
 45

This phenomenon is analogous to the gold rush situation noted by Vigden, which can create very

high market turbulence (Vidgen, 2009).

Respondents also noted the relatively small, intertwined customer base as being a factor.

Although power utility companies are often large government regulated entities, there are

relatively few of them. Utilities are part of a small tight knit community that readily exchange

information about their vendor experiences. Recommendations from utility customers can not

only help sales, they can make or break a vendor in the business. This gives customers a great

deal of leverage when it comes to getting what they want out of the product.

In addition to this limited customer base, strong competition between vendors was also felt by

many of the respondents. Other vendors were believed to be more agile and nimble in some

cases because they did not have the baggage created by numerous mergers and acquisitions over

the years. Competitors were believed to have the ability to respond to the market just as quickly

with equivalent feature sets and embedded device support. The respondents felt that this resulted

in a constant battle of who could provide the richest feature sets in the least amount of time. As

one respondent explained:

“They [our competition] go to the customer and say, ‘hey, these guys don't have this

latest and greatest [feature but] we have it,’ so agility is certainly important.” “Since

everybody is responding to the market, if you're the one who is doing it quicker, it

helps your business.” Hardware Project Manager

Governments were also found to be a market driver. Being an international company,

this organization was subject to, and worked with, a number of different governments all over

 58

Figure 2: Hybrid Agility in Embedded Systems: Key Characteristics

 Although merging agile and Scrum with the Stage Gate methodology may have been

driven in part by the need to incorporate hardware projects more effectively, it also served as a

series of sanity checks for the organization as a whole. The purpose of this sanity checking is to

ensure that the system release matches what the business needs. It is how process agility lines

itself up with market agility at a specific point. In short, Stage Gate acts as a control or

checkpoint on agile methods. One product manager explains these toll booth characteristics:

 59

“[The merging of agile methods] to gate-driven process is more or less like a toll

booth. Before you go onto the next section of road, do you have the right fare to get

through? And did you get the right checks of the requirements? Did you get the right

financial backing? Did you get the right details in the technical pieces and how you

are going to get to the next toll gate? That is our NPI gate-driven methodology.”

Software Product Manager

 This kind of sanity checking is often necessary in an embedded systems environment due

to the complexity of the solutions, interdependencies, and the need to eventually roll components

up from all three domains (software, firmware, and hardware) into one comprehensive system

release. As one firmware manager explained:

“That complexity [of] firmware, the head-end, and the hardware in order to release it is

what contributes to the waterfall methodology of a system release.” Firmware Product Manager

 The next three sections describe the domains of software, firmware, and hardware within

an embedded systems environment, and their role in hybrid agility. Yet another element of

hybrid agility is customer management. Although product management may serve as the

primary interface to the customer initially, the engineering organization is not without a voice.

Respondents noted that the organization’s voice, as well as the business side, was a critical

component to hybrid agility success.

As with the other domains of firmware and hardware, software can release independently,

but is also linked to the other domains. Respondents repeatedly noted that the software domain

had adopted the most agile development practices. These included regularly scheduled sprints,

 60

Scrum meetings, retrospectives, and agile methods for requirements management and estimation.

Software development in an embedded systems environment can be just as conducive to iterative

agile development as software alone, with the exception that it has some constraints or linkages

to the other domains from time to time. This is due to the fact that software can be more easily

decomposed into testable chunks of code. Because of these factors, the software domain is

capable of cutting new releases in an little as six months, compared to hardware which could be

up to eighteen months or two years.

Respondents also noted that as the most agile domain of the three in the organization,

software often serves as the SWAT team or early responders for the company. Whenever there

is an urgent need, or even if it is not urgent and merely a process of decomposition, the

organization strives to achieve software only solutions where it can bypasses firmware and

hardware when possible. This tactic contributes to the process agility of the entire embedded

system.

 Firmware development employs many of the same agile Scrum processes that the

software side does, with a few exceptions. Although firmware teams manage requirements

through user stories and have regular Scrum standup meetings, the story estimations and sprints

tend to be longer and more flexible. This partial adoption of agile is due in part to the fact that

firmware development cannot always be broken down into testable, iterative chunks as software

can. Respondents stated that size of the “chunks” impacted team velocity and sprint

management, making it much more difficult to monitor and manage firmware development in the

same way as software. As one manager noted:

 61

“It seems to reach a point where it can't be broken down because it can't be testable – it's

definitely not the level of fineness that [software] is.” Firmware Manager

 From a process perspective, firmware must straddle the organizational divide between the

pure agile methodology of software, and the waterfall process of hardware development. More

importantly, both software and hardware domains often require support from firmware resources

to complete their tasks, which can produce a sort of organizational tension. An architect explains:

“Given that firmware is kind of a shared resource across all these different products and

they’re following a sprint cycle -- it creates some tension in terms of [interdependencies]”

Hardware Architect

 Firmware’s ability to stretch resources in support of the other domains is critical. In many

ways it serves as the “glue” which keeps software and hardware connected.

 Hardware moves the slowest out of all the domains, with release cycles of up to two to

three years in length. Like the other domains, it can release independently, but it is constrained

to a certain extent by linkages to the others, particularly when a systems release is needed.

Hardware’s linkage to manufacturing, longer product life and the associated costs of spinning

boards makes it difficult to manage requirements in the same way software and even firmware

can. As a result, it operates largely within a waterfall context. One of the main reasons cited for

this is hardware’s inability to drop features as development and manufacturing progress, as cited

by a project manager:

 62

“With software, you can be agile as you go along and you can drop certain features

as needed. With hardware the reason it hasn't been adopted is you can't really do

that.” Hardware Project Manager

 In addition, the product lifespan of the hardware warrants more extensive quality

assurance requirements than the other domains. As a hardware manager explained, this means it

cannot flex or compromise in these areas as firmware and software often do:

“On the hardware side, we commit 15 or up to 20 years of product life, so since our

products are installed, they are exposed to the elements and [must withstand] severe

or extreme weather conditions and humidity conditions, so we have to maintain our

quality and put a lot of effort in testing and validating” Hardware Product Manager

 Another reason for waterfall methodology is the cost of spinning boards. If new

hardware needs to be created due to changing requirements, that can be expensive. This

characteristic does not lend itself well to continuous iterative development.

 Although the hardware domain does not use agile methodologies as the other two

domains do, comments from respondents showed that it does contribute to process agility

through the use of agile or lean techniques. These include rapid prototyping and by-passing the

State Gate methodology when necessary.

 Rapid prototyping is one way in which the Hardware domain attempts to keep up with the

agility of the other domains without outright adoption of agile methodologies or Scrum. In

essence, it is exercising an agile capability in contribution to the organization’s hybrid approach.

 63

Using this method, the hardware team begins with a working prototype, and then rapidly and

iteratively develops subsequent prototypes as requirements change. This is often performed in

tandem with firmware development.

 The hardware domain has the ability to bypass the Stage Gate process under certain

circumstances. These situations are referred to as “C-Level” projects. It is one way in which the

hardware domain can suddenly become more agile on demand, as the following comment

explains:

“There are smaller hardware projects that can be more agile where it's just having to

change out one part on a board that's already designed and verify it's good and those .

. . don't need as strict following of the NPI process [waterfall]. We call them 'C-Level

projects' and they're managed, you know, real loosely. They only have to basically go

through two gates, a planning gate and a project closure gate and then the team is

allowed to be free in between. We do have many of those type projects and I think they

work well if the team plans it well from the beginning. So those are where we're able

to take the more agile approach on the hardware side.” Hardware Project Manager

 Unlike the firmware and software domains, the hardware domain is managed without the

use of sprints, Scrums, or other commonly accepted agile methods. Through prototyping and

“C-Level” projects, however, the hardware domain still has an agile or lean contribution.

 Although the business side serves as the primary communication interface to the

customer and the market at large, the engineering organization is not without a voice. Like

market agility, process agility not only attempts to reach the momentum set by the business, but

 64

influences it as well. This is done through managing customer expectations and negotiating from

a technical perspective when necessary. Such communication is performed by all three domains

within embedded systems. As one manager explained:

“It can also slow the project down if the customer isn’t managed in a way that lets

them know ‘we’re demoing something you asked us to do and here’s the result AND

the limitations.’” Operations Manager

 Even though agility demands extensive customer collaboration and adaptation, these

must be tempered and controlled for the good of the business. The company cannot respond to

any and all demands every time. Through managing expectations, the business grounds what

may often be lofty or unrealistic expectations by the customer with respect to quality and feature

functionality.

