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COMPLEX DYNAMICS IN DEDICATED / MULTIFUNCTIONAL NEURAL NETWORKS

AND CHAOTIC NONLINEAR SYSTEMS

by

KRISHNA PUSULURI

Under the Direction of Andrey Shilnikov, Ph.D.

ABSTRACT

We study complex behaviors arising in neuroscience and other nonlinear systems by

combining dynamical systems analysis with modern computational approaches including

GPU parallelization and unsupervised machine learning. To gain insights into the behav-

iors of brain networks and complex central pattern generators (CPGs), it is important to

understand the dynamical principles regulating individual neurons as well as the basic

structural and functional building blocks of neural networks. In the first section, we dis-



cuss how symbolic methods can help us analyze neural dynamics such as bursting, tonic

spiking and chaotic mixed-mode oscillations in various models of individual neurons, the

bifurcations that underlie transitions between activity types, as well as emergent network

phenomena through synergistic interactions seen in realistic neural circuits, such as net-

work bursting from non-intrinsic bursters. The second section is focused on the origin

and coexistence of multistable rhythms in oscillatory neural networks of inhibitory cou-

pled cells. We discuss how network connectivity and intrinsic properties of the cells affect

the dynamics, and how even simple circuits can exhibit a variety of mono/multi-stable

rhythms including pacemakers, half-center oscillators, multiple traveling-waves, fully syn-

chronous states, as well as various chimeras. Our analyses can help generate verifiable

hypotheses for neurophysiological experiments on central pattern generators. In the last

section, we demonstrate the inter-disciplinary nature of this research through the appli-

cations of these techniques to identify the universal principles governing both simple and

complex dynamics, and chaotic structure in diverse nonlinear systems. Using a classical

example from nonlinear laser optics, we elaborate on the multiplicity and self-similarity

of key organizing structures in 2D parameter space such as homoclinic and heteroclinic

bifurcation curves, Bykov T-point spirals, and inclination flips. This is followed by detailed

computational reconstructions of the spatial organization and 3D embedding of bifurca-

tion surfaces, parametric saddles, and isolated closed curves (isolas). The generality

of our modeling approaches could lead to novel methodologies and nonlinear science

applications in biological, medical and engineering systems.

INDEX WORDS: Neural networks, Multistability, Central Pattern Generators, Dynami-
cal systems, Chaos, Unsupervised machine learning
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spiking (purple) or quiescence (white), with very small regions of
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tic parameters α34_43_inh and β34_43_inh are varied, reveals that the

HCO produces only tonic spiking or suppression, but not emergent

bursting, in the absence of synaptic connections with cells 1 and 2.
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ergistic interactions between various synapses can result in tonic

spiking (red), chaotic bursting (gray), suppression (green) as well as

emergent network bursting with varying number of spikes per burst

(numbers for cell 4 are shown in bursting regions). Voltage trajecto-
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Figure 3.12 The role of excitation and inhibition is depicted, as all other net-

work parameters remain constant. (left) Biparametric sweep of the

slow synaptic properties α41_32_exc and β41_32_exc of cross excita-

tion shows tonic spiking (red) and suppression (green) at weaker

strengths, while emergent bursting appears for stronger excitation

(larger α values). (middle) Biparametric sweep of the strength of

mutual inhibition of the tonic spikers g34_43_inh vs cross excitation

g41_32_exc shows that for low values of g41_32_exc, the network pro-

duces only tonic spiking or suppression. As we increase g41_32_exc,

emergent bursting can be seen at moderately strong mutual inhibi-

tion. Fig.3.12(right) inspects the role of cross inhibition g14_23_inh vs.

cross excitation g41_32_exc. For weak synaptic strengths in either, we

see suppression (green). Emergent bursting is seen at moderate
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Figure 4.1 A fully connected 3-cell network of the generalized Fitzhugh-Nagumo

type cells with mutually inhibitory synapses is shown in (a). The

phase space of a neuron (under weak coupling) is depicted in (b),

with the slow recovery variable x and the fast voltage variable V ,

superimposed with the corresponding nullclines (light gray): slow
dx
dt = 0 and fast dV

dt = 0, and the limit cycle (dark gray). The col-

ored dots depict the phase space coordinates of the three coupled

cells traversing the limit cycle to generate a traveling-wave pattern.

Horizontal dashed line represents the activation threshold Vth. Two

long trajectories converging towards (c) the blue pacemaker rhythm

(∆θ12 , ∆θ13) = (0.55, 0.55) or (d) the clockwise traveling-wave rhythm

(∆θ12 , ∆θ13) = (0.67, 0.33) are shown. Evolution of the phase lags

∆θ12 and ∆θ13 at those moments when the reference cell 1 (blue)

crosses above the threshold (vertical dotted lines) are shown at the

top and the bottom, respectively. Multistability analysis (e) of the

network using 2D Poincaré return map on a grid of 70 × 70 initial

conditions or phase lags between the reference cell 1, and cells 2

and 3. All the initial conditions that converge to the same attrac-

tor are shown in identical colors to visualize the attraction basins of

the five co-existing fixed points (shown as white dots), represent-

ing five stable rhythms of the circuit. These are 3 pacemaker (red,

green, and blue) and two travelling wave (pink - clockwise, black -

anti-clockwise) rhythms. Here, Iapp = 0.426, ginh = 0.01 and ε = 0.3.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



xxiii
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and the stable rhythms identified for the particular parameter values,

shown in different colors in proportion to the size of their attraction
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parametric blocks are shown Table 4.1,4.2. The bifurcation diagram
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half-centers, pacemakers, traveling-waves, synchronization, stable

transitory rhythms, and trajectories with non-converging phase lags
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Figure 4.5 Voltage-recovery phase space shows how the limit cycle of an

isolated neuron (grey) changes its shape in a fully connected

4-cell circuit based on its initial conditions, to produce either a

paired half-center rhythm (orange) or the synchronized state (green)

