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ABSTRACT

STATISTICAL INFERENCE FOR MORTALITY MODELS
BY
CHEN LING

JULY 19, 2021

Committee Chair: Liang Peng
Major Academic Unit: Department of Risk Management and Insurance

Underwriters of annuity products and administrators of defined-benefit pension plans with periodic
payments are under financial obligation to their policyholders or participants until the death of the
counterparty. Hence, the underwriters would be subject to longevity risk should the average lifespan of the
entire population increase to an unforeseen level. Meanwhile, the fact that the effective federal funds rate is
at its historic low level implies that the present value of life-contingent cash outflows for insurers is subject
to the greatest amount of longevity risk. As a benchmark mortality model in the insurance industry is the
Lee-Carter model, in this dissertation we summarize some flaws of model assumptions and the model's
classical inference method. Based on the understanding of these flaws, we propose a modified Lee-Carter
model, accompanied by a rigorous statistical inference with asymptotic results and satisfactory numerical
and simulation results derived from a relatively small sample. Then we propose a bias-corrected estimator,
which is consistent and asymptotically normally distributed regardless of the mortality index being a unit
root or stationary AR(1) time series. We further extend the model to accommodate AR(2) process for the
mortality index and apply it to a bivariate dataset of U.S. mortality rates. Finally, we conclude the
dissertation by arguing that the proposed model is adequate and by suggesting some potential hedging
practices based on that.
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PART 1

INTRODUCTION

Annuities and pension funds can be considered financial instruments to transfer people’s
wealth from when they are young and productive to post-retirement. Underwriters of an-
nuity products and administrators of defined-benefit pension plans with periodic payments
are under financial obligation to their policyholders until the death of the counterparty.
Insurance underwriters employ actuaries to project the probability of future insured events
(deaths, disabilities, and sicknesses) in order to price insurance products and ensure solvency
for compliance purposes through adequate reserves. Mortality rate, or death rate, is defined
as a measure of the number of deaths (either in general or due to a specific cause) in a
particular population, relative to the size of that population, within each unit of time. To
make a meaningful projection of future mortality rate, actuaries develop mortality models, a
statistical or demographic model built for central death rates in the life table. Although it is
not easy to predict the mortality of individuals, the mortality rate of an entire population or
specific demography displays some patterns and evolves stably over time. Certain statistical
or demographic methods might help us understand some patterns and trends regarding the
evolvement, which helps determine future obligations of underwriters and administrators.

Underwriters of annuities are subject to multiple sources of risks. Because an under-
writer makes periodic payments to policyholders after their retirement, the present value
of future obligations is the discounted sum of those periodic payments made by the under-
writer. Thus, one of the risks the underwriters are subject to is the interest rate risk, as the
discounted value is sensitive to changing level of interest rate. However, in this dissertation,
I am not discussing that risk. Instead, I am focusing on the longevity risk, which is defined
as any potential risk originating from an increasing life expectancy of pensioners or annuity

policyholders, which eventually translates to higher periodic payments and could translate



to higher than expected cash outflows for pension administrators and annuity underwriters.
Underwriters need to consider longevity risk before determining policy prices. In practice,
actuaries make multiple assumptions to price an insurance product like an annuity, and some
of those assumptions are mortality assumptions. While mortality improvement assumptions
like scale AA are used to predict future mortality, a rigorous statistical model for mortal-
ity improvements is imperative. This dissertation will clearly explain how my proposed
mortality model can be used to project future mortality improvements.

It is also worth mentioning that when the effective federal funds rate is at its historically
low level, the present value of life-contingent cash outflows for insurers is subject to the
greatest amount of longevity risk. It can be challenging for underwriters to manage the
longevity risk in this low-interest-rate environment. Such risk can be managed through
hedging practices, practices of transferring longevity risk to other financial institutions. A
potential way to price such risk can be based on parametric mortality models (see |Li et al.|
2018).

The mortality model can be used to ensure solvency through adequate reserves. NAIC
has issued guidelines that “require reserves for annuity contracts be based on the amount
calculated using a projection of assets and liabilities”. The projection of liabilities, of course,
depends on a mortality model that projects future mortality improvements.

The study of mortality rates relates to annuities and other life insurance products ac-
cording to insurance economics. Literature in this field attempt to explain for household’s
choice of annuities and life insurance products based on mortality rates and health condi-
tions. Research in this area attempts to explain people’s allocation of assets in annuities
during or near retirement (see Milevsky, 1998). A basic assumption in this framework is to
assume that people’s utility function is homogeneous with respect to consumption at differ-
ent points in time (see Ando & Modigliani, [1963). Based on this, people purchase private
constant annuities to maximize the objective function, which is their expected utility func-
tion of consumption, weighted by probabilities of death (see|Yagi & Nishigaki, [1993). Hence,

the study of mortality facilitates our understanding of people’s choice of wealth allocation



in annuities.

There is a plethora of actuarial science literature dedicated to the projection of future
mortality rates. It first dates back to the De Moivre model in 1725, which researchers believe
to be the first model for mortality forecast. As summarized by [Li et al.| (2004), mortality
forecasts are traditionally based on forecasters’ subjective judgments, in light of historical
data and expert opinions. The De Moivre model falls under this category of subjective
judgments.

However, to obtain meaningful mortality projections, the modeling of mortality rates
should be less based on subjective judgments (see Tabeaul |2001)). Today’s common practice
is to calibrate and validate quantitative models based on data derived from the life table.
Here we first review some basic facts of the life table. Suppose there are M ages (or age
groups) and 7" years of observation, the life table of a given cohort or population is a panel
data with the following variables: the number of who reached age x, or the survival function,
[(x,t), and the number of deaths at age x, d(z,t), observed at the year t, x = 1,..., M,

t=1,...,T. The central death rate m(x,t) is derived from that life table and is defined as

(1.1)

where the average number of living at the age (or, age group) z is L(z,t) = fol l(x 4 u,t)du
(see Pollard, |1975). Data of central death rate along with survival function, are generally
available in the life table. Since insurers will generally use mortality tables for contract
pricing and compliance purposes, a challenge in developing and using survival models is that
survival probabilities are not constant over time (see |Dickson et al., 2013). Hence, this calls
for the development of modeling central death rates.

A benchmark model is Lee-Carter model Lee & Carter|(1992)), which proposes a two-step
approach towards the modeling of central death rates. The first step is the decomposition of

log central death rate logm(z,t) using singular value decomposition (SVD) subject to the



identification constraints:

M T
logm(z,t) = a, + Boki + 04, Zﬁx =1, Z k, =0, (1.2)
t=1

=1

where €, ,’s are independent and identically distributed (i.i.d.) random errors with mean zero
and finite variance, and the unobserved k,’s are called mortality index. Constraints regarding
{B. M | and {k;}L_, are introduced in the model in order to make sure model unknown
parameters {oa, }M | {8, }M | and {k;}L, can be uniquely identified using the SVD.

The next step of Lee-Carter model is fitting and calibrating an ARIMA(p,d, q) time

series based on the mortality index {k;}Z:

<1 - Z ¢ZB’> B)ky = p + (1 + Ze B ) (1.3)

=1

where e;’s are i.i.d. white noises.

In conclusion, the original Lee-Carter mortality model is a two-step inference based
on log central death rates logm(x,t) data and can be understood as a combination of sin-
gular value decomposition (SVD) subject to the identification constraints in and the
ARIMA(p, d, q) time series of k,’s in (1.3). Many papers in actuarial science have claimed
that an application of this model and this two-step inference method to mortality data pre-
fer a unit root time series model, i.e., d = 1 in ([1.3). There is also the development of
the R package ‘demography’, which implements the Lee-Carter model, which I will use as a
benchmark to evaluate and compare the performance of our proposed estimators.

Since this seminal publication there is good literature dedicated to improving and mod-
ifying the Lee-Carter mortality model. Lee, (2000) argued that instead of proceeding directly
to modeling the parameter k; as a time series process, the ks should be adjusted (taking &,
and (3, as what is given in original Lee-Carter model) to reproduce the observed number of
deaths, that is, the ks solve 23]5\4:1 D, = Zi\il Eexp(a, + B/%t), where D,,; is the number
of deaths of age x and observed in year t, and FE,; is the actual risk exposure. After that

the ks can be fitted into time series model. Brouhns et al.[ (2002) uses the same constraints



Ziil By =1, th:1 k; = 0 as in the Lee-Carter model but models the number of deaths data
Dy,z=1,.... M, t=1,...,T as:

D, = Poisson(E,p1,.(t))

(1.4)
/flz(t) = eXP(Oéx + Bmkt)
and then maximize the following objective function as the first step:
> [Dai(cs + Bokr) — Eupexpl(o, + Bok)] (1.5)

x,t

Brouhs, Denuit and Vermunt (2002)’s second step is also fitting a time series to the mortality
index, but to the k,’s that maximizes the above objective function. [Li & Lee (2005)) extended
the Lee-Carter model to a group of population m(z,t,), where z,t,i denote the age group,
observation time and the i-th population, respectively.

It is worth noting here the necessity of modeling multiple populations together. There
is evidence of strong positive dependence between joint lives with real economic significance,
so that modeling multiple populations together allows for reduced annuity valuation (see
Frees et al., [1996). It makes much difference whether multiple populations live longer si-
multaneously or if one population lives longer while another one lives shorter. When the
life expectations of multiple populations increase simultaneously, there is no way to hedge
against such longevity risk just by selling annuities to policyholders from these populations.
In this dissertation, I have a section dedicated to modeling the mortality of two populations.

There is a bunch of follow-up literature that continued discussion of this topic. |Girosi
& King (2007) cited more than a dozen of papers to confirm the broad implementation of

the Lee-Carter model by policy analysts around the world. |Cairns et al.| (2011) compared



six different stochastic mortality models:

logm(z,t) = B0 + Pk

)

logm(z,t) = BN + Pk + g4

logm(z,t) = 8% +n 'k + 4P,

logit q(t,z) = k" + kP (z — 7)

logit ¢(t,z) = kgl) + k£2) (x —7)+ kt(?’)((x — )2 =63+,

logit q(t, ) = k" + kP (z — &) + 1y (w0 — )

where the functions 63(;i), k:t(i) and %(i)x are age, period and cohort effects, respectively; Z is

the mean age over the range of ages being used in the analysis; n, is the number of ages.
D’Amato et al| (2014)) employed the Lee-Carter model to detect common longevity trends.
The specification is:

log Mgt = Qi + Brikei + €ati (1.7)

where i denotes the i-th population. [Lin et al.| (2014) employed the extended Lee-Carter
model in Li & Lee| (2005)) to study the risk management of a defined benefit plan. Bisetti
& Favero| (2014) applied the Lee-Carter model to measure the impact of longevity risk on
pension systems in Italy.

There is the wide application of bootstrap methods for quantifying uncertainty in mor-
tality models. Bootstrap methods have been proposed for interval estimation and error pro-
jection purposes. [Haberman & Renshaw| (2009)) proposed three different bootstrap methods
to construct confidence intervals for interesting quantities based on the Lee-Carter framework
and a generalized linear Poisson model. |Li| (2010) used parametric bootstrap. D’ Amato et al.
(2012) proposed sieve bootstrap method based on error terms in log my,; = o, + Bkt + €xt
where €, follows from an AR(co) model.

Aside from discrete time series models, continuous stochastic differential equation (SDE)
is also used for modeling mortality data and the corresponding mortality index. |Dahl (2004))

selected an extended Cox-Ingersoll-Ross process; Biffig (2005) chose two different specifi-



cations for the intensity process; [Schrager, (2006) proposed an M-factor affine stochastic
intensity; Luciano et al.| (2008) modeled stochastic mortality for dependent lives.

Some recent literature focuses on hedging longevity risk originated from an increased
life expectancy of a population. Milevsky & Promislow| (2001) explored the topic of hedging
against change in mortality rates using the (put) option, using both discrete and continuous
time models for mortality. (Cox & Linl (2007) considered natural hedging against mortality
rates when insurance companies underwrite both life insurance and annuity products, which
might help lower premiums than otherwise similar insurers (without such practice). Li &
Hardy| (2011]) proposed the use by pension funds of a portfolio of g-Forward contracts to
hedge against longevity risk.

It is also worth mentioning that there is abundant demography literature attempting
to find subtle mortality trends within specific cohorts of a population. For example, |Willets
(2004) suggested that specific cohorts (people born in certain years) might experience mor-
tality trends different from other cohorts, probably due to a combination of life habit factors
or other health factors. Some more papers followed this discussion (see Richards et al., 2006]).
In this dissertation, we do not further pursue this topic. Instead, we are focusing on the
widely applied Lee-Carter model |Lee & Carter| (1992)).

We begin with some discussions of flaws and issues in the Lee-Carter paper, as we have
argued in |[Liu et al.| (2019b)). An issue with the original Lee-Carter model is the model
assumption on {k;} constraint in : STk = 0. Part of the Lee-Carter model is
the time series model characterizing mortality index {k;}, which makes the series of
{k;} random variables. The constraint that the sum of random k;’s equals to a constant
number is unrealistic and too restrictive. For example, if one fits an AR(1) model to {k;},
say k; = p+ ¢ki_1 + e, assuming the time series is stationary (i.e. |¢p| < 1), we must
have %Zthl k, % 4 as T — oo. On the other hand, when p # 0 and ¢ = 1 + % for

1-¢
some constant v € R, we must have %T L
-

as T — oo. (We can interpret % =1
when ¢ = 1, or 7 = 0.) No matter which case of ¢, these implications, combined with the

constraint Zle k; = 0, leads to p = 0 in l} which is too constraining and does not fit



real mortality data well. Therefore, a modified model constraint (rather than a constraint
of the sum of mortality index) is more appropriate.

Another issue of the Lee-Carter model is that there are no asymptotic results for the
derived estimates using singular value decomposition (SVD), so inference uncertainty cannot
be quantified. A special case of the Lee-Carter was considered in |Leng & Peng| (2016) that all
the (5,’s are equal and subject to constraint Zi\il =1 (e, p1=-=Pu= ﬁ), which
implies that the two-step inference method in [Lee & Carter| (1992), as we have summarized
above, does not produce inconsistent estimates, as long as the time series model of is
not exactly an ARIMA(0, 1,0) model.

It happens that some papers in actuarial science interpret the original Lee-Carter model
in the wrong way. For example, by defining mg(z,t) as the true central death rates for age
x in year t, Dowd et al. (2010), |Cairns et al.| (2011), Enchev et al. (2017)) and some other

papers interpreted Lee-Carter model as

lOg m()(l', t) =a; + ﬁxkt

y ., (1.8)
ke = p 4 ki1 + ey, Za::l B =1, thl ke =0

This interpretation is confusing because it basically omits the unexplained error term ¢,
for mortality rate log mo(z,t), so that mortality rate is random solely due to the randomness
of k;’s. Another misinterpretation appeared in |Li (2010) and [Li et al.| (2017b)) that treated
Lee-Carter model as logm(z,t) = a, + B,k without the error term e, in (1.2). This
interpretation is problematic because it implies that log m(z1,t) and log m(xs, t) for different
ages 1 and x5 are completely dependent as both are determined by the same random variable
(mortality index) k;. That is, central death rates are completely dependent across ages.
Based on these understandings, we conclude that the random error term &,, in (|1.2))
is necessary in order to avoid the unrealistic implication that the central death rates are
completely dependent across ages. Due to the presence of these random error ¢,,’s, the
two-step inference procedure proposed by |Lee & Carter (1992)) may be inconsistent in the

sense that the resulted estimators do not converge in probability to the true values as T



goes to infinity. More specifically, Leng & Peng| (2016]) considered a submodel of with
known (,’s (i.e., 81 = -+ = By = ﬁ) and showed that the two-step inference procedure
is inconsistent in identifying the true dynamics of the mortality index when k;’s follow an
ARIMA(p, 0, q) or ARIMA(p, 1, q) model with p+ ¢ > 0, but it is consistent when k,’s follow
a unit root AR(1) model exactly. So naturally, the research question to be answered is,
can we make certain improvements to the original Lee-Carter method to obtain consistent
estimators so that they approach true model parameters when there is enough number of
years of observation (T" — o00)? Even better, can we obtain model parameter estimates
so close to true parameters that we can use them in developing hedging strategies against
longevity risk?

As we have seen in literature, these questions are worth studying, but answering them
is not easy. In this dissertation, I will take multiple steps in an attempt to answer this
question. It first begins with a newly proposed model that changes model assumptions
in a novel way, where these changes are based on the lessons that we learned. We have
investigated the model that the removal of error terms €., from the Lee-Carter model
implies that central death rates are completely dependent across ages. This dependency
does not fit mortality data well, so we certainly want to keep error terms €., in our model.
We also studied the assumption Zzzl k; = 0 in (|1.2)), which can lead to spurious results like
pw=101in . So we would like to get rid of this Zzzl k; = 0 assumption. Nevertheless,
to guarantee model identification, we have to introduce another model constraint regarding
{a,}, which is detailed in the next chapter. Besides, since there are no asymptotic results for
the derived estimates based on singular value decomposition, we need to propose a new set
of estimators with asymptotic results. Our proposed new estimator utilizes the new model
constraint regarding {«, }, and has some satisfactory asymptotic results under certain cases,
depending on whether the {k;} series follows stationary or unit root process. So it becomes
necessary to test whether the {k;} series has a unit root or near unit root. In response,
we developed unit root tests for the proposed model based on Leng & Peng (2017)). All of

these proposed estimators and related results are put into Part 2] which refers to [Liu et al.
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(2019b)).

Since the asymptotic results in Part [2| are contingent on whether or not mortality index
{k} follows unit root time series, an exciting question raises if one can estimate unknown
model parameters asymptotically regardless of the property of {k;} (see|Liu et al., 2019a). In
Part I refer to the paper Liu et al.| (2019a)) on details regarding the proposed bias-corrected
estimation.

I further extend our proposed methods to accommodate two more cases. One of them is
extending the modeling of mortality index {k;} to AR(2) process from AR(1) case. This case
is addressed by my working paper and is detailed in Part[d Since different asymptotic results
are derived under different scenarios (i.e., k; follow unit root AR(2) process), unit root test
based on AR(2) time series is also supplied in Part . Finally, I have considered extending
the mortality model and bias-corrected estimation to accommodate mortality data of two
populations or two cohorts, based on the understanding of the necessity to model mortality
of multiple populations together. The results are presented in the Part

Last but not least, it is crucial to apply these models to actual mortality datasets
because even with theoretical results regarding the estimators, we still need to empirically
verify their performance, given a reasonable sample (number of years of observation, T, being
not too big). So at the end of each part of this dissertation, I present numerical analysis and
simulation study results. When estimates are close enough to the “real” parameters used to
simulate mortality data in the simulation study, combined with confirmed asymptotic results,
we can confidently conclude the performance of our proposed models and estimators. Finally,
I conclude the dissertation with some discussions of results in Part 6l All R codes used for

data analysis and simulation are provided at the end of this dissertation.
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PART 2

STATISTICAL INFERENCE FOR LEE-CARTER MORTALITY MODEL
AND CORRESPONDING FORECASTS

This Part is my published paper Liu et al.| (2019b)), but has been adapted to the format
of dissertation.

Let m(x,t) denote the observed central death rate for age (or age group) x in year t,
where z = 1,...,M and t = 1,...,T. To model the logarithms of the central death rates,

Lee & Carter| (1992)) proposed the following simple linear regression model

M T
logm(z,t) = ap + foky + €0p D Po=1, Y k=0, (2.1)
t=1

z=1

where €, ,’s are random errors with mean zero and finite variance, and the unobserved £,’s
are called mortality index. Note that the above two constraints ensure that the model is
identifiable. Since k;’s are unobservable, the so-called singular value decomposition method
is employed to estimate the unknown quantities, {a, }2,, {3}, and {k:},.

As an important task of modeling mortality rates is to forecast future mortality pattern
so as to better hedge longevity risk, Lee & Carter| (1992) further proposed to model the
estimated mortality index by a simple time series model. In practice {k;} is often fitted to

an ARIMA(p, d, q) model defined as

(1 - Z gsz’) B)ky =+ (1 + Z 0B’ ) (2.2)

where e,’s are white noises.
In conclusion, the classic Lee-Carter mortality model proposed by Lee & Carter| (1992)
is a combination of (2.1)) and (2.2)), and a proposed two-step inference procedure is to first

estimate parameters in (2.1)) by the singular value decomposition method, and then to use
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the estimated k;’s to fit model . Many papers in actuarial science have claimed that an
application of this model with its two-step inference procedure to mortality data prefers a
unit root time series model, i.e., d =1 in ([2.2)).

Since this seminal publication, many extensions and applications have appeared in the
literature of actuarial science with an open statistical R package (‘demography’), where a
key step in forecasting future mortality rates is to fit a time series model to the unobserved
mortality index. Some references are Brouhns et al.| (2002), Li & Lee| (2005), Girosi & King
(2007), (Cairns et al.| (2011), |D’Amato et al. (2014)), Lin et al.| (2014)), and Bisetti & Favero
(2014]).

Although the Lee-Carter model has become a benchmark in modeling mortality rates,
there are some serious issues on its model assumptions and the proposed two-step inference
procedure. First, since {k;} in is random, the constraint Zthl k; = 0 in |) becomes
unrealistic and restrictive. For example, if one fits an AR(1) model to {k;}, say k, =
{1+ ¢k + eq, then we have T 377k % p/(1 — ¢) as T — oo when |¢| < 1 independent
of T. On the other hand, when p # 0 and ¢ = 1 + /T for some constant 7 € R, we have
kr/T LN /L% as T" — oo, where % is interpreted as 1 for v = 0. That is, the constraint
ZtT:l k; = 0in basically says p in must be zero. Hence, a modified model without
any direct constraint on k;’s is more appropriate. A further difficulty in using the singular
value decomposition method for model inference is that no asymptotic results are available
for the derived estimators. When all 3,’s are the same (i.e., f; = --- = By = 1/M), Leng &
Peng (2016) proved that the proposed two-step inference procedure in Lee & Carter| (1992)
is inconsistent when the model is not an ARIMA(0,1,0) model.

It also appears that some papers in actuarial science misunderstand the model. For
example, by defining mg(z,t) as the true central death rate for age = in year ¢, |Dowd et al.
(2010), Cairns et al.|(2011), [Enchev et al.|(2017) and others interpreted the Lee-Carter model

as

M T
logmg(z,t) = a, + Boky, ki =p+ ki1 +ey, Zﬁz =1, Z ki = 0. (2.3)
t=1

r=1
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This is confusing because model basically says the true mortality rate mq(x, t) is random
due to the randomness of k;’s. Another misinterpretation appears in |Li| (2010) and |Li et al.
(2017b), where the Lee-Carter model is treated as log m(x,t) = o, + f.k; without the random
error £, in (2.1)). This is problematic because it simply says that log m(z,t) and log m(y, t)
are completely dependent as both are determined by the same random variable k;. That is,
central death rates are completely dependent across ages.

In summary, the random error term &,, in (2.1 is necessary in order to avoid the
unrealistic implication that the central death rates are completely dependent across ages.
Due to the presence of these random errors €, ,’s, the two-step inference procedure proposed
by [Lee & Carter| (1992)) may be inconsistent in the sense that the resulted estimators do not

converge in probability to the true values as T' goes to infinity. More specifically, |Leng &

Peng (2016) considered a submodel of (2.1) with known £,’s (i.e.,, f1 = -+ = By = %) and

showed that the two-step inference procedure is inconsistent in identifying the true dynamics
of the mortality index when k;’s follow an ARIMA(p,0,q) or ARIMA(p, 1, q) model with
p+q > 0, but it is consistent when k;’s follow an ARIMA(0,1,0) model exactly (i.e., a
unit root AR(1) model). Further |Leng & Peng| (2017) proposed a way to test whether {k;}
follows a unit root AR(2) model. Since Leng & Peng| (2016)) only considered a submodel
of (2.1)), it still remains open on whether the inference in [Lee & Carter| (1992) is consistent
in estimating all unknown parameters and forecasting future mortality rates, and how to
quantify the inference uncertainty even when {k;} does follow a unit root AR(1) process. It
also remains unknown whether the bootstrap method in|D’Amato et al. (2012) are consistent
in quantifying the forecasting error based on the Lee-Carter model and its two-step inference.

This Part of dissertation first modifies the classic Lee-Carter model without adding a
constraint on k;’s for the sake of model identification. Second by focusing on fitting an
AR(1) model to {k:} and assuming that the error sequence {(e;, €14, ,epme)7,t > 1} is
a-mixing, defined later, instead of independent random vectors, this Part proposes least
squares estimators for the unknown quantities, provides a test for unit root, and derives the

asymptotic distributions of the proposed estimators and unit root test when the mortality
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index {k;} follows a unit root or near unit root AR(1) process. Throughout A”™ denotes the
transpose of the matrix or vector A. When the unit root hypothesis cannot be rejected,
forecasting future mortality rates is provided too. We refer to section [2.1| for details. Section
2.2 presents a real data analysis and a simulation study. Some conclusions are summarized

in section All proofs are put in section [2.4]

2.1 Model, Estimation, Unit Root Test and Forecast

Model First we propose to replace ([2.1]) by

M M
logm(x,t) = ay + Buke + ot Zﬂx =1, ZO‘I =0, (2.4)
=1 =1

where €,,’s are random errors with zero mean and finite variance for each z. It is clear
that we do not directly impose a constraint on the unobserved random mortality index k;
to ensure that the proposed model is identifiable. We also remark that the assumption of
Ziil a, = 0 is not restrictive at all as we can simply move the sum to k; if Zi\il o, # 0.

As literature argues that real datasets often prefer a unit root AR(1) model and some
applications of the Lee-Carter model simply assume a unit root AR(1) model, for example,
Chen & Cox] (2009), |Chen & Cummins (2010), Kwok et al| (2016]), Biffis et al.| (2017),
Lin et al| (2017)), |Li et al.| (2017a)), [Wong et al.| (2017) and Zhu et al| (2017)), this Part of
dissertation considers a special case of :

kt = U + (Zbktfl + €¢, (25)

where e;’s are white noises. Therefore the proposed modified Lee-Carter mortality model is
a combination of (2.4) and (2.5, which does not impose any constraint on k;’s for model

identification.

Estimation Next we propose a statistical inference for models ((2.4]) and (2.5)).

As we argue before, the two-step inference in|Lee & Carter| (1992) is hard to derive asymptotic
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results and may lead to inconsistent estimators. Therefore we need a method different from
the singular value decomposition method.

Put Z, = M logm(x,t) and 7, = S e, for t = 1,...,T. Then, by noting that
M a,=0and M 3, =1, we have

Zy =k +mn for t=1,...,T. (2.6)

When {k;} is nonstationary such as unit root (i.e., ¢ = 1 in (2.5))) or near unit root (i.e.,
¢ = 1+ ~/T for some constant v # 0 in ), k, dominates 7, as t large enough, so Z,

behaves like k;. This motivates us to minimize the following least squares

T

Z <Zt — K= ¢Zt—1)2,

t=2

which leads to the least squares estimators for y and ¢ as

Estz Zs ZtT:2 2271_23:2 Zs—a ZtT:2 212
(T-1) {5 271 ~(Zies Zt-1)? ’
(M=) ZeZi =3t 5 Zs 3y 2
(T-1) 12 271 ~(Tis Ze-1)?

i

S
I

Similarly, by minimizing the following least squares

T
Z <log m(wz,t) — o, — 5:1:2&)27

t=1

we obtain the least squares estimators for «, and [, as

Sory logm(m,s) S Z2-31 logm(,8)Zs S, Zs
Tyl 23— (0, Z4)? ’
B, = T loem(@s)Ze 5, logmizs) Ny 2.
TS, 22—(20, Z4)?

Oy =

In order to derive the asymptotic properties of the above least squares estimators, we

assume the following regularity conditions for the error sequence {(e, €14, ,epme)”,t > 1}

in and :
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e Cl) E(e;) =0, E(eyy)=0fort=1,...,Tand x =1,..., M,

C2) there exist 3 > 2 and § > 0 such that sup, E|e;[’*° < oo and sup, Ele,¢|**° < 0o

forx=1,..., M,

C3) 62 = limy_, o E{T*1(23:1 e)?} € (0,00) and 02 = limz_, E{T*1(275T:1 e.r)?} €
(0,00) for z =1,..., M;

e C4) the sequence {(es, 14, -+ ,€pm)7} i strong mixing with mixing coefficients

Oy = SUP sup |P(AN B) — P(A)P(B)|

k>1 AeFf,BeFgs,,

such that y° am P < 00, where ]-",erm denotes the o-field generated by

{(etael,ta e 7€M,t)7— : k S t S k + m}

Under the above regularity conditions, it is known that for r = (ry,--- ,7y41)" €

0, 1]+ there is an (M + 1)-dimensional Gaussian Process {W ()} such that

( [:C’”l ct Ztﬂf] fLE EZMH] gM’t>T A3 W (r) in the space D([0, 1]MT), (2.7)
ooNT = oNT = oyVT ’ 7 '

where [z] is the floor function, D([0,1]¥*1) denotes the space of real-valued functions on
[0, 1]+1 that are right continuous and have finite left limits, and ” B7 denotes the weak
convergence of the associated probability measures. Throughout, we will use ” A7 and 7 B
to denote the convergence in distribution and in probability, respectively. We also use W;(r;)

to denote the ith marginal distribution of W (r) and define

M+1

= > o Wilt). £(1) = 1_6_;?”), () = /0 t exp{(t — s)y} dWi(s) for t € [0, 1],

= lim —ZE e?), co = lim —ZE{nt e —er +me —m-1)},

T—oo 1’ T—oo 1’
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Cy JlgrolonE{ (et +m)(Bumy —€x)} for x=1,..., M.

Theorems below derive the asymptotic distributions of the proposed estimators when
{k¢} is near unit root, and show that the proposed estimators may be inconsistent when {k; }

is stationary.

Theorem 2.1. Assume and hold with conditions C1)-C4), u #0, ¢ =1+ ~/T

for some constant v € R and ky is a constant. Then the following convergences are true as

T — oo.
) 1
efo f’Y( )dWl( fO f'Y

T32($— ¢) & &
$=9=7 (s ds—f0f7

(i)

1 2 1
oy P LB~ O LY
fo f2 ds— fo fV

(iii) Forz=1,....M
TV (4 — ) B BoYs — Vi,

where

Jo F(s)ds [ £y(8) WL () — Wa(1) [ f2(s) ds
fo f2 )ds — (fol f+(s) ds)?

Y, =

and

72 Jy £2(5) wkhcmmm—%mﬂ ) Jy Fi(s)ds

Y, =
fof2 s)ds — ( fofw

(iv) Forx=1,...,M

924, - ) & el = e
1
where
fofv ds—fofw ()
' fo f*? o fo fv
and

:Jc+1 fO f’y — Oy fO f’y x+1(5).

Zm:
f0f2 dS_ fof’y
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Theorem 2.2. Assume and hold with conditions C1)-C4), p =0, ¢ =1+ ~/T

for some constant v € R and ko is a constant. Then the following convergences are true as

T — oo.
! Xy 7 1) [, J,(t) dt} + 3(0? — o?)
. 4 02 t) dWy(t t)dt} + 2 (0% — 0?) + ¢
T(b— 0 0 .
oo 02{f0 J72 dt— (f J 5 (1) dt)?}
(i)
TV — ) S ol Wi(1) [ J2(t)dt — ac [y Jy(t) dt{a? [ Jo(t) dWi(t) + 5(02 — 0?) + Co}'

o2{ [} J2(t)dt — ([ J,(¢) dt)?}

(iii) Forx=1,..., M,

B.Y. — Y, + cy0. fol dt

TGy — ) S
o2{ [y J2(t)dt — (fy J( t)z}

with
1
Y. — o vt [ w2 an,
([ na [ ) [ B
—Mr{/ dt/o T,(t) AW (£) — Wm+1(1)/0 J2(1) dt}.
(iv) Forx =1,..., M,
Ao d Ba:Z Z — Cy

T(B: @x)—>02{f0 T2t di— ([0 )

with

7= awn) ) di - / L) a0,

Z, = 0.0, {Weir(1) /0 L di /0 L) dWan (D).

Theorem 2.3. Assume and hold with conditions C1)-C4), |¢| < 1 and ¢ is inde-

pendent of T (i.e., {k:} is stationary). Further assume that the sequence {(et, €14, ,eme)}
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18 strictly stationary. Then, for x =1,..., M, we have, as T — o0,
o p Blkies) + (1= ¢*)E(kun) — ¢E(exm) — ¢E(nf) + E(eami) + E(mns)
=0 E(e2) | 2¢E(kies ’

1,¢)2 1,¢)2 ) + 2¢E(k1772> + 2E<€1T]1) + E(TI%)

sn B Bke) + (1= ¢*) (ki) — 9E(exm) — 9E(n7) + Eleam) + E(mns)

el 1e2 ’
1-¢ ?E(;Z) + 2¢i(];2 L+ 20E(kim) + 2E(eym) + E(n?)
4 o 1 BeloB(Rine) + E(p}) + E(eim)} — ¢E(kigz2) — B(eiesn) — E(meay)
1-¢ ]15:;2) 2¢>i(l;1262) + 20E (ko) + 2E(evm) + E(n?)
A o, —BAPE (ki) + E(ni) + E(exm)} + ¢E(kigop) + E(eiern) + E(mes,)
Bo = Bz = E(e?) | 2¢E(kien ‘

) 4 2B (k) + 2E(eym) + E(n?)

+ 1_¢2

1—¢2
Remark 2.1. It is easy to check that Zi\il a; = 0 and Zi\il B, = 1, which satisfy the
constraints on {a,} and {B,} given in ([2.4). When {k;} is near unit root, the asymptotic
distributions of the proposed estimators are monnormal when p = 0, and are normal with
a faster rate of convergence for estimators ¢ and B, when pu # 0. When {ki} is stationary

and 1 = 0, the proposed estimators i and &, are consistent while gg and B$ are inconsistent.

When {k.} is stationary and p # 0, the proposed estimators are inconsistent.

Remark 2.2. The conditions C1)-C4) allow many weakly dependent time series such as
finite order ARMA models under very general conditions on the underlying errors. Moreover
the a-mizing condition can be replaced by other mixing conditions, for example, V-mizing

and B-mizing, as long as the central limit theorem and law of large numbers can be employed.

Remark 2.3. If we do not add the assumption of strict stationarity in Theorem [2.5 above,
the expectations in the right hand sides should be replaced by the corresponding limits of

averages. For example, E(kyes) is replaced by limp o, T7! Zthg ki qeq.

Unit root test As many applications of the Lee-Carter model simply fit a unit
root AR(1) model to the mortality index and Theorem above shows that the proposed
estimators may be inconsistent when {k;} is stationary, it becomes important /necessary to

test Hy : ¢ = 1 in (2.5). Under Hy, we have f,(s) = s, so it follows from Theorem (1)
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above that
d 1206 MG

]

120

T3 — ) 4 /wl s} ~ N(0, 2%, (2.8)

In order to employ the above limiting distribution to test Hy : ¢ = 1, one has to estimate
o2. Unfortunately the estimators proposed by Phillips & Perron| (1988) are not applicable
due to the involved “measurement errors” 7,’s and the possible dependence between 7, and
e;. But, when {e;} and {e, .} for x = 1,..., M are sequences of independent and identically
distributed random variables and all sequences are independent, the estimator s, with [ = 1
in Phillips & Perron| (1988)) can be employed. That is, for independent errors, a simple

estimator for o2 is
L1 o 2 s
O = 7y Z é; + T3 Z €16r_1. (2.9)
As this dissertation deals with dependent errors, we employ the idea of block sample variance
estimation in |Carlstein (1986]) and Politis & Romano| (1993).
For integer L, define é, = Z, — i — ¢Z,_q for t = 2,...,T, and U; = L! Zle é;4j for

T
i=1,...,T — L. Then for estimating ¢ = limr_,, E(Zij%et )2, we consider

1 T—L 1 T—-L
~2 - A?__ - T \2

Theorem 2.4. Suppose conditions in Theorem hold. Further assume L™ +T71L — 0

as T — oco. Then 62 5 02 as T — oo.

Based on (2.8) and Theorem , we reject the null hypothesis Hy : ¢ = 1 at level

a if (278 ($—1)2

e 2 Xi1_q» Where x7,_, denotes the (1 — a)-th quantile of the chi-squared

distribution with one degree of freedom.

Forecast When the null hypothesis Hy : ¢ = 1 is not rejected, we forecast the
future mortality rates based on models and (| . ) with ¢ =1 by

logm(z, T +d) =y + fo{Zr +djt} for d>1.
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Note that

log mm +d) —logm(x,T + d)
= Gy + Bl Zr+di} —ap — B Adu+kr + 0 eris} — coria
= Gy — 0y + d{éa:ﬂ — Bap} + (5x 6m)ZT + Benr — B Zs 1 €T+s — €2.T+d
= Bunir — e Zs | €T+s — Exrrd + 0p(1).

