+ op(1) uniformly in s ∈ [0, 1],

which is used to show that

X[ns] −X[ns]−1 = µ∗0 + γ∗0 [ns] + (φ0 − 1)X[ns]−1 + e[ns] = γ0 + e[ns] + op(1) uniformly in s ∈ [0, 1],
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Hence it follows from the proof of Theorem 2.7 that

l̄(1) =
{
∑n

t=1 Ȳt3(µ̄∗0, γ̄
∗
0 , 1)}2∑n

t=1 Ȳ
2
t3(µ̄∗0, γ̄

∗
0 , 1)

+ op(1)
d→ χ2

1,

i.e., Theorem 2.8 ii) holds.
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Proof of Theorem 2.9. Write∑n
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1√
n

n∑
t=1

(
σtεt

1 +
∑m+1

k=1 X
2
t−k

,
Xt−1σtεt

1 +
∑m+1

k=1 X
2
t−k

, · · · , Xt−rσtεt

1 +
∑m+1

k=1 X
2
t−k

)T

d−→ N(0,Γ)

and

1

n

n∑
t=1



1
1+

∑m+1
k=1 X2

t−k

Xt−1

1+
∑m+1
k=1 X2

t−k
· · · Xt−r

1+
∑m+1
k=1 X2

t−k

Xt−1

1+
∑m+1
k=1 X2

t−k

Xt−1Xt−1

1+
∑m+1
k=1 X2

t−k
· · · Xt−1Xt−r

1+
∑m+1
k=1 X2

t−k

· · · · · ·
Xt−r

1+
∑m+1
k=1 X2

t−k

Xt−rXt−1

1+
∑m+1
k=1 X2

t−k
· · · Xt−rXt−r

1+
∑m+1
k=1 X2

t−k


p−→ B,

i.e., Theorem 2.9 holds.

Lemma 2.5. Under conditions of Theorem 2.10, we have

1√
n

n∑
t=1

Ŷt(θ0)
d−→ N(0,Γ),

1

n

n∑
t=1

Ŷt(θ0)Ŷ T
t (θ0)

p−→ Γ,

max
1≤t≤n

∥∥∥Ŷt(θ0)
∥∥∥ = op(n

1/2),

as n→∞, where Γ is defined in Theorem 2.9.

Proof of Lemma 2.5. This can be shown by using the central limit theorem for martin-

gale differences and by noting that {Xt} is strictly stationary and both σt
1+

∑m+1
k=1 X2

t−k
and

Xt−1σt
1+

∑m+1
k=1 X2

t−k
are bounded by a constant.
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Proof of Theorem 2.10. Theorem 2.10 can be proved by using Lemma 2.5 and standard

arguments in empirical likelihood method (see Chapter 11 of Owen, 2001).

Proof of Theorem 2.11. When GARCH(p, 0) errors in Theorems 2.1–2.10 are replaced by

GARCH(p, q) errors, the arguments of σ2
t /{1 +

∑m
k=1(Xt−k −Xt−k−1)2} being bounded by

a constant are no longer valid. However, all proofs for the above lemmas and theorems are

still valid if

E

{
σ2
t

1 +
∑m

k=1(Xt−k −Xt−k−1)2

}1+δ

<∞ for some δ > 0. (2.29)

Now equation (2.29) easily follows from the arguments in proving (2.12). Hence, Theorem

2.11 follows.
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ELT Type II ( m = 1, µ0 = 0.01)
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ELT Type II ( m = 2, µ0 = 0)
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ELT Type II ( m = 2, µ0 = 0.01)
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QT, κ = 4
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Figure 2.1. A large-sample comparison of the asymptotic validity of several unit root tests
for model (2.1) with infinite variance GARCH errors.

This figure plots the histograms of P-values under the unit root null hypothesis from the empirical likelihood

unit root tests based on the extension of Theorem 2.1 (ELT Type I) and Theorem 2.3 (ELT Type II) in

Theorem 2.11, the Phillips-Perron (PP) test, the augmented Dickey-Fuller (ADF) test (Type I: no drift, no

linear trend; Type II: with drift, no linear trend; Type III: with drift and linear trend), and the sieve wild

bootstrap ADF tests (QT and RT , κ = 4, 12). AR(1)-GARCH(1, 1) model is generated with (φ0, α0, α1, β1) =

(1, 4.717e− 07, 0.1266, 0.8784), εt ∼ standardized skew normal(0, 1, 10), and n = 10000. (There are 5 ‘NA’s

for the wild bootstrap tests when κ = 12.)
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Figure 2.2. Residuals of financial ratios in the post-war period.
This figure plots the residuals in model (2.1) for monthly dividend-price ratio (d/p), dividend yield (d/y),

book-to-market value ratio (b/m), long-term yield (lty), term pread (tms) in the post-war period (1953/01–

2016/12).
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Figure 2.3. Hill estimates for residuals of financial ratios in the post-war period.
This figure plots Hill estimates against the sample fraction k for the residuals in model (2.1) for monthly

dividend-price ratio (d/p), dividend yield (d/y), book-to-market value ratio (b/m), long-term yield (lty),

term spread (tms) in the post-war period (1953/01–2016/12).
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Figure 2.4. Residuals of financial ratios in the period after the oil shock recession.
This figure plots the residuals in model (2.1) for monthly dividend-price ratio (d/p), dividend yield (d/y),

book-to-market value ratio (b/m), long-term yield (lty), term spread (tms) in the period after the oil shock

recession (1976/01–2016/12).
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Figure 2.5. Hill estimates for residuals of financial ratios in the period after the oil shock
recession.

This figure plots Hill estimates against the sample fraction k for the residuals in model (2.1) for monthly

dividend-price ratio (d/p), dividend yield (d/y), book-to-market value ratio (b/m), long-term yield (lty),

term spread (tms) in the period after the oil shock recession (1976/01–2016/12).
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Table 2.1. Empirical size of several unit root tests for AR processes with ARCH errors

This table reports the empirical size of empirical likelihood unit root tests (ELT Type I in Theorem 2.1,

ELT Type II in Theorem 2.3), Phillips-Perron (PP) test, augmented Dickey-Fuller (ADF) test ( Type I: no

drift nor linear trend; Type II: with drift, no linear trend; Type III: with drift and linear trend) and sieve

wild bootstrap ADF tests (QT and RT ). Except for ELT Type II with µ0 = 0.01, AR(1)-ARCH(1) model is

generated with φ0 = 1, α0 = 1, α1 = 2.5, εt ∼ standardized skew normal (0, 1, 10) and n = 1000, 2000, 5000.

Empirical size (multiplied by 100) is computed at levels τ = 0.05, 0.10, 0.25. (NA counts the number of

cases where the sieve wild bootstrap ADF test fails to compute the P-value.)

ELT PP ADF Wild Bootstrap ADF
κ = 4 κ = 12

Type II
n τ

Type I
µ0 = 0 µ0 = 0.01

Type I Type II Type III QT RT NA QT RT NA

1000 0.05 5.01 4.86 4.91 29.16 20.42 30.27 34.34 4.35 4.34 113 3.53 3.37 254
0.10 9.88 9.62 9.56 32.68 24.40 34.78 38.74 8.33 8.16 7.49 7.18
0.25 25.63 25.08 25.06 38.46 31.56 42.48 45.18 20.39 20.25 19.30 18.74

2000 0.05 4.97 4.61 4.61 29.52 21.68 32.74 36.96 4.15 4.11 71 3.68 3.43 172
0.10 10.45 9.38 9.40 32.97 25.54 37.23 41.01 7.95 7.83 6.90 6.83
0.25 25.57 25.01 24.99 38.09 32.44 44.04 46.56 20.25 20.12 18.80 18.38

5000 0.05 4.96 5.31 5.32 27.68 20.74 32.31 36.78 3.70 3.77 43 3.07 3.06 87
0.10 9.96 10.29 10.29 30.87 24.33 36.53 40.83 6.98 7.06 6.61 6.31
0.25 25.12 25.66 25.68 36.14 31.14 43.67 46.17 19.51 19.55 17.79 17.83
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Table 2.2. Empirical size and power of several unit root tests for AR processes with GARCH
errors

This table reports the empirical size and power of empirical likelihood unit root tests based on the extension
of Theorem 2.1 (ELT Type I) and Theorem 2.3 (ELT Type II) in Theorem 2.11, Phillips-Perron (PP) test,
augmented Dickey-Fuller (ADF) test ( Type I: no drift nor linear trend; Type II: with drift, no linear trend;
Type III: with drift and linear trend) and sieve wild bootstrap ADF tests (QT and RT ). AR(1)-GARCH(1,1)
model is generated with α0 = 4.717e−07, α1 + β1 = 0.9545, 1, 1.005, εt ∼ standardized skew normal(0, 1, ξ),
ξ = 0, 10, and n = 200, 500, 2000. Empirical sizes and powers (multiplied by 100) are computed at the
level τ = 0.05. Local alternatives for ELT Type II when µ0 = 0 and µ0 = 0.01 are φ0 = 1 − d/(5

√
n) and

φ0 = 1 − d/(5n), respectively; all other tests are based on φ0 = 1 − d/n, with d = 0, 5, 10. (NA counts the
number of cases where the wild bootstrap ADF test fails to compute the P-value.)

ELT PP ADF Wild Bootstrap ADF
κ = 4 κ = 12

Type II
n ξ d

Type I
µ0 = 0 µ0 = 0.01

Type I Type II Type III QT RT QT RT NA

α1 = 0.1216, β1 = 0.8329

200 0 0 5.63 7.56 4.81 5.87 5.58 4.92 5.46 4.67 4.42 5.15 3.81
5 17.26 49.92 71.17 10.44 33.59 12.88 8.82 28.50 27.07 25.09 19.12
10 43.95 89.85 80.59 22.68 75.44 32.31 19.51 64.37 62.29 48.75 41.43

10 0 5.64 8.01 5.09 6.48 6.22 5.21 5.72 5.30 5.14 5.31 3.97
5 17.16 46.90 73.54 11.44 35.15 14.02 9.73 29.48 27.85 25.88 20.02 1
10 42.75 86.10 81.85 24.61 77.61 35.17 21.33 65.53 63.40 50.11 42.89 1

500 0 0 5.21 5.96 5.08 6.72 5.30 6.36 6.45 4.90 4.81 5.25 4.77
5 17.19 68.38 81.37 11.02 32.98 13.46 10.11 30.01 28.93 28.63 25.51
10 42.32 98.18 90.65 23.07 75.57 32.99 21.28 69.12 67.70 61.81 58.19

10 0 5.33 6.79 4.96 6.94 5.45 5.97 6.55 4.81 4.78 5.07 4.46
5 16.83 64.18 83.57 11.74 34.69 14.41 10.59 31.19 30.23 29.21 26.20
10 41.33 96.44 91.50 24.09 76.91 34.86 21.95 69.39 68.23 61.77 58.47

2000 0 0 5.45 5.72 5.43 5.73 4.84 5.56 5.67 4.71 4.70 4.46 4.31
5 16.38 93.09 89.80 9.52 32.49 12.36 9.41 31.34 30.61 30.46 29.54
10 40.40 99.99 96.15 19.96 74.88 31.62 19.49 73.04 72.27 70.14 68.59

10 0 4.91 5.25 5.22 6.17 5.20 5.34 6.23 4.93 4.99 5.11 4.99
5 16.91 90.69 91.45 9.95 34.41 13.88 9.91 32.72 32.22 31.29 29.92
10 41.52 99.95 96.70 21.60 76.81 34.55 21.69 73.71 72.95 71.06 69.53

α1 = 0.1216, β1 = 0.8784

200 0 0 5.59 6.55 4.70 5.26 7.12 4.07 4.73 4.89 4.83 4.73 3.89
5 15.75 45.67 37.74 10.51 34.54 13.39 8.96 25.53 24.73 21.37 17.13 5
10 39.58 85.54 50.54 22.57 73.70 32.38 20.23 57.68 56.51 42.00 35.76 8

10 0 5.39 6.94 5.01 5.73 6.96 3.79 4.92 5.34 5.34 5.21 4.11
5 15.87 43.06 40.42 11.11 36.70 14.16 9.60 26.75 25.73 22.93 18.54 2
10 39.90 82.66 53.33 24.41 75.95 35.55 21.38 59.14 57.96 43.79 37.46 9

500 0 0 5.29 5.60 4.90 6.82 7.28 6.08 6.29 4.84 4.87 5.42 5.00 2
5 16.39 61.13 32.66 12.40 37.03 15.53 11.17 27.63 26.97 26.55 24.48
10 37.55 95.16 47.56 24.74 74.54 36.22 23.09 60.68 60.05 54.16 51.84 1

10 0 5.23 6.14 4.78 7.18 7.33 5.14 6.56 4.89 4.82 5.31 4.75 3
5 16.16 56.69 36.82 12.72 39.10 16.48 11.31 28.83 27.88 27.43 25.19 2
10 37.84 92.39 52.77 25.93 78.42 38.84 23.99 62.65 62.10 56.48 54.09 2

2000 0 0 5.16 5.51 5.51 10.21 8.03 9.26 10.18 4.92 4.77 4.93 4.86
5 17.37 86.91 29.43 15.35 38.89 18.80 14.96 28.12 27.51 28.38 26.97
10 38.35 99.41 44.14 26.92 74.46 38.76 26.81 61.64 60.94 60.77 59.36

10 0 4.85 5.30 5.15 11.89 8.44 8.83 11.80 5.37 5.36 5.61 5.60 1
5 18.10 79.88 34.15 18.46 44.21 24.18 18.63 31.45 30.83 30.97 29.78 1
10 39.96 98.48 51.11 33.68 81.27 47.45 32.97 67.99 67.24 65.15 63.79 1
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Table 2.2 (cont’d). Empirical size and power of several unit root tests for AR processes with
GARCH errors

ELT PP ADF Wild Bootstrap ADF
κ = 4 κ = 12

Type II
n ξ d

Type I
µ0 = 0 µ0 = 0.01

Type I Type II Type III QT RT QT RT NA

α1 = 0.1266, β1 = 0.8784

200 0 0 5.64 6.52 4.71 5.43 7.61 4.12 4.79 4.96 4.88 4.73 3.87
5 15.49 44.28 33.48 11.00 35.13 13.67 9.40 24.99 24.18 20.88 16.90 8
10 38.41 83.96 45.45 23.29 73.19 32.77 20.60 56.01 54.93 40.43 34.66 15

10 0 5.31 6.70 4.93 5.87 7.14 3.69 4.89 5.27 5.25 5.16 4.30
5 15.68 42.19 36.20 11.41 36.93 14.46 9.83 26.20 25.24 22.28 18.09 5
10 39.15 81.38 48.11 24.70 75.33 35.81 21.74 57.65 56.55 42.36 35.99 13

500 0 0 5.33 5.33 4.92 6.83 8.30 5.93 6.39 4.87 4.95 5.54 4.98 4
5 15.70 58.27 25.52 13.03 37.82 15.91 11.82 26.76 25.98 25.32 23.46 4
10 36.07 93.26 37.46 25.33 74.02 36.83 23.66 57.87 57.20 51.74 49.62 5

10 0 5.21 5.79 4.78 7.31 7.92 5.08 6.57 4.83 4.79 5.17 4.84 6
5 15.68 54.60 29.57 13.40 39.77 17.27 11.92 27.48 26.70 26.10 24.32 3
10 37.02 90.49 43.43 26.50 77.83 39.37 24.64 60.34 59.49 53.91 51.70 4

2000 0 0 5.52 5.59 5.50 11.60 9.97 10.55 11.55 5.09 5.08 5.18 4.97 5
5 17.24 79.93 18.32 17.19 41.13 21.42 17.15 26.35 25.71 26.25 25.02 5
10 36.38 97.15 28.01 25.33 74.02 36.83 23.66 57.87 57.20 51.74 49.62 5

10 0 5.00 4.83 5.15 7.31 7.92 5.08 6.57 4.83 4.79 5.17 4.84 6
5 17.95 73.80 22.74 13.40 39.77 17.27 11.92 27.48 26.70 26.10 24.32 3
10 39.03 96.06 35.32 26.50 77.83 39.37 24.64 60.34 59.49 53.91 51.70 4
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Table 2.3. Empirical comparison of several estimators for AR parameters in AR processes
with ARCH errors

This table reports the mean, standard deviation (SD) and root-mean-square error (RMSE) of the point esti-

mate (µ̂, φ̂) of (µ0, φ0) in model 2.3 by weighted least squares estimator (WLSE), self-weighted least absolute
deviation estimator (SLADE) in Zhu and Ling (2015) and least squares estimator (LSE). AR(1)-ARCH(3)
model is generated with (µ0, φ0, α0, α1, α2, α3) = (1.9037e−03,−0.1954, 8.4511e−05, 0.6228, 0.4040, 0.2898),
εt ∼ tν/

√
ν/(ν − 2), ν = 2.8, 5, 10 or N(0,1), and n = 500, 2000, 5000.

µ̂ φ̂
n εt ∼ WLSE SLADE LSE WLSE SLADE LSE

500 t2.8 Mean 1.8934e-03 1.4876e-03 1.8882e-03 −0.1953 −0.1638 −0.1875
SD 6.7086e-04 4.8192e-04 3.3900e-03 0.0787 0.0763 0.1466
RMSE 6.7094e-04 6.3672e-04 3.3900e-03 0.0787 0.0826 0.1468

t5 Mean 1.9014e-03 1.0890e-03 1.8074e-03 −0.1957 −0.1526 −0.1851
SD 1.0101e-03 9.2938e-04 2.1031e-02 0.0727 0.1036 0.1596
RMSE 1.0101e-03 1.2359e-03 2.1031e-02 0.0727 0.1121 0.1600

t10 Mean 1.8985e-03 7.6660e-03 3.8710e-03 −0.1965 −0.1476 −0.1860
SD 3.6954e-03 1.3059e-03 1.6313e-01 0.0742 0.1174 0.1647
RMSE 3.6954e-03 1.7316e-03 1.6314e-01 0.0742 0.1267 0.1649

N(0,1) Mean 1.8780e-03 4.2936e-04 -4.1111e-03 −0.1956 −0.1425 −0.1842
SD 1.0567e-02 1.7662e-03 7.6673e-01 0.0739 0.1220 0.1673
RMSE 1.0567e-02 2.3007e-03 7.6676e-01 0.0739 0.1330 0.1677

2000 t2.8 Mean 1.8960e-03 1.4826e-03 1.8918e-03 −0.1958 −0.1636 −0.1873
SD 3.2271e-04 2.4212e-04 1.5048e-03 0.0410 0.0468 0.1336
RMSE 3.2280e-04 4.8579e-04 1.5048e-03 0.0410 0.0566 0.1339

t5 Mean 1.8978e-03 1.0739e-03 1.8010e-03 −0.1955 −0.1529 −0.1874
SD 4.5444e-04 4.7637e-04 2.7802e-02 0.0365 0.0796 0.1497
RMSE 4.5448e-04 9.5685e-04 2.7802e-02 0.0365 0.0903 0.1499

t10 Mean 1.8944e-03 7.6295e-04 2.8758e-03 −0.1957 −0.1498 −0.1854
SD 6.9074e-04 6.4926e-04 6.2189e-02 0.0395 0.0994 0.1592
RMSE 6.9081e-04 1.3126e-03 6.2196e-02 0.0395 0.1093 0.1595

N(0,1) Mean 1.9166e-03 4.2149e-04 3.8944e-04 −0.1955 −0.1486 −0.1844
SD 2.3490e-03 8.4741e-04 4.7601e-01 0.0442 0.1199 0.1616
RMSE 2.3490e-03 1.7074e-03 4.7601e-01 0.0442 0.1287 0.1620

5000 t2.8 Mean 1.8999e-03 1.4859e-03 1.8818e-03 −0.1956 −0.1641 −0.1904
SD 1.9917e-04 1.5500e-04 9.5334e-04 0.0243 0.0331 0.1262
RMSE 1.9920e-04 4.4564e-04 9.5359e-04 0.0243 0.0455 0.1263

t5 Mean 1.9019e-03 1.0744e-03 1.8007e-03 −0.1955 −0.1530 −0.1848
SD 2.8350e-04 3.0964e-04 1.7578e-02 0.0234 0.0692 0.1468
RMSE 2.8350e-04 8.8521e-04 1.7578e-02 0.0234 0.0812 0.1472

t10 Mean 1.9390e-03 7.6721e-04 7.8363e-03 −0.1956 −0.1514 −0.1887
SD 5.3188e-03 4.2073e-04 9.3850e-01 0.0277 0.0919 0.1558
RMSE 5.3190e-03 1.2119e-03 9.3852e-01 0.0277 0.1018 0.1559

N(0,1) Mean 1.9143e-03 4.2191e-04 2.7365e-03 −0.1957 −0.1518 −0.1854
SD 9.0584e-04 5.5958e-04 3.1451e-01 0.0296 0.1156 0.1595
RMSE 9.0590e-04 1.5839e-03 3.1451e-01 0.0296 0.1235 0.1598
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Table 2.4. Empirical coverage probabilities of the empirical likelihood confidence region for
AR parameters in AR processes with ARCH errors

This table reports the empirical coverage probabilities of the empirical likelihood confidence region for
(µ0, φ0) in model (2.3) based on Theorem 2.10 at levels 1 − τ = 0.90, 0.95. AR(1)-ARCH(3) model
is generated with (µ0, φ0, α0, α1, α2, α3) = (1.9037e−03,−0.1954, 8.4511e−05, 0.6228, 0.4040, 0.2898),
εt ∼ tν/

√
ν/(ν − 2), ν = 2.8, 5, 10 or N(0,1), and n = 500, 2000, 5000.

n = 500 n = 2000 n = 5000
εt ∼ 1− τ = 0.90 1− τ = 0.95 1− τ = 0.90 1− τ = 0.95 1− τ = 0.90 1− τ = 0.95

t2.8 0.8800 0.9347 0.8898 0.9436 0.8933 0.9445
t5 0.8927 0.9454 0.9051 0.9541 0.8974 0.9501
t10 0.8927 0.9448 0.8953 0.9466 0.9014 0.9508
N(0,1) 0.8950 0.9492 0.8962 0.9505 0.8994 0.9492

Table 2.5. Unit root tests for monthly financial ratios of stock return predictability during
the period 1953/01–2016/12

This table reports P-values of the proposed unified empirical likelihood unit root tests based on the
extension of Theorem 2.1 (ELT Type I) and Theorem 2.3 (ELT Type II) in Theorem 2.11, Phillips-
Perron (PP) test, augmented Dickey-Fuller (ADF) test ( Type I: no drift nor linear trend; Type II: with
drift, no linear trend; Type III: with drift and linear trend) and sieve wild bootstrap ADF tests (QT and RT ).

ELT PP ADF Wild Bootstrap ADF

Type I Type II κ = 4 κ = 12
Variable

m = 1 m = 2 m = 1 m = 2 Type I Type II Type III QT RT QT RT

b/m 0.5842 0.7817 0.9272 0.8417 0.5665 0.3362 0.4953 0.6222 0.2591 0.2351 0.4465 0.4248
d/p 0.9188 0.7262 0.8077 0.9848 0.4609 0.5311 0.3915 0.5575 0.5208 0.5048 0.5879 0.5809
d/y 0.7599 0.5648 0.5759 0.7565 0.4770 0.5226 0.4027 0.5686 0.5002 0.4932 0.5812 0.5805
lty 0.6415 0.7725 0.7015 0.6092 0.8287 0.3272 0.5288 0.8100 0.3845 0.4365 0.3871 0.4381
tms 0.0381 0.0492 0.2765 0.3280 0.0100 0.0100 0.0100 0.0100 0.0083 0.0090 0.0010 0.0013

Table 2.6. Unit root tests for monthly financial ratios of stock return predictability during
the period 1976/01–2016/12

This table reports P-values of the proposed unified empirical likelihood unit root tests based on the
extension of Theorem 2.1 (ELT Type I) and Theorem 2.3 (ELT Type II) in Theorem 2.11, Phillips-
Perron (PP) test, augmented Dickey-Fuller (ADF) test ( Type I: no drift nor linear trend; Type II: with
drift, no linear trend; Type III: with drift and linear trend) and sieve wild bootstrap ADF tests (QT and RT ).

ELT PP ADF Wild Bootstrap ADF

Type I Type II κ = 4 κ = 12
Variable

m = 1 m = 2 m = 1 m = 2 Type I Type II Type III QT RT QT RT

b/m 0.9458 0.9009 0.8617 0.8663 0.7833 0.5459 0.5907 0.8296 0.4985 0.4932 0.5915 0.5962
d/p 0.8512 0.8537 0.9124 0.7798 0.6878 0.4416 0.6182 0.7450 0.3951 0.3938 0.4428 0.4491
d/y 0.9028 0.9624 0.5727 0.6385 0.6958 0.4898 0.6227 0.7468 0.4715 0.4755 0.5335 0.5365
lty 0.5552 0.4094 0.6793 0.4794 0.0700 0.4347 0.7298 0.0685 0.4818 0.4295 0.5552 0.5052
tms 0.1057 0.1771 0.0511 0.1177 0.0116 0.0100 0.0100 0.0190 0.0113 0.0117 0.0050 0.0050
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Table 2.7. Estimation and inference for log-returns of the daily HKD/USD exchange rate
This table reports the point estimates and estimated confidence intervals (CI) at confidence levels 90% and
95% of (µ, φ) in model (2.3) for log-returns of the daily HKD/USD exchange rate (January 21, 1998–July 6,
2000). We estimate (µ, φ) by the maximum likelihood estimator (MLE) in the fGarch package, the weighted
least squares estimator (WLSE) in the extension of Theorems 2.9 in Theorem 2.11 with m = 3, and the
self-weighted least absolute deviation estimator (SLADE) in Zhu and Ling (2015). Confidence intervals for
WLSE and SLADE are constructed by profile empirical likelihood in Remark 2.7 and a random weighting
approach in Zhu and Ling (2015), respectively.

90% CI 95% CI
Estimator (µ̂, φ̂)

µ̂ φ̂ µ̂ φ̂

MLE (0.0019, -0.1954) (1.3386e-03, 2.4688e-03) (-0.2619, -0.1289) (1.2304e-03, 2.5770e-03) (-0.2746, -0.1161)
WLSE (0.0015, -0.1660) (-1.7572e-04, 2.4853e-03) (-0.2560, -0.0700) (-2.0329e-04, 2.6449e-03) (-0.2729, -0.0503)
SLADE (0.0012, -0.0918) (3.5403e-04, 2.0153e-03) (-0.1665, -0.0170) (1.9490e-04, 2.1744e-03) (-0.1808, -0.0027)
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CHAPTER 3

Comovements and Asymmetric Tail

Dependence in State Housing Prices

in the US
1

Abstract

We re-examine the methods used in estimating comovements among U.S. regional home

prices and find that there are insufficient moments to ensure a normal limit necessary for

employing the quasi-maximum likelihood estimator. Hence, we propose applying the self-

weighted quasi-maximum exponential likelihood estimator and a bootstrap method to test

and account for the asymmetry of comovements as well as different magnitudes across state

pairs. Our results reveal interstate asymmetric tail dependence based on observed house

price indices rather than residuals from fitting AR-GARCH models.

1This chapter is based on the joint work: Huang, H., Peng, L., & Yao, V. W. (2019). Comovements
and asymmetric tail dependence in state housing prices in the USA: A nonparametric approach. Journal of
Applied Econometrics, 34(5), 843-849.
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3.1 Introduction

The existence of comovements and contagion in the housing market, especially during ex-

treme market upswings and downswings, is an important stylized fact in the literature

(Del Negro and Otrok, 2007; Glaeser and Gyourko, 2006; Shiller, 2007; Kuethe and Pede,

2011; Kallberg et al., 2014). The observation has broad policy implications: Leamer (2007)

argued that housing is an important precursor of national business cycles; thus, regional

housing markets must be studied to understand the transmission of business cycles and de-

velop better policy insights (Hamilton and Owyang, 2012). In addition, since the recent

Great Recession was largely characterized by housing and housing-induced financial crises,

the study of comovements in regional housing prices is particularly useful in assessing the risk

of structured securities, such as collateralized debt obligations (CDOs; Zimmer, 2012, 2015),

as well as managing portfolios. As Coval et al. (2009) stated, correlated default probabilities

are amplified when CDOs are sold in tranches. The authors argued that the housing crisis

was exacerbated by (belief in) misspecified statistical distributions.

The evaluation of CDO ratings has traditionally relied on the Gaussian copula, which is

popular because of its simplicity. However, its assumption that extreme events such as steep

housing declines are unrelated can lead to significant underestimation of the magnitude of

comovements (Zimmer, 2012) and mislead the valuation of housing and mortgage-related

securities. Accurate modeling and understanding of comovements among regional home

prices are of broad importance for better risk management (Kole et al., 2007; Siburg et al.,

2015).

In this paper, we propose a new econometric framework and apply it to re-examine

house price comovements among four so-called Sand States that were severely hit by the

housing crisis, namely, California (CA), Florida (FL), Nevada (NV), and Arizona (AZ).2

Our work is built on the work of Zimmer (2012) and Ho et al. (2016, 2019), who advocated

2We use the quarterly house price index (HPI) reports estimated and published by the Federal Housing
Finance Agency (FHFA).
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both parametric and nonparametric copulas in modeling comovements in housing as well as

energy markets.

Recent research has found that US housing prices exhibit persistent volatility3, which

motivates the application of AR-GARCH models. Let Xi,t denote quarterly percentage

changes in the HPI for the ith state at time t. We can fit an AR(r)-GARCH(1,1) model to

Xi,t with the following equation:

Xi,t = µi +
r∑
j=1

φi,jXi,t−j + εi,t, εi,t = σi,tei,t, σ2
i,t = αi,0 + αi,1ε

2
i,t−1 + βi,1σ

2
i,t−1, (3.1)

where µi, φi,1, · · · , φi,r ∈ R, αi,0 > 0, αi,1 > 0, βi,1 > 0 for i = 1, · · · ,m, {et =

(e1,t, · · · , em,t)T}nt=1 is a sequence of independent and identically distributed random vec-

tors with zero means and unit variances. We have m = 4 in our data analysis.

To study housing price comovements, Zimmer (2012) proposed estimating

P (ej,t < −k|ei,t < −k) =
Cij(Gi(−k), Gj(−k))

Gi(−k)
, P (ej,t > k|ei,t > k) =

C̄ij(Gi(k), Gj(k))

1−Gi(k)
(3.2)

via fitting a parametric copula to Cij(u1, u2) = P (Gi(ei,t) ≤ u1, Gj(ej,t) ≤ u2), u1, u2 ∈ [0, 1],

and a parametric family to each marginal distribution Gi(x) = P (ei,t ≤ x) and Gj(y) =

P (ej,t ≤ y), where C̄ij(u1, u2) = P (Gi(ei,t) > u1, Gj(ej,t) > u2). The two conditional prob-

abilities in Eq. (3.2) could explain the lower and upper comovements of the residuals from

fitting the AR(r)-GARCH(1,1) models to the HPI, respectively. However, the validity of this

approach, as cautioned by Zimmer (2012), relies heavily on correct specifications of both the

copula and marginal distributions.