 Not only must expectations be managed with respect to technology and capability, but the

deliverable must also be negotiated with the customer. This illustrates that not only does the

business have a voice with the customer when it comes to deciding the scope of the systems

release, but the development organization does as well. Although the business leads, while the

organization largely reaches, there is a symbiotic interaction here where the organization may

offer more technical input to the roadmap that the business was, or is not capable of, seeing. As

a result, the organization and business, or the process and market agility responds respectively, to

influence and adapt to customer demands. The following comment illustrates this:

 65

“If certain issues are not fixed or if you realize that you won't be able to fix it in time,

then they work with the customer to get some kind of a resolution on when that

commitment could be satisfied, so in the ideal world you provide everything to the

customer, but in reality sometimes you have to go and tell them, ‘hey, yes, this is our

commitment, but right now it's not working.’ With my experience, the customers

understand that as long as there is a reasonable time frame to fix or close that gap, I

think they always work with us.” Hardware Product Manager

 As explained previously, the process agility response of the organization is the hybrid

agile implementation. The product of this implementation is the system release. System releases

are complicated embedded systems developed in a hybrid agile environment. As mentioned

previously, they consist of software, firmware, and hardware components released in tandem.

The environment in this study has organically adopted the optimum mix of agile and waterfall

processes to make the systems release happen.

 System releases are strategic as well as practical. Feature functionality that makes the

system release can be driven by the desire to gain new business in a specific area, as well as

satisfying existing customers. In this way the company can increase business momentum with

each release in the direction of innovation. As one product manager explained:

“Sometimes, we just need to put things in system releases in order to do something

like a proof of concept to gain more business. A lot of times, proof of concepts for

bids have tight deadlines around them which could drive their urgency for

requirements.” Firmware Product Manager

 66

 The system release seeks to match the business momentum that the business side has

established. However it is important to keep in mind that both influence each other. Since all

three domains within embedded systems can release independently, business momentum can

affect each in different ways. For example, hardware may experience a stronger momentum than

software, due to the fact that it has a more difficult time adjusting to dramatic change and the

“larger mass” of their releases. This in turn may impact tbe scope of such releases. The

customer management category within hybrid agility is utilized by the embedded systems

development organization to negotiate scope modifications when these situations occur. In this

way all three domains are kept to some level of synchronicity within the embedded systems

context thru utilization of its hybrid agile implementation.

 Now that process and market agility have been defined, the following section will

describe how these two categories are managed to achieve the central theory .

Agile Orchestration

 Analysis of the data revealed that the activities of orchestrating agility in this case study

fall into two main categories: interconnections or interactions and making adjustments. Table 5

below outlines these categories and their elements. Interconnections consist of people

interactions and technical connections that communicate, monitor, and synchronize with each

other. The enterprise uses these interconnections to make adjustments, thereby bringing market

and process agility closer together.

 67

Table 5: Elements of Agile Orchestration

6 Agile Orchestration 6.1 Interconnections and

Interactions

6.1.1 Dependencies

6.1.2 Interdependencies

6.1.3 Linkages

6.1.4 Status Points

6.1.5 Decision Points

6.1.6 Touch Points

6.2 Making Adjustments 6.2.1 Customer Acceptance

6.2.2 Scope Adjustment

6.2.3 Resource Adjustment

6.2.4 Constant Re-assessment

Table 5: Elements of Agile Orchestration

 Interconnections are intersection points between different domains within the embedded

systems environment. These interconnections can be interactions between people or

dependencies based on technology or resources. The major categories that arose from the data

included dependencies, interdependencies, linkages, decision points, status points, and touch

points. Dependencies and interdependencies are involuntary connections that are forced due to

the nature of the technology and the product(s) being developed. The remaining connection

types are voluntarily initiated connections created by the organization to manage the first two.

Table 6 provides a summary. The following sections describe these different categories and their

relationships to each other.

 68

Understanding Interconnections and Interactions in Hybrid Agility

Connection or

Interaction Type

Formal

or

Informal

Definition

Dependencies Informal One domain has a technical or resource dependency on another.

Interdependencies Informal Two or more domains have technical or resource dependencies

on each other.

Linkages Formal Scheduled Meetings between domains for collaboration and

coordination.

Status Points Formal Monitoring Points and Metrics

Decision Points Formal Formal meetings or process points between stakeholders for

making decisions. These could be agile in nature, such as a

demonstration for user acceptance, or more waterfall based, such

as decision gates in the Stage Gate process.

Touch Points Informal Informal interactions that occur to resolve potential problems or

follow up on progress. Largely intuitive in nature.
Table 6: Understanding Interconnections and Interactions in Hybrid Agility

Dependencies are just that. They are situations where one domain has a dependency on

another to complete a task. As is often the case in embedded systems, one piece of the solution,

such as firmware, may have to be completed to a specific level before hardware can complete

their work, or vice-versa. This is a technical dependency. In addition, respondents noted the

presence of resource dependencies. Often, one domain may require expertise or consultation with

another domain before it can move on. This may require a resource or subject matter expert from

one domain to stop what they are working on to help out with another.

 Often, the result of these dependencies is that one domain must put its work into a sleep

state until the other domain is ready. As one architect explained:

“If firmware resources are diverted then the project basically is just in a sleep state until it

gets resurrected.” Hardware Architect

 69

 This presents some practical problems in that once resurrection occurs, resources must be

re-engaged. This may become difficult if the original participants are not available, and new

resources have to be brought up to speed. Domains attempt to mitigate these dependencies and

sleep state situations through proactive communication and coordination. Each domain

communicates to others what changes they are making that could impact them. For example, if

hardware is changing the way a circuit operates and firmware needs to know about it, they will

communicate this to them. If hardware needs additional test modes, they will communicate

those changes as well. Although this communication or agile interaction is often informal, the

results must be coordinated in order for the domains to keep in sync. This synchronization can

put limitations on iterative development. The following excerpt illustrates that although

firmware utilizes development sprints, they cannot keep developing until they are done as is

usually the case with agile Scrum methodology:

“And so a lot of times we have to coordinate, so the firmware team can't just say 'well,

we're just going to deliver features until we run out of time.' We have to build those

three features about a month before software needs them so software can do their

work.” Software Development Manager

 In summary, dependencies are managed through a series of informal agile interactions, as

opposed to a formal process. Synchronicity between the domains is maintained by either

planning ahead so that one domain does not have to wait on another, or by putting a project into

a sleep state until the dependency is resolved.

 Dependencies in embedded systems can be particularly complex in that there may be

 70

multiple interdependencies intertwined between multiple domains. While dependencies can be

described as one-way situations in which one domain is reliant on another, interdependencies

consist of two-way dependencies between two or more domains. For example, one or more

domains may be waiting on another domain, while at the same time that domain will need

feedback from yet another before work can proceed. As one Architect noted:

“Hardware quality doesn't want to finish its final product testing until they have a

final version of firmware. That may be dependent on, you know, the [software]

release.” Hardware Architect

 The organization mitigates these issues by using iterative development to provide enough

material for dependent domains to proceed. As one manager explained:

“So they generally have major milestones or target dates for deliverables of features

and so they'll deliver us a [device] that has 30% of the features set on it. We'll take

that, we'll implement that 30%, test it, and then by the time we've done that, they've

delivered the next, you know, 30% of the feature set and we'll work with them.”

Software Development Manager

 Interdependencies in embedded systems are essentially a complex web of intertwined

dependencies that must be carefully monitored and managed to ensure that projects keep moving.

To summarize, they are a form of interconnection in which two or more domains are

symbiotically interdependent on each other. Such interdependencies can come in the form of

shared testing and development needs, and they are often managed by one or more domains,

 71

providing iterative functionality that allows the other domain(s) to proceed. This is one way in

which process agility is managed.

 Different from dependencies or interdependencies, linkages are scheduled interactions

between stakeholders for the purpose of sharing information, coordination, collaboration, and

decision making. These consist largely of a series of formally organized meetings attended by

progressively smaller, yet more executive-level, teams as issues and the status move from the

ground level up to C-Level. Such meetings include release architecture meetings, Scrum standup

meetings (including a larger Scrum of Scrums meeting), project operations review and change

control board meetings.

At the lowest (or development team) level resides the daily Scrum standup meetings. As the

development organization is divided into Scrum teams, each has its own standup within the

software and firmware domains:

“There are daily standups by sprint teams. Those are attended by Scrum master

and/or the key people on the team. They discuss what they’re working on, how they’re

progressing, and issues they’re encountering.” Software Project Manager

 As the development organization employs two-week sprints, sprint team meetings are

held bi-weekly. These meetings are where requirements or user stories are reviewed with the

engineers and product management to resolve issues and negotiate what the final outcome may

be for a set of user stories within a sprint.

 Due to the size of the organization, large distributed teams report in to small Scrum of

Scrums meetings which roll into an even larger one. This is one way in which an embedded

 72

systems organization allows the various distributed teams to roll up together into one Scrum. As

one project manager explained:

 “We have a Scrum of Scrums which is where we meet with all the software managers,

firmware managers, and the leads and we discuss how the sprint teams are

performing, and any issues that they’re encountering.” Software Project Manager

Depending on the needs of the release or the project, there may be multiple Scrum of Scrum

meetings broken up by function, as a project manager explained:

“There’s even a smaller Scrum of Scums that meet a couple times a week and that is a

little bit higher level than the standups and a little bit lower level than the project

Scrum of Scrums, and those have been broken up by major functional areas.”