(2.10)

In order to quantify the uncertainties of the above forecasts, one has to estimate the distri-

bution function
d

Ga(y) = P(Bonir — Ba Y _ €75 — Exrva < 1)

s=1
Unfortunately it seems that G4(y) can not be estimated nonparametrically without imposing

more conditions on €,,’s. However, we have
M d
7 Y tosole T )= LS logm(e T+ d) = L =S e —nre) + )
=1 =1 s=1

and the distribution function of

Hy(y) = P(%(HT - Z erss — Nrid) < Y)

s=1

can be estimated nonparametrically by

Hence, by defining

Lo = sup{y : ﬁd(y) <a/2} and ¢, , = sup{y : I:[d(y) <1-a/2},
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an interval forecast for 5; Ziil logm(z,T 4 d) with level a is obtained as

r=1

M M
1 — 1 T
I, = (M > logm(z, T +d) — cya, M ;logm(%T +d) - Clﬂ) :

Theorem 2.5. Suppose conditions in Theorem hold and ¢ = 1. Then for any fixed
integer d > 1 and a € (0,1),

M
1
P(MZIOgm(:B,T+d) €l,) »aasT — oo
=1

2.2 Data Analysis and Simulation

Data Analysis To illustrate how the proposed model and inference can be
applied to mortality data and how the new method differs from the classic Lee-Carter
model, we employ the mortality data from the Human Mortality Database (HMD) (see
http://www.mortality.org/cgi-bin/hmd/country.php?cntr =USA&level=1). To gain a ro-
bust conclusion, we study the central death rates of U.S. female, male and combined popu-
lation between 25 and 74 years old from year 1933 to year 2015, and use the mortality data
by 5-year age groups. This gives M = 10 and T = 83.

First, to implement the classic Lee-Carter model, we employ the statistical R package
‘demography’ to obtain estimates for a,’s, 8,’s, k;’s, and then use the obtained estimates for
k:’s to fit model by using ‘lm’ in the statistical software R. We report the estimates for
az’s, Be’s, u and ¢ in Tables [2.1] and for the female, male and combined mortality
rates, respectively. As the asymptotic property for the estimate of ¢ is unknown, one can
not simply use the standard errors obtained from ’lm’ to conclude whether ¢ = 1 or not.
Also one can not employ the commonly employed unit root tests based on estimates of k;’s
to test Hy : ¢ = 1 because of the employed two-step inference.

Second, we apply our proposed inference to fit models and to the female,

male and combined mortality rates. Again we use ‘Im’ to obtain our proposed least squares
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Table (2.1) Female mortality rates for ages 25 to 74. Parameter estimates are obtained from
fitting models and based on the two-step inference in Lee and Carter (1992).

x 1 2 3 4 5 6 7 8 9 10
&, -7.011 -6.736 -6.377 -5.984 -5.572 -5.159 -4.770 -4.348 -3.929 -3.465
B, 0.135 0.128 0.119 0.106 0.095 0.090 0.083 0.080 0.081 0.083

Estimate Standard Error
o -0.157 0.022
) 0.975 0.006

Table (2.2) Male mortality rates for ages 25 to 74. Parameter estimates are obtained from
fitting models and based on the two-step inference in Lee and Carter (1992).

x 1 2 3 4 5 6 7 8 9 10
ap -6.262 -6.125 -5.844 -5472 -5.048 -4.612 -4.204 -3.798 -3.415 -3.015
B, 0.088 0.094 0.106 0.109 0.108 0.108 0.103 0.099 0.096 0.090

Estimate Standard Error
il -0.118 0.024
) 0.994 0.008

Table (2.3) Combined mortality rates for ages 25 to 74. Parameter estimates are obtained
from fitting models and based on the two-step inference in Lee and Carter (1992).

x 1 2 3 4 5 6 7 8 9 10
&, -6.562 -6.381 -6.075 -5.697 -5.279 -4.853 -4.454 -4.045 -3.656 -3.237
B, 0.106 0.109 0.112 0.108 0.103 0.101 0.094 0.090 0.089 0.088

Estimate Standard Error
o -0.135 0.023
) 0.983 0.007

estimates and report the estimates for a,’s, £,’s, 1 and ¢ in Tables [2.4] and for
the female, male and combined mortality rates, respectively. As before, the standard errors
obtained from ‘lm’ is inaccurate since it ignores the involved 7;’s and so one can not conclude
whether ¢ = 1 or not from these three tables. Although the estimate for ¢ obtained from
the new method is similar to that obtained from the Lee-Carter method, estimates for p are
quite different for both methods since the new method does not assume Zthl ke = 0.

Third, we apply our proposed unit root test to the female, male and combined mortality
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Table (2.4) Female mortality rates for ages 25 to 74. Parameter estimates are obtained from
fitting models and based on the proposed least squares estimation.

x 1 2 3 4 5 6 7 8 9 10
a, 0172 0.055 -0.022 -0.344 -0.474 -0.327 -0.337 -0.067 0.384 0.959
By 0.135 0.127 0.119 0.106 0.096 0.091 0.083 0.080 0.081 0.083

Estimate Standard Error
o -1.389 0.290
) 0.977 0.005

Table (2.5) Male mortality rates for ages 25 to 74. Parameter estimates are obtained from
fitting models and based on the proposed least squares estimation.

x 1 2 3 4 5 6 7 8 9 10
a, -2.068 -1.631 -0.789 -0.270 0.099 0.547 0.714 0.940 1.152 1.308
B 0.088 0.094 0.106 0.109 0.108 0.108 0.103 0.099 0.096 0.090

Estimate Standard Error
o -0.441 0.399
) 0.993 0.008

Table (2.6) Combined mortality rates for ages 25 to 74. Parameter estimates are obtained
from fitting models and based on the proposed least squares estimation.

x 1 2 3 4 5 6 7 8 9 10
a, -1.264 -0.949 -0.452 -0.272 -0.105 0.219 0.293 0.509 0.815 1.205
B, 0.105 0.108 0.112 0.108 0.103 0.101 0.094 0.091 0.089 0.088

Estimate Standard Error
o -0.906 0.343
) 0.985 0.007

rates, where we use 62 with L = 0.5v/T, VT, 2v/T and 62 (denoted by L = *) given in (2.9).
Note that requires ko/T — 0 as T'— oo. Since |Zl|/T is around 0.5 which is far larger
than zero, the limiting distribution of the proposed unit root test under the unit root null
hypothesis will be away from a chi-squared distribution for the given T = 83. Therefore
we apply the proposed unit root test to {Zt — Zl}thl. The obtained variance estimates,
test statistics and Pvalues are reported in Tables and [2.9] for the female, male and

combined mortality rates, respectively. As we see, these quantities are quite robust to the
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choice of L. Moreover, the proposed test rejects the unit root hypothesis for the female and
combined mortality rates, but fails to reject the unit root hypothesis for the male mortality

rates.

Table (2.7) Female mortality rates for ages 25 to 74. Variance estimates, test statistics and

Puvalues are reported for L = L%\/TJ, VT, |2VT)|, where'L = ' denotes 52.

L 02 Test statistic ~ Pvalue
|3VT] 0.042 75.938 2.927e-18
IVT|  0.052 61.378 4.709¢-15
12vT| 0.038 85207  2.687¢-20
*

0.047 68.809 1.085e-16

Table (2.8) Male mortality rates for ages 25 to 74. Variance estimates, test statistics and
Pualues are reported for L = |3VT|, |VT], [2VT|, where 'L = +' denotes &2.

L o2 Test statistic Pvalue
|1VT] 0.064 0.798 0.372
IVT| 0.073 0.692 0.405
12V/T] 0.064 0.793 0.373
¥ 0.073 0.699 0.403

Table (2.9) Combined mortality rates for ages 25 to 74. Variance estimates, test statistics
and Pualues are reported for L = |3vV/T|, |VT], [2VT|, where 'L = ' denotes &2.

L o2 Test statistic ~ Pvalue
12V/T] 0.051 12229 4.704e-4
|IVT| 0.061 10.289 1.338¢-3
12V T] 0.049 12.727 3.605e-4
*

0.058 10.789 1.021e-3

Finally, we examine the robustness of the above conclusion on the unit root hypothesis
for the mortality index by rerunning the above unit root test for the male, female and
combined population between 1 and 89 years old. Results are reported in Tables —12.12

which reach the same conclusion as that for the populations between 25 and 74 years old.
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Table (2.10) Female mortality rates for ages 1 to 89. Variance estimates, test statistics and
Pualues are reported for L = [3vV/T|, |VT], |2VT|, where 'L = ' denotes &2.

L 02 Test statistic ~ Pvalue
1IVT] 0.165 60.684 6.703¢-15
IVT| 0.197 50.802 1.021e-12
12VT] 0.169 59.118 1.485¢-14

* 0.177 56.580 5.395e-14

Table (2.11) Male mortality rates for ages 1 to 89. Variance estimates, test statistics and
Puvalues are reported for L = |1V/T|, |[VT], |2V T, where 'L = «' denotes 2.

2 e

L 02 Test statistic Pvalue
IVT] 0221 1.112 0.292
|VT| 0.244 1.005 0.316
12T 0.250 0.982 0.322

*0.248 0.991 0.320

Table (2.12) Combined mortality rates for ages 1 to 89. Variance estimates, test statistics
and Puvalues are reported for L = L%\/TJ, VT, |2V/T], where 'L = %' denotes 2

e

L 02 Test statistic  Pvalue
[3VT] 0.186 12.376 4.349e-4
IVT| 0.218 10.602 1.129¢-3
12V T| 0.209 11.038 8.925e-4
*

0.202 11.406 7.322e-4

Simulation Study To examine the finite sample performance of the proposed
estimators and unit root test, we consider models (2.4) and (2.5 with M = 10, a,’s, 8.’s, p

being the estimates obtained from the female mortality rates in Table [2.4]

2

We assume ¢, ;s are independent random variables with N(0, o7

/M), e;’s are indepen-

2

dent random variables with N(0,02), and ,,’s are independent of e;’s. We take o2 as 52

given in Table i.e., the value with L = x. We draw 10,000 random samples from models
and with sample size T' = 80 and 150, and consider ¢ = 1.

First we compute the proposed estimators for «,’s, (8,’s, p and ¢ under the above
settings and report the means and standard deviations of these estimators in Tables

and [2.14] which show that estimators for «,, ., i, ¢ are accurate.
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Second we investigate the size of the proposed unit root test under the above settings.
We use 62 with L = 0.5v/T, /T, 2T, 52 denoted by L = %, and the true value o2 denoted
by L = %% to compute the test statistic. Variance estimators and empirical sizes of the
proposed unit root test are reported in the lower panel of Tables and [2.14] which show
that the size tends to be larger than the nominal level, the choice of L has an impact on the
test, and the size becomes accurate as 7' is larger. We also find that the proposed test has

a nontrivial power when ¢ = 1 — 2/T', which is not reported here.

2.3 Conclusions

After articulating the issues on model assumptions, statistical inference, and existing
misunderstandings of the classic Lee-Carter mortality model, this Part proposes a modified
Lee-Carter model with no condition imposed on the unobserved mortality index for model
identification. Further least squares estimators are proposed to estimate all unknown pa-
rameters, a unit root test is provided to test whether the mortality index follows a unit root
AR(1) process, and the asymptotic distributions of the proposed estimators and unit root
test are derived when the mortality index follows a unit root or near unit root process and
errors satisfy some a-mixing conditions. An application of the proposed unit root test to
US mortality rates rejects the unit root hypothesis for the female and combined mortality
rates, but fails to reject the unit root hypothesis for the male mortality rates. This finding
does contradict the common argument in the literature of actuarial science that mortality
index follows a unit root process. Forecasting future mortality rates is discussed too when
the unit root hypothesis is not rejected. Some interesting future projects are i) to find uni-
fied methods for estimating parameters and forecasting future mortality rates regardless of
whether the mortality index is stationary or near unit root or unit root, ii) to generalize
the AR(1) model for the unobserved mortality index to an ARIMA(p,d,q) model, and iii) to

show whether and how forecast errors can be quantified nonparametrically.
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2.4 Proofs

Proof of Theorem [2.1. Note that

t—1 t

ke =p+ ok +e = p(d_ @)+ ko + Y o' e
=1

Jj=0

Put k;, = Z§=1 ¢t te;, we have k; = dk;_1 + e;, and then it follows from [Phillips (1987)) that

T2 k2 02 [ J2(s) ds,

TR Y ke o fy Jy(s) ds, (2.11)
T3 ke it o’ fol J(s)dWi(s) +

As T — oo, it is easy to show that

T2, (T5567) = fo fi(s) ds,
TS, (S26) - [ ) ds,

- g p ) (2.12)
T2, (S 0) e o fy fo(s) dWa(s),
| TR (S5 e) e S o fy £2(s) dWals)
and o
75253 @)1 S o /0 £.(5),(s) ds. (2.13)
t=2 j=0

It follows from (2.11f), (2.12]) and (2.13)) that

ZtT:Q Ziy = ZtT:2 ki1 + ZtT:2 -1
=1 (X2 ) + a6 ko + X kit + 0,(T)
=i (S 67) + 0,(1?)
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and
ZtT=2 Zt2—1 = ZtT:2 kiq +2 Zthz Kiam—1 + ZtT:Z U
=S, (SR + 6+ Eo)
+23 (M Z;j ¢+ ¢ o + ]th&) + 3o
=120, (S22 07) + o1,

implying that

T%{Gx_nzﬁﬁzﬁpwiﬁﬂzﬂy}ﬁ>g{ﬁfyg$_.ﬁﬁ%$d$%’ 211
4 {TZthl 72— (1, 72,)? } {fo f2(s)ds — ( fo f5(s) }

(i) Consider the numerator of ¢ — ¢, which is
T T T
~ Y21 (2 — $Zia) Z Zia Y (2, -
—2 =2 s=2

Under conditions of Theorem [2.1], an application of the law of large numbers for an a-mixing

sequence (see McLeishl (1975)) and Holder inequality implies that

) = 0,(1), @ = 0,(1), {MP < {Et;Z U }{Zt%nt—l} = 0,(1).

T
(2.15)
Note that
Zthg kt71(77t - ¢77t71)
- 23:2 /;?t_mt -0 Z;[—_f /;?mt
= ZtT:Q l;t—lnt cbZt 1 (¢kt 1 +€t>77 (2-16)
= (1-¢7) t:_g ko1 + kp_anp — ¢*kom — ¢ ZtT:_ll ety
= Op(Tl/Q)
and
T2
ST ) — dmr) = O,(T). (2.17)
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By (2.11)), (2.15)), (2.16) and (2.17), we have

T =130 %2 — 02 a)

T —1) (ke +mn)(p+ e+ m — dms)

T— 1), STH S+ ¢ kg + koy M) (i e+ — o)
T- DL, (T2 6) + (T - DX, (T2 ) @

HT = DYy ka4 0,(T?)

(T'=1)
(T —1)
(T -1)
(T'=1)

and
SisZi1Ye y(Ze — ¢ Z1)
= (WS ke o+ Sk + Do) X
(M(T D+ e+ o -0, nH)
= -0 YL, (S2¢) +u (T ) Thae
H(T = DYy ki + Op(T?),

implying that

(T - 1) ZtT=2 Zt—l(Zt - ¢Zt—1> - 23—2 Zt—l Zz_Q(Z - gsz_l)

L (S50 a - (ST ) e o

Hence, by ([£:14) and (2.19),

o Ji12(5) dWi(s) fo fv
Iz fo f2(s)ds — ( fo f+(s)

(6~ ¢)
(ii) Write the numerator of i — y as

Zs 2 Z, Zt 2 Zt2 1 Zs o Zs—1 Zt 2 ZtZt 11— (T'=1u Zthz th—l + N(ZtT:2 ZAFl)2
DIV DI RED DR ARD SR /LEED DU/ Sl ¢/ ) V)
(T =Xy 28y + (i Zia)?
= S B Y L= Zer = 1) = Yoy Zer Yoy Zoa(Zy — Ziy — )
= I — I.
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Using (2.11)), (2.12), (2.13), (2.16) and (2.17)), we have

L =S H @ - ) S ket + X et 1 —mo}
= {3t + ¢ ko + kot 4 M)} x
{0 =Dy X & + g ke + ko Yy 0™ + X g er + 10 — 1m0}
= {1 (0 61 + 20 S (000 )k + O(T%) )
{0 - DL 0 + (60— ) Sk + Sy e+ 0p(1)}
= wo- DY, (T2 ¢) T, (S e)
- DS, (S ¢) S,
20— DXL, (X e!) S, (X ) ks
YL, (T2 ¢) ST e+ 0,(T7)

and

Iy =3y Zer} Ypg {lkior + 1) (6 = Dkiroy + €0 + 1 — 1)}
— (L Y ¢ + ket + (D)} S (52 87 + 6 ko + Ry + 1) X
(¢ = DpudiZg @ + (&= 1" ko + (6 — Dy + €0 + 1 — 1)}
— (WL X ¢ + ke + Oy(T))x
{136 = 1) (000 09)2 + 20006 — 1) (im0 6k + n STy (X025 @)er + Op(T)}
— - DEL (S2e) T (i)
- DS, (SR ¢) Sk
w220 = )Y, (00 ) X, (X5 ) i
12 0, (i ¢ ) S (X2 07 ) e+ Ou(T%),

ie.,

[\
[\

t—

T
o) D (D d)er+ Op(T7),

=2 j

S—

¢j Zes_,u22<

t=2 j:O 5=2 s=2 j

Il
o
Il
o

which implies that

d erl fo f2 — O¢ fo f'y dsfo fv dWl( )
fo f2 )ds — fo f”f

T2 (= p) =



34

by using (Z14).
(iii) Similar to the proof of (2.12)), it follows from (2.7 that

T2 (S50 0) cae % 00 fy £(5) dWeia(9)

< (2.19)
T2 (S0 ) e S fy fols) dWi(s)

Write the numerator of &, — a,, as

Zthl ZE 23:1 logm(z,s) — Zthl Z Zf:l log m(z, 3>Zs

—0a T 2+ 0a(Si )
= E;[:l ZE Zle{logm(:c, s) —az} — 23:1 Z ZZ=1 Zs{logm(:c, s) — ag} (2.20)
= [ (Zfﬂ Zt2 23:1 ks — Z;f:l Zt Zf:l ksZAS)

+ <ZtT:1 th Zle Eas — Zthl Z ZST:1 5:B,SZS> :

From (2.11)-(2.13), (2.15), (2.16)), (2.17) and the fact that 3>, nk = O,(T), we have

DDARDZD DURY D SRS Dty WA
= (e ke ket A i ke o = A B2y — > el Yoy mi}
= {0 Ym0 ) S m @) + Op(T%)} +{0,(T%)}

{12 (s )2 e+ Op(T%)} = {0,(T?)}

= 1 O D HE L (20 )} — e (20 )2 H e} + O, (T7)
(2.21)

and
Zle ZAt2 ZZ:l €z,s — Z?:l Zt Zzzl €$,SZAS
= (Y, (Zﬁ;ﬁ) W)2 S us + O, (T} (2.22)
~(2 S (S50 ) S (S50 7) 0+ 0,(1%)).

Therefore, it follows from ((2.14)), (2.19), (2.20)—(2.22) that

Tl/z(d:c - aa}) i> /BQ?KK - }/;C
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(iv) As before, we can show that the numerator of B, — B, is

TYL logm(e,5)Z = S logm(e, ) YLy Zo— BT YLy 22 + 651, 20°
= AT (S k- S0 2) + 8. (S0, 27 - S kL, 4
(TZS Eusls = Soi L Sh 1€xs>
= 6 (L AT TS Zm) — (XL 2 e = TY L 22 2)
= B AnT (S Tim - Tu X, (S ) m o+ op<T2>}
—{nZL (2 éw) S e = Ty (X520 87) aa + 0T }

Then it follows from (2.14)) and ( - ) that

d Boli — Zs

T3%(3, — B,) & P

]

Proof of Theorem[2.2. When p = 0, we have k; = ¢kyi—1 + e, and it follows from [Phillips
(1987) that
T2 2% 62 ) Jg (t) dt,
73250 ke S o [ (1) dt, (2.23)
lzt L ki—ie 4, o fo L () AW (t) + 5(02 — 0?).

Similar to the proof of Theorem [2.1], it is easy to show that

T

T2 (B = (T3~ (3R T,

t=2 t=2 t=2

implying that

Tﬁg{(T—l)ZtT:QZAtQ 17 Zt 2Zt 1)2} Tc {fo J«% t)dt —( fo v dt) }

3 {TDT:J? (i1 Z1) } {fol (0t — ([ 1, (1) de? } (2.24)
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(i) It follows from (12.23) that

Zfzz kt71(77t - ¢7h71) = 2322 ke_amy — ¢2 Zthz ko1 — @ ZtT=2 €t—17t—1
= (1—¢%) 31 ke + kr—imr — kot — ¢ g €r—17—1
==Y e +op(T),

implying that

(T = V)0 Zes(Zy— 0Z11) = St Zoor oan(Zs — 0Z5-1)
= (T - 1) Zfﬂ ki_ie, + (T - 1) Zfzg 7]t—1(€t — €1+ N — 77t—1) (2-25)
- Zthz ki1 Zstz s + Op(TQ)-

Under conditions of Theorem 2.2} by using the law of large numbers for an a-mixing sequence

(see |[McLeish| (1975)), we have
1 r 1 T
f ;Ut—l(et —e_1+ N — nt—l) ﬂ> jlggo T ; E{nt—l(et — €1+ e — nt—l)}- (226)

By (2.23)), (2.25]) and ([2.26)), we have

“2{(T - 1) Sto Zi(Zy = 0Zir) = Yot Zir Yony(Ze — $Zo1)}
4 02{f0 t) dWy(t) — Wl(l)f L(t) dt} + 5(02 — 0?) + c.

(2.27)

It follows from ([2.24]) and ( - ) that

T d U2{fo dWl fo dt}+ ( 02)+CO
T(¢p—¢)— 02”0 Jg dt—(f Jo(t) dt)?} |

(ii) Write the numerator of i — p as

T

. T . A T T A .
ICIDSCELAED LMD SEMCER S}
s=2 s=2 t=2

t=2
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It follows from ([2.23) that

Soies 21 Yoao(Zs = Zoa)
= ZtT:Q(ktZ—l + 2kt—lnt—l + 77152—1){(¢ - 1) ZZ:Q ks—l + 23:2 €s + 1T — 770}
= (0= D)X ki Cama koot + a iy Yogsy e + 0,(T7?)

and
23:2 28—1 Zfﬂ Zt—1<2t - Zt—l)
= X ke + X S ke ) (6= Dy + e+ — 1)}

= (¢p—1) ZtT:Q th—l ZZ:Q ks—1+ ZST=2 ks—1 ZtT=2 ki—1et
+ Zfzz ks—1 Zthz Ni—1(er — €1 +m — m—1) + 0,(T?),

implying that

Z?:Q ZAtZ—l ZZ:Q(ZS - Zs—l) - ZZ;Q Zs—l Zfzz Zt—l(Zt - Zt—l)
= ZtT:2 ki ZZ:Q €s — ZST=2 ks—1 Z?:z k1€ (2.28)
— 3 ket Yo m (e — et + e — M) + 0, (T/?).

Hence, by [£23). £:24) and Z.29),

e o OSWA(L) [ T2t dt — o [} T, (1) dt{o? [, T, (t) AW (t) + L(0? — 02) + co}
T — p) — T I :
o2{Jo J3(t)dt — ([, J(t) dt)*}

(iii) Similar to the proof of (2.23), it follows from (2.7 that

T_l 2;1;1 kt—lgx,t i> OO0y fol ny (t) dWx+1(t)’

| T d 1 (2.29)
T3 ke = oe [y Jo(t) dWi(t).
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Write the numerator of &, — a, as

Zthl th Zfﬂ logm(z,s) — Zthl Zt Zle log m(, S)Zs —a, T 23:1 th + aw(Zthl Zt)2
= Zthl ZE Zil{logm(w, §) — g} — 23;1 Zt 221 Z s{logm(z,s) — a,}
= 8(SL Bk =YL 4 kZ) + (S 22 S e = S 2 22

It follows from (2.23) and (2.29) that

S 22 k=Y 2 ZT_ ko Zs
= Zthl ktntzs 1k +Zt 177152 Zt 1ntzz 1kg Zt 1777&2 ksns
Z?:l ke Zs ks + Zt 177t Z Zt 1M Zs 1 k? + Op(T5/2)

and

Zt 12225 1€zs — Zt 1ths 15“25
ZtT 1 k? Zs 1€z,s Zthl ke 25:1 ks€u,s ZtT 1 K Zs 1Ms€x,s T+ Op(T5/2)

implying that

Ele ZtQ Zle logm(z,s) — Zthl Zt Zle log m(, S)Z —a, T Zthl th + 049:(2?:1 Zt)2
= 5x{ZtT—1 ke Zstl ks + 23:1 77t2 ZST:1 ks — ZtT—l Uz Zs 1 k?

+ Z;f 1 kz Zs 1€2,s 25:1 Ky Zstl ks€x,s Z? 1 ke Zs 1 Ms€a,s + Op(TS/Q)
(2.30)

By (2.29) and the law of large numbers for an a-mixing sequence McLeish (1975), we have

% Zthl ke = ¢% Zthl ke_1m + % Zthl e

(2.31)
L [T () dWL () + iy 2 0T Eerny).

Therefore it follows from (2.23)), (2.24)), (2.29)-(2.31) that

BYe = Yy + oo, [ (1) dt

TV2(d, — ap) S . .
o2{ [, J2(t)dt — ([, Jy(t)dt)?}
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(iv) Note that the numerator of B, — B, can be written as

Ty oy logm(w,s)Zs — 3oy logm(w,s) Yo,y Zi = BT 30y 27 + Bu(3 12y 20)°
= 8 (T2 - TS Zm) — (S A ees = TE L 202
= (Zt ke ey s =Ty ke — T, 77t2>
(Zt S e~ T ke T 7756175;) + 0,(T?).

Then it follows from (2.23), (2.24), (2.29) and (2.31]) that

ﬂ:):Z* - Zz — Cy

T Ax_ z a 1 !
(B = Pe) = o2{ [y J2(t)dt — (f, J,(t)dt)?}

O

Proof of Theorem[2.3 1If || < 1 and ¢ is independent of T', i.e., {k;} is stationary, it follows

from the assumption of strict stationarity that, as T" — oo,

1T
T ! Zt:Q k:t ﬁ) ﬁ;
T ZtT—z [T E(/ﬁez) (2.32)

2 20E (ke
121& 2k2 #)? + 1(¢>2) + ¢1£¢122)‘

By (2.6) and ([2.32)), we have

T2 {1 XL, 2~ (S Zi?)

62 €
= ;Efdia) + 2¢]1E_UZ,12 2 4 20 (kyipp) + 2E(exm) + E(7})

(2.33)

and

N ~ e2 e
TS 22 - (T 22 B 2D + 22 1 20B (ki) + 2 (exm) + E ()
(2.34)

Using the law of large numbers for an a-mixing sequence McLeish| (1975) and noting the
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assumption of stationarity, we have

T =) 22— S oe 0 253y Zen}

5 R E(e]) + rng(kl@) + (¢ + DE(kime) + ¢E(exm) + Eleam) + E(mp) 5
and
T2 2, Ztsz T2 = e Yo 2}
L (B 20 Bhyey) — (1 - ) E(kae) (2.36)
+(2 = ¢)E(erm) + E(mi) — E(eam) — E(mme)}-
Similarly, for z = 1,..., M, we have
T_Q{ZST Vlogm(x,s) 3o,y Z2 = 2oy logmi(x, 8)Z, 30,y Zi}
x{f(}) 2¢f,(];1262) +20E(kin2) + 2E(exm) + E(n7)}
+%{¢E(k1ﬁ2) + E(eim) + Ei)} — 245{0E(kiea2) + Eeres) + E(mesa)}
(2.37)
and

TﬁZ{T erzl logm(m, S)ZS - Zf:l logm(xv 3) Zle Zt}
62 e
L B 7 + 22 4 B (ki) + E(eim)} + 0E(kizas) + Elercan) + E(meaa).

(2.38)
Thus the theorem follows from ([2.33])—(2.38)). O
Proof of Theorem[2.4. Put U; = L™ Zle ei+; fori=1,...,T — L. Write
L ZT L U2
= LZT S0 = U+ A S U+ 2 B (U= U (2.39)

= L+L+1
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and

L{zA Y Uy
Lz M0 - U) P + Lz S U + Ty SHU U, (240)
= I+ I;+ I.

It follows from (3.9) and (3.10) of |Lahiri| (2013)) that

L—1I; 5% 0% as T — . (2.41)
Similarly we have
; Tl L
71 Z{Z D nii} = 0y(1). (2.42)
i=1 j=1
Since
éo—e =(Z—fi—0Zi1) — (ke — pp— dkyr)
= (Zt — k) — (o —p) — (QBZAt—l - ¢Zt—1 + ¢Zt—1 — ¢ki_q)
=N — i) — (o —p) — (é — @) (ki1 + M),
we have
) 1 L ) 1 L
Ui=Ui= 1 D iy = minj) — (=) — (6 — O 2 _(kivj—r +ivjor). (2:43)
j=1 Jj=1
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Hence

~

L =5 Z LS (i — i) — (=) = (0 — ) S0 (ki jmr + Mijo1) Y
< LY 0HE Zj y(Mij — i)} + 3L (3 — p)?
+(6 — ¢>2 S S (K1 + M)}
< ﬁ S mier — omi+ (1 —¢) thll Nivi 2 + 3L(fL — M)Q
(6 = P ST X ki + (6= 0P8 5T Xt Y
< I L an$+L+ s S+ e {zj ¥ 3L(3 — )’
Ho— ) S S i P+ (00— )2 R S i)
=1L+ + 1.

Using , Theorem , En? <oo,1—¢ — 0and L — oo as T — oo, we have
II; = 0,(1) for i = 1,2,3,4,6. (2.44)
By noting that ¢ — ¢ = O,(T~*2) and T~! max,<,<r |k:| = O,(1), we have
I15 = o0,(1). (2.45)

Hence, it follows from ([2.44]) and ( - ) that

I = 0,(1). (2.46)
By Holder inequality, we have
[3 == Op<\/ ‘[1[2’) = Op(1>. (247)

It follows from ([2.43)) and similar arguments in proving (2.46|) that

L = o,(1). (2.48)



43

Using Holder inequality again, we have

IG = Op(\/ |]4]5|) = Op(]_>. (249)
Therefore the theorem follows from (2.41)), (2.46)—(2.49). O

Proof of Theorem [2.5. By noting that

Z§=1 Crrs = Z§:1 Ctts T Nitd — Mt
—d(jp =) = (6= 1) DL ka1 — (6= 1) Sy s,

d d
i s = oD, s G = 1S bl + 16— 1S mgsnal} = (1),
s=1 s=1

1<t<T
we have
T—d d

. 1 1
Hy(y) = T4 ZI(M(m - ZGHS — N+d) < y) + 0,(1) for any y € R. (2.50)

t=1 s=1

Since {n; — Zgzl €irs — Meva) 1s strong mixing and satisfies condition C4), we have

T—d d
1 1
—_— Z I(=(n — Z Ctrs — Nird) < Y) 2 Hy(y) for any y € R. (2.51)
s=1

Hence the theorem follows from (2.50) and (2.51)). O
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PART 3

BIAS CORRECTED INFERENCE FOR A MODIFIED LEE-CARTER
MORTALITY MODEL

This Part is my published paper [Liu et al.| (2019a)), but has been adapted to the format
of dissertation.
The Lee-Carter model is a combination of the following two structures for modeling the

central death rate m(z,t) at age or age group x =1,..., M and time t = 1,...,T":

M T
logm(z,t) = ap + Boky + €0, > Po=1, Y k=0, (3.1)
t=1

r=1

and

kt = M + Pk?t—l + €, (32)

where {e,.}]_, and {e;}._, are random errors with zero mean and finite variance, the unob-
served {k;} is called the mortality index. A detailed assumption on the dependence of these
random errors is given in the next section. Note that model can be replaced by a more
general time series model although researchers often claim that a unit root AR(1) model fits
well to real mortality rates. Some recent applications of the above models and
with p = 1 in actuarial science include [Li et al. (2017b)), Kwok et al.| (2016)), Enchev et al.
(2017), Biffis et al. (2017), [Lin et al. (2017)), Wong et al.| (2017), |Zhu et al| (2017). Among
these applications, a commonly employed statistical inference is the two-step procedure in
Lee & Carter| (1992), which first estimates oy, 5,k forx =1,..., M andt = 1,...,T by the
singular value decomposition method based on model and then fits model to the
estimated k;’s. Unfortunately |Leng & Peng| (2016) showed that such an inference procedure
may be inconsistent when the mortality index is not exactly an AR(1) unit root process.

So far many extensions and applications of this Lee-Carter model have appeared in
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the literature of actuarial science with an open statistical R package 'demography’. The
two constraints in (3.1)) ensure that the model is identifiable. Recently, to relax the very
restrictive constraint Zthl k; = 0 on 1} which basically implies that p© = 0, |[Liu et al.

(2019b)) proposed the following modified Lee-Carter model:
M M
logm(x,t) = au + Boke + €ae, ki=p+okrte, Y fo=1 Y as=0, (3.3)
rz=1 r=1

where the condition Ziil o, = 0 is not restrictive at all because the sum can be absorbed into
p via k. In order to estimate the unknown parameters and derive the asymptotic properties,
Liu et al.| (2019b) proposed the following inference procedure without using the singular value
decomposition method under the setup that the sequence {(es, 14, ,ems)” 1t =1,...,T}
in is an a-mixing sequence, where A7 denotes the transpose of matrix or vector A.
Define 7, = Zﬁl logm(z,t) and 7, = Zi\/lzl gt for t = 1,...,T. Then model (3.3
implies that Z, = k; +n; for t = 1,...,T. When {k;} is a unit root or near unit root
process, k; dominates 7, for ¢ large enough, which motivates |Liu et al. (2019b) to estimate

the unknown parameters by minimizing the following sums of squares

T T
Z (Zy — pp— ¢Zs—1)* and Z (logm(z,t) — o — BuZy)

t=2 t=2

for x = 1,..., M. That is, one solves the following score equations for x = 1,..., M:

StAZi = 0Zia} =0, S AZ— i~ 0Zi 1} 21 = 0,

(3.4)
ZtT:Q{log m(z,t) — oy — B2t} =0, ZLQ{Iog m(x,t) — o — B2} 2y = 0.

However, when {k;} is a stationary sequence, the above least squares estimators are incon-
sistent, and the proposed unit root test in [Liu et al.| (2019b) does reject the unit root null
hypothesis for some real mortality rates. This raises an interesting question on whether
one could estimate these unknown parameters consistently regardless of whether {k;} is

stationary or unit root or near unit root.
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In this Part we propose a simple bias corrected estimation for the modified Lee-Carter
model and derive its asymptotic distribution regardless of the property of {k;} when
errors are independent; see section for details on the methodology and main asymptotic
results. A simulation study and data analyses are given in section[3.2] Section[3.3|summarizes

our contributions. All proofs are put into the Appendix.

3.1 Methodology and main asymptotic results

Throughout we use o0, 8.0, fo, $o to denote the true values of ay, f,, 1, ¢ in (3.3),
respectively, hence Zyzl a0 =0 and Zi\; Bz0 = 1. Further we assume that

C1) {(et €1y yeme)” : t = 1,...,T} is a sequence of independent and identically
distributed random vectors with means zero and finite covariance matrix.

By noting that the inconsistency of the least squares estimators via solving is due
to the correlation between Z; — pug — ¢poZi—1 = e + 1 — ¢ony—1 and Z; 1 = k1 + mi_1,
we propose the simple bias corrected estimators via solving the following modified score

equations:

ZtT::s{Zt —p—¢Z 1} =0, Zthg{Zt — W= QL 1} 2o =0,

(3.5)
ZtT:?){log m(z,t) — o, — B2} =0, Zthg{log m(z,t) — oy — BuZi} 21 =0,

which give
fL = ZST=3 Zs ZtT=3 Zi1Zi—2 — ZZ:S Zs1 Zf:g L2
(T - 2) 23:3 Zt*1Zt72 - 2523 Zs,1 23;3 Zt72 ’
b= (T -2) ZtT:?) ZiZy—s — ZST:3 Zs ZtT:;», Zy—2

(T - 2) ZtT:?) Zy1Zp — ZZ::& Zs ZtT=3 Zt727

Q. — ZZ:?) log m(z, s) ZtT:s ZyZy1 — ZZ:3 logm(z,8)Zs 1 2:{:3 Z
(T - 2) ZtT::% ZyZyy — ZST:?, Zs ZtT:?, Zy

)

(T —-2) ZtT:g ZyZyq — 23:3 Zs ZtT:3 Zs_q

xT
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forx =1,..., M. We remark that the estimator ngS is the same as the modified Yule-Walker
estimator in [Staudenmayer & Buonaccorsi (2005) for a time series model with measurement
errors, and obviously we have ™ 4, =0 and -7 4, = 1.

