Informative SNP Selection and Validation

Diana Mohan Babu

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses

Part of the Computer Sciences Commons

Recommended Citation
INFORMATIVE SNP SELECTION AND VALIDATION
by
DIANA MOHAN BABU

Under the Direction of Alexander Zelikovsky

ABSTRACT

The search for genetic regions associated with complex diseases, such as cancer or Alzheimer's disease, is an important challenge that may lead to better diagnosis and treatment. The existence of millions of DNA variations, primarily single nucleotide polymorphisms (SNPs), may allow the fine dissection of such associations. However, studies seeking disease association are limited by the cost of genotyping SNPs. Therefore, it is essential to find a small subset of informative SNPs (tag SNPs) that may be used as good representatives of the rest of the SNPs. Several informative SNP selection methods have been developed. Our experiments compare favorably to all the prediction and statistical methods by selecting the least number of informative SNPs. We proposed algorithms for faster prediction which yielded acceptable trade off. We validated our results using the k-fold test and its many variations.

INDEX WORDS: Informative SNP, tagging, bioinformatics, genotype, haplotype, prediction, k-fold test, Furthest SNP Extension, Modified FSE.
INFORMATIVE SNP SELECTION AND VALIDATION

by

DIANA MOHAN BABU

A Thesis Submitted in Partial Fulfillment of the Requirements of the Degree of

Master of Science

in the College of Arts and Science

Georgia State University

2007
INFORMATIVE SNP SELECTION AND VALIDATION

by

DIANA MOHAN BABU

Major Professor: Alexander Zelikovsky
Committee: Raj Sunderraman
 Saeid Belkasim

Electronic Version Approved:

Office of Graduate Studies
College of Arts and Science
Georgia State University
August 2007
ACKNOWLEDGMENTS

I would like to take this opportunity to thank everyone who has played a significant role during my stay at Georgia State University. I would like to thank my advisor Dr. Alex Zelikovsky for being my guide and spending time on directing my thesis. I would also like to thank my committee member, Dr. Raj Sunderraman and Dr. Saeid Belkasim for extending their support and insightful comments and suggestions. A big thank you goes out to all my friends and members of my research group Gulsah Altun, Jingwu He, Jun Zhang, Irina Astrovskaia, Kelly Westbrooks, Qiong Cheng and Stefan Gremalschi. Special thanks thank you goes out to Dumitru Brinza and my parents for their love and support.
TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER ... 1

1. **INTRODUCTION** .. 1
 1.1 Molecular Biology Basics ... 1
 1.2 Tagging Problem .. 4
 1.3 Tagging Validation ... 5
 1.4 Contributions ... 6
 1.5 Overview .. 7

2. **INFORMATIVE SNP SELECTION METHODS** 9
 2.1 Previous work in Tagging ... 10
 2.2 STAMPA .. 12
 2.3 Tagger ... 12
 2.4 IdSelect ... 13

3. **TAG SELECTION BASED ON PREDICTION** 14
 3.1 Selection based on Prediction ... 14
 3.1.1 STA .. 15
 3.2 Furthest SNP Extension ... 16
 3.3 Modified Furthest SNP Extension 17
 3.4 About SNP Data set .. 18
 3.5 Trade-off between Prediction Quality and Runtime 18

4. **IMPROVED PREDICTION ALGORITHM** 20
 4.1 SNP Prediction Problem Formulation 20
 4.2 Prediction of Genotypes .. 21
 4.2.1 Previous Methods ... 21
 4.2.1.1 One – by –One Prediction 22
 4.2.1.2 Alternatives – Entropy Methods 22
 4.2.1.3 RREF – based Prediction 23
 4.2.2 Our proposed Method ... 28
4.2.2.1 One – after – another

4.2.2.2 K-Fold Cross Validation

5. STATISTICAL COVERAGE

5.1 r^2 Computation

5.2 Efficiency of Tagger and MLR on MCG Data

5.3 Comparison of 3-fold cross validation on Tagger and MLR

6. CONCLUSIONS AND FUTURE WORK

7. IMPLEMENTATION

7.1 Furthest SNP Extension (FSE)

7.1.1 Running the program

7.1.2 File Formats

7.2 Modified Furthest SNP Extension

7.2.1 Running the program

7.2.2 File Formats

7.3 One-after-another Prediction

7.3.1 Running the program

7.3.2 File Formats

7.4 K-Fold Cross Validation

7.4.1 Running the program

7.4.2 File Formats

BIBLIOGRAPHY
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Comparison on Runtimes and number of Tags selected</td>
<td>18</td>
</tr>
<tr>
<td>4.1.</td>
<td>Results of One-after-another</td>
<td>29</td>
</tr>
<tr>
<td>4.2</td>
<td>K-fold test performed on the prediction algorithm. K=90 is equivalent to leave-one-out test</td>
<td>30</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison between Tagger [3] and MLR [7]</td>
<td>34</td>
</tr>
<tr>
<td>5.2</td>
<td>3-fold cross validation results on MLR and Tagger</td>
<td>36</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1.1 Relationship between DNA, Genes, Chromosomes and Genome………………… 1
1.2 Encoding SNPs for computation ... 3
1.3 Problem formulation .. 4
2.1 Problem formulation .. 9
3.1 Tradeoff between runtime and number of tags for the proposed algorithms…… 19
4.1 Algorithm to use RREF for Prediction... 26
4.2 Algorithm to calculate non-informative SNPs using coefficients.................... 27
4.3. Correlation between error and number of zeros in SNP RREF.................... 28
5.1 MLR-tagging for statistical covering. The shaded columns correspond to k tag SNPs and the clear columns correspond to $m - k$ non-tag SNPs............... 32
CHAPTER 1
INTRODUCTION

1.1 Molecular Biology basics

DNA (Deoxyribonucleic acid) is one of the building blocks of life that carries the genetic information in living things. It has a double helix structure which consists of two complementary strands of nucleotides. Each of the two strands serves as a template for synthesis of a new DNA strand during replication. Information in DNA is organized into genes which are packaged into chromosomes. All chromosomes taken together form an organism's Genome and affect specific characteristics of the organism.

![Figure 1.1. Relationship between DNA, Genes, Chromosomes and Genome](image)

Imagine these relationships as a set of Chinese boxes nested one inside the other (Figure1.1). The largest box represents the genome. Inside it, a smaller box represents the chromosomes. Inside that is a box representing genes, and inside that, finally, is the smallest box, the DNA. In short, the genome is divided into chromosomes, chromosomes contain genes, and genes are made of DNA.

Genes are made of DNA, and so is the genome itself. A gene consists of enough DNA to code for one protein, and a *genome* is simply the sum total of an organism's DNA. DNA
is the molecule that is the hereditary material in all living cells. The bases found in DNA come in four varieties: adenine, cytosine, guanine, and thymine—often abbreviated as A, C, G, and T, the letters of the genetic alphabet.

Genes are found on chromosomes and are made of DNA. Different genes determine the different characteristics, or traits, of an organism. In the simplest terms (which are actually too simple in many cases), one gene might determine the color of a bird's feathers, while another gene would determine the shape of its beak.

A *chromosome* is a package containing a chunk of a genome—that is, it contains some of an organism's genes. Chromosomes help a cell to keep a large amount of genetic information neat, organized, and compact.

Human beings have 46 chromosomes (23 from mother and 23 from father). Diploid organisms, like human beings, have a pair of nearly identical chromosomes. A copy of each chromosome is called a *haplotype*. Data consisting of pairs of haplotypes is called a *genotype*. Genome difference between any two people is about 0.1% of genome. These differences are *Single Nucleotide Polymorphisms (SNPs)*. More than 4 million SNP's have been identified and the information has been made publicly available. SNPs may occur in both coding (gene) and non-coding regions of the genome. Many SNPs have no effect on cell function, but they could predispose people to disease or influence their response to a drug [7].
A SNP is a specific location in our DNA where different people have different DNA bases. For example, at a specific point in your DNA you may have the DNA base cytosine (C) and another person may have the DNA base thymine (T). SNPs are bi-allelic, so if you possess two copies of C or two copies of T at this location, one on each of your pair of chromosomes, you are homozygous. If you possess a C and T at this location you are heterozygous. Homozygous is represented as 0 or 1 (depending on its value) whereas heterozygous is represented as 2 in the genome (Figure 1.2).