Software Project Manager

 At the next level (release management level) are the release architecture meetings. As a

project manager explained, these meetings are attended by most first-level managers, product

managers, project managers, systems engineering, and other stakeholders who may have issues

on the agenda for discussion:

“And so we have release architecture meetings multiple times a week, which is where

we review what’s going on in the release. That’s attended by software managers,

firmware managers, and systems engineers, architects, some key experts as needed,

 73

and in there we review what’s targeted for the scope and get things slated up for

sprint work.” Software Project Manager

 Release architecture and Scrum meetings typically only involve software and firmware

domains. Hardware is brought in at the project operations review meeting, which consists

primarily of first and second-level managers in conjunction with the executive team:

“We have a project operations review every week, which is where we bubble up

everything out of the project systems meeting and present that to basically everyone

else in the company, the executive review board, the VPs. We give them insight into

the project. We give them the opportunity to weigh in or help us with an issue or

address any questions they have.” Software Project Manager

 As with most agile Scrum environments, retrospectives are performed to find out what

could be improved upon. In a large embedded systems organization with distributed teams, this

was found to be a challenge. As one development manager explained:

“Yeah, we do the retrospectives. Rolling retrospective information across 40 teams is a

bigger challenge than rolling it up across three or four teams. You can't meet all together

and talk about it. So in past projects where I've had three teams, you can bring 20 people

 74

in the room and talk about a retrospective, you do it on a team-by-team basis and you

can bring [roll] those results back up. Across 40 teams that a big challenge.”

Software Development Manager

 Another linkage type is the change control board meetings where defects or other

significant changes to released software are discussed. The attendee list is similar to that of the

release architecture meetings.

 Linkages are a form of formal interconnection (or interaction) that usually consists of a

set meeting or meetings that serve as formal contact points between domains. They are part of

how agile processes are orchestrated across the enterprise.

 Status points are monitoring points and metrics that managers use to observe progress

and alert on potential problems. This activity is not limited to development but starts early, even

as new requirements are decomposed and understood. In addition to the usual burn down charts,

managers employ a customized dashboard that monitors progress based on requirements activity.

The first of these metrics is the decomposition rate.

 As mentioned earlier, decomposition of requirements is key to understanding them. This

activity takes time, and it is important that it is monitored. The excerpts below explain how the

decomposition rate is created and monitored:

“So [for] a feature that hasn’t been broken down or well understood, it [dashboard]

shows an estimated value of that, and we compare that to the total decomposed value

and also the percent complete based on each.” Software Project Manager

 75

“So [in] that decomposition process we have a percentage. So I'm simplifying the

math, but if we start with 10 requirements and they have, you know, between five and

20 stories each, on day one, the decomposition percentage would be zero and then as

the business analysts and the product owners work and start generating stories, we'll

start checking off stories that have reached a gating point.”

Software Development Manager

 In addition to decomposition rate, the progress of user story development and the tasks

they consist of is monitored via the dashboard and a burn down chart. These burn down charts

are broken down to the team level and to the individual level. These statistics can also be rolled

back up to project level which shows how many ideal engineering days (based on approximately

6.5 work hours per day) are in each sprint and the entire release. System releases typically

consist of ten such sprints.

Another important metric is velocity, which is based on how many ideal engineering days

a team has completed in each sprint. Velocity performance is compared to previous releases to

gain an understanding of how teams perform over time. It also serves as a benchmark for

capacity and as a predictor for scoping the next release

 Of course, no executive dashboard would be complete without financials and general

project performance data. Budgets are tracked to the actuals of the company’s financial spend.

Project dependencies are monitored as well as past release metrics. Measurements of how long it

took previous system releases to go from one Stage Gate to another and their respective

financials are actively compared to current efforts.

 76

 Yet another important status point is defect metrics. The incoming arrival and closure

rates for defects are monitored, as well as their customer impacts. All of this metric data is

maintained internally in a central repository accessible by the project team.

 In summary, status points are a form of interconnection that consists of monitoring points

that the organization uses to keep track of what is going on with feature decomposition,

development and testing. They serve as inputs to decision making and agility management.

 Another type of interconnection is the decision point. These don’t always occur in a

meeting or specific venue and can happen throughout scoping and development. As

requirements understanding is taking place, decisions are made collaboratively by the executives

from engineering (process agility) and the business (market agility). These include decisions

regarding what kind of work and how much can be taken on for the next systems release, as one

manager described:

“Before we sign up for it, they’re evaluating at different levels whether we're ready to

take on the next "big one," and that would be when they look at their revenue plans

and they see the top-line utilization of the R&D assets.” Software Product Manager

 While software and firmware tend to be more agile in the way they approach decisions,

hardware is much more rigid and waterfall based, requiring a feasibility study in the beginning to

help decide whether, when, and how the work could be taken on. During the progression of the

systems release, Stage Gates are integrated into the agile process as check points on the progress

and reliability of the release. These check points allow all three domains to maintain

 77

synchronicity. If the project has met its gating requirements, it will be allowed to proceed to the

next gate.

 Not all decision points are grounded in the Stage Gate process. Important decision points

are made at the user story and requirement levels as well. The final decision point for any

requirement is the demo or demonstration. Stakeholders, typically the product manager, will

observe and sign-off on the demo if it meets expectations. Respondents felt as though the size

and complexity of the organization contributed to a more formal demonstration process. As one

manager noted:

“Our demo is more formal, much more formal than it has been in other companies,

and I think the reason for the formality is because we have a lot of product managers,

a lot of different people, and a lot of developers in place.” Software Development Manager

 Such complexity contributes to limitations elsewhere, such as change management. Even

in a hybrid agile environment, change becomes more rigid beyond a certain point. Although the

ability to change is an important component of market agility, it does not mean that it is constant

throughout the development process. As the system release progresses, it becomes less

impervious to change. With embedded systems organizations in particular, the release tends to

be more rigid where hardware and multiple domains are affected. The following excerpt

illustrates how change is managed after the systems release has passed its Stage Gates:

“After that, change still happens but, you know, it’s a process. It has to go through

change control, it has to be well documented and with that, the team agrees that ‘hey,

 78

this is the change we need to make, it has all the right buy in and has the right

business specifications, so let’s make it.’” Software Project Manager

 A Hardware Engineering manager explained how such changes tend to be much more

rigid in his domain:

“Before that can happen, an engineering change order has to be written that explains

what's being changed, what it effects, and why it's being changed and then this ECO is

routed through the various functional groups: electrical, mechanical, firmware,

supply chain, manufacturing, hardware quality assurance and systems quality

assurance. It communicates the change and all these functional groups have to

approve that change and it also notifies them of what's changing and what the impact

is on that functional group.” Hardware Engineering Manager

 To summarize, decision points are a form of interconnection where the Stage Gate

process and agile methodology synchronize and sanity check each other. In other words, it is

where the agile and waterfall sides of the organization come together, hence the management of

hybrid agility.

 Less formal interconnections are touch points. Touch points are informal interactions

performed by managers and other stakeholders to check on what may be going on in another

domain or team. It is a form of tacit communication that is always going on, yet it is not

formally required or stated. The initiating of such communication is largely intuitive, but has

proven effective in making sure tasks are being performed, roadblocks are removed, and that

 79

processes are being orchestrated as expected. These touch points can be one-off communications

for follow up or ad-hoc meetings to resolve issues or to continue requirements decomposition.

One manager described this as:

“Helping [to] ensure that the teams are completing what they need to complete, when

they need to complete it.” Software Project Manager

 Systems engineering plays a significant role in managing these interactions, along with

project management. They ensure that business requirements are properly broken down into

technical requirements for each domain, and serve as the primary communication conduit from

the engineering organization up to the business:

“I will interact with systems engineering and systems might go to the change

meetings. Systems would also act as the go-between between product management and

firmware.” Firmware Architect

 These communications occur at all levels of management, as one project manager

explained:

“Then I work with product managers on a regular basis, the directors and the VPs to

assess the project, determine where we are, how we need to proceed, let me know if

there are issues with scope or some new customer commitment. I meet with them, kind

of on a regular, not a scheduled basis but a regular basis.” Software Project Manager

 80

 One respondent stated that documentation can sometimes take the place of interpersonal

interaction as a touch point:

 “So usually the way that those touch points happen would be us developing a

technical specification.” Hardware Architect

 Touch points are a form of interconnection that consists of ad-hoc meetings,

documentation, and personal follow-up. It is a largely intuitive part of the process because it

may be initiated by the project manager or other stakeholder based on feel, discomfort, or output

from a monitoring tool that lets them know they need to initiate a meeting or contact a

stakeholder for status.