To present the asymptotic distribution of the proposed bias-corrected estimators, we
need some notations. Put @ = (u, ¢, a1, B, ,ap—1, By-1)7, 0 = (11, QAS, ay, ,@1, cee A1, BM_l)T
and let 6y = (1o, Po, @10, Fr0, -+ s nr—1,0, Bu—1,0)7 denote the true value of 6. Note that
we exclude aj; and ), in the above definitions due to the constraints Zfil a0 = 0 and
224:1 Bzo = 1. For the stationary case, i.e., |¢o] < 1 independent of T, we define the

symmetric matrix ¥ = (0; j)1<i j<on With

o11=FE(e; +(1— ¢0)771)2> 012 = 01,1,

Mo
1 — ¢o

Ho

01,2z+1 — E{(ga:,l - 535,0771)(61 + (1 - ¢0)771)}, 01,2042 — Wal,%c-i—l?
— Qo

o2 = {B(e; +m)? +¢§E(m)}{ M + T + B(nf) + 2E(em)}
~200{B(ern) + E0})Hrs + 42 + goB(erm)},

022042 = E{ei(ern — Be 0771)}{(1 2+ ¢2E¢621 + doE(e1m)}
+E{m(ez1 — 59@,0771)}{1_(;50 (exm) — doE(n)},

022¢+1 = 0122425 022+1,2y+1 — E{(%,l—533,0771)(5;/,1—5%0771)}, O22412y+2 — %Unﬂzyﬂa
— ®o
2 2
W E(e
Paaszanie = Bl (En — Buon)Ent — Ao H—2 s + 2D opei) + BG))
(1—¢0)>  1—¢5
for 1 <z,y <M —1 and
I'= diag(Ao, cee ,AMfl) (36)
with
1 _&
Ay=-=Ay1 = ¢O

E(e
1520 (1- 9250)2 + d)i ¢2 +¢0E(€1771)

For the nonstationary case, i.e., ¢9 = 1 + p/T for some p € R, we define the symmetric
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matrix i = (5i,j)1§i,j§2M with
1
1= B(R), 12 = E) [ fpun(s)ds
0

1
01,2041 = E{€1(€x,1 - Bm,om)}, 012042 = E{Gl(&m - 5w,0771)}/ fp,uo(S) ds,
0
1
022 = E(G%)/ fiuo(s) ds, 022041 = 01,2042,
0
1
G22012 = E{er(epn — 590,0771)}/ fpz,uo(s) ds, Gozr12y+1 = E{(€x1 — Beom)(ey1 — Byom)},
0
1
52x+1,2y+2 = E{(%,l - 533,0771)(5%1 - ﬁy,(ﬂh)}/ fp,,uo(s) ds,
0

1
Sraraayss = E{(ent — Boom) eyt — Byom)} / £2,0() ds
0

for 1 <xz,y < M — 1, where

esP—1
po—— if p#0,
fpvuo(s) = g (3.7)

HosS if p= 07
and

[ = diag(Ap, -+, An-1) (3.8)

with
1
~ ~ 1 fo Joumo (s)ds
Ay=-=Ay1= . 1
fo fouo(8)ds fo p,uo(3>d3
Here we focus on the asymptotic result for the case of pg # 0 as real mortality rates are
often in this situation. Results for the case of py = 0 can be derived similarly, but with a
different rate of convergence for é and Bx Throughout all limits in the theorems below are
taken as T' — oo with a fixed M, and we use 2 and & to denote convergence in distribution

and in probability, respectively.

Theorem 3.1. Assume model holds with C1) and po # 0.
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i) When |¢o| < 1 independent of T (i.e., stationary case), we have
VTT{0 — 6,} % N(0,%).

ii) When ¢o = 1+ p/T for some constant p € R (i.e., near unit root if p # 0 and unit

root if p=0), we have
Dr{6 — 6} % N(0,T'STY),

where Dy is a diagonal matriz with TY? in the odd diagonal elements and T3/? in the even

diagonal element.

Remark 3.1. It is easy to check that T is singular only when E(e?) = (¢2 — 1)E(eymy), T

is always nonsingular, ¥ and ¥ are positive semidefinite. When e, and (€14y-+- ,eme)” are
uncorrelated and the covariance matriz of (€14, -+ ,enm+)T is positive definite, it follows from
. , S Dy - 0 _
Lemma 1 in the Appendiz that ¥ = and ¥ = |, where ¥y and ¥4
Xy 2o 0 >

are positive definite 2 X 2 matrices, Xy and Sy are positive definite (2M —2) x (2M — 2)

matrices.

In order to employ the above theorem to construct a confidence region for @y or a part
of By, or to test Hy : ¢g = 1, one has to estimate X and 5 consistently, which can be done
as follows.

Define Y/t,x(ax,ﬁx) = logm(z,t) — ap — B.Z; and ffm(ax,ﬁx) = {logm(x,t) — o, —
B2y} 2y forx=1,...,M and t = 3,...,T. Further put

Yt,l(/la ¢) =2y —p— ¢z, }/%,2(/% ¢) = {Zt A (bthl}th%

W,(6)
= (Yt,l(,u, ¢)7Yt,2(u7 ¢),Y/t,1(041,51)>Yt,l(ahﬁl)a T 7571:,M—1(OZM—1,5M-1),Y15,M—1(&M—1,5M—1))T
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and

W ()

- (Y;ﬁ,l(,ua ), M: Y/Z,l(al, B1), M7 T 7}~/z‘/,M71<05M717 Brr-1), Yt’M_l(a]gﬁ_l’ﬁM_l))T

fort =3,---,T. Then we propose to estimate > by

T T T-1
_ 1 . R 1 . 5 1 7 5
S= s Y WUOWI(0) + Y WOWT,(0) + = > WuOWT,(6).
t=3 t=4 t=3

Estimating ¥ is done in the same as the previous one, i, replacing W; by /V[v/t, which is

denoted by 3.

Theorem 3.2. Assume model holds with C1) and po # 0.
i) When |¢o| < 1 independent of T, we have & 5 % as T — cc.

ii) When ¢ =1+ p/T for some constant p € R, we have = 5 % as T — oo.

Remark 3.2. For testing Hy : ¢o = 1, it follows from Theorem[3.1] that

5 0 Y Ho
(\/T(,[L _— /,Lo)’ T3/2(¢2 _ ¢O))T i N O ’ 1 22 0'171 0‘1’2 1 22 |
0 g5 012 022 Lo £D
which implies that
; 144 2 . B .
T3/2(¢ — ¢o) 4 N(O, —4(@01,1 — o012 + 0272))’

fo 4

where g, 0,5 can be estimated by i in Theorem and 3@]- i Theorem .

Remark 3.3. We forecast r future mortality rates logm(x, T 4+ 1),--- ,logm(xz, T 4+ r) by
logmm+ s) = Gy + Bokrys for s=1,....r

where

by = i+ 0Zp, krio =i+ Gkriy, -, kry, = i+ Gk, .
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Wrrite

—

logm(z; T 4+ 1) —logm(x; T + 1)
= (Gy — Qo) + (Bo — Buo)(ft + 9Z7) + Buo(fi — f10) + Bao(d — o) Zr

+B2.000NT — Br0€r+1 — Ex.7+1,

it becomes necessary to estimate the distribution function of By 00onr — Bro€r+1 — Ex1+1 N
order to quantify the forecast error. Unfortunately it remains unknown on how to estimate
this distribution function nonparametrically, which is conjectured to be impossible. However,

we have
M

Z{ﬁx,o%ﬁT - 5:5,06T+1 - €x,T+1} = QoNr — ery1 — N7r+41,

=1
whose distribution function can be estimated nonparametrically by the empirical distribution
of {Z; — n — qut_l}thl. Therefore it is possible to quantify the uncertainty of the forecasts
SM logm(x; T +s) fors=1,...,r.

3.2 Simulation study and data analysis

Data Analysis We compare the proposed bias corrected inference with the
inference methods in [Lee & Carter| (1992) and in Part [2| for analyzing the U.S. mortality
data obtained from the Human Mortality Database (HMD) [[] We study the U.S. mortality
data of population between 25 and 74 years old from 1933 to 2015, and we use the mortality
data by 5-year age groups. Hence, M = 10 and T' = 83.

We employ R package ‘demography’ to implement the classic Lee-Carter model. The
estimates for a,’s, 8,’s, u’s and ¢’s are reported in Tables for the U.S. female, male
and combined mortality rates, respectively. We observe that the proposed bias corrected
estimate gives the smallest ¢ and largest |u|, and a clear difference in estimating v, for these
three methods.

Next we apply these three methods to forecast future logarithms of mortality rates

Thttp: //www.mortality.org/cgi-bin/hmd-country.php?entr=USA&level=1
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Table (3.1) US female mortality rates.

x 1 2 3 4 5 6 7 8 9 10
Lee and Carter (1992) G -7.011 -6.736 -6.377 -5.984 -5.572 -5.159 -4.770 -4.348 -3.929 -3.465
Bz 0.135 0.128 0.119 0.106 0.095 0.090 0.083 0.080 0.081 0.083
Part Qg 0.172 0.055 -0.022 -0.344 -0.474 -0.327 -0.337 -0.067 0.384 0.959
Bz 0.135 0.127 0.119 0.106 0.096 0.091 0.083 0.080 0.081 0.083

Bias Corrected Inference Qg -0.025 -0.070 -0.085 -0.318 -0.453 -0.276 -0.261 -0.023 0.463 1.047
Bz 0.131 0.125 0.118 0.106 0.096 0.092 0.084 0.081 0.082 0.085

2 [
Lee and Carter (1992) -0.157 0.975
Part 2] -1.389  0.977

Bias Corrected Inference -1.547 0.974

Table (3.2) US male mortality rates.

x 1 2 3 4 5 6 7 8 9 10
Lee and Carter (1992) éfa: -6.262 -6.125 -5.844 -5.472 -5.048 -4.612 -4.204 -3.798 -3.415 -3.015
Bz 0.088 0.094 0.106 0.109 0.108 0.108 0.103 0.099 0.096 0.090
Part o:cx -2.068 -1.631 -0.789 -0.270 0.099 0.547 0.714 0.940 1.152 1.308
Bz 0.088 0.094 0.106 0.109 0.108 0.108 0.103 0.099 0.096 0.090
e -2.267 -1.838 -0.938 -0.305 0.105 0.623 0.856 1.063 1.300 1.400
Ba 0.084 0.090 0.103 0.108 0.108 0.109 0.106 0.102 0.099 0.092

Bias Corrected Inference

a ¢
Lee and Carter (1992) ___-0.118___0.994
Part 2] 0441 0.993

Bias Corrected Inference -0.662 0.989

Table (3.3) US combined mortality rates.

Lee and Carter (1992) (%T -6.562 -6.381 -6.075 -5.697 -5.279 -4.853 -4.454 -4.045 -3.656 -3.237
Bz 0.106 0.109 0.112 0.108 0.103 0.101 0.094 0.090 0.089 0.088

Part G -1.264 -0.949 -0.452 -0.272 -0.105 0.219 0.293 0.509 0.815 1.205

Bz 0.105 0.108 0.112 0.108 0.103 0.101 0.094 0.091 0.089 0.088

Bias Corrected Inference G -1.495 -1.146 -0.576 -0.280 -0.083 0.304 0.430 0.613 0.939 1.294
Bz 0.101 0.104 0.110 0.108 0.103 0.103 0.097 0.093 0.091 0.090

a ¢
Lee and Carter (1992) -0.135 0.983
Part 7] 0.006 __0.985

Bias Corrected Inference -1.095 0.981

for the next 50 years, and report the forecasts for the combined mortality rates in Figure
3.1l The bias corrected inference forecasts larger mortality rates than the method in Part
2l As Part [2 rejected the unit root null hypothesis for the combined mortality rates, only

the forecasts based on the proposed bias corrected inference in Figure [3.1] are theoretically

suitable.

Simulation Study This section investigates the finite sample performance of
the proposed bias corrected estimators and compare them with the estimators in Part [2]

which are inconsistent in the case of stationary mortality index.
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Figure (3.1) True data and next 50 years’ forecasts of logm(z,t) for US combined mortality
rates. The first five plots correspond to the age groups * = 2,4,6,8,10 and the last plot
corresponds to the sum of logm(z,t) over all age groups x =1,2,...,10, where dashed line,
dotted line and dashdotted line represent the Lee-Carter method, the method in Part[3 and
the proposed bias corrected inference, respectively.
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We draw 10,000 random samples from model with M = 10, «,’s, 8,’s and pu
being the estimates obtained from the female mortality rates based on the method in Part
, which are given in the Table of the Section . We further assume that the e,,’s
are independent random variables with normal distribution N(0,0%/M) or N(0,502), e;’s
are independent random variables with normal distribution N (0, 03), while €, ;s and e;’s are
independent of each other. We take o2 as 0.047 (= 52) given in Table 2.7 in Part [2| which
is the variance estimate of e;, and consider sample size T' = 80, 150, 300 and ¢ = 0.7, 0.98.
The simulation results for 7 = 300 are reported in Tables [3.4H3.6], which show that the bias
corrected estimators have a larger standard error than the estimators in Part 2, but a smaller
bias and a smaller mean squared error for the cases of ¢ = 0.7 with &,; ~ N(0,02/M) and
¢ = 0.98 with €, ; ~ N(0,502), while both methods perform similar for the case of ¢ = 0.98
with .4 ~ N(0,02/M). Results in Tables and confirm that the method in Part

leads to inconsistent estimation when the mortality index is a stationary sequence. Results

for T"= 80 and 150 lead to similar conclusions, which are not reported here.

3.3 Conclusions

The Lee-Carter model in Lee & Carter| (1992)) has a restrictive constraint on the unob-
served mortality index and suffers from possible inconsistent inference. Recently we proposed
a modified Lee-Carter model without constraint on the mortality index and a consistent in-
ference procedure when the mortality index is a near unit root or unit root AR(1) process
with a nonzero intercept (as seen in Part . This section proposes a bias corrected inference,
which is consistent with a normal limit regardless of whether the mortality index follows a
stationary or near unit root or unit root AR(1) time series model with a nonzero intercept.
This new inference is useful in forecasting future mortality rates as mortality index in real
data may not be a unit root AR(1) process. Real data analysis does show that the bias
corrected inference leads to larger forecasts of future mortality rates than the method in

Part 2
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Appendix: Proofs of Theorems

~

For ease of notation, we use Ytj; i/tﬂn }A/;f,x to denote YLj(:an ¢0)7 ﬁ,x(ax,m B:aO)a Y;,a:(a:c,Oa /630,0)7

respectively.

Lemma 3.1. Suppose conditions in Theorem [3.1] hold.
i) If |¢o| < 1 independent of T', then

T T
1 d 1 a D
N E Wt<00) — N(O, Z) and T t:E - 8_0Wt(00> =T as T — .

T=
Further if e; is independent of (€14, - ,emy)” and the covariance matriz of (€14, -+ ,ems)”
o . ‘ X1, X ‘ o .
18 positive definite, then we can write ¥ = , where Y1 1s a 2 X 2 positive definite

matriz and g is a (2M — 2) x (2M — 2) positive definite matriz.

ii) If oo = 1+ p/T for some constant p € R, then

T T
1 K J . 1 o
N E W t(GO) — N(O, E) and T t:E : % W t(eo) =TI as T — .

T4
Further if e; is independent of (€14, - ,emst)” and the covariance matriz of (€14, ,emz)”
. .. . LS ila 0 = . .. .
1s positive definite, then we can write ¥ = |, where Xy is a 2 X 2 positive definite
0 X

matriz and S is a (2M — 2) x (2M — 2) positive definite matriz.

Proof. i) Note that for x =1,..., M — 1

Y

Yii=e+m— doni—1, Yio = (er +m — dpomu—1)(ki—2 + mi—2),

i i (3.9)
th,m =&zt — ﬁx,Onh Y;,,:r = (Ex,t - Bx,OUt)(ktfl + ntfl)-

Define Y/, = e + ny — ¢ony,

Y, = (et +ne) (k-2 + 1e—2) — Gome (k-1 + 1e-1)
= {et + (1 - ¢0)77t}(k5t—2 + 77t—2) - ¢077t(]<?t—1 — kot M1 — 77t—2)
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and Wi (6y) as W(6) with Y;; and Y, replaced by Y/ and Y/, respectively. Let F;
denote the o-field generated by {(es, 1,5, - ,ems)” + s < t}. Then {W;(6y), F}2, is
a martingale difference sequence. By the central limit theorem for a martingale difference
sequence in|Hall & Heyde| (2014), \/LT Zfzg W7i(6,) converges in distribution to a multivariate

normal distribution with zero means and covariance matrix ¥ = E {W3(0,)W73(6,)} . Since

\/LT ZtT=3 Yii = \/LT Zthzs Y/ +0p(1) and \/LT Z?:g Yio= \/LT Z?:g Y5 + 0p(1), we have
1 1 &
T2 Z W(80) = —= ST Wi(60) + 0p(1) 5 N(0,5) as T — oo,

t=3

In order to compute the covariance matrix ¥ = (0; j)1<ij<2m, by noting that

2 2 2 2
Ho 2 Ho E(eq) Ho E(eq)
E(k) = ——, E(k;) = d Ekiki_ 1) = ———
(t) 1_¢0a (t) (1_¢0)2+1_¢% an (ttl) (1_¢0)2+¢01_
it is straightforward to verify that for 1 <z, y < M — 1
011 = Elez + (1= ¢o)nz)?, 012 = E{(es + (1 = do)us})*} E(k1 +1m1) = ﬁoqboal,b

012041 = E{(es + (1 — ¢0)n3)(€z,3 — Bzoms) },

01,2042 = E{(es + (1 — ¢0)n3)(€x,3 — Buons) (ke + 1)} = 15—0%01 2z+1,

022 = E{(es +m3)E{(k1 + m)*} + G E{n3} E{ (k2 + 12)*}
—2¢oE{nses + n3}E{ (k1 + m)(kz +12)}
= {E(es +m)* + ¢%E(m)}{ b+ TR+ B(f) + 2B(eam))
—2¢0{ E(exm) + Em) H = + ¢f;€g> + ¢oE(erm)},

02,20+1 = E{(es + (1 — ¢0)n3)(€x,3 — Buons) E{k1 + M} = 01 2042,




0220+2 = E{(es +13)(ea3 — Buons) FE{ (k1 +m) (k2 +12)}
—poE{n3(ex3 — Buoms) FE (k2 + 12)?
= Blei(enn — Beom) Hitlg + 4250 + g0 E(erm)}
+E {1 (2o — Brom) HE- — goB(esm) — qoE(n})},

Oozt1.2y+1 = E{ (€23 — Buoms)(€ys — Byons) }

O2z4+12y+2 — E{(Ex,3 - 5:5,0773)(531,3 - 5y,0773)}E(k‘2 + 772) = ﬁ02x+1,2y+17

B(e3)

orr2ayr2 = E{(€ns = Boons)(eys — Byoms) Hgtoe + gz + 2E(e2am2) + E(3)}-

Note that
Ao 0 0
0 0 An o 0
—W,(0y) =
00 t( 0) ‘ )
0 0 Avn-1)
where forx =1,... ., M — 1
1 Ly 1 VA
At(J:_ -t and Atx:_ !
Zia  Zi1Zi-o Ziw  ZiZia
As {k;} is stationary, we have
T T
1 p. Mo 1 P, 15 ¢oE(e)
= ky — d = kiky 1 —
DL v DL e A

as T'— oo (see Lemma 1 in Leng & Peng| (2016) too). Therefore we can show that

1« 1 < 1 <« "
_ P 0
TZZtl—fgktl+T;ntl—> 1— oy

t=3

57
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and

F s Z1 2
- % ZtT::a(ktfl + me1) (k2 + Ne—2)
- % ZtT:?’ Fiikis + % 2313 Me-1 (K2 +ne2) + % ZtT::a Ne—2(pto + Goki—2 + €4—1)
= % ZtT:S Ki-1ke—o + % Zthg Ne—1(kei—o + mi—2) + po(1 + Gbo)% Zthg Do

+¢3l ZtT o Mi—oki_s + = EtT_3 e1M—2 + o Zthg €r_oMy—2

E( e2
£> = ¢>0)2 + ¢(i ¢21 + ¢0E(€1Th)

. T T T
since these three terms % D iz M1 (k2 + mi—2), % D i Mok, % > i3 €i—17—2 converge
in probability to zero by the law of large numbers for a martingale difference sequence in

Hall & Heyde (2014]). That is,

Ny,
Za— 00—> —I"as T — oo,

t=3

where I is defined in (3.6)).

Since e; is independent of (14, -+ ,enm¢)7, we have

(Eet)?

a2t 2E(ni) E(e?) + (1 + ¢5)(Eni)*} > 0,

01,1022 — U%,Z = {Ee% +(1— ¢0) 2}{

which implies that X is positive definite.
Put ¥, = (Yig, - Yiyen)”, Yo = (ViYoo) and Yo = (Y, Y[)7. As the

T

covariance matrix of (€14, ---,ep¢)7 is positive definite, it is easy to see that the covari-

ance matrix Q of Y, is positive definite, i.e., 1] # 0. Tt is straightforward to compute

Ho
1—¢o Q

2 E€2
1- ¢OQ ((1f£0)2 + 1—43(2) - En%)Q

2
|Q|2(£22 + En?)M=1 > 0, ie., the covariance matrix of Y is positive definite, which is

equivalent to that Y is positive definite. Hence Lemma [3.1}) follows.

the covariance matrix of Y, which is with determinant
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ii) When ¢g = 1+ p/T for some constant p € R and po # 0, we have

ke = po (ZW) +¢0k0+z¢0 €is

and it follows from Chan & Wei (1987) that for s € [0, 1]

[Ts] [T's]
Sl e = TS e = O,/
i=1 i=1

which imply that, as T" — oo
ke /T = fop(s) for s € [0,1], (3.10)
where f, ,,(s) is defined in . By (3.9) and (3.10), we have
1 I T
— ) W0 — +(6o) + 0
\/T; t( 0) \/_Zg 0 D )

where ﬁt(eo) = Vi1, Vio, ‘7t,17 ‘Zﬁ,la e ,‘Zt,M—l, Vt,M—1)T and forx =1,...,.M —1

Vii=e+m—1n—1, Vig= (er +m — 771%1)’%:;2

~ - N (3.11)
‘/t,:r =&zt — 61,077157 ‘/t,x = (5:3,15 - ﬁ:v,()ﬁt) tjjl
Similar to the proof for the stationary case, define V| = e;, V%) = (e; + nt)ktT—*Q — N kt;,

ﬁ:(OO) = (‘/Zkh ‘/:27 ‘Zﬁ,l) ‘Zﬁ,la s 7‘2&,M—1a ‘A/;,M—I)T;

and it follows from the central limit theorem for a martingale difference sequence in Hall &

Heyde| (2014) that f ST, (00) A N(0,Y), where

(T 09)

Y = (Gij)i<ij<om = Tlgn

Ma
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Since \/LT S Vin = \/%f ST, Vi 4 0p(1) and \/%f S Vig = \/LT ST, Vi + 0p(1), we have

ZUtOO ZU (6o) +0p(1)—>N(0 ») as T — oo.
\/_
It is straightforward to verify that, for z,y =1,2,..., M — 1, 6,1 = F(e?),
1k 1k
. . 12 . 11
G12 = E(e] +eim) Hm o > — — Eleim) lim — > - = E(e?) oo (5) ds,
012041 = Ee162,1) — BepE(eim),
Ny
01,2042 = E(e1€21 — Broeim) Z T = {E(e1e41) — BooE(eam }/ Fouo(

5-2,2 - E{(el + 771)2} hmT—>oo % Zt 3 + E(T]1> hmT—>oo T Zt 3 T2

—2E(eym + 1) limr oo & > 1, kt_%z;t_Q

—Eel fo P (s)ds,

Gaoer1 = E{(er +m)(esn — Buom)} imr oo = Zths ktZ:Q
—E{m (01 — Boom) }limy o0 7 Zthg ktfl
= {B(e1601) = BuoBlerm)} fy Foo(s) ds,

Gao:ct2 = E{(er +m)(€xn + Beom)} limp o % Zthg kt_%#

. 1 T kt271
—E{m (533 1+ B 07)1)} lim7_, o T Zt—S T2
= {E(618z,1) Ba) OE 61771 }fo D10 )ds,

Gozt1,2y+1 = E{ (€51 — Buom)(Eya — Byom)},

1
Fout1,29+2 = E{ (s — Buom)(ey1 — 5@/,0771)}/ Joo(8) ds,
0

1
O9342,29+2 = E{(Ex,l - 51,0771)(%,1 - 61/,0771)}/ f,?,,m(S) ds.
0
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Note that
Ay 0 L. 0
0 — 0 Aa 0
59 Wt(00) = 7
0 0 flt(Mq)
where forx =1,... M —1
- 1 Zyq ~ 1 Zy
AtO = — and Atm = —
+ 21— T4t-121-2 7211 YAV
It follows from ({3.10]) that as T"— oo
1 & 1 & e
ﬁZZH ﬁzkm +0p(1) —>/ foun(s) ds
t=3 =3

and
1 & 1 & 1
P
EZZt,th,Q = 77321%2_1 +Op(1) — /0 fiuo(S) dS,
t=3 t=3

which imply that

T

1 i 5

?{ E %Wt(eo)}{ﬁz);l} L TasT — oo,
=3

where T is defined in (3.8).
Since €t is independent of (617157"' 7€M,t)7-7 we have 5’172$+1 = 5'17237_,_2 = 6'272354_1 =

092042 =0forz=1,...,M —1 and

1 1
Gr1602 — 525 = (BE) / 12,0 () ds — ( / Fopo(5)ds)?} > 0,

1 O

we can write & = with 34 being positive definite.

0 3,
Define Vt = (f/t,la"' 7‘7t,M—1)T7 Vt = (‘A/m,"' 7‘2&,M—1)T and V,; = (VZ,VZ)T As
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the covariance matrix of (14, - ,epm¢)7 is positive definite, it is easy to see that the co-
variance matrix (2 of V, is positive definite, i.e., |Q| # 0. It is straightforward to compute

Q Q fol Fouo (s)ds
Qfol Too(8) ds Qfol 2 o(s)ds

|Q|2{f01 2 o(s)ds — (fol Jouo(8)ds)? =1 > 0, ie., the covariance matrix of V is positive

the covariance matrix of V', which is with determinant

definite, which is equivalent to that ¥, is positive definite. Hence Lemma \ i) holds.

[
Proof of Theorem[3.1 Tt is easy to know that
T A T T 5
0= Z W(0) = Z W (6o) + Z %Wt(eo)(e —0o)
=3 =3 =3
and
T T T o5
0= Z W(0) = Z W.(6o) + Z %Wt<00)(0 —0o),
=3 =3 =3
which imply the theorem by using Lemma [3.1] [

Proof of Theorem[3.4. The theorem can be proved straightforwardly by noting that

E{W(00)W7(6y)} =0 for |s —t| > 2.

Hence we skip details. O
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PART 4

INFERENCE FOR THE LEE-CARTER MODEL WITH AN AR(2) PROCESS
FOR UNOBSERVED MORTALITY INDEXES

This Part is my working paper which is currently under review, and has been adapted
to the format of dissertation.

For pension funds, an important and challenging step to hedge longevity risk is to
understand, model, and forecast mortality rates, given the rapid changes in environment
and technology of our society. A benchmark mortality model is the so-called Lee-Carter
model in [Lee & Carter (1992), which models the central death rate m(z,t) at age or age

groupz =1,...,M and time t =1,...,T by

M T
logm(:v, t) = Qg+ 51’]{:15 + Eats Zﬁx =1, Z kt =0, (41)
r=1 t=1
and
l{t = U + Pk’t—l + €t, (42)

where {e,}]_, and {e;}]_; are random errors with zero means and finite variances, and the
unobserved {k;} is called the mortality index. Note that the two constraints in (4.1]) ensure
that the model is identifiable. Although a general model for {k;} can be used, researchers
in studying longevity risk often employ a unit root AR(1) model, i.e., p = 1 in ([£.2); see,
for example, Biffis et al.| (2017), [Enchev et al.| (2017)), Kwok et al.| (2016)), and Wong et al.
(2017).

A widely used statistical inference in fitting models and is the two-step pro-
cedure in |Lee & Carter| (1992)), which first estimates «, and g, for v = 1,..., M and k;
for t = 1,...,T by the singular value decomposition method, and then fits the time series

model based on the estimated k;’s in the first step. Recently Leng & Peng| (2016) pointed
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out that this two-step inference leads to an inconsistent inference when model holds
with p # 1 or {k;} is modeled by an AR(p) process with p > 1. As k;’s are unobservable,
existing unit root tests in econometrics may not be applicable here. An application of the
unit root test developed in Leng & Pengl (2017) for models and shows that some
mortality datasets reject the unit root hypothesis Hy : p = 1. That is, simply using ¢ = 1 is
questionable. Moreover, as the stochastic structure of {k;} plays a crucial role in forecast-
ing future mortality rates, the constraint on the random mortality index k; becomes very
restrictive, which indeed means p = 0 in as pointed out in Part [2| of this dissertation.

To overcome these difficulties, Part [2l and Part [3| proposed unit root tests and consistent
inferences for the following modified Lee-Carter model without imposing a constraint on the

random mortality index:
M M
logm(z,t) = agp + Bokt + €21, ke = p+ Pki_1 + ey, Zﬂx =1, Z&x =0, (4.3)
=1 =1

where the condition Zyzl a, = 0 is not restrictive at all because the sum can be absorbed
into p via k. Now a natural question is whether an AR(p) model for {k:} is necessary to
be adequate and accurate in forecasting future mortality rates. As k;’s are unobservable,
such an extension becomes nontrivial at all. Focusing on an AR(2) process, in this Part we
develop hypothesis tests and unified inferences regardless of {k;} being stationary or near
unit root or unit root. An application to US mortality rates shows that using AR(1) model
is suitable.

We organize this Part as follows. Section {4.1| presents the problems, methodologies,
and main asymptotic results. A simulation study and data analysis are given in section .2

Some conclusions are summarized in section All proofs are put into section [4.4]
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4.1 Problems, methodologies and asymptotic results

As explained in the introduction, we consider the following modified Lee-Carter model:

logm($7t) =a; + Bmkt + Ex,ts 2512/121 63[: = 17 Zi/lzl Oy = 07

: (4.4)
ke = 1+ g1k + ¢oki o +er = p+ b1k — dalki1 — kia) + ey,
where ky and k_; are constants and ¢~1 = ¢1 + ¢o. Throughout assume that
o C){er = (e14,-.-,emt)7} and {e;} are two independent sequences of independent and

identically distributed random vectors with means zero and finite variances, where A”

denotes the transpose of the matrix or vector A.

Define Z, = "M logm(x,t) and n, = XM e, for t =1,...,T. Then it follows from

@4) that
Zt:k't—{—?’]tfort:l,...,T. (45)

When {k;} is a unit root process, Z; and k; have a similar size as t large enough. In this

case, one may estimate p, ¢1, ¢ by minimizing the least squares

T

Z{Zt — = 0171+ o Ziy — Zy o)}

t=3

which is equivalent to solving the score equations

ZtT:g{Zt i U lezt—l + ¢a(Zio1 — Zy—9)} =0,
Zths{Zt — M= éthfl + ¢po( 241 — Zy2)} 241 = 0,
Zthg{Zt — M (/glzt—l + ¢o(Zi1 — Zy—2) Y(Zi1 — Z4—2) = 0.

However, when {k;} is stationary, the above estimators are inconsistent due to the involved
ny in (4.5)). Following the bias-correction idea in Part , one may apply backshift operator
to Z;_1 and Z;_1 — Z;_5 in the above scores. But it turns out that the choice of lags depends

on whether ¢, = 0 or not in order to have a nondegenerate limit. This suggests to study the
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cases of ¢o = 0 and ¢, # 0 separately, and to develop a test for ¢ = 0.
First, consider the case of ¢, = 0. In this case, we propose the bias-corrected estimators

0 for 6 = (, b1, o, a1, By A1, Bar—1)T by solving the score equations

( Sl Zi— =012+ $2(Ziy — Zia)} = 0,

Zf:dzt —u— 01+ G$2(Zy1 — Zy—2)} 22 = 0,

Z?:dzt — =17+ 02(Zs—1 — Zy—9)H(Zs—o2 — Zy—3) =0,
2524{10gm(3:,t) —ay — P 7} =0, forx=1,....M—1,

\ 2324{10gm(x,t) —ay— BuZi} 21 =0, forz=1,....M —1.

Note that aj; and B, can be estimated by solving

T T
> {logm(M,t) — an — fuZi} = 0 and Y {logm(M,t) — an — BuZi}Zi1 =0,
t=4 t=4

which is equivalent to estimators — Zii}l a, and 1 — Z;W:Zl Bx This is why we focus on @
without aj; and ().

Let 0y = (uo,qgl,o,gbg,o,al,g,ﬁm, ey 0n—10, Br—10)7 be the true value of @ and de-
note 6 = (ft, (Zhggg,oll,ﬁl, . ,dM_l,BM_l)T. The following theorem gives the asymptotic
distribution of 9, which is consistent regardless of the mortality index being unit root or

stationary.

Theorem 4.1. Suppose model holds with C), ¢20 =0, po # 0.
Z) ]f él,o = 1, then

A

Dr(0 — 69) 5 N0, TS0 Y)7),

where 3 and T'y are respectively defined by ({.11) and {4.13) below, and

Dy = diag(NT, T** NT VT, T%?, .. NT,T%?).
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i) If |¢10] < 1, then

~—l~ ~—1

VT(6 - 8,) % N(0,T, (T, )7),

where ¥ and Ty are respectively defined by and below.

To estimate ¥, Ty, S and Ty, forz = 1,...,M—1landt =4, ..., T, define z,m(am,ﬁx) =

logm(x, t) — Qg — Btha z,x(amaﬁx) = {logm(x, t) — O — ﬁmZt}Zt—la

Yir(p, @) = Zi — 1 — 6121 + ¢2(Zies — Zys),
Yio(p, ) ={Z; — pn — (;1th1 + ¢o(Zi1 — Zy—2)} Zy o, (4.6)
Yias(p, @) ={Z, — p — 01 Zy1 + $2(Z4—1 — Zy—o) W Zy—o — Zy_3),

Wt(o) = (Y;f,l(:ua ¢)’ %E,Q(N, d))) }/t,3(/"b7 d))) Y/t,l(ah /81)7 %Y;f71(a17 Bl)?
cee >5~/t,M—1(OéM—17 Br-1), %Y%,M—l(aM—l, ﬁM—l))T

and

—~

Wt<0) = (Yt,l(,ua ¢)7 Yt,z(,ua Q—")a Yt73(,u, d))v ifm(@ly 51)7 17;&,1 (041, 51),

ce af/t,M—1(OéM—17 /BM—1)7 Yt,M—l(CYM—l, 5M—1))T-

Then we propose to estimate X, I'q, > and f‘l respectively by

T T T-1
S 1 - TP 1 0 T (Q 1 g T (6
¥ = T_3 Z W (0)W7(0) + T 1 Z W.(0)W_,(0) + 71 Z W (0)W 1 ,(0),

t=4 t=5 t=4

1 < 0
. a —1
Fl - {T _ 3 ; 80T Wt<0)}{ﬁDT }7

> 1 e ot 1 e ot s A
=g D WiOW,(0)+ > Wi(OW, ,(0) + = > Wi(O)W,,,(0),
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~

T
= 1 .
T, = > W,(0).
L T34 00 (®)

Theorem 4.2. Under conditions of Theorem as T — oo, we have S5 and fl L

when &170 =1, and S5 and Ty B T, when |<51,0| < 1.

Remark 4.1. For testing Hy : ¢ = 0, we first test Hy : b1 = 1& ¢y = 0 based on
Theorem 2) If this null hypothesis is rejected, we further test Hy : ¢ = 0 under the
~—1

assumption of |¢1| < 1 based on Theorem z) More specifically, denote f‘l_lfl(I‘l )T =

-1 o1

(0i5), Ty X(Ty )" = (d;,), and test statistics

—1 N
5 » [ 02 B T32(y — 1) -
Ay = (T?2(¢y — 1), T ?,) ) . Dy =T¢5/033.
032 033 T2y
Therefore, Ay has a chi-squared limit with two degrees of freedom under Hy : ¢1 = 1&po = 0,

and Ay has a chi-squared limit with one degree of freedom under Hy : ¢o = 0 when |¢p1| < 0.