The major allele is considered to be the wild type while the minor allele is considered to be the mutation. Hence, SNPs portray the genetic differences among people which will enable biologists to calculate the risk factor of genetic diseases in people.
1.2 Tagging Problem

The search for genetic regions associated with complex diseases, such as cancer or Alzheimer's disease, is an important challenge that may lead to better diagnosis and treatment. The existence of millions of DNA variations, primarily single nucleotide polymorphisms (SNPs), may allow the fine dissection of such associations. However, studies seeking disease association are limited by the cost of genotyping SNPs. Therefore, it is essential to find a small subset of informative SNPs (tag SNPs) that may be used as good representatives of the rest of the SNPs [1].

In order to handle data with huge number of SNPs, one can extract informative SNPs that can be used for (almost) lossless reconstructing of all other SNPs. To avoid information loss, index SNPs are chosen based on how well the other non-tag SNPs can be reconstructed. The corresponding informative SNP selection problem (ISSP) can be formulated as follows (Figure 1.3).

Given a sample S of a population P of individuals (either haplotypes or genotypes) on m SNPs, select positions of k ($k < m$) SNPs such that for any individual, one can predict non-selected SNPs from these k selected SNPs. The Multiple Linear Regression based MLR-tagging algorithm [7] solves the optimization version of ISSP which asks for k
informative SNPs minimizing the prediction error measured by the number of incorrectly predicted SNPs. The number of tags (informative SNPs) k depends on the desirable data size. More tags will keep more genotype information while fewer tags allow deeper analysis and search.

Using statistical methods, the informative SNPs are captured using the correlation coefficient r^2. This is done by selecting the SNPs in the sample which are able to predict other SNPs in the sample with a correlation of at least a certain amount. For example, if $r^2 > 0.8$, each non-tag SNP should be predicted with an accuracy of at least 80%. If the value of $r^2 = 1$, it shows that the two SNPs are identical, if $r^2 = 0$ it shows no correlation at all.

The effectiveness of the tags varies with the number of tags chosen and the desired correlation set. If the desired correlation is high, the number of tags selected is highly effective. If the number of tags selected is too little, the accuracy is low. The more the number of tags used, the better the prediction. Our intention is to chose the optimal number of tags with reasonably high correlation in order to achieve the best results.

1.3 Tagging Validation

In MLR-tagging [7], the validation has been done using the leave-one-out test. In this method, one individual is removed from the sample file and its value is predicted using the tags found. The predicted value is then compared with the original value of that individual and the accuracy is determined. This process is repeated till all the individuals have been predicted.

Keeping in mind that these tags will be used to predict many unknown SNPs, for which the accuracy cannot be measured, we decided to perform the k-fold test. In this method, the sample population is divided into k equal parts. One k^{th} of the file is predicted based on $(k-1)/k$ parts of the file. This is done for all the parts and the average accuracy is calculated. This method is carried out for a wide range of values of k. As the value of k increases, the
prediction accuracy increases. As the number of SNPs to be predicted increases, the prediction accuracy decreases.

1.4 Contributions

A lot of work was done in the various methods of informative SNP selection. We started with the prediction based methods and then moved on to statistical methods for informative SNP selection. Statistical methods were found to perform better giving high accuracy.

We propose two new algorithms for selection based on prediction – Furthest SNP Extension and Modified FSE. The intuition behind these algorithms was based on the TSP heuristic analogy of furthest neighbor extension. It seeks to find the furthest distance that a point can be from a graph. In this algorithm, the furthest two points are joined. The next point selected is furthest from both the selected points. Even though our algorithm does not directly use prediction; in a way, the largest distance represents the SNPs that are least correlated. This shows that prediction is also considered in the form of the distance values, even though it is not the focus of our algorithms. We found that Furthest SNP Extension has the best trade off between runtime and number of informative SNPs selected.

In Section 4, we propose an improved prediction algorithm where the prediction focus of the problem was to improve the prediction capability in spite of longer runtimes and more tags. In our method, one individual is hidden from the sample genotype and its value is predicted. The predicted value is compared against the actual value. This process is carried out until all the individuals have been predicted. Our method of prediction
uses a novel approach of using the previously predicted value in the prediction of its neighbors. We also performed the k-fold cross validation to test our method.

In Section 5, statistical covering is discussed. Initially MLR [7] did not perform up to the mark as Tagger [3]. We tweaked the formula used to calculate the correlation coefficient (r^2) and gained better performance than Tagger [3]. When predicting a non-tag SNP, the MLR-tagging method accumulates information about all tag SNPs resulting in significantly higher prediction accuracy with the same number of tags than for the previously known tagging methods. We confirmed our results using 3-fold cross-validation.

1.5 Overview

Chapter 2 talks about the current methods used for informative SNP selection. The methods discussed are IdSelect [4], STAMPA [5], and Haploview (specifically the Tagger module) [3]. IdSelect [4] uses the greedy approach to select tag SNPs. STAMPA [5] uses dynamic programming to select the tags and calculate best prediction score. Tagger [3] uses statistical methods combined with the greedy approach to choose tags.

Chapter 3 proposes different algorithms considered for tag selection. STA [6] is used as the benchmark in terms of trade off between runtime and accuracy. The main focus in this experiment is the time taken. Two algorithms with faster runtimes are analyzed. On an average, it is found that as the runtime decreases the number of informative SNPs selected increases.

Chapter 4 proposes an improved prediction algorithm based on linear reduction method. The newly predicted non-tag SNP is used as a tag in the prediction of the next SNP. We propose an improved prediction algorithm where the prediction focus of the problem was to improve the prediction capability in spite of longer runtimes and more tags.

Chapter 5 describes statistical covering method that we used. On comparing our results
with Haploview [3], we reexamine the formula and data being used to calculate r^2. Upon modifying the algorithm, we were able to achieve better results than Haploview [3] for our test sets.

Chapter 6 describes future work followed by related conclusions and bibliography.
CHAPTER 2
INFORMATIVE SNP SELECTION METHODS

In order to handle data with huge number of SNPs, one can extract informative SNPs that can be used for (almost) lossless reconstructing of all other SNPs. To avoid information loss, index SNPs are chosen based on how well the other non-tag SNPs can be reconstructed. The corresponding informative SNP selection problem (ISSP) can be formulated as follows (Figure 1.3).

Given a sample S of a population P of individuals (either haplotypes or genotypes) on m SNPs, select positions of k (k < m) SNPs such that for any individual, one can predict non-selected SNPs from these k selected SNPs. The Multiple Linear Regression based MLR-tagging algorithm [7] solves the optimization version of ISSP which asks for k informative SNPs minimizing the prediction error measured by the number of incorrectly predicted SNPs. The number of tags (informative SNPs) k depends on the desirable data size. More tags will keep more genotype information while fewer tags allow deeper analysis and search.

Using statistical methods, the tag SNPs are captured using the correlation coefficient r².

![Figure 2.1. Problem formulation](image-url)
This is done by selecting the SNPs in the sample which are able to predict other SNPs in the sample with a correlation of at least a certain amount. For example, if $r^2 > 0.8$, each non-tag SNP should be predicted with an accuracy of at least 80%.

The effectiveness of the tags varies with the number of tags chosen and the desired correlation set. If the desired correlation is high, the number of tags selected is highly effective. If the number of tags selected is too little, the accuracy is low. The more the number of tags used, the better the prediction. Our intention is to chose the optimal number of tags with reasonably high correlation in order to achieve the best results.