 As the information inputs from the various interconnections and interactions are realized,

the company makes adjustments. Promises are made intuitively and quickly with little

information and are actively balanced with contractual workload. Adjustments to scope,

resources, and customer acceptance in particular are an important component of agility

management. These adjustments are updated via a process of constant reassessment.

 Customer collaboration is a key tenet of the Agile Manifesto. Respondents indicated that

much of their work involved influencing customer acceptance of the product. By working with

the customer to develop different modes of acceptance, products could be brought to market

quicker. These modes most often consisted of field trials and pilot projects. Field trials are

where the customer receives an early version of the product and is allowed to test them and

provide feedback. With this technique, the customer benefits by getting a new product quicker

 81

and having the chance to influence the product direction, while the vendor company saves

resource costs by essentially outsourcing its testing to the customer, as a hardware product

manager explained:

“And that's the first chance for us to get some feedback on our quality. Our customers

in Canada, they do really, really thorough testing of our products. I would say

sometimes even more detailed testing than us, so we take those feedbacks, and that

helps us to improve if there is an improvement needed in the quality of [our] tests,

that's certainly a good thing.” Hardware Product Manager

 Pilot projects are another method of agile customer collaboration. Using this method, the

customer’s expectations on quality are lowered in exchange for the opportunity to be first. This

allows the vendor company to bridge customer needs with organizational capabilities, as a

software product manager explained:

“We work with that customer to set expectations that we are going to pilot things with

them instead of giving them a proven, field-ready, tried-and-true product, and the

customers, to their credit, have generally accepted some of these decisions and

worked with us as long as the expectations were managed.” Software Product Manager

 Manipulating customer acceptance is one way in which the organization makes

adjustments to manage agility. Through the use of field trials, pilot projects, and other modes of

 82

acceptance, the organization influences as well as adapts to the business momentum generated by

market pressures.

 As with managing customer acceptance, adjusting scope is one of the necessary evils of

managing agility. Due to the high unknowns of new technology and changing customer needs,

capacity is pushed to its limits and is often over-estimated, then it is gradually adjusted as the

requirements and business needs become more apparent. This refinement occurs gradually as

requirements are better understood. Often, this may continue after decomposition and well into

development.

 One respondent noted how they over estimate capacity or pack the release with the

expectation that items will be pulled later:

“I get a lot more of ‘well, I want you to prioritize three times the capacity of the

project because I really don’t know which bits and pieces I’m going to pull to be able

to fill up the actual capacity.’” Operations Manager

 Another respondent recounted how requirements are selected for the release as they

bubble up to the top:

“We pick the highest priority items off of the top of the pile and slate those to a

release, haggling over what’s really a priority and so forth [until it] is finally settled.”

Software Product Manager

 These scope adjustments are often strategic. They may be based on obtaining business

from a specific customer or sector or be due to the lack of profit in a specific product line.

 83

Respondents noted that revenue generation tended to be a key component of the company’s

strategic direction. In order for rapid scope adjustment to work, the organization must be

flexible in its ability to abort gracefully on requirements, features, and/or products. These

requirements may be postponed, or dropped altogether. Resources can then move quickly from

one aborted task to a more important priority. Such decisions are made at the executive level,

with the business or product side working in tandem with the engineering or organizational side

to make the ultimate decision.

 Resources must be adjusted, as well as scope. Analysis revealed that the organization

cultivated an ability to flex resources in a variety of ways. These consisted of maintaining team

flexibility, outsourcing when needed, and most importantly, relying on a core group of engineers

with high expertise. Such flexibility is much higher within the software domain than the

firmware or hardware domains, but it still exists. The reason for this difference was cited by

many respondents as being due to the lack of interchangeability of resources. Such

interchangeability is less prevalent in the firmware and hardware domains due to the specialized

level of expertise required.

 Teams have the ability to optimize the use of this high expertise when necessary. The

agile concept of self-organizing teams and pair programming allows them to organize the

required expertise according to the current scope. Although expertise may be high and

specialized, respondents noted that the teams are smart enough to organize the right mix of

people. Having these self-organizing agile teams was found to be critical in maintaining

capacity, as one manager explained:

 84

“If we don’t have agile teams, if we are constantly swapping in new features, if Team

A only works with one type of code or one type of functionality and that feature is now

pulled from the release, well now that team goes unused and they have to scramble to

do something else or we’re going to lose capacity.” Software Project Manager

 Embedded systems development brings with it its own set of challenges with regards to

high expertise and self-organizing teams. As mentioned previously, firmware sits in the middle

of the technological solution between software and hardware. Resources from firmware are

often strained because the other domains require their support. Managing this resource rotation

is a continual challenge. These resources tend to be even more specialized and less

interchangeable than other domains, as a manager explained:

 “We have firmware guys that are rotating in and out, say for instance 80% of the time

they’re supporting the software group and 20% of the time they’re supporting

hardware. If I've got a firmware guy that’s supporting hardware efforts and he gets

moved over halfway through the life of development to support software and we bring

somebody else in that knows nothing about this hardware development it’s a challenge

for him to get up to speed.” Hardware Engineering Manager

 The most severe example of this flexibility is referred to as the hero model. Often as a

last resort, the organization will draft one, or more, highly capable expert to solve a problem or

meet the goals of a release entirely outside of the agile processes, as a lead architect explained:

 85

“The hero model, which we know doesn't really last forever, it's not a good thing to

build a company on, but sometimes when you've got to get something done really

quickly and you don't have time to track story points and break it down, you can just

give it to a group of very capable people and say, here, you just need to get this done

as quick as possible.” Software Architect

 The organization must continually adjust the correct resource mix across the range of

domains and projects. This adjusting is facilitated by a constant process of reassessment of the

business’s current position against its strategic direction. In this way, the business reassesses all

of its adjustments.

 Respondents noted that much of this reassessment activity arose from the hybrid agile

implementation. The Stage Gate method forces re-evaluation at each gate that many felt makes

the organization more agile, despite its waterfall nature, as a manager explained:

“Because it’s within that waterfall process, it probably makes us more agile because we

have to constantly reassess and reevaluate where we are and what we need to complete

versus just finishing what we finish.” Software Project Manager

 Agile orchestration is the group of activities used to manage agility across the enterprise.

It is how process and market agility are managed to achieve a common goal. There are two

major categories of agile orchestration, which are interconnections or interactions, and making

adjustments. Interconnections consist of dependencies of one domain on another,

interdependencies between two or more domains, formal linkages or key meeting points between

 86

domains, status points for monitoring and maintaining status, decision points for executive

decision making, and informal touch points that stakeholders establish intuitively to keep the

process moving. Decision points and linkages also serve as the connecting points between the

agile method process and the waterfall process, and they therefore assist in managing the hybrid

agility implementation that the organization has employed. It is important to note that the kinds

of interconnections and interactions developed within this study are largely influenced by the

embedded systems context. The “agile characteristics” outlined in figure 2 enable all of the

domains to work together as one cohesive unit, agile orchestration ensures that this cohesion

occurs. The interactions and interconnections are designed to bring all domains within

embedded systems together both informally and formally when necessary to ensure the

production of the systems release. The necessity of this cohesion and the agile characteristics

and orchestration it demands are specific to embedded systems.

The business then uses the outputs and inputs from these interconnections to make

adjustments to customer acceptance modes, scope, and resources to manage the agility of the

organization. The process of making these adjustments is one of continual reassessment.

Agile Vortices: The Grounded Theory

 Through open, axial, and finally, selective coding, grounded theory methodology

maintains that a central theory should be identified. Strauss and Corbin define this phenomenon

as the central problem that the subjects are trying to solve. Strauss and Corbin further hold that

other categories should be explained in terms of this central theory (Strauss, 1990). The

previous sections illustrated the primary categories identified via axial and open coding and the

elements that compose them. These include market agility, process agility, business momentum,

and the systems release. In this section, we explain these categories in terms of the central

 87

theory. Using concepts from fluid dynamics, combined with the metaphor of a whirlpool, a

succinct visualization is provided which describes how all of the categories are linked together

into one comprehensive model.

 Figure 3 below combines the two figures previously mentioned, Figure 1, and Figure 2,

into one view. It illustrates how the hybrid agile organization of software, firmware, and

hardware combine with the product genesis of the business as a result of market pressure.

