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ABSTRACT 

Epidemiology of malaria and other diseases of public health importance and implications for 
interventions in high transmission settings in sub-Saharan Africa 

by 

Leah F. Moriarty 

November 11, 2020 

Infectious diseases remain a major cause of disability of death in low-resource settings. Malaria alone was 

responsible for an estimated 405,000 deaths globally in 2018, with the 94% of these deaths occurring in 

sub-Saharan Africa. In Mozambique and Democratic Republic of the Congo (DRC), communicable 

diseases, including malaria, lower respiratory infections, and neonatal disorders are among the top causes 

of disability and death. Understanding malaria and co-endemic diseases in these two countries can aid the 

planning, evaluation, and targeting of public health interventions. Additionally, studying the efficacy of 

the drugs used to treat malaria will preserve the ability for malaria cases to be treated successfully.  

The three studies in this dissertation describe the epidemiology of malaria and co-endemic diseases of 

public health importance in Mozambique and evaluate the efficacy of medicines used to treat malaria in 

DRC. The first study will describe the spatial epidemiology of malaria in two high-burden districts in 

northern Mozambique to explore the utility of exploration of local spatial heterogeneity in high-

transmission settings. The second study will investigate patterns in antibody responses to several 

infectious pathogens of public health importance in Mozambique, providing an opportunity to understand 

common predictors of infectious diseases endemic in this region. The third study will examine the 

efficacy of three artemisinin-based combination therapies used to treat uncomplicated malaria and 

molecular markers of antimalarial resistance in five sites in DRC.  

Collectively, the three studies in this dissertation describe factors that have implications for intervention 

planning and disease surveillance in areas with high malaria and other tropical disease burden and limited 

health resources. Careful consideration of transmission setting can support more efficient and higher 

quality data collection and may allow for intervention design tailored to the local realities that can target 

multiple diseases of public health importance.  
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Chapter 1: Literature review and statement of purpose 
Introduction 
Malaria 

Malaria is a disease caused by the parasite belonging to the genus Plasmodium. Five species are known 

infect humans: P. falciparum (the most common and associated with the highest mortality), P. vivax, P. 

ovale, and P. malariae, and more recently P. knowlesi 1,2. The epidemiology of P. falciparum in central 

and southern Africa is well documented3,4, and there is evidence that P. vivax, P. ovale, and P. malariae 

are also circulating5–7.  

Malaria is transmitted through the female Anopheles mosquito, of which there are 30 species are 

implicated in malaria transmission8. Malaria transmission is affected by mosquito breeding and feeding 

behavior and survival, which are affected by climatic conditions such as rainfall, altitude, and 

temperature. While Anopheles behavior is diverse, most species tend to be active at dusk2. In central and 

southern Africa, Anopheles arabiensis and funestus have been found to be common malaria vectors9,10. 

Symptoms of uncomplicated malaria are non-specific; the main symptom is fever and can also include 

chills, sweats, headaches, muscle pain, nausea, and vomiting11. Clinical symptoms of severe malaria, most 

commonly caused by P. falciparum, include impaired consciousness, respiratory distress, convulsions, 

coma, shock, pulmonary edema, bleeding, and jaundice12.  

The gold standard for the diagnosis of malaria in a clinical setting has historically been blood film 

microscopy where blood is taken from an individual who has suspected malaria, spread on a blood smear 

stained with Giemsa and read by a microscopist trained to diagnose and distinguish parasite species2. 

Malaria rapid diagnostic tests (RDTs) have increased the accessibility of malaria diagnostics to people 

without access to a healthcare structure with microscopy among its services. The RDT requires a few 

drops of capillary blood that are mixed with a lysing agent in a plastic test strip, which detects the target 

antigen in the blood, providing easily interpretable results within about 20 minutes. The RDT is widely 

used at the peripheral levels of the healthcare system, including at the community level. There are several 
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types of malaria RDTs, many of which are single species for P. falciparum and some of which are 

multispecies13. Other diagnostic tools for malaria outside the point of care setting include molecular 

methods, which are highly sensitive and can detect low density infection as well as be used to identify 

malaria species14. Evidence of recent or past exposure to malaria can be detected using serological tests, 

for which blood samples are taken and tested for a quantifiable reaction to species-specific antigens15. 

Serological studies can be helpful in a household survey setting, where the goal is to learn about how the 

population has been affected by malaria rather than how much of the population has active malaria 

infection16.  

To treat uncomplicated malaria, the World Health Organization (WHO) recommends the use of 

artemisinin-based combination therapy (ACT), a type of medication containing an artemisinin derivative, 

which works quickly to reduce initial parasitemia, and a partner drug that works to clear remaining 

parasitemia and prevent the emergence of artemisinin resistance. There are six ACTs recommended by 

WHO for the treatment of uncomplicated malaria17,18.  

Additional infectious diseases of public health importance 

Infectious diseases remain a major cause of disability of death in low-resource settings. Malaria alone was 

responsible for an estimated 405,000 deaths globally in 2018, with the 94% of these deaths occurring in 

sub-Saharan Africa4. WHO estimates that 96 million people become ill and 40,000 people die from 

Dengue infection each year19. Local transmission and periodic outbreaks of Chikungunya and Rift Valley 

Fever are reported throughout sub-Saharan Africa20,21. Lymphatic filariasis, a parasitic infection also 

transmitted by mosquitoes that can cause elephantiasis, infects an estimated 51 million people 

worldwide22.  

Despite tremendous gains in implementing childhood vaccination programs throughout sub-Saharan 

Africa, there is evidence that high coverage of basic childhood vaccinations has not reached the entire 

continent, resulting avoidable morbidity and mortality, notably among children23–25. Diarrhea also remains 
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a significant cause of disease and death, also disproportionately affecting young children. Rotavirus, 

Cryptosporidium spp., and Shigella spp., Escherichia coli, and salmonella have been found to be 

significant causes of severe diarrheal illness and death in low-income regions26,27.  

Finally, neglected tropical diseases (NTDs), a group of illnesses representing bacterial, parasitic, viral, 

and fungal etiologies associated with poverty, are significant causes of disability with debilitating 

physical, economic, and social impact on the afflicted individuals and communities28.  

Mozambique & Democratic Republic of the Congo (DRC) 

Communicable, maternal, neonatal and nutritional diseases have remained the most common cause of 

disability and death in Mozambique. Under five mortality was an estimated 73.8 per 1,000 live births as 

of 2017. In DRC, malaria, lower respiratory infections, and neonatal disorders cause the most deaths and 

disability, and under five mortality was an estimated 81.9 per 1,000 live births in 2017. Mozambique and 

DRC are among the countries with the highest rates of child mortality in the world29.  

Mozambique and DRC are among six countries worldwide that accounted for over half of all malaria 

cases in 2018. DRC accounts for 11% and Mozambique accounts for 4% of malaria deaths globally4. 

Both countries are part of a new WHO initiative called “High Burden High Impact” that seeks to reduce 

the impact of malaria in the highest burden countries. In Mozambique, malaria is responsible for 42% of 

deaths among children under five years old. All 29.7 million persons living in Mozambique are at risk for 

malaria, but the burden of disease is highest in the center and northern of the country, particularly the 

provinces of Nampula and Zambézia30,31. In DRC, malaria is responsible for 19% of deaths among 

children under five years old, and 100% of the population of 81.3 million persons is at risk for malaria, 

and the highest burden provinces include Bas-Congo, Orientale, and Kasai Oriental3.  

Review of the Literature 
Spatial epidemiology of malaria 

The method of transmission and therefore its predictors are associated with location, increasing the 

likelihood of a spatially nonrandom distribution of the malaria in endemic areas. Spatially nonrandom 
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predictors include Anopheles breeding sites and their proximity to humans, housing materials and type, 

occupation as well as environmental variables including rainfall and altitude32–36. There are several 

methods available to detect and quantify spatial autocorrelation and used to describe malaria 

epidemiology with differing assumptions, methods, and nuances. Understanding the spatial epidemiology 

of malaria using methods that are practical and interpretable will assist public health practitioners to 

design interventions targeting the most at-risk areas and people.  

The most common method used to identify clusters of infectious diseases, including malaria in a given 

area is the use of Kulldorff’s spatial scan statistic, or SatScan. This method uses geographic point data to 

detect whether the outcome of interest is distributed randomly over space and detects clusters and assigns 

statistical significance to them. The general null hypothesis is that the outcome of interest is uniformly 

distributed across space. The SatScan statistic can use one of two models: a Poisson-based model, for 

count data and a Bernoulli model for case/non-case data37. To detect clusters, an area is scanned gradually 

with a predefined circular window size for which the radius of which can be up to 50% of the area of 

interest, or by a pre-defined radius size. For malaria, researchers have chosen varying pre-defined sizes, 

many correlating with the farthest distance traveled by the Anopheles mosquito38. At each window, the 

number of observed and expected cases is calculated. Maximum likelihood estimation is used to define 

clusters, and Monte Carlo hypothesis testing is used to determine the statistical significance of each 

cluster39. Spatial scan statistics have been used widely in the context of malaria with the goal of 

identifying areas to target for malaria control efforts in high and low transmission settings with data 

collected in surveys and through routine surveillance40–44.  

B.D. Ripley’s K(r) function is another method used to assess spatial heterogeneity in epidemiology. The 

null hypothesis of the K function is a random labeling assumption, that the assignment of cases and 

controls are distributed randomly given unit location45. K(r) estimates the frequency of an event relative 

to the distance of other events in the area of interest46. Deviation from complete spatial randomness is 

determined by examining a plot of the K function by distance r and comparing it to a random Poisson 
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point process, or πr2. If there was a tendency for events to cluster in an area, the K function would be 

higher than the πr2 curve, indicating that there would be more events than expected under the assumption 

of complete spatial randomness. If there was a tendency for dispersion at a certain location, the plot of the 

K function line would be lower than the πr2 curve. Though less frequently than spatial scan statistics, the 

K function has also been used to assess spatial distribution of malaria to spatially target or assess malaria 

interventions in high and low transmission settings in Africa and Asia47–51.  

Global and local methods to answer the question “how similar are neighbors to one another?” include 

Moran’s I and the Local Indicator of Spatial Autocorrelation (LISA). These methods of detection of 

spatial autocorrelation can provide information to further investigate other similarities between defined 

geographic areas or neighborhoods that are similar to or different from one another52. While this method 

more difficult to interpret using spatial point data, it has been used to identify hot spots and cold spots of 

malaria44,53,54. Other methods of assessing spatial clustering of malaria have been used, including several 

Bayesian geostatistical modeling techniques55–58.  

 

The use of spatial methods in malaria epidemiology 

In lower transmission settings, researchers have used spatial methods to identify spatially dependent 

drivers of persistent infection in a community41. Findings from these settings often do help identify 

straightforward predictors of malaria positivity such as distance from a river or other type of vector 

breeding site that may be targeted with a vector control activity such as indoor residual spraying targeting 

those households35,42. In medium to high transmission settings, results of spatial analyses have varied, but 

have generally been on a larger scale, examining either an urban area or using spatial data to look at 

spatial distribution of malaria nationwide. One study in Mozambique found spatial heterogeneity of 

malaria in the study area that did not change based on season, and higher transmission persisted in areas 

close to a swampy area59. A study in Kampala, Uganda had similar results when examining an urban 

cohort of children where risk of malaria infection was associated with distance from a swamp43. Studies in 
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Malawi and Mali used household survey data to predict nationwide malaria prevalence, describing spatial 

heterogeneity at a large scale; authors suggested that their findings could be used to guide strategies to 

stratify interventions based on malaria burden56,58.  

 

While there have been several analyses of malaria spatial data throughout Africa, evidence regarding 

spatial distribution of malaria in high-transmission settings in southern Africa, including Mozambique 

and even more so, from the highest transmission regions, is limited57,59–62. Additionally, the foremost 

methodology for understanding malaria burden has been through periodic nationwide household surveys 

that measure parasitemia often at a regional level63. The sampling methodology of most of these national 

surveys do not allow for the assessment of spatial heterogeneity beyond the region or province, which 

limits the ability to reliably use methods to examine hotspots or explore the feasibility of targeting 

interventions at a health zone, village, or even neighborhood level, especially in lesser-populated rural 

areas. The implementation of more focused household surveys that target a region or district level and 

collect spatial point data may provide opportunities to apply spatial analysis techniques that examine 

spatial point processes.  

The use of serological tools to examine exposure to several tropical infectious diseases 

Specimens collected in household surveys have generally targeted one disease to understand prevalence 

along with questions about predictors of those specific diseases64. Examples include malaria indicator 

surveys that measure malaria prevalence with microscopy or RDT63 and AIDS indicator surveys 

measuring HIV prevalence65. Neglected tropical disease surveillance is typically based on the collection 

of blood spots, eye swabs, urine, or stool samples in periodic surveys66. These surveys and specimen 

collection can be resource intensive and require multiple specimens to be collected from the same 

populations67. 

Availability of multiplexing technology for surveillance allow for more efficient data collection, 

minimize the number of biological specimens taken from participants in surveys and research studies, and 



LF Moriarty 

16 of 107 
 

allow public health practitioners to look beyond the disease-specific descriptive epidemiology and 

interventions67,68. Additionally, within a disease, different serological markers may be used to deepen the 

epidemiologic understanding of one disease. For example for malaria, antibody response for different 

antigens will vary in duration and by number of infections69.  

Luminex-bead antibody assays allow for the analysis of antibody responses to several antigens at once 

from a single dried blood spot collected on filter paper with consistently high sensitivity and 

specificity68,70. Sample analysis using this technology has been integrated into household surveys and 

have provided valuable information about antibody prevalence of diseases of public health importance in 

several countries70–73.  

While multiplex assays have been used for sample analysis, increasing efficiency in data collection and 

sample processing, often the statistical analysis is limited to just one pathogen or group of pathogens such 

as vaccine preventable diseases, malaria, or NTDs to describe the distribution of seropositivity or assess 

the effectiveness of an intervention5,72,74–77. Literature including information about several diseases has 

generally been limited to seropositivity prevalence estimates70–73 and few have integrated survey data with 

those results to examine common risk or protective factors78. Integrating survey with biomarker data 

provides an opportunity to not only implement integrated disease surveillance and could provide evidence 

about situations and behaviors that can inform the effectiveness of integrated disease control programs.  

Antimalarial resistance 

WHO recommends the implementation of therapeutic efficacy studies (TES) at least every two years in 

malaria endemic countries to quickly identify reduced sensitivity to artemisinin-based combination 

therapies used for the treatment of uncomplicated malaria79. Early identification of waning efficacy of a 

drug may inform national malaria control program policy for malaria treatment.  

During TES, patients are enrolled and followed for a defined period, during which they are monitored for 

early treatment failures, late recurrence, or adequate clinical and parasitological response (ACPR)80. The 
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primary results of a TES include uncorrected and PCR-corrected cumulative efficacy and per-protocol 

efficacy. In malaria endemic settings in which TES are implemented, patients enrolled in the study may 

become infected with a new parasite over the study period. To generate PCR-corrected estimates, 

distinguishing new infections from recrudescent infections that indicate possible failure of the drug is 

critical, especially in high transmission settings where individuals are likely to be reinfected. There are 

molecular correction techniques available, and it is important to account for areas of high malaria 

transmission where it is also likely for individuals to have multiple malaria infections at once81. There is 

evidence that classic molecular correction techniques, such as comparisons of the genes for the merozoite 

surface proteins (msp) 1, 2, and glutamate-rich protein (glurp)80, may be subject to amplification bias and 

suppressing fragments in the case of multiple infections, increasing the likelihood to misclassify recurrent 

parasitemia as reinfections, leading to overestimations of efficacy82,83. 