2.1 Previous work in Tagging

Previous research on tag SNP selection has explored both lossless and lossy methods. Lossless methods select a set of tag SNPs that capture 100% of the haplotypic variation in the sample population. Lossy methods typically select fewer tags than lossless methods, but with some tolerated amount of information loss.

Aviitzhak et al. [4] presented a method for selecting tags which can be used in both a lossless and a lossy manner. The central idea behind both their lossless and lossy methods is to eliminate tags that contribute the least to the Shannon entropy for the haplotype set. First, identical columns and complimentary columns are eliminated, then they eliminate columns that do not reduce the number of unique rows. They note that selecting a maximal linearly independent set of column vectors would miss opportunities to eliminate complimentary SNPs and illustrate that by the 2-by-2 identity matrix. Their lossless method reduces by 25% and 36% the number of SNPs describing the haplotype diversity within an African-American and Caucasian population, respectively.

Zhang et al. [51] introduced a block-based, dynamic programming algorithm for haplotype inference that is capable of reconstructing 90% of the original data using only 35% of SNPs as tags. They used the partition-ligation expectation maximization
algorithm for haplotype inference, and as a result, provided a method of performing association studies directly on genotype data.

Sebastiani et al. [43] described a lossless method called BEST (Best Enumeration of SNP Tags) for identifying a minimal set of tag SNPs from haplotype data. BEST selects tags by determining if a candidate tag is a boolean function of SNPs already chosen as tags. The BEST method selected 14% of SNPs as tags from an African-American population and 10% from an European-American population by considering individual genes each ranging from 5 to 229 SNPs in length. However, its effectiveness on a genome-wide scale is still unproven. According to their method, 95% of tags selected from the European-American population were also selected from the African-American population, which provides evidence for the a genetic bottleneck event that occurred long ago as hominids migrated out of Africa to settle Europe and Asia.

Halldorson et al. [23] defined the informative ness measure of how well a set of tags describes a haplotype sample. Both the informativeness measure, as well as their tag SNP selection method consider a graph whose vertices are SNPs; an edge is placed between to SNPs if one SNP can be used to reliably predict the other. Their method seeks the set of SNPs that maximizes the informativeness measure on the haplotype data. The method can achieve prediction rates of 90% based on only 20% of SNPs. Halldorsson's method differs from the others in that it is a block-free method. Block-based methods are restricted to identifying tags only within local contiguous sequences of SNPs where the haplotype diversity is low. Block-free methods have the capability to identify tags across an entire genome. Like Halldorsson's method, the linear reduction method we propose is a block-free method.

Lee et al. [34] introduce BNTagger, a new method for tagging SNP selection, based on conditional independence among SNPs. Using the formalism of Bayesian networks
(BNs), their system aims to select a subset of independent and highly predictive SNPs. For example, BNTagger uses 10% tags to reach 90% prediction accuracy. However, BNTagger comes at the cost of compromised running time. Its running time varies from several minutes (when the number of SNPs is 52) to 2-4 hours (when the number is 103).

Our tagging problem formulations and above approaches do not take into account haplotype frequency when selecting a tag SNPs.

2.2 STAMPA

Halperin et al. [1] describes a new method STAMPA for SNP prediction and tag selection. A SNP is predicted by inspecting the two closest tag SNPs from both sides; the value of the unknown SNP is given by a majority vote over the two tag SNPs. They use dynamic programming to select tags to reach best prediction score. Their methods are compared with idSelect and HapBlock on a variety of data sets, and could predict with 80% accuracy the SNPs in the daly dataset[17] using only 2 SNPs as tags. In general, this problem is computationally difficult and the runtime of an exact algorithm may become prohibitively slow. Therefore, one can use heuristics for the selection of k tags following Halperin et al.[1] who compare relatively slow STAMPA with a fast random tag selection.

2.3 Tagger[3]

De Bakker et. all [3] describe how to select the informative SNPs using the SNPs that surround it. They claim that SNPs that are in close distance are highly correlated and tag SNPs should be picked from this pool (One tag from each pool) of highly correlated SNPs. A simple and conservative approach is used to select tag SNPs from a subset of non redundant SNPs from the genotype data such that every common allele either is perfectly genotyped or is identical ($r^2=1$) to on of the tags. More attention is paid in testing the efficiency of the tags than picking
them. They select random tags and test them using the $2 \times 2 \chi^2$ test. If all SNPs are not covered, they find another set of informative SNPs. Similarly they run multiple tests on a set of tags and try to find the set that passes the most number of tests. Also test are performed with 1 degree of freedom to prevent over fitting. Sometimes, if a combination of SNPs can be used for prediction, this combination is used as a tag.

2.4 idSelect [13]

IdSelect, developed by Carlson et al.[13], used a greedy approach for tag SNP selection. They developed a greedy algorithm to identify subsets of tag SNPs for genotyping, selected from all SNPs exceeding a specified MAF threshold. Starting with all SNPs above the MAF threshold, the single site exceeding the threshold with the maximum number of other sites above the MAF threshold is identified. This maximally informative site and all associated sites are grouped as a bin of associated sites. Not all SNPs within the bin are interchangeable, because pairwise association is not an associative property: if r^2 exceeds the threshold for SNP pairs A/B and B/C, r^2 for SNP pair A/C might not exceed the threshold. Thus, because the bin is initially ascertained using a single SNP, all pairwise r^2 within bin are re-evaluated, and any SNP exceeding threshold r^2 with all other sites in the bin is specified as a tag SNP for the bin. Thus, one or more SNPs within a bin are specified as tag SNPs, and only one tag SNP would need to be genotyped per bin. The informative SNP can be selected for assay on the basis of genomic context (coding vs. noncoding or repeat vs. unique), ease of assay design, or other user-specified criteria. The binning process is iterated, analyzing all as-yet-unbinned SNPs at each round, until all sites exceeding the MAF threshold are binned. Each bin is reported as a set of all SNPs in the bin as well as the subset of tag SNPs within the bin, each of which is above the r^2 threshold with all other SNPs in the bin. If an SNP does not exceed the r^2 threshold with any other SNP in the region, it is placed in a singleton bin.
CHAPTER 3
TAG SELECTION BASED ON PREDICTION

In tag SNP selection, speed is an important issue. If the tags take too long to compute, it becomes a more expensive option to tag SNPs. In some cases the informative SNP values may not be as important as the time taken for selection. Keeping this trade-off in mind two algorithms are proposed.

The intuition behind the following algorithms was based on the TSP heuristic analogy of furthest neighbor extension. It seeks to find the furthest distance that a point can be from a graph. In this algorithm, the furthest two points are joined. The next point selected is furthest from both the selected points. In this way, all points are selected based on largest distance between them. Even though our algorithm does not directly use prediction; in a way, the largest distance represents the SNPs that are least correlated (r^2 is close to 0). This shows that prediction is also considered in the form of the distance values, even though it is not the focus of our algorithms.

3.1 Selection based on Prediction

Most informative SNP selection methods place more importance on the prediction accuracy obtained over the runtime of the program. This is evident in most prediction methods used today. We will consider idSelect [13] and STA [6], two methods with slow runtimes which place a great deal of importance on prediction accuracy.