(Fig. 4.3B). The size of the orbit for the paired half-center (orange)

is smaller than that of an isolated cell (grey) due to the continuous

inhibition from their phase locked counterparts affecting the cells in

their active state (and shortening the corresponding section of the

limit cycle). For the synchronized state, the orbit becomes even

smaller (green) due to the greater consolidated inhibition on a post-

synaptic cell by the 3 other cells in sync. . . . . . . . . . . . . . 58

Figure 4.6 Structural changes in a network promote or suppress rhythmic be-

haviors. Gradual strengthening or weakening of the synapses con-
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from bistability to monostable paired half-center rhythm while the

traveling-wave rhythm is gradually suppressed. (b) Bistable net-

work transitions to monostable traveling-wave rhythm. (c) Transi-

tions from one monostable rhythm (paired half-center) to another

(full traveling-wave). At intermediate synaptic changes when not all
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Figure 5.1 (color online) (a) (β,−D23)-phase space projection showing the pri-

mary homoclinic orbit (red, coded as {1}) splitting leftward/right-

ward (green/blue, {11...} or {11...}) when the separatrix Γ1 misses

the saddle O (black dot) after completing a single turn around the

saddle-focus C+, with the Lorenz attractor (in grey) in background

(b) Chaotic transient of Γ1 generating a binary sequence starting

with {10100101...} (c) Time-evolutions of the β-coordinate of Γ1 (in

(b)) and of a close trajectory (red), and their binary codes, be-

fore they diverge. (d) Two stable symmetric POs coded as {01})

and {0011} (e) Heteroclinic connections (red {101}, blue symmetric

counterpart) at the T1-point (Fig. 5.2) (f) Samples (Pj) of the primary

homoclinic orbit morphing to a double loop after the inclination-flip,

IF1, on the curve H0 in the (a, b)-parameter plane in Fig.5.2; here

σ = 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 5.2 (color online) (a, b)-parameter sweep of [5–12]-length reveals an

abundance of homoclinic bifurcations emerging from two cod-2

points, IF1 & IF2, on H0, that corresponds to the primary homoclinic

butterfly of saddle O, along with self-similar characteristic spirals

around T-points, labelled T0,1,2, corresponding to distinct heteroclinic

cycles between O and saddle-foci C±. Cod-2 Bogdanov-Takens,

BT , unfolding includes Andronov-Hopf AH0, AH1,2 and pitch-fork PF

bifurcation curves for O and C±, resp.; here σ = 1.5. . . . . . . . 74
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Figure 5.3 (color online) (a) Short [8–15] and (b,d) long [100–123]-length (a, b)-

sweeps reveal fine self-similar organization of homo- and hetero-

clinic bifurcations underlying the regions of chaotic and regular dy-

namics of the laser model for σ = 1.5. A small area (white box) in (a)

is magnified with a longer [15–22]-sweep in (c). (b,d) reveal stability

windows (solid colors) within “noisy” regions of structurally unstable

chaos; white lines demarcate boundaries of some stability windows.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 5.4 (color online) [2–9]-length sweep discloses organization of ho-

mo/heteroclinic bifurcations originating from cod-2 inclination-flip

IF2 and multiple T-points: primary T0 coded as {10}, secondary T1

as {101}, and a pair T1
2 − T2

2 with code {110} separated by a saddle

(S) in the (a, b)-parameter plane; here σ = 10. Inset (a) shows a

larger (a, b)-sweep of [1–7]-length; (b) [16–23]-long sweep depicts

dense loci of homoclinic bifurcation curves originating from IF2. 77

Figure 5.5 (color online) Long [1000–1999]-length sweeps to detect a multi-

plicity of stability windows (solid colors; dark red due to stable PO
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at σ = 1.5 (a,b) and σ = 10 (c,d) to compare with Fig. 5.2 and 5.4. 80
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periodic orbits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 5.7 Bifurcation diagram in (a, b, σ)-parameter space showing the trans-

formation of the primary homoclinic bifurcation curve H0, when it

starts to spiral towards the primary T-point T0 instead of making a
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cal axes) is made of 100 sweeps with {ki}
7
i=0 in the range 1.7418

(top)≤ σ ≤ 1.7439 (bottom). The P-point marks the location of

the branching saddle near σ ≈ 1.7428. (right) Sketch of a bifur-
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Figure 5.9 Chaotic mixing near the bridging saddle S (white dot in panel (a))

(see Fig. 5.2) is revealed using four {ki}
11
i=4-sweeps for varying σ val-

ues: (a) σ = 1.372, (b) σ = 1.352, (c) σ = 1.288 and (d) σ = 1.264.