Another method used for molecular correction includes the use of seven neutral microsatellite markers, 

for which fragment lengths of neutral loci are measured and compared between day 0 and day of recurrent 

parasitemia84. A Bayesian algorithm for comparison of the two samples that accounts for the baseline 

prevalence of fragment lengths was developed that assigns each late recurrence a probability of 

recrudescence, which can be used to calculate the final PCR-corrected efficacy estimates85. There is 

evidence that this approach provides unbiased classification in all transmission settings, and a simulation 

study has shown that this may especially useful in areas of higher transmission to prevent 

misclassification bias82.  

In addition to monitoring ACT efficacy, therapeutic efficacy studies may monitor molecular markers of 

antimalarial resistance among Plasmodium falciparum parasites. Specific polymorphisms in the propeller 

domain of the pfkelch13 (pfk13) gene86 have been associated with artemisinin resistance, a finding 

described in Southeast Asia87 and recently in Rwanda, the first sub-Saharan African county with 

published evidence of pfk13 mutation association with susceptibility to artemisinin88. Decreased 

susceptibility to lumefantrine and amodiaquine has been associated with polymorphisms in the gene 
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pfmdr1 and decreased susceptibility to amodiaquine has been associated with polymorphisms in the gene 

pfcrt89. 

Recent TES completed in DRC have demonstrated that the three ACTs used to treat uncomplicated 

malaria in the public and private sector, artemether lumefantrine (AL), artesunate-amodiaquine (ASAQ), 

and dihydroartemisinin piperaquine (DP) are efficacious in DRC, with per-protocol PCR-corrected 

efficacies of over 90% in studies conducted between 2015–20174,90,91.  

The results of an updated TES in DRC is needed to provide data to the DRC NMCP to make decisions 

about treatment for uncomplicated malaria as recommended by WHO. As a country representing a large 

portion of malaria cases on the continent, threats to ACT efficacy in DRC are especially important. 

Furthermore, while the Bayesian statistical algorithm has been validated for higher transmission settings, 

it has not been validated on the highest transmission settings found in areas like DRC. Further evidence 

that may be used to prevent misclassification bias in molecular correction can ensure that accurate 

estimates of therapeutic efficacy are used by decision-makers.  

Statement of purpose 
The purpose of this dissertation is to describe the epidemiology of malaria and co-endemic diseases of 

public health importance in Mozambique and evaluate the efficacy of three ACTs in DRC, which 

represent a malaria intervention critical for the reduction of disease in high transmission settings in sub-

Saharan Africa. 

In 2014, a survey was conducted in the Nampula province of Mozambique to assess the impact of a 

universal long-lasting insecticide treated net (LLIN) campaign completed the year prior. Antibody 

responses to 39 antigens representing malaria, diarrheal, respiratory, neglected tropical diseases, and 

vaccine preventable diseases were measured using a multiplex bead assay, and a malaria RDT was 

performed on all consenting survey participants. The first two studies will analyze data collected during 

this survey. The third study will analyze data collected in five sites in DRC for therapeutic efficacy 

monitoring. 
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The first study will describe the spatial epidemiology of malaria in two high-burden districts in northern 

Mozambique to explore the utility of exploration of local spatial heterogeneity in high-transmission 

settings in targeting interventions. Understanding the spatial epidemiology of malaria using methods that 

are practical and interpretable will contribute to WHO strategy and of stratifying and tailoring 

interventions according to malaria burden92 in addition to addressing the evidence of meaningful variation 

of malaria endemicity at local levels93. Furthermore, applying spatial analysis techniques to areas of high 

transmission settings will fill a gap in the literature of describing spatial variation beyond a regional or 

national level, and provide baseline information to progress overtime, with the ultimate goal of spatially 

targeting persistent reservoirs of transmission.  

The objective of the second paper is to investigate patterns in comorbidities for infectious diseases in 

Nampula Mozambique. The understanding of multiple exposures present in the population of interest can 

allow for more comprehensive understanding of the important causes of morbidity and mortality and to 

monitor the success of programs such as mass drug administration for trachoma or routine immunization 

programs71,94,95. Having the ability to examine evidence of exposure to multiple pathogens in tandem 

could provide an understanding of the epidemiology of endemic diseases, which may support the clinical 

management of illness for which there is no easy diagnosis at the peripheral levels of the health system 

and be used to improve upon integrated disease prevention and treatment programs. This study will fill 

the gaps in the literature of going beyond describing prevalence of seropositivity to multiple diseases or 

focusing on one or a group of pathogens, and examine shared patterns, risk factors, and protective factors 

between 40 diseases of public health importance in Mozambique.  

The goal the third paper is to describe the results of a study examining the therapeutic efficacy of three 

ACTs used for the treatment of uncomplicated Plasmodium falciparum malaria in five sites in DRC and 

present the prevalence of molecular markers of resistance to artemisinin derivatives and partner drugs. 

Current information about the efficacy of ACTs in DRC will support decisions about the national malaria 

treatment guidelines in DRC. Ensuring that the ACTs used in a high-burden country such as DRC will 
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prevent excess morbidity and mortality due to ineffective drugs. Additionally, understanding the 

prevalence of molecular markers of resistance in a large country may provide early warning of any drug 

resistance issues for the continent.  
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Abstract  

Background 

Mozambique has one of the highest malaria burdens in the world. Nampula province of Mozambique had 

an estimated 66% malaria prevalence as measured by RDT in 2015, second only to Zambézia, which had 

an estimated prevalence of 68%. As a “high burden high impact” country defined by the World Health 

Organization, there an emphasis on using tools such as spatial analysis methods to tailor interventions at 

more granular level to eliminate persistent reservoirs of transmission.  

Methods 

A household survey was conducted in 2014 in two districts in Mozambique’s Nampula Province: 

Mecubúri and Nacala-a-Velha. A two-staged cluster sampling technique was used to select houses and a 

questionnaire was administered to all consenting individuals present at the visit and included questions 

regarding malaria knowledge and preventive behaviors, demographic, and socioeconomic indicators. A P. 

falciparum malaria rapid diagnostic test was also administered as a measure of active or recent malaria 

infection. To investigate spatial heterogeneity of acute malaria infection, three methods were used, the 

Moran’s I statistic, B.D. Ripley’s K function, and spatial scan statistics.  

Results 

The Moran’s I test of global spatial autocorrelation provided evidence of clustering of households with 

similar proportions of household members at short distances. Another test of global spatial clustering, the 

K statistic demonstrated no evidence of difference in spatial autocorrelation between households with 

malaria cases versus households without cases. Local clustering analysis found eight statistically 

significant malaria clusters. The SatScan analysis malaria RDT positivity among children under five years 

old revealed evidence of five cold spots, one of which was statistically significant and two hotspots, none 

of which were statistically significant.  
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Conclusions 

While there was some evidence of clustering of cases or non-cases in a few instances, overall, the spatial 

distribution of malaria infection across the study area was homogeneous. The results of this analysis show 

that stratification at levels lower than a district level in regions of high malaria burden may not be 

warranted.  

Keywords: Malaria, P. falciparum, spatial analysis, Mozambique, household survey 
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Background 
Mozambique has one of the highest malaria burdens in the world, representing four percent of the world’s 

cases and four percent of malaria deaths in 2018(1). Deaths attributed to malaria represent 42 percent of 

all deaths among children under five years old, and 27 percent of deaths of people of all ages(2). Malaria 

burden in Mozambique is heterogenous, with regional parasitemia estimates measured by rapid diagnostic 

test (RDT) ranging from two percent in the capital of Maputo to 66 and 68 percent in  the northern 

provinces of Nampula and Zambézia, respectively(3).  

The strategy for malaria control, led by the national malaria control program (NMCP) in Mozambique 

includes providing access to vector control interventions such as insecticide-treated nets and Indoor 

Residual Spraying , and ensuring that malaria cases are confirmed using a parasitological test and treating 

positive tests with an appropriate antimalarial at the facility and community levels. Targeting preventive 

and care seeking behaviors with social behavior change (SBC) activities and strengthening surveillance 

and program management at all levels of the health system are also included(2).  

The World Health Organization (WHO)’s Global Technical Strategy for Malaria 2016-2030(4) calls for 

the reduction of malaria incidence by 90% by 2030. This ambitious goal will require the use of data, 

including data collected in household surveys to track progress in addition to understanding the 

epidemiology of malaria at increasingly smaller spatial scales to precisely target interventions. The WHO 

strategy includes a special focus on driving down burden in highly endemic areas such as northern 

Mozambique(5).  

The method of malaria transmission is associated with location, increasing the likelihood of a spatially 

nonrandom distribution of the malaria. Spatially nonrandom predictors include Anopheles breeding sites 

and their proximity to houses, housing materials and type, occupation as well as environmental variables 

including rainfall and altitude(6–10). There are several methods available to detect and quantify spatial 

autocorrelation and used to describe malaria epidemiology with differing assumptions, methods, and data 

availability.  
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Much of the information, including spatial data about malaria burden and its predictors come from 

household survey data, which are not usually powered to make precise estimates of spatial clustering that 

regional count data representative of an area of interest such as census or surveillance data may have the 

power to do(11,12).  Methods to assess spatial point patterns with survey data include assessment of 

global spatial autocorrelation with methods such as Moran’s I and the K function to determine the 

tendency of a variable of interest to cluster spatially, and local cluster identification techniques such as the 

local indicator of spatial autocorrelation and spatial scan statistics(11). These methods provide different 

outputs that may be triangulated to make inferences about disease patterns and spatially nonrandom 

drivers of those patterns in the absence of population-wide spatial data.  

Spatial methods have been widely used in the context of malaria in low to moderate transmission areas 

that are candidates for malaria elimination to identify reservoirs of infection that are driving most of the 

transmission in an otherwise low transmission area(9,10,13–16), but the use of these methods in high 

transmission areas to identify areas with higher or lower than average prevalence has been limited or used 

to describe or model malaria distribution at a national-scale(17–20).  

Understanding the spatial epidemiology of malaria in high transmission areas using methods that are 

practical and interpretable will contribute to WHO strategy of stratifying and tailoring interventions 

according to malaria burden at a more granular level(14). The goal of this analysis is to utilize methods 

practical for programmatic use to describe local spatial patterns of malaria in a high transmission setting 

to identify opportunities to target control activities at a local level.   

Methods 
Data collection 

A household survey was conducted in 2014 in two districts in Mozambique’s Nampula Province: 

Mecubúri and Nacala-a-Velha. Detailed methods of the data collection processes are described 

elsewhere(21). Briefly, A two-staged cluster sampling method was used to randomly select 20 clusters in 

each district and 16 houses within each cluster in 2013 prior to a mass bed net distribution campaign. The 
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2014 survey targeted the households that were included in the prior year’s survey. Every individual 

present in the household was invited to participate in a questionnaire that included indicators of household 

and individual socioeconomic and behavioral factors for which there is evidence of association with 

malaria. All respondents were asked to be administered a P. falciparum HRP2-specific RDT (SD Bioline, 

Yongin, Republic of Korea). Those who tested positive were treated according to the national case 

management guidelines(22). The longitude and latitude of each household was recorded by the survey 

enumerator using an electronic data collection tool. RDT result was used as a measure of current or recent 

parasitemia and as the main outcome variable in the analysis. Techniques to identify clusters and patterns 

of clustering were used to describe the spatial distribution in the study population. Only the 2014 results 

are included in the present analysis. 

Moran’s I 

The Moran’s I statistic measures spatial autocorrelation of a spatial variable with variation in that variable 

by neighboring areas. Global Moran’s I can be used to evaluate evidence of influence of space on a 

variable of interest(23). A positive value for Moran’s I indicates evidence of spatial clustering, or a 

tendency for observations to have values similar to their neighbors. A negative value indicates that 

observations tend to have values dissimilar to their neighbors. Values of 0 indicate no evidence of spatial 

autocorrelation. The null hypothesis under the Moran’s I test of spatial association is that that values of 

the variable of interest are randomly distributed. In its basic form the Moran’s I statistic calculation is 

below where i and j are two locations or observations; zi is the difference between the observation and its 

mean. Spatial weights are denoted by wi,j for features i and j, S is the sum of all spatial weights, and n is 

the total number of observations. Statistical significance is evaluated for the index through a z-score and a 

p-value. If there is evidence of clustering in an area, I will be positive, and if dispersed, negative, if close

to zero, then there is evidence of random distribution of that spatial attribute(11). 

𝐼𝐼 =
𝑛𝑛
𝑆𝑆0

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑧𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

∑ 𝑧𝑧𝑖𝑖2𝑛𝑛
𝑖𝑖=1
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Global Moran’s I analysis was used to evaluate clustering based on proportion of household RDT 

positivity in the study area. Households for which there are no RDT results were not included in the 

analysis. Moran’s I statistics for proportion of household members testing positive by RDT were 

calculated at 10 distances classes from the latitude and longitude of each house up to two kilometers. 

Statistical significance was defined as p<0.05.   

The Local Indicator of Spatial Autocorrelation (LISA), based on the Moran’s I statistic, is a measure of 

spatial autocorrelation that allows for analysis at the observation-level. The global Moran’s I statistic is 

simply the sum of the LISA values for all observations. A single LISA statistic provides information 

about the extent to which the value of one observation is similar to its neighbors(23).  

To investigate local clusters, weights were calculated based in Euclidian distance between households.  

Local Moran’s I statistics were calculated for each household. Statistically significant (p<0.05) clusters of 

households were defined as high proportion of RDT positivity with high neighbors, low near low 

neighbors, low near high neighbors, and high near low neighbors.  

K Function 

B.D. Ripley’s K(r) function was used to determine the spatial dependence of RDT status in the study 

area(24).  The null hypothesis of the K function is a random labeling assumption, that the assignment of 

cases and controls are distributed randomly given unit location(25). K(r) estimates the frequency of an 

event relative to the distance of other events in the area of interest and is described below; λ is the 

intensity of events in the study area(24). 

𝐾𝐾(𝑟𝑟) =  
𝐸𝐸[𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑒𝑒ℎ𝑤𝑤𝑛𝑛 𝑟𝑟 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐ℎ𝑜𝑜𝑒𝑒𝑒𝑒𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒]

𝜆𝜆
 

Deviation from complete spatial randomness is determined by examining a plot of the K function by 

distance r and comparing it to a random Poisson point process, or πr2. If there was a tendency for events 

to cluster in an area, the K function would be higher than the πr2 curve, indicating that there would be 
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more events than expected under the assumption of complete spatial randomness. If there was a tendency 

for dispersion at a certain location, the plot of the K function line would be lower than the πr2 curve. The 

random labeling assumption can be tested by examining the difference in K functions between two 

groups, in this case, RDT positive cases, and RDT negatives, or controls. If the difference in K functions 

is zero, one may conclude that there is no meaningful difference in distribution of cases and controls in 

the study area, or that there is no relationship between malaria RDT positivity and space. Significance 

testing of the K function can be calculated through a Monte Carlo test, comparing the observed point 

labels to independent N random permutations of the outcomes(26).  