When the above two tests are rejected, we proceed to the case of ¢o # 0. In this case,
the above estimators become biased due to the involvement of 7, 5 in {Z; — p — 0121 +

¢o(Z1—1 — Z1—2) }, which suggests taking an extra lag by solving the following score equations

(

St dZi— = 01 Zi + 62(Zim1 — Zi2)} = 0,

ZtT:5{Zt — =01 Z + $o(Ziy — Zy9)}Zy3 =0,

Sk — =01 Zia+ 2% — Ze )W s — Zia) = 0,
2315{10gm(x,t) —a, — (. 7%} =0, forx=1,--- M-—1,

S {logm(z,t) — ap — BuZi}Zi 1 =0, forz=1,--- M —1,

\
Denote the resulted estimators for 8 by 0.

Theorem 4.3. Suppose model holds with C), ¢20 # 0 and py # 0.
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i) ]fﬁgl,o = 1& |papo| < 1, then
Dr(6" - 6) % N(0,T; =" (T34,

where X* and T'y are defined by and below, respectively.
i) If {ki} is stationary, then

~—1lox ~—1

VT(0 —80)% NO,T, = (T,)),

where 3 and f‘g are defined by and below, respectively.

As before, X%, T'y, > and f‘g can be estimated as follows.
Forz=1,...,.M —1and t = 5,...,T, define ﬁj‘x(ax,ﬁx) = logm(z,t) — oy — 5oy,
Y;::r(ax? ﬁz) = {logm(x,t) — Oy — ﬁl’Zt}Zt—17

Y (@) =2y — p — $1Zt—1 + po( 211 — Zy_s),
YtTQ(M; ) ={Zi —p— ¢~5th—1 + G2( 211 — Zy-2) } 23, (4.7)
Yis(u, @) ={Z —p— 01 Zi 1+ $2( 21 — Zy2) W25 — Zy—4),

Wi(0) = (Y7 @), $Y7(1 @), Yis(i, @), Y (an, Br), Y7 (s Br),
SYva(en, Bu), 3V (e, Bu))”

and

W,(0) = (Vi (11, @), Y (e ), Vi (i, ), Yy (cn, Br), Yy (o, Bu),
: 7};;5TM_1(04M717 Brr-1), Y1 (o1, BM—I))T~

Then we propose to estimate X%, T'y, >* and I~‘2 respectively by

—

6
s Y WHO W T(0) + 725 T W)W L,(0),

T—6 t

X = LW OOWT(O) + 2 S W OOWT(0) + 2 L W (0)WT,(0)
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T
- 1 0 Y% -1
FQ_{T—4;aOTWt(9 )}{ﬁDT }a

A~k

S = ST W0OW, (0)+ 7S W (0)W,(0) + 7 S W, (0)W, ,(8)
Fr ST WL (0OYW (0 + 7 P WL(0)W,,(0),

~

Ak

T
1 ~ %
I's = W )
2 T_4t2:;ae7' t(o)

Theorem 4.4. Under conditions of Theorem @ as T — oo, we have S5 2 and

A~ %

Ty & Ty when (5170 =1& |pap| <1, and > 253 and Ty 2 Ty when {k} is stationary.

Remark 4.2. It is not surprising that the terms of EtT:E)(Zt,l — D1 9)(Zi—3 — Zy4—y) in
defining 0 and 2325(&,1 — Zy o) (Zy—o — Zy_3) in defining 0 may become much smaller
than 2:{:5(215_1 — Zs_9)?%, which challenges the estimation of ¢o when ¢y is neither close to

nor far away from zero. This is confirmed by the conducted simulation study below.

4.2 Data analysis and simulation study

First we analyze the publicly available U.S. mortality data from Human Mortality
Database (HMD) |I|by focusing on the U.S. population between 25 and 74 years old and
using mortality data by 5-year age groups observed between the year 1933 and 2015. This
results in M = 10 age groups and T = 83 years of observations. Estimates 8 based on
¢o = 0 in Theorem and @ based on ¢ # 0 in Theorem for female, male and com-
bined mortality rates are reported in Tables [4.1] and [4.2], respectively. These two tables
show that the assumption of ¢ = 0 or ¢ # 0 has a noticeable difference on estimates

for p, ¢o, i, but not much difference for 61, B,. The computed test statistics for testing

H() : ¢1 = 1&¢2 =0 and HO . ¢2 = (0 with |¢1| < 1are Al = 12.8001 and AQ = 0.2313 for the

thttp:/ /www.mortality.org/cgi-bin /hmd-country.php?cntr=USA&level=1
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combined mortality rates with the corresponding P-values 0.0017 and 0.6306, A; = 2.9704
and Ay = 0.1492 for the male mortality rates with the corresponding P-values 0.2265 and
0.6993, and A; = 60.8755 and A, = 0.5176 for the female mortality rates with the corre-
sponding P-values 6.0396 x 107! and 0.4719. These P-values suggest a stationary AR(1)
model is sound for the female and combined mortality rates and a unit root AR(1) model is
suitable for the male mortality rate, which is in line with the findings in Part [2] and supports
the adequacy of using an AR(1) model instead of an AR(p) model. Below we conduct a
simulation study to examine the challenges shown in developed theorems and Remark
that estimators for ¢, and p have a much slower rate of convergence in case of unit root

mortality index.

Table (4.1) Estimates 6 based on the assumption of ¢, = 0 in Theorem

x 1 2 3 4 ) 6 7 8 9 10
Combined o, -1.636 -1.255 -0.660 -0.290 -0.071 0.353 0.508 0.688 1.005 1.357
Combined 5, 0.098 0.102 0.108 0.108 0.104 0.104 0.099 0.094 0.093 0.091

Male a -2.392 -1.955 -1.040 -0.334 0.109 0.670 0.940 1.152 1.382 1.468
Male 3, 0.081 0.087 0.101 0.108 0.108 0.110 0.107 0.103 0.100 0.094
Female o  -0.142 -0.137 -0.128 -0.305 -0.443 -0.247 -0.218 0.014 0.501 1.105
Female S, 0.129 0.124 0.117 0.106 0.096 0.092 0.085 0.082 0.083 0.086

H o1 o1 o2
Combined -0.848 0.985 1.302 -0.317
Male -0.600 0.989 1.208 -0.218
Female -0.693 0.988 1.616 -0.628

We draw 10,000 random samples with sample size T" = 300 from model with
Qz, Bz, b being the corresponding estimates for the male mortality rates given in Table [4.1],
and independent normal random variables for €,, and e, with the same standard deviation
0.01. We take (¢1,d2) = (d1 — 0.2, ¢ + 0.2), (¢1, b2), (61 + 0.4, ¢y — 0.4), where ¢ = 1.208
and Qgg = —0.218 are the corresponding estimates for the male mortality rates in Table .
Therefore we investigate how the estimators in Theorems and are affected when ¢ is
close to zero, nonzero and far away from zero. The means and standard errors of estimates

based on ¢y = 0 in Theorem and ¢y # 0 in Theorem are reported in Tables 4.5]
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Table (4.2) Estimates 6" based on the assumption of ¢, # 0 in Theorem .

x 1 2 3 4 ) 6 7 8 9 10
Combined o, -1.789 -1.370 -0.751 -0.310 -0.054 0.407 0.594 0.772 1.072 1.430
Combined 5, 0.095 0.100 0.106 0.107 0.104 0.105 0.100 0.096 0.094 0.093

Male ay -2.523 -2.081 -1.149 -0.379 0.114 0.720 1.031 1.251 1.469 1.548
Male 3, 0.079 0.08 0.098 0.107 0.108 0.111 0.109 0.105 0.102 0.095
Female a, -0.274 -0.201 -0.176 -0.294 -0.423 -0.214 -0.170 0.054 0.532 1.165
Female f3; 0.127 0.123 0.116 0.107 0.096 0.093 0.086 0.082 0.084 0.087

1% o1 o1 )
Combined -0.900 0.984 1.491 -0.507
Male -0.575 0.989 1.679 -0.690
Female -0.929 0.984 1.598 -0.615

These tables show that estimators for p and ¢o based on Theorem are good when ¢ is
close to zero, but become worse when ¢, is away from zero. The estimators for p and ¢
based on Theorem perform well when ¢ is far away from zero. This simulation study
concludes that estimating ¢, is challenging and the reason may be explained by Remark [4.1],
i.e., using lags to correct the bias makes the inference inefficient. In conclusion, one may

prefer an AR(1) model to an AR(p) model for the unobserved mortality index.

4.3 Conclusions

Researchers in actuarial science often fit a unit root AR(1) model for the unobserved
mortality index. Recent developments show that the unit root hypothesis is rejected for some
mortality datasets, the widely employed two-step inference in|Lee & Carter|((1992)) leads to an
inconsistent inference for a stationary AR(1) process, and a consistent inference is proposed
for a modified Lee-Carter model with an AR(1) process for the unobserved mortality index.
This paper investigates the possible advantages of using an AR(2) model instead of an AR(1)
model by developing hypothesis tests and unified inferences regardless of the mortality index
being stationary or unit root. Data analysis for the US mortality rates show that an AR(1)

model is suitable, which is in line with Part [2]
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4.4 Proofs

For ease of notation, we use Y, ;, Y/m, Y, o i Y;*x, Y* to respectively denote Y; (1o, @),

fft,x(oéa:,o,ﬁx,o) Ytz(Oéxo,ﬂa: 0) tj(/io,d)o) tx(@xo,ﬂx 0) and th}c(@x,o,ﬂx,o)a which are de-
fined in Section [A.1]

Lemma 4.1. Suppose model holds with C), ¢20 =0, po # 0.
Z) ]f QgLO = 1, then

TZ N(0,X) and {= Zaewtoo)}{\/_D AT, asT — oo,

where W is defined in Section 2, and ¥ and I'y are given in and below
respectively.

i) If |pro| < 1, then
1 o —~ 0 —
—Tzwt(O())i)N(O,E an Za— 00 £>I‘, as T — oo,
=4

where W, is defined in Section 2, and Y and Ty are guen in and below

respectively.

Proof. 1) When gz~5170 =1, we have k; = po + k;_1 + e;, which implies that, as T" — oo
kirs /T 5 pos, for s € [0,1]. (4.8)

It is easy to check that

(

Yii=e+n— -1,

Yio = (et +ne —ne—1)(ki—2 + ni—2),

Yis = (et + 1 — ne—1) (ki — ki3 + mi—2 — m4—3), (4.9)
Yie = €ut — Buoly, =1,2,..., M —1,

Vie = (eap — Boom) (ki1 +me1), 2 =1,2,...,M — 1.




7

Then we have
- 1 &
—= ) Wi(6y) = —= ) U.00)+ 0,(1),
\/T; t\Yo0 ﬁ; t 0 D

Where Ut(HO) = (‘/t,l? ‘/;‘/,27 ‘/;,37 ‘Z‘/,la ‘2‘,,17 vevy ‘A/;,th ‘Zﬁ,M*l)T and fOl" Tr = 17 cety M —1

Vii=en, Vio= (e + nt)l%% . nt%?
Vis = (ec+me)(po + €z + me—a — me—3) — (o + €m1 + N1 — Me—2), (4.10)

ki_1

f/t,:c =&zt — Bx,OT]ta ‘Zﬁx - (Ecct - BCC Ont)

Let F; denote the o-field generated by {(es,e15,...,6ms)7 1 8 < t}. Then {U(0y), F:}52,
is a martingale difference sequence. By the central limit theorem for a martingale difference
sequence in Hall & Heyde| (2014), \/LT 23:4 U:(6y) converges in distribution to a multivari-

ate normal distribution with zero means and covariance matrix 3 = (0y5); =12, 342(M—1)

satisfying
T
1 T
- > EB{U(60)U(60)|Fir} 5 2, as T — oo, (4.11)
t=4
ie.,
T T
—= Y Wi(6)) = —Z 1(80) +0,(1) 5 N(0,%), as T — .

v:)

By the assumption that ey, ..., er, n1, ..., nr are independent with mean zero, it is straight-

forward to verify that, for z,y =1,2,..., M — 1,

1
o110 = Bef), o012 = E(ef)/ fos ds = %E<6%)a 013 = poE(el), 012042 = 01413 =0,
0

2

1 2

02,2 = Ee )/ pps*ds = % E(e}), o0a3= MOE(B%)/ pos ds = %E(ef);
0

rsers = Oaais = 0r 7y = B (i + BE) + 28GR} + 2BOR) () + 38}

Similarly we can show that for z,y =1,2,..., M — 1

03,2042 = 032y+3 = 0, O22422y+2 = E{(Ex,l - 5x,07]1)(5y,1 - ﬁy,Onl)}v



Ho
02z422y+3 = EE{(EM - /3:(;,0771)(511,1 - ﬁy,om)},

2
7
092z+4+3,2y+3 = goE{(%,l - 5z,0ﬁ1)(€y,1 - 5y,0771)}-

Further note that

Ao 0 0
o 0 An 0
—W(0y) =
56" 1(60) ’
O 0 e At(Mfl)
where
1 Zi s —~(Zi1 = Zis)
Ay = — %Zt—2 %Zt—lzt—2 _%(Zt—l = Zi-2)Z1-s
Zt—2 — Zt—3 Zt—l(Zt—Z - Zt—3) _(Zt—l - Zt—2)<Zt—2 - Zt_3>
and
1 Zy
A= cr=1, M1
o A7
It is easy to show that as T" — oo,
T T
1 Zt 1 kt p_ Mo
— = 1 = —
T Z T T Z T Op( ) 2’
t=4 t=4
1 <& 1<
T Z(Zt,I — Zt,Q) = T Z(MO ‘e 1+ M1 — nth) £> Ho,

o~
Il

>~

o~

=4

o

1 & Z 1 & k p
Z(Zt_l — Z9) 2 Z(MO + €1+ N1 — TIt—2)tT_2 + 0p(1) = )
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and
% ZtT=4<thl - Zt72)(th2 - Zt—3)

= % 23:4@0 i1+ 1 — Me—2) (o + €4—2 + N2 — M—3)
T

= M(Q) - %Zt:4 nt2—2 + Op(l)

5 pd — E(n}),

implying that

Ao 0 0
T
1 0 0 Ay 0
70O 5g WO HVTD'y 5 Ty = (412)
0 0 A
with
1 & —Ho
1 Ho
Ag=—|m 1 g and A, = — 2
2 3 2 4o 2
2 2 3
po 5 —pg+ E(7)

forz=1,...,M — 1. Hence Lemma [4.1}) holds.

ii) When |¢1 0| < 1, it is easy to check that

Yii =€+ — orom-1,

Yio = (es + 0 — d1.0m-1) (k2 + ni—2),

Yis= (et +m — drom—1) (ko — ki—3 + m—2 — m—3), (4.13)
Vie = €ut — Booly, =1,2,..., M —1,

Vie = (€ = Beomt) (keoy + 1), =1,2,..., M — 1.

Define

X1 =er+m— drone, Xeo = (er +me)(ke—a + mi—a) — d1.0me (ki1 + 1),

Xig = (et +m)(ki—o — ks + Mo — Me—3) — P1.0M(kt—1 — Kke—o + 1 — Mi—2),
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and denote ﬁt(Go) as Wt(eo) with Y, 1, Yio, Y35 replaced by X1, X;2, X;3, respectively.
Then {U,(6,), F,}:2, is a martingale difference sequence. By the central limit theorem
for a martingale difference sequence in [Hall & Heyde| (2014)), \/LT ST, U,(0y) converges in
distribution to a multivariate normal distribution with zero means and covariance matrix

3 = (Giyj)ij=12..312m-1) satisfying
1~~~ -
= 2 B{U(8)U:(60) |Fit} BB, T - o, (4.14)
t=4

ie.,
1 = 1 o~ y ~
— > W(0y)=—=)> U6y +0,(1) > N(0,%) as T — oc.
ﬁtz; t 0 ﬁ; t 0 D

To compute the covariance matrix, by noting that

2 2
Ho 2 Ho E(e7)
E<kt): E(kt):(1_¢10)2+1_ %07

H(zJ i %,OE(Q%)
(I—¢10)? 1-0¢i,’

2 2
_ Ho p10E(e1)
E(ktkt—l) = (1 e 0)2 + - %0

it is straightforward to verify that for 1 <z, y < M —1

and E(l{?tk}t_g) =

G101 = E(e1 + (1 — ¢1r0)m)* = E(e}) + (1 — ¢10)°E(n}),

N T fo
g2 = {E(ef) + (1 - ¢1,0)2E(77%)}1 — Sbw =71_ 351001,1,

51,3 =0, 51,2x+2 = (1 - ¢1,0)E{771(€x,1 - 595,0771)},

Ho

5-1,2x+3 = (1 - ¢1,0)E{771(5x,1 - 53:,0771)}1 —NZSl 0 = 1— ¢1 0

01,2242,



G220 = E(€])E(ki—s +mi—2)* + E(n})E (kt 5+ Ni—o — P10ki—1 — P1,0M—1)*
= {B(e}) + (1 = pr0) B0} H i + 151}
+En?){(1+ 12:20 JE(e}) + (1+ 67 0)E(ni)},

Gosz = Eleq +m)*E(k} 5 — kioki_s + 17 _5)
_¢1,0E( t2 kt lkt Q_kt lkt 3)

E

—¢1,0E(77t2)E(k —oki _kt 2 77t 2)
ToEM)E(kE ) — kirki—o +17)

={E(el) + (1 + ¢10)E (771)}1+¢10 +{E(e?) + (1 + d10 + 61 o) E(mi) FER),

- Mo . -
0292242 = 1 ¢ 01,2042 = 012243,
— P10

022043 = E{Ul (51,1 - 533,0771)}{

1 —’u[g)bl,o — ¢1oE(mi)},

033 = E(e})B(ki—s — ki—s + -2 — M—3)"
+EM])E(ki—g — kg + N2 — Mi—3)’
+T 0 E(7) B (ki — ke—a + -1 — 1)
—2010E(n7) E{ (k-2 — ki3 + -2 — Ne—3) (k-1 — Ko + 01 — mi—2)}
= B({TEG0 + 2B01)} + (1+ 68 o) Em}) (T2 + 2B (n})}
~2610 B {= 153 B(ed) — BOri)}
= o1 E(e])}? +4E(e}) E(nf) +2(1 + b0 + ¢ )L E(17)}

= 203,




53,2x+3 = E{ﬁt(e?x,t - ﬁx,Oﬁt)}E(ktflkth - ktflktf?;)
_¢1,0E{T/t(5m,t - ﬁr,Ont)}E(ktZ,1 — kt_lk}t_g + 7]152,1)
= _CbLOE(?ﬁ)E{??l (gac,l - BI,OTh)},

030042 = 0, O2aq22y42 = E{(Ex,l - 5:p,0771)(5y,1 - 6y,0ﬁ1)};

Ooer2,2y+3 = E{ (€21 — Boom)(eyn — Byom)  E(ka + 1m2) = 1-— (;51 0&2w+2’2y+27
2 2
B ol E(e )
O02:432y+3 = E{(Ex,l - 5a:,0711)(5y,1 - 5@/70771)}{ (1 _ ;1 0)2 1 _( 1%0 + E(n%)}
Note that
Ao 0 o 0
a—OWt(OO) - ’
0 0 At(Mfl)
where
1 Ziq —~(Z4-1 — Z4—)
At[) = — Zt_Q Zt—]_Zt—2 _(Zt_l o Zt_Q)Zt_2

Zyo— Zi-3 Zy \(Zy—o — Zy_3) —(Zy1— Zy o) (Zy—o — Zy_3)

and

Ay = — for z=1,...,M — 1.
Y AV
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It is easy to show that as T" — oo

T T T
1 1 140 1
TZZt_kat—i_Op(l)—)l—gﬁlO’ fZ(thl_Zt72)£>07
t=4 t=4 t=4
T T
1 1 E(e
T ;(Zt—Z - Zt—3>Zt—1 — T ; kt—l(kt—Q - kt_3) + Op(1> P gbll,j_ ¢(1 :)),
T
1 p E(‘f%) 2
— Lol — L o) Ly_g — —
T;( t—1 t 2) t—2 1+ 10 (?71)7
1 iz AN M(Q) 4 ¢1,0E(€%)
= t4t—1
T (1—=010)2  1—91,
and
T
1 1-— E(e?
2l = Zia)(Zia = Zig) B - fbl’”) D _ g,
P + P10
implying that
A 0 0
- -
o — 0 A e 0
Z— (60) BT, = ' , (4.15)
00
0 0 Ay
with
i ¢1,0E(e?) BE(e})
AO — 1_“(;1’0 @ (151 0)2 + 17¢%’0 1+¢1 o + E(T]l)
p1,0E(e?) (1—¢1,0)E(e?)
0 ii%,o # T E( )
and
1 1 1—/;?1,0 _
A, = — for z=1,...,M —1. (4.16)
£o $1,0E(e7)

oo (1o ¢10)2+ -,

Hence Lemma [4.1}i) holds. O
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Lemma 4.2. Suppose model holds with C), ¢o0 # 0 and po # 0.
i) If g10 =1 & |¢o0| < 1, then

T T
* * 1 d * -1\ P
\/—z:: t 00 (O,E ) and {T;%Wt (00)}{ﬁDT } =TIy as T — o0,

where W7 is defined in Section 2, and X* and T'y are given in and below
respectively.

ii) If {k:} is stationary, then

—~ %
W, (6y) £>1" as T — oo,

HI
Q>|Q3

5=

T
ST W, (60) 5 N(0,5)  and
=1

i

where ﬁ//: is defined in Section 2, and > and %y are grven in and below

respectively.

P’/’OOf. l) When QBI,O = ¢1,0 + ¢270 =1 and |¢270| < ]_, we have k?t — kt—l = Mo — QSQ’O(kt_l —

ki—2) + e;, which implies that

k’t—k't—1=1ﬁ3) +(k0—k—1—1f¢ )(—20)" + us,
2,0 2.0

where u; = Zﬁzl(—%,o)t_iei satisfies Assumption 2.1 of |Phillips (1987). Note that

Yii=e+n— drom—1— P20m—2,

Vi = (es + e — d1omi—1 — d2,0m—2) (ke—3 + m-3),

Yis = (er + e — d1.0m-1 — G2,0m—2) (Ke—3 — ky—a + 03 — N—4), (4.17)
Vi, = €ut — Baoolls, ©=1,2,...,M—1,

t.x

z*z = (€x — Buone) (ki1 +1m-1), z=1,2,...,M —1.

Define U; (00) (Vt 1 ‘/:‘,*27 Vt*?n V;f*lv ‘7t 1y ‘ZETM—IJ ‘Z&TM—l)Ta where

ki kiq

ki
‘/t:kl = €4, ‘/;2 = (et+7]t) — OrL0M T — G20t~ T

T
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Vi = (er +me)(ki—g — ke—a + g — 1) — G100 (ki—a — ki—g + M2 — M4—3)
—o.0ne(kim1 — ki—a + mi—1 — mi—2),

vy, =

t,x

_ ki
ot — Boom and V', = (644 — 593,077,5)1;?1 forr=1,2,..., M — 1.

Then we have

T T
W;(6o) U;(0p) +0,(1) as T — oo.
Z £(00) ﬁz £(80) +0,(1) =

Since {U7(0y), Fi}:2, is a martingale difference sequence, by the central limit theorem
for a martingale difference sequence in Hall & Heyde, (2014), \% S U7 (8,) converges in

distribution to a multivariate normal distribution with zero means and covariance matrix

E hIIl —ZE{U* Oo)U*(e()) |E 1} ( z])i,j:1,2 77777 3+2(M_1), (418)

ie.,

T
Z W7(0y) — N(0,X*) as T — oc.

To compute the covariance matrix, by noting that

Ho Ho (=¢20){1 = (—=¢20)'}
— ko + N + S,
T T4 g (Fo ' 1+¢2,0) L+ @20 Zu
we have that for s € [0, 1]
iz S s+o0,(1) as T — oco.Since (4.19)
T 14+ @20

It follows from (4.17)), (4.19) that
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E 2
E{(kt — k1) (ki—1 — ki2)} = (1 +lu(;2 0)? Qﬁf’o_ ;;))

2 2 E 2
E{(kt — k1) (kt—2 — ky—3) } = (1 —i—M(Zl 0)? + ¢120_ ;;1))

Using the above equations, it is straightforward to verify that for z,y =1,...

* * Ho * Ho * *
oi, = E(e}), o),= mE(G%% S ¢20E(6%>’ 01 042 = 01 9y13 = 0,
T
. 1 ki 15
022 = E(61>{}£{,‘o_z %23 - 3(1+Z§20)2E(€%)7
5 b

T
. Ky 2
7ha = B 3 "2 (s — ko)) = gl S Bed). Ghansa = Ohane =0,

055 = E(ef)E(kig — kg + i3 — 1i—a)’
+E)E (ki3 — ks + M-z — 1)’
+07 0B )E(ki—2 — ki3 + o — 1—3)°
050 EF) E(ki—1 — ke—a + 01 — ni—2)?
—2010E () E{ (k-3 — ki—a + -3 — Ne—a) (Kt — k-3 + N2 — m-3)}
—2¢00E(nf) E{(ki—s — ks + N—s — Ny—a) (ke—1 — ky—o + -1 — me—2)}
+201,0020E(n7) E{ (k-2 — k—s + 77t—2 —Ne—3) (ki1 — ke—o + M1 — m—2) }
= {E(e) + (1+ 61y + 63 ) B H sy + ot + 2E()}
(=210 + 261.0020) B0 { it — B2 — E(nd)}

#3 o E(e?)
—2¢9 OE(W1){(1+¢10 2+ iﬁd% o1 s

0-‘;:,21+2 = U§,2y+3 =0, J;m+2,2y+2 = E{(ez1 — ﬂx,(ﬂh)(gy,l - 5y,0771)}

* Ho
O25+2,2y+3 — mE{(Ex,1 - 5x,0771)(5y,1 - 5y,0771)},
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2
# M
O94432y+3 — 3(1 +(;)2 0) E{(ez1 — Beom) (g — Byom)}-
Further by noting that
A, 0 0
o 0 Af o 0
— Wi (0
06 (60) = - ’
0 0 . A;“(M 1
where
1 Zi s —~(Zi1 = i)
Ap=— %Zt—S TZt 1213 —%(Zt—l —Zy9) 73
Zys—Zg  Zoa(Zis—Zig)  —(Zior — Zio)(Zis — Zis)
and
1 Zy
A = forx=1,....M —1,
174 F L1y
we have
A 0 . 0
0 Ay . 0
— HO)HVTD' BT 4.20
{Z 89 0) {\/_ } 9 = , ( )
0 0 Adrq
with
1 2(1ﬁ3>2,0) o 1+M<2?2,0
. 12 2
AO o 2(1ﬁ<(;2,0) 3(1+¢?2,0)2 _2(1-&-(;2,0)2
o M(Q) . u% o ¢§,0E(€%)
2(1+¢2,0)? (1+¢2,0)? 1-93

14+¢2,0
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and
1 1o
Af = — 2(1+42,0) for x=1,...,M—1. (4.21)
Mo Mo
2(1+¢2,0) 3(14+¢2,0)?

Hence Lemma [£.2}) holds.
ii) When the roots of 1 — ¢y 0 — ¢o2? = 0 are outside of the unit circle, {k:} is a
stationary sequence with F(k;) = l—qﬁll:)# Note that
Yii=e+nm— ¢rom—1— G20m-2,
Yo = (et + 0 — drom—1 — P2,0m—2) (ki3 + mi—3),
Yy = (er + 00— d1.0m—1 — P2,0m—2) (k-3 — Ki—a + -3 — N—4), (4.22)

YV, = ot — Booe, x=1,2,...,.M —1,
Y;,kx = (5J3,t - ﬁm,ont)(kt—l + 77t—1), r=12,...,M—1.

Define X/ = e; + (1 — ¢1,0 — ¢2,0)7,

Xio = (ec + ) (ks + m-3) — dr.0m(ki—2 + Mi—2) — d2,0m (ki1 + m—1),

Xig = (et +mu)(ki—g — ki—a + Mg — e—a) — P1.0M(kt—2 — ki—g + —2 — Mi—3)
— o 0me(ki—1 — ko + mi—1 — Mi—2),
and [7: (Bg) as W: (00) with V", Y%, Y/ replaced by X7, X7, X{'3 respectively.
By the central limit theorem for a martingale difference sequence in Hall & Heyde

(2014), \/LT ST ﬁ: (60) converges in distribution to a multivariate normal distribution with

zero means and covariance matrix

> TIEEO_ZE{U 00 ( o) | Ficr} = (6 U)” 1,2,...,3+2(M—1) (4.23)
ie.,
T, T
Z W, (0y) = Z (6p) +0,(1) = N(0,X) as T — o0



To compute the covariance matrix, by noting that {k;} is stationary, we have

which imply that

(
2

E{ke(k — kir)} = (1+¢2,0)ﬁ(—6<125)2,o+¢1,0) =4,
E{ki(ki1 — ki2)} = (¢10 — ¢20)A
E{ki(ki—2 — ki—3)} = (20 + &1 g — d1,0020)A
E{ki1(ki — ki—1)} = —A

SinceE{ky (ks — ki 1)} = (éao — d1.0)AA
E{(k — ki-1)"} = 24,

E{(kt — k1) (ko1 — ki—2)} = (1,0 — ¢20 — DA,
E{(ky — ki—1)

\

It follows from - and - ) that, forz =1,...,M — 1,

51,1 = E(G%) + (1 — 10 — ¢270)2E(T]%)7

T = T e g V() + (1= 10 = 620 E

[ B) = oty + R
E<ktkt71) - (1—¢1,g§¢2,0)2 + 1-?11)20( —qﬁi((:):z)— 30
Blkiki—2) = <1—¢1,§8—¢2,o)2 + ¢1’0Tﬁ§§;¢%’0 (1—;,((3?—

| Blhukios) = gt + ono TR

(Kio — ki—3)} = (220 — P10 + <Z5%,o -

89

(4.24)

(4.25)

51"72“2 = (1 - ¢1,0 - ¢2,0)E{7]1(€x,1 - 5m,0771)}7 5-1(,23:%»3 = MOE{U1(€m,1 - 617,0771)}7
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039 = E(e})E(ki—s +m—3)* + Em) E{ki—s + mi—3 — d1.0(ki—2 + Ni—2) — P2,0(ke—1 + me—1) }*

_ 2 15 1—¢2,0 E(e?) 2
B E(el){(1—¢1,00—<i52,0)2 T 1+¢2,0 (1—¢2,0)%—¢%,0 +E(ni)}

+Em){pug+ E(e}) + (1 + 670+ ¢50)E(nD)}

035 =18(e}) + E()HA + EMm)} — droEMIH{—A—E(1)} — ¢20E(07) (d20 — ¢1,0)A
—010E(m7) (P10 — d20)A + 61 ) EMI{A + E(m7)} + drodooE(mi){—A — E(n7)}
20 E(17) (P20 + &7 g — D1,002,0)A + P1002,0E(07) (1,0 — P2,0)A
+@ 0 EmiH{A + E(7)}

= E(e})A+2E(e})E(n}) + {Em) (1 + d10 + ¢%,o — 10020 + ¢%,o)v

2

~ % " u
03002 = MoE{M (Ex1—Brom)}s 050,45 = E{ﬁ1(€x,1—ﬁx,o771)}{1 — 00_ b20

—¢2,0E(77%)},

035 =A{E(e}) + (14 ¢% o + ¢30) E(m?) H2A + 2E(n?)}
2010 E(mi){(d10 — d20 — VA — E(n7)}
—2¢20E(1}) (2020 — P10 + 019 — Pr0020)A
+201,0020 E(i){(d10 — P20 — DA — E(n7)}
=2E(e})A+4E(e})E(m}) + 2{E(n)}*(1 + ¢10 + ¢1 ¢ — 10020 + $3,0)

_ 3k
= 20273,

T5opr0 =0, 03onys = —020E ) E{ni(can — Boom)}

5-2m+2,2y+2 = E{(gx,l - B:U,Onl)(ei%l - 6?/70771)}’
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~ % 2]
00122443 = mE{(%l — Beom) ey, — Byom)}

~ 1—go, E(e?
O025432y+3 = E{(ex1 — Brom)(ey,1 — Byom) H = ¢1 0— ¢2 oz T 1+$:2 (1*¢2’((5é)*¢%,0 + En?)}-

Further by noting that

Ay 0 L 0
W (0, =
80 t( 0) )
0 0 e A:(M 0
where
1 Z —~(Zi1 — Zis)
Aro == Zi-3 Ly 1L _(Zt—l - Zt—Q)Zt—3 )

Zy3—Zia  ZiaZis—Zia) —(Zia— Zia)(Zi-3 — Zi-a)

and
- 1 Zy
Al =— forx=1,...,M —1,
Zyw  ZiZia
we can show that, as T" — oo,
Az 0 0
1 O —+ ~ 0 Ax L 0
Z —_W,(6,) & T, ! : (4.26)
00
t:l
0 0 Ax,
where
~ 1 Mo
Ar = — 1=¢10-¢20 Cox=1,..., M—1,
Ko 13 $1,0 B(e})

1—¢1,0—d2,0 (1—d1,0—¢2,0)2 + 1+¢2,0 (1—¢2,0)2—¢%70
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and
MO
1 1*¢>1,007¢2,0 0
A* i pd (97 oF+d2,0—¢3 o) E(e)
AO o 1—¢1,00—¢2,0 (1—¢1,02¢2,0)2 + (1+¢2,0){(1—¢2,0)%2— %,0} (Cbl,o o ¢270)A
0 (¢2,0 + &1 ¢ — Dr0020)A (f1,0 — 2020 — D19 + P10020)A

Hence Lemma [1.2}) follows from the above equations.

0
Proof of Theorem[{.1]. Note that
T A T LI A
0= Z W(0) = Z W,(0o) + Z %Wt(eo)(g —0,)
t=4 t=4 t=1
and
T T T g
0= WiB) =) Wib0)+ D --Wi(60)(0 — )
t=4 t=4 t=1
Hence,
1 0 1 &
Dr{f -0} =- =Y — TD:! —
{6 — 6o} {T 2 56" (@0 (VT Dz >} { = ;wtwo)}
when ¢y = 1, and
1 0 T g
-y {15 Ewioo} { Ly Wl
T =00 VT =
when |¢1 | < 1. Therefore the theorem follows from Lemma 4.1} O

Proof of Theorem[{.Z The theorem follows from the arguments in proving (4.12)) and (4.15)).
[

Proof of Theorem[{.3 Theorem [4.3] follows from Lemma [4.2] by using the same arguments
in proving Theorem [4.1] O



93

Proof of Theorem[{.]]. The theorem follows from the arguments in proving (4.20]) and (4.26)).
L]
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PART 5

STATISTICAL INFERENCE FOR A MODIFIED TWO-POPULATION
LEE-CARTER MORTALITY MODEL

This Part is my working paper which is currently under review, and has been adapted
to the format of dissertation.

Lee-Carter mortality model in [Lee & Carter| (1992)) has become a benchmark model in
forecasting mortality, hedging longevity risk and pricing annuities. This model is a combi-
nation of the following two structures for modeling the central death rate m(z,t) at age or

agegroupx =1,...., M and time t =1,...,T":

M T
logm(z,t) = a, + Boki + a4, Zﬁx =1, Z k. =0, (5.1)
=1

r=1

and

ki = p+ pki1 + ey, (5.2)

where {e,,}{_; and {e,;}], are random errors with zero mean and finite variance, and the
unobserved {k;} is called the mortality index. Although model can be replaced by a
more general time series model such as ARIMA model, many actuarial applications in the
study of longevity risk simply assume p = 1 in (5.2)); see|[Li et al| (2017b)), Kwok et al| (2016,
Enchev et al.| (2017)), Biffis et al.| (2017)), [Lin et al. (2017)), Wong et al. (2017), and [Zhu et al.
(2017).

A two-step statistical inference procedure in Lee & Carter| (1992)) is to first fit by
the singular value decomposition method and then fit by the least squares estimation
based on the estimated mortality index in the first step. This procedure has been widely
applied in actuarial science without verifying the correctness. Until recently, |Leng & Peng

(2016) showed that such an inference procedure may be inconsistent when the mortality
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index is not exactly an AR(1) unit root process. As k;’s are unobservable, testing for unit
root becomes nontrivial at all. An application of the unit root test developed in [Leng &
Peng| (2017)) shows that assuming unit root AR(1) model for {k;} is not suitable for some
mortality data sets. Because fitting a time series model to {k;} is necessary for the purpose
of forecasting mortality risk, the last constraint in becomes extremely restrictive and
basically implies that g = 0 in ([5.2)).

To solve the issues on inference inconsistency and restrictive constraint, in Part [2] we

proposed the following modified Lee-Carter model:

M M
logm(z,t) = ay + Boki + €41, ki = p+ dki_1 + ey, Zﬁx =1, Z(Xx =0. (5.3
=1 =1

When {k;} is unit root or near unit root, least squares estimators are proposed and proved
to be consistent with a normal limit, and a unit root test is provided too. However, these
estimators become biased when {k;} is stationary. To unify the inference for (5.3)), in Part
we proposed a bias-corrected inference procedure regardless of {k;} being stationary or near
unit root or unit root.