IdSelect, developed by Carlson et al.[13], used a greedy approach for tag SNP selection. They developed a greedy algorithm to identify subsets of tag SNPs for genotyping, selected from all SNPs exceeding a specified MAF threshold. Starting with all SNPs above the MAF
threshold, the single site exceeding the threshold with the maximum number of other sites above
the MAF threshold is identified. This maximally informative site and all associated sites are
grouped as a bin of associated sites. Not all SNPs within the bin are interchangeable, because
pairwise association is not an associative property: if R^2 exceeds the threshold for SNP pairs A/B
and B/C, R^2 for SNP pair A/C might not exceed the threshold. Thus, because the bin is initially
ascertained using a single SNP, all pairwise R^2 within bin are re-evaluated, and any SNP
exceeding threshold R^2 with all other sites in the bin is specified as a tag SNP for the bin. Thus,
one or more SNPs within a bin are specified as tag SNPs, and only one tag SNP would need to
be genotyped per bin. The tag SNP can be selected for assay on the basis of genomic context
(coding vs. noncoding or repeat vs. unique), ease of assay design, or other user-specified criteria.
The binning process is iterated, analyzing all as-yet-unbinned SNPs at each round, until all sites
exceeding the MAF threshold are binned. Each bin is reported as a set of all SNPs in the bin as
well as the subset of tag SNPs within the bin, each of which is above the r2 threshold with all
other SNPs in the bin. If an SNP does not exceed the r2 threshold with any other SNP in the
region, it is placed in a singleton bin.

3.1.1 Stepwise Tag Selection Algorithm (STSA) [7]

The Stepwise Tag Selection Algorithm (STSA) [7] starts with the best tag t_0, i.e., tag that
minimizes error when predicting with A_k all other tags. Then STSA finds such tag t_1 which
would be the best extension of $\{t_0\}$ and continue adding best tags until reaching the set of tags
of the given size k. STSA produces hereditary set of tags, i.e., the chosen k tags contain the
chosen k-1 tags. This hereditary property may be useful in case if the set of tags can be
extended. The runtime of STSA is $O(knmT)$, where T is the runtime of the prediction
algorithm. Note that for statistical covering, STSA is equivalent to the greedy algorithm
idSelect. STSA [7] is faster than idSelect due to the large number of loops that idSelect uses.
3.2 Furthest SNP Extension

The intuition behind the following algorithms was based on the TSP heuristic analogy of furthest neighbor extension. It seeks to find the furthest distance that a point can be from a graph. In this algorithm, the furthest two points are joined. The next point selected is furthest from both the selected points. In this way, all points are selected based on largest distance between them. Even though our algorithm does not directly use prediction; in a way, the largest distance represents the SNPs that are least correlated (r^2 is close to 0). This shows that prediction is also considered in the form of the distance values, even though it is not the focus of our algorithms.

In this algorithm the tag SNPs are calculated based on the distance between them (Euclidian or r^2). A SNP s_1 is picked that covers maximum number of SNPs. The next SNP s_2 picked is the farthest SNP from s_1, that is, distance between s_1 and s_2 is the maximum as opposed to distance between s_1 and any other SNP. s_1 and s_2 are tested to see how many SNPs are covered. If all SNPs are not covered, add SNP s_3 such that it is at maximum distance from s_1 after s_2. This process is carried out until all SNPs are covered. The algorithm is demonstrated below.

Input: Sample Population S with n genotypes m SNPs each

Output: Set T of tag SNPs

1. Find $T=\{t_1\}$ where t_1 covers most number of SNPs
2. Calculate the distance matrix M_{D_i} from each SNP to t_1.
3. While $SU<>$ empty, SU subset of SNPs from S which are not covered by T do
 3.1. s_1 is added to T if distance(s_1,T)>max, s_1 from SU
4. Output T
This algorithm was found to be the moderately fast. The tags predicted were not of the best quality, but they were acceptable.

3.3 Modified Furthest SNP Extension

Using this method, the tag SNPs are calculated based on the distance between them (Euclidian or r^2). A SNP pair (s_1, s_2) is initially picked such that the distance between s_1 and s_2 is maximal between all SNPs. The next SNP s_3 is added such that it is at maximal distance from s_1 and s_2. This process is carried on until all the SNPs are covered. The algorithm is described below.

Input: Sample Population S with n genotypes m SNPs each
Output: Set T of tag SNPs

1. Calculate the distance matrix M_{13} from each SNP to s_1.
2. Find SNP pairs s_1 and s_2 that are maximum distance apart from each other. Add s_1 and s_2 to tags T.
3. While $SU <> \emptyset$, SU subset of SNPs from S which are not covered by T do
 3.1. s_3 is added to T where $\text{distance}(s_1, T) > \text{max}$, s_3 from SU
4. Output T

This experiment was conducted using the same test sets and values as the others. The results are calculated in the shortest time. The predicted tags were acceptable as they were not too much or too sparse. This algorithm was found to be the fastest. The tags predicted were not of the best quality, but they were acceptable.
3.4 About SNP Data set

We ran our test on the data sets provided to us by Medical College of Georgia (MCG). They provided us with the genotype data of certain genes that they wanted to study. The size of the largest set was 71 SNPs. The original size was much larger (130 SNPs), but we only wanted to consider those SNPs with minor allele frequency (MAF) over 5%. The r^2 (correlation coefficient) was kept at 0.8.

3.5 Trade-off between Prediction Quality and Runtime

In this section we discuss our findings. It was found that quality decreases with increase in runtime. However, the quality does not drastically decrease in all cases. The furthest SNP extension method and the modified FSE do not a lot of runtime difference. Modified FSE was found to be faster only by a few milliseconds.

<table>
<thead>
<tr>
<th>Data Set</th>
<th># of Tags</th>
<th>Runtime (in seconds)</th>
<th># of Tags</th>
<th>Runtime (in seconds)</th>
<th># of Tags</th>
<th>Runtime (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistical Tagging</td>
<td>Furthest SNP Extension (FSE)</td>
<td>Modified FSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td># of Tags</td>
<td>Runtime</td>
<td># of Tags</td>
<td>Runtime</td>
<td># of Tags</td>
<td>Runtime</td>
</tr>
<tr>
<td>ADIPOQ-AA</td>
<td>11</td>
<td>5</td>
<td>12</td>
<td>1.3</td>
<td>12</td>
<td>1.1</td>
</tr>
<tr>
<td>ADIPOQ-EA</td>
<td>10</td>
<td>5.5</td>
<td>11</td>
<td>1.68</td>
<td>11</td>
<td>1.34</td>
</tr>
<tr>
<td>ADIPOR1-AA</td>
<td>10</td>
<td>5.1</td>
<td>11</td>
<td>1.73</td>
<td>11</td>
<td>1.41</td>
</tr>
<tr>
<td>ADIPOR1-EA</td>
<td>6</td>
<td>1.2</td>
<td>7</td>
<td>0.7</td>
<td>6</td>
<td>0.6</td>
</tr>
<tr>
<td>ADIPOR2-AA</td>
<td>15</td>
<td>35</td>
<td>18</td>
<td>24.2</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>ADIPOR2-EA</td>
<td>9</td>
<td>31.7</td>
<td>11</td>
<td>20.1</td>
<td>14</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 3.1. Comparison on Runtimes and number of Tags selected

From Table 3.1 we can see that Furthest SNP Extension is the most optimal algorithm in terms of the trade-off between runtime and the number of tags selected. The runtimes are given in milliseconds. The last two data sets, which are also the largest, have the longest runtime. It should be noted that as the file size increases, the runtime increases. In these cases, the runtime of FSM is much lower and the number of informative SNPs selected remains almost the same.
Figure 3.1. Tradeoff between runtime and number of tags for the proposed algorithms

Figure 3.1 shows a graph displaying the tradeoff between runtime and number of tags selected for each algorithm. It can be noticed that the runtime is least for modified FSE, which also selects the most number of tags. Furthest SNP Extension yields the optimal result as the runtime is significantly decreased as compare to statistical tagging, while the number if tags selected is not increased dramatically.
CHAPTER 4
IMPROVED PREDICTION ALGORITHM

This chapter talks about the various prediction methods that have been used and how we improved upon them. There are many methods that can be used for SNP prediction. Most of them use the one – by – one prediction. In this method, one individual is hidden from the sample genotype and its value is predicted. The predicted value is compared against the actual value. This process is carried out until all the individuals have been predicted. Our method of prediction uses a novel approach of using the previously predicted value in the prediction of its neighbors.