Households with at least one positive RDT were defined as case households, and households with no 

RDT positives were defined as controls. The difference in the K function estimates of cases and controls 

was plotted and compared with zero to test the hypothesis that cases and controls are randomly distributed 

by distance r. Isotropic edge correction was used to estimate K(r) to account for observations near the 

border of the study area(11). Monte Carlo simulations (n=999) were used to construct bands around the 

expected value under the assumption of complete spatial randomness(26).  

Spatial scan statistic 

A common method used to identify clusters of malaria or other infectious diseases in a given area is the 

use of Kulldorff’s spatial scan statistic(27–34). This method uses geographic point data to detect whether 

the outcome of interest is distributed randomly over space and detects clusters and assigns statistical 

significance to them. To detect clusters, an area is scanned gradually with a predefined circular window 

size, representing potential clusters. At each scanning window, the number of observed and expected 

cases is calculated and tested using a likelihood ratio test, with expected number of cases representing 

random distribution of cases and controls across households. Monte Carlo hypothesis testing generating a 

permutations of observed labeling of cases across the study area is used to determine the statistical 

significance of each cluster(35).  
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For this analysis, a scanning window of 10% of the population was used with the Bernoulli model to 

compare cases to non-cases at each household. To calculate statistical significance, 999 Monte Carlo 

replications were used. A case was defined as a child under five years old in the dataset testing positive by 

RDT, a negative was a child under five years old with a negative RDT. A significance level of P=.05 was 

used to determine statistical significance(36). 

SaTScanTM software (version 9.6) was used for the spatial scan cluster analysis. R version 3.5.2 (R 

Foundation for Statistical Computing, Vienna Austria) was used for the remainder of analyses. R 

packages ggplot2(37) and spatstat(38) were used to generate figures and perform the K function 

analysis(38). 

Results 
Description of study sample 

A total of 365 households and 1282 individuals were included in the analysis, 184 households and 704 

individuals in Mecubúri and 181 households and 578 individuals in Nacala-a-Velha. There was an 

average of 3.5 persons reported in each household. Nineteen percent of the study sample was composed 

of children under five years old. 

Among persons included in the analysis, 782 (61%) tested positive for malaria by RDT, 498/704 (71%) in 

Mecubúri, and 284/578 (49%) in Nacala-a-Velha. Among children under five, 209 (78%) tested positive 

for malaria by RDT, 129/146 (88%) in Mecubúri and 90/123 (65%) in Nacala-a-Velha. The mean 

proportion of household members testing positive by RDT in the study sample was 53% (standard 

deviation 39%).  
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Figure 1.1: Location of households included in sample and malaria rapid diagnostic test (RDT) 
results in Mecúburi and Nacala-a-Velha, Nampula Province, Mozambique 

 
 
 

Table 1.1: Summary of study sample of malaria RDT positivity in two districts in Nampula 
Province, Mozambique, 2014 

  All ages Under five years old 
 Households Individualsa Positive RDT 

(%) 
Individualsa Positive RDT 

(%) 
Mecubúri 184 704 498 (71) 146 129 (88) 
Nacala-a-Velha 181 578 284 (49) 123 80 (65) 
Total 365 1282 782 (61) 269 209 (78) 

aexcluding individuals with no RDT result 

 

Moran’s I & Local Moran’s I 

All households for which RDT results were available (n=365) were included in the calculation of the 

Moran’s I statistic. Moran’s I was calculated over 10 distance classes from 0 to 2 kilometers. The distance 

classes of 0.1 km (coefficient: 0.06, p<0.01), 0.3 km (coefficient: 0.048, p<0.01). and 0.5km (coefficient: 

0.048, p=0.01) yielded statistically significant clustering with values of above 0, indicating a pattern of 
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households to be similar to their neighbors with respect to proportion of RDT-positive persons in their 

households when the neighbors are less than one half of a kilometer apart (Figure 2). 

The local analysis yielded eight instances (two percent of households) of local spatial autocorrelation; 

three (0.8%) where a household had a relatively high prevalence relative to its neighbors, three (0.8%)  

where a household had a relatively low prevalence relative to its neighbors, and two (0.5%) where a 

household and their neighbors all had lower than average prevalence.  

Figure 1.2: Moran’s I statistic for global spatial autocorrelation of proportion of household 
members testing positive for malaria by rapid diagnostic test over 10 distance classes in Nampula 
Province, Mozambique, 2014 

 
 

K Function 

In Mecubúri, there were 148 (80%) case households with at least one person testing positive, and 36 

(20%) control households where nobody tested positive. There was no evidence of a difference in K 

functions of the cases versus control households at any distance (p= 0.68).   
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In Nacala-a-Velha, there were 115 (64%) case households with at least one person testing positive, and 65 

(35%) control households, with no person testing positive. There was no evidence of a difference in K 

functions of the cases versus control households at any distance (p=0.75).  

Figure 1.3: Difference in K Functions between households with at least one positive P. falciparum 
malaria rapid diagnostic test and households with only negative P. falciparum rapid diagnostic tests 
in two districts in Nampula Province, Mozambique 

Spatial Scan statistics 

The spatial scan analysis revealed two clusters of RDT negative households in Mecubúri with including 

two households each, one of which was statistically significant (p=.00045). In Mecubúri, 2.9% of 

households were identified within one of the identified cold spots. In Nacala-a-Vela, five clusters were 

identified: two hotspots and three cold spots, none of which were statistically significant. The hotspots 

included five and six households, and the cold spots included ten, nine, and two households. In Nacala-a-

Vela, 9.7% of households were within a hotspot and 18.6% of households located within a cold spot. 
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Figure 1.4: Results of hot and cold spot analysis using spatial scan statistics in Nacala-a-Velha and 
Mecubúri, Nampula, Mozambique.  
Dots indicate households included in the survey sample for which RDT results were available for children 
under five years old. Circles indicate hot or cold spots of RDT positivity. Blue denotes cold spots, and red 
denotes hotspots.  

 

 

Table 1.2: Hotspots and coldspots of P. falciparum rapid diagnostic test identified using spatial scan 
statistics in two districts of Nampula province, Mozambique, 2014 
 

Cluster 

Number of 
households 

(individuals) 
# RDT 

positive (%) Observed/expected P-value 
Mecubúri Coldspot 1 2 (7) 1(14) 0.16 .00045a 

Coldspot 2 2(3) 1(33) 0.38 0.9165 
Nacala-a-
Velha 

Coldspot 3 8 (8) 1 (13) 0.19 0.1703 
Coldspot 4 10 (10) 2 (20) 0.31 0.2500 
Coldspot 5 2 (3) 0 (0) 0 0.8975 
Hotspot 1 6 (6) 6 (100) 1.54 0.9755 
Hotspot 2 4 (5) 5 (100) 1.54 0.9959 

aStatistically significant  

   
Discussion 
The Moran’s I test of global spatial autocorrelation provided evidence of clustering of households with 

similar proportions of household members at short distances. Another test of global spatial clustering, the 
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K statistic demonstrated no evidence of difference in spatial autocorrelation between households with 

malaria cases versus households without cases.  

Local clustering analysis yielded a handful of statistically significant instances of local spatial 

autocorrelation. The SatScan analysis malaria RDT positivity among children under five years old 

revealed evidence of five cold spots, one of which was statistically significant and two hotspots, none of 

which were statistically significant.  

This analysis shows that malaria prevalence in this district as measured by RDT, which is evidence of 

active or recent infection(39) is extremely high and homogenous among young children at the district-

level, indicating widespread high transmission intensity(40). The difference in malaria prevalence 

between the two districts shows that even in a very high-burden region, it might be worth exploring the 

between-district heterogeneity and predictive factors of these differences including ecological such as 

differences in rainfall or altitude, environmental such as access to care or other preventive or curative 

services, and cultural or normative differences that may affect preventive or care seeking behaviors.  

This analysis included the use of three methods that required the use of three different ways of measuring 

the outcome variable. The Moran’s I and LISA statistics used proportion of RDT positivity at the 

household level; The K function used a binary outcome at the household level (at least one positive case 

in a household); The spatial scan statistic used individual-level data for each location. The common thread 

across the methods was the use of RDT positivity as a measure of current or recent infection. The 

variability of these three measurements allows for triangulation of the spatial distribution of malaria 

infection in the study area, and all yielded consistent findings of spatial homogeneity of malaria infection 

in this sample. 

Intervention stratification should be informed by data regarding the epidemiologic setting and spatial 

distribution of malaria and its predictors. At very low transmission settings, there could be reason to tailor 

interventions to the very local level, especially when implementing resource-demanding programs such as 
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reactive case detection and treatment(41). While a handful of anomalous groupings of households were 

identified in this analysis, there was no obvious clustering pattern identified using any of the methods in 

this analysis. This confirms that in high-burden settings, the focus of ensuring strong coverage of malaria 

control measures including universal ITN coverage, access to case management, IPTp and behavioral 

interventions to drive down transmission should be the priority. Strong surveillance to track progress and 

identify areas that remain drivers of transmission as incidence declines is also critical. Any tailoring of 

interventions in the context of limited resources such as targeting indoor residual spraying may be 

considered at the district level.  

Limitations 
While helpful in an exploratory analysis, the survey and sampling methodologies were not originally 

designed for precise spatial analyses, therefore the number and distribution of observations may not have 

been sufficient to make meaningful conclusions about the spatial clustering patterns. Additionally, this 

analysis did not include information about covariates, especially spatially heterogeneous predictors that 

may drive hotspots. Finally, while monospecies RDTs have been deemed appropriate for use in 

Mozambique(42), there are still limitations to their use to determine the prevalence of malaria in a given 

area, given their limits of detection in the case of low parasite density which can be a common occurrence 

in areas of high endemicity(43). Additionally, the use of a P. falciparum-only test does not capture 

additional malaria species that may be circulating.  

Conclusions 
Further exploration of the spatial distribution between districts may help inform strategy for intervention 

stratification in high transmission settings. In a high transmission setting, it may be more useful to 

examine temporal variation in the spatial distribution of malaria by conducting longitudinal studies. 

Understanding the areas that may be serving as reservoirs of transmission in a period of relatively lower 

transmission may be useful in spatial targeting of interventions in high-transmission areas(14). Finally, 

spatially representative sampling and collection of more spatially dependent covariates, or the use of 

routine surveillance data would add to the precision and validity of future spatial analyses(44).  



LF Moriarty 

40 of 107 

This exploratory analysis of spatial distribution within two high-burden districts of Mozambique 

presented evidence of within-district spatial homogeneity of malaria. When considering tailoring malaria 

interventions to the epidemiology of a certain area, malaria control programs may consider tailoring to the 

district level at the lowest in high burden settings.  
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Abstract  
Communicable, maternal, neonatal and nutritional diseases have remained the most common cause of 

disability and death in Mozambique and surveillance for infectious diseases has typically been pathogen 

specific. The availability of multiplex platforms for the assessment of antibody responses to antigens of 

interest allows for the collection of information about several antigens of interest in a single specimen. In 

2014, a household survey was undertaken in Nampula Province of Mozambique. A questionnaire was 

administered to selected households and dried blood spots were collected for all consenting household 

members. Multiplex analysis was used to measure antibody responses to 39 antigens representing 

infectious diseases of public health importance. The survey data were used to calculate adjusted log-MFI 

values for each antigen. A comparison matrix to compare adjusted log-MFI values was developed using 

the Pearson correlation coefficient for each pairwise comparison. Data representing 1,156 participants 

were included in the analysis. Of 702 pairwise comparisons of adjusted log-MFI values, 684 (97%) were 

statistically significant, 460 (67%) of which had positive correlations, and 224 (33%) were negatively 

correlated. Age, sex, and district were the most common predictors of log-MFI. Multiplex assays coupled 

with cross-sectional survey data regarding practices, socioeconomic indicators, and access and use of 

healthcare services can provide insights about common predictors that may be associated with exposure to 

multiple pathogens. By understanding the epidemiology of several pathogens and their common 

predictors, public health practitioners can target common risks of exposure to diseases making more 

efficient and effective public health interventions in resource-limited settings.  
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Introduction 
Communicable, maternal, neonatal and nutritional diseases have remained the most common cause of 

disability and death in Mozambique. Under 5 mortality was an estimated 73.8 per 1,000 live births as of 

2017, making Mozambique among the countries with the highest rates of child mortality in the world1. 

Malaria is a substantial contributor to morbidity and mortality in Mozambique and is responsible for 29 

percent of all deaths and 42 percent of deaths among children under 5 years old, with the highest burden 

in the provinces of Zambézia and Nampula2. In 2017 in Mozambique, malaria was the third most 

common cause of death in all ages following HIV/AIDS and neonatal disorders3. While nationwide 

administrative childhood vaccination coverage reported to be high, there is evidence that only 65.8% of 

children received all eight basic vaccinations in 20154,5. Neglected tropical diseases remain a significant 

cause of disability throughout the country, including lymphatic filariasis, which shares a common vector 

with malaria6,7. In a 2015 nationwide survey, 11% of children under 5 reported having diarrhea in 

previous 2 weeks5; the most frequent causes of diarrhea in rural Mozambique include Rotavirus, 

Cryptosporidium sp., Shigella sp., E. coli, and adenovirus8. 

In 2010, the World Health Organization (WHO) recommended the universal use of diagnostic tests for 

before treatment to avoid indiscriminate use of antimalarials and minimize resistance, reduce costs 

associated with antimalarials, and improve treatment of persons with non-malaria fevers9. The 

accessibility of point of care diagnostic tools for malaria clinical management allows for understanding its 

epidemiology at granular levels of the health system through routine surveillance data in electronic 

surveillance systems10. Surveillance for vaccine preventable diseases, respiratory infections, and diarrheal 

diseases commonly relies on case-based surveillance or sentinel surveillance systems with strong 

laboratory capacity 8,11,12. Neglected tropical disease surveillance is typically based on the collection of 

blood spots, eye swabs, urine, or stool samples in periodic surveys13.  

The availability of multiplex platforms for the assessment of antibody responses to antigens of interest 

allows for the collection of information about several pathogens of interest in a single assay of eluate 
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from a dried blood spot, the collection of which is simple compared to other types of samples. This 

capability can allow for the understanding of multiple exposures present in the population of interest, 

allowing for more comprehensive understanding of the important causes of morbidity and mortality and 

to monitor the success of programs such as mass drug administration for trachoma or routine 

immunization programs14–16. Having the ability to examine evidence of exposure to multiple pathogens in 

tandem could provide an understanding of the epidemiology of endemic diseases, which may support the 

clinical management of illness for which there is no easy diagnosis at the peripheral levels of the health 

system and be used to improve upon integrated disease prevention and treatment programs. Moreover, 

understanding the common predictors of exposure to different infectious pathogens may inform public 

health programming that targets behaviors or circumstances that make some more vulnerable to multiple 

illnesses than others. 