When longevity risk transfers involve more than one population, it is important to de-
velop multipopulation mortality models. Two-population stochastic mortality models have
been studied and applied in recent years; see |Li et al. (2015)) and references therein. Many of
these existing two-population mortality models are built upon the above Lee-Carter frame-
work like |Li & Lee| (2005), Li & Hardy (2011)), and (Cairns et al.| (2011). Hence statistical
inference is similar to the two-step procedure in [Lee & Carter| (1992), which uses the sin-
gular value decomposition method to first estimate mortality index for each population and
then infer the time series models. With no surprising, none of these papers concern the
correctness and asymptotic properties of the employed statistical inference. Given the re-
cent developments of statistical inference for Lee-Carter model in Leng & Pengl (2016) and
the proposed models in Parts [2] and [3| we conjecture that the widely employed statistical

inference for two-population stochastic mortality models is problematic. After confirming
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this via a simulation study and locating the reason of inconsistency, we propose a unified
inference regardless of the two mortality indexes being stationary or unit root.

More specifically, this Part considers a modified two-population Lee-Carter mortality
model and the corresponding bias-corrected inference procedure, which is valid regardless of
mortality indexes being stationary or unit root; see section for details on methodologies
and asymptotic results. A simulation study and data analyses are given in section [5.2

Section summarizes our contributions. All proofs are put into the Appendix.

5.1 Methodologies and Asymptotic Results

Consider the bivariate mortality model

logm® (z,t) = alV + VKM 4+ &) logm® (z,1) = ol? + PP + 12, (5.4)
kD = 0+ 6Ok, el kY — kD = p® 4 6O (kD — k) + 6, (5.5)
where {( mt, fg) , Is a sequence of independent and identically distributed random vec-

tors with zero means and finite variances for each z, {(e!”,e*)7}7 | is a sequence of in-
dependent and identically distributed random vectors with zero means and finite variances,
and A denotes the transpose of the matrix or vector A. Due to the identification issue, like

Lee-Carter model, one often assumes

M T
S =1 YK =0k =1 55
r=1

t=1

As argued in the introduction, the constraints Zthl kt(j) = 0 for j = 1,2 are very restric-
tive, and the two-step procedure with singular value decomposition method will lead to an
inconsistent inference even under the often used assumptions of ¢(!) = 1 and |¢®| < 1 in
the study of longevity risk.

Like Part [2, we avoid adding constraints to the random mortality indexes by assuming
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that
M M
Dol =0, Yo a0 =1 =12, (5.7)
rx=1 r=1
where Z 1 ol = 0 is not restrictive at all as the sum can be absorbed into kt(i). Define
p =M ¢ m and Z" = M 1ogm®(z,t), then we have

20 = kP 10, i=1,2.

When both {k§1)} and {k§” - kt(2)} are near unit root or unit root, as ¢ large enough, Z."

k)

and k’gl) are approximately the same, and Zt(l) — Zt(Q) and k:t(l) — are approximately the

same. Therefore, we could employ the least squares estimators via solving the following score

functions
YAz - u(” —o0z} =0
Zt A2y = — 1)Zt 1}Zt 1=0 (5.8)
Zt 2{Z(l) (2) — @ = ¢(2)(Zt(i)1 _ Zt@l)} —0
| L2 = 28— — 0z - 22} - Z2) =0
and
ST {logm® (z,t) — ol — g 20} = 0 o)

SL flogm (0, 1) — ol — 42020 =0

fori =1,2and z =1,2,..., M. However, when either {k:gl)} or {kt(l) —kt(z)} is stationary, the
above least squares estimators become biased as indicated by the simulation study below.
By noting that the inconsistency of the least squares estimators via solving is due to
the correlation between Zt(l) (1) <;50 t 1 = eg ) 4 T]t <z§01)'r]t and Zt 1= k’t 1+ nt( )1,

we follow the idea of shifting a lag in Part |3|and propose the unified bias corrected estimators
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via solving the following modified score equations:

ZtT:g{Zt(l) —u® - ¢(1)Zt(i)1} -0
1 1 1
ST 20— — o0 zOyz0M, =0

(5.10)
1 2 1 2
YL {2 = 2 — ) — (2 - 7)) =0
1 2 1 2 1 2
| Sz = 27 i =7 - 2202, - 2,%) =0
and
T ; i i) (i
_{logm® (x,t —al? - Wz = ¢
> i—o{log (z,1) B’ 2,7} (5.11)

i {logm®(z,t) — o — 50 2} 2,7, = 0
fori=1,2andx=1,2,... . M — 1.
To present the asymptotic distribution of the proposed bias-corrected estimators, we

need some notations. Put

0 = (uV, 6, 1 6@ oV gV aP B el B a0 BT
and let
6 = (1", 6", 4™, 0%, &V BV a1 B, ah s Byl al . BT
and
0, = (Nél)a ¢(()1)7 Né2)a ¢é2)a af()), 51 0 & 5287 T 7a§\il)—1,07 51(\})—1,07 O‘E\?—Lm ](\3[)—1,0)7

denote the above bias-corrected estimators and the true value of @, respectively. Note that

we exclude oz%[) and 6](\2) in the above definitions due to the constraints ZM O‘S)o = 0 and



ZM (i)g =1 for i« = 1,2. Further define

r=1 =z,
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2 1 2
— 00 (20— 22,
o) = 0020~ 2PN, — 22%).

Y (80) = 2 — i’ — o

Y3 (80) = (2 — u — 6V 2) 20,

Y (60) = 2 — 27 — g’

Y2(00) = {2V — 2 —

Y9(80) = logm®(x,t) — oy — B 2"
| %.2(60)

00) = {logm®(z,1) - ally — 5,2} 2",

forie=1,2 and z = 1,2,..., M — 1. Now we present the asymptotic results in four cases

according to the values of qﬁél) and qﬁéz).

corrected inference unifies all cases.

These theorems show that the proposed bias-

Theorem 5.1. Suppose models and hold with . Further assume ,u(()I) # 0,
,u(()2) # 0, (()1) =14+ % and (;5(()2) =14 2 for some p1,p; € R. Then

Dr(0 —6,) % N0, TS, as T — oo,

where 31 and T'y are respectively defined by and in the appendiz, and

Dy = diag(NT, T%?, - -

NT, T%?).

Theorem 5.2. Suppose models and hold with . Further assume ,u(()l) # 0,

,u(()Q) # 0, ]gb(()l)] <1 and ]¢(()2)| < 1. Then

VT(0 — 0y) % N(0,T;'S.I5 1Y) as T — oo,

where X9 and T'y are respectively defined by and in the appendiz.

Theorem 5.3. Suppose models and hold with . Further assume ,u(()l) # 0,
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S #0, ¢ =142 for some py € R and [6§] < 1. Then

A

Dr(6 — 60) % N(0,T5'3:T5") as T — oo,
where 33 and T's are respectively defined by and in the appendiz, and
Dy = diag(NT, T** NT, VT, VT, T%? .- NVT,T%?).

Theorem 5.4. Suppose models and hold with . Further assume ,u(()l) # 0,
,u(()2) #0, |¢él)| <1 and gzﬁéQ) =1+ 2 for some p, € R. Then

Dr(0 —6y) % N(0,T;'S,I;Y) as T — oo,
where 34 and I'y are respectively defined by and in the appendiz, and

Dy = diagWTNTNT, T2, .. T ANT AT, TH2).

5.2 Data Analysis and Simulation Study

Data Analysis We investigate the US mortality data of male and female co-
horts from year 1933 to year 2017, which are available from the Human Mortality Database
(https://www.mortality.org).

Firstly we fit the models and by the singular value decomposition method in
Lee & Carter| (1992) and then fit model by the least squares estimate. Secondly we fit
models , and by the proposed least squares estimate without bias correction,
i.e., solving equations and . Thirdly we use the proposed bias-corrected estimate
6 in Theorems to fit models , and .

Table reports these estimates. As and are different, one would expect
different estimates for (@, ol by the Lee-Carter inference and the proposed least squares

estimation with or without bias correction. On the other hand, one could expect similar
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estimates for ¢, ﬂg(f) based on these three inferences if they are consistent. Table shows
that the estimate for ¢(!) based on the Lee-Carter inference is much closer to one (i.e.,
unit root) than the proposed least squares estimation, and the estimates for p® and ¢
are different for the proposed least squares estimation with or without bias correction. As
estimates for ¢® based on these three inferences are ‘significantly’ smaller than one, it
suggests that {kﬁl) — k;?)} is a stationary sequence. Hence it would be cautious to use the
Lee-Carter inference and the proposed least squares estimation without bias correction.
Finally we examine the effect of these three inferences on forecasting future mortality
rates by carrying out an out-of-sample forecast of 50 more years. Figure[5.1| plots the historic
mortality rates and the forecasts of log m ¥ (x,t) from the Lee-Carter inference (dashed line),
the least squares estimation without bias correction (dotted line), and the least squares
estimation with bias correction (dash-dotted line). It is clear that three inferences provide
quite different forecasts. To confirm the inconsistency of the first two inferences, a simulation

study is conducted below.

Figure (5.1) Forecasts of logm(®(x,t) along with historic values of US mortality data

Solid lines represent true historic values of mortality data; dashed lines represent forecasts by
Lee-Carter model; dotted lines represent forecasts according to the proposed least squares
estimators without bias correction, see ([5.8) and @D; dash-dotted lines are forecasts by
proposed bias corrected estimators, see (]W[) and ﬁ[)

log m“’(x, ]
log m(z)(x, ]
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Table (5.1) Estimates of Bivariate Model Parameters Based on U.S. Cohorts

Lee-Carter Estimates of ag(f) and 55;')

x 1 2 3 4 5 6 7 8 9 10
ol 26265 -6.128 -5.850 -5.482 -5.060 -4.624 -4.215 -3.810 -3.429 -3.028
(0085 0091 0104 0109 0.108 0.109 0104 0101 0.098 0.093
o 7018 -6.741 -6.385 -5.994 -5.582 -5.1690 -4.780 -4.359 -3.941 -3.477
20134 0126 0119 0.106 0.096 0.091 0.083 0.081 0.082 0.084

Lee-Carter Estimates of (V) and ¢®

PO )

-0.113  0.994 0.049 0.958

Estimates of a!” and ﬁg(f) by the Proposed Model (Without Bias Correction)

x 1 2 3 4 5 6 7 8 9 10
oV 2187 -1.755 -0.877 -0.276 0.129 0569 0.741 0.994 1.245 1.415
(D 0.085 0001 0104 0.109 0.108 0.108 0.103 0.100 0.098 0.093
o? 0094 -0.030 -0.067 -0.344 -0.459 -0.317 -0.318 -0.020 0.444 1.017
(20133 0126 0.118 0.106 0.096 0.091 0.083 0.081 0.082 0.084

Estimates of x#® and ¢ by the Proposed Model (Without Bias Correction)

PR R C) )

-0.622 0.989 0.274 0.958

Estimates of ! and ﬁg(f) by the Proposed Model (With Bias Correction)

x 1 2 3 4 5 6 7 8 9 10
agl) -2.294 -1.867 -0.954 -0.289 0.139 0.610 0.809 1.053 1.324 1.469

g(gl) 0.083 0.089 0.102 0.108 0.109 0.109 0.105 0.101  0.099 0.094
ozg(f) -0.012 -0.105 -0.106 -0.330 -0.447 -0.285 -0.278 7.739e-3 0.488 1.068

3(62) 0.131 0.124 0.118 0.106 0.096 0.091 0.084 0.082  0.083 0.085

Estimates of x® and ¢ by the Proposed Model (With Bias Correction)

PO R R—e)

-0.856 0.985 0.285 0.956
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Simulation Study As many papers in the study of longevity risk simply assume
¢ = 1, this section uses simulated data to show that the Lee-Carter inference and the
proposed least squares estimation without bias correction lead to an inconsistent inference
when ¢ =1 and |¢| < 1, but the proposed bias-corrected inference performs well.

We simulate 10,000 random samples with sample size T" = 80, 150 and 300 from models
, and with parameters being the proposed bias-corrected estimates in fitting
the real dataset above except ¢(!) = 1 and ¢? = 0.95. We choose ¢,; and e; to be inde-
pendent and identically distributed random variables with N(0,0.1%). We report the mean
and standard deviation of estimates based on these three methods in Tables [5.2] 5.3 and
. As argued before, we could only expect consistency for estimating ¢ and ﬁg(f) based on
the Lee-Carter inference as constraints in ([5.6)) are different from those in (5.7]). Results in
Tables to show that i) the proposed least squares estimates without bias correction
for 4 and ¢ are inconsistent; ii) the Lee-Carter inference clearly gives an inconsistent
estimation for ¢ when T = 300; iii) the standard errors for estimating ol based on the
Lee-Carter inference are much larger than those based on the proposed least squares esti-
mation with or without bias correction; and iv) the bias-corrected inference performs quite

well.

5.3 Conclusions

When longevity risk transfer involves more than one population, multipopulation mor-
tality model is needed. Recently some two-population Lee-Carter related mortality models
have been applied to the study of longevity risk and the employed statistical inference relies
on the singular value decomposition method as the two-step inference procedure in [Lee &
Carter| (1992). Surprisingly it seems no research on the study of inference consistence. Given
the recent theoretical development for the statistical inference of Lee-Carter mortality model,
this paper alerts the application of the Lee-Carter inference, confirms its inconsistence by a
simulation study, and proposes a bias-corrected inference which is always consistent regard-

less of the mortality indexes being stationary or unit root, and performs well empirically.
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Table (5.2) Estimates with standard deviations in brackets for 7" = 80

Lee-Carter Estimates of ozg(f) and 6g(f)

T 1 2 3 4 5 6 7 8 9 10
(1) -5.171 -4.955 -4.500 -4.049 -3.625 -3.178 -2.827 -2.466 -2.115 -1.786
ag (0.044) (0.047) (0.053) (0.057) (0.057) (0.057) (0.055) (0.053) (0.052) (0.049)
(1) 0.083 0.089 0.102 0.108 0.109 0.109 0.105 0.102 0.099 0.094
B (5.472e-4)  (5.35le-4)  (5.367e-4)  (5.353e-4)  (5.388e-4)  (5.274e-4)  (5.418e-4)  (5.379e-4)  (5.384e-4)  (5.337e-4)
(2) -5.131 -4.953 -4.693 -4.466 -4.198 -3.852 -3.565 -3.181 -2.746 -2.251
ag (0.072) (0.068) (0.065) (0.059) (0.054) (0.051) (0.047) (0.046) (0.047) (0.048)
(2) 0.131 0.124 0.118 0.106 0.096 0.091 0.084 0.082 0.083 0.085
B (5.060e-4)  (5.097e-4)  (5.089e-4)  (5.047e-4)  (5.037e-4)  (5.055e-4)  (5.030e-4)  (5.022e-4)  (5.068e-4)  (5.082e-4)
Lee-Carter Estimates of x and ¢
D o) S o)
-0.847 1.001 0.070 0.941
(0.012)  (6.724e-4)  (7.744e-3)  (0.013)
Estimates of ! and 8% by the Proposed Model (Without Bias Correction)
T 1 2 3 4 5 6 7 8 9 10
(1) -2.294 -1.867 -0.954 -0.289 0.138 0.610 0.808 1.053 1.324 1.470
g (0.022) (0.021) (0.021) (0.021) (0.021) (0.021) (0.021) (0.022) (0.022) (0.021)
(1) 0.083 0.089 0.102 0.108 0.109 0.109 0.105 0.102 0.099 0.094
k3 (5.470e-4)  (5.350e-4)  (5.366e-4)  (5.352e-4)  (5.386e-4)  (5.272e-4)  (5.417e-4)  (5.378e-4)  (5.382e-4)  (5.335e-4)
(2) -0.012 -0.106 -0.106 -0.330 -0.447 -0.286 -0.278 8.205e-3 0.489 1.068
g (0.022) (0.023) (0.022) (0.022) (0.022) (0.022) (0.022) (0.022) (0.023) (0.023)
(2) 0.131 0.124 0.118 0.106 0.096 0.091 0.084 0.082 0.083 0.085
B (5.059e-4)  (5.096e-4)  (5.088e-4)  (5.046e-4)  (5.036e-4)  (5.054e-4)  (5.029e-4)  (5.021e-4)  (5.067e-4)  (5.081e-4)
Estimates of 4 and ¢ by the Proposed Model (Without Bias Correction)
D e e e
-0.866 1.000 0.669 0.861
(0.029)  (7.54le-4)  (0.119)  (0.028)
Estimates of ol and 53(0) by the Proposed Model (With Bias Correction)
T 1 2 3 4 5 6 7 8 9 10
(1) -2.294 -1.867 -0.954 -0.289 0.138 0.610 0.808 1.053 1.324 1.470
ag (0.022) (0.022) (0.022) (0.022) (0.022) (0.022) (0.022) (0.022) (0.022) (0.022)
(1) 0.083 0.089 0.102 0.108 0.109 0.109 0.105 0.102 0.099 0.094
El (5.567e-4)  (5.438e-4)  (5.462e-4)  (5.440e-4)  (5.484e-4)  (5.373e-4)  (5.520e-4)  (5.472e-4)  (5.479e-4)  (5.433e-4)
(2) -0.012 -0.106 -0.106 -0.330 -0.447 -0.286 -0.278 8.087e-3 0.488 1.068
ay (0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.023)
(2) 0.131 0.124 0.118 0.106 0.096 0.091 0.084 0.082 0.083 0.085
© (5.167e-4)  (5.215e-4)  (5.194e-4)  (5.152e-4)  (5.140e-4)  (5.164e-4)  (5.131e-4)  (5.132e-4)  (5.176e-4)  (5.183e-4)

Estimates of 4 and ¢ by the Proposed Model (With Bias Correction)

s >0 c >
20.857 1.000 0.293 0.948
(0.030)  (7.743e-4)  (0.106)  (0.024)
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Table (5.3) Estimates with standard deviations in brackets for 7" = 150

Lee-Carter Estimates of ozg(f) and 6g(f)

T 1 2 3 4 5 6 7 8 9 10
(1) -7.658 -7.623 -7.565 -7.298 -6.878 -6.452 -5.969 -5.507 -5.088 -4.599
ag (0.060) (0.064) (0.073) (0.078) (0.078) (0.078) (0.075) (0.073) (0.071) (0.067)
(1) 0.083 0.089 0.102 0.108 0.109 0.109 0.105 0.102 0.099 0.094
@ (2.094e-4)  (2.067e-4)  (2.082e-4)  (2.127e-4)  (2.082e-4)  (2.073e-4)  (2.084e-4)  (2.086e-4)  (2.076e-4)  (2.108e-4)
(2) -9.140 -8.751 -8.286 -7.706 -7.135 -6.645 -6.140 -5.679 -5.279 -4.850
ag (0.096) (0.091) (0.086) (0.078) (0.071) (0.067) (0.062) (0.060) (0.061) (0.063)
(2) 0.131 0.124 0.118 0.106 0.096 0.091 0.084 0.082 0.083 0.085
@ (2.047¢-4)  (2.043e-4)  (2.037e-4)  (2.035e-4)  (2.034e-4)  (2.028e-4)  (2.03le-4)  (2.065e-4)  (2.062e-4)  (2.033e-4)
Lee-Carter Estimates of x and ¢
D o) e o)
-0.851 1.000 0.041 0.937
(8.505e-3)  (2.434e-4)  (4.727e-3)  (0.011)
. 7 7 . . .
Estimates of ! and 8% by the Proposed Model (Without Bias Correction)
T 1 2 3 4 5 6 7 8 9 10
(1) -2.293 -1.867 -0.954 -0.289 0.138 0.610 0.809 1.053 1.324 1.470
ag (0.016) (0.015) (0.016) (0.016) (0.016) (0.016) (0.015) (0.015) (0.015) (0.016)
(1) 0.083 0.089 0.102 0.108 0.109 0.109 0.105 0.102 0.099 0.094
© (2.094e-4)  (2.066e-4)  (2.082e-4)  (2.127e-4)  (2.082e-4)  (2.073e-4)  (2.084e-4)  (2.086e-4)  (2.076e-4)  (2.108e-4)
(2) -0.012 -0.106 -0.106 -0.330 -0.447 -0.285 -0.278 7.924e-3 0.488 1.068
ay (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016)
(2) 0.131 0.124 0.118 0.106 0.096 0.091 0.084 0.082 0.083 0.085
@ (2.047e-4)  (2.043e-4)  (2.037e-4)  (2.035e-4)  (2.034e-4)  (2.028e-4)  (2.03le-4)  (2.065e-4)  (2.062e-4)  (2.033e-4)
Estimates of 4 and ¢ by the Proposed Model (Without Bias Correction)
D e e e
-0.862 1.000 0.836 0.839
(0.019)  (2.620e-4)  (0.127)  (0.026)
. 2 1 . . .
Estimates of ol and 53(0) by the Proposed Model (With Bias Correction)
T 1 2 3 4 5 6 7 8 9 10
(1) -2.294 -1.867 -0.954 -0.289 0.138 0.610 0.809 1.053 1.324 1.470
ag (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016)
(1) 0.083 0.089 0.102 0.108 0.109 0.109 0.105 0.102 0.099 0.094
El (2.111e-4)  (2.095e-4)  (2.097e-4)  (2.148e-4)  (2.108e-4)  (2.093e-4)  (2.106e-4)  (2.11de-4)  (2.101e-4)  (2.124e-4)
(2) -0.012 -0.106 -0.106 -0.330 -0.447 -0.285 -0.278 7.866e-3 0.488 1.068
ay (0.017) (0.016) (0.017) (0.017) (0.016) (0.016) (0.016) (0.016) (0.017) (0.016)
(2) 0.131 0.124 0.118 0.106 0.096 0.091 0.084 0.082 0.083 0.085
© (2.070e-4)  (2.066e-4)  (2.058e-4)  (2.063e-4)  (2.05le-4)  (2.056e-4)  (2.049e-4)  (2.086e-4)  (2.082e-4)  (2.051le-4)

Estimates of 4 and ¢ by the Proposed Model (With Bias Correction)

s >0 c >
20.857 1.000 0.291 0.949
(0.019)  (2.667e-4)  (0.102)  (0.020)
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Table (5.4) Estimates with standard deviations in brackets for 7" = 300

Lee-Carter Estimates of ozg(f) and 6g(f)

T 1 2 3 4 5 6 7 8 9 10
(1) -12.988 -13.342 -14.133 -14.262 -13.849 -13.468 -12.703 -12.026 -11.459 -10.629
ag (0.083) (0.089) (0.102) (0.108) (0.108) (0.109) (0.105) (0.101) (0.099) (0.094)
(1) 0.083 0.089 0.102 0.108 0.109 0.109 0.105 0.101 0.099 0.094
B (7.528e-5)  (7.372e-5)  (7.384e-5)  (7.320e-5)  (7.410e-5)  (7.276e-5)  (7.411e-5)  (7.325e-5)  (7.350e-5)  (7.409e-5)
(2) -17.609 -16.771 -15.874 -14.549 -13.340 -12.544 -11.578 -10.954 -10.630 -10.341
ag (0.131) (0.124) (0.118) (0.106) (0.096) (0.092) (0.085) (0.082) (0.083) (0.085)
(2) 0.131 0.124 0.118 0.106 0.096 0.091 0.084 0.082 0.083 0.085
B (7.339e-5)  (7.384e-5)  (7.349e-5)  (7.421e-5)  (7.418e-5)  (7.316e-5)  (7.378e-5)  (7.385e-5)  (7.402e-5)  (7.273e-5)
Lee-Carter Estimates of x and ¢
D o) S o)
-0.854 1.000 0.022 0.927
(5.882e-3)  (8.175e-5)  (2.812e-3)  (9.941e-3)
. 7 7 . . .
Estimates of ! and 8% by the Proposed Model (Without Bias Correction)
T 1 2 3 4 5 6 7 8 9 10
(1) -2.294 -1.867 -0.954 -0.289 0.138 0.610 0.809 1.053 1.324 1.470
ag (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
(1) 0.083 0.089 0.102 0.108 0.109 0.109 0.105 0.101 0.099 0.094
k3 (7.528e-5)  (7.372e-5)  (7.384e-5)  (7.320e-5)  (7.410e-5)  (7.275e-5)  (7.411e-5)  (7.325e-5)  (7.349e-5)  (7.409e-5)
(2) -0.012 -0.106 -0.106 -0.330 -0.447 -0.285 -0.278 7.702e-3 0.489 1.068
g (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
(2) 0.131 0.124 0.118 0.106 0.096 0.091 0.084 0.082 0.083 0.085
B (7.338e-5)  (7.384e-5)  (7.349e-5)  (7.421e-5)  (7.418e-5)  (7.316e-5)  (7.377e-5)  (7.385e-5)  (7.402e-5)  (7.273e-5)
Estimates of 4 and ¢ by the Proposed Model (Without Bias Correction)
D e e e
-0.859 1.000 1.175 0.783
(0.012)  (8.489e-5)  (0.149)  (0.028)
. 2 1 . . .
Estimates of ol and 53(0) by the Proposed Model (With Bias Correction)
T 1 2 3 4 5 6 7 8 9 10
(1) -2.294 -1.867 -0.954 -0.289 0.138 0.610 0.809 1.053 1.324 1.470
az (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
(1) 0.083 0.089 0.102 0.108 0.109 0.109 0.105 0.101 0.099 0.094
El (7.576e-5)  (7.41le-5)  (7.433e-5)  (7.367e-5)  (7.460e-5)  (7.318e-5)  (7.447e-5)  (7.366e-5)  (7.383e-5)  (7.436e-5)
(2) -0.012 -0.106 -0.106 -0.330 -0.447 -0.285 -0.278 7.649e-3 0.489 1.068
ag (0.011) (0.011) (0.012) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
(2) 0.131 0.124 0.118 0.106 0.096 0.091 0.084 0.082 0.083 0.085
© (7.376e-5)  (7.424e-5)  (7.400e-5)  (7.448e-5)  (7.461e-5)  (7.360e-5)  (7.410e-5)  (7.425e-5)  (7.449e-5)  (7.307e-5)

Estimates of 4 and ¢ by the Proposed Model (With Bias Correction)

s >0 c >
0.856 1.000 0.292 0.949
(0.012)  (8.549e-5)  (0.116)  (0.022)
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Appendix: Proofs of Theorems

We first introduce some lemmas before we prove the main results.

Lemma 5.1. Suppose the conditions of Theorem [5.1] hold, then

T T
1 0
E Wlt(O[)) i) N(O, 21) and T t:E - a—owlt(go) £> Fl, as T — o0,

1
T=

where 31 and I'y are defined in and respectively, and

v vy oy p@) i v (2)
1 t,2 2 t,2 1 t,1 2 t,1 1 t,M—1 2 t,M—1\r1
Wlt(e[)) = (Kﬁfl)v T 7}/1651)7 T 7}/1551)7 T 7thl)a T a"'7}<ff]\2f—17 T aY;E]\/)[—D T ) .

Proof. Since ,u(()l) # 0 and qu) # 0, we have

t—1 t
kY = uf? (Z(gﬁé”)f') + () &S + S (@) el

J=0

It follows from Chan and Wei (1987) that for s € [0, 1]

[T's] [T's]
> (@) e = ()TN (o)) el = 0,(VT),
i=1 =1

which imply that, as T" — oo

[(%)}
s| D
— =/,

T (s) for s € [0,1], (5.12)

where

esr—1
I if p#0,
fou(s) = g (5.13)

(LS if p=0.

Similarly we have as T" — oo

k(l) . k(2)
w B f(s) for s € [0,1] (5.14)
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Note that
4
1
1/7551)(00) § ) + 77t ¢0 77t
1 1 1
Y5 (80) = (et + i — ¢gnft 1><k§ Y+ ny),
2 1 2
)@51)(90) = eg ) + 7715 ) ¢0 (m 1 77757)1)7
2 2 1 2 1 2 1 2
Y;EQ)(OO) = {el(f ) + 77t( ) Cbo (77t 1 nﬁ_)l)}(kﬁ_)z - kt(—)z + 77t(—)2 - 775—)2)’
.0 (80) =€), - Bi%m“, i=1,2% 2=1,2...,M-1,
| V0(00) = () = 8O () + 0, i= 1,20 2 =1,2,.. M — 1.
W _ 0 x® o Ok kS @) @)
LetXm:et ?Xt,Q_( + 1 ) — T TaXt,lzet )
/{5(1) ]{7(2 k(i) _ k(z)
Xt(,22) _ (e,@ n nil) B 77t(z)) t—2 (ngl) B 7722)) -1 t 1’
T T
and define
LT e g g
1 2 1 2) Y1 1 t,M—1 2 tM—1
Ut(eo) (Xt(l)aXt(2)aXt(1)>Xt(2)aY;(1)7Taﬁfl% T ) ) t(]\/)lflﬂ T ) t(]\} 1 T )

Then we have

\/_ZW” 90 \/_ZUt 00 +0p<) T — oo.

Let F; denote the o-field generated by {(eg1 ,622),5§12, e ,85\}1)757882, e 8531)8)7— cs <t}
then {U(0y), F:}2, is a sequence of martingale difference. By the central limit theorem of
martingale sequences in |Hall & Heyde| (2014]), % Zthg U,(6y) converges in distribution to

a multivariate normal distribution with 0 means and covariance matrix 3; satisfying

T
1 e
T E E{Ut(eo)Ut(eo)TLE_l} El d—f <01])4MX4M7 (515)

t=3

ie.,

3=

Mﬂ
Mq
§°
_l’_
f
=
=
M
~

4

g
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By the assumption that {(eg1 el ),5§2, e g%,gﬁt), e ,eg\?’t)T}le is a sequence of inde-

pendent random vectors with finite variance, it is straightforward to verify that

011 = E(eg )) , et / f w(s)ds, o135 = E(egnegg))?

nu()

1
€t1)et / f 7#82) dS O99 = (€§1))2/ fp21 Mél)(s) ds
0 )

093 =F et et2) / ph‘uél) s)ds, o9q = 1) (2) / e p%#(z)( s)ds,
033 = E(eiz))Q, 034 = €t / <2) s)ds, o4 = €t / sz,uEQ)
Note that L) L) L0
= - S for s € [0,1], (5.16)

then as T' — oo, we have

1 k2 ,
P [ 0= e 9} s

and

1 <& ,
TZ(T)2 = {f, ()= £, ()} ds.

Similar to the proof above, for z,y =1,2,..., M — 1

O1,42+1 — E{ei”(ej} - 52377,51))}, 01,4042 — 01, 4z+1 / <1)

P15

01,42+3 = E{eil)(egi xom )} O14a+4 = 01 4x+3/ {f o1, ,jl) =/, @ (8)}ds,

P25

024z+1 = 0142+2; 02 4z+2 —Ul4x+1/ o (1)( )dS 02 4z+3 —014x+3/ o1 uo (5) ds,
1 0 ’

2 1
02 4z44 = O1 4$+3/ pul! /o A y(s) — fp27#é2>(8)}d8, O3 4011 = E{e§ )(653,2 51 om )}7



2), (2 2) (2
03 4z+2 = 03 4a:+1/ m,ué” s)ds, 034543 = E{eg )(Ex,z - ﬁx,()mt( ))}7
03 4c+4 = 03 4x+3/ {f prolt fp2 u(2)( s)}ds, o4 Az4+1 = 03 4z+1/ p2.ul? () ds,
04,4042 = 03 4a:+1/ o1, u (2)( )dS 04,4243 — 03 4z+3/ po, u( >(8) ds,

e (s){f

04,4044 — 03 4:c+3/ p1.

w(s) = f,, @(s)}ds,

paul’

)

<1)( )dS O4x41,4y+4 — Odz+1 4y+3/ { >( )—fpw

o =0
da+1,4y+2 da+1,4y+1 / pru

P11

w (s) ds,

P1,Hq

O4x42,4y+2 = U4x+1,4y+1/ f u(l)( )dS O4x4+2,4y+3 = O4z+1 4y+3/
0 bHo

w (s){f

le

w(s) = f, @(s)}ds,

p2,p

0. =0
4x+2,4y+4 4x+1,4y+3 / o1, “0

2 2) (2 2 2) (2
Odz+3,4y+3 — E{(eit) - 59(@37715 ))( ;2 51(,,37%( ))},

w(s)—f

02,1

<2)( )} ds,

O4x43,4y+4 — O4z+3 4y+3/ { oL u

Oda+ady+4 = U4m+34y+3/ if Pt (s )_fp27m<)2)(3)}2 ds.

Moreover, note that

9 1) 4@ A1) 42 (1) (2)
%Wlt(OO) dlag <At0 aAtO 7At1 7At1 )y T 7At(M71)’ At(M1)>4(M—1)><4(M—1) )
where fort =1,2and x =1,2,... , M — 1,
1 i
AL _ 1 Zt(—)l A0 _ _ 1 Zt( )
t0 — Zt(i) Zél)l Z§1>2 ) te — Z(Z) Z,SZ) Zt(l) )
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3,

1 1 1 1 1 1 2 2
Taoriagrn = B —BUan) (€] =B8N Y, ouesrages = B =88 () —8%m]

@ (s)} ds,
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and
1 2

2 2
Lz, - 7% Lz - Zé >1><Z§ b — Z2%)

It follows from ([5.12)), (5.14)) and (5.16|) that as T — oo

T (1) T (1) T
1 -zY 1 &R
T2 T :?Z T +_22; Lor

t=3 t=3
L= 0 0 Lk kit v [!
2 L2 = TZ 7 To(l) = i fpwén(s) ds,
t=3 t=3
' L=, o, [
2
T3ZZt 73 2, /0 Uy = 1, o ()Y ds, ﬁ;(Z”—Z”H /O () ds,

This implies that

T

1

T E {—880W1t(00)}{ﬁD;1} BTrasT — 00,
t=3

where
—d; (1) 4@ 41 4@ . (1) (2) > 517
I dlag (AO 7A0 7A1 ’Al ) 7AM—17AM—1 A(M—1)x4(M—1) ( )
with
1
(1) (1) 1 Jo Jpp i (5) ds
AO = et AM*I = — 1 d . 27 0 d
Jo Lpugp(s)ds— Jo 17 () ds
1
) 1 fo fpz,u((f)(S) ds
A®D =

1 1
fo fpwéz)(s) ds fo fp22,ué2)<s) ds
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and
AP == AR = 1 Jo Ui (5) = g ()} s
fU plu(l) _fpzu 2 (s)} ds fﬂ prud _fpzu 5 (5)}" ds
[

Lemma 5.2. Suppose the conditions of Theorem[5.3 hold, then

T T
1 0
E W (60) N N(0,%5) and E —W(6y) By, asT— 00,

1
T= t=3

where 3o and I'y are defined in and respectively, and

~ ~

1 1 2 2) (1 1) v (2) v-(2 > (1 (1 > (2 2 T
W2t(90) = (thl)thSQ)7K&El)ay::fz)ay;fl)aY;tfl)?thl)thfl)a e 7Y;tfj\}—lviftfl\}—hmfl\}—lvy;tf]\/)[—l) :

Proof. Since ,uél) # 0 and /LE]Q) # 0, we have

(1) (1) B2
E(EMY — Ho B0z — Ho 2 t 518
H = P BOOR = e (5.1)
and
) ) (o2
E(k}(l) i k?( )) _ Mo oL E(l{igl) _ k§2))2 = ( Fo (2))2 (et B (5.19)
1 —¢g 1 — g 1—(¢;")
Moreover, the stationarity of sequence {(k; ,k;,gl) — kt(z))T,t =1,2, T} implies that
(1), (e
BEO R — 52y = Mo Ho L Blee”) (5.20)

1-aM1 o) 1-¢i s
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Note that
[ V,9(85) = e + 7Y — 60D,
Y5 (80) = (et + i — ¢fnft 1><k£”2 + i),
Y, 2(60) = e + " — 5 ¢o Yy —n2),
Y2(00) = {e? + ni = 0P — 6P i — 0?3k — k2 + 0ty = n?y),
v, (60) = ¢} — ﬁ%m“, i=1,2, 2=1,2,...,M—1,
| V0(00) = () = 8O () + 0, i= 1,20 2 =1,2,.. M — 1.

Let X\ = et + (1 — o), X2 = + (1= o) (Y — 0,

1 1 1 1 1 1
X8 = (e + M)k, + ) — o0 (kD + 0,

2 2 1 2 1 2 1 2 2), (1 2 1 2 1 2
Xt(,2) = <€§ ) +77t( - 7775 ))(kﬁ,)z - kt(f)2 +77t92 - 77757)2) - ¢é )(7715 - nt( ))(kwgl - kgf)l +77£ )1 - 77157)1)7
and define

A ~ ~

1 1 2 1 2) ¥ o (1 1 2 2 T
U, (90) :( t(l)?Xt(2)7Xt(1)7Xt(2)7 t(1)7Y;f(1)7Y;5(1) t(l)v"' 7KSA)[—l?thE]\/)[fl’Y;E]\/)[fDY;SI\/)[fl) :

?

Then we have

ZWQt 00 \/_ZUt 00 +0p<) T — oo.