To overcome the robustness issue of fitting restrictive parametric families to the copula

and marginals, Ho et al. (2016) re-estimated these two quantities by using a nonparametric

copula estimator and nonparametric smoothing distribution estimators for the marginals.

Nonetheless, as shown in Figures 2–4 of their paper, the bootstrap confidence intervals are

so wide, especially for the upper tail dependence, that it is difficult to justify the asymmetric

tail dependence and significant changes in comovements due to FHFA data revision during

the sample period.

3See, for example, Miao et al. (2011), Miles (2011), and Zhu et al. (2013).
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Generally, comovement in the lower (upper) tail, between Xi,t and Xj,t, is defined as

the conditional probability of Xi,t below a low threshold (above a high threshold) given

Xj,t below a low threshold (above a high threshold). The thresholds can be the same or

different, such that the probability of being below (above) the threshold is the same for

both variables. When the Xi,t values are dependent and exhibit persistent volatility, the

calculations of comovements between ei,t and ej,t are often studied after filtering Xi,t and

Xj,t by time series models, as in Eq. (3.2). Note that P (ei,t ≤ −k) 6= P (ei,t > k) holds

in most cases when the distribution of ei,t is asymmetric. Without knowing whether the

distribution of ei,t is symmetric or not, one can draw spurious conclusions about the upper

and lower comovements for the same k due to the fact that the conditional probabilities are

intrinsically different. On the other hand, since financial products are directly related to

Xi,t rather than the unobserved ei,t, the comovements between Xi,t and Xj,t could be more

important to understand than those between ei,t and ej,t.

These considerations motivate us to depart from the copula framework of Zimmer (2012)

and to model the contemporaneous lower and upper comovements as follows:

γ−j|i,e(p) = P (Gi(ej,t) < p|Gi(ei,t) < p), γ+
j|i,e(p) = P (Gi(ej,t) > 1− p|Gi(ei,t) > 1− p), (3.3)

γ−j|i,X(p) = P (Fi(Xj,t) < p|Fi(Xi,t) < p), γ+
j|i,X(p) = P (Fi(Xj,t) > 1− p|Fi(Xi,t) > 1− p), (3.4)

γ∗−j|i,e(p) = P (Gj(ej,t) < p|Gi(ei,t) < p), γ∗+j|i,e(p) = P (Gj(ej,t) > 1− p|Gi(ei,t) > 1− p), (3.5)

γ∗−j|i,X(p) = P (Fj(Xj,t) < p|Fi(Xi,t) < p), γ∗+j|i,X(p) = P (Fj(Xj,t) > 1− p|Fi(Xi,t) > 1− p), (3.6)

where p ∈ (0, 1) and Fi and Gi denote the distribution functions of Xi,t and ei,t, respectively.

Let G←i denote the generalized inverse of Gi, and we rewrite Eq. (3.3) as

γ−j|i,e(p) = P (ej,t < G←i (p)|ei,t < G←i (p)), γ+
j|i,e(p) = P (ej,t > G←i (1− p)|ei,t > G←i (1− p)),

which uses the same threshold for ei,t and ej,t as in Eq. (3.2) based on Zimmer (2012).

Unlike Zimmer (2012), the new definition assumes the same probability for the conditional

events with respect to the upper and lower tail dependence, i.e., P (ei,t < G←i (p)) = P (ei,t >

G←i (1 − p)) = p. In addition, comovements in Eq. (3.3) depend on the magnitude of ej,t,
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while the quantities in Eq. (3.5) are invariant to the marginals and use different thresholds

but with the same probability of being below or above the chosen threshold. On the other

hand, comovement definitions in Eqs. (3.4) and (3.6) are more useful to analyze portfolios

since a portfolio may not follow an AR-GARCH model even when its individual assets do.

By design, the comovement measures in Eqs. (3.5) and (3.6) are invariant in terms of the

ordering of the states, meaning that the effects of housing price changes in one state on

the housing prices of the other state are the same for a particular state pair, whereas the

comovement measures in Eqs. (3.3) and (3.4) vary with the order.

In this paper, we intend to provide rigorous procedures to answer the following questions:

i) Are the wide intervals of Ho et al. (2016) due to the infeasible quasi-maximum likelihood

estimation and bootstrap method without a guaranteed normal limit? ii) How does one test

asymmetric tail dependence, that is, the difference between upper and lower comovements?

iii) Do the magnitudes of lower (or upper) comovements differ across state pairs? iv) How

different would the answers be for the above three questions if one considered the HPI rather

than the residuals in the fitted time series models? Specifically, we first investigate the

moment condition and then propose a correct AR-GARCH estimation procedure to ensure

the validity of bootstrapping the residuals. Using the new estimation procedure along with

novel comovement measures and the bootstrap method, we further propose formal statistical

tests for asymmetric tail dependence and differences in the magnitudes of lower (or upper)

tail dependence.

Based on the new framework, we find no evidence of asymmetric tail dependence or

differences in the magnitudes of lower (or upper) tail dependence based on the residuals of

the HPI, consistent with the wide confidence intervals of the conditional probabilities of Ho

et al. (2016). However, asymmetric dependence is supported for some of the state pairs when

we use the comovement measures based on the HPI change series.

Our study contributes to the literature in several dimensions. First, housing prices, like

other economic and financial data, can have heavy tails. Therefore, in the first-stage AR-

GARCH estimation, it is imperative that the moment conditions be tested and tail heaviness
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be accounted for. We propose a new procedure so that subsequent analyses are not biased

by inconsistent AR-GARCH estimates. Second, we complement the copula framework in

modeling housing price comovements by proposing new measures of comovements, as well

as new nonparametric estimators. Because we do not use parametric copula selection as

does Zimmer (2012) or kernel smoothing as do Ho et al. (2016), our approach is compu-

tationally advantageous. Third, the simplicity and flexibility of the comovement measures

and associated estimators allow us to formulate hypothesis tests to directly test asymmetric

tail dependence. Given that financial risks are largely determined by tail dependence, the

proposed tests have important implications in gauging risk measures and choosing a para-

metric copula family with symmetric or asymmetric tail dependence (see Siburg et al., 2015;

White et al., 2015). Unlike Zimmer (2012) and Ho et al. (2016), our proposed comovement

defintions based on observations instead of residuals are applicable to the study of portfo-

lios, and an application to computing the upper and lower Value-at-Risk (VaR) of portfolios

illustrates the usefulness of the proposed test for asymmetric tail dependence.

The paper is organized as follows. Section 3.2 provides details on the methodologies.

Section 3.3 reports the empirical results. Section 3.4 concludes the paper with discussions.

The Appendix contains further explanation of methodologies and additional figures and

tables.

3.2 Methodologies

3.2.1 AR-GARCH Estimation

To fit model (3.1) to the quarterly changes of a state’s HPI, Zimmer (2012) and Ho et al.

(2016) employed the well-known quasi-maximum likelihood estimation, for which asymptotic

normality requires both Ee4
i,t < ∞ and EX4

i,t < ∞ (Francq and Zakoian, 2004). Since

the validity of a bootstrap confidence interval requires that the asymptotic distribution

of the involved parameter estimation be normal, we first check whether EX4
i,t < ∞ and
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Ee4
i,t <∞ by using the well-known Hill (1975) estimator.4 We also check the autocorrelation

functions of the residuals by using the quasi-maximum likelihood estimator, the self-weighted

quasi-maximum likelihood estimator of Ling (2007), and the self-weighted quasi-maximum

exponential likelihood estimator (SWQMELE) of Zhu and Ling (2011).

We find that both EX4
i,t and Ee4

i,t could be infinite and that application of the

SWQMELE to fit model (3.1) with r = 3 is justifiable. The final model fitting is reported

in Table 3.1 and details pertinent to tail index estimation and model diagnostics are plotted

in Figures 3.A.1–3.A.8 in the Appendix.

3.2.2 Comovement Estimation and Hypothesis Tests

To estimate the quantities in Eqs. (3.3)–(3.6), we employ the fitted models from above

and denote the resultant estimator by θ̂i for θi = (µi, φi,1, · · · , φi,r, αi,0, αi,1, βi,1)T .

We can write ε̂i,t = Xi,t − µ̂i −
∑r

j=1 φ̂i,jXi,t−j, σ̂
2
i,t = α̂i,0 + α̂i,1ε̂

2
i,t−1 + β̂i,1σ̂

2
i,t−1,

êi,t = ε̂i,t/σ̂i,t. A nonparametric estimator for γ−j|i,e(p) is γ̂−j|i,e(p) = 1
np

∑n
t=1 I(Gni(êi,t) ≤

p,Gni(êj,t) ≤ p), where I(·) denotes the indicator function and Gni(x) = 1
n+1

∑n
t=1 I(êi,t ≤ x).

The estimators for the remaining quantities in Eqs. (3.3)–(3.6) can be defined in the same

fashion.

To assess the asymmetry of tail dependence for a specific state pair and compare the

magnitudes of comovements across different state pairs, we define the distance-based test

statistics based on residuals as follows: Dj|i,e(p) =
∫ p

0
|γ̂−j|i,e(s) − γ̂+

j|i,e(s)|2 ds, D̄
+
j,k|i,e(p) =∫ p

0
|γ̂+
j|i,e(s) − γ̂

+
k|i,e(s)|2 ds, and D̄−j,k|i,e(p) =

∫ p
0
|γ̂−j|i,e(s) − γ̂

−
k|i,e(s)|2 ds. In the Appendix, we

also define analogous test statistics Dj|i,X(p), D̄+
j,k|i,X(p), D̄−j,k|i,X(p) based on changes in the

HPI rather than the residuals. These test statistics are in line with the well-known Crámer-

von Mises statistic for testing the goodness-of-fit of distribution functions. Hence, when the

defined distance is too large, one will reject the null hypothesis of no difference.

To obtain critical values for the above test statistics, we adopt a bootstrap method via

resampling from the residuals in model (3.1). Specifically, we draw samples with replacement

4The asymptotic properties of the Hill estimator for dependent data are available from Drees (2003).
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from {êi,t}nt=1, say, {ê∗i,t}nt=1, and then refit the model (3.1) with θi and ei,t replaced by θ̂i

and ê∗i,t, respectively, yielding the bootstrap samples {X∗i,t}nt=1. The bootstrap test statistics

are obtained using these bootstrap samples. Critical values are computed by repeating this

procedure 1, 000 times in our analysis.

Using the same procedure, we also test asymmetry in tail dependence based on the

comovements defined in Eqs. (3.5) and (3.6) and examine the effects of data revision on the

comovements defined in Eqs. (3.3)–(3.6). The relevant test statistics are included in the

Appendix. The importance of testing for asymmetric tail dependence is also illustrated by

comparing upper and lower VaR of portfolios.

3.3 Results

In Figures 3.A.9 and 3.A.9 in the Appendix, we plot the cross-state comovement estimates

of the measures in Eqs. (3.3) and (3.4) against p = 0.25, 0.24, ..., 0.01 based on the residual

series of fitted AR(3)-GARCH(1,1) models as well as the quarterly change series of the state

HPI from 1975:Q2 to 2017:Q1, respectively.

One interesting observation from these two figures is that the lower comovements are

weaker than the upper comovements for all states conditional on CA when the comovements

are defined on the residuals, while the relation is reversed when the comovements are defined

on the original series. The former relation appears in line with the findings of Zimmer (2012),

that upper tail dependence is stronger and more prevalent when residuals from AR-GARCH

models are used, and the latter relation corroborates the evidence of Kuethe and Pede (2011)

that economic shocks in CA have a great impact on the housing prices in the neighboring

states of AZ and NV. Another observation is that lower comovements are larger in magnitude

for most state pairs when the comovements are defined based on the original HPI. Similar

plots for the measures in Eqs. (3.5) and (3.6) can be found in Figures 3.A.11 and 3.A.12 in

the Appendix.

Table 3.2 reports the test results of asymmetric tail dependence based on the comove-
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ment measures defined in Eqs. (3.3) and (3.4). The p-values of the test statistic Dj|i,e(p)

fail to reject the null hypothesis of symmetry based on the residuals for all the state pairs,

whereas the p-values of Dj|i,X(p) reject the null hypothesis of symmetry for three state pairs

AZ–CA, NV–AZ, and AZ–NV based on the original series.

The comovement measures in Eqs. (3.3) and (3.4) have the appealing order-varying

property for each given state pair; that is, the comovements of state j conditional on i could

differ from those of state i conditional on state j. For example, our results show asymmetric

dependence for AZ conditional on CA but not vice versa. This means that the housing prices

in AZ respond differently from the housing price upswings and downswings in CA but not

vice versa.

In Table 3.3, we report the results for testing asymmetric tail dependence based on

Eqs. (3.5) and (3.6). The results from the test statistics defined on observed percentage

changes in the HPI show strong evidence of asymmetric dependence for the AZ–NV pair and

moderate evidence for the NV–CA pair. This result is consistent with the evidence in Table

3.2 of asymmetric dependence between AZ and NV.

To the extent that the proposed comovements based on observations are applicable to

portfolios, we examine the impact of asymmetric tail dependence on the upper and lower

VaR of portfolios Xi,t + Xj,t by comparing the measure DV(p) defined as the difference of

VaR at levels p and 1 − p multiplied by the skewness of the portfolio. The large values of

DV(0.90) and DV(0.95) for portfolios NV+CA, AZ+CA and AZ+NV in Table 3.A.7 are

consistent with the small p-values of Dj|i,X(0.10) and Dj|i,X(0.05) for NV/CA, AZ/CA and

AZ/NV in Table 3.3, i.e., higher asymmetric tail dependence implies larger difference in

upper and lower VaR.

More results are reported in the Appendix. For example, results for testing the difference

in magnitudes of the upper (or lower) comovements are in Tables 3.A.1-3.A.2; those for

examining whether the revised HPI data published by the FHFA lead to significant changes

in comovements are reported in Tables 3.A.3-3.A.6; those for diversification effect are in

Table 3.A.8.
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3.4 Conclusions

We re-examine the methods used in modeling the comovements of state HPIs. We find that,

due to the heavy tails of the HPI data, the previously adopted quasi-maximum likelihood es-

timator in fitting an AR-GARCH model has a non-normal limit. We thus propose employing

the self-weighted quasi-maximum exponential likelihood estimator. Based on the new esti-

mation procedure and a bootstrap method based on residuals, we propose hypothesis tests

of asymmetry between lower and upper comovements and differences in the magnitudes of

comovements across state pairs. Our test results support the asymmetric dependence of

housing prices between certain states, using measures defined based on original HPI change

series rather than on the residuals from the fitted AR-GARCH models. We also find that

data revision has little impact on comovements. The proposed methods based on observa-

tions are applicable to the study of portfolios.
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Table 3.1. Summary statistics of estimates from AR(3)-GARCH(1,1) models

We fit AR(3)-GARCH(1,1) models using the SWQMELE to quarterly changes in the HPI for four states

from 1975:Q2 to 2017:Q1: CA, FL, NV, and AZ. In this table, we report the median and mean of the

standardized residuals, the mean of the absolute value of standardized residuals, and the parameter estimates,

with bootstrap standard deviations in parentheses.

AR(3)-GARCH(1,1) Parameter Estimates
State Median êi,t Mean êi,t Mean |êi,t|

µ̂i φ̂i,1 φ̂i,2 φ̂i,3 α̂i,0 α̂i,1 β̂i,1

CA
-0.0020

(0.0321)

-0.0827

(0.0846)

1.0032

(0.0258)

0.2925

(0.1524)

0.7133

(0.1146)

0.0142

(0.1286)

0.1200

(0.1023)

0.2703

(0.1359)

0.2727

(0.1324)

0.2853

(0.2096)

FL
-0.0283

(0.0249)

-0.0381

(0.0831)

0.9692

(0.0263)

0.2190

(0.1175)

0.5306

(0.0764)

0.0199

(0.0815)

0.3253

(0.0714)

0.1084

(0.1024)

0.1870

(0.1051)

0.5738

(0.2117)

NV
-0.0639

(0.0438)

0.0414

(0.0877)

0.9804

(0.0229)

0.2650

(0.1863)

0.3681

(0.1117)

0.0497

(0.1180)

0.3280

(0.1070)

0.0462

(0.1016)

0.2115

(0.1051)

0.6843

(0.1711)

AZ
-0.0692

(0.0486)

0.0092

(0.0831)

0.9934

(0.0218)

0.3759

(0.1569)

0.2642

(0.0962)

0.1568

(0.0931)

0.2873

(0.0862)

0.0335

(0.0934)

0.3340

(0.1303)

0.5346

(0.1344)

Table 3.2. Test results for asymmetric tail dependence based on Eqs. (3.3) and (3.4)

This table reports the p-values of tests based on Dj|i,e(p) and Dj|i,X(p) using the quarterly changes in the

state HPI from 1975:Q2 to 2017:Q1. The superscripts ∗∗ and ∗ denote significance at the 0.05 and 0.1 levels,

respectively.

Dj|i,e(p) Dj|i,X(p)
State pair

p = 0.25 p = 0.20 p = 0.15 p = 0.10 p = 0.05 p = 0.25 p = 0.20 p = 0.15 p = 0.10 p = 0.05

FL/CA 0.954 0.947 0.946 0.890 0.847 0.402 0.354 0.283 0.199 0.202

NV/CA 0.466 0.483 0.520 0.475 0.392 0.446 0.364 0.267 0.219 0.208

AZ/CA 0.637 0.639 0.656 0.608 0.646 0.209 0.155 0.114 0.077∗ 0.097∗

CA/FL 0.837 0.854 0.817 0.729 0.738 0.859 0.856 0.854 0.818 0.816

NV/FL 0.597 0.531 0.513 0.472 0.418 0.713 0.645 0.543 0.458 0.425

AZ/FL 0.568 0.522 0.687 0.632 0.489 0.866 0.809 0.760 0.708 0.629

CA/NV 0.905 0.857 0.796 0.957 0.790 0.802 0.772 0.701 0.618 0.473

FL/NV 0.841 0.804 0.750 0.660 0.761 0.396 0.323 0.236 0.201 0.172

AZ/NV 0.907 0.873 0.828 0.742 0.734 0.165 0.124 0.084∗ 0.071∗ 0.187

CA/AZ 0.709 0.677 0.637 0.582 0.645 0.644 0.634 0.638 0.515 0.403

FL/AZ 0.948 0.934 0.906 0.909 0.877 0.871 0.826 0.768 0.743 0.611

NV/AZ 0.556 0.507 0.421 0.334 0.400 0.188 0.138 0.086∗ 0.047∗∗ 0.021∗∗
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Table 3.3. Test results for asymmetric tail dependence based on Eqs. (3.5) and (3.6)

Note: In this table, we report the p-values of tests based on Dj|i,e(p) and Dj|i,X(p) using the quarterly

changes of the state HPI from 1975:Q2 to 2017:Q1. The superscripts ∗∗ and ∗ denote significance at the 0.05

and 0.1 levels, respectively.

Dj|i,e(p) Dj|i,X(p)
State pair

p = 0.25 p = 0.20 p = 0.15 p = 0.10 p = 0.05 p = 0.25 p = 0.20 p = 0.15 p = 0.10 p = 0.05

FL/CA 0.845 0.801 0.786 0.741 0.759 0.504 0.467 0.446 0.421 0.630

NV/CA 0.413 0.415 0.485 0.533 0.518 0.288 0.250 0.198 0.150 0.082∗

AZ/CA 0.775 0.761 0.787 0.785 0.654 0.271 0.237 0.193 0.146 0.141

NV/FL 0.713 0.692 0.656 0.612 0.737 0.275 0.240 0.187 0.152 0.328

AZ/FL 0.516 0.488 0.532 0.547 0.450 0.811 0.801 0.758 0.754 0.647

AZ/NV 0.787 0.781 0.752 0.703 0.754 0.042∗∗ 0.036∗∗ 0.023∗∗ 0.014∗∗ 0.048∗∗
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Appendix

Appendix 3.A Measuring Comovements

Let Xi,t denote the quarterly percentage changes of state-level HPI for the i-th state at time

t. For each state, we fit an AR(r)-GARCH(1,1) model to the HPI series:

Xi,t = µi +
r∑
j=1

φi,jXi,t−j + εi,t, εi,t = σi,tei,t, σ2
i,t = αi,0 + αi,1ε

2
i,t−1 + βi,1σ

2
i,t−1, (3.A.1)

where µi, φi,1, · · · , φi,r ∈ R, αi,0 > 0, αi,1 > 0, βi,1 > 0 for i = 1, · · · ,m, {et =

(e1,t, · · · , em,t)T}nt=1 is a sequence of independent and identically distributed random vec-

tors with zero means and unit variances. Here AT denotes the transpose of matrix or vector

A.

We propose to quantify the contemporaneous upper and lower comovements by

γ−j|i,e(p) = P (Gi(ej,t) < p|Gi(ei,t) < p), γ+
j|i,e(p) = P (Gi(ej,t) > 1− p|Gi(ei,t) > 1− p), (3.A.2)

γ−j|i,X(p) = P (Fi(Xj,t) < p|Fi(Xi,t) < p), γ+
j|i,X(p) = P (Fi(Xj,t) > 1− p|Fi(Xi,t) > 1− p),

(3.A.3)

γ∗−j|i,e(p) = P (Gj(ej,t) < p|Gi(ei,t) < p), γ∗+j|i,e(p) = P (Gj(ej,t) > 1− p|Gi(ei,t) > 1− p), (3.A.4)

γ∗−j|i,X(p) = P (Fj(Xj,t) < p|Fi(Xi,t) < p), γ∗+j|i,X(p) = P (Fj(Xj,t) > 1− p|Fi(Xi,t) > 1− p),

(3.A.5)

where p ∈ (0, 1), Fi and Gi denote the distribution functions of Xi,t and ei,t, respectively.
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Appendix 3.B AR-GARCH Estimation

To fit model (3.A.1) to the state HPI series, Zimmer (2012) and Zimmer (2012) employed

the well-known quasi-maximum likelihood estimation, of which the asymptotic normality

requires both Ee4
i,t <∞ and EX4

i,t <∞ (Francq and Zakoian, 2004).

Since the validity of a bootstrap confidence interval based on the residuals of a time

series model requires that the asymptotic distribution of the involved parameter estimation

is normal, we first check whether EX4
i,t < ∞ by assuming that P (|Xi,t| > x) has a heavy

tail, i.e., lims→∞ P (|Xi,t| > sx)/P (|Xi,t| > s) = x−αi for all x > 0, where αi > 0 is called the

tail index. When αi > 4, we have E|Xi,t|4 <∞. To estimate the tail index αi, we adopt the

well-known Hill estimator (Hill, 1975) defined as α̂i(k) =
{

1
k

∑k
j=1 log

Xi,n,n−j+1

Xi,n,n−k

}−1

, where

Xi,n,1 ≤ · · · ≤ Xi,n,n denote the order statistics of Xi,1, · · · , Xi,n, and k = k(n) → ∞ and

k/n→ 0 as n→∞. Asymptotic behavior of the Hill estimator for a dependent sequence is

studied in Drees (2003) and references therein.

In Figure 3.A.1, we use the state HPI data from 1975:Q2 to 2017:Q1 to plot α̂i(k)

against k = 5, 6, · · · , 70. The figure shows that the tail index for each state is between

2 and 4, i.e., Xi,t has a finite variance, but a possible infinite fourth moment. Moreover,

as shown in Figure 3.A.2, the autocorrelation functions (ACFs) of the estimated {ei,t} via

the quasi-maximum likelihood estimator (QMLE) from fitting AR(1)-GARCH(1,1) models

to the same data, point to the inadequacy of such model specifications. Hence, confidence

intervals constructed from the bootstrap method based on QMLE are inaccurate due to the

non–normal limit in fitting model (3.A.1).

To relax the moment condition of Xi,t, Ling (2007) proposed a so-called self-weighted

quasi-maximum likelihood estimator (SWQMLE) to fit model (3.A.1), which only requires

Ee4
i,t < ∞ to ensure a normal limit. We fit model (3.A.1) by using SWQMLE in Ling

(2007) with weight wi,t =
{

max
(

1, 1
Ci

∑t−1
j=1

|Xi,t−j |I(|Xi,t−j |>Ci)
j9

)}−4

, where Ci is taken as

the 95% percentile of Xi,1, · · · , Xi,n. Note that, in the optimization process, we delete the

first ten terms in the summation of the log-likelihood function (approximately 10% of the
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length of the original data) to remove the effect of the initial values in computing σi,t by

setting εi,t = Xi,t = σi,t = 0 for t ≤ 05. With this fitting procedure, we obtain estimates for

ei,1, · · · , ei,n, say êSWQMLE
i,t , for t = 1, · · · , n. Using these residual estimates without the first

ten, we compute and plot the ACFs of {ei,t} and {e2
i,t} in Figures 3.A.3 and 3.A.4, which

show that the fitting of AR(3)-GARCH(1,1) models is quite reasonable. As the asymptotic

normality of this estimator needs a finite fourth moment of ei,t, we plot the Hill estimators

based on {êSWQMLE
i,t } in Figure 3.A.5, which well indicates that Ee4

i,t = ∞. That is, the

estimator in Ling (2007) also can not ensure the validity of the bootstrap method due to the

non–normal limit.

We further relax the moment conditions of both Xi,t and ei,t by using the self-weighted

quasi-maximum exponential likelihood estimator (SWQMELE) in Zhu and Ling (2011) with

the above weight wi,t to fit model (3.A.1). It requires E|ei,t| = 1 and ei,t to have median

zero instead of mean zero and variance one. Again, we delete the first ten terms in the sum

of log likelihood function for computing this estimator and estimating ei,t’s. Denote these

residuals by {êSWQMELE
i,t }nt=11. The ACFs of {ei,t} and {e2

i,t} and the Hill estimators based on

{êSWQMELE
i,t }nt=11 are plotted in Figures 3.A.6–3.A.8. These figures suggest the model fitting

and estimation procedure are adequate. Results for the median of residuals and the mean of

the absolute values of residuals reported in the paper show that the assumptions on {ei,t} in

using the SWQMELE are satisfied. In summary, it is sound to apply the SWQMELE with

the above weight wi,t to fit model (3.A.1) with r = 3.

Appendix 3.C Comovement Estimation and Hypothe-

sis Tests

In order to estimate the quantities in Eq. (3.A.2)–(3.A.5), we first infer model (3.A.1) with

r = 3. We employ the SWQMELE for θi = (µi, φi,1, · · · , φi,r, αi,0, αi,1, βi,1)T in model (3.A.1)

5In separate and unreported simulation studies, this initialization approach works reasonably well for
AR-GARCH estimation.
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to ensure a normal limit, where we assume model (3.A.1) holds with ei,t having median zero

and E|ei,t| = 1. Denote the resultant estimator by θ̂i. Write ε̂i,t = Xi,t− µ̂i−
∑r

j=1 φ̂i,jXi,t−j,

σ̂2
i,t = α̂i,0 + α̂i,1ε̂

2
i,t−1 + β̂i,1σ̂

2
i,t−1, êi,t = ε̂i,t/σ̂i,t. Then the quantities in Eq. (3.A.2) through

(3.A.5) can be estimated by

γ̂−j|i,e(p) =
1

np

n∑
t=1

I(Gni(êi,t) ≤ p,Gni(êj,t) ≤ p),

γ̂+
j|i,e(p) =

1

np

n∑
t=1

I(Gni(êi,t) > 1− p,Gni(êj,t) > 1− p),

γ̂−j|i,X(p) =
1

np

n∑
t=1

I(Fni(Xi,t) ≤ p, Fni(Xj,t) ≤ p),

γ̂+
j|i,X(p) =

1

np

n∑
t=1

I(Fni(Xi,t) > 1− p, Fni(Xj,t) > 1− p),

γ̂∗−j|i,e(p) =
1

np

n∑
t=1

I(Gni(êi,t) ≤ p,Gnj(êj,t) ≤ p),

γ̂∗+j|i,e(p) =
1

np

n∑
t=1

I(Gni(êi,t) > 1− p,Gnj(êj,t) > 1− p),

γ̂∗−j|i,X(p) =
1

np

n∑
t=1

I(Fni(Xi,t) ≤ p, Fnj(Xj,t) ≤ p),

γ̂∗+j|i,X(p) =
1

np

n∑
t=1

I(Fni(Xi,t) > 1− p, Fnj(Xj,t) > 1− p),

where I(·) denotes the indicator function,

Gni(x) =
1

n+ 1

n∑
t=1

I(êi,t ≤ x) and Fni(x) =
1

n+ 1

n∑
t=1

I(Xi,t ≤ x).

We assess the asymmetry of tail dependence of a given state pair and the differences

in the upper (lower) comovements of different state pairs using the following distance-based
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test statistics:

Dj|i,e(p) =

∫ p

0

|γ̂−j|i,e(s)− γ̂
+
j|i,e(s)|

2 ds,

Dj|i,X(p) =

∫ p

0

|γ̂−j|i,X(s)− γ̂+
j|i,X(s)|2 ds,

D̄+
j,k|i,e(p) =

∫ p

0

|γ̂+
j|i,e(s)− γ̂

+
k|i,e(s)|

2 ds,

D̄−j,k|i,e(p) =

∫ p

0

|γ̂−j|i,e(s)− γ̂
−
k|i,e(s)|

2 ds,

D̄+
j,k|i,X(p) =

∫ p

0

|γ̂+
j|i,X(s)− γ̂+

k|i,X(s)|2 ds,

D̄−j,k|i,X(p) =

∫ p

0

|γ̂−j|i,X(s)− γ̂−k|i,X(s)|2 ds.

Appendix 3.D Effects of Data Revision on Comove-

ments

Let X̃i,t denote the revised data and we fit the data using AR(3)-GARCH(1,1) models with

residuals ẽi,t via SWQMELE. We use the following statistics and a similar bootstrap method

to test the difference in the magnitude of comovements between the HPI used in Zimmer

(2012) and the FHFA revised HPI:

D̃+
j|i,e,ẽ(p) =

∫ p

0

|γ̂+
j|i,e(s)− γ̂

+
j|i,ẽ(s)|

2 ds,

D̃−j|i,e,ẽ(p) =

∫ p

0

|γ̂−j|i,e(s)− γ̂
−
j|i,ẽ(s)|

2 ds,

D̃+

j|i,X,X̃(p) =

∫ p

0

|γ̂+
j|i,X(s)− γ̂+

j|i,X̃(s)|2 ds,

D̃−
j|i,X,X̃(p) =

∫ p

0

|γ̂−j|i,X(s)− γ̂−
j|i,X̃(s)|2 ds.
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Appendix 3.E Value-at-Risk of Portfolios

As the proposed comovements based on observations is arguably applicable to portfolios, we

examine the impact of asymmetric tail dependence on the upper and lower VaR. To take

into account the effects of marginal distributions in different portfolios, we define a new

measure DV(p) as the sum of VaR at levels p and 1− p of a portfolio scaled by its skewness.