Figure 3: Rolling up Process and Market Agility Categories into One View

 During selective coding, an analysis of the data indicated that both sides of the business,

the product management organization and development, are constantly attempting to reach the

 88

same point throughout each product release and will manage themselves into making this

happen. According to the software project manager:

“Usually we determine when the release is going to go out the door and then from there

we back into how much development can we squeeze in, and we really say how much

quality are we willing to accept within this period and if it works out then that period

stays. If we need more quality then we’ll reduce capacity of the release and do less

development.” Software Project Manager

 This point of convergence was identified as the central theory . The reason it is identified

as such is because it is the central problem that the subjects are trying to solve. Essentially it is

the gravity that pulls all of the categories identified in axial coding together. Figure 4 below

illustrates this point of convergence. Product genesis is the business’s market agility response to

market pressure. Product genesis in turn sets the tone through its creation of business

momentum. The development organization attempts to match this momentum through the

creation of the systems release, which is created by the hybrid agile development organization.

Hybrid agility is the development organization’s process agility response to market pressures.

Figure 4: Business Momentum and the Systems Release are created by Market and Process Agility

 89

 These linkages can best be explained using a metaphorical illustration, as part of the

selective coding process.

 Consider a whirlpool as a metaphor for the subject of our study. Whirlpools are a form of

vortex, which spin around a central axis. Based on fluid dynamics, the velocity of the rotation in

a whirlpool is greater as you get closer to this axis. Suddenly, a tennis ball falls into the pool.

As the ball is drawn closer to the axis, it acquires a spin or rotation of its own and moves at a

velocity and direction influenced by the vortex. As it does so, it gains momentum, based on its

mass or size multiplied by its velocity. The movement of this ball illustrates the motion or

circulation of the vortex. The circulation of the vortex at the position of the ball is its vorticity.

Vorticity has been defined in fluid dynamics as the point in a vortex where the curl is the

strongest. One firmware manager characterized how momentum is felt within his organization:

“It (change) kicks off a whole chain of events that goes on, so I think there's always

a lot of momentum going with project schedules. There's a lot of momentum going.

If you have something that changes midstream within a project then it's very hard for

us to change direction there, and it's got to be kind of planned into future releases.”

Firmware Manager

 Using this metaphor, we can easily map Figures 1 through to 4 to the whirlpool. The

central axis of the whirlpool illustrates the effect of market pressure. The innermost ring of the

pool is product development or product genesis as we described earlier. This ring consists of

requirements development based on customer input, as influenced by market pressure, and it is

led largely by product management in conjunction with systems engineering. As the innermost

ring, it spins the fastest. The next innermost ring is the software development part of the

 90

organization. Software development can occur independently or in conjunction with other

domains such as firmware and hardware. Because it runs on a fast release cycle of six months or

less, it is the next innermost ring. Firmware and Hardware domains make up the next two rings

respectively, with hardware furthest to the outside. Firmware is often managed within a software

context but has linkages to both software and hardware within the organization. Hardware

makes up the outermost ring because it operates on the slowest release cycle of all, which can be

up to two to three years. Although all three domains can and do operate and release

independently, during a full system release they must all be in complete alignment. This is a

unique property of embedded systems and illustrates one of the key challenges present in this

context. As in a whirlpool, although each ring is interconnected they are all running

independently at progressively slower velocities as the observer looks outward from inside the

vortex at the observation point of the tennis ball (refer to Figure 5). These domains and the

management of them constitute our hybrid agility implementation.

 91

Figure 5: The Agile-Business Vortex: The Ultimate Goal of Agile Orchestration is the Management of Process and

Market Agility to achieve Agile Vorticity

 The tennis ball in our metaphor falls between the first ring, product genesis, and the

second ring, software. The position here represents the dividing line between market agility (the

area between market pressure, product genesis and the ball) and process agility (consisting of

software, firmware, and hardware). Market agility is the ability of the business to adapt to

change in the market and is a function of product genesis. Process agility is the ability of the

organization, including software, firmware, and hardware, to adapt accordingly through hybrid

agility.

 92

The vortex could include a mass, or size, which can represent the scope of a specific system

release or a series of system releases over time. This can include a product scope or roadmap.

The velocity of the ball is the timeline at which this system release or product roadmap is to be

achieved. Multiplying the scope size by the timeline velocity produces business momentum.

The direction that the ball is moving illustrates the technical direction of the product roadmap, or

innovation. (Refer to Figure 2.)

Momentum = Mass X Velocity

Business Momentum = Scope X Timeline

Figure 6: Agile Orchestration Close-up: Business momentum, Innovation, and Agile Vorticity

 Finally, the circulation of the water at the point where the ball is located is called its

vorticity. This is the point at which everything converges. Market agility is the ability of the

business to reach the vorticity point with its product roadmap under the influence of market

pressure via product genesis. Process agility is the ability of the organization through hybrid

agility to reach the same point of vorticity. A good illustration of process agility in this

illustration is an outstretched arm attempting to reach across the organizational rings to reach the

 93

ball, as market agility slowly sucks it further away. It should be noted that time in this metaphor

is ever present, as it would be in actuality. Vorticity is relative to the point of view of an

observer at the same point of observation, moving along with the fluid.

 Agile orchestration is the creation, nurturing, and closing of an agile business vortex in

which market and process agility intertwine to produce a new software release. This was found

to be the central problem that all aspects of the organization were trying to solve. These agile

business vortices which are created as a result of high market pressure in conjunction with high

technological innovation are the central theory of this study. The aforementioned model depicts

bringing multiple forces together that create a need to be agile. Each concentric ring influences

the point of Vorticity where the firm needs to be to successfully produce a systems release.

 94

Chapter 7: Discussion

The purpose of this study was to determine how agile processes are orchestrated in an

embedded systems context. The result was an empirical analysis of a hybrid agile

implementation involving high innovation within a turbulent marketplace. We begin this section

with a discussion of this hybrid agile implementation, how it is managed and the forces that

created it. This discussion is followed by an exploration of fluidity and how this concept links

together hybrid agility, embedded systems, continuous releases, and innovation, within the

context of our fluid whirlpool metaphor.

An Inquiry into Hybrid Agility

As our vortex metaphor implies, a hybrid agile implementation is a complex one, subject

to powerful forces of market and innovation, thereby making the management of it particularly

challenging. So how does the organization in such an environment organically adapt to these

forces, and can they actually be controlled? Based on the results of our study, hybrid agility is a

delicate balance of agile methodologies and Stage Gate processes. While the agile aspects of this

balance allow for higher degrees of market response, the Stage Gate characteristics function

largely as the boundary conditions. They serve as the check and balance against agility. This is

due in large part to the embedded systems context and the constraints that such technology

places on an engineering firm. Embedded systems environments include not one, but multiple

development domains that operate independently yet are forever linked. While the business as a

whole considers itself agile, each domain within the embedded context has adopted agility in

very different ways.

Software, the most nimble of the domains, has adopted agile Scrum methods almost

entirely. As a result of this high level of adoption, they serve as the early responders of the

 95

engineering team. By contrast, the slowest of the domains, hardware, has not adopted any agile

methods at all and remains largely Stage Gate managed. Despite this fact though, our study

found that hardware does employ lean concepts of rapid prototyping and a fast track Stage Gate

pathway that it uses to maintain rhythm with the rest of the company. In the middle is the

firmware domain, which has employed some aspects of agile and Scrum in terms of

requirements management and standup meetings, yet stays away from the rigidity of two-week

development sprints. Due to the shared resource nature of firmware, its complexity and the

specialized expertise required to develop it, breaking up work into small, rigid iterative sprints is

not very feasible.

In this way, the nature of the different domains places boundaries on the level of agility

each can accept. Additionally, as hardware is the slowest domain and the primary profit center

for the company, the Stage Gate process used to manage it also used to keep the other domains

grounded. Regardless of their level of agile adoption, stakeholders from each of the three

domains must check in at the various gates within this waterfall process. In this way, the

boundary conditions of hybrid agility are largely provided for by this Stage Gate process.

Why has the engineering organization in our study adopted agility in this way? As explored

earlier, causal factors for organizing development in ways such as this have been found to be:

 a desperation to rush market,

 a new and unique market environment,

 a lack of experience developing under the conditions imposed by the environment

(Baskerville et al., 2003; Lyytinen & Rose, 2005).

 As mentioned previously, the nature of the smart grid technology and the power utility

market have created a gold rush situation. This is definitely in line with the first two causal

 96

factors. Secondly, although some components of the business being studied have been around

for years, the current combination of merged organizations has only been in place for a relatively

short time. Adoption of agile methodologies within the business was started only a few years

ago. Such adoption occurred fluidly and organically over time, because no one involved had

much prior experience implementing agile in a complex embedded systems environment with

such high market turbulence.

Fluidity and Continuous Releases

The implementation and orchestration of hybrid agility can be at least partially explained

by a fluid view of agile methodology. Allowing agile implementations to be tailored provides

for better accommodation of change, especially when frequent releases are necessary

(Baskerville et al., 2003; Lyytinen & Rose, 2005). This can be further enhanced with parallel

development which allows developers to correct problems as they occur. As with the different

domains within embedded systems, it has been shown that different methodologies can be

isolated for different releases (Baskerville et al., 2003). Further, this fluid view of development

methodology provides a framework that can contain the behavior of system components that

have been developed with different approaches, such as software developed with agile and

hardware, created with waterfall.