In 2014, a survey was conducted in the Nampula province of Mozambique to assess the impact of a 

universal long-lasting insecticide treated net (LLIN) campaign completed the year prior. Antibody 

responses to 39 antigens representing malaria, diarrheal, respiratory, neglected tropical diseases, and 

vaccine preventable diseases were measured using a multiplex bead assay. This objective of this analysis 

is to investigate patterns in comorbidities for infectious diseases in Nampula Mozambique, a highly 

endemic for malaria and other tropical diseases.   

Methods 
Description of study area 

Nampula is a coastal province in the northeast of Mozambique and has one of the highest poverty rates in 

the country, measured at 64.9% in 2014/201517. Nampula’s economy is largely based on agriculture and 

the province is a large producer of cotton18. Among persons between 15 and 49 years old, the mean years 

of education is an estimated 4.4 years among males and 3.39 years among females19.  

In 2014, the under 5 mortality per 1,000 live births in Nampula province was estimated as 86.1, and the 

mean diarrhea prevalence among children under 5 years old was an estimated 31 per 1,000. Prevalence of 
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stunting among children under 5 was an estimated 0.43%. The coverage of the first dose of the diphtheria-

pertussis-tetanus vaccine was 93.2% and third dose was 84.9%. The estimated prevalence of P. 

falciparum infection in 2014 in Nampula was 48% among all ages. Nampula, along with Zambézia 

province have the highest prevalence of malaria among 11 provinces in Mozambique, and Nampula has 

the highest prevalence of schistosomiasis. The prevalence of HIV among persons between 15 and 49 

years old was an estimated 6.2% in 20155,19,20.  

Survey 

A household survey was conducted October-November in 2013 and 2014 in 2 districts in Mozambique’s 

Nampula Province: Mecubúri and Nacala-a-Velha. A 2-staged cluster sampling method was used to 

randomly select 20 clusters in each district, and 16 houses within each cluster were chosen in the first 

survey. In the second survey, the same households were visited with no replacement households. Every 

individual present in the household at the time of data collection was invited to participate in a 

questionnaire that included indicators of household and individual socioeconomic and behavioral factors 

for which there is evidence of association with malaria. Up to 6 10 mcL spots of capillary blood were 

collected on filter paper (TropBio, Cellabs, Sydney, Australia) in addition to administration of a P. 

falciparum HRP-2 specific rapid diagnostic test (SD Bioline, Yongin, Republic of Korea). If the RDT 

was positive, participants were treated for malaria according to the national guidelines for malaria 

treatment21. The present analysis only includes data from the second survey completed in 2014.  

Laboratory analysis 

Laboratory analysis was carried out in the malaria laboratory at the Centers for Disease Control and 

Prevention (CDC) in Atlanta, GA, USA. Details of the laboratory analysis are previously described22. 

Briefly, dried blood spots were diluted to a final dilution of 1:400 of serum and immunoglobulin G (IgG) 

antibody response to 39 antigens plus one control antigen were analyzed using a multiplex bead 

platform23. Antigens were coupled to Seromap (Luminex Corp., Austin, TX), or BioPlex COOH (BioRad, 
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Hercules, CA) beads. Consistency was ensured by including a buffer-only blank and 6 control sera and by 

duplicating runs. The 2 median fluorescence intensity (MFI) values minus the buffer-only blank value 

were used to calculate the final average MFI minus background value (MFI-bg). Antigen responses were 

repeated for samples for which there were discordant results between the 2 runs as defined by a 

coefficient of variation of more than 15%14. Antigen descriptions and coupling descriptions are described 

in Supplemental Table 2.1.  
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Table 2.1: Antigens and corresponding infectious agents measured in Mozambique household 
survey, 2014 

Antigen Infectious Agent 

Malaria 

Pvivax Plasmodium vivax 

Pfalcip Plasmodium falciparum 

Pmalar Plasmodium malariae 

Povale Plasmodium ovale 

PfCSP Plasmodium falciparum 

Pflsa1 Plasmodium falciparum 

Non-malaria mosquito-borne 

CHIKV Chikungunya 

Wb123 Lymphatic filariasis 

Bm14 Lymphatic filariasis 

Bm33 Lymphatic filariasis 

VLP3 Dengue 

RVFV Rift Valley fever 

Vaccine Preventable 

MeaslesQ Measles 

Rubella Rubella 

Dip Diphtheria 

Tet Tetanus 

Diarrheal 

Norwalk Norovirus 

Sydney Norovirus 

StCloud Norovirus 

VSP3 Giardia 

VSP5 Giardia 

SEA Schistosomiasis 

ETEC Escherichia coli 

Cholera Cholera 

SalB Salmonella 
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SalD Salmonella 

Campyp18 Campylobacter 

Campyp39 Campylobacter 

Other neglected tropical diseases 

pgp3 Trachoma 

CT694 Trachoma 

YAWSrp17 Yaws 

YawsTmpA Yaws 

T24H Cysticercosis 

SAG2 Toxoplasma 

AscHb Ascaris 

NIE Strongyloides 

Cp17 Cryptosporidium 

Cp23 Cryptosporidium 

CpP2 Cryptosporidium 

Statistical Analysis 

Only participants for whom results from the multiplex analysis were generated were included in statistical 

analyses. Density plots were generated for log-MFI values for all ages and by age category24. To generate 

adjusted log-MFI values, linear regression models built using log-MFI values for each pathogen as the 

outcome variable were built using forward and backward stepwise selection using the Akaike Information 

Criterion25. The full model included items collected during the household survey including district, 

cluster, mosquito net received during 2013 campaign, socioeconomic status category, malaria knowledge 

index score, household size, bed net ownership, sex, relationship to the head of household, malaria RDT 

result, age category, whether the sleeping space had a bed net, household distance from a health facility, 

household income type, occupation of the head of household, highest level of schooling for the head of 

household, number of sleeping spaces, and sufficient number of mosquito nets to cover sleeping spaces.  
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The adjusted log-MFI using each pathogen’s regression model for each individual in the sample was 

calculated. A comparison matrix to compare corrected log-MFI values was developed using the Pearson 

correlation coefficient for each pairwise comparison. Statistical significance was defined at α=0.01. 

Statistical analyses were carried out using R (R Foundation for Statistical Computing, Vienna Austria).  

Ethical Considerations 

The Mozambique National Bioethics Committee approved the study. Written consent was provided by 

adult participants and on behalf of child participants. CDC staff provided technical assistance in data 

collection and analysis and were considered to be non-engaged in this research by the Office of the 

Associate Director for Science, Center for Global Health.  

Results 
Data representing 1,156 participants were included in the analysis. A total of 721 participants were 

excluded due to missing data. 

Table 2.2: Characteristics of sample of household survey conducted in 2 districts of Nampula 
Mozambique, 2014 

Characteristic Mecubúri 
N = 619 

Nacala-a-Velha 
N = 537 

Age (in years) 

<5 126 (20%) 117 (22%) 

5-10 137 (22%) 114 (21%) 

10-14 56 (9.0%) 44 (8.2%) 

14-20 54 (8.7%) 32 (6.0%) 

20-30 87 (14%) 70 (13%) 

30-40 76 (12%) 53 (9.9%) 

40-90 83 (13%) 107 (20%) 

Sex 

Female 339 (55%) 289 (54%) 

Male 280 (45%) 248 (46%) 

Relationship to head of household 

Head 115 (19%) 122 (23%) 

Spouse 119 (19%) 95 (18%) 

Child 286 (46%) 232 (43%) 

Other 99 (16%) 88 (16%) 
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Malaria knowledge index score 0.24 (0.02, 0.43) 0.28 (0.13, 0.46) 

Sleeping space has an ITN 296 (48%) 394 (73%) 

Net received during campaign 330 (53%) 462 (86%) 

Household size 5 (4, 7) 5 (4, 7) 

Household socioeconomic status index   

1 - lowest 135 (22%) 94 (18%) 

2 112 (18%) 61 (11%) 

3 132 (21%) 99 (18%) 

4 90 (15%) 137 (26%) 

5 - highest 150 (24%) 146 (27%) 

Distance from closest health facility   

Less than 30 min on foot 161 (26%) 127 (24%) 

1 to 2 hours on foot 159 (26%) 138 (26%) 

30 min to 1 hour on foot 45 (7.3%) 50 (9.3%) 

More than 2 hours on foot 254 (41%) 222 (41%) 

Household income   
Salaried 27 (4.4%) 78 (15%) 

None 408 (66%) 255 (47%) 

Do not know 4 (0.6%) 49 (9.1%) 

Occasional 180 (29%) 155 (29%) 

Head of household occupation   
Farmer 544 (88%) 354 (66%) 

Manual laborer 34 (5.5%) 96 (18%) 

Other 5 (0.8%) 27 (5.0%) 

Fisherman 0 (0%) 7 (1.3%) 

Vendor 36 (5.8%) 53 (9.9%) 

Head of household school   
Primary 1 207 (33%) 251 (47%) 

Primary 2 73 (12%) 43 (8.0%) 

Middle 16 (2.6%) 21 (3.9%) 

Secondary 40 (6.5%) 21 (3.9%) 

None 276 (45%) 194 (36%) 

Do not know 7 (1.1%) 7 (1.3%) 

Number of sleeping spaces in household   
1 73 (12%) 42 (7.8%) 

2 187 (30%) 200 (37%) 



LF Moriarty 

54 of 107 

3 249 (40%) 194 (36%) 

4 67 (11%) 70 (13%) 

5 20 (3.2%) 20 (3.7%) 

6 21 (3.4%) 11 (2.0%) 

7 2 (0.3%) 0 (0%) 

Pf RDT result 

Negative 188 (30%) 272 (51%) 

Positive 431 (70%) 265 (49%) 

At least one ITN per sleeping space 174 (28%) 323 (60%) 
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Figure 2.1: Density plots of Log MFI values by antigen, Nampula Mozambique household survey, 
2014 
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Associations 
Of 702 pairwise comparisons of adjusted log-MFI values, 684 (97%) were statistically significant, 460 

(67%) of which had positive correlations, and 224 (33%) were negatively correlated. All adjusted log-

MFI values for antigens for mosquito-borne illnesses were positively correlated with one another. 

Similarly, comparisons among all mosquito-borne illnesses, including all malaria markers were positive. 

Among vaccine preventable diseases, measles was positively associated with rubella and diphtheria as 

were rubella and diphtheria. Measles was negatively associated with tetanus. There was no evidence of 

statistically significant association between tetanus and rubella and diphtheria. 

Of the 3 norovirus serotypes, Norwalk and Sydney were statistically significantly negatively associated 

with each other, as were Sydney and St. Cloud. Norwalk and St. Cloud were positively associated with 

one another. The 2 types of Giardia intestinalis antigens (VSP3 & VSP5) were positively associated, as 

were the 2 types of Salmonella sp. lipopolysaccharides (LPS B & LPS D) and 2 Campylobacte jejuni 

antigens (p18 & p39).  There were no other apparent positive or negative trends among the diarrheal 

diseases as a group. Nearly all pairwise comparisons between neglected tropical diseases were positive.  



LF Moriarty 

57 of 107 
 

Figure 2.2: Matrix of Pearson correlation coefficients and p-values of adjusted log-MFI for 40 
antigens measured using a multiplex bead assay, Nampula, Mozambique, 2014  

 
Blue denotes positive correlation 
Red denotes negative correlation 
Shade denotes strength of correlation 
Numbers in boxes denote p-values, 0 denotes p-value of <0.01 
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Predictors 

Age was the strongest predictor of seropositivity and included in the majority (97%) of the models and 

increased age was more likely to be associated with increased log-MFI than decreased.  

Sex was included in over half of the models (54%), and district, relationship to head of household, 

socioeconomic status, and distance from health facility were included in between 38 and 44% of the 

models. Presence of a net on the sleeping space was a predictor included in the fewest models (18%). 

Higher scores on the malaria knowledge index was associated with decreased odds of seropositivity for 4 

non-malaria antigens and 3 malaria antigens. Receipt of an LLIN during the recent universal coverage 

campaign was associated with decreased log-MFI values for 7 non-malaria antigens and 3 malaria 

antigens (P. ovale).  

Table 2.3: Variables included in linear regression models regressing covariates on log-MFI for 39 
antigens, Nampula, Mozambique, 2014 
Variable Number of models 

included (%) 
Risk factor (%) Protective (%) 

Age in years (ref: <5) 
5-10

38 (97) 

30 (79) 8 (21) 
10-14 29 (76) 9 (24) 
14-20 29 (76) 9 (24) 
20-30 30 (79) 8 (21) 
30-40 30 (79) 8 (21) 
40-90 30 (79) 8 (21) 

Relationship to head of household (ref: head) 

16 (41) spouse 6 (38) 10 (62) 
child 8 (50) 8 (50) 
other 9 (56) 7 (44) 

Household socioeconomic status index (ref: 1) 
2 

17 (44) 

10 (59) 7 (41) 
3 10 (59) 7 (41) 
4 12 (71) 5 (29) 
5 9 (53) 8 (47) 

Distance from closest health facility (ref: less 
than 30 min on foot) 

15 (38) 30 min to 1 hour on foot 5 (33) 10 (66) 
1 to 2 hours on foot 6 (40) 9 (60) 

More than 2 hours on foot 6 (40) 9 (60) 
Household income (ref: salaried) 

12 (31) do not know 5 (42) 7 (58) 
none 4 (33) 8 (66) 

occasional 7 (58) 5 (42) 
Head of household occupation (ref: farmer) 

15 (38) 
manual laborer 4 (27) 11 (73) 

fisherman 6 (40) 9 (60) 
vendor 3 (20) 12 (80) 

other 0 (0) 15 (100) 
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Head of household school (ref: primary 1) 
primary 2 

10 (26) 

8 (80) 2 (20) 
middle  2 (20) 8 (80) 

secondary  5 (50) 5 (50) 
do not know  8 (80) 2 (20) 

None 5 (50) 5 (50) 
Number of sleeping spaces in household 10 (26) 3 (30) 7 (70) 

Result of Pf RDT 15 (38) 12 (80) 3 (20) 
At least one ITN per sleeping space 20 (51) 17 (85) 3 (15) 

Village 21 (54) NA NA 
District Nacala-a-Velha 16 (41) 3 (19) 13 (81) 

Sex male 21 (54) 1 (5) 20 (95) 
Malaria knowledge index score 12 (31) 5 (42) 7 (58) 

Sleeping space has a net 7 (18) 3 (43) 4 (57) 
Net use index 9 (23) 7 (78) 2 (82) 

Received an ITN during campaign 13 (33) 3 (23) 10 (77) 
Household size 11 (28) 7 (64) 4 (36) 

Discussion 
This analysis examined the tendency for immune status to 39 antigens representing pathogens endemic to 

the Nampula province of Mozambique to share common predictors defined by individual and household 

level variables collected during a household survey. Age was the strongest predictor of serostatus, 

followed by sex and district. 

Many associations between pathogens were expected based on common route of transmission, 

particularly the mosquito-borne diseases such as malaria, lymphatic filariasis and dengue. P. vivax did not 

follow this pattern but was likely because there were very few individuals in the sample who had higher 

MFI-values indicating seropositivity for P. vivax, reducing the ability to identify strong predictors.  