4.1 SNP Prediction Problem Formulation

SNP prediction calculates the values of the unknown SNPs using the tags that have been determined for a given sample. The prediction may also be carried out on known values to determine the accuracy of the method used. The prediction problem can be formulated as follows:

Given a sample S of a population P of individuals (either haplotypes or genotypes) on m SNPs and positions of k (k < m) tag SNPs, one can predict non-selected SNPs from these k selected SNPs with good accuracy.

Given the full pattern of all haplotypes in a small population sample, find the minimum number of tag SNPs and a method for reconstructing each haplotype in the entire population from these tags.

There are many methods to do prediction such as one-by-one prediction, simultaneous prediction and one-after-another prediction. Simultaneous prediction is done using entropy methods wherein random SNPs are picked at a time and their values are predicted together. Most common methods use one-by-one prediction like STAMPA and MLR.
Halperin et al. [1] describes a new method STAMPA for SNP prediction and tag selection. A SNP is predicted by inspecting the two closest tag SNPs from both sides; the value of the unknown SNP is given by a majority vote over the two tag SNPs. They use dynamic programming to select tags to reach best prediction score. Their methods are compared with idSelect and HapBlock on a variety of data sets, and could predict with 80% accuracy the SNPs in the daly dataset[16] using only 2 SNPs as tags. In general, this problem is computationally difficult and the runtime of an exact algorithm may become prohibitively slow. Therefore, one can use heuristics for the selection of \(k \) tags following Halperin et al.[1] who compare relatively slow STAMPA with a fast random tag selection.

The *Multiple Linear Regression based* MLR-tagging algorithm [7] solves the optimization version of ISSP which asks for \(k \) informative SNPs minimizing the prediction error measured by the number of incorrectly predicted SNPs. The number of tags (informative SNPs) \(k \) depends on the desirable data size. More tags will keep more genotype information while fewer tags allow deeper analysis and search.

4.2 Prediction of Genotypes

There are many methods to do prediction such as one-by-one prediction, simultaneous prediction and one-after-another prediction. Simultaneous prediction is done using entropy methods wherein random SNPs are picked at a time and their values are predicted together. Most common methods use one-by-one prediction like STAMPA [1] and MLR [7].

4.2.1 Previous Methods

The methods used were one-by-one prediction wherein one value is predicted at a time. Entropy methods were proposed where multiple values could be predicted simultaneously. Another method is based on finding the RREF of the training set to test for best prediction. These methods are described below.
4.2.1.1 One-by-One prediction

One-by-One prediction, as the name suggests, predicts one value at a time. So, if \(n \) SNPs are to be prediction it would require \(n \) runs to predict all the SNPs. This method is time consuming but highly accurate. Due to the time it takes, it is unsuitable for large data sets. One-by-one prediction is the most commonly implemented method for informative SNP prediction. STAMPA and MLR are based on this theory.

Halperin et al. [1] describes a new method STAMPA for SNP prediction and tag selection. A SNP is predicted by inspecting the two closest tag SNPs from both sides; the value of the unknown SNP is given by a majority vote over the two tag SNPs. They use dynamic programming to select tags to reach best prediction score. Their methods are compared with idSelect and HapBlock on a variety of data sets, and could predict with 80% accuracy the SNPs in the daly dataset[16] using only 2 SNPs as tags. In general, this problem is computationally difficult and the runtime of an exact algorithm may become prohibitively slow. Therefore, one can use heuristics for the selection of \(k \) tags following Halperin et al.[1] who compare relatively slow STAMPA with a fast random tag selection.

The *Multiple Linear Regression based* MLR-tagging algorithm [7] solves the optimization version of ISSP which asks for \(k \) informative SNPs *minimizing the prediction error* measured by the number of incorrectly predicted SNPs. The number of tags (informative SNPs) \(k \) depends on the desirable data size. More tags will keep more genotype information while fewer tags allow deeper analysis and search.

4.2.1.2 Alternatives - Entropy Methods

A more complex method of prediction is by predicting multiple SNPs simultaneously. The tags of the known SNPs are compared with the informative SNPs of the sample population. The genotype with the largest number of common
informative SNP values (least hamming distance) to the unknown individual is considered to be the best fit. The non-informative SNP values of this sample genotype is copied and set as the values for the unknown SNPs in the genotype we are predicting. This method is considered to be one of the least accurate methods as it is extremely rare that the values of the unknowns will match with those of the sample population. Experiments carried out using this method yielded undesirable results.

The advantage of this method is the speed. As it uses known values from the training data the speed of prediction is much faster as compared to any other method.

4.2.1.3 RREF – based Prediction

Initially, the actual Euclidian distance was calculated between the informative SNPs and the remaining SNPs. This is not an accurate measure as it does not give us any information about the linear combination of SNPs. It is found that a linear combination of the informative SNPs can be used to predict the remaining SNPs.

We found out that the best way to find the linear independent SNPs (informative SNPs or tags) is by reducing the population matrix into reduced row echelon form. Typically, in genetic sequences derived from human haplotypes, the number of sites is much larger than the number of individuals. Because of such disproportion, many columns corresponding to SNP sites are similar. Indeed, the number of equivalent sites in real data is considerably large. The 0-1-column-site s_i is equivalent to the site s_j if either s_i and s_j are the same, $s_i = s_j$, or s_i is complimentary to s_j (i.e., s_i becomes s_j after each 0 is replaced with 1 and each 1 is replaced with 0). It is common to keep only one site out of several equivalent sites since they do not carry any additional information.
In general, if one column-site can be restored from several other columns, then it can be dropped without loss of information. We consider restoration of one column-site using a linear combination of other column-sites.

One can also explore linear dependency of rows-haplotypes rather than columns-SNPs. Then linear dependency in (-1,1)-notations can be used for classification of recombination. Assume that in the given population all recombination happen at a limited number of hotspots. Assume further that each hotspot occupies a DNA segment between two consecutive SNPs. If initially there are only two haplotypes \(a\) and \(b\), then by repeatedly recombining \(a\) and \(b\) at \(g\) different hotspots, one can potentially obtain as much as \(2^{g+1}\) different haplotypes.

Let \(H\) be a set of haplotypes obtained from two haplotypes by recombination events at \(g\) hotspots. Then the number of linearly independent rows-haplotypes is at most \(g+2\), i.e., the linear rank of \(H\), \(\text{rank}(H) \leq g+2\).

Our basic linear reduction method for tagging assumes that if there is a linear dependency between certain SNPs in the given sample \(H\), then the same dependency is likely to hold for these SNPs in the entire population \(P\). Based on this assumption, we suggest (i) to find linear dependencies in the sample, (ii) extract linear independent SNPs using them as tags, and (iii) reconstruct the values of non-tag SNPs based on values of tag SNPs and linear dependencies found in the sample \(H\).

Formally, our basic linear reduction method for tagging consists of the following steps:

- From the sample haplotype matrix \(H\), extract the maximum number \(r = \text{rank}(H)\) of linearly independent columns-SNPs \(T(H) = \{H_{i1},...,H_{ir}\}\) forming a basis of columns-SNPs of \(H\). The columns-SNPs in \(T(H)\) form the set of tag SNPs.
• For each column-SNP H_j, $j = 1 \ldots m$ in H, find a unique representation of H_j as a linear combination of tag SNPs

$$H_j = \sum_{i=1}^{r} \alpha_{i,j} H_{ti}$$

• Output the positions $\{t_1, \ldots, t_r\}$ of tag SNPs of $T(H)$ and the matrix $F = (\alpha_{ij})$ of coefficients of linear combinations.