Methodological flexibility allows different teams to find their ideal working style given

the mix of the group, such as firmware teams versus software teams (Baskerville et al., 2003). It

also allows developers to vary their approaches when environmental constraints change, such as

the examples of C-Level and hero model approaches in our study (Vidgen, 2009). All of these

fluid methodology characteristics are in line with our findings of hybrid agility. Although the

literature shows that boundaries are needed on process innovation, we can see these boundaries

 97

in our study with the adoption level of each embedded domain and the decision points provided

by stage gating.

This fluid approach to process innovation is likely to continue to influence the subject of

our study as well as the industry at large. Recent studies have noted a movement from agile

methods to more lean practices in software development (Wang, Conboy, & Cawley, 2012).

Kanban is a good example (Sjøberg et al., 2012). When one examines the agile business vortex,

it is easy to see that as business momentum increases and the point of vorticity becomes more

challenging to achieve, the organization may be required to move from the time-boxed iteration

style of Scrum to the more fluid process of Kanban. This strategy combines both event and time

pacing into more of a flow. Such a strategy can better accommodate more continuous releases

with less lead time (Sjøberg et al., 2012). Indeed, in some ways the subject of our study has

already expressed some tendencies towards this end. Even though time-boxed iterations are used

within the company’s agile process, event pacing is employed when necessary with such

techniques as the aforementioned hero model. This allows the development organization to get

things done on the fly, thereby allowing the business to be more reactionary when needed.

Hybrid Agile Implementations: Whirlpools within a “River of Innovation”

Innovation has also been characterized as a sort of flow (Rogers, 2003). Innovation takes

place when a technology is created, and more innovation occurs as that technology is transferred

to others (Rogers, 2003). In other words, when one event happens upstream it triggers other

events downstream, just like a river. These events can be influenced by market dynamics and

technology turbulence. With respect to our agile business vortex, agile is accelerating the

response to increasing market pressures which in turn is creating these whirlpools within a river

of innovation. This increased agile response, and the resulting whirlpool, place higher demands

 98

on the organization. As implied earlier, this demand may force an organization to supersede the

time-boxed agile iteration with a Kanban type of flow just to keep up.

 In the latest version of his book, Diffusion of Innovations, Rogers notes the following

research opportunities with respect to innovation development processes (Rogers, 2003):

 How are user’s needs and problems communicated to development teams?

 To what extent are technological innovations developed by lead users instead of

research and development experts? Is the creation of innovations by end users a

general pattern?

 What are the key linkages and interrelationships among the various organizations

involved in the innovation development process?

 In the context of embedded systems development and hybrid agility, this study provides

answers to these questions. It shows how user’s needs are communicated in a hybrid agile

environment. This process begins with product genesis, the continuous activity of requirements

comprehension and refinement. Expectations with customers are then actively managed and

negotiated by the engineering organization as the product is iteratively developed. Finally,

different modes of acceptance are negotiated with the customers, which typically include intense

customer involvement in the testing process.

 Customers willing to accept a less than perfect product in exchange for added influence

in product direction, enhanced service levels, and the chance to be an early adopter could well be

considered lead users, as Rogers describes them. When it comes to highly innovative products

or technologies, requirements comprehension within product genesis can only get so far due to

gaps in knowledge. Lead users, in the context of hybrid agile embedded systems, are critical to

bridging this gap. This gap bridging is an element of customer acceptance within agile

 99

orchestration. It is one way in which the designated point of agile vorticity is reached. To

further answer Rogers’ query, it is indeed a general pattern with respect to our context.

 Finally, the results of the study explicate in detail the linkages and interrelationships

among the embedded systems development organization (including software, firmware, and

hardware domains), the business, and how these are orchestrated.

 100

Chapter 8: Conclusion

 There has been a noticeable proliferation of hybrid agile solutions which have evoked

interest from both research and practice alike. The objective of this study was to determine how

agile methods are orchestrated in such an important context, with the added complication of

embedded systems development. To perform this study, key informants were interviewed with

direct responsibility of managing agility and related processes across the enterprise. This was

further enriched with informants from each embedded domain, including software, firmware, and

hardware development. What resulted were new learnings with regards to hybrid agility,

embedded systems, and process innovation.

Implications for Research

 Our study discovered that hybrid agility can include a mix of agile, Stage Gate, and even

lean concepts, depending on the domain, project, and development context. The optimum mix

for this hybrid approach is often actively tailored to the needs of the organization. Additionally,

our theory of agility orchestration in the vortex of embedded systems provides a deeper

understanding of how hybrid agile is adopted in embedded systems, how it is managed, and the

enablers or inhibitors specific to this context. Most importantly, our inquiry into the

orchestration of agility revealed new insights on some very interesting processes and behaviors,

such as product genesis, customer appetite, business momentum, and agile vorticity. As there

are not many studies involving agility in embedded systems development, or in combining agile

with Stage Gate processes, we believe our study is an important addition to both of these

branches of research.

One of the primary drivers for adopting agile methodologies (and indeed, a key tenet of

the Agile Manifesto) has been stated as the need for a higher level of customer responsiveness

 101

(Alliance, 2001). Our research shows that in particularly turbulent markets with high technical

innovation, whirlpools or agile business vortices can result. Agile innovation creates the

whirlpools due to its high responsiveness to market demands or pressures. Despite the existence

of such whirlpools, these forces do not run amok. We found that the organization uses agility to

manipulate as well as respond. Product genesis combined with different modes of customer

acceptance, and customer appetite for innovation all place limitations on how high the vortex can

be revved. Interestingly, the literature of agile methodologies is relatively silent with respect to

such limitations.

Beyond customer responsiveness and technical innovation, the delineation of a clear goal or

end game with respect to agility is also seemingly absent in the literature. The subject of our

study was found to actively seek out a sweet spot that it can back itself in to when it needs to

conduct an enterprise-wide systems release. Doing so required the creation of some very elegant

techniques for project management, systems engineering, and customer management across the

enterprise. How this agile vorticity occurs in embedded systems is particularly important

because of the different levels of agile and Stage Gate integration in each domain.

In addition to these learnings in hybrid agility and embedded systems, our work contributes

to agile process innovation as well. The current state of agile methodology literature has been

said to be in a largely post agile mode where the chief concerns have shifted from agile versus

plan driven and workflow, to simply creating agility in a variety of ways in all aspects of

development (Baskerville et al., 2011). This process innovation of agility is focused on

proactively creating fast responses to changing requirements and frequent releases using

concepts from other methods such as Stage Gate and Kanban. Our study shows that this process

innovation was impacted by the desire to reach a point of agile vorticity, a desire shared by

 102

release development and product management. The results of our research show that lean

methods of rapid prototyping and event pacing or hero models were often used in place of time-

boxed iterations. Elements from Stage Gate models were used as decision points or boundaries

against pure agile implementations. These are all examples of process innovation. Although

these boundaries were largely influenced by the various embedded systems domains, the desire

to reach a point of agile vorticity was the driving factor. This same desire for agile vorticity also

impacted requirements comprehension and the linkages and interrelationships used to manage

the hybrid process. Using these interconnections, lead users (Rogers, 2003) were employed

extensively to bridge the gap between product knowledge within the organization and

innovation. Out of all of this activity, the central theory of agile vortices proved to be the

common denominator.

Implications for Practice

 In industry, agile methods are seldom seen in clean form. A practical implication of our

study is that it shows in detail one framework for combining agile and Stage Gate methods.

There is not likely to be a one size fits all solution for building such a hybrid approach. As our

research implies, process innovation is tailored to its respective environments. Each organization

must focus on its own development context, projects, and limitations. In developing an approach

to process innovation, the concepts of agile and Stage Gate, and what these methods bring to the

table should always be considered. The framework brought forth in this study could be used as a

playbook for similar organizations to manage a hybrid approach of their own. In addition, the

study could provide beneficial directions for exploration. How to effectively tailor these

strategies to different contexts is yet to be explored and is worth studying.

 103

 Practical recommendations could include the introduction of more lean methods into the

current hybrid mix. A move from iterative agile development to methods such as Kanban may

reduce the amount of work in progress and allow for better process flow between embedded

domains. This move would be in line with other research findings, as more organizations with

mature agile adoptions are beginning to move in this direction (Wang, Conboy, & Cawley,

2012).

 Kanban has been shown to be well suited to situations where great uncertainty and high

amounts of change occur more frequently than that allowed by agile iterations (Wang, Conboy,

& Cawley, 2012). The use of hero models and C-Level projects may indicate that the subject of

our study is experiencing such conditions. The literature has explicated that development teams

will often resort to such methods if the existing process seems to be falling short (Vidgen, 2009).