As σ is changed, the symmetric T-points (with an identical binary

coding) above and below the saddle merge together, giving rise to

annular isolas. Compare with Fig. 5.10 and watch the supplemen-

tary movie in the Appendix. . . . . . . . . . . . . . . . . . . . . . 86

Figure 5.10 3D bifurcation structure near the bridging saddle S (see 2D bifur-
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CHAPTER 1

INTRODUCTION

The development and incorporation of new mathematical and computational tools is

essential to unravel the multifarious behaviors arising in Neuroscience and other com-

plex dynamical systems. Sensory, motor and cognitive functions are characterized by

rhythmic oscillations, whose dysfunction underlies brain disorders such as schizophre-

nia, epilepsy, autism, Alzheimer’s disease, and Parkinson’s disease. Understanding the

mechanisms regulating rhythmic activities can be helpful in designing therapeutic inter-

ventions for such conditions. Smaller structural and functional building blocks of neural

networks called ’motifs’ are seen in brain networks as well as complex central pattern

generators (CPGs) [1, 8–10] (see Fig. 1.1). A CPG is a small biological neural network

that determines and autonomously controls rhythmic oscillations underlying a variety of

physiological networks such as those controlling locomotion, respiration, sleep, heartbeat

and circulation [1, 11–23]. As networks evolve, grow and become more complex, addi-

tional elements are incorporated into the existing motifs, maximizing available number of

configurations and robustness of the networks [1,24–26]. A common constituent seen in

many known CPGs is a half-center oscillator (HCO), composed of two bilaterally symmet-

ric neurons that mutually inhibit each other, producing an alternating bursting pattern in

anti-phase. Multiple HCOs combine via inhibitory, excitatory and/or electrical synapses to

form more complex CPG networks, such as those seen controlling the swimming behav-

iors of sea slugs Melibe leonina and Dendronotus iris [17, 25, 27–32] (see Fig. 1.2). It is

important to understand the dynamical principles regulating individual neurons as well as

the basic motifs, to gain insights into the behaviors of larger networks.

The cooperative dynamics of coupled cells is an area of active ongoing research,

with both biological and phenomenological approaches employed [2,17,25,27–32]. While
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Figure (1.1) Structural motifs of sizes 3 and 4 (M = 3, 4) that occurred in significantly
higher numbers in the brain networks of Macaque and cat cortices. Image adapted with
permission and further details can be found in [1].

Figure (1.2) Swim CPGs of sea slugs Melibe leonina (left) and Dendronotus iris (right),
composed of multiple half-center oscillators that are interconnected by inhibitory, excita-
tory and electrical synapses. Image adapted with permission and further details can be
found in [2].

mathematical modeling studies at multiple levels starting from isolated neurons to small

networks and populations have provided valuable insights into the working principles of

biological neural networks [33–39], the basic principles of robustness and stability of many

CPGs observed in nature are yet poorly understood and cannot be inferred apriori. In this

thesis, we extend the existing techniques of dynamical systems theory for Neuroscience

by combining with modern computational approaches such as unsupervised machine

learning [40–46] to further our understanding of complex nonlinear network phenomena.

Recent advances in parallel processing and GPU computing [3–5, 47, 48] offer tremen-

dous performance improvements and make it possible to study problems in neuroscience
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and nonlinear dynamics that could not be solved earlier. We demonstrate how the tech-

niques developed are applicable to diverse disciplines of nonlinear science. The research

is truly inter disciplinary, spanning across the boundaries of neuroscience, applied dy-

namical systems, modeling, and computer science, and bridges some of the gap between

research communities. The broad goal of this research is to gain insights into the univer-

sality of rules underlying complex dynamics in diverse systems, with particular emphasis

on biological neural networks.

Simple phenomenological and biologically plausible models of isolated neurons can

show complex behaviors such as quiescence, tonic spiking, bursting with spike adding,

square wave bursting, plateau bursting, parabolic bursting, mixed mode oscillations and

chaotic dynamics [5, 25, 49–54]. Neural activity types, their transitions, as well as the

occurrence of chaos near the boundaries is described in Chapter 2. Existing techniques

such as spike counting, Lyapunov exponents, and parameter continuation can be used

to construct biparametric sweeps to identify some of these behaviors, bifurcations, and

transitions as parameters of the model are varied. But they are either largely time con-

suming or require great expertise. In addition, such tools are not readily applicable for

studying parametric transitions occurring in even small neural circuits such as half center

oscillators and CPGs. There is a dearth of simple and useful tools to study parametric

transitions underlying synergistic network dynamics [55–57]. It has been found through

parametric exploration that disparate combinations of intrinsic and extrinsic parameters

can result in almost identical network activity [58]. Approaches based on parametric opti-

mization based on a cost function can be employed to match model output to experimental

results, but they heavily depend on the cost functions, optimization algorithms, and initial

parameter values chosen [59]. We address these issues in Chapter 3 through a GPU-

based approach of symbolic dynamics that serves as a fast, robust and extensive means

to analyze activity types and identify transition boundaries in the parameter spaces of var-

ious models of isolated neurons and those of small neural circuits producing dedicated

rhythms. We demonstrate how symbolic approaches can be employed to model realis-



4

tic CPGs and emergent network phenomena in neural circuits, such as network bursting

arising from non-intrinsic bursting cells, through the bottom up reconstruction of a CPG

governing the swimming behavior of the sea slug Dendronotus iris.

It is an active area of research for both theoretical and experimental work on CPGs

to determine whether multiple stable rhythmic patterns are each regulated by dedicated

circuits, or the same circuit is capable of stably producing polyrhythmic behavior [2, 26,

38,60–65]. Input driven transitions between multiple stable attractors governing the CPG

dynamics may underlie rhythm switching between different stable patterns as seen in

gait switching in locomotion, transitions between swimming and crawling, and changes

in the direction of blood flow in leeches [24, 66–68]. In Chapter 4, we focus on such

multistable neural networks and briefly describe how Poinaré return maps were previously

employed to study the emergence of stable polyrhythms, and their transitions in 3-cell

networks. Then, we show how such return maps can be extended into higher dimensions,

in conjunction with unsupervised machine learning [40–46], to study multistability in 4-

cell and larger networks. We demonstrate the effects of changing network topologies,

as well as intrinsic and extrinsic factors on network dynamics, allowing us to generate

verifiable hypotheses for experimental neurophysiology. By combining these analytical

tools and computational approaches, we can deconstruct the operating rules for the co-

existence, stability and robustness of multiple rhythms in complex and modular CPGs,

and investigate how smaller constituent motifs can drive complex polyrhythmic behaviors

of modular networks.