The suggested linear reduction method can be implemented very efficiently. Applying $O(n^2m)$ Gauss-Jordan elimination, we can transform the $n \times m$ matrix H into the reduced row echelon form R which will have exactly $r = \text{rank}(H)$ nonzero rows. The r tag SNPs formed by linearly independent column-sites corresponding to nonzero rows can be easily found from R. Let F be the matrix R in which zero rows are dropped, so F is an $r \times m$ matrix. Then for any haplotype h with the tag SNP values h_r, the predicted reconstruction $\tilde{h} = f(h_r)$ equals

$$\tilde{h} = h_r \times F$$

The haplotype information is spread all over the haplotype length and the first r linearly independent columns do not necessarily give the best choice of tags. Finally, we compare the following variations of the initial method:

(i) Linear Reduction (LR), where the SNPs are processed in the order as in H and

(ii) Randomized Linear Reduction (RLR), which is LR where H is preprocessed by randomly permuting columns-SNPs.

(iii) RLR with postprocessing (RLRP), which is RLR where unresolved SNPs are reconstructed using specified above postprocessing.
When the required number of tags k is specified, then it may not necessarily coincide with the linear rank of the sample matrix H. Figures 1 and 2 show how to adjust $RLRP = RLRP(k)$ for required number of tags k. In case when the required number of tags k is less than the linear rank of H, we suggest to reduce the sample to k linear independent haplotypes. We found that it is better to choose the most representative haplotypes, i.e., haplotypes that can predict all others with the least number of errors (Figure 4.1).

Input: The sample haplotype matrix H with rows-haplotypes and columns-SNPs, and a number of required tags k

Output: The set of k positions of tag columns-SNPs t_1, \ldots, t_k and the set of reconstructing matrices \mathcal{F}

1. Find the linear rank r of the matrix H, the number of linearly independent rows (or columns).

2. If $k \leq r$, then
 - sort all rows-haplotypes of H in the ascending order of d, where d is the sum of Hamming distances from h to all other haplotypes;
 - reduce H to the first k linearly independent rows;
 - find the reduced row echelon form R of H, $\mathcal{F} = \{R\}$, and select the set of k tags consisting of linearly independent columns-SNPs in R.

If $k > r$, then

- find the reduced row echelon form R of H, and select the set of r tags consisting of linearly independent columns-SNPs in R;
- select additional $k - r$ tags among columns-SNPs in R with largest number of non-zero entries;
- find the reduced row echelon forms R_i of H_i, $i = 1, \ldots, k - r$, where H_i is obtained from H by placing i-th additional tag column-SNP in the first position, $\mathcal{F} = \{R_1, R_2, \ldots, R_{k-r+1}\}$.

3. Output the set \mathcal{F} and the set of k tag positions.

Figure 4.1. Algorithm to use RREF for Prediction
In case when the required number of tags k is more than the linear rank r of H, we suggest to add more SNPs to the initial r tags and form $k/r+1$ different reconstruction matrices corresponding to $k - r + 1$ different r-subsets of k tags. In the reconstruction phase, we aggregate the information from all $k - r + 1$ reconstructions each based on different tag subsets. The aggregation is suggested to be done by "voting": the value of -1 (respectively, 1) is assigned if majority of $k - r + 1$ reconstructions suggests -1 (respectively, 1) (Figure 4.2).

Input: The set of reconstruction matrices \mathcal{F} and a haplotype h_k restricted to k tag SNP values.

Output: The predicted full haplotype \overline{h}.

1. If \mathcal{F} consists of a single reconstructing matrix, $\mathcal{F} = \{ R \}$, then reconstruct: $\overline{h} = h_k \times R$.

 If \mathcal{F} consists of several reconstructing matrices, $\mathcal{F} = \{ R_1, R_2, \ldots, R_{k-r+1} \}$, then \overline{h} is reconstructed from $k-r+1$ reconstructions each based on its own r tags forming the tag vector h'_i, and the corresponding reconstructing matrix R_i as follows:

 \[\overline{h} = \sum_{i=1}^{k-r+1} h'_i \times R_i \]

2. Postprocess \overline{h} as follows: if the value of an SNP in \overline{h} is negative, we set it to -1, otherwise we set it to 1.

Figure 4.2. Algorithm to calculate non-informative SNPs using coefficients
The number of zeros for SNPs in the RREF of the genotypes indicates the error in the prediction column. The more the number of zeros in a column, the better is the prediction obtained using that SNP (Figure 4.3). The SNPs with the largest number of zeros in their RREF are added to the list of tags.

![Figure 4.3. Correlation between error and number of zeros in SNP RREF.](image)

4.2.2 Our Proposed Method

Since the predictions so far were not very good, we decided to try a novel approach by adding the last predicted SNP to the set of tags. We used RREF based prediction algorithm and modified it to use non-tags in the prediction of its neighbors.

4.2.2.1 One-after-Another Prediction

The idea behind this algorithm is solely focused on improving the prediction and so we are unconcerned about the runtime. One-after-another prediction uses the most recently predicted value as a tag in the prediction of its neighbors. As it has been found that SNPs that are close to one another are highly correlated, this method is found to be very effective. Considering that error is propagated, we check the accuracy of the predicted SNP before
using it in the prediction of its neighbor. If a SNP is not predicted with high accuracy, it is not considered in the prediction of its neighbors. This minimizes error propagation.

We use RREF-based prediction in this algorithm. The error in prediction using a given SNP is decided by the number of zeros in its RREF column. This algorithm was run on all the datasets and we noticed that the accuracy increased as expected. (Table 4.1)

<table>
<thead>
<tr>
<th>Data Sets</th>
<th>Total # of SNPs</th>
<th>Original Algorithm Accuracy</th>
<th>Improved Algorithm Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADIPOQ-AA</td>
<td>15</td>
<td>97.78</td>
<td>99.96</td>
</tr>
<tr>
<td>ADIPOQ-EA</td>
<td>19</td>
<td>97.48</td>
<td>99.52</td>
</tr>
<tr>
<td>ADIPOR1-AA</td>
<td>16</td>
<td>95.37</td>
<td>98.24</td>
</tr>
<tr>
<td>ADIPOR1-EA</td>
<td>12</td>
<td>98.33</td>
<td>99</td>
</tr>
<tr>
<td>ADIPOR2-AA</td>
<td>71</td>
<td>96.46</td>
<td>97.84</td>
</tr>
<tr>
<td>ADIPOR2-EA</td>
<td>65</td>
<td>94.86</td>
<td>96.55</td>
</tr>
</tbody>
</table>

Table 4.1. Results of One-after-another.

4.2.2.2 K-Fold Cross Validation

Cross-validation and bootstrapping are both methods for estimating generalization error based on "resampling". It is the practice of partitioning a sample of data into subsets such that the analysis is initially performed on a single subset, while the other subset(s) are retained for subsequent use in confirming and validating the initial analysis. The initial subset of data is the training set; the other subset(s) are called validation or testing sets.

In k-fold cross-validation, we divide the data into k subsets of (approximately) equal size. We use each part as a test and the remaining k-1 parts as training. This procedure is done for each part and the prediction accuracy is noted k times. The average of the k accuracies is the reported accuracy. When k matches the number of genotypes in the
data set, it is called leave-one-out.

Table 4.2 summarizes our k-fold cross validation. As we can see, the prediction accuracy increases as the size of the training set increases.