Among the vaccine preventable diseases, measles, rubella, and diphtheria shared common predictors, 

which may be an indication of comprehensive EPI coverage among those with any EPI coverage (i.e. 

those with evidence of antibody response to one are more likely to have evidence of antibody response to 

all 3). The negative or null association of these 3 antigens with tetanus may be an indication of weaker 

coverage of tetanus boosters coverage, which are scheduled for first and second grades of school. 

Additionally, male sex was associated with decreased log-MFI for tetanus, which may also be an 

indication of effective booster coverage among women of reproductive age, confirming previous findings 

from Mozambique and other countries26. 
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The negative associations among the norovirus serotypes may be explained by outbreaks of different 

serotypes occurring at different periods, as age was a predictor for all 3 serotypes. For example, older age 

was associated with increased log-MFI values for the Norwalk and St. Cloud serotypes, but with 

decreased log-MFI values for the Sydney serotype. It is possible there was a more recent outbreak among 

young children for the Sydney serotype to which adults were less likely to be exposed27. This pattern is 

congruent with evidence that predominant strains of norovirus emerge, replacing the previous 

predominant strain with lack of evidence of cross-immunity between strains28. 

Most antigens representing neglected tropical diseases were co-linear, which is logical given that many 

share routes of transmission, many associated with water, sanitation and hygiene access and practices, 

which were not measured directly in the survey questions, but other predictors such as SES may have 

served as a proxy29. 

Age was the most common predictor of antibody response and was included in the majority of the 

prediction models. Age can be a predictor of disease exposure27, access to or use of prevention or 

healthcare8, or waning immunity26 and varies by pathogen and antigen used to measure exposure. While 

SES had predictive power in the prediction models, there was no clear pattern of higher or lower SES 

being associated with higher adjusted MFI-values in any grouping of pathogens. Notably, higher scores 

on the malaria knowledge index and LLIN use as protective factors for several non-malaria antigens may 

signal that knowledge and practice of malaria transmission and prevention activities may be a proxy for 

practicing general health prevention behaviors.  

Overall, the majority of pairwise associations of log-MFI values were positive, indicating that higher log-

MFI values for most antigens tested for in this sample share predictors and the direction of the 

association. With the exception of the vaccine preventable diseases, for which immune response is more 

likely to be an indication of interaction with the healthcare system and preventive behavior, there is an 

indication that individuals in this sample are likely to have several cumulative disease exposures. While 
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only exposure status and not disease status can be known, the impact of multiple infectious disease 

exposure can have serious health and economic impacts on the individual and community levels30.  

Limitations 
There are several limitations to this analysis. The household survey administered during which the 

samples were collected was intended to measure malaria and associated behaviors, and many variables 

that would likely be strong predictors of non-mosquito borne diseases such as vaccine status, water 

source, food handling practices, and intervention coverage such as MDA administration were not 

included in the survey. Second, while seroprevalence studies can be used to gain information about 

pathogen exposure, they cannot provide information about whether these exposures happened at the same 

time, or even if exposure was associated with illness, limiting the ability to make inferences about co-

occurrence of active infections. While the use of log-MFI values, rather than assigning a binary cutoff for 

seropositive and seronegative reduces misclassification bias due to challenges in determining appropriate 

cutoff values, log-MFI is not as easily interpretable, and the range of values vary by antigen. 

Conclusions 
Multiplex assays coupled with cross-sectional survey data regarding practices, socioeconomic indicators, 

and access and use of healthcare services can provide insights about common predictors that may be 

associated with exposure to multiple pathogens. By understanding the epidemiology of several pathogens 

at once, public health practitioners can target the most common predictors of exposure to diseases in an 

area making more efficient and effective public health interventions in resource-limited settings.  
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Abstract 
Background 

Routine assessment of artemisinin-based combination therapies (ACTs) efficacy is critical for the early 

detection of antimalarial resistance. We evaluated the efficacy of ACTs recommended for treatment of 

uncomplicated malaria in five sites in Democratic Republic of the Congo (DRC): artemether-lumefantrine 

(AL), artesunate-amodiaquine (ASAQ), and dihydroartemisinin-piperaquine (DP).  

Methods 

Children aged 6-59 months with confirmed P. falciparum malaria were treated with one of three ACTs 

and monitored. The primary endpoints were uncorrected and PCR-corrected 28-day (AL & ASAQ) or 42-

day (DP) cumulative efficacy. Molecular markers of resistance were investigated.  

Results 

Uncorrected efficacy estimates ranged from 63% to 88% for AL, 73% to 100% for ASAQ, and 56% to 

91% for DP. PCR-corrected efficacy estimates ranged from 86% to 98% for AL, 91% to 100% for ASAQ 

and 84% to 100% for DP. No pfk13 mutations previously found to be associated with ACT resistance 

were observed. Statistically significant associations were found between certain pfmdr1 and pfcrt 

genotypes and treatment outcome. 

Conclusions 

There is evidence of efficacy below the 90% cutoff recommended by WHO to consider a change in first-

line treatment recommendations of two ACTs in one site each. Confirmation of these findings in future 

therapeutic efficacy monitoring in DRC is warranted.  

Abstract word count: 199 

Key words: Antimalarial, P. falciparum, efficacy, resistance, malaria, DRC 
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Introduction 
Democratic Republic of the Congo (DRC) accounts for an estimated 12% of the malaria morbidity and 

11% of malaria mortality globally, with 25 million reported malaria cases and 46,000 deaths annually[1]. 

In 2005, artemisinin-based combination therapies (ACTs) were introduced in DRC for the treatment of 

uncomplicated malaria as recommended by the World Health Organization (WHO) to prevent or delay 

resistance to artemisinin derivatives and partner drugs[2]. Two ACTs, artemether-lumefantrine (AL) and 

artesunate-amodiaquine (ASAQ), are used as first-line treatments, and dihydroartemisinin-piperaquine 

(DP) is considered as an alternative first-line treatment for uncomplicated Plasmodium falciparum 

malaria in DRC. All three ACTs circulate freely in the private sector[3].  

WHO recommends the implementation of therapeutic efficacy studies at least every two years in malaria 

endemic countries to quickly identify reduced sensitivity to ACTs[4]. Early identification of waning 

efficacy of a drug may inform DRC national malaria control program (NMCP) policy for malaria 

treatment. Recent studies have demonstrated that AL, ASAQ, and DP are efficacious in DRC, with per-

protocol PCR-corrected efficacies of over 90% in studies conducted between 2015–2017[5,6].  

In addition to monitoring ACT efficacy, therapeutic efficacy studies may monitor molecular markers of 

antimalarial resistance among Plasmodium falciparum parasites. Specific polymorphisms in the propeller 

domain of the pfkelch13 (pfk13) gene[7] have been associated with artemisinin resistance, a finding 

described in Southeast Asia[8] and polymorphisms identified in one country in sub-Saharan Africa[9]. 

Decreased susceptibility to lumefantrine and amodiaquine has been associated with polymorphisms in the 

gene pfmdr1[10] and decreased susceptibility to amodiaquine has been associated with polymorphisms in 

the gene pfcrt .  

This report will describe the results of a study examining the therapeutic efficacy of three ACTs used for 

the treatment of uncomplicated Plasmodium falciparum malaria in five sites in DRC. Prevalence of 

molecular markers of resistance to artemisinin derivatives and partner drugs will also be presented. 
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Methods 
The standard WHO protocol for in vivo therapeutic efficacy studies[4] was followed to assess the efficacy 

of AL, ASAQ, and DP in five sentinel sites representing different epidemiologic zones of DRC. Study 

recruitment took place from March 2017 to January 2018.  

Study sites and population 

Three sites in the equatorial zone of DRC were included: Kabondo, in Kisangani in the northern Tshopo 

province, where malaria prevalence measured by rapid diagnostic test (RDT) among children 6–59 

months old was 52.2% in the 2017–2018 Multiple Indicator Cluster Survey[11]; Mikalayi, in the Kasai 

Central province, where malaria prevalence measured by RDT among children 6-59 months old was 

45.5%; and Kimpese, in the Kongo Central province next to the border with Angola, where malaria 

prevalence measured by RDT among children 6–59 months old was 40.0%. The fourth site, Rutshuru, 

located in the mountainous zone next to the border with Rwanda in the North Kivu province of eastern 

DRC, where malaria prevalence measured by RDT among children 6-59 months old was 11.4%. The fifth 

site, Kapolowe, is in the Haut Katanga province in the southern part of the country, next to the border 

with Zambia, and is in the tropical zone, where malaria prevalence measured by RDT among children 6-

59 months old was 42.7%. The national malaria prevalence measured by RDT among children 6-59 

months old was 38.5%[11]. 
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Figure 3.1: Location of antimalarial therapeutic efficacy monitoring sites, Democratic Republic of 
the Congo, 2017 

Children aged 6–59 months old with uncomplicated Plasmodium falciparum malaria infection were 

recruited at participating health centers. A sample size of 88 children per arm per site was targeted and 

calculated assuming 5% drug failure, 95% confidence level, 5% precision and the assumption of 20% loss 

to follow-up.  

Study Procedures 

Criteria for inclusion included Plasmodium falciparum infection measured by microscopy with parasite 

density between 2,000–200,000 trophozoites per µl, axillary temperature of 37.5°C or higher, ability to 

take oral medication, ability to adhere to the study follow-up procedures, declared consent from a parent 

or guardian, absence of signs of severe illness, malnutrition, or other illness associated with fever, and 
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absence of past allergic reaction to the study medication. Children with severe anemia (hemoglobin 

<5g/dl or hematocrit <15%), weighing less than 5kg, taking regular medication contraindicated with the 

study medication, or presenting with signs of severe illness were excluded from the study. 

Microscopic blood examination was performed by trained microscopists using thick and thin smears on 

the same slide to determine parasite species. Two slides were collected for each patient, one for screening 

and one for quantification of parasitemia. The slide for screening was stained with 10% Giemsa for 10 

minutes and the second with 6% Giemsa for 30 minutes. Quality control of the study slides was carried 

out at two levels: first, at each study site by two trained and experienced microscopists and a third in case 

of discrepancy. Second, at the end of the study, 10% of slides from each site were also read by the 

national malaria reference laboratory located at the Institut National de Recherche Biomédicale.  

Study participants were randomly assigned one of three ACTs: ASAQ (Winthrop; Sanofi Aventis, Paris, 

France), AL (Coartem, Novartis, Basel, Switzerland), or DP (Eurartesim, Alfasigma, Bologna, Italy). 

Weight-based dosage was determined using the WHO malaria treatment guidelines[2]. Medications were 

procured by the DRC NMCP and its partners, notably WHO, and underwent quality control at the 

laboratory of the Faculty of Pharmaceutical Sciences of the University of Kinshasa (DRC). Medication 

was administered on days 0, 1, and 2 under supervision of study staff. AL intake was also accompanied 

by the intake of milk and biscuits. All children enrolled in the study were administered paracetamol for 

fever management in the first 48 hours after seeking care at the health facility. All doses, including the 

evening dose of AL, were observed by a study team member and were observed for 30 minutes after each 

dose was administered. Any child who vomited during this 30-minute window received the same dose of 

medication and was observed for an additional 30 minutes. In case of vomiting a second time, the child 

was removed from the study and given a rescue treatment[12]. 

There were nine total pre-planned visits in the 42 days of follow-up (day 0, 1, 2, 3, 7, 14, 21, 28, 35, 42). 

However, parents and guardians were instructed to return to the study site for any reason, including 

sickness or adverse event related to the study medication. A clinical evaluation was performed at all 
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follow-up visits. On day 0, medical history and demographic information were recorded in addition to 

screening for malnutrition by measuring body weight by Salter or baby scale, brachial circumference, and 

checking for the presence of nutritional edema. Hemoglobin was measured on days 0, 14, 28, and 42 by 

sampling capillary blood using Hemocue® (Angelholm, Sweden). Parasitological examination was done 

by a trained microscopist on all follow-up visits. Capillary blood was collected on Whatman (GE 

Healthcare, Chicago, IL) filter paper for PCR-genotyping to differentiate reinfections from recrudescent 

infections and characterization of molecular markers of antimalarial resistance on days 0, 7, 14, 21, 28, 

35, 42, and unplanned visits. Rescue treatment was administered in case of recurrent parasitemia or severe 

illness in accordance with the national case management guidelines[12].  

Supervision was organized in each site by the monitor and instructors at the start of the study, once during 

recruitment, and at the closure of the study site. A supervision tool was used during each supervision visit 

and feedback was provided to study staff if any inconsistency in enrollment or follow-up procedures were 

noted. 

All study participants were assigned a classification at the end of follow-up. Early treatment failures were 

defined as parasitemia higher on day 2 than on day 0, parasitemia on day 3 with fever, parasitemia on day 

3 of ≥ 25% of the count on day 0, or danger signs or severe malaria in the presence of parasitemia on days 

1–3. Recurrences were defined as recurrent parasitemia on days 4 through 28 for AL and ASAQ, and on 

days 4 through 42 for DP. Adequate clinical and parasitological response (ACPR) was defined as absence 

of recurrence on either day 28 (AL and ASAQ) or 42 (DP). Children who were lost to follow-up or met 

exclusion criteria during the study were excluded from the analysis. 

Adverse events were recorded by using standard forms and shared with the DRC National 

Pharmacovigilance Center (CNPV-RDC). Serious adverse events were communicated by the principal 

investigator to the CNPV-RDC and the drug manufacturer within 24 hours. Adverse events were defined 

as any unfavorable sign, symptom, syndrome or unexpected illness appearing or worsening with the use 

of the study medication. Serious adverse events were defined as any medical occurrence with use of the 
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study medication that resulted in death or was life threatening, required hospitalization, or resulted in 

significant or persistent disability. 

Molecular analysis 

Molecular analyses were performed at the U.S. Centers for Disease Control and Prevention (CDC) 

Malaria Laboratory in Atlanta, GA. Genomic DNA extraction from dried blood spots collected on day of 

enrollment and day of recurrence was performed using the QIAamp blood minikit (Qiagen Inc., Hilden, 

Germany) following the manufacturer’s instructions. PET-PCR was used to confirm Plasmodium 

infection and species[13]. 

The analysis of seven neutral microsatellites was used to distinguish reinfections from recrudescence 

among study participants classified with recurrent infection. Fragment lengths from day 0 and day of 

recurrence samples were measured after amplification of seven neutral microsatellite loci over six 

chromosomes by non-nested or semi-nested PCR using previously described methods[14,15].  

Sanger sequencing was used to investigate pfk13, pfcrt, and pfmdr1 single nucleotide polymorphisms 

(SNPs) on day 0 and day of recurrence samples for all classified recurences. Polymorphisms within 

codons 389–649 of the propeller domain region of pfk13[16], codons 86, 184, 1034, 1042, and 1246 of 

pfmdr1, and within codons 72-76 of pfcrt were analyzed. SNPs were identified using the Geneious 

software package (Biomatters, Inc. San Francisco, CA).  

Data management and statistical analysis 

Data were entered into a secure study database with independent double entry. Descriptive statistics of 

study participants were performed in addition to descriptions of any adverse events. Uncorrected and 

PCR-corrected efficacy estimates were calculated using per-protocol and Kaplan-Meier analyses[4]. 