In Chapter 5, we demonstrate the versatility and cross disciplinary nature of these

techniques including symbolic methods and GPU-based parametric sweeps. We elabo-

rate on the onset mechanisms of deterministic chaos due to complex homoclinic bifurca-

tions in diverse nonlinear systems with the Lorenz attractor [69,70,70–75,75–86], through

a particular example of a three level optically pumped laser model [87, 88]. By reducing

phase space dynamics to symbolic binary representations, we detect regions of simple

and complex dynamics, as well as fine organization structures of the latter in parameter
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space. We demonstrate how specific codimension-two bifurcations originate and pattern

regions of chaotic and simple dynamics. We show detailed computational reconstruc-

tions of key bifurcation structures such as Bykov T-point spirals and inclination flips in 2D

parameter space, as well as the spatial organization and 3D embedding of bifurcation

surfaces, parametric saddles, and isolated closed curves (isolas). The methodologies de-

veloped in these studies and their generality would promote novel ideas and approaches

for nonlinear science and modeling, with applications to biological, medical, and engineer-

ing systems.
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CHAPTER 2

NEURAL ACTIVITY AND COMPLEX DYNAMICS

In this chapter, we discuss several basic mechanisms of generic activity types such

as tonic spiking, bursting and quiescence in phenomenological and biologically plausi-

ble models of individual neurons, as well as the occurrence of chaos near the transition

boundaries between activity types, where the system may also become bi-stable. The

bifurcations underlying these transitions give rise to period-doubling cascades, various

homoclinic and saddle phenomena, torus-breakdown, and chaotic mixed mode oscilla-

tions in such neuronal systems. This chapter is edited with permission based on the

publication and further details can be found in [89].

2.1 Background

Neurons exhibit various activity regimes and state transitions that reflect their intrinsic

ionic channel behaviors and modulatory states. The fundamental types of neuronal ac-

tivity can be broadly defined as quiescence, subthreshold and tonic spiking oscillations,

as well as bursting composed of alternating periods of spiking activity and quiescence.

A single neuron can endogenously demonstrate various bursting patterns, varying in re-

sponse to the external influence of synapses, or to the intrinsic factors such as channel

noise. The co-existence of bursting and tonic spiking, as well as several different bursting

modes have been observed in modeling [90–94] and experimental [95–97] studies. This

complexity enhances the flexibility of the nervous and locomotive systems [98].

The functional role of chaotic behaviors, and the dynamical and bifurcational mech-

anisms underlying their onset at transitions between neural activity types like spiking,

bursting and quiescence, have been the focus of various theoretical and experimental

studies. Bursting is a manifestation of multiple time scale dynamics, composed of repeti-
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tive fast tonic spiking and a slow quiescent phase. It has been observed in various fields of

science as diverse as food chain ecosystems [99], nonlinear optics [100], medical studies

of the human immune system [101], and neuroscience [102]. Various bursting patterns,

whether regular or chaotic, endogenous or as emergent network phenomena, are the nat-

ural rhythms generated by central pattern generators (CPG) [103–107]. CPGs are neural

networks made up of a small number of constituent neurons that often control various vi-

tal repetitive locomotive functions [105] such as walking and respiration of humans, or the

swimming and crawling of leeches [108–111]. Polyrhythmic bursting dynamics have also

been observed in multifunctional CPG circuits that produce several coexisting stable os-

cillatory patterns or bursting rhythms, each of which is associated with a particular type of

locomotor activity of the animal [24,28,112]. Bursting has also been frequently observed

in pathological brain states [113, 114], in particular, during epileptic seizures [115, 116].

Neurons in bursting modes differ in their ability to transmit information and respond to

stimulation from those in tonic spiking mode and therefore play an important role in infor-

mation transfer and processing in normal states of the nervous system.

Understanding and modeling the generic mechanisms regulating the neuronal con-

nectivity and the transitions between different patterns of neural activity, including global

bifurcations occurring in neuron models and networks, pose fundamental challenges for

mathematical neuroscience, with a number of open problems [117]. The range of bifur-

cation and dynamical phenomena underlying bursting transcends the existing state of the

theory [6, 118–127]: this includes the blue sky catastrophe [128, 129], torus-canard for-

mation and breakdown, and homoclinic inclination/orbit-flip bifurcations, all of which can

occur on the transition route to bursting in most square-wave and elliptic bursters. Stud-

ies of bursting require nonlocal homoclinic bifurcation analysis, which is often based on

the Poincaré return mappings [130]. Return mappings have been employed for computa-

tional neuroscience in [131–134]. A drawback of mappings constructed from time series

is sparseness, as they reflect only the dominating attractors of a system. In some cases,

feasible reductions to one or two dimensional mappings can be achieved through slow–
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fast scale decomposition of the phase variables for the system [135]. A new, computer

assisted method for constructing a complete family of onto mappings for membrane poten-

tials, for a better understanding of simple and complex dynamics in neuronal models, both

phenomenological and of the Hodgkin–Huxley type [136], was proposed in [137]. With

this approach one can study, for example, the spike-adding transitions in the leech heart

interneuron model, and how chaotic dynamics in between is associated with homoclinic

tangle bifurcations of some threshold saddle periodic orbits [54]. Qualitative changes in

a system’s activity at transitions often reveal the quantitative information about changes

of certain biophysical characteristics associated with the transition. This approach has

proven to be exemplary in neuroscience for understanding the transitions between silence

and tonic-spiking activities [138]. Moreover, knowledge about the bifurcation (transition)

predicts cooperative behavior of interconnected neurons of the identified types [139].