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Total # of SNPs</th>
<th># of Tags</th>
<th>K =</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ADIPOQ-AA</td>
<td>15</td>
<td>11</td>
<td>95.1852</td>
</tr>
<tr>
<td>ADIPOQ-EA</td>
<td>19</td>
<td>10</td>
<td>96.79015</td>
</tr>
<tr>
<td>ADIPOUR1-AA</td>
<td>16</td>
<td>10</td>
<td>93.91535</td>
</tr>
<tr>
<td>ADIPOUR1-EA</td>
<td>12</td>
<td>6</td>
<td>98.14815</td>
</tr>
<tr>
<td>ADIPOUR2-AA</td>
<td>71</td>
<td>15</td>
<td>95.1916</td>
</tr>
<tr>
<td>ADIPOUR2-EA</td>
<td>65</td>
<td>9</td>
<td>95.4365</td>
</tr>
<tr>
<td>ADIPOQ-AA</td>
<td>15</td>
<td>7</td>
<td>89.16665</td>
</tr>
<tr>
<td>ADIPOQ-EA</td>
<td>19</td>
<td>7</td>
<td>89.90745</td>
</tr>
<tr>
<td>ADIPOUR1-AA</td>
<td>16</td>
<td>7</td>
<td>90.12345</td>
</tr>
<tr>
<td>ADIPOUR1-EA</td>
<td>12</td>
<td>4</td>
<td>87.77778</td>
</tr>
<tr>
<td>ADIPOUR2-AA</td>
<td>71</td>
<td>10</td>
<td>94.91805</td>
</tr>
<tr>
<td>ADIPOUR2-EA</td>
<td>65</td>
<td>6</td>
<td>94.2561</td>
</tr>
<tr>
<td>ADIPOQ-AA</td>
<td>15</td>
<td>4</td>
<td>70.34345</td>
</tr>
<tr>
<td>ADIPOQ-EA</td>
<td>19</td>
<td>4</td>
<td>85.6296</td>
</tr>
<tr>
<td>ADIPOUR1-AA</td>
<td>16</td>
<td>4</td>
<td>87.12965</td>
</tr>
<tr>
<td>ADIPOUR1-EA</td>
<td>12</td>
<td>2</td>
<td>87.44445</td>
</tr>
<tr>
<td>ADIPOUR2-AA</td>
<td>71</td>
<td>5</td>
<td>87.15485</td>
</tr>
<tr>
<td>ADIPOUR2-EA</td>
<td>65</td>
<td>3</td>
<td>91.0932</td>
</tr>
</tbody>
</table>

Table 4.2. K-fold test performed on the prediction algorithm. K=90 is equivalent to leave-one-out test.

In this test we checked the prediction accuracy using the prediction algorithm. We checked how the accuracy varies as we decrease the number of tags used in prediction. The number of tags used is proportional to the file size as well. If we decrease the number of informative SNPs drastically for a large file, the prediction accuracy decreases drastically. In medium sized files the decrease is less obvious. The size of the training set is also plays a big factor in the accuracy. As the size of the training set is increased, the predicted values become more accurate. Note that when K is 90 it is same
as the leave-one-out test. The most accurate test in this table, in terms of how we will use this algorithm in real life, is the 2-fold test.
CHAPTER 5

STATISTICAL COVERAGE

There have been many statistical methods proposed for finding informative SNPs. We are going to concentrate on *multiple linear regression* (MLR) [7]. When predicting a non-tag SNP, the MLR-tagging method accumulates information about all tag SNPs resulting in significantly higher prediction accuracy with the same number of tags than for the previously known tagging methods. An extensive experimental study on various datasets including 10 regions from HapMap shows that the MLR-tagging for prediction matches the quality of while being faster than STAMPA [1]. Here, we introduce MLR-tagging for statistical covering e.g., find minimum number of tags such that for any non-tag SNP there exists a highly correlated (squared correlation $R^2 > .8$) tag SNP (see Figure 5.1).

![Figure 5.1](image)

Figure 5.1. MLR-tagging for statistical covering. The shaded columns correspond to k tag SNPs and the clear columns correspond to $m - k$ non-tag SNPs.
5.1 r^2 Computation

We improved upon the r^2 formula being used in MLR. Previously, the r^2 value was computed between the original value of the SNP and the predicted value. This is not a realistic measure as the SNPs being inferred, for the purpose of informative SNP selection, may not have the same correlation as that on the real data when being used to predict SNPs. In our new r^2 computation, the r^2 value is calculated between the informative SNP values and the SNP value that is predicted. This procedure gives us a more realistic estimation of the predicted values. When the informative SNPs are known, the remaining values are predicted using them, so the correlation coefficient should be calculated between the informative SNPs and the predicted value to check how good the informative SNPs are.

r^2 is computed using the formula:

$$r^2 = \frac{D^2}{p(1-p)q(1-q)}$$

where, $D = \text{Linkage Disequilibrium}$

$p = \text{SNP frequency}$

$q = \text{Haplotype frequency}$
5.2 Comparison of Tagger [3] and MLR [7] on MCG Data

A SNP statistical covering algorithm A_k accepts as its input the values of k tags (t_1,\ldots,t_k) of a sample S. The output of A_k is r^2, that is, r^2 is correlation coefficient between the non-tag SNPs and k tags.

Haploview [3] uses the Tagger [7] software to get informative SNPs. They claim that SNPs that are in close distance are highly correlated and tag SNPs should be picked from this pool (One tag from each pool) of highly correlated SNPs. A simple and conservative approach is used to select tag SNPs from a subset of non-redundant SNPs from the genotype data such that every common allele either is perfectly genotyped or is identical ($r^2=1$) to one of the tags. More attention is paid in testing the efficiency of the tags than picking them. They select random tags and test them using the 2 X 2 χ^2 test. If all SNPs are not covered, they find another set of informative SNPs. Similarly they run multiple tests on a set of tags and try to find the set that passes the most number of tests. Also tests are performed with 1 degree of freedom to prevent over fitting. Sometimes, if a combination of SNPs can be used for prediction, this combination is used as a tag.

We found that MLR [7] gave better results than tagger after the formula of r^2 was tweaked as mentioned in Section 5.1. Our method required fewer informative SNPs than Tagger [3] to predict SNPs with the same level of accuracy. This is demonstrated in Table 5.1.

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Total number of SNPs</th>
<th>Number of Tags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Multiple linear Regression</td>
</tr>
<tr>
<td>ADIPOQ-AA</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>ADIPOQ-EA</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>ADIPOR1-AA</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>ADIPOR1-EA</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>ADIPOR2-AA</td>
<td>71</td>
<td>15</td>
</tr>
<tr>
<td>ADIPOR2-EA</td>
<td>65</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 5.1. Comparison between Tagger [3] and MLR [7].
It must be noted that the last two data sets are of large size and only 1/6th of the total number of SNPs are required to be used as informative SNPs.

5.3 Comparison of 3-Fold Cross-Validation on Tagger[3] and MLR[7]

In this method, the data is divided into 3 equal parts. In our example, the size of each data set is 90 genotypes, so we will divide it into 3 equal parts of 30 genotypes each. When the first part consisting of 30 genotypes is used as the test set, the remaining 60 genotypes are used as the training set. The roles are reversed and the first 30 genotypes are used for training while the remaining 60 are used as test sets. This procedure is carried out for all three combinations. The training set is used to find the tag values. These tag values are used by the test set. Correlation coefficient (r^2) between the test set’s informative SNPs and the non-tag SNPs are tested to check if the informative SNPs cover non-tag SNPs with $r^2>0.8$.

We ran our test on the data sets provided to us by Medical College of Georgia (MCG). They provided us with the genotype data of certain genes that they wanted to study. The size of the largest set was 71 SNPs. The original size was much larger (130 SNPs), but we only wanted to consider those SNPs with minor allele frequency (MAF) over 5%.
Table 5.2 shows our findings. The unknown SNPs were predicted with very high accuracy using the informative SNPs obtained by multiple linear regression (MLR)[7]. The highly correlated data sets require less number of informative SNPs than those than are not well correlated.

We also ran the 3 fold cross validation on Haploview using the same Data set. It was found that in most cases their average r^2 value was lower than ours. This indicates a lower probability of accurate prediction using Haploview tags.