This organization has also been working with a hybrid agile environment for a few years now

and the current implementation is considered relatively mature. Based on the literature, this

indicates that embedded systems organizations may consider moving to leaner methods. (Wang,

Conboy, & Cawley, 2012). Another indicator for a need to move to leaner methods could be

difficulty or failure to achieve a point of agile vorticity. Very high responsiveness to market

pressures can continue to increase to a level that demands replacing the time-boxed agile

iteration with more of a Kanban flow. Organizations considered mature in their adoption of agile

or hybrid approaches should be mindful of their agile vorticity. This may indicate that it is time

to change the approach to continuous process innovation in their business.

 104

Limitations and Opportunities for Future Research

A limitation on this study is the fact that it was conducted with one case. It was also

conducted in an embedded systems organization. Future studies could expand on this research

by applying it to a larger number of organizations and a wider variety of development contexts.

 Another future research opportunity could be a longitudinal study on how a hybrid agile

implementation is organically built over time. Determining how interconnections or adjustments

are established as agile methodologies are slowly integrated into existing Stage Gate

environments could provide new insights. As people interactions are a key tenet of the Agile

Manifesto, research on understanding how these interactions are established and routinized,

perhaps intuitively, could also be promising. The outputs from such studies could provide new

frameworks for agile orchestration and new ways to achieve agile vorticity.

 105

Appendix

Figure 7: Agile Business Category Diagram

 106

 107

References

Abrahamsson, Pekka, Conboy, Kieran, & Xiaofeng, Wang. (2009). 'Lots done, more to do': the

current state of agile systems development research, Editorial, European Journal of

Information Systems, pp. 281-284. Retrieved from

http://ezproxy.gsu.edu:2048/login?url=http://search.ebscohost.com/login.aspx?direct=tru

e&db=bth&AN=44385902&site=bsi-live

Alliance, The Agile. (2001). Manifesto for Agile Software Development. Retrieved August

12th 2014, 2014, from http://www.agilemanifesto.org

Arteta, B. M., & Giachetti, R. E. (2004). A measure of agility as the complexity of the enterprise

system. Robotics and Computer-Integrated Manufacturing, 20(6), 495-503. doi:

http://dx.doi.org/10.1016/j.rcim.2004.05.008

Barlow, Jordan B., Keith, Mark Jeffrey, Wilson, David W., Schuetzler, Ryan M., Lowry, Paul

Benjamin, Vance, Anthony, & Giboney, Justin Scott. (2011). Overview and Guidance on

Agile Development in Large Organizations. Communications of AIS, 29, 25-44.

Baskerville, Richard, & Pries-Heje, Jan. (2004). Short cycle time systems development.

Information Systems Journal, 14(3), 237-264. doi: 10.1111/j.1365-2575.2004.00171.x

Baskerville, Richard, Pries-Heje, Jan, & Madsen, Sabine. (2011). Post-agility: What follows a

decade of agility? Information & Software Technology, 53(5), 543-555. doi:

10.1016/j.infsof.2010.10.010

Baskerville, Richard, Ramesh, Balasubramaniam, Levina, Linda, Pries-Heje, Jan, & Slaughter,

Sandra. (2003). Is Internet-Speed Software Development Different? IEEE Software,

20(6), 70-77.

Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35(1), 64-69. doi:

10.1109/2.976920

Boehm, Barry, & Turner, Richard. (2005). Management Challenges to Implementing Agile

Processes in Traditional Development Organizations. IEEE Software, 22(5), 30-39.

Broadus, William. (2013). The Challenges of Being Agile in DOD. Defense AT&L, 42(1), 4-9.

Cao, Lan, Mohan, Kannan, Peng, Xu, & Ramesh, Balasubramaniam. (2009). A framework for

adapting agile development methodologies. European Journal of Information Systems,

18(4), 332-343. doi: 10.1057/ejis.2009.26

Conboy, Kieran. (2009). Agility from First Principles: Reconstructing the Concept of Agility in

Information Systems Development. Information Systems Research, 20(3), 329-354.

Conboy, Kieran, Coyle, Sharon, Xiaofeng, Wang, & Pikkarainen, Minna. (2011). People over

Process: Key Challenges in Agile Development. IEEE Software, 28(4), 48-57. doi:

10.1109/MS.2010.132

http://ezproxy.gsu.edu:2048/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=44385902&site=bsi-live
http://ezproxy.gsu.edu:2048/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=44385902&site=bsi-live
http://www.agilemanifesto.org/
http://dx.doi.org/10.1016/j.rcim.2004.05.008

 108

Conboy, Kieran, & Morgan, Lorraine. (2011). Beyond the customer: Opening the agile systems

development process. Information & Software Technology, 53(5), 535-542. doi:

10.1016/j.infsof.2010.10.007

Dingsøyr, Torgeir, Nerur, Sridhar, Balijepally, VenuGopal, & Moe, Nils Brede. (2012). A

decade of agile methodologies: Towards explaining agile software development,

Editorial, Journal of Systems & Software, pp. 1213-1221. Retrieved from

http://ezproxy.gsu.edu:2048/login?url=http://search.ebscohost.com/login.aspx?direct=tru

e&db=bth&AN=74095428&site=bsi-live

Douglass, Bruce Powel. (2004). Real Time Agility. Upper Saddle River, NJ: Addison-Wesley.

Drury, Meghann, Conboy, Kieran, & Power, Ken. (2012). Obstacles to decision making in Agile

software development teams. Journal of Systems & Software, 85(6), 1239-1254. doi:

10.1016/j.jss.2012.01.058

Dybå, Tore, & Dingsøyr, Torgeir. (2008). Empirical studies of agile software development: A

systematic review. Information and Software Technology, 50(9–10), 833-859. doi:

http://dx.doi.org/10.1016/j.infsof.2008.01.006

Eisenhardt, Kathleen M., & Brown, Shona L. (1998). TIME PACING: COMPETING IN

MARKETS THAT WON'T STAND STILL. (cover story). Harvard Business Review,

76(2), 59-69.

Fitzgerald, Brian, Hartnett, Gerard, & Conboy, Kieran. (2006). Customising agile methods to

software practices at Intel Shannon. European Journal of Information Systems, 15(2),

200-213. doi: 10.1057/palgrave.ejis.3000605

Floyd, Christiane. (1992). Software development as reality construction: Springer.

Galliers, R.D. (1991). Choosing Information Systems Research Approaches in Information

Systems Research: Alfred Waller.

Giachetti, Ronald E., Martinez, Luis D., Sáenz, Oscar A., & Chen, Chin-Sheng. (2003). Analysis

of the structural measures of flexibility and agility using a measurement theoretical

framework. International Journal of Production Economics, 86(1), 47-62. doi:

http://dx.doi.org/10.1016/S0925-5273(03)00004-5

Greer, D., & Ruhe, G. (2004). Software release planning: an evolutionary and iterative approach.

Information & Software Technology, 46(4), 243. doi: 10.1016/j.infsof.2003.07.002

Highsmith, J. (2010). Agile Project Management (2nd ed.). Boston, MA: Pearson Education, Inc.

Highsmith, J., & Cockburn, A. (2001). Agile software development: the business of innovation.

Computer, 34(9), 120-127. doi: 10.1109/2.947100

http://ezproxy.gsu.edu:2048/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=74095428&site=bsi-live
http://ezproxy.gsu.edu:2048/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=74095428&site=bsi-live
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1016/S0925-5273(03)00004-5

 109

Iivari, Juhani, & Iivari, Netta. (2011). The relationship between organizational culture and the

deployment of agile methods. Information & Software Technology, 53(5), 509-520. doi:

10.1016/j.infsof.2010.10.008

Janson, Marius A. Smith L. Douglas. (1985). Prototyping for Systems Development: A Critical

Appraisal. MIS Quarterly, 9(4), 305-316.

Karlstrom, Daniel, & Runeson, Per. (2005). Combining Agile Methods with Stage-Gate Project

Management. IEEE Software, 22(3), 43-49.

Kettunen, Petri, & Laanti, Maarit. (2005). How to steer an embedded software project: tactics for

selecting the software process model. Information & Software Technology, 47(9), 587-

608. doi: 10.1016/j.infsof.2004.11.001

Klein, Heinz K., & Myers, Michael D. (1999). A SET OF PRINCIPLES FOR CONDUCTING

AND EVALUATING INTERPRETIVE FIELD STUDIES IN INFORMATION

SYSTEMS. MIS Quarterly, 23(1), 67-93.

Laanti, Maarit, Salo, Outi, & Abrahamsson, Pekka. (2011). Agile methods rapidly replacing

traditional methods at Nokia: A survey of opinions on agile transformation. Information

& Software Technology, 53(3), 276-290. doi: 10.1016/j.infsof.2010.11.010

Lyytinen, Kalle, & Rose, Gregory M. (2005). How Agile is Agile Enough? Toward a Theory of

Agility in Software Development Business Agility and Information Technology Diffusion

(pp. 203-225): Springer.