In this chapter, we discuss nonlocal bifurcations in generic, representative models

of neurodynamics, described by high order differential equations derived through the

Hodgkin-Huxley formalism. We consider neuroscience-related applications to reveal a

multiplicity of causes and their bifurcation mechanisms leading to the onset of complex

dynamics and chaos.

2.2 Neuronal activities and transition mechanisms

This Chapter deals with phenomenological and biologically plausible neuronal mod-

els that can produce complex and distinct dynamics such as tonic spiking, bursting, qui-

escence, chaos, and mixed-mode oscillations (MMOs) representing fast spike trains alter-

nating with subthreshold oscillations. MMOs are typical for many excitable systems de-

scribing various (electro)chemical reactions, including the famous Belousov-Zhabotinky

reaction, and models of elliptic bursters [140]. Geometrical configurations of slow-fast

neuron models for bursting were pioneered in [138, 141, 142] and further developed

in [143–145]. Dynamics of such singularly perturbed systems are determined by and

centered around the attracting pieces of the slow motion manifolds. These are composed
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of equilibria and limit cycles of the fast subsystem [146–153], that in turn constitute the

backbones of bursting patterns in a neuronal model. Using the geometric methods based

on the slow-fast dissection, where the slowest variable becomes a control parameter, one

can detect and follow the branches of equilibria and limit cycles in the fast subsystem. The

slow-fast decomposition allows for drastic simplification, letting one clearly describe the

dynamics of a singularly perturbed system. A typical Hodgkin-Huxley model possesses

a pair of such manifolds [142, 152]: quiescent and tonic spiking, respectively. The slow-

fast dissection has been proven effective in low-order mathematical models of bursting

neurons far from the bifurcation points. However, this approach does not account for the

reciprocal, often complex interactions between the slow and fast dynamics, leading to the

emergence of novel dynamical phenomena and bifurcations that can only occur in the

whole system. Near such activity transitions, the bursting behavior becomes drastically

complex and can exhibit deterministic chaos [6,123,124,154–159].

2.2.1 Slow-fast decomposition

Many Hodgkin-Huxley type models can be treated as a generic slow-fast system

x′ = F(x, z) z′ = µG(x, z, α), (2.1)

where 0 < µ � 1, x ∈ Rn, n ≥ 2, and z is a scalar, or can be a vector in R2 (as in the

extended Plant model with two slow variables below); α is a control parameter shifting the

slow nullcline, given by G(x, α) = 0, in the phase space. In the singular limit µ = 0, the

z-variable becomes a parameter of the fast subsystem to detect and continue the equilib-

rium state (ES), given by F(x, z) = 0, and the limit cycles (LC) of the fast subsystem. As

long as they (ES/LC) remain exponentially stable, by varying z one can trace down the

smooth invariant manifolds in the phase space of (2.1) such as Meq with the distinct Z-

shape typical for many Hodgkin-Huxley type models (see Fig. 2.1), while the limit cycles

form a cylinder-shaped surface Mlc. Locally, either is a center manifold for (2.1) persisting

in a closed system, in virtue of [146–148]. The stable upper and lower branches of Meq
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correspond to the de- and hyperpolarized steady states of the neuron, respectively. Folds

on Meq correspond to the saddle-node equilibrium states of the fast subsystem. The

unstable de-polarized branch of Meq can be enclosed by the tonic-spiking manifold Mlc

typically emerging through an Andronov-Hopf bifurcation and terminating through a ho-

moclinic bifurcation, which are the key features of the fast-subsystem of the square-wave

bursters [49], like the Hindmarsh-Rose model [160] and the Chay model [133] (discussed

below).

2.2.2 Poincaré mappings

To elaborate on the nature of complex oscillations like bursting and their evolutions,

one needs to examine nonlocal bifurcations that often require the use of Poincaré return

maps [131–133, 155, 161–165]. An obvious drawback of maps constructed from voltage

time series is in their sparseness, as they can typically reveal some point-wise attractors

of the system that trajectories fast converge to, unless there is a noise or small perturba-

tions are added to get a more complete picture of the underlying structure. In some cases,

a feasible reduction to low-dimensional mapping can be achieved through slow–fast scale

decomposition of slow phase variables [128,130,135]. We proposed and developed a new

computer assisted algorithm for constructing a dense family of onto mappings for mem-

brane potentials in a Hodgkin–Huxley type neuronal model [125]. Such maps let us find

and examine both the stable and unstable solutions in detail; moreover, unstable points

are often the primary organizing centers globally governing the dynamics of the model in

question. The construction of such a map begins with the localization of the tonic spiking

manifold Mlc in the model, using the parameter continuation technique or the slow-fast

dissection, see Fig. 2.1. Then, a curve on Mlc is defined, which corresponds to minimal

(maximal) voltage values, denoted, say, by V0. By construction, the 1D map M takes all

V0 (outgoing solutions integrated numerically) on this curve back onto itself, after a single

turn around Mlc, i.e., M : V0 → V1 for a selected value of the parameter. Two such maps

are depicted in Figs. 2.1 and 2.2. One can see that these are non-invertible [166,167], uni-
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modal maps with a single critical point [168,169], which happens to be a universal feature

of many other square-wave bursters in neuroscience applications. With such maps, one

can fully study the attractors, the repellers and their bifurcations, including saddle-nodes,

homoclinic orbits, spike-adding, and period-doubling. We note that detection of homoclin-

ics of a saddle periodic orbit in the phase space of a model is in general state-of-the art

and the Poincaré map technique allows us to locate them with ease.