To examine how asymmetric tail dependence could affect the diversification benefits for

an equally weighted portfolio of state house price changes, we study the ratio DB(p) =

(VaRXi,t(p) + VaRXj,t(p))/VaRXi,t+Xj,t(p). A larger value of DB(p) for a given level p means

greater diversification benefits of investing in the portfolio.

Appendix 3.F Additional Tables and Figures

Results on fitting model (3.A.1) are reported in Figures 3.A.1–3.A.8, including tail index

estimation and autocorrelation function plots. Estimates of comovements are plotted in

Figures 3.A.9–3.A.12. P-values for the proposed tests for different magnitudes of comove-

ments between state pairs and effects of data revision are reported in Tables 3.A.1–3.A.6.

Calculations of VaR of portfolios and the new measure DV(p) for examining the impact of

asymmetric tail dependence on risk measures are reported in Table 3.A.7. The diversification

benefits at the lower and upper tails are reported in Table 3.A.8. The comovements between

portfolios of equally weighted HPI change series in two states are plotted in Figure 3.A.13

using the comovement measure in Eq. (3.A.5).
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Figure 3.A.1. Hill’s estimators for quarterly changes of HPI (1975:Q2 - 2017:Q1)
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Figure 3.A.2. Autocorrelation functions of AR(1)-GARCH(1,1) model residuals for
quarterly changes of HPI (1975:Q2 - 2017:Q1)
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Figure 3.A.3. Autocorrelation functions of AR(3)-GARCH(1,1) model residuals for
quarterly changes of HPI (1975:Q2 - 2017:Q1)
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Figure 3.A.5. Hill’s estimators of AR(3)-GARCH(1,1) model residuals for the quarterly
changes of HPI (1975:Q2 - 2017:Q1)
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Figure 3.A.6. Autocorrelation functions of AR(3)-GARCH(1,1) model residuals for
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Figure 3.A.8. Hill’s estimators of AR(3)-GARCH(1,1) model residuals for quarterly
changes of HPI (1975:Q2 - 2017:Q1)
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Figure 3.A.9. Upper tail dependence (γ̂+
i|j,e) and lower tail dependence (γ̂−i|j,e) for

AR(3)-GARCH(1,1) model residuals by SWQMELE
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Figure 3.A.10. Upper tail dependence (γ̂+
i|j,X) and lower tail dependence (γ̂−i|j,X) for the

original HPI series
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Figure 3.A.11. Upper tail dependence (γ̂∗+i|j,e) and lower tail dependence (γ̂∗−i|j,e) for

AR(3)-GARCH(1,1) model residuals by SWQMELE
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Figure 3.A.12. Upper tail dependence (γ̂∗+i|j,X) and lower tail dependence (γ̂∗−i|j,X) for the
original HPI series
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Figure 3.A.13. Upper tail dependence (γ̂∗+i|j,X) and lower tail dependence (γ̂∗−i|j,X) for
portfolios of equally weighted original HPI series in two states
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Table 3.A.1. Test results for the difference in interstate housing price comovements
between two state pairs based on residuals

In this table, we report the p-values of tests based on D̄+
j,k|i,e(p) and D̄−j,k|i,e(p) using the quarterly changes

in state HPI (1975:Q2 - 2017:Q1).

D̄+
j,k|i,e(p) D̄−j,k|i,e(p)State

p = 0.25 p = 0.20 p = 0.15 p = 0.10 p = 0.05 p = 0.25 p = 0.20 p = 0.15 p = 0.10 p = 0.05

FL, NV/CA 0.490 0.486 0.430 0.389 0.337 0.533 0.566 0.603 0.521 0.382

FL, AZ/CA 0.507 0.481 0.436 0.443 0.363 0.967 0.978 0.973 0.959 0.769

NV, AZ/CA 0.812 0.791 0.743 0.640 0.473 0.559 0.515 0.477 0.432 0.280

CA, NV/FL 0.482 0.431 0.364 0.318 0.288 0.771 0.850 0.864 0.748 0.856

CA, AZ/FL 0.494 0.474 0.507 0.464 0.376 0.898 0.892 0.813 0.772 0.637

NV, AZ/FL 0.527 0.502 0.578 0.656 0.594 0.592 0.766 0.781 0.667 0.459

CA, FL/NV 0.570 0.529 0.480 0.493 0.671 0.619 0.577 0.489 0.411 0.284

CA, AZ/NV 0.747 0.717 0.606 0.535 0.554 0.726 0.672 0.578 0.526 0.430

FL, AZ/NV 0.724 0.704 0.603 0.548 0.380 0.723 0.681 0.624 0.520 0.376

CA, FL/AZ 0.852 0.898 0.943 0.965 0.878 0.721 0.692 0.704 0.622 0.597

CA, NV/AZ 0.794 0.787 0.742 0.691 0.691 0.980 0.981 0.958 0.936 0.882

FL, NV/AZ 0.559 0.541 0.612 0.627 0.543 0.579 0.633 0.643 0.556 0.472

Table 3.A.2. Test results for the difference in interstate housing price comovements
between two state pairs based on the original HPI series

In this table, we report the p-values of tests based on D̄+
j,k|i,X(p) and D̄−j,k|i,X(p) using the quarterly per-

centage changes of state HPI (1975:Q2 - 2017:Q1).

D̄+
j,k|i,X(p) D̄−j,k|i,X(p)

State
p = 0.25 p = 0.20 p = 0.15 p = 0.10 p = 0.05 p = 0.25 p = 0.20 p = 0.15 p = 0.10 p = 0.05

FL, NV/CA 0.664 0.618 0.537 0.433 0.332 0.646 0.575 0.489 0.378 0.227

FL, AZ/CA 0.699 0.644 0.581 0.479 0.328 0.805 0.741 0.662 0.532 0.387

NV, AZ/CA 0.360 0.322 0.282 0.226 0.183 0.583 0.511 0.412 0.318 0.203

CA, NV/FL 0.823 0.794 0.801 0.730 0.586 0.752 0.693 0.634 0.585 0.616

CA, AZ/FL 0.574 0.557 0.539 0.434 0.469 0.696 0.645 0.594 0.598 0.618

NV, AZ/FL 0.458 0.421 0.376 0.312 0.254 0.861 0.859 0.848 0.800 0.674

CA, FL/NV 0.573 0.595 0.585 0.459 0.352 0.467 0.422 0.336 0.277 0.219

CA, AZ/NV 0.689 0.665 0.602 0.475 0.432 0.433 0.389 0.334 0.300 0.322

FL, AZ/NV 0.916 0.894 0.870 0.802 0.691 0.588 0.533 0.486 0.404 0.309

CA, FL/AZ 0.393 0.371 0.334 0.258 0.407 0.466 0.425 0.395 0.443 0.550

CA, NV/AZ 0.881 0.858 0.837 0.782 0.758 0.271 0.229 0.190 0.163 0.157

FL, NV/AZ 0.661 0.600 0.496 0.377 0.421 0.596 0.528 0.444 0.343 0.230
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Table 3.A.3. Test results for effects of data revision on interstate housing price
comovements based on Eq. (3.A.2)

In this table, we report the p-values of tests based on D̃+
j|i,e,ẽ(p) and D̃−j|i,e,ẽ(p) using quarterly changes of

state HPI (1975:Q2 - 2009:Q1) in Zimmer (2012) and FHFA revised data in the same period.

D̃+
j|i,e,ẽ(p) D̃−j|i,e,ẽ(p)State

p = 0.25 p = 0.20 p = 0.15 p = 0.10 p = 0.05 p = 0.25 p = 0.20 p = 0.15 p = 0.10 p = 0.05

FL/CA 0.210 0.204 0.192 0.160 0.191 0.975 0.953 0.920 0.852 0.656

NV/CA 0.326 0.332 0.320 0.289 0.247 0.616 0.686 0.614 0.545 0.487

AZ/CA 0.384 0.372 0.338 0.289 0.215 0.705 0.664 0.661 0.822 0.489

CA/FL 0.968 0.942 0.918 0.864 0.541 0.728 0.796 0.804 0.810 0.700

NV/FL 0.925 0.848 0.943 0.862 0.614 0.746 0.675 0.687 0.600 0.380

AZ/FL 0.905 0.875 0.906 0.877 0.767 0.669 0.621 0.612 0.488 0.388

CA/NV 0.889 0.932 0.877 0.796 0.645 0.957 0.940 0.923 0.884 0.684

FL/NV 0.908 0.889 0.857 0.742 0.478 0.621 0.756 0.720 0.683 0.610

AZ/NV 0.465 0.468 0.413 0.331 0.423 0.771 0.845 0.872 0.818 0.717

CA/AZ 0.361 0.502 0.457 0.374 0.302 0.269 0.242 0.220 0.192 0.156

FL/AZ 0.593 0.559 0.502 0.549 0.635 0.816 0.769 0.726 0.602 0.537

NV/AZ 0.347 0.328 0.329 0.314 0.280 0.895 0.866 0.834 0.768 0.687

Table 3.A.4. Test results for effects of data revision on interstate housing price
comovements based on Eq. (3.A.3)

In this table, we report the p-values of tests based on D̃+

j|i,X,X̃(p) and D̃−
j|i,X,X̃(p) using quarterly changes

of state HPI (1975:Q2 - 2009:Q1) in Zimmer (2012) and FHFA revised data in the same period. ∗ denotes

significance at the 0.1 level.

D̃+
j|i,X,X̃(p) D̃−

j|i,X,X̃(p)
State

p = 0.25 p = 0.20 p = 0.15 p = 0.10 p = 0.05 p = 0.25 p = 0.20 p = 0.15 p = 0.10 p = 0.05

FL/CA 0.761 0.704 0.620 0.564 0.408 0.503 0.444 0.360 0.276 0.197

NV/CA 0.554 0.527 0.490 0.409 0.393 0.262 0.212 0.171 0.136 0.088∗

AZ/CA 0.863 0.834 0.807 0.744 0.600 0.501 0.464 0.415 0.335 0.267

CA/FL 0.831 0.787 0.713 0.761 0.676 0.927 0.907 0.871 0.859 0.703

NV/FL 0.783 0.745 0.712 0.726 0.676 0.809 0.807 0.779 0.732 0.573

AZ/FL 0.963 0.952 0.929 0.914 0.829 0.780 0.738 0.694 0.626 0.518

CA/NV 0.837 0.776 0.829 0.744 0.575 0.308 0.288 0.265 0.221 0.135

FL/NV 0.817 0.765 0.671 0.577 0.534 0.809 0.766 0.726 0.637 0.519

AZ/NV 0.878 0.851 0.838 0.740 0.668 0.355 0.326 0.274 0.234 0.179

CA/AZ 0.875 0.855 0.806 0.741 0.633 0.479 0.434 0.383 0.319 0.213

FL/AZ 0.519 0.466 0.394 0.302 0.194 0.538 0.496 0.449 0.366 0.242

NV/AZ 0.864 0.816 0.753 0.718 0.660 0.461 0.420 0.360 0.281 0.165
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Table 3.A.5. Test results for effects of data revision on interstate housing price
comovements based on Eq. (3.A.4)

In this table, we report the p-values of tests based on D̃+
j|i,e,ẽ(p) and D̃−j|i,e,ẽ(p) using quarterly changes of

state HPI (1975:Q2 - 2009:Q1) in Zimmer (2012) and FHFA revised data in the same period. ∗ denotes

significance at the 0.1 level.

D̃+
j|i,e,ẽ(p) D̃−j|i,e,ẽ(p)State

p = 0.25 p = 0.20 p = 0.15 p = 0.10 p = 0.05 p = 0.25 p = 0.20 p = 0.15 p = 0.10 p = 0.05

FL/CA 0.184 0.185 0.183 0.173 0.172 0.919 0.919 0.880 0.854 0.681

NV/CA 0.945 0.918 0.893 0.859 0.764 0.865 0.846 0.865 0.796 0.674

AZ/CA 0.179 0.172 0.160 0.127 0.090 ∗ 0.894 0.849 0.796 0.768 0.661

NV/FL 0.948 0.986 0.947 0.834 0.517 0.707 0.755 0.682 0.661 0.587

AZ/FL 0.634 0.589 0.587 0.548 0.546 0.610 0.564 0.502 0.430 0.317

AZ/NV 0.587 0.611 0.564 0.655 0.563 0.915 0.919 0.903 0.839 0.700

Table 3.A.6. Test results for effects of data revision on interstate housing price
comovements based on Eq. (3.A.5)

In this table, we report the p-values of tests based on D̃+

j|i,X,X̃(p) and D̃−
j|i,X,X̃(p) using quarterly changes

of state HPI (1975:Q2 - 2009:Q1) in Zimmer (2012) and FHFA revised data in the same period. ∗∗ and ∗

denote significance at the 0.05 and 0.1 level, respectively.

D̃+
j|i,X,X̃(p) D̃−

j|i,X,X̃(p)
State

p = 0.25 p = 0.20 p = 0.15 p = 0.10 p = 0.05 p = 0.25 p = 0.20 p = 0.15 p = 0.10 p = 0.05

FL/CA 0.531 0.489 0.420 0.322 0.290 0.900 0.862 0.784 0.725 0.484

NV/CA 0.929 0.900 0.879 0.822 0.631 0.286 0.299 0.301 0.261 0.151

AZ/CA 0.974 0.957 0.902 0.815 0.717 0.416 0.385 0.307 0.223 0.242

NV/FL 0.843 0.810 0.776 0.789 0.728 0.905 0.919 0.863 0.790 0.579

AZ/FL 0.999 0.997 0.986 0.970 0.867 0.893 0.860 0.797 0.714 0.514

AZ/NV 0.928 0.924 0.900 0.815 0.781 0.152 0.141 0.109 0.079∗ 0.043∗∗
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Table 3.A.7. Value-at-Risk (VaR(p)) and DV(p) for equally weighted portfolios of house
prices

In this table, DV(p) is defined as VaR(p) + VaR(1− p) multiplied by the skewness of a portfolio.

Portfolio VaR(0.9) VaR(0.1) VaR(0.95) VaR(0.05) DV(0.9) DV(0.95)

FL+CA 7.9674 -2.7599 9.9076 -7.0206 0.9620 0.5333

NV+CA 8.8854 -2.6335 11.0836 -6.8387 -2.7689 -1.8801

AZ+CA 9.2317 -2.6715 10.2663 -5.8529 -2.8624 -1.9257

NV+FL 8.5454 -3.8385 11.0665 -8.5886 1.4024 0.7383

AZ+FL 8.0527 -4.2648 11.5089 -7.6134 0.1543 0.1587

AZ+NV 9.6326 -3.2424 11.1258 -8.2008 -3.7741 -1.7275

Table 3.A.8. Diversification benefits of equally weighted portfolios of house prices
In this table, we calculate DB(p) = (VaRXi,t(p) + VaRXj,t(p))/VaRXi,t+Xj,t(p) for each equally weighted

portfolio.

Portfolio DB(0.90) DB(0.10) DB(0.99) DB(0.01)

FL+CA 1.1045 1.1988 1.0892 1.0044

NV+CA 1.1012 1.4544 1.1457 1.0340

AZ+CA 0.9894 1.5226 1.1410 1.0292

NV+FL 1.1066 1.1731 1.2354 1.2316

AZ+FL 1.0935 1.1115 1.0703 1.1635

AZ+NV 1.0163 1.6229 1.2498 1.0150
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CHAPTER 4

Bootstrap Analysis of Mutual Fund

Performance
1

Abstract

We show that two prominent bootstrap tests for fund performance evaluation have distorted

test sizes and lack test power to detect skilled funds when a substantial number of unskilled

funds are present. We develop the theory for a valid bootstrap Hotelling’s T -squared test

allowing for serial correlations and cross-sectional dependence in fund residuals. Applying

the new bootstrap test in a sequential testing procedure, our empirical analysis finds that

skilled funds are more engaged in active management and hold stocks with higher expected

anomalous returns.

4.1 Introduction

Are the funds with top-ranking alphas (or alpha t-statistics) skilled? To address this question,

Kosowski, Timmermann, Wermers, and White (2006, KTWW) and Fama and French (2010)

advocate the bootstrap tests for the joint zero-alpha null hypothesis. They analyze the

1This chapter is based on the following joint work: Huang, H., Jiang, L., Leng, X., & Peng, L. (2020).
Bootstrap Analysis of Mutual Fund Performance. Working Paper.
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significance of the alphas of extreme funds by comparing the cross-sectional distribution of

estimated alphas with that of bootstrapped alphas at multiple percentiles. However, the

test statistic constructed from bootstrap samples in these two studies is unconventional as a

traditional bootstrap method is often used to approximate the distribution function of the

test statistic for obtaining critical values. Moreover, neither a theoretical justification nor

a numerical assessment of its performance is provided for the test statistic.2 For example,

if the null hypothesis is true such that all funds are zero-alpha, do the tests achieve an

asymptotically correct size at a given significance level? When the null is not true such that

some funds display skill, do they have the test power to reject the null? A growing finance

literature has adopted the arguably convenient but unconventional bootstrap methods for

various empirical investigations, for instance, performance evaluation for actively-managed

mutual funds (Blake, Caulfield, Ioannidis, and Tonks, 2014, 2017), hedge funds (Kosowski,

Naik, and Teo, 2007), and index funds (Crane and Crotty, 2018). Bootstrap methods have

also been applied to a wide range of related studies in finance, such as Barras, Scaillet,

and Wermers (2010), Ferson and Chen (2015), Chordia, Goyal, and Saretto (2017, 2020),

Yan and Zheng (2017), and Harvey and Liu (2019). Strikingly, none of them has answered

the fundamental and economically meaningful question of whether these bootstrap tests are

statistically valid for these financial applications.

In this study, we first systematically analyze the size and power properties of the boot-

strap tests in Kosowski et al. (2006) and Fama and French (2010). In a simplified framework

of independent fund residuals, we show that these two tests suffer from size bias and low

power after accounting for the following salient features of mutual fund data. First, the

number of funds is much larger than the number of time-series observations of fund returns.

Second, the return residuals from fund-by-fund regressions exhibit various levels of skewness.

2Kosowski et al. (2006) is related to the theoretical work in White (2000), although White (2000) requires
that the time-series dimension goes to infinity and the cross-sectional dimension is fixed, which is different
from the setting of mutual fund studies where the number of funds is much larger than the number of time-
series observations. Furthermore, Bajgrowicz and Scaillet (2012) discuss the lack of power of the bootstrap
reality check in White (2000) and this critique also applies to Kosowski et al. (2006). In contrast, Fama and
French (2010) do not cite a theoretical origin for their bootstrap method.
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Third, there are overwhelmingly more funds with negative alphas than those with positive

alphas.

More specifically, the Kosowski et al. (2006) approach assumes that fund residuals are

serially and cross-sectionally independent. It formulates an unconventional test statistic

using bootstrapped t-statistics from the standard residual bootstrap method. Under the

independent assumptions, this test has a correct asymptotic test size only when the sample

size is large enough to the extent that limN→∞
1√
N

∑N
i=1 T

−1
i = 0, where N is the number

of funds, and Ti is the sample size (track record length) of the i-th fund. That is, its

bootstrapped p-value at a given percentile converges in distribution to the desired uniform

distribution on [0, 1]. However, when limN→∞
1√
N

∑N
i=1 T

−1
i > 0, the bootstrap fails to

correct the higher-order error terms in the test statistic and thereby produces inaccurate

p-values due to the accumulation of estimation errors. On the other hand, the presence of a

large proportion of negative alphas severely erodes the test power for positive alphas, making

this test difficult to uncover skilled funds even if they do exist. Hansen (2005) similarly

discusses how the inclusion of many poor and irrelevant alternatives adversely affects the

power of the test in White (2000). Fan, Liao, and Yao (2015) underscore the problems

of low power arising from the accumulation of estimation errors in high-dimensional

cross-sectional testing. To contextualize the theoretical results, we observe in Figure 4.1

that in a population of 2650 funds, the majority have sample sizes less than a few hundred

(Panel A), and the skewness of funds residuals in the cross-section is not negligible (Panel D).

[Figure 4.1 about here.]

The Fama and French (2010) approach is well motivated empirically to handle the

possible cross-sectional dependence among fund returns, for which they suggest simultane-

ously resampling fund returns and factors. When fund residuals are independent in the

cross-section, however, it is well expected that the Fama and French (2010) approach cannot

correct the higher-order approximation error T−1
i along the lines of the Kosowski et al. (2006)

approach, i.e., its size is distorted when limN→∞
1√
N

∑N
i=1 T

−1
i > 0. Because of the joint re-
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sampling of fund returns and factors, it is challenging to derive higher-order expansions for

the test size and power as we cannot employ the same conditioning technique on factors as

we do in developing theories for Kosowski et al. (2006). Nonetheless, our view is that it

deserves further scrutiny. In fact, we conjecture that the joint resampling scheme in Fama

and French (2010) cannot even correct the approximation error term T
−1/2
i in the sense that

the test size is biased when limN→∞
1√
N

∑N
i=1 T

−1/2
i < ∞ (while the Kosowski et al. (2006)

method can correct this error term). In other words, the Fama and French (2010) approach

is similarly challenged by small sample sizes vis-à-vis a large cross-section like Kosowski et al.

(2006) and faces further threat from its unsubstantiated joint resampling scheme. Monte

Carlo simulation studies confirm that the bootstrapped p-value obtained from the Fama

and French (2010) approach is biased in the ideal scenario of normal and independent fund

residuals with large sample sizes. Relative to the Kosowski et al. (2006) method, the test

in Fama and French (2010) is heavily under-sized and consequently has little-to-no power to

detect fund skill.

To overcome the caveats of the extant bootstrap tests, this paper proposes and theoret-

ically justifies a zero-alpha test using Hotelling’s T -squared statistic with bootstrap calibra-

tion. Although Pesaran and Yamagata (2017) study the Hotelling’s T -squared test under

the condition limN→∞
1√
N

∑N
i=1 T

−1
i = 0, our theoretical result shows that the test has a

biased size when limN→∞
1√
N

∑N
i=1 T

−1
i > 0, which is the case for monthly mutual fund

returns. Taking advantage of the residual-based bootstrap method, we propose to auto-

matically correct this bias, so the Hotelling’s T -squared test with bootstrap calibration has

an asymptotically correct size whenever limN→∞
1√
N

∑N
i=1 T

−1
i < ∞. On the contrary, it is

infeasible to make the unconventional bootstrap test in Kosowski et al. (2006) valid when

limN→∞
1√
N

∑N
i=1 T

−1
i ∈ (0,∞). We initially develop the bootstrap Hotelling’s T -squared

test under the simplifying assumption of independent fund residuals. We further weaken the

restrictive assumption and extend the test to the practical setting, where fund residuals are

serially correlated and cross-sectionally dependent.

To separate skilled funds from zero-alpha funds, we provide a sequential testing pro-
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cedure, which applies the bootstrap Hotelling’s T -squared test sequentially to identify a

data-driven p-value threshold and a maximum set of zero-alpha funds. The p-value thresh-

old is also used to screen out a set of top-performing funds with large positive t-statistics.

In the final step, the bootstrap Hotelling’s T -squared test is conducted on the combined set

of the top-performing funds and the predetermined zero-alpha funds. The top-performing

funds are deemed skilled (relative to the zero-alpha funds) if the null hypothesis is rejected,

that is, the top-performing fund set is significantly different from the zero-alpha fund set.

Our new test procedure improves the bootstrap tests in Kosowski et al. (2006) and

Fama and French (2010) along several dimensions. First of all, our theory ensures that the

bootstrap Hotelling’s T -squared test has an asymptotically correct size even when the cross-

sectional dimension is much larger than the time-series dimension, essentially circumventing

the difficulties confronted with existing bootstrap approaches. Second, we offer a power

enhancement procedure for implementation, where we exploit the set of zero-alpha funds as

a reference and leave out those potentially unskilled funds when testing for skilled funds.

This technique effectively draws on the information contained in the zero-alpha fund set,

shrinks the number of funds to be tested, and enhances the test power for skilled funds.

The idea of sequential testing shares the spirit of Hansen, Lunde, and Nason (2011) and

Grønborg, Lunde, Timmermann, and Wermers (2021). The screening method of enhancing

test power by eliminating inferior alternatives has been adopted in different testing problems,

such as Hansen (2005) and Giglio, Liao, and Xiu (2020). Different from these studies, the

choice of the screening threshold in our procedure is entirely data-driven. Last but not least,

we validate the bootstrap Hotelling’s T -squared test in a more general setting, where the

fund residuals are both serially correlated and cross-sectionally dependent.

We illustrate the empirical relevance of the new test procedure in evaluating the per-

formance of actively managed U.S. domestic equity mutual funds from January 1980 to

December 2018. Applying the proposed bootstrap Hotelling’s T -squared test, we find that

there exist a minority of skilled funds after adjusting for several popular risk factors with

the Carhart (1997) four-factor model. Most of the skilled funds are younger in a big fund
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family, have a lower turnover ratio and expense ratio, and attract more inflow from investors.

Funds identified with skill are also more engaged in active management with a lower factor

model R-squared (Amihud and Goyenko, 2013), higher active share (Cremers and Petajisto,

2009), and active weight (Doshi, Elkamhi, and Simutin, 2015). Recently, Li and Rossi (2021)

propose to select skilled mutual funds using stock holding characteristics. We examine the

stock holding difference between skilled and unskilled funds. We find that skilled funds hold

stocks with higher bid-ask spread, dispersion in forecasted EPS, idiosyncratic volatility, Ami-

hud ratio, return volatility, volatility of liquidity based on both dollar trading volume and

share turnover, and stocks with a greater number of zero trading days than unskilled funds

do. Also, skilled funds hold smaller stocks based on market capitalization and industrial

adjusted market capitalization. Hou, Xue, and Zhang (2015) classify those anomalies into

the category of “Trading Frictions”. Similarly, skilled fund managers also hold stocks with

higher R&D expense to market capitalization and R&D expense to sales in the category of

“Intangibles”. The results of stock holdings are mixed for anomalies in other categories, such

as “Profitability”, “Investment”, “Value-Versus-Growth”, and “Momentum”. For example,

skilled funds hold “Profitability” stocks in terms of a high return on asset. But at the same

time, they also hold stocks with a low return on equity. Based on asset pricing literature such

as Amihud and Mendelson (1989), Diether et al. (2002), Ali et al. (2003), Amihud (2002),

Liu (2006), and Li (2011), illiquid stocks and stocks with higher R&D have a higher expected

return, which can also be seen from the higher hypothetical excess return of the portfolios of

skilled funds. It is possible that funds happen to hold those stocks and enjoy the premium

from those characteristics and deliver outperformance. An alternative explanation is that

skilled funds choose to hold illiquid assets on purpose for anomalous returns, because they

have a lower turnover ratio and do not trade stocks often. A study that disentangles the two

hypotheses constitutes a good topic for future research. Here, we only provide evidence for

the association between stock holdings and fund skill.

Our study contributes to the literature in the following aspects. Firstly, the asymptotic

theory we derive, along with simulation evidence, provides a cautionary note on the empirical
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application of two prevailing bootstrap methods in financial research. Blake et al. (2017)

attempt to compare the two bootstrap methods in an empirical exercise by weighing them

with the same mutual fund data. They suggest that the evaluation of fund performance

depends crucially on the employed bootstrap methodology, but provide limited insight into

the actual theoretical properties or performance of the methods themselves. Compared

to theirs, our study takes a more fundamental approach: we systematically delineate the

size and power properties of these two bootstrap methods and assess how they perform in

simulations guided by theory and calibrated to real data. Other studies have also raised the

issue of test power with the Fama and French (2010) approach. Harvey and Liu (2020a,b)

find the low test power in this approach through simulations from real data and attribute

it to the undersampling of funds with a relatively short sample period and low signal-to-

noise ratio in mutual fund data. Although we do not establish formal theories for the size

and power of the Fama and French (2010) approach, we argue that it cannot handle the

challenge of small sample sizes compared to the large number of funds like Kosowski et al.

(2006), which is supported by our simulation results.

The size and power deficiencies in these two methods have economic implications. They

could help shed light on the opposing empirical conclusions of whether and to what extent

skilled mutual funds exist in Kosowski et al. (2006) and Fama and French (2010). Kosowski

et al. (2006) find evidence for a significant fraction of outperforming funds, i.e., they reject

the zero-alpha null hypothesis. Conversely, Fama and French (2010) fail to reject this null.

A plausible explanation based on our findings is that the Fama and French (2010) method

is overly conservative in test size, limiting its power to detect outperformance. Even when a

substantial number of funds are skilled with reasonably large alphas, the Fama and French

(2010) test may still erroneously conclude that all funds are zero-alpha. Harvey and Liu

(2020a) offer similar reconciliations over the conflicting findings in these two studies in terms

of test power.

Secondly, our study is broadly related to a large body of econometric and finance lit-

erature analyzing the impact of estimation errors in large-scale testing problems, where the
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cross-sectional dimension N can be much larger than the sample size Ti. In particular,

we argue that it is essential to allow limN→∞
1√
N

∑N
i=1 T

−1
i ∈ (0,∞) for evaluating mutual

fund performance. One strand of this literature focuses on testing or estimating a high-

dimensional structural parameter. Fan, Liao, and Yao (2015) and Pesaran and Yamagata

(2017) highlight the challenges in designing such tests that can guard against the accumu-

lation of high-dimensional estimation errors when N >> Ti. Gonçalves and Perron (2014,

2020) investigate the validity of bootstrap methods in estimating factor-augmented regres-

sion models of large dimensions, although our study is concerned with bootstrap testing

in linear factor models. Another line of this literature is dedicated to multiple testing for

evaluating fund performance, which is similarly challenged by estimation errors in large di-

mensions. Barras et al. (2010) apply the false discovery rate control approach to the field of

mutual fund performance, which uses the residual bootstrap method as in Kosowski et al.

(2006) to estimate the p-values. Through simulation studies, Andrikogiannopoulou and Pa-

pakonstantinou (2019) point out that this approach can be markedly biased in estimating the

proportions of zero and non-zero alpha funds, particularly after accounting for the “large N

small T” feature of mutual fund data.3 Liu and Shao (2014) derive the accuracy of bootstrap

calibration in estimating p-values in large-scale multiple testing and show that the accumu-

lated estimation errors in large dimensions can invalidate the false discovery rate control.