Let F; denote the o-field generated by {(es ) e 5513, e ,55\25, 852, e ,85\?’8)T i s < t},
then {U(0y), F:}:2, is a sequence of martingale difference. By the central limit theorem of
martingale sequences in |Hall & Heyde| (2014]), % Zthg U,(6y) converges in distribution to

a multivariate normal distribution with 0 means and covariance matrix 3, satisfying

T

1 e

T E E{Ut(OO)Ut(OO)TLE—I} 22 d—f (O-’L])4M><4M7 (521)
=3



117

Le.,
W2t00 UtOO +O()—>N(022) T — o0.
LW = U0 o,
By the assumption that {(eg ) ef? >,a§2, e gﬁ)t,ggg, e ,eg\?t)T}f:l is a sequence of inde-

pendent random vectors with finite variance, it is straightforward to verify that

o =E{ef” + (1= oV} o= L(I)U”’
— %o
W (), 0] @)D _ @ e
o153 =E{[e;” + (1 — e e + (L—og ) —m7)]}s o1a = 1 @ 718
— %o

= (B + ") + (" PEGO) (L) + 240 2B n") + E(n)?)

1— ¢(1) 1—(¢ (1))
¢>( ) (e} 1
~260 B (el + 0N + DG 1 o B )},
M(Q) (2) @) ¢,,(1) (2) :“(2)
093 = L@)Ul:&, o33 = E{e;” + (1405 ),  —m " }?, o34 = L(2)0337
1 — ¢ 1 — g
1 1 1,2 FleM o2 1 1 1 9
®4=Eﬂéuwpﬂ(uwt—m)Hﬁ;&ﬁ¢%+1%%&+EWP+%UWU—%W
1) g g o8 BlefVe®) 2) (1)
+E(en] )} Cbo E{( RIS )}{ (1) ¢(2>)+ PO +¢0 Ele"n ")}
D E e(1>6<2 9
—¢0 E{77t ( +77t )}{ + Lot s +¢0 Ele; )(7715) 77( ))]}

¢<”)(1 65)) | 1-0y 0y
1) (2 1), (1 ( ) B(eMe? 1 1 1 2
+66 65" E{n” (n” — | )}{ o +1 ((;(1)t(23 + Elet” + 0 (" = 0 + E(en")},

1-¢5”)
1) 2 E(e 2
o =B+ =)+ (0B — ”)HQ¢@> @%4&EMR<>—¢W
@) B2
+En" - 7f»ﬂ 20§ B{(e” + 1" = )0 = ) H G)? + B
+66” Ble” (" — )]}
Note that
2 1 1 2 M(l) M(2)
E(k?) = B(k") = Bk = 1) = =y — =

R
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Then for x =1,2,...,M — 1, we have

ovar1 = E{let”+ (=0 ) N =Bron”)} ovanes = B{er+ 10012500},

(1) (1) (2)
My - Ko Ko

01,42+2 = —1 (1)01,4x+17 01,4z+4 — { O } 01,4243,

- 0

b0 L= 1—of

ng” ng
0242+1 = = y914a+1y 0242+3 = T 1y01,42+3,
1 - g 1— gy

1 1 VB 1 1) (1
Oadwra =E«4>+#U<Q— BV H (Hr)? + f—i—L+¢9EwP¢U}

¢<1) (¢(1))2
1 E(e; 1
E{¢><x}—-amnt>}{@ ) 2 2B ) + B,
M 0 @) ug pg? o B(ef))?
02 4x+4 = E{< + un )( /8 )}{(1 ¢(1) )2 - (1— ¢lz?))?f7¢82)) 27((]5813)2

DB
1_¢(()1)¢(()2)

~6 B () = B H () +

)

+ o B(eln)) — o B(elPniV)}

B(el)? i
1-(¢50)2  (1-¢V)(1-¢)

(V) 2 1 2 1) (2
~ o + B ) + Bl (e — )] + B0},
(2) (2) 1) 1), (1) N((Jl)
034041 = E{[e;” + (1 — ¢o )( ne —n)l(e €xt — 5z,077t )b O34p42 = 1—¢(1)‘73,4x+1a
— P
©) O (D @y @) a®) n g
03,4z+3 — E{[et +(1_¢0 )(nt - )](Er,t ﬁx Ont )} 03,4z+4 — { 1) } 04,4243,
1 — ¢ 1- o5
(2) ,U(2)
044241 — %03,4%1, 044243 — %03,4%37
9 1 9 1 1 (2) oV E(eMe® 1 1 9
Traans = B + 0 = n?)(el} = B H i + g 1 o Bl () — 0]y
(1) (1) (2) (egl)eim)

2 1 2 1 1 1 1 2
—6 E{(nt" — n)(el) — Blont ) {18 + Bl (" — )]

(1 ¢(1))(1 ¢(2)) ¢(1>¢(2)

1) (1 1, (1 2
+B (e ") + Bl () — )]}
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2 1 2 2 (2 me SV EEDe? (2)
Od4dz+4 = E{<€§ : + 7715 ) - nwg )>(€§c,2 B 707715 )>}{ ? ¢(2 ) + 01_¢(81)¢(2) ) - (1M¢(2))2
@) p(e()y2 1
+ AT+ B8 e — o) ) n§ ’>]}
2 1 2 2 ud pl? E(eW e @)
—00" B = n®) (e = 8o + e — ()

¢<1> —o) T 1@ 1—o®

E(e{?)? 2) (2 1 2 2), (1 2
— S + Bl ) + Blle - eff ))(77§ D=+ B o — o)}

Similarly, for for x,y =1,2,..., M — 1, we can show that

Oaasrayer = BLER =B (e =800}, oaari s = B{—BUn ) e A7)},

)

1) ) (2)
U4+14+2_LU4 +1,4y+1, 04 +14+4_( a - at )04 +1,4y+3
41,4y - 1 r+1,4y+1> 41,4y - 1 2 x+1,4y+3»
1 op) L=oy) -
1) (12
U E(e 1 1 (1
Otpi2dyr2 = Ozit g1 {(—— (1))2 + : Dy E(mY)? +2E(ef i)},
1 — ¢ 1—(¢5")
1)
2 2) (2 2 2) (2
Oaz+2,4y+3 = ﬁﬂxﬂ dy+3y Oaatsay+s = E{(e @ _ 55,37715 ))(Eg(/,t) - 51(,,3771:( 1,
— %o
D (1)y2 MOMC) (1) (2
E(e,”) E(e, )
O4z424y+4 — O4z41 4y+3{<1 ¢(1))2 —(s (1))2 - (1— ¢(1))(107 (()2)) T ¢(1)¢(2)

1 1 2
+E(e ) + Be"nV) — Ee®n) + EmPni)},

(2)
My
O4z+3 4y+4 — PEED)) O4x+3,4y+3>
1- 0
( ) (1)y2 (2) (2)y2 (1) (2)
2 E(et ) 2 E'(et ) 2pg " p
g == 0 —
dx+4,4y+4 4z+3 4y+3{(1 ¢(1)) + 17(¢(()1))2 1— ¢>(2>) + 17(¢(()2))2 (17¢(()1))( (2))

28 (efM el 1) (2 2
2Pt + 2B (el n®) — 2B (e”n”) + B i)}

Furthermore, note that

9 w : 1) 4@ A1) 4(2) (1) (2)
00 2t<00) dlag <At0 7At0 7At1 ?Atl y T 7At(M_1)> At(M_1)>4(M1)><4(M1) 5
where fort =1,2and x =1,2,... , M — 1,
1 7
1 Zt(—)l (z) 1 Zt()

Ay’ = -
1 1 1 i i i
IR RV 7% 207



and
1 2

1 2 1 1 2
A A VS Z§ >1><Z<J 7))

It follows from (5.18)), (5.19) and (5.20)) that as T' — oo

2
Ago) ==

1

%ZT:ZI Z:k(l)Jr 277(1) p

= ¢o g
T T T (1) (2)
1 2 1 @ 1 @ ». Mo o
TZZt _Tzkt T2 R TTO Rk
t=3 t=3 t=3 ¢0 ¢0

T 1 1),.(1) T IRe!
%Zt:i&Zt() tfl TZt 3 ()k( ‘|‘th -3 15)7715 )1+0p(1>

uD OFT (1) (1
> <17?¢,<1)) + % ((;S((lt) -+ Cbo E(e )m( ))7
0

2 2
%Zfzng) t— thg ()+ Zt3 t 77t()1+0p(1)
B BUMED Y - BV (R - k)Y - B (Y — k)
FE{(k" — kY (*Y, = k2D) + EED P}

— ué) )2 ¢5”E(e§”>2 2ué” & (¢>g”+¢62)>E(e§”e£2))
Ele 2 2 2
+<1“;<2)> +% (;@3)2 +¢o Ben®) - o B,
1,0 @) L o s
1 2 1 2 p
T Zs(Ztl - Z,7) = T Z3(kt1 — k1) +0p(1) = ) _O (2)7
t= t=

(2)

= - 1oy
This implies that

T
1 d »
= {5 Wxu(00)} HTsas T — oo,
T £'06

where

O di (A(l) AD AW 4@ 40 4@ )
2 1ag {Ag " Ag Ay A7 PUMED ML) -1y xa(—1)

d (1) (2) (1) (2)\ P Ho 5, %o E(@@) (2) 1 (2)
T Z(Zt—l — 222 — Z2) = ( )+ E{et (" —m

120

)}

(5.22)
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with
) e
At()l):"':Ag\?lz_ (1) 1) <>1<¢(>1)
— 1 1 1 1
H Iz b Ele,)? (1), (1)
1*(;51) (172)(()1» + (¢<1> + 65 Eef'n")
©)
By N2
A(Q) - 1 (1 25(2))
o = IR n o 6B 5 M _ (@

(1745(()2)) (17@()2)) + (¢(2>)2 -+ ¢ B (" — )}

and
1 N(()l) MSQ)
2 2 1—o@ — 1_4®
Ag )= = As\/l)—l - (1) (2) % % ’
S a
10 1-¢®
where
o = (Lo yry B 2?6 e )E V)
A N 10§ ("
2 2 2
by Eey )2 2 2 2
() + e +¢o Bley ") — 66" E(ef”n?).

Lemma 5.3. Suppose the conditions of Theorem[5.3 hold, then

T T
1 0
E Wgt(00> i) N(O, 23) and T _E 8—0W3t<90) £> F3, as T — o0,

1
T=

where 33 and I's are defined in and respectively, and

v oy ey 5O
1 Yo 2 2 1) Y1 2) Yi1 1 t,M—1 2 EM—1
W3t(00) (}/16(1)7 T ) tfl)vng)ayéfl)a T 7}/;551)7 T y aY;EJ\/)[_p T 7}/;55]\}_15 T )

Proof. In this case, {/f(l)}tT,1 is unit root or near unit root, while {k") — k:t(Q)}thl is stationary.
Assume u 7é 0 and Mo ;é 0, then l} and 1} hold, which implies that
(2) (1) (1) (2)
I O R Y

[Ts] | T [Ts] p
T = T T —>fp17ué1)(5), (5.23)
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for s € [0,1] as T'— 0.

Note that
[ ¥D(80) = eV + 5" = 6D,
Y5 (00) = (ef” + 0t — o ) (kY + i),
Yﬁ)(eO) = 61(t ) + 77(1) 2 ¢0 (77t 1 7715_)1),
Y 2(00) = {e + 0t — 0P — o iy — 0P F (ki — B2y + 0ty — 0%y,
17;5?(00) = e;)t — ﬁgénp, 1=1,2, 2=1,2,...,M — 1,
Y (00) = (e — Bigmt )2 + 0y, i = 1,2 e =1,2,.. M — 1.

(1)

1 1 1 ky 1) kY 2 2 2 1 2
Let X0 = e, 02 = (604 200 — 5, XD = 2 41— ol — o),

2 2 1 2 1) 2) 2 2), (1 2 1 2) 1 2
S G [ R e R R (O R B R )

and define

(1 " (2
AN Y<1>

O-(1 O-(2
- ) Vi oo Yiia
T » Sl o T )

T » T, M -1 T )

1 1 (1 (1
Ut<60) = ( t(1)7Xt(2)7Xt(1)7Xt(2)7Y;f(1)7 ’ 75/;%5]\2717

Then we have

\/_ZW;% 00 \/_ZUt 90 +0p< ), T — 0.

Let F; denote the o-field generated by {(es ) e 5(113)7 e 55\?5, 5?2,, e 55\3)8) cs < t},
then {U(0y), Fi}:2, is a sequence of martingale difference. By the central limit theorem of
martingale sequences in |Hall & Heyde| (2014]), \/LT Zthg U,(6y) converges in distribution to

a multivariate normal distribution with 0 means and covariance matrix 33 satisfying

T

1 e

f E E{Ut(go)Ut(Oo) ’th 1} _> 23 d—f (023)4M><4M7 (524)
t=3
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ie.,
1« 1«
d
— W3t(00) = — Ut(00> +o (1) — N(O, 23), T — oo.
By the assumption that {(eg ) ef? >,a§2, e gﬁ)t,ggg, e ,eg\?t)T}f:l is a sequence of inde-

pendent random vectors with finite variance, it is straightforward to verify that

1 1 1 2 2 1 1 2
o = B(ef), (etV)? / fuo(8)ds, 015 = E(efVe®)+(1-6) Efef” () =)},
1 _(2) (2) ) (1) (2) ”(()2) /‘(()2)
o ={E(e; e, ) + (L= ¢g ) Ele, (" — 7))} = @ 013,
1
022 = / le ﬂ((]l) S, 023 = 013/0 fpw(()l)(S) ds, 094 = / o1V
(2) )y, (2)\2 N(()Q)
o3 =E{e) + (1= ) —n )}, oz = m%sa
— %o
1) 2 2) E(e 1 2
= (B + 0" =07 + (067 PEm"” — 0P H( “;@»2 o 22) +2Ele” (") — )]
1 9 o2 ()2
+E(" - )> b= 200 B{e? + ) = gl - n? ) H () + 4
2 2 1 2
+66” Bler” (" — )]}
Similarly, for x = 1,2,..., M — 1, we have
O1,4z+1 = E{e(l)(e & Bac 077t )} 01,4043 = E{ei”(ef,i - 53(5377152))},
O14z+2 = 024z+1 = 01 4x+1/ o1, H(l)( )d S, Oldat+4 = 024243 = 01 4x+3/ o1, u(l)( )d )
2
02,4242 = 01 4x+1/ f (1) 0240+4 = 01 4"”3/ Pl
2 2 1 2 1 1 1

o3am1 = E{lef? + (1= 67 ) (" = ni(el) = BLan")}, 054012 = 034x+1/ POIC
031013 = B{lef + (1= 67) i = i) = BN}, 03004 = 03045 / o (s) ds,



2
M()

O4 4041 = PR T} 03,4241,
0

s

Mo
1 — o) Jo TPt

And for z,y =1,2,...,

(2)
. M
O4,40+2 = 03 4z+1

M — 1, we have

1
Taorragrn = B{(el) = Blan) () — plint
1 1 1 2 2
Tariragrs = E{() = Bn) () — 850

O4g42,4y+2 = E{(

o =0
4x+2,4y+3 4x+1,4y+3 / prod

= E{(e¥) = 820 (e

O4243,4y+3

O4x+4,4y+4 — O4243,4y+3 / f
0

Furthermore, note that

0 .
%W?)t(OO) dlag (Ag(l))a AE(Q))a Ag)7 A
where fort=1,2 and x =1,2,..., M — 1,
(1)
A _ 1 Zy
0= A,
T T
and
Ag = - 1

w (s)ds,

2 2
2 — Bl
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2
M()

044243 = PEENC)) 03,4243,
0

(2)
(b(Q)

[ s

044044 = U3,4x+3 1,1

)} Odz+1,4y+2 = Odg+1,4y+1 p1,uél>( )d,
)} O4z41,4y+4 = Odx+1,4y+3 (1)( )d

7

[
/

P15k
1 1) (1)
! S - S [ 12 0
O4g42,4y+4 = U4m+1,4y+3/ fpz1 M(()1)< )

1
N} Cersaprs = U4x+3,4y+3/ f oy ui(8) ds,
0

,pél)( s)ds.
@A, 4D )
1 HM=1)7 UM =1) )y vp 1y xa(m—1)
Y 1 Z(i)
, Ay = — (i) OPIO )
Z,~ Zy 2y
T T
1 2
fo )1 - Zt( )1
1 2
(zM — 2z, - z2)



AW = AW = ...

It follows from (5.12)), (5.19) and (5.23|) that as T" — oo

T (2) (2) (2)\2
1 2 v Ee )

Z Zt(—)Q -z ) B (—2 (2)‘)2 + = (tz)
1 — ¢y 1— (o9 )?

This implies that

1 0
= Z{aewgt(eo)} 2Ty a8 T — oo,
t=

where

1 2
7AEM)_DA( )

Ty = diag (Af, AP, APV, AP, . o

)4(M—1)><4(M—1)

1 2 2
:AMJIAPZ.“:AMIZ_
fo . #(1>

(Q)E{et ( (1)

125

— N},

(5.25)

1 fol p1 ”(1)(8) ds
5) ds fo f2 W (s)ds



and

@
1 Mo
A2 — _ 1—{?
0o — (2) (2) (2) p(e(2)y2 9 2 1 )
S Gl im0 Bl )

Lemma 5.4. Suppose the conditions of Theorem[5.4] hold, then

T T
1 1 0
—T E W4t(00> i N(O, 24) and T :E - 8—0W4t<00> £> F4, as T — o0,

where 34 and T'y are defined in and respectively, and

y® R o v® ~ . 3
1 1 2) 112 1 1 2) Ti1 1 1 2
W4t(00) = (Y;ffl)v }/;552)7 Y;&El)v T’ Y;El)’ Y;tfl)? Y;ffl)> T e ’Y;:EZ\/?/—D th]\/?[—lv th]\/)[—l’
Proof. In this case, we have
(1) 1) 1)
E(kt(l)) _ o E(k:t(l))z = ( Ho )2 i Ele”)?
) 1 Do
1—op) L=y 1 (&)
and 0 _
ki — k
w £> prj%)Q)(S) for s € [O, 1]
with f #(2)(3) defined in (5.13)). This implies that
Mo
k(2) k‘(l) k(l) . k:(Q)
[Ts] [Ts] (T's] [Ts] p
T T 7 — _fpz,u(()2>(s) for s € [0, 1].
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T)'
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Note that
[ V,9(85) = e + 7Y — 60D,
Y5 (80) = (e + " %ntm%%+¢%>
Y, $(00) = e + " —5? ¢o Yy —n2),
Y9(00) = {e? + ni = 0P — 6P i — 0?3k, — k2 + 0t = n?),
}@wwzgiﬁﬁ@%z:Lszlz“wM—L
| V(00) = () = 8O (B + 0, i = 1,20 2w =1,2,.. M — 1.

1 1 1)y (1 2 2
Let Xt(,l) = €§ ) +(1— Qb( ))nt( )7 Xt(l) = el(f )7

1 1 1 1 1 1 1
X8 = (e + M)k, + ) — o0 (kD + 0,

k(l) @ CC)
2 2 1 2 1 9 = 2
Xf,2)=(€§)+m()—nf))%—(ﬁf)— i))%,
and define
A (2 A
) Yt,(1) X Yt

2)
1 1 1 1 2 1 1 > M—
U (90) ( t(l)aXt(2)>Xt(1)vXt(2)7 t(1)>Y;t(1)>Y;f(1 ) T ) ’ 73/;(]\} 1’Yt(]\/)[ % Y(]\/)[ T ) .

Then we have

\/_ZW4t 00 \/_ZUt 00 +0p<) T — oo.

Let F; denote the o-field generated by {(eg1 el 8&13, e ,55\25, 8&2, e ,65\?8)7 i s < t},
then {U(0y), F:}2, is a sequence of martingale difference. By the central limit theorem of
martingale sequences in |Hall & Heyde| (2014]), % Zthg U,(6y) converges in distribution to

a multivariate normal distribution with 0 means and covariance matrix 3, satisfying

T
1 e
T E E{Ut(OO)Ut(OO)TLF.t—I} 24 d—f <01])4M><4M7 (526)
t=3
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ie.,

Z W11 (60) = \/_ Z U.(60) + 0,(1) 5 N(0,%4), n — oo.

By the assumption that {(eg1 el >,a§2, e gg\l}t,ggg, e ,eg\?t)T}f:l is a sequence of inde-

pendent random vectors with finite variance, it is straightforward to verify that

011 = E{e(l) (1 - (()1))7%(1)}27 O12 = L(I)Uu,

o1 = Ble) o) + (1= ¢ ) B(e”n"), o= ous / Lo (5) s,

s =B 4y +<¢<> PO e )+ E<§j23j +28(e"n") + B}

1 1), (1 ¢< ) E(e(V)2 1
~20" E{n{" (ef” + i) (L2 ¢m> At o0 Ele 0},
(1) (1) 1
Ko o /
023 = —— 7013, 024 =013 77 f <>( )d )
1 — ¢(()1) 1— ¢(()1) o P
033 = E<€§2))27 034 = et / pg,ugf) Sy, 044 = / fpwéz)

Similarly, for x = 1,2,..., M — 1, we have

o1 anr = B{e+(1=¢{" ) mP e = 80N, o1 amys = E{le)+(1=¢{")n1(€2)—8C0n03,

i
Oldz+2 = 024z+1 = 1 _ ¢(1) Oldz+1, Oldz4+4 = —01 4:c+3/
0

® (s)ds,

P2,Hq

1 1 VB! 1 1) (1
ranin = B{(ef” + ) (el = Blont ) H(Lom)? + uﬂLeﬁé)E(eE)nE))}

¢<1) 62
QB ) - B H () + 2 + 2B n) + ")),
) oy
02,4243 = 1_—¢(()1)01,4x+37 024a04+4 = —01,4x+31_—¢(()1)/0 fpwé )( )d )

(1)
34001 = Efe (e(xl, - S()mt(l))}a U3,4:c+2:1L¢(1)0374x+17
— %o
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2), (2 (2) (2)
03 4x+3 = E{GE )(Gx,t) 5 z,0 77 )} 03 4z+4 = —034z+3/ po, “<2) d S,

= =0 s)ds
O4,4204+1 — 03 4x+1/ po, uff) 04,4243 34x+3/ pz,uf) >( ) )
O44z+2 = 03,4x+1 / p2. il d87 O4404+4 — —03 4x+3/ f

? 7”‘0

And for z,y =1,2,..., M — 1, we have

(1)

1 (1 IINE! H
Oreriaprr = B{(e0) — BLom ) (ehd = Brom)}, Ganiragin = ) Oty
— ®o
2 2 2
Canrages = B{(eL) — BEmER = BEM) Y, Curitapis = —Ouri1apes / fpp i (5) ds,
(1) (1)y2
Ho 2 E(e;”) (12
Oszt24y+2 = Otzi1,ay+11( )"+ 1 +E(n, )},
L-gy"  1—(g")
&
O4z4-2,4y+3 = m04x+1,4y+37 O4z42,4y+4 — —U4a:+1,4y+3 (1) / po.
— P
2
O4a+3,4y+3 = {( Bzont )( 5yo77§ ))} Oda+3,4y+4 = —U4ac+34y+3/ P2, #<>(3) ds,
O4z+4,4y+4 = O4a+3 4y+3/ p2’u(<)2>( s) ds.

Furthermore, note that

d : 1) 4@ 41 4@ (1) )

8—9W4t<90) diag <At0 A An A 7At(M—1)7At(M—1)>4(M_1)X4(M 3
where
(1) 1)
e K B E et A A
’ UM~ 1 1) (1
1 Z(Q)
(2 (2) t
Ay = = At(M—l) - ’
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and
1 7 1 7 2
t( )1 t(—)l

1 2 1 2 1 2
Lz, - 722 Lz® - 728z, - Z2)

It follows from (5.18)), (5.19) and (5.20)) that as T — oo

2
Ago) =

1

T (1)
I T
0

t=3
1 2z? 1 &E?

T 1 1 T 1 1 T 1 1
Ltz 7z, =%zt3k“k( + 25T kM 4 0,(1)

t: p—
() M EE! 1 (1
By (Hoy? +M+¢o E(eMniM)y,

1-g5") (6572
T 2 2 T 2
12025 1RO no [
T2T T T4T T pof?
T 1 2 T (1) 2
lZZt(—)l_Zt(—)lziZk 1—k()+0 /
T — T T — T it P2 %
T 1 1) 2
1225)1 Z()Zt(Q t()
T T Ton u82)

This implies that
—Z{ W4t00}—>I‘4asT—>oo

where
T, = diag (A, A7, AP, AP, G 4G ) 5.27
4 1ag 0 0 1 1 M-13M-1 (M 1) xA(M 1) ( )
with
;
A(()l): :Ag\?l:_ ) ) (>17<¢§1)
- ! ! sV B2 1 D (1 ’
o () if(dfélt))z) + o5 Eey ')
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AR 1 IN f i (8) ds
Jo £y s J T2 o (s)ds
and
AP = oA = 1 - Jo f oy u2(8) ds

_rt 1 o
fo pr,Hff)(s) ds fo fp%#éz)(S) ds
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PART 6

CONCLUSION

In this dissertation, I review the classical |Lee & Carter| (1992) paper and some recent
literature with a mortality model adapted from the classic paper. Once again, how mortality
rates are modeled has numerous implications in annuity and pension fund industry practices.
Practitioners can rely on parametric mortality models for pricing, longevity risk management,
and compliance purposes. Besides, by clarifying some details of Lee-Carter alike mortality
models, we are also contributing to the theoretical literature.

Let me summarize some major results of this dissertation now. In Part [2| our proposed
model reflects our understanding that imposing a constraint regarding mortality index k;
yields unreasonable implications. By replacing the constraint regarding k; with a new con-
straint regarding model parameters «,, we are able to derive our estimation method using
Z, to approach k;, which is contingent on Zi\/lzl a, = 0 and some very general regularity
conditions for the error sequence in the model. Based on the regularity conditions in Part 2]
we have different asymptotic results under different cases regarding AR(1) time series model
parameters (can be inconsistent estimator under some cases). We present a unit root test for
mortality data, given that the presence of unit root decides asymptotic results. According
to our analysis of U.S. mortality rate data, the proposed test rejects the unit root hypothesis
for male and combined mortality rates but fails to reject the unit root hypothesis for the
male mortality rates. Hence, this calls for unified methods for estimating parameters and
forecasting mortality rates regardless of whether the mortality index is stationary or near
unit root or unit root.

Part [3] of this dissertation provides an answer to this question. In Part [3, we point out
that inconsistency of estimators proposed in Part |2 is due to the correlation of two terms

in the score equations which are used to derive them. As a result, one way to mitigate this
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issue is to modify the score equations by taking an additional lag. The new score equations
eventually enable us to derive new bias-corrected estimators consistent with a normal limit
regardless of whether the mortality index follows a stationary or unit root AR(1) time series
model with a nonzero intercept. The accompanying simulation study confirmed this by
showing bias-corrected estimators display more negligible bias and smaller mean squared
error.

In Part |4] of this dissertation, I study whether an AR(1) model, as appeared in the
dissertation, is adequate for characterizing mortality index in the available mortality rate
dataset among the AR(p) family of models. This question is not as trivial as model selection
for a time series because the mortality index is unobservable. In this Part, I focus on an
AR(2) process and develop hypothesis tests whether the AR(2) parameter ¢, = 0 is based
on a consistent estimator. When applied to U.S. mortality data, results of tests show that
AR(1) model is adequate for female, male, and combined datasets. Meanwhile, the stationary
AR(1) model is sound for female and combined mortality rates; the unit root AR(1) model
is suitable for male mortality rates.

Last but not least, I apply the bias-corrected inference method to a bivariate setting in
Part |l Since most life insurers and annuity underwriters have policyholders from multiple
populations, they need to understand the risk of a portfolio of insurance policies targeting
multiple populations. Our model in Part [5| can be used for such risk modeling. To develop
a two population model, I apply the bias-corrected inference method developed in (3| to the
mortality index {k{"”} and the difference of indices {k{") — k*}. Some major asymptotic
results follow naturally from results in Part [3]

Implications of our model on longevity hedging can be argued as follows: in [Li et al.
(2018)), hedging strategies are presented that use derivatives to hedge against time-¢ values
of longevity deltas of (unpaid) annuity liability, which is a function of individual mortality
model parameters. Although I use a modified Lee-Carter mortality model in this disserta-
tion, the corresponding time-t value of longevity deltas can be derived similarly. My future

research would be to develop delta hedging strategies based on the proposed models in this
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dissertation.

This dissertation makes contributions to several strands of literature. First, I continue
the conversation regarding inference pitfalls of some recent theoretical literature related to
the Lee-Carter mortality model. In my dissertation, I focus on proposing a tweaked model
with modified parameter constraints and corresponding statistical inference. I was able to
show asymptotic results for proposed estimators. Some of the results in this dissertation are
based on Leng & Peng| (2016]) and [Leng & Peng (2017).

Second, contributions are made to time series literature because this dissertation pro-
vides an application of time series models and a-mixing process. All asymptotic results and
the unit root test included in this dissertation are contingent on regularity conditions as
mentioned in the dissertation. These regularity conditions should be very general and can
accommodate most real mortality datasets as long as the unexplained error terms are not
too big.

Last but not least, we are making contributions to actuarial industry practice by propos-
ing this alternative mortality model. In addition to asymptotic results which imply that the
estimators converge to actual model parameters when the number of observations (in the
mortality dataset, the number of observed years, T)) is big enough, our real data analysis
combined with simulation study have shown that even for reasonably small datasets (e.g.,
the U.S. mortality dataset), our bias-corrected inference can produce estimates that ap-
proach actual model parameters very well. As we have mentioned before, a suitable model
parameter estimator can be very helpful to industry practices like longevity hedging.

One shortcoming of methodology in this dissertation is that the number of model pa-
rameters is relatively big (twice the number of age groups plus the number of AR time series
model parameters), so this might cause problems for developing a practical delta hedging
strategy. Some other literature uses models with very few model parameters, usually only

two. This is an issue that is worth further investigation.
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R CODE
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In this part I attach all R code for data analysis and simulation study in this dissertation.

and

# dplyr, stringr, demography, CADFtest, ggplot2, latex2exp, snowfall, rlecuyer

For single population (univariate) datasets (in Parts

# required R packages:

## DATA IMPORT

# USA data, 5 x 1, male, female and total data

# http://www.mortality.org/cgi-bin/hmd/country.php?cntr=USA&level=1

# load raw data files

# to download data other than 1x1, do not use the ’demography’ package functions

DA_lifetbl_both <- read.table(’bltper_le.txt’, skip = 2, header TRUE,
stringsAsFactors = FALSE)

DA_lifetbl_male <- read.table(’mltper_bxl.txt’, skip = 2, header = TRUE,
stringsAsFactors = FALSE)

DA_lifetbl_female <- read.table(’fltper_5x1.txt’, skip = 2, header = TRUE,

stringsAsFactors = FALSE)

## DATA CLEANUP

# replace 110+ with 110, change data format to numeric
library(dplyr)

library(stringr)

DA_lifetbl_both <- mutate(DA_lifetbl_both,

Age0 = as.numeric(str_extract(DA_lifetbl_both$Age, ’[0-9]1+°)))
DA_lifetbl_male <- mutate(DA_lifetbl_male,

AgeO = as.numeric(str_extract(DA_lifetbl_male$Age, ’[0-9]+°)))
DA_lifetbl_female <- mutate(DA_lifetbl_female,

AgeO = as.numeric(str_extract(DA_lifetbl_female$Age, ’[0-9]+°)))



# focus on ages of 25 - 74
DA_lifetbl_both <-

DA_lifetbl_both[DA_lifetbl_both$AgeO >= 25 & DA_lifetbl_both$Age0 < 75,]
DA_lifetbl_male <-

DA_lifetbl_male[DA_lifetbl_male$AgeO >= 25 & DA_lifetbl_male$Age0 < 75,]

DA_lifetbl_female <-

DA_lifetbl_female[DA_lifetbl_female$AgeO >= 25 & DA_lifetbl_female$AgeO < 75,]

# DA_n_agegroups: number of age groups (M in paper)

DA_n_agegroups <- length(unique(DA_lifetbl_both$Age0)) # DA_n_agegroups = 10

# DA_n_periods: number of years observed (T in paper)

DA_n_periods <- length(unique(DA_lifetbl_both$Year)) # DA_n_periods = 83

## IMPLEMENTATION OF THE ORITINAL LEE-CARTER MODEL

LC_func <- function(LC_n_agegroups, LC_n_periods,

LC_lifetbl_mx, LC_agelist, LC_yearlist) {

library (demography)

# wrap up available data for input into ’lca’ function

LC_wrapped <- demogdata(matrix(data = LC_lifetbl_mx, nrow = LC_n_agegroups,
ncol = LC_n_periods, byrow = FALSE),
pop = matrix(0, LC_n_agegroups, LC_n_periods),
ages = LC_agelist, years = LC_yearlist,

type = ’mortality’, label = ’USA_5x1’, name = ’lee-carter’, lambda = 0)

# apply ’lca’ function in ’demography’ package

LC_LCA.fitting <- lca(LC_wrapped, adjust = ’none’)

# ax
LC_ax <- LC_LCA.fitting$ax

names (LC_ax) <- NULL
# bx
LC_bx <- LC_LCA.fitting$bx

names (LC_bx) <- NULL

# kt

LC_kt <- array(LC_LCA.fitting$kt)

# below: fitting k_t with (5) in Draft #4
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LC_kt1l <- LC_kt[-1]
LC_ktO <- LC_kt[-LC_n_periods]

LC_kt.fitting <- 1m(LC_ktl ~ LC_ktO)

# report format: (estimate, standard error)
LC_mu <- LC_kt.fitting$coefficients[1]

names (LC_mu) <- NULL

LC_mu_se <- coef (summary(LC_kt.fitting))[, ’Std. Error’][1]

names (LC_mu_se) <- NULL

LC_phi <- LC_kt.fitting$coefficients[2]

names (LC_phi) <- NULL

LC_phi_se <- coef (summary(LC_kt.fitting))[, ’Std. Error’][2]

names (LC_phi_se) <- NULL

# Augmented Dickey-Fuller test for unit root
library (CADFtest)
LC_kt.test <- CADFtest(LC_kt ~ 1, type = ’drift’, lags = 1)

LC_kt.test.p.value <- LC_kt.test$p.value

return(list(LC_ax, LC_bx, LC_kt,

LC_mu, LC_mu_se, LC_phi, LC_phi_se, LC_kt.test.p.value))

DA_LC_both <- LC_func(LC_n_agegroups = DA_n_agegroups,
LC_n_periods = DA_n_periods,
LC_lifetbl_mx = DA_lifetbl_both$mx,
LC_agelist = unique(DA_lifetbl_both$Agel),
LC_yearlist = unique(DA_lifetbl_both$Year))
DA_LC_male <- LC_func(LC_n_agegroups = DA_n_agegroups,
LC_n_periods = DA_n_periods,
LC_lifetbl_mx = DA_lifetbl_male$mx,
LC_agelist = unique(DA_lifetbl_male$Age0),
LC_yearlist = unique(DA_lifetbl_male$Year))
DA_LC_female <- LC_func(LC_n_agegroups = DA_n_agegroups,
LC_n_periods = DA_n_periods,
LC_lifetbl_mx = DA_lifetbl_female$mx,
LC_agelist = unique(DA_lifetbl_female$Age0),

LC_yearlist = unique(DA_lifetbl_female$Year))
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## IMPLEMENTATION OF THE ORIGINAL AR(1) INFERENCE METHOD

OM_func <- function(OM_n_agegroups, OM_n_periods,

OM_lifetbl_mx, OM_test.L) {

# generate table of central mortality rate
OM_logM <- matrix(data = OM_lifetbl_mx, nrow = OM_n_agegroups,

ncol = OM_n_periods, byrow = FALSE)

# dimension of mortality rate data:
# number of years observed (T, OM_n_periods) X
# number of age groups (M, OM_n_agegroups)

OM_logM <- t(log(OM_logM))

# compute \hat{Z}_t
0M_Zhat_t <- apply(OM_logM, 1, sum)
OM_Zhat_t1 <- OM_Zhat_t[-1]

OM_Zhat_t0 <- OM_Zhat_t[-OM_n_periods]

O0M_Zhat_t.fitting <- 1m(OM_Zhat_t1 ~ OM_Zhat_t0)

# report format: (estimate, standard error)
OM_mu <- OM_Zhat_t.fitting$coefficients[1]

names (OM_mu) <- NULL

OM_mu_se <- coef (summary(OM_Zhat_t.fitting))[, ’Std. Error’][1]

names (OM_mu_se) <- NULL

OM_phi <- OM_Zhat_t.fitting$coefficients[2]

names (OM_phi) <- NULL

OM_phi_se <- coef (summary(OM_Zhat_t.fitting)) [, ’Std. Error’][2]

names (OM_phi_se) <- NULL

# define function: OM_estimate.alphabeta.x
# estimate an element of \alpha_x and \beta_x
OM_estimate.alphabeta.x <- function(argl, arg2) {
# argl: a column of OM_logM
# arg2: array, OM_Zhat_t
argsize <- length(argl) # dimension of function input parameter
# the two input arguments are assumed to have the same length, or