2.2.3 Classifications of bursting

The existing classifications [138, 141–145] of bursting are based on the bifurcation

mechanisms of dynamical systems in a plane, which initiate or terminate fast trajectory

transitions between the slow motion manifolds in the phase space of the slow-fast neu-

ronal model. These classifications allow us to single out the classes of bursting by subdi-

viding mathematical and realistic models into the following subclasses: elliptic or Hopf-fold

subclass (FitzHugh-Rinzel [140] and Morris-Lecar models), square-wave bursters or fold-

homoclinic subclass (Hindmarsh-Rose model [52,126], models of pancreatic β-cells, cells

in the pre-Botzinger complex, as well as intrinsically bursting and chattering neurons in

neocortex); parabolic or circle-circle subclass (model of R15 cells in the abdominal gan-

glion of the mollusk Aplysia [93, 112], the reduced leech interneuron model at certain

parameter values); and fold-fold subclass, or top hat models [170], including the reduced

heart interneuron model (2.3) discussed below.

2.2.4 Transition routes

The current description of the transition routes between tonic spiking and bursting

activities is incomplete and remains a fundamental problem for both neuroscience and

the theory of dynamical systems. The first theoretical mechanism revealed in [154], ex-

plained chaos in the so-called square wave bursters [142] emerging between tonic-spiking

and bursting. Later, two global bifurcations that occur at the loss of stability of a tonic spik-

ing periodic orbit through quite novel homoclinic saddle-node bifurcations, were discov-
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ered and explained. The first transition, reversible and continuous, found in the reduced

model of the leech heart interneuron [6,122] and in a modified Hindmarsh-Rose model of

a square-wave burster [126, 130], is based on the blue sky catastrophe [130, 171–174].

This was proven in [128] to be a typical bifurcation for slow-fast systems. This strik-

ing term [175], the blue sky catastrophe, stands for a novel bifurcation of a saddle-node

periodic orbit with a 2D unstable manifold returning to the orbit making infinitely many rev-

olutions. After the bifurcation, this homoclinic connection transforms into a long bursting

periodic orbit with infinitely many spikes. The burst duration of the orbit near the transition

is evaluated by 1/
√
α, where 0 < α � 1 is a bifurcation parameter. The second transition

mechanism is due to a saddle-node periodic orbit with non-central homoclinics [176]. An

important feature of this transition is the bi-stability of co-existing tonic spiking and burst-

ing activities in the neuron model, see Fig. 2.1. In this case, the burst duration towards the

transition increases as fast as | ln(α)|. Another feature of this bifurcation is the transient

chaos where the neuron generates an unpredictable number of burst trains before it starts

spiking tonically. This phenomenon is a direct consequence of the Smale horseshoe fi-

nite shift dynamics in the system [177], which is a rather atypical phenomenon for such

slow-fast systems.

2.3 Chaos in neuron models

In this section, we present the basic mechanisms and routes to chaos in a variety

of biophysically realistic neuronal models exhibiting rich and complex dynamics including

tonic spiking, bursting and quiescence. A bifurcation describing a transition between neu-

ronal activities typically occurs near saddle (unstable) orbits and results from reciprocal

interactions involving the slow and fast dynamics of the model. Such interactions lead to

the emergence of new dynamical phenomena and bifurcations that can occur only in the

full model, but not in either of the slow or the fast subsystem. Chaotic dynamics can be

characterized by unpredictable variations in the number of spikes during the active phases
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Figure (2.1) (A1) Bistability of the coexisting tonic-spiking and bursting in the 3D phase
space of the leech heart interneuron model (2.3). Inset A2 depicts the shape of the
corresponding 1D Poincaré map with stable fixed point corresponding to the tonic spiking
periodic orbit (purple) with a single voltage minima, and period-7 bursting orbit, and 2
unstable fixed points (red): the right one separates attraction basins of tonic-spiking (A4)
and bursting A3) activities, whereas the left one causes chaotic dynamics at spike adding
transitions, see Fig. 2.2.

of bursting and/or the subthreshold oscillations. This phenomenon of chaotic dynamics is

generally atypical in slow-fast systems as it occurs within narrow parameter windows only

near the transition boundaries. Indeed, robust and regular dynamics of slow–fast neuron

models contrast those of real bursting neurons exhibiting a phenomenal time dependent

variability of oscillatory patterns.
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Figure (2.2) (A) Chaotic bursting in the phase space of the leech heart interneuron model
(2.3) and the corresponding map (B) at a transition between two and three spikes per burst
in the voltage trace (C) due to proximity of the primary homoclinic orbit of the repelling
fixed point (red) corresponding to a single minimum of the saddle periodic orbit (red) in
(A).