Recently, Giglio, Liao, and Xiu (2020) propose a high-dimensional multiple testing method

that can validly control the false discovery rate in large cross-sections.

Finally, our theories for the bootstrap method in Kosowski et al. (2006) and the proposed

new test are developed for the null hypothesis of zero alpha, i.e., H0 : αi = 0 for i = 1, . . . , N.

Alternatively, the null hypothesis H
′
0 : max1≤i≤N αi ≤ 0 can be used to test for the existence

of at least one fund with a positive alpha. The advantage of using the second null hypothesis

is that the test power will not be affected by the existence of unskilled funds. In general,

such a test is quite conservative in that the size is asymptotically below the nominal level,

3Barras, Scaillet, and Wermers (2020) argue that the bias can be tremendously alleviated when choosing
reasonable parameters. However, their response is limited to the assumption that the residuals are all normal.



102

leading to a less powerful test. In any event, how to develop a valid bootstrap test under H
′
0

for large cross-sections is an interesting problem that requires further research. It should be

pointed out that the theory in White (2000) is not applicable as it requires that N is fixed

and Ti = T → ∞ for i = 1, . . . , N, which is different from the setting in this study that N

is much larger than Ti’s.

We organize the rest of the paper as follows. Section 4.2 introduces the general frame-

work and develops asymptotic theories to explain the pitfalls of the existing bootstrap meth-

ods in evaluating mutual fund performance in an ideal setting with independent fund resid-

uals. Section 4.3 proposes a new bootstrap test for zero-alpha funds and a sequential testing

approach to determine skilled funds. To better appreciate the methodology, we first de-

velop the theory for the Hotelling’s T -squared test with and without bootstrap calibration

in an ideal setting of independent fund residuals. We then validate the bootstrap Hotelling’s

T -squared test in a general setting with serial correlations and cross-sectional dependence.

Section 4.4 presents the empirical analysis comparing various characteristics of funds iden-

tified by our test as having or lacking skill. Section 4.5 concludes. To save space, we put all

theoretical derivations, simulation studies for extant and proposed bootstrap methods, and

additional results for empirical applications in a supplementary file.

4.2 Existing Bootstrap Methods

The bootstrap tests in Kosowski et al. (2006) and Fama and French (2010) are concerned

with the overall null hypothesis of zero alpha for all mutual funds. Apart from different

fund selection criteria and sample periods, there are two distinctions between these studies.

First and foremost, they differ in bootstrap procedures. Kosowski et al. (2006) mainly use

a standard residual bootstrap from a regression model and rely on the cross-sectionally

bootstrapped p-value for formal inference, while the procedure in Fama and French (2010)

jointly resamples fund returns and factor returns for all funds and use the “likelihood” for
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informal inference.4 Although not theoretically grounded, the joint-resampling design has

been widely acclaimed as an advantage of Fama and French (2010) over Kosowski et al. (2006)

in capturing the cross-sectional dependence among funds, which may derive from mutual fund

herding (Wermers, 1999), idea sharing (Cujean, 2019), and common information or liquidity

shocks. Second, they reach different economic conclusions. Kosowski et al. (2006) conclude

that a sizable minority of managers possess skills to deliver positive alpha, whereas Fama

and French (2010) find that few funds can outperform.

There is mounting research to reconcile the distinct empirical findings, yet scant effort

to question the statistical validity or assess the performance of the methods themselves.

Fama and French (2010, p. 1940) claim that “whatever [fund] inclusion rules are used,

failure to account for the joint distribution of fund returns, and of the fund and factor

returns, biases the inferences of Kosowski et al. (2006) toward positive performance”. Using

the same fund inclusion criteria over the same sample period, Blake et al. (2017) directly

compare the two alternative bootstrap methods in the context of U.K. mutual funds. They

posit that different bootstrap resampling schemes lead to divergent findings from the two

methods. In more recent studies, Harvey and Liu (2020a,b) propose a simulation-based

double bootstrap method to evaluate the test size and power of the two bootstrap methods.

Harvey and Liu (2020a) assert that the lack of power of the Fama and French approach to

detect outperforming funds may help reconcile the difference between Kosowski et al. (2006)

and Fama and French (2010). Harvey and Liu (2020b) compare several different bootstrap

implementations and recommend the Fama and French approach with some modifications

for future research. As they simulate fund returns by directly resampling the actual fund

returns instead of from some known distribution, it is difficult to develop insights into the

statistical properties of the bootstrap methods, in particular, whether the tests have an

asymptotically correct size and sufficient power and whether the Fama and French (2010)

test is indeed capable of dealing with cross-sectional dependence. These properties are of

4Although unreported, Kosowski et al. (2006) also randomize the factor returns in time series and find
robust results.
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fundamental importance in empirical finance research as they directly pertain to whether a

hypothesis test based on these bootstrap procedures leads to correct and credible inferences.

Besides, there is ambiguity in the literature over how to conduct inference with the

bootstrap methods. Kosowski et al. (2006) conduct formal hypothesis test by reporting the

cross-sectionally bootstrapped p-values at different percentiles. Blake et al. (2017) suggest

constructing a confidence interval of the bootstrap distribution of t-statistics at each per-

centile and testing whether the actual t-statistic at that percentile lies within the confidence

interval to determine abnormal performance.5 In contrast, Fama and French (2010) compare

(qualitatively) percentiles of the cross-section of t-statistics with the corresponding average

values from bootstrap simulations, and rely on the likelihood to gain perspective on the

evidence of skill.6 The informal inference in Fama and French (2010) evolves into incorrect

inference in Crane and Crotty (2018), who apply the Fama and French methodology to evalu-

ate the performance of index funds. They determine index funds as skilled if the percentile of

actual t-statistics is larger than the corresponding average value from bootstrap simulations,

or if the bootstrap-based likelihood is larger than 0.5, above the 50th percentile.7

In what follows, we encapsulate these statistical challenges into the foundational ques-

tion: what is the asymptotic distribution of the bootstrap test under the null hypothesis

of zero alpha for all funds? We tackle the challenges by formalizing the bootstrap-based

inference in a rigorous theoretical framework.

5Blake et al. (2017, p. 1291) note: “If the actual t(α̂) lies to the right (left) of the CI at a given percentile
point, this provides robust evidence of managerial outperformance (underperformance) at that percentile
point.”

6Fama and French (2010, p. 1931) state: “we infer that some managers lack skill sufficient to cover costs
if low fractions of the simulation runs produce left tail percentiles of t(α) below those from actual net fund
returns, or equivalently if large fractions of the simulation runs beat the left tail tα estimates from actual
net fund returns.”

7Crane and Crotty (2018, p. 43) suggest: “In particular, if the bootstrapped and actual distributions are
equal at a given percentile (i.e., zero alpha), the likelihood value should be 0.5.”
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4.2.1 Measuring Fund Performance

We evaluate fund returns with a set of J benchmark factors and model fund excess

returns as

ri,t = αi +
J∑
j=1

βijfjt + εi,t, j = 1, . . . , J, t = ti + 1, . . . , ti + Ti, i = 1, . . . , N, (4.1)

where ri,t is the excess return (i.e., net return minus the one-month treasury bill rate) for

fund i in period t, αi is fund alpha, βij is fund i’s risk loading on the j-th factor fjt, and

εi,t is fund residual. Depending on the factor model, some popular sets of factors are the

market factor in Jensen (1968), the market factor plus the SMB (small minus big) and HML

(high minus low) in Fama and French (1996), and the Fama-French three factors plus the

momentum factor in Carhart (1997). We allow the observation window [ti + 1, ti + Ti] and

sample size Ti for each fund to be different, as is the case in mutual funds.

To simplify exposition, let Yi,t = ri,t, βi = (βi1, βi2, . . . , βiJ)′ andX t = (f1t, f2t, . . . , fJt)
′,

where A′ denotes the transpose of the vector or matrix A. Then we write equation (4.1) as

Yi,t = αi + β′iXt + εi,t, t = ti + 1, . . . , ti + Ti, i = 1, . . . , N. (4.2)

Let Yi = T−1
i

∑ti+Ti
t=ti+1 Yi,t, X i = T−1

i

∑ti+Ti
t=ti+1Xt, and σ2

i = E(ε2
i,t) < ∞. For each i, the

least-squares estimators of βi and αi based on (4.2) are
β̂i =

{
T−1
i

∑ti+Ti
t=ti+1(Xt −X i)(Xt −X i)

′
}−1 {

T−1
i

∑ti+Ti
t=ti+1(Yi,t − Yi)(Xt −X i)

}
,

α̂i = Y i − β̂′iX i.

(4.3)

Define

ε̂i,t = Yi,t − α̂i − β̂′iXt, σ̂
2
i =

1

Ti

ti+Ti∑
t=ti+1

ε̂2
i,t, and Σi =

1

Ti

ti+Ti∑
t=ti+1

(Xt −X i)(Xt −X i)
′.

The t-statistic to test for H0,i : αi = 0 is t̂i(0) with

t̂i(αi) :=
√
Ti

α̂i − αi

σ̂i

√
1 +X

′
iΣ
−1
i X i

for i = 1, . . . , N.
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The i-th fund is deemed skilled (unskilled) if t̂i(0) is significantly larger (smaller) than zero.

Otherwise, the i-th fund is declared as zero-alpha. In performance evaluation, much attention

has been paid to answer the question of whether mutual funds with the largest (smallest)

t-statistics are skilled (unskilled). Alternatively, if the goal is to determine the proportions

of skilled and unskilled funds, a multiple hypothesis test is in place with the null hypotheses

H0,i : αi = 0 for i = 1, . . . , N. The testing approach relies on the sequence {t̂1(0), . . . , t̂N(0)},

which may entail the risk of false discoveries resulting from estimation errors of the sequence

(Barras et al., 2010).

4.2.2 Assessing Fund Performance

Let t̂(1)(0) ≤ . . . ≤ t̂(N)(0) denote the order statistics of t̂1(0), . . . , t̂N(0). Kosowski et al.

(2006) and Fama and French (2010) propose to compare t̂([pN ])(0) with its bootstrapped

counterpart at some percentile level p ∈ (0, 1), where [pN ] denotes the integer part of pN .

More specifically, Kosowski et al. (2006) randomly resample the residuals from {ε̂i,t}ti+Tit=ti+1

with replacement, say {εbi,t}
ti+Ti
t=ti+1, for the b-th bootstrapped residuals with b = 1, . . . , B, and

compute pseudo excess returns by Y b
i,t = β̂′iXt+εbi,t. Using the pseudo excess returns of each

fund i, they rerun the regressions

Y b
i,t = α∗i + βi

′Xt + ε∗i,t, t = ti + 1, . . . , ti + Ti.

Similar to (4.3), the above regression yields
β̂bi =

{
T−1
i

∑ti+Ti
t=ti+1(Xt −X i)(Xt −X i)

′
}−1 {

T−1
i

∑ti+Ti
t=ti+1(Y b

i,t − Yi
b
)(Xt −X i)

}
,

α̂bi = Y
b

i − (β̂bi )
′X i,

where Yi
b

= 1
Ti

∑ti+Ti
t=ti+1 Y

b
i,t. The bootstrapped t-statistic is

t̂bi(0) =
√
Ti

α̂bi

σ̂bi

√
1 +X

′
iΣ
−1
i X i

, (4.4)

where ε̂bi,t = Y b
i,t − α̂bi − (β̂bi )

′Xt and (σ̂bi )
2 = 1

Ti

∑ti+Ti
t=ti+1(ε̂bi,t)

2 for b = 1, . . . , B. Note that we

do not use α̂bi − α̂i in (4.4) as Y b
i,t is equal to β̂′Xt + εbi,t rather than α̂i + β̂′Xt + εbi,t. To test
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for the existence of skilled (unskilled) funds, Kosowski et al. (2006) use the bootstrapped

p-value

S(p) =
1

B

B∑
b=1

I
(
t̂b([pN ])(0) ≤ t̂([pN ])(0)

)
when p ∈ (0, 0.5), and 1−S(p) when p ∈ (0.5, 1), where t̂b([pN ])(0) is the [pN ]-th order statistic

of t̂b1(0), . . . , t̂bN(0). The test is conducted based on the premise that S(p) is asymptotically

uniformly distributed under H0 : αi = 0, i = 1, . . . , N . Traditionally, a test statistic only

depends on the sample, and the bootstrap method is employed to generate bootstrapped

test statistics for accurately approximating the distribution function of the test statistic. In

this sense, the test using S(p) is unconventional.

The independent resampling scheme of Kosowski et al. (2006) discards the potential

cross-sectional dependence among fund returns. In an attempt to account for the cross-

sectional dependence, Fama and French (2010) propose to resample both the factor returns

and fund returns according to a reindexed time sequence drawn from {1, . . . , T} with replace-

ment, where T = max{t1+T1, . . . , tN+TN}, leading to the bootstrapped sample {Y b
i,t,X

b
t } for

b = 1, . . . , B. By subtracting α̂i from the bootstrapped fund returns, they run the following

regression

Y b
i,t − α̂i = α∗i + βi

′Xb
t + ε∗i,t, t = ti + 1, . . . , ti + Ti,

for each fund i. With the least-squares estimator α̂bi of α∗i , they obtain the t-statistic t̂bi(0)

defined in (4.4) and S(p) for p ∈ (0, 1), which is called the “likelihood”. In the resampling

scheme, they implicitly assume a missing at random design as in Gagliardini et al. (2016).8

Recently, Blake et al. (2017) examine whether t̂([pN ])(0) is contained by the stochastic

interval[
t̂
([aB/2])
([pN ]) (0), t̂

(B−[aB/2])
([pN ]) (0)

]
for a given a ∈ (0, 1),

8A notable practical problem with random sampling the same time sequence for all funds in the Fama
and French approach is that in each simulation run, if a fund does not exist for the entire sample period,
which is the case for most funds, the number of observations for the bootstrap sample may differ from that
for the actual sample. In particular, some funds may end up with a bootstrap time series shorter than the
minimum fund return requirement for fund selection.
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where t̂
(1)
([pN ])(0) ≤ . . . ≤ t̂

(B)
([pN ])(0) denote the order statistics of t̂1([pN ])(0), . . . , t̂b([pN ])(0). Under

H0 : αi = 0, i = 1, . . . , N , they implicitly conjecture that the confidence interval has the

asymptotically correct coverage probability, i.e., P
(
t̂([pN ])(0) ∈

[
t̂
([aB/2])
([pN ]) (0), t̂

(B−[aB/2])
([pN ]) (0)

])
→

1− a as N →∞.

While the bootstrap methods have been widely applied to evaluate fund performance,

no theoretical justification is given to guarantee the plausibility of the implicit conjectures

and hence the statistical validity of bootstrap tests. In other words, no paper formally tests

H0 : αi = 0, i = 1, . . . , N by providing a critical region to reject H0 for these bootstrap

methods. This requires deriving and estimating the asymptotic distribution of S(p) under

H0.

4.2.3 Size and Power Properties of the Kosowski et al. (2006) Bootstrap Test

We present the asymptotic theories of test size and power associated with the Kosowski

et al. (2006) bootstrap method for fund performance evaluation. In a simplified setting of an

unbalanced panel with independent fund residuals, we use Edgeworth expansion to character-

ize the approximation error in estimating αi and unveil how small sample sizes of some funds

relative to the number of funds and skewness in fund residuals complicate the asymptotic lim-

its of the bootstrap tests. The theorem we derive shows that the Kosowski et al. (2006) boot-

strap test does not have an asymptotically correct size when limN→∞
1√
N

∑N
i=1 T

−1
i ∈ (0,∞).

It is known that the accuracy of a two-sided test is O(1/Ti) for the i-th fund, and the ac-

curacy of bootstrap two-sided test is o(1/Ti). This is why we argue that the bootstrap test

using S(p) is unconventional, which fails to achieve the accuracy of a traditional bootstrap

method. Without doubt, the bootstrap test would have a more severely biased size when

limN→∞
1√
N

∑N
i=1 T

−1
i ∈ (0,∞), and when the ideal independent setting is replaced by a

practical setting with serial correlations and cross-sectional dependence.9

Following the well-known Edgeworth expansions in Section 4.3.4 of Hall (1992) for his

9 While we acknowledge that the Kosowski et al. (2006) test is not justified for such a practical setting,
Table 4.A.5 in the Appendix shows that this test could be substantially oversized under cross-sectional
dependence.
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statistics T and T ∗ with x0 = 0, corresponding to our t̂i(αi) and t̂bi(0), we have

P (t̂i(αi) ≤ z|{Xt}) = Φ(z) + T
−1/2
i φ(z)qi,1,x(z) + T−1

i φ(z)qi,2,x(z) +OP (T
−3/2
i ) (4.5)

and

P (t̂bi(0) ≤ z|{Yi,t,Xt}) = Φ(z) + T
−1/2
i φ(z)q̂i,1,x(z) + T−1

i φ(z)q̂i,2,x(z) +OP (T
−3/2
i ) (4.6)

where

qi,1,x(z) = −1

6
γi

(
γi,x −

3√
1 +X

′
iΣ
−1
i X i

)
z2 − 1

6
γiγi,x,

qi,2,x(z) = −z

2 +
γ2
i

1 +X
′
iΣ
−1
i X i

+
1

24

[
κiκi,x + 6− 8γ2

i√
1 +X

′
iΣ
−1
i X i

·

(
γi,x −

3√
1 +X

′
iΣ
−1
i X i

)
(z2 − 3)

]
+

1

72
γ2
i

(
γ2
i,x −

3√
1 +X

′
iΣ
−1
i X i

)2

(z4 − 10z2 + 15)

 ,

γi =
E(ε3

i,t)

(Eε2
i,t)

3/2
, γ̂i =

T−1
i

∑ti+Ti
t=ti+1 ε̂

3
i,t(

T−1
i

∑ti+Ti
t=ti+1 ε̂

2
i,t

)3/2
, κi =

E(ε4
i,t)

(Eε2
i,t)

2
− 3, κ̂i =

T−1
i

∑ti+Ti
t=ti+1 ε̂

4
i,t(

T−1
i

∑ti+Ti
t=ti+1 ε̂

2
i,t

)2 − 3,

γi,x =
1

Ti

ti+Ti∑
t=ti+1

1−X ′iΣ−1
i (Xt −X i)√

1 +X
′
iΣ
−1
i X i


3

, κi,x =
1

Ti

ti+Ti∑
t=ti+1

1−X ′iΣ−1
i (Xt −X i)√

1 +X
′
iΣ
−1
i X i


4

− 3,

q̂i,1,x and q̂i,2,x equal qi,1,x and qi,2,x with γi and κi replaced by γ̂i and κ̂i, respectively, and

Φ(x) and φ(x) denote the distribution function and density function of a standard normal

random variable, respectively.

To develop theories for the test size and power of the bootstrap methods, we need the

following regularity conditions:

(C1) For each i = 1, . . . , N , {εi,t, t = ti + 1, . . . , ti + Ti} is a sequence of indepen-

dent and identically distributed random variables with mean zero and finite variance

σ2
i > 0. Further assume that these N sequences are independent of each other and

supi≥1E(|εi,t|4+δ) <∞ for some δ > 0.
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(C2) {Xt, t = 1, . . . , T} is stationary and ergodic, where T = max(t1 + T1, . . . , tN + TN),

E(‖Xt‖4+δ) < ∞ for some δ > 0, and ‖ · ‖ denotes the usual Euclidean norm of

a vector. Further assume that {Xt, t = 1, . . . , T} is independent of all sequences

{εi,t, t = ti + 1, . . . , ti + Ti} for i = 1, . . . , N.

(C3) The covariance matrix Σ := T−1
∑T

t=1(Xt −X)(Xt −X)′ is nonsingular where X =

T−1
∑T

t=1Xt. Assume that max1≤i≤N ‖Σi−Σ‖ p−→ 0 and min1≤i≤N Ti →∞ asN →∞,

where Σi defined in Section 4.2.2.

(C4) lim
N→∞

1√
N

N∑
i=1

T−1
i <∞.

The following theorem explains the test size of the residual-based bootstrap method in

Kosowski et al. (2006), revealing that small sample sizes of funds complicate the applicability

of the residual-based bootstrap method of Kosowski et al. (2006) in a large cross-sectional

dimension.

Theorem 4.1 (Test Size of the KTWW Approach). Suppose conditions (C1)–(C4) hold.

Consider the residual-based bootstrap method in Kosowski et al. (2006). Under H0 : αi =

0, i = 1, . . . , N , for any fixed p ∈ (0, 1) and a given significance level a ∈ (0, 1), we have

P
(
S(p) ≤ a|{Xt}

)
= P

(
Φ

(
φ(Qp)√
p(1− p)

(AN1 + AN2 + AN3)

)
≤ a|{Xt}

)
+ oP (1) (4.7)

and

P
(
t̂([pN ])(0) ∈

[
t̂
([aB/2])
([pN ]) (0), t̂

(B−[aB/2])
([pN ]) (0)

]
|{Xt}

)
=P

(
a/2 ≤ Φ

(
φ(Qp)√
p(1− p)

(AN1 + AN2 + AN3)

)
≤ 1− a/2|{Xt}

)
+ oP (1) (4.8)
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as N →∞ and B →∞, where

AN1 =
√
N
(
t̂([pN ])(0)−Qp

)
+

1√
N

N∑
i=1

T
−1/2
i qi,1,x(Qp) +

1√
N

N∑
i=1

T−1
i qi,2,x(Qp),

AN2 =
1√
N

N∑
i=1

T−1
i

√
Ti
(
q̂i,1,x(Qp)− qi,1,x(Qp)

)
,

AN3 =
1

2
Qp

√
N{ 1

N

N∑
i=1

T
−1/2
i qi,1,x(Qp)}2

−
√
N
{ 1

N

N∑
i=1

T
−1/2
i q′i,1,x(Qp)

}{ 1

N

N∑
i=1

T
−1/2
i qi,1,x(Qp)

}
,

Qp = Φ←(p) with Φ←(x) denoting the inverse function of Φ(x), q′i,1,x(z) = dqi,1,x(z)/dz, and

φ(Qp)√
p(1−p)

AN1 has the standard normal limit.

Furthermore, when

lim
N→∞

1√
N

N∑
i=1

T−1
i = 0 and sup

i≥1
E(ε6

i,t) <∞, (4.9)

we have

P
(
S(p) ≤ a|{Xt}

)
= a+ oP (1) (4.10)

and

P
(
t̂([pN ])(0) ∈

[
t̂
([aB/2])
([pN ]) (0), t̂

(B−[aB/2])
([pN ]) (0)

]
|{Xt}

)
= 1− a+ oP (1). (4.11)

We can replace the first equation in (4.9) by limN→∞
√
N{ 1

N

∑N
i=1 T

−1/2
i }2 = 0, but

these two equations are equivalent when

lim inf
1

N

N∑
i=1

(
Ti

min1≤j≤N Tj

)−1/2

> 0. (4.12)

This is because

√
N
{

1
N

∑N
i=1 T

−1/2
i

}2

≤
√
N 1

N

∑N
i=1 T

−1
i ≤

√
N
{

1
N

∑N
i=1 T

−1/2
i

}2
{

1
N

∑N
i=1

(
Ti

min1≤j≤N Tj

)−1/2
}−1

. (4.13)

Nevertheless, we use (4.9) for ease of comparison with the Hotelling’s T -squared test in

Section 4.3.
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The result (4.10) above shows that S(p) follows a uniform distribution when Ti’s are

not small. In this case, the bootstrap test in Kosowski et al. (2006) is statistically valid with

an asymptotically correct size. When a significant fraction of funds have a small sample

size such that the first equation in (4.9) does not hold, but (4.12) holds, AN3 invalidates

(4.10). When some fund residuals don’t have finite 6-th moments, AN2 may destroy (4.10).

In either case, the bias due to AN2 and/or AN3 depends on the skewness of fund residuals

and complicates the limit of S(p).

The impact of the accumulated estimation errors on the test size is well supported

by the simulation evidence in Tables 4.A.1 – 4.A.3 in the Appendix. For a finite N , larger

residual skewness will enlarge the influence of the bias term AN2 on test size. The simulation

results in Table 4.A.1 suggest that T = 200 is large enough to ensure an accurate size for

the case of zero skewness, while the results in Table 4.A.3 indicate that T = 200 produces a

distorted size when fund residuals are heavily skewed. To contextualize the statistical biases,

the average number of monthly return observations of actively managed U.S. equity funds

in our empirical study is 204 (with a median of 186 and a standard deviation of 103), and

the average absolute residual skewness estimated from the four-factor model is 0.385 (with

a median of 0.246 and a standard deviation of 0.673). Furthermore, among 2650 mutual

funds in our data sample, 1318 funds have a sample period shorter than 186 months, and

1325 funds have absolute residual skewness greater than 0.246. Table 4.1 in Section 4.4

summarizes the statistics for these mutual fund data characteristics.

Next, we study the test power of Kosowski et al. (2006) under condition (4.9), i.e., S(p)

has the uniform distribution on [0, 1] under the null hypothesis. From the result (4.10) of

Theorem 4.1, the rejection region at the level a is S(p) ≤ a for some p < 0.5 in favor of the

existence of unskilled funds, and S(p) ≥ 1 − a for some p > 0.5 in favor of the existence of

skilled funds. Denote

δi =

√
Tiαi

σi

√
1 + X

′
iΣ
−1
i Xi

, δ̂i =

√
Tiαi

σ̂i

√
1 + X

′
iΣ
−1
i Xi

, and ∆N =
1

N

N∑
i=1

{Φ(Qp)− Φ(Qp − δi)}.

Note that δi measures the individual departure of fund i from the null hypothesis αi = 0.
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First consider the case of limN→∞∆N 6= 0. As Φ(x) is an increasing function, this case

suggests that the overall departure contributed by positive-alpha funds is not comparable

to that by negative-alpha funds. We need condition (C5) below, which ensures that the

difference between δ̂i and δi is asymptotically negligible over i.

(C5) lim
N→∞

1

N

N∑
i=1

|δi|√
Ti

= 0.

Theorem 4.2 (Test Power of the KTWW Approach, Case 1). Under conditions (C1)–(C3),

(C5), and (4.9), if lim
N→∞

∆N = δ0 6= 0, then for any fixed p ∈ (0, 1) and all a ∈ (0, 1)

P (S(p) ≤ a|{Xt})
p−→ I(δ0 < 0) as N →∞ and B →∞.

Theorem 4.2 states that, when only positive-alpha funds exist such that δ0 > 0, the

KTWW test has power approaching one for some percentile p > 0.5, i.e., the test is powerful

in the detection of skilled funds; likewise when only negative-alpha funds exist. This would

make the KTWW approach appealing provided that the fund sample contains no unskilled

funds. The simulation results in Table 4.A.4 (where the proportion of negative-alpha funds

π− = 0) in the Appendix confirm this theorem.

However, Theorem 4.2 warrants an important empirical consideration for the KTWW

method regarding its test power. The presence of a large number of negative-alpha funds

(poor alternatives in Hansen, 2005) could unfavorably affect the power in detecting skilled

funds. As implied by Theorem 4.2, when negative and positive alphas are both present, the

bootstrap method shall only have the power to detect either skilled or unskilled funds, which

is determined by the sign of δ0. In particular, the vast majority of mutual funds typically have

zero or negative alphas in the actual data, which makes δ0 < 0 possible, and the KTWW

bootstrap approach could suffer from low power to identify outperforming funds. Panels A

and B of Table 4.A.4 also confirm this observation when negative-alpha funds are prevalent

in the fund population.

Consider further the case of limN→∞∆N = 0, which is true when all δi’s are small. In

contrast to the case of Theorem 4.2, this case suggests that the overall departure from the

null hypothesis in positive-alpha funds is comparable to that in negative-alpha funds.
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(C6) lim
N→∞

1√
N

N∑
i=1

|δi|√
Ti

= 0, and lim
N→∞

1

N

N∑
i=1

{φ(Qp)− φ(Qp − δi)} = 0.

The first condition of (C6) assures that the difference between δ̂i and δi is asymptotically

negligible over i when limN→∞∆N = 0. The second one measures the difference in the

departure from the null between positive-alpha and negative-alpha funds, which is quite

small. It holds when limN→∞
1
N

∑N
i=1 |δi| = 0.

Theorem 4.3 (Test Power of the KTWW Approach, Case 2). Under conditions (C1)–(C3),

(C6) and (4.9), if limN→∞∆N = 0, then for any fixed p ∈ (0, 1) and all a ∈ (0, 1) we have

P
(
S(p) ≤ a|{Xt}

)
= P

(
Φ(BN1 +BN2) ≤ a|{Xt}

)
+ oP (1)

as N →∞ and B →∞, where

BN1 :=
φ(Qp)√
p(1− p)

(√
N(t̂([pN ])(0)−Qp) +

1√
N

N∑
i=1

T
−1/2
i qi,1,x(Qp) +

√
N∆N

φ(Qp)

)
has a standard normal limit given {Xt} and BN2 := −

√
N∆N√
p(1−p)

.

Theorem 4.3 shows that in the case where the signal-to-noise ratio is low (e.g., alphas are

small), the test power is determined by BN2, which depends on both negative and positive

alphas. For example, when both skilled and unskilled funds exist and negative δi’s dominate

positive δi’s in the sense that ∆N is quite negative for some p < 0.5 (i.e., BN2 is quite

positive), it is unlikely that the null hypothesis is rejected at the level a (and thereby leads

to low test power). Panel C of Table 4.A.4 in the Appendix shows that the presence of

unskilled funds significantly lowers the test power for skilled funds.

4.2.4 Theoretical Difficulty of the Fama and French (2010) Bootstrap Test

Fama and French (2010) propose to resample both the factor returns and fund returns

based on the same time sequence drawn from {1, . . . , T} with replacement, where T =

max{t1 + T1, . . . , tN + TN}, leading to the bootstrapped sample {Y b
i,t,X

b
t } for b = 1, . . . , B.
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By subtracting α̂i given in (4.3) from the bootstrapped fund returns, they run the following

regression

Y b
i,t − α̂i = α∗i + β′iX

b
t + ε∗i,t, t = ti + 1, . . . , ti + Ti,

for each fund i. Let α̂bi and β̂bi denote the least-squares estimators for α∗i and βi.

Define

εbi,t = Y b
i,t − β′iXb

t , X
b

i = T−1
i

ti+Ti∑
t=ti+1

Xb
t , Σb

i = T−1
i

ti+Ti∑
t=ti+1

(Xb
t −X

b

i)(X
b
t −X

b

i)
′,

and

(σ̂bi )
2 = T−1

i

ti+Ti∑
t=ti+1

{Y b
i,t − α̂i − α̂bi − (β̂bi )

′Xb
t }2.