<table>
<thead>
<tr>
<th>Method Used</th>
<th>Data Set</th>
<th>Total # of SNPs</th>
<th>Avg # of Tags</th>
<th>Avg # of Covered SNPs</th>
<th>Avg # of non-tag Covered SNPs</th>
<th>Avg # of uncov red SNPs</th>
<th>Avg r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLR</td>
<td>ADIPOQ-AA</td>
<td>15</td>
<td>11</td>
<td>15</td>
<td>4</td>
<td>0</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>ADIPOQ-EA</td>
<td>19</td>
<td>10</td>
<td>18</td>
<td>8</td>
<td>1</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>ADIPOR1-AA</td>
<td>16</td>
<td>9.67</td>
<td>12.67</td>
<td>2.67</td>
<td>3.33</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>ADIPOR1-EA</td>
<td>12</td>
<td>6</td>
<td>11</td>
<td>5</td>
<td>1</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>ADIPOR2-AA</td>
<td>71</td>
<td>14.33</td>
<td>45.33</td>
<td>31</td>
<td>25.67</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>ADIPOR2-EA</td>
<td>65</td>
<td>9.33</td>
<td>56.33</td>
<td>47</td>
<td>8.67</td>
<td>0.91</td>
</tr>
<tr>
<td>Tagger</td>
<td>ADIPOQ-AA</td>
<td>15</td>
<td>10.33</td>
<td>14.33</td>
<td>3.33</td>
<td>0.67</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>ADIPOQ-EA</td>
<td>19</td>
<td>12</td>
<td>17.67</td>
<td>5.33</td>
<td>1.33</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>ADIPOR1-AA</td>
<td>16</td>
<td>10.33</td>
<td>14.33</td>
<td>4.33</td>
<td>1.67</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>ADIPOR1-EA</td>
<td>12</td>
<td>6</td>
<td>12</td>
<td>6</td>
<td>0</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>ADIPOR2-AA</td>
<td>71</td>
<td>21</td>
<td>46.67</td>
<td>25.67</td>
<td>24.33</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>ADIPOR2-EA</td>
<td>65</td>
<td>11.33</td>
<td>51</td>
<td>39.67</td>
<td>14</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Table 5.2. 3-fold cross validation on MLR and Tagger.
CHAPTER 6

CONCLUSIONS AND FUTURE WORK

A lot of research was done in the various methods of informative SNP selection. We reviewed the prediction based methods and then moved on to statistical methods for informative SNP selection. Statistical methods were found to perform better giving high accuracy.

We proposed two new algorithms for selection based on prediction – Furthest SNP Extension and Modified FSE. The intuition behind these algorithms was based on the TSP heuristic analogy of furthest neighbor extension. It seeks to find the furthest distance that a point can be from a graph. In this algorithm, the furthest two points are joined. The next selected point is the furthest from both joined points. Even though our algorithm does not directly use prediction; in a way, the largest distance represents the SNPs that are least correlated. This shows that prediction is also considered in the form of the distance values, even though it is not the focus of our algorithms. We found that Furthest SNP Extension has the best trade off between runtime and number of informative SNPs selected.

In Section 4, we proposed an improved prediction algorithm where the prediction focus of the problem was to improve the prediction capability in spite of longer runtimes and more tags. In our method, one individual is hidden from the sample genotype and its value is predicted. The predicted value is compared against the actual value. This process is carried out until all the individuals have been predicted. Our method of prediction uses a novel approach of using the previously predicted value in the prediction of its neighbors. We also performed the k-fold cross validation to test our method.
In Section 5, statistical covering is discussed. Initially MLR [7] did not perform up to the mark as Tagger [3]. We tweaked the formula used to calculate the correlation coefficient \(r^2 \) and gained better performance than Tagger [3]. When predicting a non-tag SNP, the MLR-tagging method accumulates information about all tag SNPs resulting in significantly higher prediction accuracy with the same number of tags than for the previously known tagging methods.

In the future I will work on removing the informative SNPs that act as noise in the prediction method. We feel that the informative SNPs with low prediction are noise and can be removed to yield the same results.
CHAPTER 7

IMPLEMENTATION

7.1 Furthest SNP Extension (FSE)

This algorithm gives optimal trade off between runtime and number of tags. The file is located in ‘/extra1/papers/THESIS/diana_thesis/code/FSE’

7.1.1 Running the program

For running FSE, type:

./FSE sample.txt 0.8 tag.txt G

First parameter: The filename of a genotype / haplotype sample population.

Second parameter: The desired correlation between tag SNPs and non-tag SNPs (r^2). This value is usually set at 0.8.

Third parameter: Output of tag file.

Fourth parameter: G for genotype, H for haplotype.

7.1.2 File Formats

Sample.txt contains the following lines:

- The first 3 lines describe data and can contain anything.

- The first genotype represented by 0/1/2s, followed by the second genotype on the next
Tag.txt contains the following lines:

- The first line contains the number of tags
- The second and third lines contain data description.
- The position of the first tag (a number in the range of 0 to N-1 where N is the number of SNPs) followed by the second tag and so on.
- The total number of lines in the file is k+3 (where k is the number of tags).

7.2 **Modified Furthest SNP Extension**

This algorithm picks tags in the lowest runtime. It is not efficient as it pick a bigger set of tags than the other methods. The file is located in `/extra1/papers/THESIS/diana_thesis/code/ModifiedFSE`

7.2.1 **Running the program**

For running ModifiedFSE, type:

```
./ModifiedFSE  sample.txt 0.8 tag.txt G
```

First parameter: The filename of a genotype / haplotype sample population.

Second parameter: The desired correlation between tag SNPs and non-tag SNPs (r²). This value is usually set at 0.8.
Third parameter: Output of tag file.

Fourth parameter: G for genotype, H for haplotype.

7.2.2 File Formats

Sample.txt contains the following lines:

- The first 3 lines describe data and can contain anything.

- The first genotype represented by 0/1/2s, followed by the second genotype on the next line and so on.

Tag.txt contains the following lines:

- The first line contains the number of tags

- The second and third lines contain data description.

- The position of the first tag (a number in the range of 0 to N-1 where N is the number of SNPs) followed by the second tag and so on.

- The total number of lines in the file is k+3 (where k is the number of tags).

7.3 One-after-another prediction

This algorithm picks tags and if its prediction is good (determined by RREF algorithm), it is considered as a tag for the prediction of its neighbours. The file is located in ‘/extra1/papers/THESIS/diana_thesis/code/oneafter’
7.3.1 Running the program

Open the pearl file ‘auto.pl’.

Make changes to the following variables

- $GenoFile – The name of the file containing the genotypes
- $tags – The number of tags you want to find.

7.3.2 File Formats

Sample.txt contains the following lines:

- The first 3 lines describe data and can contain anything.

- The first genotype represented by 0/1/2s, followed by the second genotype on the next line and so on.

Tag.txt contains the following lines:

- The first line contains the number of tags

- The second and third lines contain data description.

- The position of the first tag (a number in the range of 0 to N-1 where N is the number of SNPs) followed by the second tag and so on.

- The total number of lines in the file is k+3 (where k is the number of tags).
7.4 K-Fold Cross Validation

This algorithm picks tags and if its prediction is good (determined by RREF algorithm), it is considered as a tag for the prediction of its neighbours. The file is located in ‘/extra1/papers/THESIS/diana_thesis/code/kfold’

7.4.1 Running the program

Open the perl file ‘auto.pl’.

Make changes to the following variables

- $GenoFile – The name of the file containing the genotypes
- $k – value of k (3 for 3-fold)
- $tags – The number of tags you want to find.

7.4.2 File Formats

Sample.txt contains the following lines:

- The first 3 lines describe data and can contain anything.
- The first genotype represented by 0/1/2s, followed by the second genotype on the next line and so on.

Tag.txt contains the following lines:

- The first line contains the number of tags
• The second and third lines contain data description.

• The position of the first tag (a number in the range of 0 to N-1 where N is the number of SNPs) followed by the second tag and so on.

• The total number of lines in the file is k+3 (where k is the number of tags).