2.3.1 Leech heart interneuron model: period doubling cascades and the blue sky

catastrophe

We first illustrate and discuss the onset of chaotic dynamics in the reduced (3D)

model of the leech heart interneuron (see equations (2.3) of Appendix). This is a typ-

ical slow-fast Hodgkin-Huxley type (HH) model describing the dynamical interplay of a

single slow variable – persistent potassium current, IK2, and two fast variable – the

sodium current, INa and the membrane voltage V that can be recast in this generic

form [49,53,122,123]:

CV ′i = −
∑

j

I j −
∑

i

Isyn
i , τh h′ = f∞(V) − h, (2.2)
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Figure (2.3) Bi-parametric sweep of the leech heart interneuron model (2.3) using the
symbolic toolkit Deterministic Chaos Prospector [3–5] to process wave-form traces and to
reveal regions of quiescent behavior, tonic spiking, as well as bursting activity with spike
adding cascades: from 2 spikes (orange zone) to 3 spikes (yellowish zone), next to 4
spikes (light green zone) and so forth. The noisy regions near the boundaries of spike
addition reveal the occurrence of chaos, while the noisy boundary between tonic spiking
and bursting portrays the blue sky catastrophe [6] corresponding to infinitely long bursting.

where C is a membrane capacitance, V is a transmembrane voltage, I j stands for various

in/outward currents including synaptic ones, 0 ≤ h ≤ 1 stands for a gating (probability)

variable, f∞ is a sigmoidal function, and τh is a time scale, fast or slow, specific for specific

currents.

This model shows a rich set of dynamics and can produce various types of complex

chaotic and bistable behaviors, including the period-doubling cascade en a route from

tonic spiking through bursting [6,124], as well as various types of homoclinic chaos. Fol-

lowing the period-doubling cascade, the model demonstrates a terminal phase of chaotic

tonic spiking that coexists alongside another periodic tonic spiking activity. For a different

set of parameter values compared to the period doubling cascade, the model can also ex-
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hibit the blue sky catastrophe as a continuous and reversible mechanism of the transition

between bursting and tonic spiking. Fig. 2.1 explains the nature of bi-stability in this model

as it exhibits the co-existing tonic-spiking and bursting oscillations corresponding to the

stable fixed point (FP) (purple) and the period-7 orbit in the 1D map, whose basins are

separated by an unstable FP representing a saddle periodic orbit (red) on the 2D manifold

Mlc in the 3D phase space. The role of the other unstable (red) FP is revealed by Fig. 2.2.

It is shown that the spike-adding in bursting is accompanied with an onset of chaotic dy-

namics orchestrated by the homoclinic orbits and bifurcations involving the other saddle

orbit, see more details in [49, 52–54, 129, 140, 160]. Fig. 2.3 shows the bifurcation dia-

gram of the system constructed as a parametric sweep using our previously developed

symbolic toolkit called the Deterministic Chaos Prospector [3–5] to process symbolic se-

quences extracted from wave-form traces and analyze activity types and underlying bifur-

cations. This bifurcation diagram identifies the regions of quiescence, tonic spiking, as

well as bursting with spike adding cascades. The noisy regions near the boundaries of

spike addition reveal the occurrence of chaos. In addition, the blue sky catastrophe takes

place at the noisy region near the boundary between bursting and tonic spiking.

2.3.2 Chaotic mixed-mode oscillations in the extended Plant model

The conductance-based Plant model of endogenous parabolic bursters was origi-

nally developed to model the R15 neuron in the abdominal ganglion of the slug Aplysia

Californica [93]. This was later extended and adapted to model the swim CPG of the

sea slug Melibe Leonina, see [112] for details of the model and the equations. This

model can produce chaotic bursting activity, as shown in Fig. 2.4A near the boundary be-

tween tonic spiking and bursting activity. In addition, the model exhibits complex chaotic

mixed mode oscillations (MMOs) near the transition between bursting and the co-existing

hyper-polarized quiescence state. Fig. 2.4B illustrates the model generating spike-varying

bursts and small amplitude sub-threshold oscillations. Such chaotic MMOs coexist with a

hyperpolarized quiescent state resulting in bistability due to a subcritical Andronov-Hopf
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Figure (2.4) The extended Plant model can exhibit chaotic bursting near the boundaries
of tonic spiking and bursting with spike-adding (A) as well as bistability with chaotic mixed
mode oscillations (green) and hyperpolarized quiescence (red) near the transitions be-
tween bursting with spike-adding and hyperpolarized quiescence (B). The corresponding
phase space projection of the bistable states of (B) are shown in (C). Following a subcrit-
ical Andronov-Hopf bifurcation, a saddle periodic orbit (not seen) separates the chaotic
mixed mode bursts (green) from the hyperpolarized quiescent state with spiral conver-
gence (red).

bifurcation that gives rise to a saddle periodic orbit whose stable manifold separates the

chaotic bursting activity (green) from the stable (spiraling) hyperpolarized quiescent state

(red) as shown in Fig. 2.4C. As the parameters are varied gradually the system transitions

from this bistable state to the monostable hyperpolarized quiescence, or vice verse to a

dominant bursting activity.
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Appendix

Leech heart interneuron model

The reduced leech heart model is derived using the Hodgkin-Huxley formalism:

C V ′ = −INa − IK2 − Ileak + Iapp,

τNah′Na = h∞Na(V) − h,

τK2m′K2 = m∞K2(V) − mK2,

(2.3)

with

Ileak = 8(V + 0.046), IK2 = 30 m2
K2(V + 0.07), INa = 200[m∞Na(V)]

3 hNa (V − 0.045),

and where V is the membrane potential, C = 0.5; hNa is a fast (τNa = 0.0405 sec) activation

of INa, and mK2; IL describes the slow (τK2 = 0.25 sec) activation of IK2, Iapp is an applied

current. The steady states h∞Na(V), m∞Na(V), m∞K2(V), of the of the gating variables are given

by the Boltzmann equations given by

h∞Na(V) = [1 + exp(500(0.0333 + V))]−1,

m∞Na(V) = [1 + exp(−150(0.0305 + V))]−1,

m∞K2(V) = [1 + exp (−83(0.018 + Vshift
K2 + V))]−1.