Then,

t̂bi(0) =
√
Ti

α̂bi

σ̂bi

√
1 + (X

b

i)
′(Σb

i)
−1X

b

i

= T
−1/2
i

ti+Ti∑
t=ti+1

εbi,t
σ̂bi

1− (Xb
t −X

b

i)
′(Σb

i)
−1
X

b

i√
1 + (X

b

i)
′(Σb

i)
−1
X

b

i

−
√
Tiα̂i

σ̂bi

√
1 + (X

b

i)
′(Σb

i)
−1
X

b

i

.

Hence, the likelihood in Fama and French (2010) (i.e., the bootstrapped p-value in Kosowski

et al. (2006)) is

S(p) =
1

B

B∑
b=1

I
(
t̂b([pN ])(0) ≤ t̂([pN ])(0)

)
for p ∈ (0, 1).

Reminiscent of the theorems above for Kosowski et al. (2006), to develop theories, it is

necessary to derive Edgeworth expansions for t̂bi(0) till the order T−1
i . Because of the joint

resampling scheme, Xb
t is tied to εbi,t by the same bootstrapped time index, which compli-

cates the derivation of higher-order Edgeworth expansion. In contrast, εbi,t is resampled

independently of Xt in Kosowski et al. (2006), which makes the derivation of higher-order

Edgeworth expansion easier conditional on Xt. Although we can not derive theorems for

the size and power of the Fama and French (2010) approach, it is well expected that it has

a biased size in the same vein as Kosowski et al. (2006) when (4.9) does not hold because
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of the unusual way of formulating S(p) from all bootstrapped t-statistics. Furthermore, we

conjecture that the joint resampling scheme brings about additional bias in that it cannot

even correct the approximation error T
−1/2
i in using t-statistics, that is, the test has a biased

size even when limN→∞
1√
N

∑N
i=1 T

−1/2
i <∞.

Simulation results in the Internet Appendix indicate that the Fama and French (2010)

method has serious issues with both size and power. For example, Table 4.A.1 shows that

when all fund residuals are normal and independent with T = 468 (the largest sample size an

individual fund can have in the data), the Fama and French (2010) test has a distorted size

when N = 500 (Panel A), and the size distortion is substantial when N = 2650 (Panel B).

Consistent with its conservativeness, it tends to have very low power as evidenced in Table

4.A.4. To further address the concern that the bias may occur only for cross-sectionally

independent funds residuals, we conduct a simulation exercise for cross-sectionally dependent

fund residuals. Table 4.A.5 in the Appendix demonstrates that the size bias is not mitigated

for the dependent case.

Collectively, an important message of the above findings for the empirical finance liter-

ature is that both bootstrap tests are inadequate for fund performance evaluation because

of the stylized fact that sample sizes are much smaller than the number of funds in monthly

data. The Kosowski et al. (2006) test is challenged by its size distortion in large dimensions

and unsatisfactory power properties in the presence of a large number of negative-alpha

funds. The conservativeness of the Fama and French (2010) test is so high that it can mask

the evidence of skilled funds. Our paper is closely related to but different from Harvey

and Liu (2020a,b), who rely on simulation studies and resample fund returns from mutual

fund data instead of simulating them from known distributions. Our analyses regarding the

impact of accumulated estimation errors when N >> T can also speak to the debate over

the applicability of the false discovery rate control method, another popular approach in

evaluating fund performance, such as Barras et al. (2010, 2020) and Andrikogiannopoulou

and Papakonstantinou (2019). This literature is similarly challenged by large cross-sections

and small sample sizes and too many inferior alternatives, as studied by Giglio, Liao, and
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Xiu (2020).

4.3 Methodology

Given the above discoveries on the perils and pitfalls of the bootstrap methods in Kosowski

et al. (2006) and Fama and French (2010), we propose an alternative test for H0 : αi = 0, i =

1, . . . , N with an accurate size even when the sample sizes of many funds in the population

are relatively small. More specifically, our theories show that the bootstrap Hotelling’s T -

squared test attains an asymptotically correct size when limN→∞
1√
N

∑N
i=1 T

−1
i ∈ (0,∞) by

automatically correcting the bias in the Hotelling’s T -squared test statistic. We further

provide a flexible procedure combining sequential testing and screening to identify skilled

funds by first locating a set of zero-alpha funds from the bootstrap Hotelling’s T -squared

test.

4.3.1 Bootstrap Hotelling’s T -squared Test In the Ideal Setting

For each fixed i, t̂i(0) has an asymptotic normal distribution under the zero-alpha null

hypothesis. This motivates us to study the Hotelling’s T -squared test statistic

HT =
1√
2N

N∑
i=1

{t̂2i (0)− 1}.

Note that HT should not have a standard normal limit because small sample sizes of some

funds make the approximation error between t̂i(0) and N(0, 1) non-negligible. In the fol-

lowing theorem, we show the asymptotic limit of HT using (4.5) under the zero-alpha null

hypothesis.

Theorem 4.4 (Test Size of Hotelling’s T -squared Test). Under conditions (C1)–(C4) and

H0 : αi = 0, i = 1, . . . , N , we have, as N →∞,

P (HT ≤ z|{Xt}) = Φ

(
z − 1√

2N

N∑
i=1

T−1
i

∫ ∞
−∞

s2 d{φ(s)qi,2,x(s)}

)
+ oP (1) for z ∈ R.(4.14)
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The Theorem above shows that the bias in (4.14) caused by the skewness is

asymptotically negligible when the average fund sample size is large in the sense

that limN→∞
1√
N

∑N
i=1 T

−1
i = 0. However, when some funds have small sample sizes

(limN→∞
1√
N

∑N
i=1 T

−1
i > 0), we have to correct the bias. Here, we propose to employ

the residual-based bootstrap method.

Using notations in Section 4.2.2 of the residual-based bootstrap method, we draw the

b-th bootstrap sample and compute the bootstrap t-statistic t̂bi(0) for i = 1, . . . , N , which

results in the bootstrap Hotelling’s T -squared test statistics

HT b =
1√
2N

N∑
i=1

{
(t̂bi(0))2 − 1

}
for b = 1, . . . , B.

Theorem 4.5 (Test Size of Bootstrap Hotelling’s T -squared Test). Under conditions (C1)–

(C4), we have, as N →∞,

P
(
HT b ≤ z|{Yi,t,Xt}

)
= Φ

(
z− 1√

2N

N∑
i=1

T−1
i

∫ ∞
−∞

s2 d{φ(s)q̂i,2,x(s)}
)

+oP (1) for z ∈ R.(4.15)

The Theorem above shows that the residual-based bootstrap method automatically

corrects the bias in the test statisticHT . LetHT (1) ≤ . . . ≤ HT (B) denote the order statistics

of HT 1, . . . , HTB. Using Theorems 4.4 and 4.5, we reject the zero-alpha null hypothesis at

level a whenever HT < HT ([aB/2]) or HT > HT (B−[aB/2]). Simulation results in Table 4.A.6

in the Appendix show that the proposed test achieves remarkable size control. In contrast,

because of the unconventional statistic S(p), it is infeasible to make the bootstrap test using

S(p) valid when lim supN→∞
1√
N

∑N
i=1 T

−1
i > 0.

Theorem 4.6 (Test Power of Bootstrap Hotelling’s T -squared Test). Under conditions

(C1)–(C4), if limN→∞
1√
N

∑N
i=1 |δi|/

√
Ti < ∞ and limN→∞

1√
N

∑N
i=1 δ

2
i < ∞, we have, as
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N →∞ and B →∞,

P
(
HT < HT ([aB/2]) or HT > HT (B−[aB/2])|{Xt}

)
=Φ

(
Φ←(a/2)− 1√

2N

n∑
i=1

{
δi√
Ti

(
2

∫ ∞
−∞

s d{φ(s)qi,1,x(s)} −
Eε3

i,t

σ3
i

√
1 +X

′
iΣ
−1
i X i

)
+ δ2

i

})

+ Φ

(
Φ←(a/2) +

1√
2N

n∑
i=1

{
δi√
Ti

(
2

∫ ∞
−∞

s d{φ(s)qi,1,x(s)} −
Eε3

i,t

σ3
i

√
1 +X

′
iΣ
−1
i X i

)
+ δ2

i

})

+ oP (1). (4.16)

Theorem 4.6 shows that the skewness of residuals plays an important role in the test

power. The simulation results in Table 4.A.6 show that the test is very powerful when fund

returns display realistic levels of skewness and when a small fraction of skilled funds exist.

4.3.2 Bootstrap Hotelling’s T -squared Test In A Practical Setting

Although the study focuses on monthly returns, one may still concern with serial de-

pendence within fund residuals as well as cross-sectional dependence across fund residuals.

In this section, we generalize the bootstrap Hotelling’s T -squared test to the case where

the errors in model (4.2) follow from an AR model with cross-sectional dependence. Further

extension to ARMA-GARCH model is straightforward, but the method may not be efficient

due to small sample sizes of monthly returns. More specifically, we consider

Yi,t = αi + β′iXt + εi,t, t = ti + 1, . . . , ti + Ti, i = 1, . . . , N,

and

εi,t =

pi∑
j=1

φi,jεi,t−j + ηi,t, ηi,t = ζiUt + ei,t, (4.17)

where Ut denotes a common latent factor and ζi is referred to as the latent factor loading.

Model (4.17) introduces serial correlations and cross-sectional dependence into mutual fund
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residuals.10 Note that in the mutual fund data, many funds have different inception and

exiting times, and the returns of two funds may be non-overlapping or only spuriously

overlapping. As a result, it becomes challenging to test for the existence and strength of

cross-sectional dependence as such a method, if any, will require paired (or balanced) data.11

Nevertheless, we use ζi’s to limit the impact of the cross-sectional dependence.

Throughout this section, we assume that

(C7) For each i, {εi,t} is a strictly stationary sequence.

(C8) For each i, {Ut} and {ei,t} are sequences of independent and identically distributed

random variables with mean zero and all sequences over i are independent. Further

assume E(|Ut|4+κ) <∞, and supiE(|ei,t|4+κ) <∞ for some κ > 0.

(C9) The deterministic constants ζi’s satisfy that limN→∞
1√
N

∑N
i=1 |ζi| = 0.

Under condition (C4), an example for (C9) is that ζi = T−1−κi
i for all κi > 0. Another

example is that the number of funds with |ζi| > 0 for i = 1, . . . , N is o(
√
N).

If we employ the Newey and West (1987) t-test with serial-correlation correction for each

fund, it is challenging to figure out and correct the bias in the Hotelling’s T -squared test,

which is essential when limN→∞
1√
N

∑N
i=1 T

−1
i ∈ (0,∞). For example, if we use the blockwise

bootstrap method, the number of blocks is o(Ti), which can not achieve the accuracy of

o(1/Ti) for the t-statistic constructed for the i-th fund. Hence, it seems necessary to utilize

the error structure for inference to allow that limN→∞
1√
N

∑N
i=1 T

−1
i ∈ (0,∞).

Denote θi:= (θi,1, . . . , θi,Ki)
′ = (αi,β

′
i, φi,1, . . . , φi,pi)

′ with Ki denoting the dimension of

θi and write

ηi,t(θi) = Yi,t − αi − β′iXt −
pi∑
j=1

φi,j(Yi,t−j − αi − β′iXt−j).

10Kosowski et al. (2006, p. 2582) implement a stationary bootstrap as a robustness check for serial correla-
tions. Fama and French (2010, p. 1925) claim that autocorrelation is a minor issue for their test quoting the
literature on autocorrelations of stock returns. Several empirical finance papers have adopted the second part
of Equation (4.17) to model cross-sectional dependence; see, for example, Jones and Shanken (2005), Barras
et al. (2010), Andrikogiannopoulou and Papakonstantinou (2019), and Harvey, Liu, and Saretto (2020).

11For all fund pairs with overlapping returns of at least 60 months, the average pairwise correlation is
around 0.08 for the four-factor model residuals, indicating a minor degree of cross-sectional dependence.
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Then, the least-squares estimator of θi is

θ̃i = (θ̃i,1, . . . , θ̃i,Ki)
′ = arg min

θi

ti+Ti∑
t=ti+1

η2
i,t(θi),

which solves the score equations
∑ti+Ti

t=ti+1 ∆i,t,k(θi) = 0 for k = 1, . . . , Ki with

∆i,t,k(θi) = ηi,t(θi)
∂

∂θi,k
ηi,t(θi).

To estimate the asymptotic variance of θ̃i,1 = α̃i, construct t-statistic, and formulate the

Hotelling’s T -squared test, we need the following notations:

∆
(j)
i,t,k(θi) =

∂

∂θi,j
∆i,t,k(θi) for j = 1, . . . , Ki,

Γi,k =
1

Ti

ti+Ti∑
t=ti+1

(∆
(1)
i,t,k(θi), . . . ,∆

(Ki)
i,t,k (θi))

′, Γi = (Γi,1, . . . ,Γi,Ki),

Γ̃i,k =
1

Ti

ti+Ti∑
t=ti+1

(∆
(1)
i,t,k(θ̃i), . . . ,∆

(Ki)
i,t,k (θ̃i))

′, Γ̃i = (Γ̃i,1, . . . , Γ̃i,Ki),

Mi,k =
1

Ti

ti+Ti∑
t=ti+1

∆2
i,t,k(θi), Mi = diag(Mi,1, . . . ,Mi,Ki),

M̃i,k =
1

Ti

ti+Ti∑
t=ti+1

∆2
i,t,k(θ̃i), M̃i = diag(M̃i,1, . . . , M̃i,Ki).

Let ei = (1, 0, . . . , 0)′ be the Ki dimensional vector. We consider the squared t-statistics

t̃2i = Ti
e′iθ̃iθ̃

′
iei

e′iΓ̃
−1
i M̃i(Γ̃

−1
i )′ei

, i = 1, . . . , N,

where e′iθ̃iθ̃
′
iei = α̃2

i . Define the Hotelling’s T -squared test statistic as

H̃T =
1√
2N

N∑
i=1

{
t̃2i − 1

}
.

Because it is challenging to derive the Edgeworth expansions for the above t-statistics, we

will calculate the bias of E(t̃2i ) directly to prove the following theorem for analyzing the test

size of this Hotelling’s T -squared test.
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Theorem 4.7 (Test Size of Hotelling’s T -squared Test for AR Errors). Suppose models (4.2)

and (4.17) satisfy (C2)–(C4), and (C7)–(C9). Under H0 : αi = 0, i = 1, . . . , N , we have, as

N →∞,

P
(
H̃T ≤ z

)
= Φ

(
z − 1√

2N

N∑
i=1

µi

)
+ oP (1) for z ∈ R, (4.18)

where µi’s are given in Equation (4.A.28) in the Appendix, and limN→∞ | 1√
2N

∑N
i=1 µi| ∈

[0,∞).

When limN→∞
1√
N

∑N
i=1 T

−1
i ∈ (0,∞), the bias term above may not be zero asymptoti-

cally. Hence, it is necessary to correct this bias term. As it is nontrivial to estimate the bias,

we employ the residual-based bootstrap method again. That is, for each i, draw a random

sample with sample size Ti from {ηi,t(θ̃i)}ti+Tit=ti+1 with replacement, say, {η∗i,t}
ti+Ti
t=ti+1. After

generating {ε∗i,t}
ti+Ti
t=ti+1 from ε∗i,t =

∑pi
j=1 φ̃i,jε

∗
i,t−j + η∗i,t, we generate {Y ∗i,t}

ti+Ti
t=ti+1 by using

Y ∗i,t = α̃i + θ̃′iXt + ε∗i,t.

Therefore, we obtain θ̃∗i by minimizing

1

Ti

ti+Ti∑
t=ti+1

{
Y ∗i,t − αi − β′iXt −

pi∑
j=1

φi,j(Y
∗
i,t−j − αi − β′iXt−j)

}2

.

Compute Γ̃i and M̃i using Y ∗i,t and θ̃∗i to get Γ̃∗i and M̃ ∗
i , which gives

t̃2∗i = Ti
e′i(θ̃

∗
i − θ̃i)(θ̃∗i − θ̃i)′ei

e′i(Γ̃
∗
i )
−1M̃ ∗

i ((Γ̃∗i )
−1)′ei

and

H̃T
∗

=
1√
2N

N∑
i=1

{
t̃2∗i − 1

}
.

Theorem 4.8 (Test Size of Bootstrap Hotelling’s T -squared Test for AR Errors). Under

conditions of Theorem 4.7 and H0 : αi = 0, i = 1, . . . , N , we have, as N →∞,

sup
z

∣∣∣P(H̃T ∗ ≤ z|{Yi,t,Xt}
)
− P

(
H̃T ≤ z

)∣∣∣ = oP (1). (4.19)
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Using the above theorems, we can test H0 by repeating the above bootstrap procedure

B times to get H̃T
∗
1, . . . , H̃T

∗
B and then calculating the p-value as

2 ·min

(
1

B

B∑
b=1

I
{
H̃T < H̃T

∗
b

}
,

1

B

B∑
b=1

I
{
H̃T > H̃T

∗
b

})
.

We skip the tedious calculations for analyzing the test power. Simulations in Table 4.A.6

confirm Theorem 4.8 and the high power of the bootstrap test using H̃T . It is straightforward

to generalize model (4.17) to an ARMA process. However, when we model {εi,t} by an

ARMA-GARCH model, we have to infer both ARMA and GARCH models and employ the

residual-based bootstrap method. If we only infer the ARMA model and employ the wild

bootstrap method, then the resulted bootstrap test does not have an asymptotically correct

size when limN→∞
1√
N

∑N
i=1 T

−1
i ∈ (0,∞). This is because the wild bootstrap method fails

to catch the bias term in the Hotelling’s T -squared test, which is a high-order term caused

by the heteroscedasticity.

4.3.3 Sequential Testing and Thresholding

In this subsection, we provide a flexible procedure to select skilled mutual funds based

on the bootstrap Hotelling’s T -squared test. It proceeds in two steps: applying the new

bootstrap test to identify a zero-alpha fund group and assessing whether the top- (bottom-)

ranking funds are skilled (unskilled) compared to the zero-alpha group. We adopt a similar

sequential testing approach to that in Hansen, Lunde, and Nason (2011) to determine a p-

value threshold, and reduce the fund population into subsets of zero-alpha funds and non-zero

alpha funds.

The zero-alpha funds are chosen by sequentially performing the bootstrap Hotelling’s T -

squared test on the sets of funds with p-values thresholded above incrementally decreasing

levels. Similar to Hansen, Lunde, and Nason (2011), let pN,1 ≤ . . . ≤ pN,N be the order

statistics of p1, . . . , pN with each pi computed from the standard t-test for αi = 0. Starting

from a relatively large k, for those funds in the set S0
k = {i = 1, . . . , N : pi ≥ pN,k}, we

conduct the above Hotelling’s T -squared test. The initial value of k can be chosen so that
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pN,k is large. Then by decreasing k and thereby reducing pN,k, we expand the set S0
k to

include more funds with smaller p-values (therefore more likely to be non-zero alpha) and

repeat the bootstrap test iteratively on the expanded test set. If the p-value of the proposed

bootstrap Hotelling’s T -squared test is larger than the significance level, we determine the

funds in S0
k as zero-alpha. Obviously, as pN,k approaches 0, S0

k will get closer to being the

full sample of funds. The iteration is stopped when k = 1, that is, the original data sample is

reached. We choose the smallest k, denoted as k∗, for which the new test does not reject the

null to maximize the number of zero-alpha funds included in S0
k , and fix p∗ = pN,k∗ as the

threshold of our test. The collection of funds in S0
k∗ is the zero-alpha fund group identified

by our bootstrap test, which we denote as S0.

The second step of our procedure seeks to detect the true outperforming and underper-

forming funds. It operates on a reduced set of funds after having screened out the zero-alpha

funds. Based on the threshold p∗, we further split the remaining funds not in S0 into two sub-

sets: S+ = {i = 1, . . . , N : pi < p∗, t̂i(0) > 0} and S− = {i = 1, . . . , N : pi < p∗, t̂i(0) < 0}.

To investigate whether or not the funds in S+ are skilled compared to the zero-alpha funds in

S0, we perform the bootstrap Hotelling’s T -squared test again on the combined set S0∪S+.12

If the zero-alpha null hypothesis is rejected on this combined set of funds, we claim that the

funds in S+ are skilled. From an economic perspective, the skilled funds identified in this

way are able to produce significantly positive alphas as they are benchmarked against the

zero-alpha funds. Similarly, we could also confirm whether those funds in S− are unskilled

by repeating the test for funds in S0 ∪ S−.

In the Appendix, we assess via simulation studies the accuracy of this sequential testing

procedure in selecting the truly skilled funds with and without cross-sectional dependence

(using HT and H̃T ). Figure 4.A.1 shows that the procedure is quite accurate for realistic

levels of alphas when the true proportion of skilled funds is 2%, but it is downwardly biased

when the true proportion of skilled funds is 5%, assuming that 20% of funds have a negative

12Alternatively, we can conduct the test on S0 ∪ S+, where S0 is the subset of S0 excluding the k∗ − 1

funds with the smallest p-values from S0, so the number of funds in S0 ∪S+ is kept the same as that in S0.
In empirical applications, the results remain very similar.
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alpha of -0.30. In general, the procedure may conservatively estimate the proportion of

skilled funds as it applies the most stringent (i.e., the smallest) threshold. This is not overly

concerning if the goal is to test for the existence of skilled funds or to select the most profiting

funds for investors.

What attributes make our methodology advantageous over that of Kosowski et al.

(2006)? First, our bootstrap test is developed to overcome the statistical challenges plaguing

the KTWW method. Our theories demonstrate that the bootstrap approach can correct the

bias in the Hotelling’s T -squared test statistic in a large cross-section with small sample

sizes. The bootstrap Hotelling’s T -squared test is further generalized to allow for serially

correlated errors and is shown to be robust to cross-sectional dependence. Our simulation

studies confirm good size and power properties of the proposed bootstrap test in settings cal-

ibrated to the characteristics of actual mutual fund data. Moreover, our approach has a high

power of uncovering superior fund performance through a screening technique. The KTWW

test could have a considerably reduced power of identifying skilled funds by taking the en-

tire sample of funds altogether as the test set, which contains a large number of zero- and

negative-alpha funds. This makes it difficult for the truly superior funds to stand out among

a much larger crowd of mediocre and low-performing funds. In contrast, our data-driven

thresholding approach screens out zero-alpha funds and excludes the large set of negative-

alpha funds in the search for positive-alpha funds, thus reducing the dimension of the test

set substantially and giving our test procedure increased power to discover skilled funds in

a large fund population. In a study related to ours, Grønborg et al. (2021) eliminate funds

with predicted inferior performance, but they do this through pairwise fund comparisons.

In contexts different from ours, Hansen (2005) and Giglio, Liao, and Xiu (2020) similarly

propose to increase the test power by removing poor and irrelevant alternatives.
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4.4 Empirical Applications

In this empirical section, applying our proposed method, we first evaluate mutual fund

performance by examining whether and how many skilled funds exist, and then examine the

characteristics of funds with different levels of performance. We provide descriptive evidence

on what kind of funds are likely to be skilled and unskilled. Our empirical analysis is based on

monthly returns from January 1980 to December 2018 for all U.S. actively-managed equity

funds. The results are obtained using the baseline bootstrap Hotelling’s T -squared test.

Section 4.C.1 in Appendix provides further details about the data we use. Section 4.C.2

presents the empirical results based on the generalized version of the bootstrap Hotelling’s

T -squared test, which accounts for serial correlations in fund returns.

4.4.1 Mutual Fund Performance

We use the Carhart (1997) four-factor model as the benchmark model to estimate fund

alphas based on fund net returns as follows:13

ri,t − rf,t = αi +
4∑
j=1

βijXj,t + εi,t.

The factors include CRSP value-weighted excess market return (Mktrf), size (SMB), book-

to-market (HML), and momentum (UMD) factors. We require a minimum of 60 monthly

observations in our estimation similar to Barras et al. (2010). The factors are obtained from

Ken French’s website.14

We first identify the funds with zero alpha. We obtain from fund-by-fund regressions

the individual alpha, alpha t-statistic, and p-value of classical t-test for the i-th fund. For

each p-value threshold between 0 and 0.1, we apply the bootstrap Hotelling’s T -squared test

to the set of funds with p-values larger than or equal to the threshold, i.e., the set S0
k defined

13 Results for the Jensen (1968) one-factor model and Fama and French (1996) three-factor model are very
similar, and they are available upon request from the authors.

14https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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in Section 4.3.3. In Panel A of Figure 4.2 , we plot the p-values of bootstrap Hotelling’s

T -squared test against the range of thresholds. This figure illustrates that there exist a range

of thresholds for which the null is not rejected at the 10% level.

Having identified the zero-alpha funds, we implement the thresholding procedure by

detecting skilled funds on a reduced set of funds without the extreme negative-alpha funds.

Figure 4.2 Panel B presents the p-values of the bootstrap Hotelling’s T -squared test on

the set S0 ∪ S+ for the range of thresholds with which the null is not rejected on S0. The

bootstrap test rejects the null on the combined set for all values of thresholds. This provides

strong evidence of the existence of superior funds in the data sample. Applying the smallest

p-value threshold 0.0405, our sequential testing procedure uncovers 1.36% (36 out of 2650)

of funds in the sample as skilled funds (with significantly positive alphas).

[Figure 4.2 about here.]

[Table 4.1 about here.]

While our test procedure concludes that some managers stand out with superior per-

formance, extant bootstrap methods lead us to an opposite conclusion. In Panel B of Table

4.1, based on the Carhart model, the bootstrap tests in Kosowski et al. (2006) and Fama and

French (2010) strongly reject the null at all upper percentile points and find no evidence for

skilled funds in the population. From our prior analysis, the lack of evidence of skilled funds

from these two tests may very well be an artifact of their inadequate power properties. The

superior funds identified by our test, a non-negligible minority, exhibit skills to more than

overcome their costs: they generate an average four-factor alpha of 0.336% per month (with

an average alpha t-statistic of 2.598). This illustrates the power of our procedure and the

importance of developing a valid bootstrap test that accounts for the empirical properties

of mutual fund returns. For comparison, we further implement another influential approach

for evaluating mutual fund performance, i.e., the false discovery rate (FDR) control method

in Barras et al. (2010), which has been found to be biased in estimating the proportions of
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funds, especially when funds have small sample sizes (Andrikogiannopoulou and Papakon-

stantinou, 2019; Barras et al., 2020). Panel C shows that the FDR approach fails to identify

any skilled funds.

As a robustness check, we also repeat the analyses using the generalized test statistic

H̃T , which takes into account the serial correlations in fund returns. Figure 4.A.2 in the

Appendix shows that the result is very similar, with 1.06% of funds found to be skilled.

4.4.2 Characteristics of Different Fund Groups

For the zero-alpha, skilled, and unskilled funds identified by the sequential testing

procedure, we examine and report the characteristics associated with each group in Table

4.2. Table 4.A.8 in the Appendix reports qualitatively similar results based on the H̃T

statistic. The characteristics examined in the table include holding characteristics, fund

characteristics, and performance/active management measures. The 93 stock holding

characteristics and active weight are from March 1980 to February 2018, because portfolio

holdings data from Thomson Reuters begin at the end of the first quarter in 1980.

Furthermore, as “fdate” and “rdate” from MFLINK2 (as of April 2020) end in December

2017, we assume constant holding for three months after December 2017 (inclusive). We

form fund portfolios with significant positive alpha, zero alpha, and significant negative

alpha, respectively, based on our test results. We then report the time-series averages of

the monthly cross-sectional means in each portfolio and the difference in means between

the two extreme portfolios. Since mutual funds are required to disclose their holding every

six months before May 2004 and every three months afterward, we compute t-statistics of

the differences in means with Newey and West (1987) correction for time-series correlation

with six lags.

[Table 4.2 about here.]

To begin with, we observe from this table that the stocks held by skilled funds and

unskilled funds are dramatically different. This observation indicates that equity funds may



129

achieve alpha and exhibit skills through holding stocks with certain characteristics, even

though the Carhart benchmark model has explicitly taken them into account. Based on

the t-statistics, we could see that for the 93 holding characteristics in Green et al. (2017),

only 20 differences are insignificant at the 5% level, and the rest of the stock characteristics

are significantly different for skilled funds and unskilled funds. For example, funds who ex-

hibit significant positive alphas hold stocks with a higher bid-ask spread (baspread), higher

standard deviation of earnings per share forecast (disp), higher idiosyncratic volatility (idio-

vol), higher Amihud ratio (ill), higher return volatility (retvol), higher volatility of liquidity

based on both dollar trading volume (std dolvol) and share turnover (std turn), and a larger

number of zero trading days (zerotrade).15 Also, skilled funds hold smaller stocks based on

market capitalization (mve) and industrial adjusted market capitalization(mve ia).

Hou et al. (2015) classify all anomalies into six categories, including “Momentum”,

“Value-Versus-Growth”, “Investment”, “Profitability”, “Intangibles”, and “Trading Fric-

tions”. The above-mentioned anomalies are all in the category of “Trading Frictions”. Fur-

thermore, the asset pricing literature, such as Amihud and Mendelson (1989), Diether et al.

(2002), Ali et al. (2003), Amihud (2002), Ang et al. (2006), Chordia et al. (2001), and Liu

(2006), finds that stocks with those characteristics have higher anomalous returns. Since we

also find that skilled funds have a lower fund turnover ratio compared to unskilled funds

(see the variable turn ratio), skilled managers may hold illiquid stocks purposely to extract

illiquidity premium and at the same time prevent incurring trading costs. Besides, skilled

funds also hold stocks with higher R&D expense to market capitalization (rd mve) and R&D

expense to sales (rd sale). Guo et al. (2006) and Li (2011) suggest a higher expected stock

return for stocks with those characteristics, which implies that part of the performance of

skilled funds may be from the premium of holding intangible assets. For anomalies in the

other categories, the results are either inconsistent or less significant.

From the perspective of fund characteristics, positive-alpha funds are younger in a big

15In Tables 4.2 and 4.A.8, we use the same variable abbreviations as in Table 1 of Green et al. (2017) for
fund-level stock holding characteristics.
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fund family, tend to have a lower expense ratio (about 1% a year), attract more inflow (1.7% a

month), and as mentioned above have a lower turnover ratio (about 74% a year). Funds with

positive alphas are also more engaged in active management since they have lower R-squared

statistic (rsq), higher active share (active share) and active weight (aw). These findings are

in line with the previous literature. For example, Amihud and Goyenko (2013), Cremers and

Petajisto (2009), and Doshi et al. (2015) document that the performance of mutual funds

can benefit from active management. In these studies, the measures of active management

are “1−R-square”, active share, and active weight. Kacperczyk et al. (2008) note that funds

good at interim trading have better performance. Consistent with this study, we find that the

funds in the skilled portfolio on average have a higher return gap (retgap) than funds in the

unskilled portfolio. Finally, the hypothetical excess return based on stock holdings in skilled

funds (1.13% per month) is much larger than that of unskilled funds (0.66% per month). It

again suggests that part of fund skills may come from the higher expected return of stocks

they hold. It is important to note that we are not trying to establish a causal relationship

between fund characteristics and fund performance. Instead, we provide descriptive statistics

for holding characteristics, fund characteristics, and performance measures based on the

skilled and unskilled fund groups.