Uncorrected per-protocol efficacy was calculated per arm and per site, including all recurrences and 

ACPR. Those lost to follow-up or excluded from the study were not included in the uncorrected or PCR-
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corrected per-protocol estimates. Participants lost to follow-up or excluded were included until last day of 

follow-up in the Kaplan-Meier analysis. 

To perform the PCR-corrected per-protocol and Kaplan-Meier analyses, microsatellite data were used to 

assign each recurrent parasitemia a posterior probability of recrudescence using a previously used 

Bayesian algorithm further validated for this study[17]. Samples for which amplification was not possible 

were assigned the average posterior probability of recrudescence from all amplified samples. For the 

PCR-corrected per-protocol analysis, the total number of recrudescences was defined as the sum of 

probability of recrudescence in all recurrent infections per arm and site. The number of reinfections 

equaled the total number of recurrences minus the sum of the posterior probability of recrudescence and 

was excluded from the PCR-corrected per-protocol calculation. For the PCR-corrected Kaplan-Meier 

analysis, posterior sampling was used to generate Kaplan-Meier estimates and 95% confidence intervals 

from the posterior probability of recrudescence. A sensitivity analysis was done to assess the use of a 

cutoff approach to distinguish recrudescence vs. reinfection, defining a recrudescence as above or equal to 

a predetermined number of matches over the seven loci vs. the use of the sum of probabilities of 

recrudescence to tally the number of recrudescences as done to derive the efficacy results in this study. 

The combination of SNPs at pfmdr1 codons 86, 184, and 1246 were used to define pfmdr1 haplotypes, 

and the combination of SNPs at pfcrt codons 72-76 were used to define pfcrt haplotypes. For mixed 

infections, all possible haplotypes (i.e., wild type and mutant) were counted for Pfmdr1 and included in 

the analysis. For Pfcrt, the wildtype (CVMNK) and most likely mutant haplotypes were reported for 

mixed infections. To investigate differences in pfmdr1 between cleared and uncleared parasites, 

haplotypes of day 0 samples of reinfections (cleared infections) were compared to the haplotypes of day 

of recurrence samples among recrudescences and reinfections (uncleared infections) using Fisher’s exact 

test. Reinfection for day of recurrence were included as “uncleared” infections due to the lack of 

susceptibility of parasites to post-treatment prophylaxis[18]. For tabulation, samples with a posterior 

probability of recrudescence of ≥50% were defined as a recrudescence and those with a posterior 
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probability of <50% were considered reinfections. Multiplicity of infection (MOI) was calculated per site 

in samples from those who experienced recurrent infection as the maximum number of SNPs detected 

among the seven neutral microsatellite markers.   

Microsoft Excel and R version 3.6.1 (R Foundation for Statistical Computing, Vienna, Austria) were used 

to perform statistical analyses. 

Ethical considerations 
The DRC Ethics Committee of the School of Public Health of the University of Kinshasa  provided 

ethical clearance for the study in DRC. The study protocol was registered in an approved public register 

(ClinicalTrials.gov) whose registration number is NCT02940756. Informed consent was available in 

French and translated into local languages Lingala, Kikongo, Swahili, and Tshiluba. All patient 

information was kept confidential and was known only to the research team. Staff from the Centers for 

Disease Control and Prevention (CDC) provided technical assistance[19]; the protocol was approved as a 

non-research program evaluation by the Office of the Associate Director for Science, Center for Global 

Health at CDC. 

Results 
A total of 1,356 children were enrolled in the study over the three drug arms and five sites (range per arm: 

75 to 96), with 1,271 (93.7%; range 83.1 to 97.9%) reaching a study endpoint. A total of 85 children were 

withdrawn or lost to follow-up over all arms. Day 3 slide positivity rates were null in all arms except for 

the Kabondo ASAQ arm, where the day 3 slide positivity was 1% (1/81), and the Kabondo DP arm, 

where the day 3 slide positivity rate was also 1% (1/74). 
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Description of study participants 

Table 3.1: Baseline characteristics and enrollment of patients participating in the DRC therapeutic efficacy study, 2017 
Characteristics at day of study enrollment Enrollment and follow-up 

Site Drug Age, years 
(mean, sd) 

Female, n 
(%) 

Weight (kg) 
(mean, sd) 

Parasitemia, geometric 
mean, parasites/µL 
(range) 

Lost to follow 
up, n (%) 

Excluded, n (%) Reached study 
endpoint, n (%) 

Kabondo AL (n=89) 2.7 (1.3) 37 (41.6) 12.3 (3.2) 19944 (2046, 179760) 6 (6.7) 0 (0) 83 (93.3) 
ASAQ (n=84) 2.8 (1.1) 32 (38.1) 12.7 (2.7) 27450 (2272, 195564) 3 (3.6) 0 (0) 81 (96.4) 
DP (n=89) 2.6 (1.2) 45 (50.6) 11.9 (2.9) 22436 (4078, 168915) 15 (16.9) 0 (0) 74 (83.1) 

Kapolowe AL (n=96) 2.4 (1.3) 52 (54.2) 11.9 (3.1) 39426 (2039, 192554) 2 (2.1) 1 (1.0) 93 (96.9) 
ASAQ (n=94) 2.6 (1.3) 51 (54.3) 12 (3.1) 36842 (2032, 207761) 2 (2.1) 3 (3.2) 89 (94.7) 
DP (n=96) 2.4 (1.3) 43 (44.8) 11.9 (3.4) 33949 (2095, 198059) 3 (3.1) 1 (1.0) 92 (95.8) 

Kimpese AL (n=75) 3.3 (1.3) 38 (50.7) 14 (4.4) 17625 (2008, 199446) 1 (1.3) 0 (0) 74 (98.7) 
ASAQ (n=90) 3.3 (1.3) 44 (48.9) 13.7 (3.5) 21520 (2015, 199538) 8 (8.9) 0 (0) 82 (91.1) 
DP (n=85) 3.1 (1.2) 28 (32.9) 12.9 (3.2) 22189 (2080, 199095) 4 (4.7) 0 (0) 81 (95.3) 

Mikalayi AL (n=94) 2.0 (1) 43 (45.7) 10.7 (2.8) 25437 (2016, 163200) 2 (2.1) 0 (0) 92 (97.9) 
ASAQ (n=92) 2.1 (1.4) 45 (48.9) 10.5 (3.1) 23619 (1050, 179428) 2 (2.2) 6 (6.6) 84 (91.3) 
DP (n=94) 2.2 (1.3) 52 (55.3) 11.6 (8.7) 24995 (1454, 188800) 4 (4.3) 2 (2.1) 88 (93.6) 

Rutshuru AL (n=93) 2.5 (1.4) 44 (47.3) 11.1 (3.2) 27273 (2088, 195246) 1 (1.1) 3 (3.2) 89 (95.7) 
ASAQ (n=91) 2.5 (1.2) 39 (42.9) 11.3 (2.9) 32539 (2000, 301900) 1 (1.1) 8 (8.8) 82 (90.1) 
DP (n=94) 2.5 (1.2) 56 (59.6) 11.4 (3.3) 32613 (2679, 198579) 0 (0) 7 (7.4) 87 (92.6) 

DRC: Democratic Republic of the Congo 
sd: standard deviation 
AL: artemether lumefantrine 
ASAQ: artesunate amodiaquine  
DP: dihydroartemisinin piperaquine
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Efficacy 

There were 268 recurrent infections, including no early treatment failures observed in any arm. The mean 

MOI among all day 0 and day of recurrence samples among recurrent infections was 2.0 (standard 

deviation, 0.83, range 1, 5) (Supplemental Figure 1).  

Uncorrected 28-day cumulative efficacy for AL ranged from 63% (95% CI 55, 74) in Mikalayi to 88% 

(95% CI 82, 95) in Kabondo. PCR-corrected 28-day cumulative efficacy for AL ranged from 86% (95% 

CI 79, 93) in Mikalayi to 98% (95% CI 95, 100) in Kabondo.  

Uncorrected 28-day cumulative efficacy for ASAQ ranged from 73% (95% CI 64, 83) in Rutshuru to 

100% (95% CI 100, 100) in Kabondo. PCR-corrected 28-day cumulative efficacy for ASAQ ranged from 

91% (95% CI 85, 98) in Rutshuru, to 100% (95% CI 100, 100) in Kabondo and Kapolowe. 

Uncorrected 28-day cumulative efficacy for DP ranged from 75% (95% CI  67, 85) in Rutshuru to 99% 

(95% CI 97, 100) in Kimpese. PCR-corrected 28-day cumulative efficacy for DP ranged from 97% (95% 

CI 93, 100) in Rutshuru to 100% (95% CI 100, 100) in Kabondo. Uncorrected 42-day cumulative efficacy 

for DP ranged from 56% (95% CI 47, 67) in Mikalayi to 91% (95% CI 85, 98) in Kabondo. PCR-

corrected 42-day cumulative efficacy for DP ranged from 84% (95% CI 75, 93) in Mikalayi to 100% 

(95% CI 99, 100) in Kabondo.  

The sensitivity analysis examining the use of a cutoff approach based on number of matches at each loci 

yielded highly variable failure rates for each drug dependent on the cutoff used, influenced by the 

relatively high number of intermediate values of posterior probability of recrudescence for each instance 

of recurrent parasitemia (Supplemental Figures 3.2 & 3.3). 
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Table 3.2: Classification of patients with the outcome of late recurrence, DRC therapeutic efficacy study, 2017 
Kabondo Kapolowe Kimpese Mikalayi Rutshuru 

AL 
(n=83) 

ASAQ 
(n=81) 

DP 
(n=74) 

AL 
(n=93) 

ASAQ 
(n=89) 

DP 
(n=92) 

AL 
(n=74) 

ASAQ 
(n=82) 

DP 
(n=81) 

AL 
(n=92) 

ASAQ 
(n=84) 

DP 
(n=88) 

AL 
(n=89) 

ASAQ 
(n=82) 

DP 
(n=87) 

Early treatment 
failure 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Late recurrence 10 0 7 23 0 33 11 6 8 34 20 39 18 23 36 
Recrudescence1 1 0 0 4 0 6 2 0 0 14 3 12 3 6 3 
   Day 7-13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
   Day 14-21 1 0 0 1 0 1 1 0 0 3 2 1 2 1 1 
   Day 22-28 0 0 0 3 0 1 1 0 0 11 1 1 1 5 1 
   Day 29-35 - - 0 - - 2 - - 0 - - 6 - - 1
   Day 36-42 - - 0 - - 2 - - 0 - - 4 - - 0
Reinfection 9 0 7 19 0 27 9 6 8 20 17 27 15 17 34 
   Day 7-13 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
   Day 14-21 1 0 1 10 0 1 7 1 1 7 8 3 4 12 9 
   Day 22-28 8 0 0 9 0 7 2 4 7 13 9 10 11 5 11 
   Day 29-35 - - 4 - - 11 - - 0 - - 8 - - 9
   Day 36-42 - - 2 - - 8 - - 0 - - 6 - - 5
ACPR 73 81 67 70 89 59 63 74 73 58 64 49 71 59 51 

1Recrudescence defined as a late recurrence with a posterior probability of recrudescence  ≥ 0.5 
DRC: Democratic Republic of the Congo 
AL: artemether lumefantrine 
ASAQ: artesunate amodiaquine  
DP: dihydroartemisinin piperaquine 
ACPR: adequate clinical and parasitological response 
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Table 3.3: Therapeutic efficacy of three artemisinin-based combination therapies at five monitoring sites, Democratic Republic of the 
Congo, 2017 

Kaplan-Meier Per-protocol 
Uncorrected % (95% CI) PCR-corrected % (95% CI)a Uncorrected % (95% CI) PCR-corrected % (95% CI)a

Site Drug 28 days 42 days 28 days 42 days 28 days 42 days 28 days 42 days 
Kabondo AL 88 (82, 95) 98 (95, 100) 88 (79, 94) 98 (92, 100) 

ASAQ 100 (100–100) 100 (100, 100) 100 (96, 100) 100 (96, 100) 
DP 99 (96, 100) 91 (85, 98) 100 (100, 100) 100 (99, 100) 99 (93, 100) 91 (81, 96) 100 (95, 100) 100 (94, 100) 

Kapolowe AL 76 (68, 85) 94 (89, 99) 75 (65, 84) 93 (84, 97) 
ASAQ 100 (100, 100) 100 (100, 100) 100 (96, 100) 100 (96, 100) 
DP 89 (83, 96) 64 (56, 75) 98 (94, 100) 93 (87, 99) 89 (81, 95) 64 (53, 74) 96 (90, 99) 91 (82, 97) 

Kimpese AL 85 (78, 94) 96 (92, 100) 85 (75, 92) 96 (88, 99) 
ASAQ 93 (88, 99) 99 (98, 100) 93 (84, 97) 100 (95, 100) 
DP 99 (97, 100) 90 (84, 97) 100 (100, 100) 100 (99, 100) 99 (93, 100) 90 (81, 96) 100 (96, 100) 100 (95, 100) 

Mikalayi AL 63 (55, 74) 86 (79, 93) 63 (52, 73) 82 (71, 90) 
ASAQ 77 (69, 86) 96 (91, 99) 76 (66, 85) 95 (86, 99) 
DP 83 (76.91) 56 (47, 67) 97 (94, 100) 84 (75, 93) 83 (73, 90) 56 (45, 66) 88 (89, 94) 80 (68, 89) 

Rutshuru AL 80 (72, 89) 96 (92, 100) 80 (70, 88) 96 (88, 99) 
ASAQ 73 (64, 83) 91 (85, 98) 72 (61, 81) 91 (81, 97) 
DP 75 (67, 85) 59 (50, 70) 97 (93, 100) 95 (90, 100) 75 (65, 84) 59 (48, 69) 99 (92, 100) 93 (83, 98) 

Bold indicates point estimate of PCR-corrected efficacy <90% 
aNumber of treatment failures calculated as the sum of posterior probabilities of recrudescence 
CI: confidence interval 
AL: artemether-lumefantrine 
ASAQ: artesunate-amodiaquine 
DP: dihydroartemisinin-piperaquine 
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Safety 

Among the 1,356 children enrolled in the study, five serious adverse events were reported including two 

deaths (one in the Rutshuru DP arm and one in the Mikalayi ASAQ arm). Three instances of respiratory 

distress were reported among participants in the Rutshuru DP arm. After clinical assessment, it was 

concluded that it was unlikely that these events were associated with the study drug or concomitant 

medication.  

Molecular markers of antimalarial resistance 

There were 577 dried blood spots available for analysis of molecular markers of antimalarial resistance. 

Samples taken on day 0 from participants with recrudescent infections (n=54) were excluded from the 

analysis to avoid double counting a parasite.  

pfk13 

A total of 251/263 day 0 reinfections were successfully sequenced for pfk13 (95%) (cleared initial 

infection), and 235/260 (90%) samples were successfully sequenced from day of recurrence samples 

(uncleared infections). 