Maruping, Likoebe M., Venkatesh, Viswanath, & Agarwal, Ritu. (2009). A Control Theory

Perspective on Agile Methodology Use and Changing User Requirements. Information

Systems Research, 20(3), 377-399.

Mathiassen, Lars, & Pries-Heje, Jan. (2006). Business agility and diffusion of information

technology. European Journal of Information Systems, 15(2), 116-119. doi:

10.1057/palgrave.ejis.3000610

McAvoy, John, Nagle, Tadhg, & Sammon, David. (2013). Using mindfulness to examine ISD

agility. Information Systems Journal, 23(2), 155-172. doi: 10.1111/j.1365-

2575.2012.00405.x

McHugh, Orla, Conboy, Kieran, & Lang, Michael. (2012). Agile Practices: The Impact on Trust

in Software Project Teams. IEEE Software, 29, 71-76. doi: 10.1109/MS.2011.118

Mohan, Kannan, Ramesh, Balasubramaniam, & Sugumaran, Vijayan. (2010). Integrating

Software Product Line Engineering and Agile Development. IEEE Software, 27(3), 48-

55.

Muthitacharoen, Achita, & Saeed, Khawaja A. (2009). Examining User Involvement in

Continuous Software Development (A case of error reporting system). Communications

of the ACM, 52(9), 113-117.

 110

Orr, Ken. (2004). Agile requirements: Opportunity or oxymoron? IEEE Software, 21(3), 71-73.

Persson, John Stouby, Mathiassen, Lars, & Aaen, Ivan. (2012). Agile distributed software

development: enacting control through media and context. Information Systems Journal,

22(6), 411-433. doi: 10.1111/j.1365-2575.2011.00390.x

Port, Daniel, & Bui, Tung. (2009). Simulating mixed agile and plan-based requirements

prioritization strategies: proof-of-concept and practical implications. Eur J Inf Syst, 18(4),

317-331.

Pozzebon, Marlei, Petrini, Maira, de Mello, Rodrigo Bandeira, & Garreau, Lionel. (2011).

Unpacking researchers' creativity and imagination in grounded theorizing: An exemplar

from IS research. Information and Organization. (21(4)), 177-193. doi:

http://dx.doi.org/10.1016/j.infoandorg.2011.09.001

Qumer, A., & Henderson-Sellers, B. (2008). A framework to support the evaluation, adoption

and improvement of agile methods in practice. Journal of Systems and Software, 81(11),

1899-1919. doi: http://dx.doi.org/10.1016/j.jss.2007.12.806

Qureshi, M. Rizwan Jameel. (2012). Agile software development methodology for medium and

large projects. IET Software, 6(4), 358-363. doi: 10.1049/iet-sen.2011.0110

Ramesh, Balasubramaniam, Cao, L. A. N., Mohan, Kannan, & Peng, X. U. (2006). CAN

DISTRIBUTED SOFTWARE DEVELOPMENT BE AGILE? Communications of the

ACM, 49(10), 41-46.

Ramesh, Balasubramaniam, Lan, Cao, & Baskerville, Richard. (2010). Agile requirements

engineering practices and challenges: an empirical study. Information Systems Journal,

20(5), 449-480. doi: 10.1111/j.1365-2575.2007.00259.x

Ramesh, Balasubramaniam, Mohan, Kannan, & Lan, Cao. (2012). Ambidexterity in Agile

Distributed Development: An Empirical Investigation. Information Systems Research, 23,

323-339. doi: 10.1287/isre.1110.0351

Rogers, Everett M. (2003). Diffusion of Innovations (5th ed.). New York: Free Press.

Ronkainen, Jussi, & Abrahamsson, Pekka. (2003). Software Development under Stringent

Hardware Constraints: Do Agile Methods Have a Chance? In Michele Marchesi &

Giancarlo Succi (Eds.), Extreme Programming and Agile Processes in Software

Engineering (Vol. 2675, pp. 73-79): Springer Berlin Heidelberg.

Royce, Winston W. (1970, August). Managing the development of large software systems. Paper

presented at the proceedings of IEEE WESCON.

Salo, O., & Abrahamsson, P. (2008). Agile methods in European embedded software

development organisations: a survey on the actual use and usefulness of Extreme

Programming and Scrum. IET Software, 2(1), 58-64. doi: 10.1049/iet-sen:20070038

http://dx.doi.org/10.1016/j.infoandorg.2011.09.001
http://dx.doi.org/10.1016/j.jss.2007.12.806

 111

Schatz, Bob, & Abdelshafi, Ibrahim. (2005). Primavera Gets Agile: A Successful Transition to

Agile Development. IEEE Software, 22(3), 36-42.

Sheffield, Jim, & Lemétayer, Julien. (2013). Factors associated with the software development

agility of successful projects. International Journal of Project Management, 31(3), 459-

472. doi: 10.1016/j.ijproman.2012.09.011

Sjøberg, Dag I. K., Johnsen, Anders, & Solberg, Jørgen. (2012). Quantifying the Effect of Using

Kanban versus Scrum: A Case Study. IEEE Software, 29(5), 47-53. doi:

10.1109/MS.2012.110

Smith, Michael, Miller, James, Huang, Lily, & Tran, Albert. (2009). A More Agile Approach to

Embedded System Development. IEEE Software, 26(3), 50-57.

Ståhl, Daniel, & Bosch, Jan. (2014). Modeling continuous integration practice differences in

industry software development. Journal of Systems & Software, 87, 48-59. doi:

10.1016/j.jss.2013.08.032

Stankovic, John A. (1996). Strategic directions in real-time and embedded systems. ACM

Comput. Surv., 28(4), 751-763. doi: 10.1145/242223.242291

Strauss, Anselm; Corbin, Juliet. (1990). Basics of Qualitative Research: Grounded Theory

Procedures and Techniques. Newbury Park, CA: Sage.

Sue, Kong, Kendall, Julie E., & Kendall, Kenneth E. (2012). PROJECT CONTEXTS AND USE

OF AGILE SOFTWARE DEVELOPMENT METHODOLOGY IN PRACTICE: A

CASE STUDY. Journal of the Academy of Business & Economics, 12(2), 1-15.

Sugimori, Y., Kusunoki, K., Cho, F., & Uchikawa, S. (1977). Toyota production system and

Kanban system Materialization of just-in-time and respect-for-human system.

International Journal of Production Research, 15(6), 553-564. doi:

10.1080/00207547708943149

Svahnberg, Mikael, Gorschek, Tony, Feldt, Robert, Torkar, Richard, Saleem, Saad Bin, &

Shafique, Muhammad Usman. (2010). A systematic review on strategic release planning

models. Information and Software Technology, 52(3), 237-248. doi:

http://dx.doi.org/10.1016/j.infsof.2009.11.006

Tedre, MattiSutinen Erkki. (2008). Three traditions of computing: what educators should know.

Computer Science Education, 18(3), 153-170. doi: 10.1080/08993400802332332

Van de Ven, A. . (2007). Engaged Scholarship: A Guide for Organizational and Social

Research. New York, NY: Oxford University Press.

Vidgen, Richard (2009). Coevolving Systems and the Organization of Agile Software

Development. Information Systems Research, 20(3), 355-376.

http://dx.doi.org/10.1016/j.infsof.2009.11.006

 112

Vinekar, Vishnu, Slinkman, Craig W. , & Nerur, Sridhar. (2006). CAN AGILE AND

TRADITIONAL SYSTEMS DEVELOPMENT APPROACHES COEXIST? AN

AMBIDEXTROUS VIEW. Information Systems Management, 23(3), 31-42.

Vlaanderen, Kevin, Jansen, Slinger, Brinkkemper, Sjaak, & Jaspers, Erik. (2011). The agile

requirements refinery: Applying SCRUM principles to software product management.

Information and Software Technology, 53(1), 58-70. doi:

http://dx.doi.org/10.1016/j.infsof.2010.08.004

Wang, Xiaofeng, Conboy, Kieran, & Cawley, Oisin. (2012). “Leagile” software development:

An experience report analysis of the application of lean approaches in agile software

development. Journal of Systems & Software, 85(6), 1287-1299. doi:

10.1016/j.jss.2012.01.061

Wang, Xiaofeng, Conboy, Kieran, & Pikkarainen, Minna. (2012). Assimilation of agile practices

in use. Information Systems Journal, 22(6), 435-455. doi: 10.1111/j.1365-

2575.2011.00393.x

Yauch, Charlene. (2011). Measuring agility as a performance outcome. Journal of

Manufacturing Technology Management, 22(3), 384-404.

Yin, Robert K. (2009). Case Study Research Design and Methods. Thousand Oaks, CA: Sage.

http://dx.doi.org/10.1016/j.infsof.2010.08.004