4.5 Conclusion

Finance researchers routinely evaluate the performance of thousands of mutual funds with

short sample periods of monthly returns. Moreover, the vast majority of funds exhibit either

zero or negative alphas. Our study shows that these stylized facts pose great challenges to

the statistical validity of some existing performance evaluation methods. Originally proposed

to separate luck from skill in mutual funds, the unconventional test statistic in Kosowski

et al. (2006) fails to eliminate the higher order of approximation errors in using t-statistics.

Although a well-intentioned proposal to deal with cross-sectional dependence, the joint re-

sampling in Fama and French (2010) is not immune to the bias stemming from accumulated
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approximation errors under cross-sectional independence. Consequently, the Kosowski et al.

(2006) test features size distortions in large cross-sections and may lack the power to detect

skilled funds amongst a large number of funds with negative alphas. To the extent that fund

sample sizes are relatively large, the Fama and French (2010) test still tends to have very

low power, consistent with its heavy undersizing.

We develop the theory for adopting Hotelling’s T -squared statistic for the zero-alpha

test both in the ideal setting of independent errors and in the practical setting of serially

correlated and cross-sectionally dependent fund residuals. To account for small sample sizes

in large cross-sections, a residual-based bootstrap method is used to correct the bias in

Hotelling’s T -squared test and ensure accurate size control. When the zero-alpha null hy-

pothesis is rejected, we provide an entirely data-driven sequential testing and thresholding

procedure to evaluate mutual fund performance with enhanced power. Empirical analysis

reveals modest evidence of superior performance. Skilled funds tend to be engaged in active

management in big fund families and attract more inflows. They hold illiquid stocks and

stocks with higher R&D expenses, both of which indicate higher expected stock returns and

may contribute to the superior performance of those funds.
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Figure 4.1. The cross section of monthly mutual fund returns.
The figure presents several statistical features of the cross section of monthly mutual fund
returns from January 1980 to December 2018 for all U.S. actively-managed equity funds with
at least 60 valid observations. Panel A shows the sample size of each mutual fund; Using
the Carhart (1997) four-factor model, Panel B shows the p-value from standard t-test of zero
alpha of each fund, and Panels C and D display the residual volatility and residual skewness
for each fund, respectively.
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Panel B: BHT test for skilled funds

Figure 4.2. Bootstrap Hotelling’s T-squared test for fund selection – HT test.
This figure plots the p-values for the bootstrap Hotelling’s T -squared (BHT) test for a range
of p-value thresholds in the sequential fund selection procedure. All funds residuals are
assumed to be serially uncorrelated. Panel A shows the BHT test for a zero-alpha fund set,
and Panel B shows the test for confirming a skilled fund set relative to the zero-alpha fund
set. The data sample is monthly returns from January 1980 to December 2018 for all U.S.
actively-managed equity funds with at least 60 return observations.
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Table 4.1. Summary statistics of the cross section of mutual fund returns and alternative
performance evaluation tests

From January 1980 to December 2018, for all U.S. actively-managed equity funds, this table presents the

statistical characteristics of mutual fund returns as well as alternative performance evaluation tests based on

fund-by-fund regressions with the Carhart (1997) model. Panel A summarizes several key statistics for the

mutual fund data. Panel B reports the cross-sectionally bootstrapped p-values at several percentile points

from the bootstrap tests in Kosowski et al. (2006) (KTWW) and Fama and French (2010) (FF) based on

the Newey and West (1987) heteroskedasticity- and autocorrelation-consistent standard errors. Note that

the results are very similar without the Newey and West (1987) adjustment. Panel C reports the estimated

fund proportions based on the FDR approach in Barras et al. (2010). We follow the internet appendix of

Barras et al. (2010) to implement their procedure.

Percentile

0.01 0.03 0.05 0.10 0.15 0.85 0.90 0.95 0.97 0.99
Median Mean SD

Panel A: Summary Statistics

Sample size 62 66 70 82 92 314 355 414 454 468 186 204 103

Alpha -0.690 -0.517 -0.426 -0.316 -0.254 0.081 0.122 0.196 0.244 0.387 -0.798 -0.916 0.205

Alpha t-statistic -3.502 -2.989 -2.689 -2.252 -1.946 0.640 0.962 1.367 1.650 2.236 -0.700 -0.667 1.248

Residual volatility 0.477 0.647 0.760 0.918 1.019 2.668 3.082 3.811 4.465 5.479 1.613 1.851 1.003

Residual skewness -2.167 -0.897 -0.662 -0.449 -0.345 0.444 0.566 0.779 0.948 1.442 0.051 0.018 0.775

Panel B: Bootstrap Test p-Values

KTWW test 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 – – –

FF test 0.000 0.000 0.000 0.000 0.000 0.956 0.937 0.918 0.915 0.829 – – –

Panel C: Estimated Fund Proportions with the FDR Approach

Unskilled Zero-Alpha Skilled

30.34% 69.66% 0.00%
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Table 4.2. Mutual fund characteristics based on HT test
From January 1980 to December 2018, for all U.S. actively-managed equity funds with at least 60 valid
observations, we compute alphas using the four-factor model and generate mutual fund portfolios with sig-
nificantly positive alphas, zero alpha, and negative alphas, respectively, based on the HT test statistic. We
report the time-series averages of the monthly cross-sectional means in each portfolio and the difference in
means between the two extreme portfolios. We compute t-statistics of the differences with Newey and West
(1987) correction for time-series correlation with 6 lags. The variables include fund level stock holding char-
acteristics (using the same variable abbreviations as in table one of Green et al. (2017)), fund characteristics,
and fund performance/active management measures. For ease of reading, ear and sue are scaled by 100,
Amihud ratio by 1000000, and mve ia by 1/1000. We take log for the total net asset ($ million), for the age
of the fund’s oldest share class (in years), and for the family total net asset ($ million). Annual turnover
and expense ratio (both in percentage point) are the value weighted averages across all fund share classes.
Fund flow (%) is the average monthly net growth in fund assets beyond reinvested dividends and portfolio
returns. Return gap is in percentage point. Active weight is scaled by 2. The hypothetical excess returns
are in percentage. The variables are defined in Section 4.C.1 of the Appendix. Statistical significance of 1,
5, and 10 percent are indicated by ***, **, and *, respectively.

Variable Neg. Alpha Zero Alpha Pos. Alpha Pos.−Neg. t-stat

(Number of funds) (352) (2,262) (36)

Holding characteristics

absacc 0.0660 0.0694 0.0754 0.009*** (11.24)

acc -0.0213 -0.0214 -0.0209 0.000 (0.27)

aeavol 0.6368 0.6794 0.7685 0.132*** (12.84)

age 17.0742 16.0295 14.9119 -2.162*** (-22.34)

agr 0.1757 0.1957 0.2255 0.050*** (8.44)

baspread 0.0266 0.0277 0.0293 0.003*** (8.04)

beta 1.0291 1.0660 1.1521 0.123*** (7.82)

bm 0.5000 0.4811 0.3925 -0.107*** (-8.01)

bm ia 32.3681 32.278 50.9588 18.591* (1.91)

cash 0.1257 0.1352 0.1741 0.048*** (14.67)

cashdebt 0.2537 0.2667 0.3282 0.075*** (10.47)

cashpr 5.3980 6.7956 13.7102 8.312*** (9.99)

cfp 0.0752 0.0731 0.0648 -0.010*** (-3.47)

cfp ia 15.6601 15.6715 23.1901 7.530** (2.00)

chatoia -0.0072 -0.0084 -0.0125 -0.005*** (-3.04)

chcsho 0.1639 0.1689 0.1953 0.031*** (4.33)

chempia -0.1095 -0.1054 -0.1021 0.007 (1.18)

chfeps 0.0208 0.0202 0.0176 -0.003 (-1.41)

chinv 0.0111 0.0126 0.0153 0.004*** (5.29)

chmom -0.0106 -0.0049 0.0047 0.015*** (2.84)

chpmia 0.2425 0.2374 0.2480 0.006 (0.04)

chtx 0.0019 0.0022 0.0030 0.001*** (5.00)

cinvest -0.0020 -0.0027 -0.0065 -0.004*** (-2.61)

convind 0.1782 0.1814 0.1870 0.009 (1.43)

currat 2.4325 2.5461 2.7654 0.333*** (13.49)

depr 0.2125 0.221 0.2456 0.033*** (14.58)

disp 0.0642 0.0737 0.0774 0.013*** (7.60)

divi 0.0163 0.0195 0.0251 0.009*** (7.76)

divo 0.0115 0.0147 0.0177 0.006*** (8.22)
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Table 4.2 (cont’d): Mutual fund characteristics based on HT test

Variable Neg. Alpha Zero Alpha Pos. Alpha Pos.−Neg. t-stat

(Number of funds) (352) (2,262) (36)

Holding characteristics

dy 0.0222 0.0197 0.0120 -0.010*** (-10.50)

ear 0.7334 0.7985 0.8632 0.130** (2.36)

egr 0.1852 0.2060 0.2365 0.051*** (6.96)

ep 0.0556 0.0507 0.0423 -0.013*** (-11.52)

fgr5yr 14.2460 15.2047 16.4715 2.226*** (9.94)

gma 0.3892 0.4122 0.5000 0.111*** (11.99)

grcapx 0.6035 0.6851 0.7825 0.179*** (9.11)

grltnoa 0.0971 0.1033 0.1104 0.013*** (10.26)

herf 0.0770 0.0782 0.0783 0.001 (1.08)

hire 0.0874 0.1045 0.1299 0.042*** (9.41)

idiovol 0.0406 0.0425 0.0456 0.005*** (11.27)

ill 0.0279 0.0439 0.0473 0.019*** (4.13)

indmom 0.1641 0.1639 0.1662 0.002 (0.44)

invest 0.0794 0.0879 0.0979 0.018*** (6.51)

ipo 0.0174 0.0247 0.0307 0.013*** (7.91)

lev 2.0203 1.7073 0.9081 -1.112*** (-16.27)

mom12m 0.2392 0.2564 0.2770 0.038*** (3.50)

mom1m 0.0175 0.0197 0.0235 0.006*** (7.72)

mom36m 0.5482 0.5746 0.6222 0.074*** (3.89)

ms 4.7309 4.7313 5.1134 0.382*** (13.64)

mve 15.3905 15.1364 14.9424 -0.448*** (-22.19)

mve ia 12.8047 10.2769 8.6132 -4.192*** (-9.56)

nanalyst 18.4106 16.9041 17.0367 -1.374*** (-11.35)

nincr 1.2067 1.2390 1.3644 0.158*** (4.76)

operprof 0.9051 0.9189 0.9948 0.090*** (6.05)

orgcap 0.0082 0.0084 0.0095 0.001*** (9.51)

pchcapx ia 7.7086 7.1562 10.1049 2.396 (1.34)

pchcurrat 0.0329 0.0369 0.0350 0.002 (0.70)

pchdepr 0.0416 0.0447 0.0519 0.010*** (4.51)

pchgm pchsale 0.0083 0.0023 -0.0073 -0.016*** (-4.59)

pchsale pchinvt -0.0338 -0.0316 -0.0159 0.018*** (2.68)

pchsale pchrect -0.0310 -0.0333 -0.0314 -0.000 (-0.13)

pchsale pchxsga 0.0057 0.0087 0.0073 0.002 (0.70)

pchsaleinv 0.0963 0.0913 0.0817 -0.015* (-1.67)

pctacc -0.8311 -0.9211 -0.9101 -0.079* (-1.87)
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Table 4.2 (cont’d): Mutual fund characteristics based on HT test

Variable Neg. Alpha Zero Alpha Pos. Alpha Pos.−Neg. t-stat

(Number of funds) (352) (2,262) (36)

Holding characteristics

pricedelay 0.1030 0.0953 0.0906 -0.012*** (-3.57)

ps 4.8307 4.8154 4.8241 -0.007 (-0.39)

rd 0.0955 0.0952 0.0999 0.004 (1.41)

rd mve 0.0342 0.0344 0.0395 0.005*** (6.23)

rd sale 0.1148 0.1197 0.1914 0.077*** (7.33)

realestate 0.3059 0.3009 0.3020 -0.004** (-2.14)

retvol 0.0202 0.0210 0.0225 0.002*** (9.24)

roaq 0.0172 0.0174 0.0205 0.003*** (5.81)

roavol 0.0128 0.0141 0.0163 0.003*** (14.97)

roeq 0.0419 0.0403 0.0409 -0.001 (-0.96)

roic 0.1157 0.1173 0.1326 0.017*** (4.23)

rsup 0.0235 0.0248 0.0235 -0.000 (-0.02)

salecash 42.7258 43.8062 35.4452 -7.281*** (-6.05)

saleinv 28.4203 28.2467 27.2056 -1.215** (-2.44)

salerec 10.8051 11.5833 10.9149 0.110 (0.75)

secured 0.2129 0.2552 0.2965 0.083*** (9.45)

securedind 0.3814 0.3997 0.4200 0.039*** (6.22)

sfe 0.0556 0.0495 0.0418 -0.014*** (-9.54)

sgr 0.1568 0.1759 0.2077 0.051*** (8.76)

sin 0.0146 0.0145 0.0100 -0.005*** (-8.71)

sp 1.2442 1.2233 0.9085 -0.336*** (-7.17)

std dolvol 0.4971 0.5242 0.5492 0.052*** (13.41)

std turn 3.4764 3.8437 4.3445 0.868*** (10.26)

stdcf 1.6649 2.0204 3.1414 1.477*** (4.70)

sue 0.0287 0.0318 0.0287 0.000 (0.00)

tang 0.4885 0.4931 0.5035 0.015*** (6.59)

tb 0.1218 0.1267 0.1681 0.046*** (2.71)

turn 1.3246 1.4065 1.5439 0.219*** (7.70)

zerotrade 0.0210 0.0405 0.0373 0.016*** (4.48)

Fund characteristics

logtna 5.0724 5.5085 6.7391 1.667*** (13.57)

logage 2.4772 2.4586 2.3415 -0.136** (-2.02)

logtna family 7.8417 8.5416 10.4485 2.607*** (19.02)

turn ratio 79.1506 78.9171 74.1319 -5.019 (-1.31)

flow pct 0.4425 0.8094 1.7110 1.269*** (5.87)

exp ratio 1.1863 1.1255 1.0088 -0.178*** (-11.15)
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Table 4.2 (cont’d): Mutual fund characteristics based on HT test

Variable Neg. Alpha Zero Alpha Pos. Alpha Pos.−Neg. t-stat

(Number of funds) (352) (2,262) (36)

Fund characteristics

logtna 5.0724 5.5085 6.7391 1.667*** (13.57)

logage 2.4772 2.4586 2.3415 -0.136** (-2.02)

logtna family 7.8417 8.5416 10.4485 2.607*** (19.02)

turn ratio 79.1506 78.9171 74.1319 -5.019 (-1.31)

flow pct 0.4425 0.8094 1.7110 1.269*** (5.87)

exp ratio 1.1863 1.1255 1.0088 -0.178*** (-11.15)

Performance/Active management measures

rsq 0.9156 0.8752 0.8697 -0.046*** (-9.63)

idiovolm 0.0130 0.0167 0.0185 0.005*** (13.89)

retgap -0.0902 -0.0331 0.0090 0.099*** (4.43)

active share 0.7875 0.8471 0.8982 0.111*** (26.24)

aw 0.8387 0.8460 0.9171 0.078*** (11.90)

hrex 0.6550 0.8107 1.1255 0.471*** (6.40)
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Appendix

This Appendix contains theoretical derivations, simulation results, and empirical results

that supplement those in the paper. Section 4.A collects the proofs of all theorems. Section

4.B provides a simulation study to confirm the problems of the extant bootstrap methods.

It also demonstrates the good finite-sample size and power properties of the new test and

the accuracy of the sequential fund selection procedure. Section 4.C provides a description

of the data and presents additional results for the empirical applications in the paper.
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Appendix 4.A Theoretical Derivations

Throughout, Theorem 4.* and equation (4.*) refer to the corresponding ones in the main

paper.

4.A.1 Proofs of Theorems 4.1–4.3

Proof of Theorem 4.1. Define

µi,0 = P (t̂bi(0) ≤ t̂([pN ])(0)|{Yi,t,Xt}), µ0 =
1

N

N∑
i=1

µi,0, σ2
0 =

1

N

N∑
i=1

µi,0(1− µi,0),

and write

P
(
t̂b([pN ])(0) ≤ t̂([pN ])(0)|{Yi,t,Xt}

)
= P

(
N∑
i=1

I
(
t̂bi(0) ≤ t̂([pN ])(0)

)
≥ [pN ]|{Yi,t,Xt}

)

= P

(
√
N
N−1

∑N
i=1

(
I(t̂bi(0) ≤ t̂([pN ])(0))− µi,0

)
σ0

≥
√
N

[pN ]/N − µ0

σ0

|{Yi,t,Xt}

)
.

Throughout, {Yi,t,Xt} denotes the set {Yi,t,Xt : t = ti + 1, . . . , ti + Ti, i = 1, . . . , N}.

Conditional on {Yi,t,Xt}, {I(t̂bi(0) ≤ t̂([pN ])(0)) − µi,0}Ni=1 is a sequence of independent but

nonidentically distributed bounded random variables with zero means. Hence, it follows

from the Central Limit Theorem for martingale differences (see Theorem 3.2 of Hall and

Heyde, 1980) that, as N →∞,

P
(
t̂b([pN ])(0) ≤ t̂([pN ])(0)|{Yi,t,Xt}

)
= 1− Φ

(√
N

[pN ]/N − µ0

σ0

)
+ oP (1). (4.A.1)
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Similarly, conditional on {Xt},

P
(√

N(t̂([pN ])(0)−Qp) ≤ x|{Xt}
)

=P

( N∑
i=1

I
(
t̂i(0) ≤ Qp +

x√
N

)
≥ [pN ]|{Xt}

)

=P

(√
N
N−1

∑N
i=1

(
I(t̂i(0) ≤ Qp + x√

N
)− P (t̂i(0) ≤ Qp + x√

N
|{Xt})

)√
p(1− p)

≥
√
N
N−1([pN ]−

∑N
i=1 P (t̂i(0) ≤ Qp + x√

N
|{Xt}))√

p(1− p)
|{Xt}

)
.

Using (4.5) and the Central Limit Theorem for martingale differences as before, we have

P
(√
N(t̂([pN ])(0)−Qp) ≤ x|{Xt}

)
=P

(√
N
N−1

∑N
i=1

(
I(t̂i(0) ≤ Qp + x√

N
)− P (t̂i(0) ≤ Qp + x√

N
|{Xt})

)√
p(1− p)

≥ 1√
N

[pN ]−NΦ(Qp + x√
N

)− φ(Qp)
∑N

i=1 T
−1/2
i qi,1,x(Qp)− φ(Qp)

∑N
i=1 T

−1
i qi,2,x(Qp)√

p(1− p)
|{Xt}

)

=1− Φ

(−φ(Qp)x− φ(Qp)
1√
N

∑N
i=1 T

−1/2
i qi,1,x(Qp)− φ(Qp)

1√
N

∑N
i=1 T

−1
i qi,2,x(Qp)√

p(1− p)

)
+ oP (1)

=Φ

(
φ(Qp)√
p(1− p)

{
x+

1√
N

N∑
i=1

T
−1/2
i qi,1,x(Qp) +

1√
N

N∑
i=1

T−1
i qi,2,x(Qp)

})
+ oP (1),

implying that

P

(
φ(Qp)√
p(1− p)

AN1 ≤ x|{Xt}
)

= Φ(x) + oP (1) (4.A.2)

and

t̂([pN ])(0)−Qp = − 1

N

N∑
i=1

T
−1/2
i qi,1,x(Qp){1 + op(1)}+OP (N−1/2). (4.A.3)
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By (4.6), (4.A.3), and Taylor expansion, we have

µi,0 = P
(
t̂bi(0) ≤ t̂([pN ])(0)|{Yi,t,Xt}

)
= Φ(t̂([pN ])(0)) + T

−1/2
i φ(t̂([pN ])(0))q̂i,1,x(t̂([pN ])(0)) + T−1

i φ(t̂([pN ])(0))q̂i,2,x(t̂([pN ])(0)) +OP (T
−3/2
i )

= p+ φ(Qp)(t̂([pN ])(0)−Qp)−
1

2
Qpφ(Qp)(t̂([pN ])(0)−Qp)2 + oP

(
{ 1

N

N∑
i=1

T
−1/2
i }2

)
+ oP (N−1)

+ T
−1/2
i φ(Qp)q̂i,1,x(Qp) + T

−1/2
i φ(Qp)(q̂

′
i,1,x(Qp)−Qpq̂i,1,x(Qp))(t̂([pN ])(0)−Qp)

+ T−1
i φ(Qp)q̂i,2,x(Qp) + oP (T−1

i )

= p+ φ(Qp)(t̂([pN ])(0)−Qp)−
1

2
Qpφ(Qp){

1

N

N∑
i=1

T
−1/2
i qi,1,x(Qp)}2 + φ(Qp)T

−1/2
i qi,1,x(Qp)

+ φ(Qp)T
−1
i

√
Ti(q̂i,1,x(Qp)− qi,1,x(Qp)) +Qpφ(Qp)T

−1/2
i qi,1,x(Qp){

1

N

N∑
i=1

T
−1/2
i qi,1,x(Qp)}

− φ(Qp)T
−1/2
i q′i,1,x(Qp){

1

N

N∑
i=1

T
−1/2
i qi,1,x(Qp)}+ φ(Qp)T

−1
i qi,2,x(Qp)

+ oP (T
−1/2
i

1

N

N∑
i=1

T
−1/2
i ) + oP (T−1

i ) + oP
(
{ 1

N

N∑
i=1

T
−1/2
i }2

)
+ oP (N−1), (4.A.4)

which implies that

σ2
0 = p(1− p) + oP (1). (4.A.5)
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Plugging (4.A.4) and (4.A.5) into (4.A.1), we have

P
(
t̂b([pN ])(0) ≤ t̂([pN ])(0)|{Yi,t,Xt}

)
=Φ

(√
N
µ0 − [pN ]/N

σ0

)
+ oP (1)

=Φ

(
φ(Qp)√
p(1− p)

[√
N(t̂([pN ])(0)−Qp) +

1√
N

N∑
i=1

T
−1/2
i qi,1,x(Qp) +

1√
N

N∑
i=1

T−1
i qi,2,x(Qp)

+
1√
N

N∑
i=1

T−1
i

√
Ti(q̂i,1,x(Qp)− qi,1,x(Qp))

+
1

2
Qp
√
N{ 1

N

N∑
i=1

T
−1/2
i qi,1,x(Qp)}2 −

√
N{ 1

N

N∑
i=1

T
−1/2
i q′i,1,x(Qp)}{

1

N

N∑
i=1

T
−1/2
i qi,1,x(Qp)}

])
+ oP (1)

=Φ

(
φ(Qp)√
p(1− p)

(AN1 +AN2 +AN3)

)
+ oP (1). (4.A.6)

Conditional on {Yi,t,Xt}, because {I(t̂b([pN ])(0) ≤ t̂([pN ])(0))}Bb=1 is a sequence of independent

variables, it follows from the law of large numbers that

1

B

B∑
b=1

I{t̂b([pN ])(0) ≤ t̂([pN ])(0)} = P
(
t̂b([pN ])(0) ≤ t̂([pN ])(0)|{Yi,t,Xt}

)
+ oP (1), (4.A.7)

as B →∞. Thus, it follows from (4.A.6) and (4.A.7) that

P

(
1

B

B∑
b=1

I{t̂b([pN ])(0) ≤ t̂([pN ])(0)} ≤ a|{Xt}
)

=E

[
P

(
1

B

B∑
b=1

I{t̂b([pN ])(0) ≤ t̂([pN ])(0)} ≤ a|{Yi,t,Xt}
)
|{Xt}

]
(4.A.8)

=P

(
Φ

(
φ(Qp)√
p(1− p)

(AN1 + AN2 + AN3)

)
≤ a|{Xt}

)
+ oP (1),

as N →∞ and B →∞. This shows (4.7).
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(4.8) follows from the fact that

P
(
t̂([pN ])(0) ∈

[
t̂
([aB/2])
([pN ]) (0), t̂

(B−[aB/2])
([pN ]) (0)

]
|{Xt}

)
=P

(
[aB/2]/B ≤ 1

B

B∑
b=1

I{t̂b([pN ])(0) ≤ t̂([pN ])(0)} ≤ 1− [aB/2]/B|{Xt}
)

=P

(
a/2 ≤ 1

B

B∑
b=1

I{t̂b([pN ])(0) ≤ t̂([pN ])(0)} ≤ 1− a/2|{Xt}
)

=P

(
a/2 ≤ Φ

(
φ(Qp)√
p(1− p)

(AN1 + AN2 + AN3)

)
≤ 1− a/2|{Xt}

)
+ oP (1).

When limN→∞
1√
N

∑N
i=1 T

−1
i = 0 by (4.9), we have

lim
N→∞

√
N

{
1

N

N∑
i=1

T
−1/2
i

}2

≤ lim
N→∞

√
N

1

N

N∑
i=1

T−1
i = 0.

This implies AN3 = oP (1) and AN2 = OP ( 1√
N

∑N
i=1 T

−1
i ) = oP (1) conditional on {Xt}

provided that supi≥1E(ε6
i,t) <∞. Hence, (4.10) and (4.11) hold from (4.A.2). The proof of

Theorem 4.1 is complete.

Proof of Theorem 4.2. Because min1≤i≤N Ti →∞ in condition (C3), we have

lim
N→∞

1

N

N∑
i=1

T
−1/2
i = 0.

Denote AN := min{| log( 1
N

∑N
i=1 T

−1/2
i )|, N1/4}. Then,

AN →∞,
AN√
N
→ 0, and

AN
N

N∑
i=1

T
−1/2
i → 0 as N →∞. (4.A.9)
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Noting that δ̂i/δi − 1 = OP (T
−1/2
i ) and 1

N

∑N
i=1 |δi|/

√
Ti → 0, we have

P
(
AN(t̂([pN ])(0)−Qp) ≤ x|{Xt}

)
=P
( N∑
i=1

I{t̂i(αi) ≤ −δ̂i +Qp + x/AN} ≥ [pN ]|{Xt}
)

=P

(
1

N

N∑
i=1

I{t̂i(αi) ≤ Qp − δi} ≥ p|{Xt}
)

+ oP (1).

Conditional on {Xt}, because {I(t̂i(αi) ≤ Qp−δi)}Ni=1 is a sequence of independent but non-

identically distributed bounded random variables, it follows from the law of large numbers

that

1

N

N∑
i=1

I{t̂i(αi) ≤ Qp − δi}

=
1

N

N∑
i=1

{Φ(Qp − δi)− Φ(Qp)}+ Φ(Qp) + oP (1)

=− δ0 + p+ oP (1),

as N →∞. Hence, for any fixed x ∈ <,

P
(
AN(t̂([pN ])(0)−Qp) ≤ x|{Xt}

)
= I{δ0 ≤ 0}+ oP (1),

i.e.,

AN(t̂([pN ](0)−Qp)
p−→


∞, δ0 > 0

−∞, δ0 < 0

(4.A.10)
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as N → ∞. Following from the proof of (4.7) of Theorem 4.1, using (4.A.9) and (4.A.10),

we have

P
(
S(p) ≤ a|{Xt}

)
= P

(
Φ

(
φ(Qp)√
p(1− p)

(√
N(t̂([pN ])(0)−Qp) +

1√
N

N∑
i=1

T
−1/2
i qi,1,x(Qp)

))
≤ a|{Xt}

)
+ oP (1)

= P

(
Φ

(
φ(Qp)√
p(1− p)

√
N

AN

(
AN (t̂([pN ])(0)−Qp) +

AN
N

N∑
i=1

T
−1/2
i qi,1,x(Qp)

))
≤ a|{Xt}

)
+ oP (1)

= I
(
δ0 < 0

)
+ oP (1).

Hence, Theorem 4.2 follows.

Proof of Theorem 4.3. Using (4.10), condition (C6), and similar arguments in the proof of

Theorem 4.1, we have

P
(
t̂b([pN ])(0) ≤ t̂([pN ])(0)|{Yi,t,Xt}

)
= Φ

(
φ(Qp)√
p(1−p)

(√
N(t̂([pN ])(0)−Qp) + 1√

N

∑N
i=1 T

−1/2
i qi,1,x(Qp)

))
+ oP (1)

(4.A.11)

and

P
( N∑
i=1

I(t̂i(αi) ≤ Qp − δi +
x√
N

) ≥ [pN ]|{Xt}
)

=P

(
1√
N

N∑
i=1

{
I(t̂i(αi) ≤ Qp − δi +

x√
N

)− Φ(Qp − δi +
x√
N

)− T−1/2
i φ(Qp)qi,1,x(Qp)

}
≥ 1√

N

{
[pN ]−

N∑
i=1

Φ(Qp − δi +
x√
N

)− φ(Qp)
N∑
i=1

T
−1/2
i qi,1,x(Qp)

}
|{Xt}

)

=1− Φ

(
1√

p(1− p)N
{

[pN ]−
N∑
i=1

Φ(Qp − δi +
x√
N

)− φ(Qp)
N∑
i=1

T
−1/2
i qi,1,x(Qp)

})
+ oP (1)

=1− Φ

(
1√

p(1− p)
{
− xφ(Qp)−

√
N∆N(Qp)− φ(Qp)

1√
N

N∑
i=1

T
−1/2
i qi,1,x(Qp)

})
+ oP (1)

=Φ

(
φ(Qp)√
p(1− p)

{
x+

1√
N

N∑
i=1

T
−1/2
i qi,1,x(Qp) +

√
N∆N(Qp)

φ(Qp)

})
+ oP (1). (4.A.12)
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Because δ̂i/δi − 1 = OP (T
−1/2
i ) and 1√

N

∑n
i=1 |δi|/

√
Ti → 0, we have

1√
N

N∑
i=1

{
I(t̂i(αi) ≤ Qp − δ̂i + x/

√
N)− I(t̂i(αi) ≤ Qp − δi + x/

√
N)
}

= oP (1). (4.A.13)

It follows from (4.A.12) and (4.A.13) that

P
(√

N(t̂([pN ])(0)−Qp) ≤ x|{Xt}
)

=P
( N∑
i=1

I(t̂i(αi) ≤ Qp − δ̂i +
x√
N

) ≥ [pN ]|{Xt}
)

=Φ

(
φ(Qp)√
p(1− p)

{
x+

1√
N

N∑
i=1

T
−1/2
i qi,1,x(Qp) +

√
N∆N(Qp)

φ(Qp)

})
+ oP (1), (4.A.14)

i.e., conditional on {Xt}, BN1 converges in distribution to a standard normal random vari-

able.