Most samples (96%) included in the analysis were wild type for pfk13. Synonymous mutations (P417P, 

C469C, R471R, S477S, T478T, G496G, Y511Y, R539R, S576S) were found in 17 (3%) samples, and a 

non-synonymous mutation, S477Y, was observed in one day of recurrence sample in the DP arm. 

pfmdr1 

A total of 466 dried blood spots from those in the AL and ASAQ arms were included for analysis. A total 

of 204/206 (99%) day 0 reinfections were successfully sequenced (cleared initial infection), and 258/260 

(99%) samples were successfully sequenced from day of recurrence samples (uncleared infections). 

More than half of the samples analyzed had the N86 pfmdr1 SNP (263/462, 57%). Eleven percent 

(52/462) had mixed N/Y, and 32% (147/462) had the 86Y SNP. More than half (268/462, 58%) carried 
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the Y184 pfmdr1 SNP, with 102 (22%) with mixed Y/F, and 92 (20%) with the 184F pfmdr1 SNP. Most 

samples (379/462, 82%) carried the D1246 pfmdr1 SNP, 35 (8%) had mixed D/Y, and 48 (10%) carried 

the 1246Y SNP. The most common pfmdr1 haplotypes were NYD (N86, Y184, D1246) (50%), NFD 

(N86, 184F, D1246) (31%), and YYD (86Y, Y184, 1246Y) (28%; percentages total > 100% due to mixed 

infections). In the AL arm, there was a statistically significant increased risk of failure in samples carrying 

the N86 versus the 86Y pfmdr1 SNP (p=.007, Fisher’s exact test). Also in the AL arms, there was a 

statistically significant increased risk of treatment failure among samples with the NYD compared to the 

YFD haplotype (p= 0.003, Fisher’s exact test). No statistically significant associations were found 

between treatment outcome and pfmdr1 SNP or haplotypes in any other treatment arm. 

Pfcrt 

Investigation of pfcrt SNPs was performed in samples from the ASAQ arms only. There were 85 samples 

included in the analysis. A total of 38 samples from day 0 of those who would experience a reinfection 

were successfully sequenced (100%), and 47 samples from day of recurrence were successfully 

sequenced (100%).  

At codon positions 72 and 73, all samples were wild type (C and V respectively). Most samples were 

found to have the 74I (88%), 75E, (87%), and 76T (88%) pfcrt SNPs, and the most common haplotype 

among samples analyzed was CVIET (C72, V73, 74I, 75E, 76T) (88%). There was a statistically 

significant increased risk of treatment failure among those with the 75E versus the N75 SNP (p= 0.042, 

Fisher’s exact test), and having the 76T versus the K76 SNP (p= 0.013, Fisher’s exact test). There was 

also a statistically significant increased risk of treatment failure among samples with the CVIET versus 

the CVMNK haplotype (p= 0.013, Fisher’s exact test) (Supplemental Tables 3.1-3.3). 
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Table 3.4: Molecular markers of resistance, all drug arms, Democratic Republic of the Congo therapeutic efficacy study, 2017 

All samples Reinfection Day 0 
Recrudescence + Reinfection Day of 

recurrence 
pfk13 
Successfully sequenced 486/523 (93%) 251/263 (95%) 235/260 (90%) 
Wild type 468 (96%) 244 (97%) 224 (95%) 
Synonymousa 17 (3%) 7 (3%) 10 (4%) 
Non-synonymous b 1 (0.2%) 0 (0%) 1 (0.4%) 
pfmdr1c 

Successfully sequenced 462/466 (99.1%) 204/206 (99%) 258/260 
N86 263 (57%) 109 (53%) 154 (60%) 
86N/Y 52 (11%) 26 (13%) 26 (10%) 
86Y 147 (32%) 69 (34%) 78 (30%) 
Y184 268 (58%) 119 (58%) 149 (58%) 
184Y/F 102 (22%) 45 (22%) 57 (22%) 
184F 92 (20%) 40 (20%) 52 (20%) 
D1246 379 (82%) 166 (81%) 213 (83%) 
1246D/Y 35 (8%) 13 (6%) 22 (9%) 
1246Y 48 (10%) 25 (12%) 23 (9%) 
NYD 232 (50%) 89 (44%) 143 (55%) 
NFD 141 (31%) 53 (26%) 88 (34%) 
NFY 20 (4%) 7 (3%) 13 (5%) 
NYY 31 (7%) 10 (5%) 21 (8%) 
YFD 69 (15%) 27 (13%) 42 (16%) 
YFY 0 (0%) 0 (0%) 0 (0%) 
YYD 130 (28%) 48 (24%) 82 (32%) 
YYY 20 (4%) 20 (10%) 0 (0%) 
pfcrtd, e 

Successfully sequenced 85/85 (100%) 38/38 (100%) 47/47 (100%) 
M74 8 (9%) 6 (16%) 2 (4%) 
74M/I 2 (2%) 2 (5%) 0 (0%) 
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74I 75 (88%) 30 (79%) 45 (96%) 
N75 10 (12%) 8 (21%) 2 (4%) 
75N/E 1 (1%) 0 (0%) 1 (2%) 
75E 74 (87%) 30 (79%) 44 (94%) 
K76 9 (11%) 8 (21%) 1 (2%) 
76K/T 1 (1%) 0 (0%) 1 (2%) 
76T 75 (88%) 30 (79%) 45 (96%) 
CVMNK 9 (11%) 8 (21%) 1 (2%) 
CVIET 75 (88%) 30 (79%) 45 (96%) 
CVMNT 1 (1%) 0 (0%) 1 (2%) 
CVINK 3 (6%) 2 (6%) 1 (2%) 

 

aSynonymous mutations include P417P, C469C, R471R, S477S, T478T, G496G, Y511Y, R539R, S576S,  
bNon-synonymous mutation, S477Y 
cpfmdr1 haplotype constructed according to amino acids at positions 86, 184, and 1246; mixed infections included in numerator for each haplotype 
dpfcrt haplotype constructed according to amino acids at positions 72, 73, 74, 75, and 76; mixed infections included in numerator for each haplotype 
eall samples were wildtype for positions 72 (C) and 73 (D) 
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Discussion 
This therapeutic efficacy study assessed three ACTs and molecular markers of antimalarial resistance in 

five sites representing different epidemiologic zones of DRC. Uncorrected efficacy estimates ranged from 

63% to 88% for AL, 73% to 100% for ASAQ (at 28 days), and 56% to 91% for DP (at 42 days). PCR-

corrected efficacy estimates ranged from 86% to 98% for AL, 91% to 100% for ASAQ and 84% to 100% 

for DP at the aforementioned endpoints. No pfk13 mutations previously found to be associated with ACT 

resistance were observed. There were statistically significant associations between certain pfmdr1 and 

pfcrt genotypes and haplotypes and treatment outcome in the AL and ASAQ arms, respectively. 

There was a significant number of recurrent parasitemia in all arms in the present study, yielding low 

uncorrected efficacy estimates for all drugs (but not in each site). The high number of reinfections, 

particularly in the AL arm, provide evidence of limited post-treatment prophylaxis resulting in a large 

proportion of children being reinfected within 4 weeks of an initial infection. Repeated malaria infection 

among young children can result in severe health consequences[20–22].  

There were observed efficacies below 90% in two of 15 arms in the study: in the Mikalayi AL and DP 

arms. Past studies in DRC have not shown evidence of suboptimal efficacy of these ACTs. In all 

estimates except for the 42-day per-protocol estimate for the Mikalayi DP arm, the confidence intervals 

spanned above 90% PCR-corrected efficacy. However, in seven additional arms where the point estimate 

observed was 90% or above, confidence intervals spanned below the 90% threshold (Kapolowe AL and 

DP arms, Kimpese AL arm, Rutshuru AL, ASAQ, and DP arms, and Mikalayi ASAQ arm). The precision 

in PCR-corrected estimates can be lost in areas of high-transmission with high rates of reinfection such as 

DRC, where up to 34 participants were excluded from the PCR-corrected estimates due to reinfection. 

This reduction in sample size limits the ability to make conclusions with certainty about ACT efficacy. 

Additionally, in a study conducted in Angola in 2019, one site, Lunda Sul, which is located across the 

border not far from Mikalayi showed evidence of AL efficacy <90%[23], raising concerns about the use 

of this drug for the region.  .  
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The proportionally large number of intermediate values of posterior probability of recrudescence derived 

from the Bayesian algorithm for interpretation of microsatellite markers molecular correction 

demonstrates the complexity of the parasite population in this study. Using a molecular correction method 

that accounts for uncertainty of classifications of recurrent parasitemia, rather than a cutoff approach 

assigning a number of loci matches to define a recrudescence, is particularly useful in these settings[24]. 

The lack of observed pfk13 mutations is consistent with the finding that there were no early treatment 

failures and a slide positivity rate of almost null in all arms, suggesting that artemisinin derivatives are 

effective at initial reduction of parasitemia in all arms and all sites in DRC. However, the molecular 

findings suggest that susceptibility to lumefantrine and amodiaquine may be decreasing in DRC. The 

findings of this study are consistent with previous evidence of higher risk of treatment failure among 

those carrying the pfmdr1 N86 SNP versus the 86Y SNP in the AL arm[10], providing molecular 

evidence of reduced susceptibility to lumefantrine in the parasite population in DRC. This outcome is 

consistent with the reduced efficacy of AL found in Mikalayi. In the ASAQ arm, we observed a high risk 

of recurrent parasitemia among samples with the 76T SNP (and CVIET haplotype) compared with K76 

(and CVMNK haplotype), findings congruent with the reduced ASAQ efficacy observed in Rutshuru and 

previous studies from other countries [10,25,26].  

Limitations 
Samples collected on day 0 for participants classified as ACPR were not available for molecular analysis. 

Therefore, a proxy, day 0 samples from those who cleared their initial infection but would later 

experience a reinfection, was used to evaluate associations between treatment outcome and presence of 

SNPs. This may have introduced classification bias into statistical tests performed as there may have been 

systematic differences between this group of participants who would go on to be reinfected and those who 

were not. 

Recommendations and conclusions 
Therapeutic efficacy monitoring of three drugs in five sites demonstrate evidence of inadequate efficacy 

of AL and DP in one site each in addition to molecular findings of SNPs and haplotypes associated in 
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prior studies with reduced susceptibility to lumefantrine and amodiaquine. Further investigation of these 

findings to rule out other reasons for treatment failure, including measurement of drug levels to 

investigate potential issues of drug absorption, additional validation of molecular genotyping techniques, 

and increased sample size to improve precision of efficacy estimates in this setting with high rates of 

reinfection are warranted. Decreased efficacy of ACTs in DRC, which has the second highest number of 

Plasmodium falciparum malaria infections in the world, could have a strong negative impact on the fight 

against malaria in sub-Saharan Africa.  
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Chapter 5: Dissertation Summary and Future Directions in Research   
Summary 
The three papers in this dissertation described different factors impacting the epidemiology of diseases of 

public health importance in Democratic Republic of the Congo (DRC) and Mozambique, two countries in 

sub-Saharan Africa that are deeply affected by malaria and other tropical diseases. The first paper 

described the spatial distribution of malaria in Nampula Province, Mozambique. The analyses found 

evidence that active or recent malaria infection as defined by a positive malaria rapid diagnostic test is 

highly prevalent and spatially homogenous. This evidence does not support spatial targeting of 

interventions in high transmission areas below the district level. 

In the second paper, patterns of comorbidities for infectious diseases were explored in Nampula, 

Mozambique. The results of the analysis showed several instances of shared predictors of antibody 

responses between many infectious diseases of public health importance, with age, sex, and district as the 

most common predictors. By understanding the epidemiology of several pathogens at once, public health 

practitioners can target the most common predictors of exposure to diseases in an area making more 

efficient and effective public health interventions in resource-limited settings such as Mozambique. 

The third paper described the results of an antimalarial therapeutic efficacy study investigating three 

artemisinin-based combination therapies (ACTs) recommended for the treatment of uncomplicated 

malaria in DRC. The study found evidence of efficacy below the 90% cutoff recommended by WHO to 

consider a change in first-line treatment recommendations of two ACTs in one site each. If confirmed in a 

subsequent efficacy study, inadequate efficacy of ACTs in a high-transmission country such as DRC can 

have substantial impacts on malaria morbidity and mortality. Additionally, the need to re-treat more than 

10% of malaria cases due to ineffective malaria treatment will have grave financial impacts on the health 

system in a country that treats over 18 million cases of malaria per year.  
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Directions for future research 
Both in the results of the analyses and limitations, all three papers demonstrated that high quality and 

complete data are needed to plan, track, and evaluate interventions targeting malaria and other tropical 

diseases. Paper 1 showed that that there are spatial analysis methods available to describe spatial 

epidemiology at a very local level. However, household surveys are not always designed with these types 

of analyses in mind. As countries continue to drive down malaria transmission in high burden areas, more 

granular data collection will inform interventions that will target reservoirs of transmission. Paper 2 

demonstrated that multiplex platforms can efficiently provide information about prevalence of antibody 

responses for several pathogens. Socioeconomic, behavioral, and health access data can complement 

biomarkers and allow for further inference about interventions that may target multiple diseases 

responsible for morbidity and mortality at once. Indicators with implications for all diseases to be 

analyzed in a multiplex platform such as coverage of interventions such as vaccines or mass drug 

administration should be considered in future household surveys. Paper 3 demonstrated that clinical and 

molecular data can be analyzed together to paint a complete picture of drug efficacy that can impact 

effective malaria case management, one of the most impactful interventions needed to decrease disease 

burden in high-transmission settings. Consideration of transmission setting and results of previous 

efficacy studies should be included in future study planning and may have implications for sample size, 

molecular correction techniques, and additions of other assays such as drug levels. 

Collectively, the three studies in this dissertation describe factors that have implications for intervention 

planning and disease surveillance in areas with high malaria and other tropical disease burden. Careful 

consideration of transmission setting can support more efficient and higher quality data collection and 

may allow for intervention design tailored to the local realities that can target multiple diseases of public 

health importance.  
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Supplemental Table 2.1: Protein amounts & buffer conditions used for the analysis of 39 antigens 
plus one control 

Antigen 

mg 
Protein/ml 

beads Buffer pH Fusion Source Reference 
RVFV N Protein 17 MES/NaCl 5 GST S. Nichol, CDC, USA unpublished 
Norovirus strain 

Norwalk 30 PBS 7.2 None Jan Vijne, CDC, USA unpublished 
Norovirus strain 

Sydney 30 PBS 7.2 None Jan Vijne, CDC, USA unpublished 
Norovirus strain St. 

Cloud 30 PBS 7.2 None Jan Vijne, CDC, USA unpublished 

Dengue VLP3 30 PBS 7.2 None 
J. Chang, CDC Ft.