# error will be reported
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# compute estimates
a.x <- (sum(argl) * sum(arg2 ~ 2) -

sum(argl * arg2) * sum(arg2)) /

(argsize * sum(arg2 ~ 2) - (sum(arg2)) ~ 2)
b.x <- (argsize * sum(argl * arg2) -

sum(argl) * sum(arg2)) /

(argsize * sum(arg2 "~ 2) - (sum(arg2)) ~ 2)

# return a pair of estimates of \alpha_x and \beta_x
return(c(a.x, b.x))

} # end function OM_estimate.alphabeta.x

# \alpha_x and \beta_x

OM_axbx <- apply(OM_logM, 2, OM_estimate.alphabeta.x, OM_Zhat_t)

# adjust \mu values for the test

OM_mu.adjusted <- OM_mu - OM_Zhat_t[1] + OM_phi * OM_Zhat_t[1]

# compute \hat{e}_t (t =2 ... T)
OM_ehat_t <- OM_Zhat_t1 - OM_mu - OM_phi * OM_Zhat_tO
OM_ehat_t1 <- OM_ehat_t[-1]

OM_ehat_tO <- OM_ehat_t[-(OM_n_periods - 1)]

# compute \hat{U}_i (i = 2 ... T-L+1)
# OM_test.L: the value of L for the Chi-square test

OM_Uhat_i <- apply(embed(OM_ehat_t, OM_test.L), 1, sum) / OM_test.L

# \hat{U}_i (i = 1 ... T-L+1)

OM_Uhat_i <- c(sum(OM_ehat_t[2:0M_test.L]) / OM_test.L, OM_Uhat_i)

# compute \hat{\sigma}_e~2
OM_sigma.hat_e.sq <- OM_test.L * ((sum(OM_Uhat_i ~ 2)) /
(OM_n_periods - OM_test.L + 1) -

((sum(OM_Uhat_i)) / (OM_n_periods - OM_test.L + 1)) ~ 2)

# alternative \hat{\sigma}_e~2
OM_sigma.hat_e.sq_alt <- sum(OM_ehat_t ~ 2) / OM_n_periods +

2 / OM_n_periods * sum(OM_ehat_t1 * OM_ehat_t0)

# unit-root test: Chi-square test statistic and p-value
OM_unitrootteststatistic <- OM_mu.adjusted =~ 2 * OM_n_periods ~ 3 *

(OM_phi - 1) ~ 2 / (12 * OM_sigma.hat_e.sq)
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OM_unitrootteststatistic_alt <- OM_mu.adjusted ~ 2 * OM_n_periods ~ 3 *

(OM_phi - 1) =~ 2 / (12 * OM_sigma.hat_e.sq_alt)

OM_unitroottest_p.value <- pchisq(OM_unitrootteststatistic, df = 1,

lower.tail = FALSE)

OM_unitroottest_alt_p.value <- pchisq(OM_unitrootteststatistic_alt,

df = 1, lower.tail = FALSE)

return(list(OM_axbx[1,], OM_axbx[2,],
OM_mu, OM_mu_se, OM_phi, OM_phi_se,
OM_sigma.hat_e.sq, OM_sigma.hat_e.sq_alt,
OM_unitrootteststatistic, OM_unitrootteststatistic_alt,

OM_unitroottest_p.value, OM_unitroottest_alt_p.value))

# choose the value of L (L = 5, 10, 15) for the Chi-square test
# (during implementation of our method)

DA_OM_test.L <- floor(0.5 * sqrt(DA_n_periods))

DA_OM_both <- OM_func(OM_n_agegroups = DA_n_agegroups,
OM_n_periods = DA_n_periods,
OM_lifetbl_mx = DA_lifetbl_both$mx,
OM_test.L = DA_OM_test.L)

DA_OM_male <- OM_func(OM_n_agegroups = DA_n_agegroups,
OM_n_periods = DA_n_periods,
OM_lifetbl_mx = DA_lifetbl_male$mx,
OM_test.L = DA_OM_test.L)

DA_OM_female <- OM_func(OM_n_agegroups = DA_n_agegroups,
OM_n_periods = DA_n_periods,
OM_lifetbl_mx = DA_lifetbl_female$mx,

OM_test.L = DA_OM_test.L)
## IMPLEMENTATION OF THE BIAS CORRECTED AR(1) INFERENCE METHOD
BC_func <- function(BC_n_agegroups, BC_n_periods, BC_lifetbl_mx) {
# generate table of central mortality rate
BC_logM <- matrix(data = BC_lifetbl_mx, nrow = BC_n_agegroups,

ncol = BC_n_periods, byrow = FALSE)

# dimension of mortality rate data:
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# number of years observed (T, BC_n_periods) X
# number of age groups (M, BC_n_agegroups)

BC_logM <- t(log(BC_logM))

# compute \hat{Z}_t

BC_Zhat_t <- apply(BC_logM, 1, sum)

# compute sums of (cross products of) \hat{Z}_t
BC_Zhat_t_no.first.1 <- BC_Zhat_t[-1]

BC_Zhat_t_no.first.2 <- BC_Zhat_t[-c(1, 2)]

BC_Zhat_t_no.last.l <- BC_Zhat_t[-BC_n_periods]

BC_Zhat_t_no.last.2 <- BC_Zhat_t[-c(BC_n_periods - 1, BC_n_periods)]

BC_Zhat_t_no.first.1.last.1 <- BC_Zhat_t[-c(1, BC_n_periods)]

# sum of \hat{Z}_t

BC_Zhat_t_sum_t <- sum(BC_Zhat_t_no.first.2)

# sum of \hat{Z}_{t-1}

BC_Zhat_t_sum_t.1 <- sum(BC_Zhat_t_no.first.1l.last.1)

# sum of \hat{Z}_{t-2}

BC_Zhat_t_sum_t.2 <- sum(BC_Zhat_t_no.last.2)

# sum of \hat{Z}_t\hat{Z}_{t-2}

BC_Zhat_t_sum_t_t.2 <- sum(BC_Zhat_t_no.first.2 * BC_Zhat_t_no.last.2)

# sum of \hat{Z}_{t-1}\hat{Z}_{t-2}
BC_Zhat_t_sum_t.1_t.2 <-

sum(BC_Zhat_t_no.last.2 * BC_Zhat_t_no.first.l.last.1)

# estimator of \mu

BC_muhat <- (BC_Zhat_t_sum_t * BC_Zhat_t_sum_t.1_t.2 -
BC_Zhat_t_sum_t.1 * BC_Zhat_t_sum_t_t.2) /
((BC_n_periods - 2) * BC_Zhat_t_sum_t.1_t.2 -

BC_Zhat_t_sum_t.1 * BC_Zhat_t_sum_t.2)

# estimator of \phi

BC_phihat <- ((BC_n_periods - 2) * BC_Zhat_t_sum_t_t.2 -
BC_Zhat_t_sum_t * BC_Zhat_t_sum_t.2) /
((BC_n_periods - 2) * BC_Zhat_t_sum_t.1_t.2 -

BC_Zhat_t_sum_t.1 * BC_Zhat_t_sum_t.2)

# define function: BC_estimate.alphabeta.x
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# estimate an element of \alpha_x and \beta_x
BC_estimate.alphabeta.x <- function(argl, arg2) {
# argl: a column of BC_logM
# arg2: array, BC_Zhat_t
argsize <- length(argl) # dimension of function input parameter
# the two input arguments are assumed to have the same length, or

# error will be reported

argl_no.first.1 <- argl[-1]
argl_no.first.2 <- argl[-c(1, 2)]
argl_no.last.l <- argl[-argsize]
arg2_no.first.1 <- arg2[-1]
arg2_no.first.2 <- arg2[-c(1, 2)]
arg2_no.last.l <- arg2[-argsize]

arg2_no.first.l.last.1 <- arg2[-c(1, argsize)]

# compute estimates

a.x <- (sum(argi_no.first.2) * sum(arg2_no.first.2 * arg2_no.first.l.last.1) -
sum(arg2_no.first.2) * sum(arg2_no.first.l.last.l * argl_no.first.2)) /
((argsize - 2) * sum(arg2_no.first.2 * arg2_no.first.l.last.1l) -
sum(arg2_no.first.2) * sum(arg2_no.first.1l.last.1))

b.x <- ((argsize - 2) * sum(arg2_no.first.l.last.l * argl_no.first.2) -
sum(argl_no.first.2) * sum(arg2_no.first.l.last.1)) /
((argsize - 2) * sum(arg2_no.first.2 * arg2 no.first.l.last.1) -

sum(arg2_no.first.2) * sum(arg2_no.first.l.last.1))

# return a pair of estimates of \alpha_x and \beta_x
return(c(a.x, b.x))

} # end function BC_estimate.alphabeta.x

# \alpha_x and \beta_x

BC_axbx <- apply(BC_logM, 2, BC_estimate.alphabeta.x, BC_Zhat_t)

return(list(BC_axbx[1, ], BC_axbx[2, ], BC_muhat, BC_phihat))

DA_BC_both <- BC_func(BC_n_agegroups = DA_n_agegroups,
BC_n_periods = DA_n_periods,
BC_lifetbl_mx = DA_lifetbl_female$mx)

DA_BC_male <- BC_func(BC_n_agegroups = DA_n_agegroups,
BC_n_periods = DA_n_periods,

BC_lifetbl_mx = DA_lifetbl_male$mx)



143

DA_BC_female <- BC_func(BC_n_agegroups = DA_n_agegroups,
BC_n_periods = DA_n_periods,

BC_lifetbl_mx = DA_lifetbl_female$mx)

## IMPLEMENTATION OF THE AR(2) INFERENCE METHOD

A2_func <- function(A2_n_agegroups, A2_n_periods, A2_lifetbl_mx) {

# generate table of central mortality rate
A2_logM <- matrix(data = A2_lifetbl_mx, nrow = A2_n_agegroups,

ncol = A2_n_periods, byrow = FALSE)

# dimension of mortality rate data:
# number of years observed (T, A2_n_periods) X
# number of age groups (M, A2_n_agegroups)

A2_logM <- t(log(A2_logM))

# compute \hat{Z}_t

A2_Zhat_t <- apply(A2_logM, 1, sum)

A2_Zhat_t_no.first.1 <- A2_Zhat_t[-1]

A2_Zhat_t_no.last.1 <- A2_Zhat_t[-A2_n_periods]

A2_Zhat_t_no.first.2 <- A2_Zhat_t[-c(1, 2)]
A2_Zhat_t_no.first.l.last.1l <- A2_Zhat_t[-c(1, A2_n_periods)]
A2_Zhat_t_no.last.2 <- A2_Zhat_t[-c(A2_n_periods - 1, A2_n_periods)]
A2_Zhat_t_no.first.3 <- A2_Zhat_t[-c(1, 2, 3)]
A2_Zhat_t_no.first.2.last.1 <- A2_Zhat_t[-c(1, 2, A2_n_periods)]
A2_Zhat_t_no.first.l.last.2 <-

A2_Zhat_t[-c(1, A2_n_periods - 1, A2_n_periods)]
A2_Zhat_t_no.last.3 <-

A2_Zhat_t[-c(A2_n_periods - 2, A2_n_periods - 1, A2_n_periods)]
A2_Zhat_t_no.first.4 <- A2_Zhat_t[-c(1, 2, 3, 4)]
A2_Zhat_t_no.first.3.last.l <- A2_Zhat_t[-c(1, 2, 3, A2_n_periods)]
A2_Zhat_t_no.first.2.last.2 <-

A2_Zhat_t[-c(1, 2, A2_n_periods - 1, A2_n_periods)]
A2_Zhat_t_no.first.1l.last.3 <-

A2_Zhat_t[-c(1, A2_n_periods - 2, A2_n_periods - 1, A2_n_periods)]
A2_Zhat_t_no.last.4 <-

A2_Zhat_t[-c(A2_n_periods - 3, A2_n_periods - 2,

A2_n_periods - 1, A2_n_periods)]

# AR(2) TIME SERIES: WHEN \phi_2 = 0



144

# the 3 x 3 equation system for \mu, \tilde{\phi}_1 and \phi_2
A2_E1_all <- A2_n_periods - 3
A2_E1_al2 <- sum(A2_Zhat_t_no.first.2.last.1)
A2_E1_al3 <- A2_Zhat_t[2] - A2_Zhat_t[A2_n_periods - 1]
A2_E1_bl <- sum(A2_Zhat_t_no.first.3)
A2_E1_a21 <- sum(A2_Zhat_t_no.first.1.last.2)
A2_E1_a22 <- sum(A2_Zhat_t_no.first.1.last.2 *
A2_Zhat_t_no.first.2.last.1)
A2_E1_a23 <- sum(A2_Zhat_t_no.first.l.last.2 ~ 2) - A2_E1_a22
A2_E1_b2 <- sum(A2_Zhat_t_no.first.3 * A2_Zhat_t_no.first.l.last.2)
A2_E1_a31 <- A2_Zhat_t[A2_n_periods - 2] - A2_Zhat_t[1]
A2_FE1_a32 <- A2_E1_a22 -
sum(A2_Zhat_t_no.first.2.last.1 * A2_Zhat_t_no.last.3)
A2_E1_a33 <- sum(A2_Zhat_t_no.first.l.last.2 ~ 2) -
sum(A2_Zhat_t_no.first.1l.last.2 * A2_Zhat_t_no.last.3) -
A2_E1_a32
A2_FE1_b3 <- A2_E1_b2 -

sum(A2_Zhat_t_no.first.3 * A2_Zhat_t_no.last.3)

# solving for \mu, \tilde{\phi}_1 and \phi_2
A2_E1_Amatrix <- matrix(
c(A2_E1_all, A2_E1_al2, A2_E1_al3, A2_E1_a21, A2_E1_a22,
A2_E1_a23, A2_E1_a31, A2_E1_a32, A2_E1_a33), 3, 3, byrow = TRUE)
A2_E1_Bvector <- c(A2_E1_bl, A2_E1_b2, A2_E1_Db3)

A2_E1_solvector <- solve(A2_E1_Amatrix) %*J, A2_E1_Bvector

A2_mu <- A2_E1_solvector[1]
A2_philtilde <- A2_E1_solvector[2]
A2_phi2 <- A2_E1_solvector[3]

A2_phil <- A2_philtilde - A2_phi2

# storage space for \alpha_x and \beta_x where x is age group

A2_axbx <- NULL

# the 2 x 2 equation system for \alpha_x and \beta_x where x is age group

for (i in 1:A2_n_agegroups) {

# central mortality rate of the specific age group

A2_logM_x <- A2_logM[, il

# compute various sums of log m(x,t) for the specific age group

A2_logM_x_no.first.3 <- A2_logM_x[-c(1, 2, 3)]



# the 2 x 2 equation system for \alpha_x and \beta_x for the specific age group
A2_E2x_all <- A2_n_periods - 3

A2_E2x_al2 <- sum(A2_Zhat_t_no.first.3)

A2_E2x_bl <- sum(A2_logM_x_no.first.3)

A2_E2x_a21 <- sum(A2_Zhat_t_no.first.2.last.1)

A2_E2x_a22 <- sum(A2_Zhat_t_no.first.3 * A2_Zhat_t_no.first.2.last.1)

A2_E2x_b2 <- sum(A2_Zhat_t_no.first.2.last.l * A2_logM_x_no.first.3)

# solving for \alpha_x and \beta_x for the specific age group
A2_E2x_Amatrix <- matrix(
c(A2_E2x_all, A2_E2x_al2, A2_E2x_a21, A2_E2x_a22),
2, 2, byrow = TRUE)
A2_E2x_Bvector <- c(A2_E2x_b1l, A2_E2x_b2)
A2_E2x_solvector <- solve(A2_E2x_Amatrix) %xJ, A2_E2x_Bvector

A2_axbx <- cbind(A2_axbx, A2_E2x_solvector)

} # end the 2 x 2 equation system for \alpha_x and \beta_x

# define \tilde{Y}_{t,x} and \hat{Y}_{t,x} matrices (BASED ON ESTIMATES)
# (number of years observed T - 3, A2_n_periods - 3, 4 ... T) X
# (number of age groups M - 1, A2_n_agegroups - 1, 1 ... M - 1)
A2_Ytilde_est.matrix <-

A2_logM[4:A2_n_periods, 1:(A2_n_agegroups - 1)] -

matrix(rep(1l, A2_n_periods - 3), ncol = 1) %x%

matrix(A2_axbx[1, 1:(A2_n_agegroups - 1)], nrow = 1) -
matrix(A2_Zhat_t_no.first.3, ncol = 1) %x*%
matrix(A2_axbx[2, 1:(A2_n_agegroups - 1)], nrow = 1)

A2_Yhat_est.matrix <-

diag(A2_Zhat_t_no.first.2.last.1) %*), A2_Ytilde_est.matrix

# define Y_{t,1}, Y_{t,2} and Y_{t,3} vectors (BASED ON ESTIMATES)
# (number of years observed T - 3, A2_n_periods - 3, 4 ... T)
A2_Yt1l_est.vector <- A2_Zhat_t_no.first.3 - A2_mu -

A2_philtilde * A2_Zhat_t_no.first.2.last.l +

A2_phi2 *

(A2_Zhat_t_no.first.2.last.l1 - A2_Zhat_t_no.first.1l.last.2)
A2_Yt2_est.vector <- A2_Ytl_est.vector * A2_Zhat_t_no.first.l.last.2
A2_Yt3_est.vector <- A2_Yt2_est.vector -

A2_Yt1l_est.vector * A2_Zhat_t_no.last.3

# define W_t and \tilde{W}_t matrices (BASED ON ESTIMATES)
# (number of years observed T - 3, A2_n_periods - 3, 4 ... T) X

# (2 x number of age groups M + 1, 2 x A2_n_agegroups + 1)
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A2_Wt_est.matrix <- cbind(A2_Yt1_est.vector,
A2_Yt2_est.vector / A2_n_periods, A2_Yt3_est.vector)
A2_Wt_tilde_est.matrix <- cbind(A2_Yt1_est.vector,

A2_Yt2_est.vector, A2_Yt3_est.vector)

for (i in 1:(A2_n_agegroups - 1)) {
A2_Wt_est.matrix <- cbind(A2_Wt_est.matrix,
A2_Ytilde_est.matrix[, il,
A2_Yhat_est.matrix[, il / A2_n_periods)
A2_Wt_tilde_est.matrix <- cbind(A2_Wt_tilde_est.matrix,

A2_Ytilde_est.matrix[, i], A2_Yhat_est.matrix[, i])

dimnames (A2_Wt_est.matrix) <- NULL

dimnames (A2_Wt_tilde_est.matrix) <- NULL

# estimate \Sigma and \tilde{\Sigma} matrices (BASED ON ESTIMATES)

# (2 x number of age groups M + 1, 2 x A2_n_agegroups + 1) X

# (2 x number of age groups M + 1, 2 x A2_n_agegroups + 1)

A2_Sigma_est.matrix <- matrix(0, nrow = 2 * A2_n_agegroups + 1,

ncol = 2 * A2_n_agegroups + 1)

A2_Sigma_tilde_est.matrix <- matrix(O0,

nrow = 2 * A2_n_agegroups + 1, ncol = 2 * A2_n_agegroups + 1)

for (j in 1:(A2_n_periods - 3)) {
A2_Sigma_est.matrix <- A2_Sigma_est.matrix +

matrix(A2_Wt_est.matrix[j, 1, ncol = 1) %x%

matrix(A2_Wt_est.matrix[j, 1, nrow = 1) / (A2_n_periods - 3)

A2_Sigma_tilde_est.matrix <- A2_Sigma_tilde_est.matrix +
matrix(A2_Wt_tilde_est.matrix[j, ], ncol = 1) %%
matrix(A2_Wt_tilde_est.matrix[j, ], nrow = 1) /
(A2_n_periods - 3)

¥
for (j in 2:(A2_n_periods - 3)) {

A2_Sigma_est.matrix <- A2_Sigma_est.matrix +
matrix(A2_Wt_est.matrix[j, ], ncol = 1) %x%
matrix(A2_Wt_est.matrix[j - 1, ], nrow = 1) /
(A2_n_periods - 4)

A2_Sigma_tilde_est.matrix <- A2_Sigma_tilde_est.matrix +
matrix (A2_Wt_tilde_est.matrix[j, ], ncol = 1) %%
matrix(A2_Wt_tilde_est.matrix[j - 1, ], nrow = 1) /

(A2_n_periods - 4)
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for (j in 1:(A2_n_periods - 4)) {

A2_Sigma_est.matrix <- A2_Sigma_est.matrix +
matrix(A2_Wt_est.matrix[j, ], ncol = 1) %x%
matrix(A2_Wt_est.matrix[j + 1, ], nrow = 1) /
(A2_n_periods - 4)

A2_Sigma_tilde_est.matrix <- A2_Sigma_tilde_est.matrix +
matrix(A2_Wt_tilde_est.matrix[j, ], ncol = 1) %x%
matrix(A2_Wt_tilde_est.matrix[j + 1, ], nrow = 1) /

(A2_n_periods - 4)

# diagonal matrix D_T
# (2 x number of age groups M + 1, 2 x A2_n_agegroups + 1) X
# (2 x number of age groups M + 1, 2 x A2_n_agegroups + 1)
A2_DT_diag <- c(sqrt(A2_n_periods), A2_n_periods ~ (3 / 2),

sqrt (A2_n_periods))
for (i in 1:(A2_n_agegroups - 1)) {

A2_DT_diag <-

c(A2_DT_diag, sqrt(A2_n_periods), A2_n_periods ~ (3 / 2))

}
A2_DT_matrix <- diag(A2_DT_diag)

# estimate \Gamma_1 and \tilde{\Gamma}_1 matrices (BASED ON ESTIMATES)
# (2 x number of age groups M + 1, 2 x A2_n_agegroups + 1) X
# (2 x number of age groups M + 1, 2 x A2_n_agegroups + 1)

A2_Gammal_est.matrix <- matrix(O,

nrow = 2 * A2_n_agegroups + 1, ncol = 2 * A2_n_agegroups + 1)

A2_Gammal_tilde_est.matrix <- matrix(O0,

nrow = 2 * A2_n_agegroups + 1, ncol = 2 * A2_n_agegroups + 1)

for (i in 4:A2_n_periods) { # sum of matrix differentiations

A2_Gammal_t <- matrix(O,

nrow = 2 * A2_n_agegroups + 1, ncol = 2 * A2_n_agegroups + 1)

A2_Gammal_tilde_t <- matrix(O,

nrow = 2 * A2_n_agegroups + 1, ncol = 2 * A2_n_agegroups + 1)
# matrix differentiation by blocks

# top left 3 X 3 block

A2_Gammal_t[1, 1] <- -1

A2_Gammal_t[1, 2] <- -A2_Zhat_t[i - 1]

A2_Gammal_t[1, 3] <- A2_Zhat_t[i - 1] - A2_Zhat_t[i - 2]

A2_Gammal_t[2, 1] <- -A2_Zhat_t[i - 2] / A2_n_periods
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A2_Gammal_t[2, 2] <- -A2_Zhat_t[i - 1] * A2_Zhat_t[i - 2] / A2_n_periods
A2_Gammal_t[2, 3] <- A2_Zhat_t[i - 2] *
(A2_Zhat_t[i - 1] - A2_Zhat_t[i - 2]) / A2_n_periods
A2_Gammal_t[3, 1] <- A2_Zhat_t[i - 3] - A2_Zhat_t[i - 2]
A2_Gammal_t[3, 2] <- A2_Zhat_t[i - 1] *
(A2_Zhat_t[i - 3] - A2_Zhat_t[i - 2])
A2_Gammal_t[3, 3] <- (A2_Zhat_t[i - 1] - A2_Zhat_t[i - 2]) *

(A2_Zhat_t[i - 2] - A2_Zhat_t[i - 3])

A2_Gammal_tilde_t[1, 1] <- -1
A2_Gammal_tilde_t[1, 2] <- -A2_Zhat_t[i - 1]
A2_Gammal_tilde_t[1, 3] <- A2_Zhat_t[i - 1] - A2_Zhat_t[i - 2]
A2_Gammal_tilde_t[2, 1] <- -A2_Zhat_t[i - 2]
A2_Gammal_tilde_t[2, 2] <- -A2_Zhat_t[i - 1] * A2_Zhat_t[i - 2]
A2_Gammal_tilde_t[2, 3] <- A2_Zhat_t[i - 2] *

(A2_Zhat_t[i - 1] - A2_Zhat_t[i - 2])
A2_Gammal_tilde_t[3, 1] <- A2_Zhat_t[i - 3] - A2_Zhat_t[i - 2]
A2_Gammal_tilde_t[3, 2] <- A2_Zhat_t[i - 1] *

(A2_Zhat_t[i - 3] - A2_Zhat_t[i - 2])
A2_Gammal_tilde_t[3, 3] <- (A2_Zhat_t[i - 1] - A2_Zhat_t[i - 2]) *

(A2_Zhat_t[i - 2] - A2_Zhat_t[i - 3])

# top right 3 X { (A2_n_agegroups - 1) x 2 } block

# all zero

# bottom left { (A2_n_agegroups - 1) x 2 } X 3 block

# all zero

# bottom right { (A2_n_agegroups - 1) x 2 } X { (A2_n_agegroups - 1) x 2 } block
# 2 x 2 block diagonal matrices
for (j in 1:(A2_n_agegroups - 1)) {

A2_Gammal_t[j * 2 + 2, j * 2 + 2] <- -1

A2_Gammal_t[j * 2 + 2, j * 2 + 3] <- -A2_Zhat_t[i]

A2_Gammal_t[j * 2 + 3, j * 2 + 2] <-

-A2_Zhat_t[i - 1] / A2_n_periods
A2_Gammal_t[j * 2 + 3, j * 2 + 3] <-

-A2_Zhat_t[i] * A2_Zhat_t[i - 1] / A2_n_periods

A2_Gammal_tilde_t[j * 2 + 2, j * 2 + 2] <- -1
A2_Gammal_tilde_t[j * 2 + 2, j * 2 + 3] <- -A2_Zhat_t[i]
A2_Gammal_tilde_t[j * 2 + 3, j * 2 + 2] <- -A2_Zhat_t[i - 1]
A2_Gammal_tilde_t[j * 2 + 3, j * 2 + 3] <-

-A2_Zhat_t[i] * A2_Zhat_t[i - 1]
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A2_Gammal_est.matrix <- A2_Gammal_est.matrix + A2_Gammal_t
A2_Gammal_tilde_est.matrix <-

A2_Gammal_tilde_est.matrix + A2_Gammal_tilde_t

} # end sum of matrix differentiations

A2_Gammal_est.matrix <-
(A2_Gammal_est.matrix / (A2_n_periods - 3)) %x%
(sqrt(A2_n_periods) * solve(A2_DT_matrix))
A2_Gammal_tilde_est.matrix <-

A2_Gammal_tilde_est.matrix / (A2_n_periods - 3)

# Theorem 1 asymptotic variance matrix
A2_Theoreml_avar_est.matrix <- solve(A2_Gammal_est.matrix) %x*Y%
A2_Sigma_est.matrix %*), t(solve(A2_Gammal_est.matrix))
A2_Theoreml_avar_tilde_est.matrix <-
solve (A2_Gammal_tilde_est.matrix) %x% A2_Sigma_tilde_est.matrix %*%

t(solve(A2_Gammal_tilde_est.matrix))

# Theorem 1 hypothesis tests

# testing H_O: \tilde{\phi}_1 = 1 & \phi_2 = O based on Theorem 1i
A2_Theoremli_chisq2 <- as.numeric(
matrix(c(A2_DT_diag[2] * (A2_philtilde - 1),
A2_DT_diag[3] * A2_phi2), nrow = 1) %*J
solve(A2_Theoreml_avar_est.matrix[2:3, 2:3]) %*%
matrix(c(A2_DT_diag[2] * (A2_philtilde - 1), A2_DT_diag[3] * A2_phi2),

ncol = 1))

# testing H_O: \phi_2 = O based on Theorem 1ii
A2_Theoremlii_chisql <- (A2_DT_diag[3] * A2_phi2) ~ 2 /

A2_Theoreml_avar_tilde_est.matrix[3, 3]

# AR(2) TIME SERIES: WHEN \phi_2 != 0

# the 3 x 3 equation system for \mu"*, \tilde{\phi}_1"% and \phi_2"*
A2_E3_all <- A2_n_periods - 4

A2_E3_al2 <- sum(A2_Zhat_t_no.first.3.last.1)

A2_E3_al3 <- A2_Zhat_t[3] - A2_Zhat_t[A2_n_periods - 1]

A2_E3_bl <- sum(A2_Zhat_t_no.first.4)

A2_E3_a21 <- sum(A2_Zhat_t_no.first.l.last.3)
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A2_E3_a22 <- sum(A2_Zhat_t_no.first.3.last.1l *
A2_Zhat_t_no.first.1.last.3)

A2_E3_a23 <- sum(A2_Zhat_t_no.first.l.last.3 *
(A2_Zhat_t_no.first.2.last.2 - A2_Zhat_t_no.first.3.last.1))
A2_E3_b2 <- sum(A2_Zhat_t_no.first.4 * A2_Zhat_t_no.first.l.last.3)

A2_E3_a31 <- A2_Zhat_t[A2_n_periods - 3] - A2_Zhat_t[1]

A2_E3_a32 <- sum(A2_Zhat_t_no.first.3.last.l *
(A2_Zhat_t_no.first.1l.last.3 - A2_Zhat_t_no.last.4))

A2_E3_a33 <-
sum((A2_Zhat_t_no.first.2.last.2 - A2_Zhat_t_no.first.3.last.1) *
(A2_Zhat_t_no.first.1.last.3 - A2_Zhat_t_no.last.4))

A2_E3_b3 <- sum(A2_Zhat_t_no.first.4 *

(A2_Zhat_t_no.first.1.last.3 - A2_Zhat_t_no.last.4))

# solving for \mu"*, \tilde{\phi}_1"* and \phi_27"%
A2_E3_Amatrix <- matrix(
c(A2_E3_all, A2_E3_al2, A2_E3_al3, A2_E3_a21, A2_E3_a22,
A2_E3_a23, A2_E3_a31, A2_E3_a32, A2_E3_a33), 3, 3, byrow = TRUE)
A2_E3_Bvector <- c(A2_E3_bl, A2_E3_b2, A2_E3_b3)

A2_E3_solvector <- solve(A2_E3_Amatrix) %*J, A2_E3_Bvector

A2_mu.s <- A2_E3_solvector[1]
A2_philtilde.s <- A2_E3_solvector[2]
A2_phi2.s <- A2_E3_solvector[3]

A2_phil.s <- A2_philtilde.s - A2_phi2.s

# storage space for \alpha_x"* and \beta_x"* where x is age group

A2_axbx.s <- NULL

# the 2 x 2 equation system for \alpha_x"* and \beta_x"* where x is age group

for (i in 1:A2_n_agegroups) {

# central mortality rate of the specific age group

A2_logM_x <- A2_logM[, il

# compute various sums of log m(x,t) for the specific age group

A2_logM_x_no.first.4 <- A2_logM_x[-c(1, 2, 3, 4)]

# the 2 x 2 equation system for \alpha_x"* and \beta_x"* for the specific age group
A2_E4x_all <- A2_n_periods - 4

A2_E4x_al2 <- sum(A2_Zhat_t_no.first.4)

A2_E4x_bl <- sum(A2_logM_x_no.first.4)

A2_FE4x_a21 <- sum(A2_Zhat_t_no.first.3.last.1)



151

A2_FE4x_a22 <- sum(A2_Zhat_t_no.first.4 * A2_Zhat_t_no.first.3.last.1)

A2_E4x_b2 <- sum(A2_Zhat_t_no.first.3.last.l * A2_logM_x_no.first.4)

# solving for \alpha_x"* and \beta_x"#* for the specific age group
A2_FE4x_Amatrix <- matrix(
c(A2_E4x_all, A2_E4x_al2, A2_E4x_a21, A2_E4x_a22),
2, 2, byrow = TRUE)
A2_E4x_Bvector <- c(A2_E4x_bl, A2_E4x_b2)
A2_E4x_solvector <- solve(A2_E4x_Amatrix) %x% A2_E4x_Bvector

A2_axbx.s <- cbind(A2_axbx.s, A2_E4x_solvector)

} # end the 2 x 2 equation system for \alpha_x"* and \beta_x"*

# define \tilde{Y}_{t,x}"* and \hat{Y}_{t,x} "* matrices (BASED ON ESTIMATES)
# (number of years observed T - 4, A2_n_periods - 4, 5 ... T) X
# (number of age groups M - 1, A2_n_agegroups - 1, 1 ... M - 1)
A2_Ytilde.s_est.matrix <-

A2_logM[5:A2_n_periods, 1:(A2_n_agegroups - 1)] -

matrix(rep(l, A2_n_periods - 4), ncol = 1) %xJ

matrix(A2_axbx.s[1, 1:(A2_n_agegroups - 1)], nrow = 1) -

matrix(A2_Zhat_t_no.first.4, ncol = 1) %*%

matrix(A2_axbx.s[2, 1:(A2_n_agegroups - 1)], nrow = 1)
A2_Yhat.s_est.matrix <-

diag(A2_Zhat_t_no.first.3.last.1) %*J), A2_Ytilde.s_est.matrix

# define Y_{t,1}"*, Y_{t,2}"* and Y_{t,3}"* vectors (BASED ON ESTIMATES)
# (number of years observed T - 4, A2_n_periods - 4, 5 ... T)
A2_Ytl.s_est.vector <- A2_Zhat_t_no.first.4 - A2_mu.s -

A2_philtilde.s * A2_Zhat_t_no.first.3.last.1 +

A2_phi2.s *

(A2_Zhat_t_no.first.3.last.1 - A2_Zhat_t_no.first.2.last.2)
A2_Yt2.s_est.vector <- A2_Ytl.s_est.vector * A2_Zhat_t_no.first.1l.last.3
A2_Yt3.s_est.vector <- A2_Yt2.s_est.vector -

A2_Ytl.s_est.vector * A2_Zhat_t_no.last.4

# define W_t"* and \tilde{W}_t~* matrices (BASED ON ESTIMATES)
# (number of years observed T - 4, A2_n_periods - 4, 5 ... T) X
# (2 x number of age groups M + 1, 2 x A2_n_agegroups + 1)
A2_Wt.s_est.matrix <- cbind(A2_Ytl.s_est.vector,
A2_Yt2.s_est.vector / A2_n_periods, A2_Yt3.s_est.vector)
A2_Wt.s_tilde_est.matrix <- cbind(A2_Ytl.s_est.vector,

A2_Yt2.s_est.vector, A2_Yt3.s_est.vector)
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for (i in 1:(A2_n_agegroups - 1)) {
A2_Wt.s_est.matrix <- cbind(A2_Wt.s_est.matrix,
A2_Ytilde.s_est.matrix[, i],
A2_Yhat.s_est.matrix[, i] / A2_n_periods)
A2_Wt.s_tilde_est.matrix <- cbind(A2_Wt.s_tilde_est.matrix,

A2_Ytilde.s_est.matrix[, i], A2_Yhat.s_est.matrix[, il)

dimnames (A2_Wt.s_est.matrix) <- NULL

dimnames (A2_Wt.s_tilde_est.matrix) <- NULL

# estimate \Sigma"* and \tilde{\Sigma}“"* matrices (BASED ON ESTIMATES)
# (2 x number of age groups M + 1, 2 x A2_n_agegroups + 1) X
# (2 x number of age groups M + 1, 2 x A2_n_agegroups + 1)
A2_Sigma.s_est.matrix <- matrix(0, nrow = 2 * A2_n_agegroups + 1,

ncol = 2 * A2_n_agegroups + 1)
A2_Sigma.s_tilde_est.matrix <- matrix(O,

nrow = 2 * A2_n_agegroups + 1, ncol = 2 * A2_n_agegroups + 1)

for (j in 1:(A2_n_periods - 4)) {

A2_Sigma.s_est.matrix <- A2_Sigma.s_est.matrix +
matrix(A2_Wt.s_est.matrix[j, ], ncol = 1) %x*J
matrix(A2_Wt.s_est.matrix[j, ], nrow = 1) / (A2_n_periods - 4)

A2_Sigma.s_tilde_est.matrix <- A2_Sigma.s_tilde_est.matrix +
matrix(A2_Wt.s_tilde_est.matrix[j, ], ncol = 1) %x*J
matrix(A2_Wt.s_tilde_est.matrix[j, ], nrow = 1) /
(A2_n_periods - 4)