By (4.A.11) and (4.A.14), we have

P (S(p) ≤ z|{Xt}) = E
(
P (S(p) ≤ z|{Yi,t,Xt})|{Xt}

)
= P

(
Φ(BN1 +BN2) ≤ z|{Xt}

)
+ oP (1).

Hence the theorem follows.

4.A.2 Proofs of Theorems 4.4–4.6

Proof of Theorem 4.4. Under H0, it follows from (4.5) that

E
(
t̂2i (0)|{Xt}

)
=

∫ ∞
−∞

z2 dP (t̂i(0) ≤ z|{Xi}) =ti + 1−1

∫ ∞
−∞

s2 d{φ(s)qi,2,x(s)}+OP (T
−3/2
i )

and

E
(
(t̂2i (0)− 1)2|{Xt}

)
=

∫ ∞
−∞

(z2 − 1)2 dP (t̂i(0) ≤ z|{Xt}) =2 + oP (1).
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Conditional on {Xt}, {t̂2i (0)−E(t̂2i (0)|{Xt})}Ni=1 is a sequence of independent but noniden-

tically distributed random variables. Hence, the theorem follows from the Central Limit

Theorem for martingale differences and the above expansions.

Proof of Theorem 4.5. We can prove the theorem in the same way as Theorem 4.4 using

(4.6).

Proof of Theorem 4.6. Because t̂i(0) = t̂i(αi) + δ̂i and δ̂i/δi − 1 = OP (T
−1/2
i ), we have

E
(
t̂2i (0)|{Xt}

)
=E
(
t̂2i (αi)|{Xt}

)
+ δ2

iE
(
δ̂2
i /δ

2
i |{Xt}

)
+ 2E

(
t̂i(αi)(δ̂i − δi + δi)|{Xt}

)
=E
(
t̂2i (αi)|{Xt}

)
+ δ2

i

(
1 +OP (T

−1/2
i )

)
+ 2E

(
t̂i(αi)(δ̂i − δi)|{Xt}

)
+ 2E

(
t̂i(αi)δi|{Xt}

)
(4.A.15)

By (4.5), we obtain that
E
(
t̂2i (αi)|{Xt}

)
= ti + 1−1

∫∞
−∞ s

2 d{φ(s)qi,2,x(s)}+OP (T
−3/2
i ),

E
(
t̂i(αi)δi|{Xt}

)
= T

−1/2
i δi

∫∞
−∞ s d{φ(s)qi,1,x(s)}+OP (T

−3/2
i ).

(4.A.16)

Because

t̂i(αi) =
1√
Ti

ti+Ti∑
t=ti+1

εi,t
σ̂i

1− (Xt −X i)
′Σ−1

i X i√
1 +X

′
iΣ
−1
i X i

and

σ̂2
i − σ2

i =
1

Ti

ti+Ti∑
t=ti+1

{ε2
i,t − Eε2

i,t}+OP (T−1
i ),
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we have

E
(
t̂i(αi)(δi − δ̂i)|{Xt}

)
=E
(
t̂i(αi)

δi
σ̂i

(σ̂i − σi)|{Xt}
)

=
δi

2σ2
i

(
1 +OP (T

−1/2
i )

)
E
(
t̂i(αi)(σ̂

2
i − σ2

i )|{Xt}
)

=
δi

2σ2
i

(
1 +OP (T

−1/2
i )

){ 1√
Ti

Eε3
i,t

σi

√
1 +X

′
iΣ
−1
i X i

+OP (T−1
i )

}

=
δi√
Ti

Eε3
i,t

2σ3
i

√
1 +X

′
iΣ
−1
i X i

(
1 +OP (T

−1/2
i )

)
. (4.A.17)

Hence, it follows from (4.A.15)–(4.A.17) that

E
(
t̂2i (0)|{Xt}

)
= ti + 1−1

∫ ∞
−∞

s2 d{φ(s)qi,2,x(s)}

+
δi√
Ti

(
2

∫ ∞
−∞

s d{φ(s)qi,1,x(s)} −
Eε3

i,t

σ3
i

√
1 +X

′
iΣ
−1
i X i

)
+ δ2

i

+ oP
(
T−1
i + |δi|/

√
Ti + δ2

i

)
(4.A.18)

and

E
(
(t̂2i (0)− 1)2|{Xt}

)
= 2 + oP (1). (4.A.19)

Like the proof of Theorem 4.4, we have

P
(
HT ≤ z)|{Xt}

)
= Φ

(
z − 1√

2N

N∑
i=1

T−1
i

∫ ∞
−∞

s2 d{φ(s)qi,2,x(s)} −∆

)
+ oP (1), (4.A.20)

where

∆ =
1√
2N

N∑
i=1

{
δi√
Ti

(
2

∫ ∞
−∞

s d{φ(s)qi,1,x(s)} −
Eε3

i,t

σ3
i

√
1 +X

′
iΣ
−1
i X i

)
+ δ2

i

}
.

Because γ̂i
p−→ γi and κ̂i

p−→ κi as Ti → ∞, and Theorem 4.5 holds for any αi’s, we

have

Φ

(
HT ([aB/2]) − 1√

2N

N∑
i=1

T−1
i

∫ ∞
−∞

s2 d{φ(s)qi,2,x(s)}
)

p−→ a/2, (4.A.21)
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Φ

(
HT (B−[aB/2]) − 1√

2N

N∑
i=1

T−1
i

∫ ∞
−∞

s2 d{φ(s)qi,2,x(s)}
)

p−→ 1− a/2, (4.A.22)

as N → ∞ and B → ∞. Therefore, the theorem follows from (4.A.20), (4.A.21) and

(4.A.22).

4.A.3 Proofs of Theorems 4.7 and 4.8

Proof of Theorem 4.7. The key idea in the proof is to expand E(t̃2i ) − 1 till the term with

order 1/Ti. Before computing this expectation, we introduce some notations.

∆
(j,l)
i,t,k(θi) =

∂2

∂θi,j∂θi,l
∆i,t,k(θi), Σi,k =

1

Ti

ti+Ti∑
t=ti+1

(∆
(j,l)
i,t,k(θi))1≤j,l≤Ki ,

Σ̃i,k =
1

Ti

ti+Ti∑
t=ti+1

(∆
(j,l)
i,t,k(θ̃i))1≤j,l≤Ki ,

EΓi,k = E(Γi,k), EΓi = E(Γi), EMi = E(Mi),

Zi,k =
1√
T i

ti+Ti∑
t=ti+1

∆i,t,k(θi), Zi = (Zi,1, · · · , Zi,Ki)′,

Ri,k =
1

2
√
Ti

√
Ti(θ̃i − θi)′Σi,k

√
Ti(θ̃i − θi) = OP (1/

√
Ti), Ri = (Ri,1, · · · , Ri,Ki)

′,

DΓi = EΓ−1
i {Γi − EΓi}EΓ−1

i , D̃Γi = EΓ−1
i {Γ̃i − EΓi}EΓ−1

i .

It follows from Taylor expansion that

0 =
1√
T i

ti+Ti∑
t=ti+1

∆i,t,k(θ̃i)

= Zi,k + Γ′i,k
√
Ti(θ̃i − θi) +

1

2
√
Ti

√
Ti(θ̃i − θi)′Σi,k

√
Ti(θ̃i − θi) +OP (1/Ti),

for k = 1, . . . , Ki, implying that√
Ti(θ̃i − θi) = −Γ−1

i Zi +OP (1/
√
Ti), (4.A.23)
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and

√
Ti(θ̃i − θi)

= −Γ−1
i Zi − Γ−1

i Ri +OP (1/Ti)

= −EΓ−1
i Zi + DΓiZi − EΓ−1

i Ri +OP (1/Ti).

(4.A.24)

By (4.A.23), (4.A.24), and Taylor expansion, we expand the numerator and denominator of

t̃2i as

Tie
′
i(θ̃i − θi)(θ̃i − θi)′ei = σi +Bi + Ci (4.A.25)

and

{e′iΓ̃−1
i M̃i(Γ̃

−1
i )′ei}−1 = {σi + Ai}−1 = σ−1

i − σ−2
i Ai + 2σ−3

i A2
i +OP (1/Ti), (4.A.26)

where

σi = e′iEΓ−1
i EMi(EΓ−1

i )′ei,

Ai = −e′iD̃ΓiM̃i(Γ̃
−1
i )′ei + e′iEΓ−1

i D̃Mi(Γ̃
−1
i )′ei − e′iEΓ−1

i EMiD̃Γ
′
iei.

Bi = e′iEΓ−1
i {ZiZ

′
i − EMi}(EΓ−1

i )′ei

Ci = −2e′iEΓ−1
i Zi(DΓiZi − EΓ−1

i Ri)
′ei + e′i(DΓiZi − EΓ−1

i Ri)(DΓiZi − EΓ−1
i Ri)

′ei.

It follows from (4.A.25) and (4.A.26) that

t̃2i − 1 = σ−1
i Bi + µi + oP (1/Ti), (4.A.27)

where

µi = E{σ−1
i Ci − σ−1

i Ai − σ−2
i AiBi − σ−2

i AiCi + 2σ−2
i A2

i + 2σ−3
i A2

iBi + 2σ−3
i A2

iCi}. (4.A.28)

Some tedious calculations show

µi = O(1/Ti). (4.A.29)

Next, we write

Zi = W
(1)
i +W

(2)
i ,
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where

W
(1)
i =

1√
Ti

ti+Ti∑
t=ti+1

ζiUt
∂

∂θi
ηi,t(θi) and W

(2)
i =

1√
Ti

ti+Ti∑
t=ti+1

ei,t
∂

∂θi
ηi,t(θi).

Put

EM
(1)
i = E

{
U2
t

∂

∂θi
ηi,t(θi)

∂

∂θ′i
ηi,t(θi)

}
, EM

(2)
i = E

{
e2
i,t

∂

∂θi
ηi,t(θi)

∂

∂θ′i
ηi,t(θi)

}
,

B
(1)
i = e′iEΓ−1

i {W
(1)
i W

(1)′

i − EM
(1)
i }(EΓ−1

i )′ei,

B
(2)
i = e′iEΓ−1

i {W
(2)
i W

(2)′

i − EM
(2)
i }(EΓ−1

i )′ei

and

B
(3)
i = e′iEΓ−1

i {W
(1)
i W

(2)′

i +W
(2)
i W

(1)′

i }(EΓ−1
i )′ei.

Using condition (C9), we can show that
1√
2N

∑N
i=1 σ

−1
i B

(1)
i = OP ( 1√

N

∑N
i=1 ζ

2
i ) = oP (1),

1√
2N

∑N
i=1 σ

−1
i B

(3)
i = OP ( 1√

N

∑N
i=1 |ζi|) = oP (1).

(4.A.30)

As {σ−1
i B

(2)
i }Ni=1 is a sequence of independent but nonidentically distributed random

variables with zero mean, it follows from the Central Limit Theorem for martingale differ-

ences that

1√
2N

N∑
i=1

σ−1
i B

(2)
i

d−→ N(0, 1) as N →∞. (4.A.31)

Hence, the theorem follows from (4.A.27)–(4.A.31), and the fact that Bi = B
(1)
i + B

(2)
i +

B
(3)
i .

Proof of Theorem 4.8. Follow the same way in the proof of Theorem 4.7, we can show that

P (H̃T
∗
b ≤ z|{Yi,t,Xt}) = Φ

(
z − 1√

2N

N∑
i=1

µ̃i

)
+ oP (1),

where µ̃i is an estimate of µi and
∑N

i=1 µ̃i/
∑N

i=1 µi
p−→ 1. Hence, the theorem follows.
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Appendix 4.B Simulation Studies

In this section, we first provide simulation evidence to support our theoretical results of the

Kosowski et al. (2006) method and our arguments for the Fama and French (2010) method.

We then investigate the finite sample performance of the proposed bootstrap Hotelling’s

T -squared test. We calibrate simulation parameters to match the empirical quantities in

the data set of actively-managed U.S. domestic equity mutual funds from January 1980 to

December 2018; see Section 4.C of this Appendix for a detailed description of the data. All

simulations are based on the Carhart (1997) four-factor model. Factor returns and alphas

are in percentage per month.

4.B.1 Empirical Size and Power of Existing Bootstrap Tests

Empirical size

Simulation setup. We draw random samples of zero-alpha fund returns from the following

four-factor model:

Yi,t = βi1X1,t + . . .+ βi4X4,t + εi,t, t = 1, . . . , Ti, i = 1, . . . , N.

Fund betas {βi,1, . . . , βi,4}Ni=1 are the regression estimates from real data. Factor returns

{X1,t}, {X2,t}, {X3,t}, and {X4,t} are mutually independent sequences with normal distribu-

tions N (0.642, 4.4062), N (0.094, 3.0002), N (0.255, 2.9272), N (0.583, 4.4602), respectively.

The means and standard deviations of the simulated factors are matched to the correspond-

ing empirical quantities of the market, size, book-to-market, and momentum factors. To

better appreciate the effect of small sample sizes, we simulate three different panels of mu-

tual fund data: (i) balanced panel with N = 500 and T1 = . . . = TN = T = 60, 200, 468;1 (ii)

balanced panel with N = 2650, the number of funds in the data, and T1 = . . . = TN = T =

60, 200, 468; (iii) unbalanced panel with N = 2650 and Ti matched to that in the real data.

To examine the effect of skewness of fund residuals, we draw εi,t independently and identically

1The fund betas in this case are a random draw of 500 estimated betas and kept fixed throughout.
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from either N (0, 1.6132), or standardized logN (0, 0.1002), or standardized logN (0, 0.5002).

The skewness of the three residual distributions is 0, 0.302, 1.750, representing zero, mod-

erate, and heavy skewness, respectively. Both log-normal distributions are standardized to

have a mean of 0 and a standard deviation of 1.613. Note that 1.613 is the empirical median

of residual volatility across funds. Furthermore, {Xt} and {εi,t} are independently simu-

lated. Because we are more interested in the performance of the tests for skilled funds, we

focus on the percentiles above the median: p0 = 0.60, 0.70, 0.80, 0.85, 0.90, 0.95, 0.97, 0.99.

With 1000 repetitions and B = 1000 bootstrap samples, we report the empirical size of the

KTWW and FF bootstrap tests in Tables 4.A.1–4.A.3 at the 10% significance level.

[Table 4.A.1 about here.]

[Table 4.A.2 about here.]

[Table 4.A.3 about here.]

Skewness. The size of the KTWW test is close to the nominal level for normally dis-

tributed residuals (Table 4.A.1) but is increasingly distorted when residual skewness grows

(Tables 4.A.2 and 4.A.3), especially when T is small, i.e., the effect of AN2 and AN3 in

Theorem 4.1 is significant. In general, size biases are more pronounced at more extreme

percentiles.

In contrast, results in Table 4.A.1 demonstrate that the FF bootstrap test has marked

size bias even when all residuals are normal and cross-sectionally independent, and all funds

have long track records. Panel A shows that when N = 500 is comparable to T = 468, the

size bias is appreciable, supporting our conjecture that the FF test has a biased size even

when limN→∞
1√
N

∑N
i=1 T

−1/2
i < ∞, or in this balanced case, limN→∞N/T < ∞. Panel B

shows that when N = 2650 is much larger than T = 468, the size bias becomes substantial.

The size distortion persists in unbalanced panels (Panel C). This reinforces our argument

that the FF approach is also subject to the bias due to small sample sizes and a large number

of funds. Note that in balanced panels, the practical issue of sample size mismatches between

the bootstrap and actual samples is not present for the FF approach. This confirms that
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the determinant of size distortion for this approach is not simply due to undersampling of

funds with a relatively short sample period, as advocated by Harvey and Liu (2020a,b). This

argument also applies when we study its test power.2

Cross-sectional and time-series dimensions. Comparing Panel A to Panel B in Tables

4.A.2 and 4.A.3, as the cross-sectional dimension N is increased from 500 to 2650, the

KTWW approach is more biased in size. Within either panel, the size bias is larger when

the time-series dimension T is smaller. Panel C illustrates that in unbalanced panels, the

KTWW test cannot achieve size control when fund residuals are heavily skewed. In nearly

all cases, the FF approach produces worse sizes than the KTWW approach.

In summary, the simulation evidence is well in line with our theoretical conclusion in

Theorem 4.1: the KTWW test is statistically invalid when many funds have short fund

lengths and could have large size bias when fund residuals are skewed. While initially

proposed to deal with cross-sectional dependence, the FF approach fails to deliver a test

with a correct asymptotic size under cross-sectional independence. The FF test is heavily

undersized even when all fund residuals are normal, cross-sectionally independent and have

large sample sizes.

Empirical power

Simulation setup. We draw random samples of fund returns from the following model:

Yi,t = αi + βi1X1,t + . . .+ βi4X4,t + εi,t, t = 1, . . . , Ti, i = 1, . . . , N.

We assess test power under two scenarios to illustrate the effects of negative-alpha

funds on test power: i) only funds with zero and positive alphas are present; and ii)

funds with negative, zero, and positive alphas are all present. Let π+ and π− denote

the proportions of skilled and unskilled funds, and let α+ and α− denote the alphas

of skilled and unskilled funds, respectively. In the first scenario, we simulate skilled

funds with the settings (π+, α+) = (1%, 0.35), (2%, 0.30), (20%, 0.05). In the second

2Nevertheless, fund sample size mismatches may further exacerbate the size distortion or lack of power
in its empirical application to unbalanced panels; see the discussion in Harvey and Liu (2020a,b).
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scenario, in addition to skilled funds, we simulate unskilled funds with the settings

(π−, α−) = (20%,−0.30), (20%,−0.30), (20%,−0.10). In both cases, all other funds are

zero-alpha. The alphas in the first two settings are close to the empirical averages in the

data. The rest of the settings are the same as those for test size except that all fund

residuals are drawn from N (0, 1.6132) independently. To save space, we only report results

for the unbalanced panel with N = 2650.

[Table 4.A.4 about here.]

The presence of negative-alpha funds. Table 4.A.4 illustrates how negative-alpha funds

can erode the test power. Theorem 4.2 indicates that when negative-alpha funds overwhelm

positive-alpha funds, the KTWW test could have insufficient power to detect skilled funds.

This is confirmed by Panels A and B. In each panel, when there are positive alphas but

no negative alphas (π− = 0), the KTWW method has high power to detect skilled funds

at almost all percentiles; when negative alphas are present (π− = 20%), the KTWW test

maintains power at extreme percentiles but has significantly reduced power at smaller per-

centiles. Panel C further validates Theorem 4.3 that the KTWW test power is impacted

by negative alphas when signal-to-noise ratio is low. In Panel C, the KTWW test is very

powerful if only positive-alphas funds are present with very low signal-to-noise ratio. How-

ever, as comparable proportions of unskilled funds are introduced with slightly dominating

negative alphas, the KTWW test cannot achieve high power at any percentile. In summary,

these results support our prior theory that the presence of a substantial number of unskilled

funds reduces the test power of the KTWW test for skilled funds.

In contrast, the FF test could have low power insofar as there are no negative-alpha

funds. Additionally, the FF test power is also affected by negative alphas. The low test

power of the FF approach has also been documented by Harvey and Liu (2020a,b). Note

that the simulations in these studies do not include negative-alpha funds.

The alpha (signal-to-noise ratio) and proportion of skilled funds. Focusing on the case

without negative-alpha funds (π− = 0), in Table 4.A.4, the KTWW test is powerful either
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with small π+ and large α+ (Panel A), or small α+ and large π+ (Panel C). That is, the

power is affected by both the alphas and proportions of truly skilled funds. Similar to

Andrikogiannopoulou and Papakonstantinou (2019) and Harvey and Liu (2020a,b), a full

array of simulation studies can be done by varying the alpha or the proportions of both

unskilled and skilled funds while fixing the other. As the settings in Panels A and B are

representative of the mutual fund data, we omit additional simulations to avoid clutter.

Overall, the simulation evidence presented above corroborates our theories of the

KTWW test power, which is affected in particular by the presence of negative-alpha funds.

The low power together with large size bias of the FF test should serve as a caution for

applying this approach to performance evaluation of mutual funds.

Impact of cross-sectional dependence on empirical size

Given the empirical importance of cross-sectional dependence in fund returns, we briefly

illustrate how it affects the size of the two bootstrap tests. This would also alleviate concerns

regarding the size distortion of the FF test as all preceding simulations assume cross-sectional

independence.

We simulate cross-sectionally dependent fund residuals based on Equation (4.17)

without serial correlation: εi,t = ζiUt + ei,t. We consider two specifications: i) all fund

residuals are cross-sectionally weakly dependent: ζi = 0.1 for i = 1, . . . , N ; ii) a small

fraction of funds are cross-sectionally relatively strongly dependent: ζi = 0.4 for 5% of

funds and ζi = 0 for the rest. These two specifications are also used in the simulations

for bootstrap Hotelling’s T -squared test in Section 4.B.2. ei,t is drawn independently from

a normal distribution but when ζi 6= 0, its standard deviation is adjusted such that the

standard deviation of εi,t remains 1.613. We report the results only for the unbalanced

panel with N = 2650 and Ti the same as in the data.

[Table 4.A.5 about here.]

Table 4.A.5 shows that the size of the FF test is still considerably below the nominal level
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under the two different types of cross-sectional dependence. This is consistent with the results

in Harvey and Liu (2020b) (e.g., Table A.2.1), although our simulations are different from

theirs in that we explicitly control the level of cross-sectional dependence in the simulated

fund returns whereas they simulate fund returns by random resampling directly from the data

(after subtracting the estimated alphas). In conclusion, this simulation suggests that, quite

opposite to the common belief in the empirical finance literature, the FF approach doesn’t

seem capable of capturing arbitrary degrees of cross-sectional dependence.3 As expected,

the KTWW test has a biased size under cross-sectional dependence. It can be substantially

oversized even when the cross-sectional dependence is weak (Panel A). In contrast, as we

will show in the following section, our proposed bootstrap Hotelling’s T -squared test can

achieve size control under these two specifications of cross-sectional dependence.

4.B.2 Empirical Size and Power of Bootstrap Hotelling’s T -squared Test

Empirical size

To investigate the test size of the proposed bootstrap Hotelling’s T -squared test for zero

alpha, we simulate fund residuals εi,t based on Equation (4.17): εi,t =
∑pi

j=1 φi,jεi,t−j +

ηi,t, ηi,t = ζiUt + ei,t. As in Section 4.B.1, we draw ei,t from three distributions to study the

effects of skewness: normal, standardized logN (0, 0.1002) and standardized logN (0, 0.5002).

We generate εi,t without serial correlation (φi,j = 0 for all funds) and with serial correlation

(εi,t is an AR(1) process and φi,1 = 0.1 for all funds). The test statistics HT and H̃T are

used for these two cases, respectively. In addition, we specify three different cases of cross-

sectional dependence: i) all residuals are cross-sectionally independent; ii) all residuals are

cross-sectionally weakly dependent: ζi = 0.1 for i = 1, . . . , N ; iii) a small fraction of funds

are cross-sectionally relatively strongly dependent: ζi = 0.4 for 5% of funds and ζi = 0 for

the rest. We draw B = 1000 samples for each fund residual series and compute the size based

on the two-sided p-value and 1000 random samples. Each random sample is an unbalanced

3In further simulations unreported here, the undersizing of the FF test improves but does not vanish
under stronger cross-sectional dependence.
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panel of fund returns with N = 2650 and sample sizes Ti the same as in the data.

Panel A of Table 4.A.6 reports the empirical size at the significance level 10%. The

proposed test delivers good size control in large cross-sections with small sample sizes, even

when the fund residuals are skewed. Both test statistics are robust to weak cross-sectional

dependence, and the test statistic H̃T can accommodate serial correlations.

[Table 4.A.6 about here.]

B.2.2 Empirical power

To examine the test power for skilled funds, we simulate funds endowed with

zero and positive alphas.4 The proportion and alpha of skilled funds are (π+, α+) =

(1%, 0.35), (2%, 0.30). All other funds are zero-alpha. The remaining simulation settings

are the same as those for test size. Panels B and C of Table 4.A.6 show that, across all cases,

the new test is very powerful at detecting skilled funds even if they are scarce among the

vast population of zero-alpha funds. Skewness and serial correlations can lead to power loss,

but only to a small extent. Cross-sectional dependence doesn’t have a noticeable impact on

the test power.

In summary, contrary to existing bootstrap tests, the bootstrap Hotelling’s T -squared

test that we develop is well motivated in theory and supported by simulation evidence.

The remarkable size and power properties of the proposed test makes our test procedure

particularly viable for mutual fund performance evaluation.

Empirical accuracy of the sequential testing procedure

In this subsection, we assess the accuracy of applying the bootstrap Hotelling’s T -squared

test to select skilled funds in the sequential testing procedure. Recall that the sequential

fund selection procedure searches for a p-value threshold to first isolate a zero-alpha fund

4Because the test is two-sided, we don’t include negative-alpha funds as we did for studying existing
bootstrap tests. Including negative-alpha funds would only increase test power.
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set and then identify the skilled fund set. In practice, there exist a range of such thresholds,

and the choice of the threshold directly affects the classification accuracy. As the empiri-

cal applications use the smallest threshold, we examine the accuracy associated with this

threshold in the simulation.

The simulation settings are similar to those for studying the test power of existing

bootstrap tests except that negative-alpha funds are now present. We simulate both

cross-sectionally independent (δi = 0 for i = 1, . . . , N) and dependent (δi = 0.1 for

i = 1, . . . , N) fund returns. The true proportion of skilled funds is set as π+ = 2% or

5% with true alpha α+ taken from {0.26, 0.28, 0.30, 0.32, 0.34}. The proportion and alpha

of the unskilled funds are fixed at (π−, α−) = (20%,−0.30). For reference, the top 2%

and 5% of funds have an average four-factor alpha of 0.31 and 0.26, respectively, and the

bottom 20% of funds have an average alpha of -0.30. All simulated funds have the same

sample sizes and betas as those in the data ranked on their t-statistics. For example, the

2% skilled funds have the same Ti’s and betas as the 2% top-ranked funds based on their

t-statistics. All fund residuals follow N (0, 1.6132). The simulation is repeated 500 times for

each specification.

[Figure 4.A.1 about here.]

Figure 4.A.1 plots the average estimated proportions of skilled funds for varying alphas

of skilled funds together with the standard deviations of the estimated proportions. Panel A

shows the results for the case of cross-sectional independence, and Panel B for cross-sectional

dependence. Panel A shows that when π+ = 2%, the average estimated proportion of skilled

funds is very close to the true proportion with a slight upward bias, but the bias is mostly well

within one standard deviation. When π+ = 5%, the sequential procedure underestimates

the proportion of skilled funds with a downward bias, and it becomes increasingly accurate

for larger alpha. In Panel B, same patterns emerge for the cross-sectional dependent case

except that the standard deviation is inflated. Taken together, the bias associated with the

smallest p-value threshold is small, and the sequential procedure can identify skilled funds
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with high accuracy.

Appendix 4.C Additional Results for Empirical Appli-

cations

4.C.1 Data

Similar to Blake et al. (2017) and Harvey and Liu (2020a), we focus on actively-managed

U.S. equity mutual funds. From the Center for Research in Security Prices (CRSP) Survivor-

ship Bias Free Mutual Fund Database, we take monthly returns, monthly total net assets

(TNA), annual expense ratios, turnover ratios, and other fund characteristics for each share

class uniquely identified by “crsp fundno”. We aggregate multiple share classes based on

the unique identifier, “wficn”, provided by MFLINK1. Following Elton et al. (2001), we

exclude funds with less than $15 million in total net asset (TNA) and address the incuba-

tion bias issue following Evans (2010). We base our selection criteria on objective codes

following Kacperczyk et al. (2008). We also exclude funds with an average percentage of

common stocks lower than 80% of the total net asset. We identify index funds, ETF, and

other passive funds using their names and the CRSP index fund identifier following Busse

and Tong (2012) and Ferson and Lin (2014). Fund-level TNA is the sum of TNA across all

share classes of the fund. The fund age is the years to the date of the oldest share class in

the fund. Family TNA is the total TNA of each fund in a fund family (excluding the fund

itself). The expense ratio and turnover ratio are the corresponding TNA-weighted averages

of the expense ratios and turnover ratios across all fund share classes. We define fund flow

as the average monthly net growth in fund assets beyond capital gains and dividends.

Since we focus on actively-managed equity funds, we expect that skilled funds and

unskilled funds hold different stocks with different characteristics and different expected

returns. We first generate 93 stock characteristics from CRSP, Compustat, and I/B/E/S
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based on Green et al. (2017).5 They include all common stocks listed on NYSE, AMEX,

and NASDAQ.6 To calculate the fund level average of stock holding characteristics, we

obtain the share volume of mutual fund portfolio holdings from the Thomson Reuters

Mutual Fund Holdings database. We use the holding value as the weight and calculate

the holding value-weighted stock characteristics. We filter out funds that hold less than

ten stocks, and also exclude funds with the following Investment Objective Codes in the

Thomson Reuters Mutual Fund Holdings database: International, Municipal Bonds, Bond

and Preferred, Balanced, and Metals. Finally, we merge the CRSP Mutual Fund database

and the Thomson Reuters Mutual Fund Holdings database using the MFLINKS tables

provided by WRDS. Our sample is from January 1980 to December 2018.

[Table 4.A.7 about here.]

We also report the following performance measures and active management measures

of mutual funds.

R-Squared Statistic (rsq) in Amihud and Goyenko (2013), and Fund Idiosyncratic

Volatility (idiovolm) in Jordan and Riley (2015). We regress fund excess net return

on the Carhart (1997) four-factor model over a 36-month estimation period (with at

least 12 valid observations) and obtain the R-squared statistic from this regression. We

calculate the idiosyncratic volatility (idiovolm) based on residuals from the regression.

Return Gap (retgap) in Kacperczyk et al. (2008) is the difference between fund gross

return and holdings-based returns. We calculate the holdings-based gross portfolio

return each month as the return of the disclosed portfolio by assuming constant fund

portfolio holdings from the fund’s most recent disclosure.

Active Share (active share) in Cremers and Petajisto (2009) captures the percentage

of a manager’s portfolio that differs from its benchmark index.7 It is calculated by

5We appreciate Jeremiah Green for sharing SAS code at https://sites.google.com/site/jeremiahrgreenacctg/home.
6See Table 4.A.7 for a detailed definition of these 93 stock characteristics.
7https://activeshare.nd.edu/data/ and http://www.petajisto.net/data.html
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aggregating the absolute differences between the weight of a portfolio’s actual holdings

and the weight of its closest matching index.