Collins, USA
Poirier et al., 2016, Bull WHO, 

94:817-825 
CHIKV E protein 
(wt and mutant) 7.5 each PBS 7.2 None 

CTK Biotech, San Diego, 
CA 

Poirier et al., 2016, Bull WHO, 
94:817-825 

P. vivax MSP1/19 20 MES/NaCl 5 GST 
Plucinski et al., 2018, PLOS 

NTDs, e0006278 
P. falciparum

MSP1/19 30 MES/NaCl 5 GST 
Plucinski et al., 2018, PLOS 

NTDs, e0006278 
P. malariae
MSP1/19 30 MES/NaCl 5 GST 

Plucinski et al., 2018, PLOS 
NTDs, e0006278 

P. ovale MSP1/19 30 MES/NaCl 5 GST 
Plucinski et al., 2018, PLOS 

NTDs, e0006278 

csp (P. falciparum) 30 MES/NaCl 5 None 
Plucinski et al., 2018, PLOS 

NTDs, e0006278 

Wb123 120 PBS 7.2 GST T. Nutman, NIH, USA
Plucinski et al., 2018, PLOS 

NTDs, e0006278 

Bm14 120 PBS 7.2 GST 
Plucinski et al., 2018, PLOS 

NTDs, e0006278 

Bm33NS 20 
MES/NaCl 
+ 2 M urea 6 GST/HIS 

Plucinski et al., 2018, PLOS 
NTDs, e0006278 

Tetanus 12.5 MES/NaCl 5 None 

Mass. Biological 
Laboratories, Boston, 

MA 
Scobie et al., 2016, CVI, 

23:546-554 

MeaslesQ 6 MES/NaCl 5 None 
Meridian Life Sciences, 

Memphis, TN 
Njenga et al., 2020, AJTMH, 

102:164-176 

Rubella 30 MES/NaCl 5 None 
Meridian Life Sciences, 

Memphis, TN 
Feldstein et al., 2020, PLOS 

Med, 17:e1003071 

Diphtheria 60 MES/NaCl 5 None 

List Biological 
Laboratories, Campbell, 

CA 
Njenga et al., 2020, AJTMH, 

102:164-176 
Cysticercosis 

T24H 120 MES/NaCl 5 GST 
Priest et al., 2016, PLOS NTDs, 

e0004699 

Toxoplasma SAG2 12.5 MES/NaCl 5 GST 
Priest et al., 2015, Epidemiol 

Infect, 143:618-630 

Giardia VSP3s 30 MES/NaCl 5 GST 
Priest et al., 2010, CVI, 

17:1695-1707 

Giardia VSP5 30 MES/NaCl 5 GST 
Priest et al., 2010, CVI, 

17:1695-1707 
Salmonella LPS B 

CHAPS 10 
MES/NaCl 
+ CHAPS 5 None 

Sigma Chemical Co., St. 
Louis, MO 

Aiemjoy et al., 2020, PLOS 
NTDs, 14:e0008647 

Salmonella LPS D 
CHAPS 10 

MES/NaCl
+ CHAPS 5 None 

Sigma Chemical Co., St. 
Louis, MO 

Aiemjoy et al., 2020, PLOS 
NTDs, 14:e0008647 

S. mansoni SEA 120 PBS 7.2 None E. Secor, CDC, USA
Won et al.,2017, AJTMH, 

96:1460-1467 

Strongyloides NIE 20 
PBS + 2M 

Urea 7.2 GST 
Plucinski et al., 2018, PLOS 

NTDs, e0006278 

Ascaris Hb 120 PBS 7.2 None 
P. Geldhof, Ghent Univ.,

Belgium 
Njenga et al., 2020, AJTMH, 

102:164-176 
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Cp23 12.5 MES/NaCl 5 GST 
Priest and Moss, 2020, Meth. 

Mol. Biol. 2052: 61-85 

Cp17 6.8 MES/NaCl 5 GST 
Priest and Moss, 2020, Meth. 

Mol. Biol. 2052: 61-85 

CpP2(100) peptide 30 MES/NaCl 5 None 
Benitez et al., 2011, Vaccine, 

29:9239-9245 
ETEC labile TX 

Beta subunit 30 MES/NaCl 5 None 
Sigma Chemical Co., St. 

Louis, MO 
Arnold et al., 2017, PLOS 

NTDs, 11:e0005616 

Campy p18 25 MES/NaCl 5 GST 
Zambrano et al., 2017, AJTMH, 

97:876-887 

Campy p39 25 MES/NaCl 5 GST 
Zambrano et al., 2017, AJTMH, 

97:876-887 

Trachoma pgp3 120 PBS 7.2 GST D. Martin, CDC, USA
Goodhew et al., 2012, PLOS 

NTDs, 6:e1873 

Trachoma CT694 30 PBS 7.2 GST D. Martin, CDC, USA
Goodhew et al., 2012, PLOS 

NTDs, 6:e1873 

Yaws rp17 15 MES/NaCl 5 GST D. Martin, CDC, USA
Cooley et al., 2016, J Clin 
Microbiol, 54:1321-1325 

Yaws TmpA 15 PBS 7.2 GST D. Martin, CDC, USA
Cooley et al., 2016, J Clin 
Microbiol, 54:1321-1325 

GST (Control) 15 MES/NaCl 5 GST 
Priest and Moss, 2020, Meth. 

Mol. Biol. 2052: 61-85 
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Supplemental Figures 2.1 – 2.7: Density plots by age group of log-MFI values by antigen, Nampula, 
Mozambique 2014 
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Supplemental Table 3.1: Molecular markers of resistance and association with treatment outcome, artemether lumefantrine arms, DRC 
therapeutic efficacy study, 2017 

All samples Reinfection Day 0 
Recrudescence + Reinfection Day 

of recurrence p-value
pfk13 
Successfully sequenced 87/90 (97%) 42/43 (98%) 45/47 (96%) - 
Wild type 85 (98%) 41 (98%) 43 (96%) Ref 
Synonymousa 3 (3%) 1 (2%) 2 (4%) 1 
Non-synonymous 0 (0%) 0 (0%) 0 (0%) NA 
pfmdr1a 
Successfully sequenced 81/85 (95%) 36/38 (95%) 45/47 (96%) - 
N86 15 (19%) 9 (25%) 6 (13%) Ref 
86N/Y 13 (16%) 6 (17%) 7 (16%) 0.725 
86Y 53 (65%) 21 (58%) 32 (71%) 0.268 
Y184 49 (60%) 22 (61%) 27 (60%) Ref 
184Y/F 14 (17%) 6 (17%) 8 (18%) 1 
184F 18 (22%) 8 (22%) 10 (22%) 1 
D1246 51 (63%) 22 (61%) 29 (64%) Ref 
1246D/Y 12 (15%) 5 (14%) 7 (16%) 1 
1246Y 18 (22%) 9 (25%) 9 (20%) 0.817 
NYD 17 (21%) 9 (25%) 8 (18%) Ref 
NFD 18 (22%) 8 (22%) 10 (22%) 0.870 
NFY 4 (5%) 1 (3%) 3 (7%) 0.662 
NYY 5 (6%) 3 (8%) 2 (4%) 1 
YFD 69 (85%) 27 (75%) 42 (93%) 0.446 
YFY 5 (6%) 1 (3%) 4 (9%) 0.436 
YYD 40 (49%) 17 (47%) 23 (51%) 0.663 
YYY 26 (32%) 13 (36%) 13 (29%) 1 
pfcrtb, c 
Successfully sequenced 85/85 (100%) 38/38 (100%) 47/47 (100%) - 
M74 8 (9%) 6 (16%) 2 (4%) Ref 
74M/I 2 (2%) 2 (5%) 0 (0%) 1 
74I 75 (88%) 30 (79%) 45 (96%) 0.128 
N75 10 (12%) 8 (21%) 2 (4%) Ref 
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75N/E 1 (1%) 0 (0%) 1 (2%) 0.546 
75E 74 (87%) 30 (79%) 44 (94%) 0.042 
K76 9 (11%) 8 (21%) 1 (2%) Ref 
76K/T 1 (1%) 0 (0%) 1 (2%) 0.4 
76T 75 (88%) 30 (79%) 45 (96%) 0.013 
CVMNK 9 (11%) 8 (21%) 1 (2%) Ref 
CVIET 75 (88%) 30 (79%) 45 (96%) 0.013 
CVMNT 1 (1%) 0 (0%) 1 (2%) 0.400 
CVINK 3 (6%) 2 (6%) 1 (2%) 0.909 

apfmdr1 haplotype constructed according to amino acids at positions 86, 184, and 1246; mixed infections included in numerator for each haplotype 
bpfcrt haplotype constructed according to amino acids at positions 72, 73, 74, 75, and 76; mixed infections included in numerator for each haplotype 
cAll samples were wildtype for positions 72 (C) and 73 (V) 
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Supplemental Table 3.2: Molecular markers of resistance and association with treatment outcome, artesunate-amodiaquine arms, 
Democratic Republic of the Congo therapeutic efficacy study, 2017 

All samples Reinfection Day 0 
Recrudescence + Reinfection Day 

of recurrence p-value
Pfk13 
Successfully sequenced 87/90 (97%) 42/43 (98%) 45/47 (96%) - 
Wild type 85 (98%) 41 (98%) 43 (96%) Ref 
Synonymousa 3 (3%) 1 (2%) 2 (4%) 1 
Non-synonymous 0 (0%) 0 (0%) 0 (0%) NA 
Pfmdr1b 
Successfully sequenced 81/85 (95%) 36/38 (95%) 45/47 (96%) - 
N86 15 (19%) 9 (25%) 6 (13%) Ref 
86N/Y 13 (16%) 6 (17%) 7 (16%) 0.725 
86Y 53 (65%) 21 (58%) 32 (71%) 0.268 
Y184 49 (60%) 22 (61%) 27 (60%) Ref 
184Y/F 14 (17%) 6 (17%) 8 (18%) 1 
184F 18 (22%) 8 (22%) 10 (22%) 1 
D1246 51 (63%) 22 (61%) 29 (64%) Ref 
1246D/Y 12 (15%) 5 (14%) 7 (16%) 1 
1246Y 18 (22%) 9 (25%) 9 (20%) 0.817 
NYD 17 (21%) 9 (25%) 8 (18%) Ref 
NFD 18 (22%) 8 (22%) 10 (22%) 0.870 
NFY 4 (5%) 1 (3%) 3 (7%) 0.662 
NYY 5 (6%) 3 (8%) 2 (4%) 1 
YFD 69 (85%) 27 (75%) 42 (93%) 0.446 
YFY 5 (6%) 1 (3%) 4 (9%) 0.436 
YYD 40 (49%) 17 (47%) 23 (51%) 0.663 
YYY 26 (32%) 13 (36%) 13 (29%) 1 
Pfcrtc, d 
Successfully sequenced 85/85 (100%) 38/38 (100%) 47/47 (100%) - 
M74 8 (9%) 6 (16%) 2 (4%) Ref 
74M/I 2 (2%) 2 (5%) 0 (0%) 1 
74I 75 (88%) 30 (79%) 45 (96%) 0.128 
N75 10 (12%) 8 (21%) 2 (4%) Ref 
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75N/E 1 (1%) 0 (0%) 1 (2%) 0.546 
75E 74 (87%) 30 (79%) 44 (94%) 0.042 
K76 9 (11%) 8 (21%) 1 (2%) Ref 
76K/T 1 (1%) 0 (0%) 1 (2%) 0.4 
76T 75 (88%) 30 (79%) 45 (96%) 0.013 
CVMNK 9 (11%) 8 (21%) 1 (2%) Ref 
CVIET 75 (88%) 30 (79%) 45 (96%) 0.013 
CVMNT 1 (1%) 0 (0%) 1 (2%) 0.400 
CVINK 3 (6%) 2 (6%) 1 (2%) 0.909 

aSynonymous mutations include P417P, C469C, R471R, S477S, T478T, G496G, Y511Y, R539R, S576S,  
bpfmdr1 haplotype constructed according to amino acids at positions 86, 184, and 1246; mixed infections included in numerator for each haplotype 
cpfcrt haplotype constructed according to amino acids at positions 72, 73, 74, 75, and 76; mixed infections included in numerator for each haplotype 
dall samples were wildtype for positions 72 (C) and 73 (D) 
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Supplemental Table 3.3: Molecular markers of resistance and association with treatment outcome, dihydroartemisinin-piperaquine arms, 
Democratic Republic of the Congo therapeutic efficacy study, 2017 

All samples Reinfection Day 0 Recrudescence + Reinfection 
Day of recurrence P 

pfk13 
Successfully 
sequenced 208/224 (93%) 99/102 (97%) 109/122 (89%) - 

Wild type 199 (96%) 96 (97%) 103 (95%) Ref 
Synonymous 8 (4%) 0 (0%) 5 (5%) 0.796 
Non-synonymous 1 (0.5%) 0 (0%) 1 (0.9%) 1 
pfmdr1a 
Successfully 
sequenced 223/223 (100%) 101/101 (100%) 122/122(100%) - 

N86 127 (57%) 57 (56%) 70 (57%) Ref 
86N/Y 33 (15%) 16 (16%) 17 (14%) 0.859 
86Y 63 (28%) 28 (28%) 35 (29%) 1 
Y184 113 (51%) 58 (57%) 55 (45%) Ref 
184Y/F 60 (27%) 22 (22%) 38 (31%) 0.092 
184F 50 (22%) 21 (21%) 29 (24%) 0.353 
D1246 188 (84%) 84 (83%) 104 (85%) Ref 
1246D/Y 7 (3%) 2 (2%) 5 (4%) 0.662 
1246Y 28 (13%) 15 (15%) 13 (11%) 0.497 
NYD 118 (53%) 53 (52%) 65 (53%) Ref 
NFD 81 (36%) 35 (35%) 46 (38%) 0.927 
NFY 11 (5%) 4 (4%) 7 (6%) 0.828 
NYY 11 (5%) 5 (5%) 6 (5%) 1 
YFD 71 (32%) 34 (34%) 37 (30%) 0.805 
YFY 9 (4%) 3 (3%) 6 (5%) 0.755 
YYD 59 (26%) 25 (25%) 34 (28%) 0.874 
YYY 28 (13%) 15 (15%) 13 (11%) 0.538 

apfmdr1 haplotype constructed according to amino acids at positions 86, 184, and 1246; mixed infections included in numerator for each haplotype 
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Supplemental Figure 3.1: Multiplicity of infection of day 0 and day of recurrence samples from treatment failures as determined by the 
maximum number of alleles detected among seven neutral microsatellite markers, Democratic Republic of the Congo therapeutic efficacy 
study, 2017 
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Supplemental Figure 3.2: Histogram of posterior probability of recrudescence of all late recurrences for which the probability of 
recrudescence is over 0% (n=114) 

The sum posterior probability of recrudescence was 57. There were 54 samples with a posterior probability of recrudescence of .5 or higher (and 
labeled as a recrudescence). The mean posterior probability of recrudescence was 0.04 (standard deviation= 0.17). Among late failures for which 
the posterior probability of recrudescence was >0 (n=114, 42.5%), the mean posterior probability of recrudescence was 0.49 (standard deviation= 
0.37) 
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Supplemental Figure 3.3: Assessment of the use of different cutoffs of posterior probability of recrudescence derived using a Bayesian 
algorithm for interpreting microsatellite data for molecular correction, Democratic Republic of the Congo therapeutic efficacy study, 
2017 

Failure rate estimates obtained using the Bayesian analysis algorithm for artemether lumefantrine, artesunate amodiaquine, and dihydroartemisinin 
piperaquine. The failure rate derived by summing the posterior probability of recrudescence for each arm is denoted in each plot by a horizontal 
gray line. The cutoff for posterior probability at which a recurrence was classified as a recrudescence varied between ≥0.1 and 1. 
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