¥
for (j in 2:(A2_n_periods - 4)) {

A2_Sigma.s_est.matrix <- A2_Sigma.s_est.matrix +
matrix(A2_Wt.s_est.matrix[j, ], ncol = 1) %x%
matrix(A2_Wt.s_est.matrix[j - 1, ], nrow = 1) /
(A2_n_periods - 5)

A2_Sigma.s_tilde_est.matrix <- A2_Sigma.s_tilde_est.matrix +
matrix(A2_Wt.s_tilde_est.matrix[j, ], ncol = 1) %x*J
matrix(A2_Wt.s_tilde_est.matrix[j - 1, ], nrow = 1) /
(A2_n_periods - 5)

}
for (j in 3:(A2_n_periods - 4)) {

A2_Sigma.s_est.matrix <- A2_Sigma.s_est.matrix +
matrix(A2_Wt.s_est.matrix[j, ], ncol = 1) %x%
matrix(A2_Wt.s_est.matrix[j - 2, ], nrow = 1) /

(A2_n_periods - 6)



A2_Sigma.s_tilde_est.matrix <- A2_Sigma.s_tilde_est.matrix +
matrix(A2_Wt.s_tilde_est.matrix[j, ], ncol = 1) %x*Y%
matrix(A2_Wt.s_tilde_est.matrix[j - 2, ], nrow = 1) /
(A2_n_periods - 6)

}
for (j in 1:(A2_n_periods - 5)) {

A2_Sigma.s_est.matrix <- A2_Sigma.s_est.matrix +
matrix(A2_Wt.s_est.matrix[j, 1, ncol = 1) %x%
matrix(A2_Wt.s_est.matrix[j + 1, ], nrow = 1) /
(A2_n_periods - 5)

A2_Sigma.s_tilde_est.matrix <- A2_Sigma.s_tilde_est.matrix +
matrix(A2_Wt.s_tilde_est.matrix[j, ], ncol = 1) %x*Y%
matrix(A2_Wt.s_tilde_est.matrix[j + 1, ], nrow = 1) /
(A2_n_periods - 5)

}
for (j in 1:(A2_n_periods - 6)) {

A2_Sigma.s_est.matrix <- A2_Sigma.s_est.matrix +
matrix(A2_Wt.s_est.matrix[j, 1, ncol = 1) %x%
matrix(A2_Wt.s_est.matrix[j + 2, ], nrow = 1) /
(A2_n_periods - 6)

A2_Sigma.s_tilde_est.matrix <- A2_Sigma.s_tilde_est.matrix +
matrix(A2_Wt.s_tilde_est.matrix[j, ], ncol = 1) %x*Y%
matrix(A2_Wt.s_tilde_est.matrix[j + 2, ], nrow = 1) /

(A2_n_periods - 6)

# estimate \Gamma_2 and \tilde{\Gamma}_2 matrices (BASED ON ESTIMATES)

# (2 x number of age groups M + 1, 2 x A2_n_agegroups + 1) X
# (2 x number of age groups M + 1, 2 x A2_n_agegroups + 1)

A2_Gamma2_est.matrix <- matrix(O,

nrow = 2 * A2_n_agegroups + 1, ncol = 2 * A2_n_agegroups + 1)

A2_Gamma2_tilde_est.matrix <- matrix(O,

nrow = 2 * A2_n_agegroups + 1, ncol = 2 * A2_n_agegroups + 1)

for (i in 5:A2_n_periods) { # sum of matrix differentiations

A2_Gamma2_t <- matrix(O,

nrow = 2 * A2_n_agegroups + 1, ncol

A2_Gamma2_tilde_t <- matrix(O0,

nrow = 2 * A2_n_agegroups + 1, ncol = 2 * A2_n_agegroups + 1)

# matrix differentiation by blocks

# top left 3 X 3 block

2 * A2_n_agegroups + 1)
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A2_Gamma2_t[1, 1] <- -1

A2_Gamma2_t[1, 2] <- -A2_Zhat_t[i - 1]

A2_Gamma2_t[1, 3] <- A2_Zhat_t[i - 1] - A2_Zhat_t[i - 2]

A2_Gamma2_t[2, 1] <- -A2_Zhat_t[i - 3] / A2_n_periods

A2_Gamma2_t[2, 2] <- -A2_Zhat_t[i - 1] * A2_Zhat_t[i - 3] / A2_n_periods
A2_Gamma2_t[2, 3] <- A2_Zhat_t[i - 3] =*

(A2_Zhat_t[i - 1] - A2_Zhat_t[i - 2]) / A2_n_periods
A2_Gamma2_t[3, 1] <- A2_Zhat_t[i - 4] - A2_Zhat_t[i - 3]
A2_Gamma2_t[3, 2] <- A2_Zhat_t[i - 1] *

(A2_Zhat_t[i - 4] - A2_Zhat_t[i - 3])

A2_Gamma2_t[3, 3] <- (A2_Zhat_t[i - 1] - A2_Zhat_t[i - 2]) =*

(A2_Zhat_t[i - 3] - A2_Zhat_t[i - 4])

A2_Gamma2_tilde_t[1, 1] <- -1
A2_Gamma2_tilde_t[1, 2] <- -A2_Zhat_t[i - 1]
A2_Gamma2_tilde_t[1, 3] <- A2_Zhat_t[i - 1] - A2_Zhat_t[i - 2]
A2_Gamma2_tilde_t[2, 1] <- -A2_Zhat_t[i - 3]
A2_Gamma2_tilde_t[2, 2] <- -A2_Zhat_t[i - 1] * A2_Zhat_t[i - 3]
A2_Gamma2_tilde_t[2, 3] <- A2_Zhat_t[i - 3] *

(A2_Zhat_t[i - 1] - A2_Zhat_t[i - 2])
A2_Gamma2_tilde_t[3, 1] <- A2_Zhat_t[i - 4] - A2_Zhat_t[i - 3]
A2_Gamma2_tilde_t[3, 2] <- A2_Zhat_t[i - 1] *

(A2_Zhat_t[i - 4] - A2_Zhat_t[i - 3])
A2_Gamma2_tilde_t[3, 3] <- (A2_Zhat_t[i - 1] - A2_Zhat_t[i - 2]) *

(A2_Zhat_t[i - 3] - A2_Zhat_t[i - 4])

# top right 3 X { (A2_n_agegroups - 1) x 2 } block

# all zero

# bottom left { (A2_n_agegroups - 1) x 2 } X 3 block

# all zero

# bottom right { (A2_n_agegroups - 1) x 2 } X { (A2_n_agegroups - 1) x 2 } block
# 2 x 2 block diagonal matrices
for (j in 1:(A2_n_agegroups - 1)) {

A2 _Gamma2 t[j * 2 + 2, j * 2 + 2] <= -1

A2_Gamma2_t[j * 2 + 2, j * 2 + 3] <- -A2_Zhat_t[i]

A2_Gamma2_t[j * 2 + 3, j * 2 + 2] <-

-A2_Zhat_t[i - 1] / A2_n_periods
A2_Gamma2_t[j * 2 + 3, j * 2 + 3] <-

-A2_Zhat_t[i] * A2_Zhat_t[i - 1] / A2_n_periods

A2_Gamma2_tilde_t[j * 2 + 2, j * 2 + 2] <- -1
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A2_Gamma2_tilde_t[j * 2 + 2, j * 2 + 3] <- -A2_Zhat_t[i]
A2_Gamma2_tilde_t[j * 2 + 3, j * 2 + 2] <- -A2_Zhat_t[i - 1]
A2_Gamma2_tilde_t[j * 2 + 3, j * 2 + 3] <-

-A2_Zhat_t[i] * A2_Zhat_t[i - 1]

A2_Gamma2_est.matrix <- A2_Gamma2_est.matrix + A2_Gamma2_t
A2_Gamma2_tilde_est.matrix <-

A2_Gamma2_tilde_est.matrix + A2_Gamma2_tilde_t

} # end sum of matrix differentiations

A2_Gamma2_est.matrix <- (A2_Gamma2_est.matrix / (A2_n_periods - 4)) %*%
(sqrt (A2_n_periods) * solve(A2_DT_matrix))
A2_Gamma2_tilde_est.matrix <-

A2_Gamma2_tilde_est.matrix / (A2_n_periods - 4)

# Theorem 3 asymptotic variance matrix
A2_Theorem3_avar_est.matrix <- solve(A2_Gamma2_est.matrix) %%
A2_Sigma.s_est.matrix %+*% t(solve(A2_Gamma2_est.matrix))
A2_Theorem3_avar_tilde_est.matrix <-
solve(A2_Gamma2_tilde_est.matrix) %#*), A2_Sigma.s_tilde_est.matrix %*J%

t(solve(A2_Gamma2_tilde_est.matrix))

# Theorem 3 hypothesis tests

# no tests based on Theorem 3

return(list(A2_axbx[1, 1, A2_axbx[2, 1,
A2_mu, A2_philtilde, A2_phil, A2_phi2,
A2_Theoremli_chisq2, A2_Theoremlii_chisql,
A2_axbx.s[1, ], A2_axbx.s[2, ],
A2_mu.s, A2_philtilde.s, A2_phil.s, A2_phi2.s,

A2_Ytl.s_est.vector))

DA_A2_both <- A2_func(A2_n_agegroups = DA_n_agegroups,
A2_n_periods = DA_n_periods,
A2_lifetbl_mx = DA_lifetbl_both$mx)

DA_A2_male <- A2_func(A2_n_agegroups = DA_n_agegroups,
A2_n_periods = DA_n_periods,

A2_1ifetbl_mx = DA_lifetbl_male$mx)
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DA_A2_female <- A2_func(A2_n_agegroups = DA_n_agegroups,
A2_n_periods = DA_n_periods,

A2_1ifetbl_mx = DA_lifetbl_female$mx)

## CODE FOR DATA SIMULATION IN PAPER

SM_func <- function(SM_loopindex, SM_n_agegroups, SM_n_periods,
SM_ax, SM_bx, SM_mu, SM_phil, SM_phi2,
SM_sd_e_t, SM_sd_epsilon, SM_agelist, SM_OM_test.L){

# begin simulation loop

data generating process
below: data generating process is based on input parameters after the
simulation loop

check input parameters

# k_t in simulation (a new k_t series for each simulation loop)

# assume k_{-1} = k_0 = 0 and by induction

SM_k_t <- SM_mu + rnorm(1, mean = 0, sd = 1) * SM_sd_e_t
SM_k_t <- c(SM_k_t,
SM_mu + SM_phil * SM_k_t + rnorm(l, mean = 0, sd = 1) * SM_sd_e_t)
for (i in 3:SM_n_periods) {
SM_k_t <- c(SM_k_t,
SM_mu + SM_phil * SM_k_t[i - 1] + SM_phi2 * SM_k_t[i - 2] +
rnorm(1, mean = 0, sd = 1) * SM_sd_e_t)
}

names (SM_k_t) <- NULL

# mortality rate data ’logM’ in simulation

# the dimension of SM_logM is: SM_n_periods X SM_n_agegroups (M)

SM_logM <- t(cbind(SM_ax, SM_bx) %*% as.matrix(rbind(1, SM_k_t)) +
matrix(rnorm(SM_n_agegroups * SM_n_periods, mean = 0, sd = 1) * SM_sd_epsilon,

nrow = SM_n_agegroups))
# recover the original mx array
# this is reverse process of deriving logM from life table’s ’mx’ variable

SM_mx <- array(exp(t(SM_logM)))

# implementation of the original lee-carter model

# include LC_func here ...

SM_LC <- LC_func(LC_n_agegroups = SM_n_agegroups,
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LC_n_periods = SM_n_periods,
LC_lifetbl_mx = SM_mx,
LC_agelist = SM_agelist,

LC_yearlist = 1:SM_n_periods)

# implementation of the original ar(1) inference method

# include OM_func here ...

SM_OM <- OM_func(0OM_n_agegroups = SM_n_agegroups,
OM_n_periods = SM_n_periods,
OM_lifetbl_mx = SM_mx,

OM_test.L = SM_OM_test.L)

# implementation of the bias corrected ar(1) inference method

# include BC_func here ...

SM_BC <- BC_func(BC_n_agegroups = SM_n_agegroups,
BC_n_periods = SM_n_periods,

BC_lifetbl_mx = SM_mx)

# implementation of the ar(2) inference method

# include A2_func here ...

SM_A2 <- A2_func(A2_n_agegroups = SM_n_agegroups,
A2_n_periods = SM_n_periods,

A2_lifetbl_mx = SM_mx)

return(list (SM_LC[[11]1, SM_LC[[2]1, SM_LCL[[311, SM_LCL[[41],

SM_LC[[5]1, SM_LC[[611, SM_LC[[7]1], SM_LC[[8]11,
SM_0OM[[1]], sSM_OM[[2]1]1, SM_OM[[3]], SM_OM[[4]1],
SM_OM[[5]]1, sM_OM[[6]11, sM_OM[[7]1], sM_OM[[8]1],
SM_OM[[9]]1, SM_OM[[10]], SM_OM[[11]], SM_OM[[12]],
SM_BC[[1]1, sM_BC[[2]11, SM_BC[[311, SM_BC[[41],
SM_A2([[1]], SM_A2[[2]], sM_A2[[3]], SM_A2[[4]],
SM_A2([[5]], SM_A2[[6]1], sM_A2[[7]], sSM_A2[[8]],
SM_A2[[9]1, SM_A2[[10]1], SM_A2[[11]1], SM_A2[[12]],
SM_A2[[13]], SM_A2[[14]11))

} # end simulation loop

# number of simulation loops

SM_loopindex <- 1:10000



# number of simulated age groups

SM_n_agegroups <- DA_n_agegroups

# number of simulated periods (80, 150, 500, 1000)

SM_n_periods <- 300

# ar(2) model parameters for simulation

SM_ax <- DA_A2_male[[1]]

SM_bx <- DA_A2_male[[2]]

SM_mu <- DA_A2_male[[3]]

SM_phil <- DA_A2_male[[5]]+0.4

SM_phi2 <- DA_A2_male[[6]]-0.4

SM_sd_e_t <- 0.01#sd(DA_A2_male[[15]]) / sqrt(DA_n_agegroups)
SM_sd_epsilon <-SM_sd_e_t# sd(DA_A2_male[[15]]) / sqrt(DA_n_agegroups)
SM_agelist <- unique(DA_lifetbl_both$AgeO)

SM_OM_test.L <- floor(2 * sqrt(SM_n_periods))

# prepare parallel clusters for simulation
library(snowfall)

library(rlecuyer)

set.seed(12345)

sfInit(parallel = FALSE)

#sfInit(parallel = TRUE, cpus = 8, type = ’SO0CK’)

#i <- sfClusterSetupRNGstream(12345)

# execute simulation loops

SM_result <- sfLapply(SM_loopindex, SM_func, SM_n_agegroups, SM_n_periods,
SM_ax, SM_bx, SM_mu, SM_phil, SM_phi2, SM_sd_e_t, SM_sd_epsilon,
SM_agelist, SM_OM_test.L)

sfStop()

# end

For two-population (bivariate) datasets (in Part :

## DATA IMPORT

# USA data, 5 x 1, male and female cohort data

# http://www.mortality.org/cgi-bin/hmd/country.php?cntr=USA&level=1

# load raw data files

# to download data other than 1x1, do not use the ’demography’ package functions
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DA_lifetbl_male <- read.table(’mltper_5x1.txt’,
skip = 2, header = TRUE, stringsAsFactors = FALSE)
DA_lifetbl_female <- read.table(’fltper_5x1.txt’,

skip = 2, header = TRUE, stringsAsFactors = FALSE)

## DATA CLEANUP

# same as data cleanup code in previous section ...

## IMPLEMENTATION OF THE ORIGINAL LEE-CARTER MODEL

# same as lee-carter model implementation in previous section...

DA_LC_male <- LC_func(LC_n_agegroups = DA_n_agegroups,
LC_n_periods = DA_n_periods,
LC_lifetbl_mx = DA_lifetbl_male$mx,
LC_agelist = unique(DA_lifetbl_male$Age0),
LC_yearlist = unique(DA_lifetbl_male$Year))
DA_LC_female <- LC_func(LC_n_agegroups = DA_n_agegroups,
LC_n_periods = DA_n_periods,
LC_lifetbl_mx = DA_lifetbl_female$mx,
LC_agelist = unique(DA_lifetbl_female$AgeO),

LC_yearlist = unique(DA_lifetbl_female$Year))

LC_diff_func <- function(diff_n_agegroups, diff_n_periods,

diff_varl, diff_var2) {

# difference of k_t’s of the two cohorts

diff_kt <- diff_vari[[3]] - diff_var2[[3]]

# below: fitting k_t with (5) in Draft #4
diff_ktl <- diff_kt[-1]
diff_ktO <- diff_kt[-diff_n_periods]

diff_kt.fitting <- Im(diff_ktl ~ diff_ktO)

# report format: (estimate, standard error)
diff_mu <- diff_kt.fitting$coefficients[1]

names (diff_mu) <- NULL

diff_mu_se <- coef (summary(diff_kt.fitting))[, ’Std. Error’][1]

names (diff_mu_se) <- NULL
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diff_phi <- diff_kt.fitting$coefficients[2]

names (diff_phi) <- NULL

diff_phi_se <- coef(summary(diff_kt.fitting)) [, ’Std. Error’][2]

names (diff_phi_se) <- NULL

return(list(rep(NA, diff_n_agegroups), rep(NA, diff_n_agegroups),

diff_kt, diff_mu, diff_mu_se, diff_phi, diff_phi_se, NA))

DA_LC_diff <- LC_diff_func(diff_n_agegroups = DA_n_agegroups,
diff_n_periods = DA_n_periods, diff_varl = DA_LC_male,

diff_var2 = DA_LC_female)

## IMPLEMENTATION OF THE BIVARIATE LEE-CARTER MORTALITY MODEL

BI_func <- function(BI_n_agegroups, BI_n_periods,

BI_lifetl_mx, BI_lifet2_mx) {

# generate two tables of central mortality rate

BI_logM.1 <- matrix(data = BI_lifetl_mx, nrow = BI_n_agegroups,
ncol = BI_n_periods, byrow = FALSE)

BI_logM.2 <- matrix(data = BI_lifet2_mx, nrow = BI_n_agegroups,

ncol = BI_n_periods, byrow = FALSE)

# dimension of mortality rate data:

# number of years observed (T, BI_n_periods) X
# number of age groups (M, BI_n_agegroups)
BI_logM.1 <- t(log(BI_logM.1))

BI_logM.2 <- t(log(BI_logM.2))

# compute \hat{Z}_t
BI_Zhat_t.1 <- apply(BI_logM.1, 1, sum)
BI_Zhat_t.2 <- apply(BI_logM.2, 1, sum)

BI_Zhat_diff <- BI_Zhat_t.1 - BI_Zhat_t.2

BI_Zhat_t.1_no.first.1 <- BI_Zhat_t.1[-1]
BI_Zhat_t.2_no.first.1 <- BI_Zhat_t.2[-1]
BI_Zhat_diff _no.first.1 <-

BI_Zhat_t.1_no.first.1 - BI_Zhat_t.2_no.first.1

BI_Zhat_t.1_no.last.l <- BI_Zhat_t.1[-BI_n_periods]
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BI_Zhat_t.2_no.last.l <- BI_Zhat_t.2[-BI_n_periods]
BI_Zhat_diff_no.last.1 <-

BI_Zhat_t.1_no.last.l1 - BI_Zhat_t.2_no.last.1

BI_Zhat_t.1_no.first.2 <- BI_Zhat_t.1[-c(1, 2)]
BI_Zhat_t.2_no.first.2 <- BI_Zhat_t.2[-c(1, 2)]
BI_Zhat_diff_no.first.2 <-

BI_Zhat_t.1_no.first.2 - BI_Zhat_t.2_no.first.2

BI_Zhat_t.1_no.first.l.last.1l <-
BI_Zhat_t.1[-c(1, BI_n_periods)]

BI_Zhat_t.2_no.first.l.last.1 <-
BI_Zhat_t.2[-c(1, BI_n_periods)]

BI_Zhat_diff _no.first.l.last.1 <-

BI_Zhat_t.1_no.first.l.last.1 - BI_Zhat_t.2_no.first.l.last.1

BI_Zhat_t.1_no.last.2 <-
BI_Zhat_t.1[-c(BI_n_periods - 1, BI_n_periods)]
BI_Zhat_t.2_no.last.2 <-
BI_Zhat_t.2[-c(BI_n_periods - 1, BI_n_periods)]
BI_Zhat_diff_no.last.2 <-

BI_Zhat_t.1_no.last.2 - BI_Zhat_t.2_no.last.2

# WHEN WITHOUT BIAS CORRECTION

# the 2 x 2 equation system for \mu(1) and \phi(1)
BI_El1_all <- BI_n_periods - 1

BI_E1_al2 <- sum(BI_Zhat_t.1_no.last.1)

BI_E1_bl <- sum(BI_Zhat_t.1_no.first.1)

BI_E1_a21 <- sum(BI_Zhat_t.1_no.last.1)

BI_E1_a22 <- sum(BI_Zhat_t.1_no.last.1 = 2)
BI_E1_b2 <-

sum(BI_Zhat_t.1_no.first.1 * BI_Zhat_t.1_no.last.1)

# solving for \mu(1) and \phi(1)

BI_E1_Amatrix <-
matrix(c(BI_E1_all, BI_E1_al2, BI_E1_a21, BI_E1_a22),
2, 2, byrow = TRUE)

BI_E1_Bvector <- c(BI_E1_bl, BI_E1_b2)

BI_E1_solvector <- solve(BI_E1_Amatrix) %#*’% BI_E1_Bvector

BI_mu.1l <- BI_E1_solvector[1]

BI_phi.1 <- BI_E1_solvector[2]



# the 2 x 2 equation system for \mu(2) and \phi(2)
BI_E2_all <- BI_n_periods - 1

BI_E2_al2 <- sum(BI_Zhat_diff_no.last.1)

BI_E2_bl <- sum(BI_Zhat_diff_no.first.1)

BI_E2_a21 <- sum(BI_Zhat_diff_no.last.1)
BI_E2_a22 <- sum(BI_Zhat_diff_no.last.1 ~ 2)
BI_E2_b2 <-

sum(BI_Zhat_diff_no.first.1 * BI_Zhat_diff_no.last.1)

# solving for \mu(2) and \phi(2)

BI_E2_Amatrix <-
matrix(c(BI_E2_all, BI_E2_al2, BI_E2_a21, BI_E2_a22),
2, 2, byrow = TRUE)

BI_E2_Bvector <- c(BI_E2_bl, BI_E2_b2)

BI_E2_solvector <- solve(BI_E2_Amatrix) %*% BI_E2_Bvector

BI_mu.2 <- BI_E2_solvector[1]

BI_phi.2 <- BI_E2_solvector[2]

# storage space for \alpha_x and \beta_x where x is age group

BI_axbx <- NULL

# the equation systems for \alpha_x(i) and \beta_x(i)
# where x is age group, i =1, 2

for (i in 1:BI_n_agegroups) {

# central mortality rate of the specific age group
BI_logM_x.1 <- BI_logM.1[, il

BI_logM_x.2 <- BI_logM.2[, il

# the 2 x 2 equation system for \alpha_x(1) and \beta_x(1)
# for the specific age group

BI_E3x_all <- BI_n_periods

BI_E3x_al2 <- sum(BI_Zhat_t.1)

BI_E3x_bl <- sum(BI_logM_x.1)

BI_E3x_a21 <- sum(BI_Zhat_t.1)

BI_E3x_a22 <- sum(BI_Zhat_t.1 ~ 2)

BI_E3x_b2 <- sum(BI_logM_x.1 * BI_Zhat_t.1)

# solving for \alpha_x(1) and \beta_x(1)
# for the specific age group

BI_E3x_Amatrix <-
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matrix(c(BI_E3x_all, BI_E3x_al2, BI_E3x_a21, BI_E3x_a22),

2, 2, byrow = TRUE)

BI_E3x_Bvector <- c(BI_E3x_bil, BI_E3x_b2)

BI_E3x_solvector <- solve(BI_E3x_Amatrix) %x*% BI_E3x_Bvector

# the 2 x 2 equation system for \alpha_x(2) and \beta_x(2)

# for the specific age group
BI_E4x_all <- BI_n_periods
BI_E4x_al2 <- sum(BI_Zhat_t.2)
BI_E4x_bl <- sum(BI_logM_x.2)
BI_E4x_a21 <- sum(BI_Zhat_t.2)
BI_E4x_a22 <- sum(BI_Zhat_t.2 ~ 2)

BI_E4x_b2 <- sum(BI_logM_x.2 * BI_Zhat_t.2)

# solving for \alpha_x(2) and \beta_x(2)
# for the specific age group

BI_E4x_Amatrix <-

matrix(c(BI_E4x_all, BI_E4x_al2, BI_E4x_a21, BI_E4x_a22),

2, 2, byrow = TRUE)

BI_E4x_Bvector <- c(BI_E4x_bl, BI_E4x_b2)

BI_E4x_solvector <- solve(BI_E4x_Amatrix) %x*% BI_E4x_Bvector

# c( \alpha_x(1), \beta_x(1), \alpha_x(2), \beta_x(2) )

BI_axbx <- cbind(BI_axbx, c(BI_E3x_solvector[1], BI_E3x_solvector[2],

BI_E4x_solvector[1], BI_E4x_solvector([2]))

} # end the equation systems for \alpha_x(i) and \beta_x(i)

# WHEN WITH BIAS CORRECTION

# the 2 x 2 equation system for \mu(1) and \phi(1)
BI_E5_all <- BI_n_periods - 2

BI_E5_al2 <- sum(BI_Zhat_t.1_no.first.1l.last.1)
BI_E5_bl <- sum(BI_Zhat_t.1_no.first.2)

BI_E5_a21 <- sum(BI_Zhat_t.1_no.last.2)

BI_E5_a22 <-

sum(BI_Zhat_t.1_no.first.1l.last.1 * BI_Zhat_t.1_no.last.2)

BI_E5_b2 <-

sum(BI_Zhat_t.1_no.first.2 * BI_Zhat_t.1_no.last.2)

# solving for \mu(1) and \phi(1)
BI_E5_Amatrix <-

matrix(c(BI_E6_all, BI_E5_al2, BI_E5_a21, BI_E5_a22),
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2, 2, byrow = TRUE)
BI_E5_Bvector <- c(BI_E5_bl, BI_E5_b2)

BI_E5_solvector <- solve(BI_E5_Amatrix) %x*% BI_E5_Bvector

BI_mu.l.s <- BI_E5_solvector[1]

BI_phi.l.s <- BI_E5_solvector[2]

# the 2 x 2 equation system for \mu(2) and \phi(2)
BI_E6_all <- BI_n_periods - 2
BI_E6_al2 <- sum(BI_Zhat_diff_no.first.l.last.1)
BI_E6_bl <- sum(BI_Zhat_diff_no.first.2)
BI_E6_a21 <- sum(BI_Zhat_diff_no.last.2)
BI_E6_a22 <-
sum(BI_Zhat_diff_no.first.l.last.l * BI_Zhat_diff_no.last.2)
BI_E6_b2 <-

sum(BI_Zhat_diff_no.first.2 * BI_Zhat_diff_no.last.2)

# solving for \mu(2) and \phi(2)

BI_E6_Amatrix <-
matrix(c(BI_E6_all, BI_E6_al2, BI_E6_a21, BI_E6_a22),
2, 2, byrow = TRUE)

BI_E6_Bvector <- c(BI_E6_bl, BI_E6_b2)

BI_E6_solvector <- solve(BI_E6_Amatrix) %x*% BI_E6_Bvector

BI_mu.2.s <- BI_E6_solvector[1]

BI_phi.2.s <- BI_E6_solvector[2]

# storage space for \alpha_x and \beta_x where x is age group

BI_axbx.s <- NULL

# the equation systems for \alpha_x(i) and \beta_x(i)
# where x is age group, i =1, 2

for (i in 1:BI_n_agegroups) {

# central mortality rate of the specific age group
BI_logM_x.1 <- BI_logM.1[, il

BI_logM_x.2 <- BI_logM.2[, il

# compute various sums of log m(x,t)
# for the specific age group
BI_logM_x.1_no.first.1 <- BI_logM_x.1[-1]

BI_logM_x.2_no.first.1 <- BI_logM_x.2[-1]



# the 2 x 2 equation system for \alpha_x(1) and \beta_x(1)
# for the specific age group
BI_E7x_all <- BI_n_periods - 1
BI_E7x_al2 <- sum(BI_Zhat_t.1_no.first.1)
BI_E7x_bl <- sum(BI_logM_x.1_no.first.1)
BI_E7x_a21 <- sum(BI_Zhat_t.1_no.last.1)
BI_E7x_a22 <-
sum(BI_Zhat_t.1_no.first.1 * BI_Zhat_t.1_no.last.1)
BI_E7x_b2 <-

sum(BI_logM_x.1_no.first.1 * BI_Zhat_t.1_no.last.1)

# solving for \alpha_x(1) and \beta_x(1)
# for the specific age group

BI_E7x_Amatrix <-

matrix(c(BI_E7x_all, BI_E7x_al2, BI_E7x_a21, BI_E7x_a22),

2, 2, byrow = TRUE)

BI_E7x_Bvector <- c(BI_E7x_bil, BI_E7x_b2)

BI_E7x_solvector <- solve(BI_E7x_Amatrix) %x*% BI_E7x_Bvector

# the 2 x 2 equation system for \alpha_x(2) and \beta_x(2)
# for the specific age group

BI_E8x_all <- BI_n_periods - 1

BI_E8x_al2 <- sum(BI_Zhat_t.2_no.first.1)

BI_E8x_bl <- sum(BI_logM_x.2_no.first.1)

BI_E8x_a21 <- sum(BI_Zhat_t.2_no.last.1)

BI_E8x_a22 <- sum(BI_Zhat_t.2_no.first.1 * BI_Zhat_t.2_no.last.1)

BI_E8x_b2 <- sum(BI_logM_x.2_no.first.1 * BI_Zhat_t.2_no.last.1)

# solving for \alpha_x(2) and \beta_x(2)
# for the specific age group

BI_E8x_Amatrix <-

matrix(c(BI_E8x_all, BI_E8x_al2, BI_E8x_a21, BI_E8x_a22),

2, 2, byrow = TRUE)

BI_E8x_Bvector <- c(BI_E8x_b1l, BI_E8x_b2)

BI_E8x_solvector <- solve(BI_E8x_Amatrix) %x*% BI_E8x_Bvector

# c( \alpha_x(1), \beta_x(1), \alpha_x(2), \beta_x(2) )
BI_axbx.s <- cbind(BI_axbx.s,
c(BI_E7x_solvector[1], BI_E7x_solvector[2],

BI_E8x_solvector[1], BI_E8x_solvector[2]))

} # end the equation systems for \alpha_x(i) and \beta_x(i)
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return(list(BI_mu.1, BI_phi.1, BI_mu.2, BI_phi.2, BI_axbx,
BI_mu.1l.s, BI_phi.1l.s, BI_mu.2.s, BI_phi.2.s, BI_axbx.s,

BI_Zhat_t.1, BI_Zhat_t.2, BI_Zhat_diff))

j <- BI_func(BI_n_agegroups = DA_n_agegroups,
BI_n_periods = DA_n_periods,
BI_lifetl_mx = DA_lifetbl_male$mx,
BI_lifet2_mx = DA_lifetbl_female$mx)

DA_BI_noncorrect <- jlc(1:5, 11:13)]

DA_BI_biascorrected <- j[6:13]

## DATA SIMULATION

SM_func <- function(SM_loopindex, SM_n_agegroups, SM_n_periods,
SM_ax.1, SM_ax.2, SM_bx.1, SM_bx.2,
SM_mu.1, SM_mu.2, SM_phi.1, SM_phi.2,
SM_sd_e_t.1, SM_sd_e_t.2, SM_sd_epsilon, SM_agelist) {

# begin simulation loop

data generating process
below: data generating process is based on input parameters

after the simulation loop

¥ H H H

check input parameters

# k_t in simulation (a new k_t series for each simulation loop)

# assume k_0 = 0 and by induction

SM_k_t.1 <- SM_mu.l1 + rnorm(l, mean = 0, sd = 1) * SM_sd_e_t.1
SM_k_t.diff <- SM_mu.2 + rnorm(1, mean = O, sd = 1) * SM_sd_e_t.2
for (i in 2:SM_n_periods) {
SM_k_t.1 <-
c(SM_k_t.1, SM_mu.1 + SM_phi.1 * SM_k_t.1[i - 1] +
rnorm(1, mean = 0, sd = 1) * SM_sd_e_t.1)
SM_k_t.diff <-
c(SM_k_t.diff, SM_mu.2 + SM_phi.2 * SM_k_t.diff[i - 1] +
rnorm(1, mean = 0, sd = 1) * SM_sd_e_t.2)
¥
names(SM_k_t.1) <- NULL

names (SM_k_t.diff) <- NULL

SM_k_t.2 <- SM_k_t.1 - SM_k_t.diff
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# mortality rate data ’logM’ in simulation

# the dimension of SM_logM is: SM_n_periods X SM_n_agegroups (M)

SM_logM.1 <-
t(cbind(SM_ax.1, SM_bx.1) %+ as.matrix(rbind(1, SM_k_t.1)) +
matrix(rnorm(SM_n_agegroups * SM_n_periods, mean = 0, sd = 1) *
SM_sd_epsilon, nrow = SM_n_agegroups))

SM_logM.2 <-
t(cbind(SM_ax.2, SM_bx.2) %*% as.matrix(rbind(1, SM_k_t.2)) +
matrix(rnorm(SM_n_agegroups * SM_n_periods, mean = 0, sd = 1) *

SM_sd_epsilon, nrow = SM_n_agegroups))

# recover the original mx array

# this is reverse process of deriving logM from
# life table’s ’mx’ variable

SM_mx.1 <- array(exp(t(SM_logM.1)))

SM_mx.2 <- array(exp(t(SM_logM.2)))

# implementation of the original lee-carter model

# include LC_func here ...

SM_LC.1 <- LC_func(LC_n_agegroups = SM_n_agegroups,
LC_n_periods = SM_n_periods,
LC_lifetbl_mx = SM_mx.1,
LC_agelist = SM_agelist,
LC_yearlist = 1:SM_n_periods)

SM_LC.2 <- LC_func(LC_n_agegroups = SM_n_agegroups,

LC_n_periods = SM_n_periods,
LC_lifetbl_mx = SM_mx.2,
LC_agelist = SM_agelist,

LC_yearlist = 1:SM_n_periods)

# include LC_diff_func here ...

SM_LC.diff <- LC_diff_func(diff_n_agegroups = SM_n_agegroups,

diff_n_periods = SM_n_periods, diff_varl = SM_LC.1,

diff_var2 = SM_LC.2)

# implementation of the bivariate lee-carter mortality model

# include BI_func here ...

j <= SM_BI_func(BI_n_agegroups = SM_n_agegroups,

BI_n_periods = SM_n_periods,



BI_lifetl_mx = SM_mx.1,
BI_lifet2_mx = SM_mx.2)
SM_BI_noncorrect <- jlc(1:5, 11:13)]

SM_BI_biascorrected <- j[6:13]

return(list(SM_LC.1, SM_LC.2, SM_LC.diff,

SM_BI_noncorrect, SM_BI_biascorrected))

} # end simulation loop

# number of simulation loops

SM_loopindex <- 1:10000

# number of simulated age groups

SM_n_agegroups <- DA_n_agegroups

# number of simulated periods (80, 150, 500, 1000)

SM_n_periods <- 150

# bivariate model parameters for simulation
SM_ax.1 <- DA_BI_biascorrected[[5]][1, ]
SM_ax.2 <- DA_BI_biascorrected[[5]][3, ]
SM_bx.1 <- DA_BI_biascorrected[[5]][2, ]
SM_bx.2 <- DA_BI_biascorrected[[5]][4, 1]
SM_mu.1 <- DA_BI_biascorrected[[1]]
SM_mu.2 <- DA_BI_biascorrected[[3]]
SM_phi.1 <- 1

SM_phi.2 <- 0.95

SM_sd_e_t.1 <- 0.1

SM_sd_e_t.2 <- 0.1

SM_sd_epsilon <- 0.1

SM_agelist <- unique(DA_lifetbl_male$AgeO)

# prepare parallel clusters for simulation
library(snowfall)

library(rlecuyer)

set.seed(123)

#sfInit(parallel = FALSE)

sfInit(parallel = TRUE, cpus = 8, type = ’S0CK’)

i <- sfClusterSetupRNGstream(123)

# execute simulation loops

SM_result <-
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sfLapply(SM_loopindex, SM_func, SM_n_agegroups, SM_n_periods,
SM_ax.1, SM_ax.2, SM_bx.1, SM_bx.2,

SM_mu.1, SM_mu.2, SM_phi.1, SM_phi.2,

SM_sd_e_t.1, SM_sd_e_t.2, SM_sd_epsilon, SM_agelist)

sfStop()

# end
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