Active Weight (aw) in Doshi et al. (2015) is the absolute difference between the value

weights and actual weights held by a fund, summed across its holdings.

Hypothetical Excess Return (hrex ) is the hypothetical excess return for only common

stocks in CRSP.

4.C.2 Additional Results Based on H̃T Test

In this subsection, we report the empirical results using the bootstrap Hotelling’s T-

squared test statistic H̃T , which accounts for serial correlations in fund residuals.

For the four-factor residuals of each fund, we fit an AR model without intercept and

pre-select the AR order using the auto.arima function from the R package forecast with a

maximum order of 5. Around 53% of funds do not exhibit serial correlation, 24% and 14%

of funds have an AR order of 1 and 2, respectively, and less than 10% of funds have an

order above 3. For those funds having serially correlated residuals, we estimate the four-

factor model together with the AR parameters as in Section 4.3.2 and obtain the t-statistics.

The bootstrap Hotelling’s T -squared test based on the test statistic H̃T is then applied

in the sequential fund selection procedure to select skilled funds. Figure 4.A.2 shows the

sequential test results for the zero-alpha fund set (Panel A) and the skilled fund set (Panel

B). Compared to the test results based on HT , as shown in Figure 4.2, the p-value thresholds

for zero-alpha fund sets (where the H̃T test p-value is above 0.1) become smaller. However,

Panel B shows that for p-value threholds between 0.0323 and 0.0434, the H̃T test identifies

a subset of positive-alpha funds as skilled against the corresponding zero-alpha fund sets.

Applying the smallest threshold, 1.06% of funds are declared as skilled. Therefore, the

empirical conclusion that a small subset of funds are skilled remains unchanged after taking

serial correlations in fund returns into account.

Table 4.A.8 presents the stock holding characteristics, fund characteristics and alter-
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native performance/active management measures for the fund portfolios formed by the

sequential testing procedure with H̃T . The results are very similar to those in Table 4.2.

[Figure 4.A.2 about here.]

[Table 4.A.8 about here.]



165

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Alpha

E
st

im
at

ed
 p

ro
po

rt
io

n 
of

 s
ki

lle
d 

fu
nd

s

0.26 0.28 0.30 0.32 0.34

π+ = 2%
π+ = 5%

Panel A: Cross−sectional Independence

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Alpha

E
st

im
at

ed
 p

ro
po

rt
io

n 
of

 s
ki

lle
d 

fu
nd

s

0.26 0.28 0.30 0.32 0.34

π+ = 2%
π+ = 5%

Panel B: Cross−sectional Dependence

Figure 4.A.1. Empirical accuracy of the sequential testing procedure for selecting skilled
funds.

In this figure, we plot the average estimated proportions of skilled funds for a range of
alphas. In each simulated unbalanced panel of mutual funds (N = 2650 and Ti is the
same as in the data), a small proportion (π+ = 2% or 5%) of funds have an alpha from
{0.26, 0.28, 0.30, 0.32, 0.34}, 20% of funds have an alpha of -0.30, and all other funds are zero-
alpha. The dashed line is the average estimated proportion of skilled funds when π+ = 2%,
and the dash-dotted line is the average estimated proportion when π+ = 5%. The shaded
area surrounding each line is the average proportion plus/minus its standard deviation. The
simulated fund returns are cross-sectionally independent for Panel A, and cross-sectionally
dependent for Panel B (ζi = 0.1 for all funds).
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Figure 4.A.2. Bootstrap Hotelling’s T-squared test for fund selection – H̃T test.

In this figure, we plot the p-values for the bootstrap Hotelling’s T -squared (BHT) test for a
range of p-value thresholds in the sequential fund selection procedure. The BHT test using
H̃T accounts for possible serial correlation by modeling fund residuals as AR processes and
estimating the AR processes. Panel A shows the BHT test for a zero-alpha fund set, and
Panel B shows the test for confirming a skilled fund set relative to the zero-alpha fund
set. The data sample is monthly returns from January 1980 to December 2018 for all U.S.
actively-managed equity funds with at least 60 return observations.
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Table 4.A.1. Empirical size of bootstrap tests under normal fund residuals

The table presents the empirical size of the bootstrap tests in Kosowski et al. (2006) (KTWW) and Fama

and French (2010) (FF) at the 10% significance level when fund residuals are normal. In Panels A and B,

the simulated mutual fund data are balanced panels with the number of funds N = 500, N = 2650 and the

number of time series observations T = 60, 200, 468; in Panel C, the simulated mutual fund data are an

unbalanced panel with the number of funds N = 2650 and the number of time series observations for each

fund matched to real data. Residuals of each fund are drawn independently from N (0, 1.6132).

p 0.60 0.70 0.80 0.85 0.90 0.95 0.97 0.99

Panel A: Balanced Panel, N = 500

T = 60

KTWW 0.100 0.100 0.095 0.099 0.107 0.119 0.107 0.102

FF 0.061 0.028 0.007 0.003 0.001 0.005 0.007 0.020

T = 200

KTWW 0.095 0.092 0.091 0.099 0.077 0.081 0.099 0.099

FF 0.087 0.061 0.050 0.040 0.029 0.033 0.043 0.066

T = 468

KTWW 0.098 0.107 0.104 0.105 0.115 0.105 0.104 0.086

FF 0.094 0.094 0.070 0.074 0.076 0.081 0.079 0.072

Panel B: Balanced Panel, N = 2650

T = 60

KTWW 0.108 0.096 0.104 0.098 0.082 0.085 0.076 0.058

FF 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000

T = 200

KTWW 0.101 0.091 0.111 0.110 0.115 0.101 0.095 0.091

FF 0.075 0.019 0.004 0.001 0.001 0.000 0.001 0.010

T = 468

KTWW 0.098 0.104 0.099 0.099 0.101 0.098 0.099 0.116

FF 0.086 0.054 0.025 0.025 0.016 0.014 0.019 0.030

Panel C: Unbalanced Panel, N = 2650

KTWW 0.085 0.110 0.109 0.111 0.116 0.108 0.119 0.130

FF 0.056 0.020 0.013 0.011 0.006 0.004 0.005 0.009
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Table 4.A.2. Empirical size of bootstrap tests under moderately skewed fund residuals

The table presents the empirical size of the bootstrap tests in Kosowski et al. (2006) (KTWW) and Fama

and French (2010) (FF) at the 10% significance level when fund residuals are moderately skewed. In Panels

A and B, the simulated mutual fund data are balanced panels with the number of funds N = 500, N = 2650

and the number of time series observations T = 60, 200, 468; in Panel C, the simulated mutual fund data

are an unbalanced panel with the number of funds N = 2650 and the number of time series observations

for each fund matched to real data. Residuals of each fund are drawn independently from a standardized

logN (0, 0.010) distribution with a mean of 0 and a standard deviation of 1.613, so that the residual skewness

of each fund is 0.302.

p 0.60 0.70 0.80 0.85 0.90 0.95 0.97 0.99

Panel A: Balanced Panel, N = 500

T = 60

KTWW 0.090 0.100 0.100 0.106 0.100 0.090 0.084 0.094

FF 0.057 0.030 0.007 0.003 0.002 0.001 0.006 0.009

T = 200

KTWW 0.102 0.099 0.112 0.109 0.098 0.093 0.106 0.100

FF 0.085 0.073 0.049 0.043 0.039 0.045 0.052 0.061

T = 468

KTWW 0.090 0.105 0.110 0.126 0.104 0.105 0.104 0.094

FF 0.081 0.094 0.085 0.100 0.071 0.060 0.071 0.077

Panel B: Balanced Panel, N = 2650

T = 60

KTWW 0.092 0.087 0.092 0.086 0.064 0.063 0.067 0.039

FF 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000

T = 200

KTWW 0.100 0.092 0.090 0.095 0.110 0.089 0.091 0.088

FF 0.068 0.024 0.003 0.000 0.000 0.000 0.000 0.011

T = 468

KTWW 0.094 0.102 0.097 0.109 0.095 0.085 0.096 0.111

FF 0.084 0.055 0.030 0.021 0.019 0.015 0.018 0.032

Panel C: Unbalanced Panel, N = 2650

KTWW 0.090 0.080 0.085 0.090 0.099 0.095 0.102 0.093

FF 0.052 0.021 0.007 0.004 0.003 0.002 0.002 0.005
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Table 4.A.3. Empirical size of bootstrap tests under heavily skewed fund residuals

The table presents the empirical size of the bootstrap tests in Kosowski et al. (2006) (KTWW) and Fama

and French (2010) (FF) at the 10% significance level when fund residuals are heavily skewed. In Panels A

and B, the simulated mutual fund data are balanced panels with the number of funds N = 500, N = 2650

and the number of time series observations T = 60, 200, 468; in Panel C, the simulated mutual fund data

are an unbalanced panel with the number of funds N = 2650 and the number of time series observations

for each fund matched to real data. Residuals of each fund are drawn independently from a standardized

logN (0, 0.250) distribution with a mean of 0 and a standard deviation of 1.613, so that the residual skewness

of each fund is 1.750.

p 0.60 0.70 0.80 0.85 0.90 0.95 0.97 0.99

Panel A: Balanced Panel, N = 500

T = 60

KTWW 0.071 0.065 0.065 0.052 0.056 0.035 0.036 0.044

FF 0.048 0.023 0.005 0.000 0.002 0.000 0.002 0.002

T = 200

KTWW 0.097 0.109 0.086 0.070 0.092 0.067 0.071 0.061

FF 0.080 0.083 0.039 0.023 0.035 0.018 0.017 0.029

T = 468

KTWW 0.097 0.082 0.088 0.095 0.100 0.094 0.094 0.112

FF 0.091 0.076 0.073 0.070 0.062 0.062 0.065 0.086

Panel B: Balanced Panel, N = 2650

T = 60

KTWW 0.044 0.044 0.024 0.024 0.011 0.006 0.007 0.003

FF 0.017 0.001 0.000 0.000 0.000 0.000 0.000 0.000

T = 200

KTWW 0.068 0.073 0.077 0.074 0.071 0.057 0.047 0.063

FF 0.055 0.024 0.001 0.001 0.001 0.000 0.000 0.003

T = 468

KTWW 0.089 0.085 0.087 0.091 0.085 0.079 0.096 0.085

FF 0.078 0.050 0.026 0.020 0.011 0.009 0.011 0.024

Panel C: Unbalanced Panel, N = 2650

KTWW 0.079 0.071 0.075 0.068 0.067 0.061 0.056 0.062

FF 0.061 0.022 0.006 0.008 0.003 0.000 0.000 0.000
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Table 4.A.4. Empirical power of existing bootstrap tests

The table presents the empirical power of the bootstrap tests in Kosowski et al. (2006) (KTWW) and Fama

and French (2010) (FF) at the 10% significance level. π+ and π− denote the proportions of skilled and

unskilled funds, respectively. α+ and α− denote the alphas of skilled and unskilled funds, respectively. The

simulated mutual fund data are an unbalanced panel with the number of funds N = 2650 and the number of

time series observations for each fund matched to real data. Residuals of each fund are drawn independently

from a normal distribution with a mean of 0 and a standard deviation of 1.613.

p 0.60 0.70 0.80 0.85 0.90 0.95 0.97 0.99

Panel A: π+ = 1%, α+ = 0.35

π− = 0

KTWW 0.250 0.302 0.383 0.453 0.533 0.729 0.844 0.986

FF 0.182 0.112 0.077 0.059 0.058 0.136 0.293 0.861

π− = 20%, α− = −0.30

KTWW 0.000 0.000 0.000 0.000 0.000 0.054 0.290 0.918

FF 0.000 0.000 0.000 0.000 0.000 0.000 0.029 0.665

Panel B: π+ = 2%, α+ = 0.30

π− = 0

KTWW 0.480 0.554 0.691 0.806 0.902 0.983 0.998 1.000

FF 0.387 0.323 0.280 0.283 0.375 0.672 0.892 0.997

π− = 20%, α− = −0.30

KTWW 0.000 0.000 0.000 0.002 0.026 0.579 0.934 1.000

FF 0.000 0.000 0.000 0.000 0.000 0.072 0.462 0.994

Panel C: π+ = 20%, α+ = 0.05

π− = 0

KTWW 0.944 0.980 0.997 1.000 1.000 1.000 1.000 1.000

FF 0.914 0.916 0.934 0.941 0.966 0.996 0.999 1.000

π− = 20%, α− = −0.10

KTWW 0.010 0.062 0.216 0.337 0.433 0.528 0.529 0.456

FF 0.005 0.013 0.025 0.030 0.038 0.057 0.059 0.097
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Table 4.A.5. Empirical size of existing bootstrap tests under cross-sectional dependence

The table presents the empirical size of the bootstrap tests in Kosowski et al. (2006) (KTWW) and Fama

and French (2010) (FF) at the 10% significance level in two different cases of cross-sectional dependence

in fund residuals. Fund residuals are simulated using εi,t = ζiUt + ei,t. In Panel A, all funds are cross-

sectionally weakly dependent by setting ζi = 0.1 for i = 1, . . . , N . In Panel B, a small fraction of funds are

cross-sectionally relatively strongly dependent by setting ζi = 0.4 for 5% of funds and ζi = 0 for the rest. Ut

is drawn from N (0, 1) and ei,t is drawn independently from a zero-mean normal distribution. The standard

deviation of εi,t is fixed at 1.613 by adjusting the standard deviation of ei,t. The simulated mutual fund data

are an unbalanced panel with the number of funds N = 2650 and the sample size for each fund matched to

real data.

p 0.60 0.70 0.80 0.85 0.90 0.95 0.97 0.99

Panel A: ζi = 0.1 for All Funds

KTWW 0.279 0.284 0.263 0.234 0.212 0.218 0.185 0.128

FF 0.098 0.078 0.061 0.046 0.035 0.025 0.023 0.024

Panel B: ζi = 0.4 for 5% of Funds

KTWW 0.118 0.113 0.112 0.118 0.118 0.104 0.105 0.092

FF 0.079 0.041 0.018 0.011 0.008 0.007 0.003 0.020
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Table 4.A.6. Empirical size and power of bootstrap Hotelling’s T -squared test

The table presents the empirical size and power of the bootstrap Hotelling’s T -squared test. Fund residuals

are simulated from εi,t = φi,1εi,t−1 + ηi,t, ηi,t = ζiUt + ei,t. For HT test, φi,1 = 0 so that funds residuals

are not serially correlated. For H̃T test, φi,1 = 0.1 so that funds residuals follow an AR(1) process and are

serially correlated. CSD1, CSD2 and CSD3 refer to ζi = 0 for all funds, ζi = 0.1 for all funds and ζi = 0.4

for 5% of funds, respectively. Ut is drawn from N (0, 1). ei,t is drawn independently from a zero-mean normal

distribution (Normal), standardized logN (0, 0.010) (SLN1 ), or standardized logN (0, 0.250) (SLN2 ). For

Panel A, all funds have an alpha of zero. For Panel B and Panel C, π+ of funds have an alpha α+ and all

other funds are zero-alpha, where π+ and α+ stand for the proportion and alpha of skilled funds, respectively.

εi,t has a standard deviation of 1.613 for all funds. The simulated mutual fund data are an unbalanced panel

with the number of funds N = 2650 and the sample size for each fund matched to real data.

HT Test H̃T Test
ei,t ∼

CSD1 CSD2 CSD3 CSD1 CSD2 CSD3

Panel A: Empirical Size

Normal 0.088 0.102 0.083 0.103 0.106 0.109

SLN1 0.102 0.088 0.112 0.096 0.115 0.095

SLN2 0.098 0.117 0.105 0.100 0.118 0.102

Panel B: Empirical Power, π+ = 1%, α+ = 0.35

Normal 0.923 0.922 0.930 0.860 0.865 0.850

SLN1 0.897 0.900 0.945 0.880 0.850 0.880

SLN2 0.870 0.884 0.898 0.850 0.850 0.880

Panel C: Empirical Power, π+ = 2%, α+ = 0.30

Normal 1.000 0.989 0.995 0.995 1.000 1.000

SLN1 0.997 0.983 1.000 0.990 1.000 0.990

SLN2 0.983 0.993 0.990 0.985 0.995 0.986
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Table 4.A.7. Stock holding characteristics

The table details the definitions of acronyms for stock characteristics, which are from CRSP, Compustat,

and I/B/E/S based on Green et al. (2017). The stock characteristics are used to calculate the holding

value-weighted average of stock characteristics for each fund each month based on shares of mutual fund

portfolio holdings from the Thomson Reuters Mutual Fund Holdings database.

absacc/acc: accrual ratio and its absolute value.

aeavol: abnormal 3-day trading volume around earnings announcement day.

age: firm age based on the coverage of Compustat.

agr: total asset growth.

baspread: monthly average of relative bid-ask spread.

beta: market Beta based on weekly return of 3 years.

bm/bm ia: book to market ratio/industry adjusted book to market ratio.

cash: cash to assets.

cashdebt: cash to debt.

cashpr: cash productivity.

cfp/cfp ia: cash to market capitalization

/ industry adjusted cash to market capitalization.

chatoia: change in sales to asset (industry adjusted).

chcsho: change in shares outstanding.

chempia: change in employee number (industry adjusted).

chfeps: changes in earnings per share forecast.

chinv: change in inventory scaled by total asset.

chmom: change in 6-month cumulative return.

chpmia: change in profit margin (industry adjusted).

chtx: change in tax.

cinvest: investment.

convind: dummy for convertible bond.

currat: current ratio.

depr: depreciation to property, plant, and equipment ratio.

disp: standard deviation of earnings per share forecast.

divi/divo: dummy for dividend initiation and dummy for dividend omission.

dy: dividend to market capitalization.

ear*100: 3-day return around announcement day.

egr: book value of equity growth.

ep: earning to market capitalization.

fgr5yr: forecasted growth in 5-year earnings per share.

gma: profitability.

grcapx: capital expenditure growth.

grltnoa: long-term net operating assets growth.

herf: sales concentration of the industry where the firms are.

hire: employee growth.

idiovol: idiosyncratic standard deviation based on weekly return of 3 years.

ill*1000000: Amihud ratio.

indmom: 12-month cumulative return of the industry where the firms are.

invest: invest to asset.

ipo: dummy for new equity issue.

lev: leverage ratio.

mom1m/ mom12m/ mom36m: return of month t-1, cumulative return from month t-12 to t-1,

and cumulative return from month t-36 to t-13.

ms: financial statement score.
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Table 4.A.7 (cont’d): Stock holding characteristics

mve/ mve ia/1000: log of market capitalization

and market capitalization (industry adjusted).

nanalyst: number of analysts.

nincr: number of consecutive quarters of earnings increases

over the same quarter of last year.

operprof: operating profitability.

orgcap: organizational capital.

pchcapx ia: change in capital expenditures in percentage (industry adjusted).

pchcurrat: change in current ratio (in percentage).

pchdepr: change in depreciation ratio (in percentage).

pchgm pchsale: difference of change in gross margin and change in sales (in percentage).

pchsale pchinvt: difference of change in sales and change in inventory (in percentage).

pchsale pchrect: difference of change in sales and change in receivables (in percentage).

pchsale pchxsga: difference of change in sales (in percentage) and change in Selling,

General and Administrative Expenses (in percentage).

pchsaleinv: change in sales to inventory in percentage.

pctacc: Percentage accruals.

pricedelay: price delay.

ps: financial health score.

rd: dummy for more than 5% increase in R&D expense to total asset ratio.

rd mve/rd sale: R&D expense to market capitalization ratio

and R&D expense to sales ratio.

realestate: buildings and capitalized leases to property, plant, and equipment ratio.

retvol: standard deviation based on daily return of the month.

roaq: return on assets.

roavol: standard deviation of return on assets.

roeq: return on equity.

roic: return on invested capital.

rsup: unexpected sales to market capitalization ratio.

salecash/saleinv/salerec: sale to cash ratio, sale to inventory ratio,

and sale to account receivable ratio.

secured: total liability to secured debt ratio.

securedind: dummy for secured debt obligations.

sfe: earning forecast to price per share.

sgr: sales growth.

sin: dummy for smoke, tobacco, beer, alcohol, or gaming industry.

sp: sales to market capitalization.

std dolvol: standard deviation of daily dollar trading volume of the month.

std turn: standard deviation of daily turnover of the month.

stdcf: standard deviation of cash flows to sales.

sue*100: standardized unexpected earnings.

tang: debt capacity to firm tangibility ratio.

tb: tax income to book income ratio.

turn: turnover ratio.

zerotrade: number of zero trading days of the month.
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Table 4.A.8. Mutual fund characteristics based on H̃T test
From January 1980 to December 2018, for all U.S. actively-managed equity funds with at least 60 valid
observations, we compute alphas using the four-factor model and generate mutual fund portfolios with
significantly positive alphas, zero alphas, and negative alphas, respectively, based on the H̃T test statistic.
The AR orders for fund residuals are automatically selected with a maximum order of 5 using auto.arima
from the R package forecast. We report the time-series averages of the monthly cross-sectional means in
each portfolio and the difference in means between the two extreme portfolios. We compute t-statistics of
the differences with Newey and West (1987) correction for time-series correlation with 6 lags. The variables
include fund level stock holding characteristics (using the same variable abbreviations as in table one of
Green et al. (2017)), fund characteristics, and fund performance/active management measures. For ease of
reading, ear and sue are scaled by 100, Amihud ratio by 1000000, and mve ia by 1/1000. We take log for
the total net asset ($ million), for the age of the fund’s oldest share class (in years), and for the family total
net asset ($ million). Annual turnover and expense ratio (both in percentage point) are the value weighted
averages across all fund share classes. Fund flow (%) is the average monthly net growth in fund assets beyond
reinvested dividends and portfolio returns. Return gap is in percentage point. Active weight is scaled by
2. The hypothetical excess returns are in percentage. The variables are defined in Section 4.C.1 of this
Appendix. Statistical significance of 1, 5, and 10 percent are indicated by ***, **, and *, respectively.

Variable Neg. Alpha Zero Alpha Pos. Alpha Pos.−Neg. t-stat

(Number of funds) (286) (2,236) (28)

Holding characteristics

absacc 0.0657 0.0693 0.0758 0.010*** (12.43)

acc -0.0218 -0.0213 -0.0214 0.000 (0.31)

aeavol 0.6264 0.6793 0.7706 0.144*** (14.05)

age 17.1648 16.0537 14.6465 -2.518*** (-19.22)

agr 0.1755 0.1949 0.2346 0.059*** (10.83)

baspread 0.0264 0.0277 0.0294 0.003*** (8.71)

beta 1.0174 1.0660 1.1480 0.131*** (7.50)

bm 0.4966 0.4825 0.3797 -0.117*** (-9.05)

bm ia 31.7992 32.4697 45.6806 13.881** (2.05)

cash 0.1263 0.1349 0.1792 0.053*** (16.55)

cashdebt 0.2547 0.2661 0.3263 0.072*** (10.43)

cashpr 5.7195 6.7016 14.4123 8.693*** (10.35)

cfp 0.0757 0.0731 0.0620 -0.014*** (-4.43)

cfp ia 15.2713 15.7682 20.7236 5.452** (2.16)

chatoia -0.0076 -0.0083 -0.0130 -0.005*** (-3.03)

chcsho 0.1641 0.1686 0.2025 0.038*** (5.40)

chempia -0.1078 -0.1060 -0.0953 0.013* (1.84)

chfeps 0.0208 0.0201 0.0192 -0.002 (-0.68)

chinv 0.0108 0.0126 0.0155 0.005*** (6.03)

chmom -0.0103 -0.0050 0.0020 0.012** (2.19)

chpmia 0.2384 0.2389 0.2182 -0.020 (-0.12)

chtx 0.0019 0.0022 0.0031 0.001*** (5.74)

cinvest -0.0020 -0.0027 -0.0077 -0.006** (-2.47)

convind 0.1768 0.1817 0.1866 0.010* (1.67)

currat 2.4120 2.5441 2.7767 0.365*** (15.68)

depr 0.2105 0.2210 0.2489 0.038*** (14.56)

disp 0.0631 0.0735 0.0760 0.013*** (7.06)

divi 0.0159 0.0194 0.0254 0.010*** (8.15)

divo 0.0111 0.0146 0.0182 0.007*** (8.96)
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Table 4.A.8 (cont’d): Mutual fund characteristics based on H̃T test

Variable Neg. Alpha Zero Alpha Pos. Alpha Pos.−Neg. t-stat

(Number of funds) (286) (2,236) (28)

Holding characteristics

dy 0.0230 0.0197 0.0115 -0.012*** (-10.93)

ear 0.7286 0.7954 0.9144 0.186*** (3.59)

egr 0.1849 0.2051 0.2473 0.062*** (9.08)

ep 0.0555 0.0509 0.0415 -0.014*** (-12.28)

fgr5yr 14.2452 15.1710 16.9270 2.682*** (12.53)

gma 0.3876 0.4114 0.5051 0.117*** (13.30)

grcapx 0.5942 0.6828 0.8112 0.217*** (11.58)

grltnoa 0.0973 0.1031 0.1126 0.015*** (11.43)

herf 0.0763 0.0781 0.0779 0.002 (1.28)

hire 0.0869 0.1038 0.1372 0.050*** (11.81)

idiovol 0.0402 0.0424 0.0459 0.006*** (12.31)

ill 0.0263 0.0436 0.0495 0.023*** (3.89)

indmom 0.1644 0.1638 0.1671 0.003 (0.52)

invest 0.0798 0.0875 0.0997 0.020*** (7.21)

ipo 0.0174 0.0244 0.0315 0.014*** (8.06)

lev 1.9954 1.7218 0.8607 -1.135*** (-17.19)

mom12m 0.2380 0.2556 0.2847 0.047*** (4.34)

mom1m 0.0174 0.0196 0.0237 0.006*** (8.10)

mom36m 0.5447 0.5736 0.6464 0.102*** (5.28)

ms 4.7557 4.7282 5.1420 0.386*** (15.91)

mve 15.4597 15.1361 14.9922 -0.467*** (-20.94)

mve ia 13.3481 10.2732 9.5073 -3.841*** (-9.75)

nanalyst 18.8560 16.9063 17.3839 -1.472*** (-10.06)

nincr 1.2012 1.2380 1.3619 0.161*** (5.06)

operprof 0.9004 0.9185 1.0049 0.104*** (7.20)

orgcap 0.0081 0.0084 0.0095 0.001*** (9.54)

pchcapx ia 7.6784 7.1983 9.7775 2.099* (1.78)

pchcurrat 0.0334 0.0367 0.0354 0.002 (0.63)

pchdepr 0.0415 0.0446 0.0534 0.012*** (4.78)

pchgm pchsale 0.0084 0.0025 -0.0094 -0.018*** (-4.78)

pchsale pchinvt -0.0320 -0.0318 -0.0130 0.019*** (2.78)

pchsale pchrect -0.0301 -0.0334 -0.0316 -0.001 (-0.47)

pchsale pchxsga 0.0054 0.0086 0.0084 0.003 (1.23)

pchsaleinv 0.0930 0.0917 0.0842 -0.009 (-1.14)

pctacc -0.8380 -0.9171 -0.9065 -0.068 (-1.63)
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Table 4.A.8 (cont’d): Mutual fund characteristics based on H̃T test

Variable Neg. Alpha Zero Alpha Pos. Alpha Pos.−Neg. t-stat

(Number of funds) (286) (2,236) (28)

Holding characteristics

pricedelay 0.1057 0.0953 0.0900 -0.016*** (-4.38)

ps 4.8338 4.8157 4.8217 -0.012 (-0.67)

rd 0.0963 0.0952 0.0997 0.003 (1.09)

rd mve 0.0339 0.0344 0.0393 0.005*** (5.90)

rd sale 0.1117 0.1196 0.2236 0.112*** (6.18)

realestate 0.3041 0.3011 0.3052 0.001 (0.50)

retvol 0.0200 0.0210 0.0226 0.003*** (9.69)

roaq 0.0172 0.0173 0.0205 0.003*** (5.94)

roavol 0.0127 0.0141 0.0166 0.004*** (16.27)

roeq 0.0420 0.0403 0.0411 -0.001 (-0.84)

roic 0.1153 0.1172 0.1259 0.011** (2.24)

rsup 0.0225 0.0249 0.0243 0.002 (1.18)

salecash 42.4397 43.7860 35.3757 -7.064*** (-6.05)

saleinv 28.1824 28.2670 28.1341 -0.048 (-0.08)

salerec 10.6053 11.5634 11.0288 0.424** (2.38)

secured 0.2069 0.2537 0.3006 0.095*** (10.87)

securedind 0.3765 0.3995 0.4203 0.044*** (6.85)

sfe 0.0543 0.0498 0.0390 -0.015*** (-10.01)

sgr 0.1568 0.1751 0.2167 0.060*** (10.80)

sin 0.0142 0.0146 0.0083 -0.006*** (-9.72)

sp 1.2097 1.2279 0.8894 -0.320*** (-7.31)

std dolvol 0.4904 0.5240 0.5496 0.059*** (13.21)

std turn 3.4288 3.8379 4.3220 0.893*** (10.06)

stdcf 1.5950 2.0164 3.6246 2.030*** (4.60)

sue 0.0275 0.0315 0.0340 0.007 (0.45)

tang 0.4880 0.4929 0.5047 0.017*** (7.43)

tb 0.1224 0.1262 0.1794 0.057*** (3.15)

turn 1.3150 1.4054 1.5239 0.209*** (6.92)

zerotrade 0.0174 0.0401 0.0398 0.022*** (5.13)

Fund characteristics

logtna 4.9235 5.4971 6.8447 1.921*** (16.00)

logage 2.4279 2.4486 2.3842 -0.044 (-0.58)

logtna family 7.5525 8.5142 10.7384 3.186*** (22.05)

turn ratio 78.3772 79.6128 70.6058 -7.771** (-2.09)

flow pct 0.4486 0.8393 1.5823 1.134*** (5.60)

exp ratio 1.2079 1.1296 0.9998 -0.208*** (-15.33)
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Table 4.A.8 (cont’d): Mutual fund characteristics based on H̃T test

Variable Neg. Alpha Zero Alpha Pos. Alpha Pos.−Neg. t-stat

(Number of funds) (286) (2,236) (28)

Performance/Active management measures

rsq 0.9168 0.8764 0.8709 -0.046*** (-8.78)

idiovolm 0.0130 0.0167 0.0182 0.005*** (13.38)

retgap -0.1066 -0.0323 -0.0060 0.101*** (4.51)

active share 0.7785 0.8465 0.8923 0.114*** (31.02)

aw 0.8336 0.8467 0.9132 0.080*** (10.32)

hrex 0.6274 0.7791 1.1348 0.477*** (6.60)
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