(2.4)

The bifurcation parameter Vshift
K2 of the model is a deviation from the experimentally deter-

mined voltage V1/2 = 0.018V corresponding to the half-activated potassium channel, i.e. to

m∞K2(0.018) = 1/2. In its range Vshift
K2 is [−0.025; 0.0018]V the upper boundary corresponds

to the hyperpolarized quiescent state of the neuron, whereas the model produces spiking

oscillations at the lower end Vshift
K2 values and bursts in between.
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CHAPTER 3

SYMBOLIC METHODS FOR NEURAL DYNAMICS AND EMERGENT NETWORK

BEHAVIORS

In this chapter, we present an approach based on the symbolic dynamics of volt-

age wave forms and parametric sweeps to study complex bahaviors arising in models of

individual neurons and rhythmic neural circuits, as we vary intrinsic cell properties and ex-

ternal parameters that can be controlled in neurophysiological experiments with dynamic

clamp. We analyze diverse activity types in isolated neurons such as tonic spiking, qui-

escence, or intrinsic bursting, and determine their bifurcation boundaries. We show how

chaotic behavior can arise near activity transitions. Using an extended encoding scheme

for coupled neurons, we demonstrate emergent network phenomena that can not be read-

ily inferred from individual neuron properties. We demonstrate how a half-center oscillator

(HCO), composed of two mutually inhibiting neurons, can produce anti-phase bursting os-

cillations, even when individual cells are not intrinsic bursters, as is seen in experimental

neurophysiology. This is followed by the bottom up reconstruction of a 4-cell circuit, mod-

eled after the swim central pattern generator (CPG) of the sea slug Dendronotus Iris. We

build the circuit from the bottom up, starting from individual cells, to pairs of HCO oscilla-

tors, all the way up to the fully connected 4-cell circuit with multiple inhibitory, excitatory

and electrical synapses. Through detailed parametric sweeps, we find appropriate model

parameters to replicate experimentally determined CPG behavior of emergent 4-cell net-

work bursting, where neither the individual cells nor the HCO pairs can themselves sustain

bursting, without the synergistic interactions of excitation, inhibition and electric coupling

in the full circuit.
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3.1 Background

Common structural and functional building blocks of neural networks are seen in

brain networks [1,8–10] as well as complex central pattern generators (CPGs). CPGs are

rhythmic neural circuits that can control motor output, independent of rhythmic sensory

feedback or input from higher centers. CPGs are seen in a variety of physiological net-

works such as those controlling walking, crawling, swimming, respiration, heartbeat, and

digestion. [1, 11–23, 178]. A pair of bilaterally symmetric neurons with mutual inhibition

resulting in anti-phase bursting, called a half-center oscillator (HCO), is commonly seen

across various CPGs. Multiple HCOs may also interact through electrical and chemical

synapses to form complex CPG networks like the swim CPGs of sea slugs Melibe leon-

ina and Dendronotus iris [2, 17, 25, 27–32, 179, 180]. As networks grow, such building

blocks are preserved and adapted for optimal network configurations [1, 24–26]. Sim-

ple and biologically relevant isolated neuron models can themselves show a variety of

complex behaviors including quiescence, tonic firing, bursting with spike adding, square

wave / plateau / parabolic bursting, chaotic spiking / bursting and mixed mode oscilla-

tions [5,25,49–54]. Dynamics analysis of individual neurons and the basic building blocks

of neural circuits is important to discern complex network behaviors. Previous modeling

studies of isolated neurons, neural circuits producing dedicated or multistable rhythms,

and neural populations provided valuable insights into the working principles of biological

neural networks. [24,33–39,181,182]. Simple and useful tools to study parametric transi-

tions of synergistic network dynamics are lacking [55–57]. Studies employing parametric

exploration have shown that disparate combinations of intrinsic and extrinsic parameters

can result in almost identical network activity [58]. Approaches based on parametric opti-

mization based on a cost function can be employed to match model output to experimen-

tal results, but they heavily depend on the cost functions, optimization algorithms, and

initial parameter values chosen [59]. Techniques such as spike counting, Lyapunov expo-

nents, or parameter continuation can be used to construct biparametric sweeps (such as
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Fig. 3.3) for isolated neuron models and perform a detailed analysis of their behaviors, bi-

furcations, and transitions [5,51,52]. But they are either largely time consuming or require

great expertise. In addition, such tools are not easily applicable for studying parametric

transitions occurring in half center oscillators and more complex CPGs. In this chapter, we

address these issues through a GPU-based approach of symbolic dynamics that serves

as a fast, robust and extensive means to analyze activity types and identify transition

boundaries in the parameter spaces of various models of isolated neurons and neural

circuits. This approach is an extension of our previously developed toolkit called Deter-

ministic Chaos Prospector (DCP) and is adapted for neurons and networks [3–5, 183].

DCP was previously employed to study the universal principles of homoclinic and hete-

roclinic bifurcations of saddle equilibria in Lorenz-like systems, and to detect regions of

simple and chaotic dynamics in the parameter space [64,184,185,185–187]. Preliminary

results for individual neuron models were presented in [5]. In the following sections, we will

describe symbolic encoding using a simple partitioning scheme based on voltage values

and time intervals between successive events, such as spiking or sub-threshold oscilla-

tions, obtained from voltage wave-form trajectories of neurons. We will demonstrate how

this approach can be used to study the dynamics of the extended Plant model with non-

intrinsic bursting, used to model the swim CPG of the sea slug Melibe Leonina [65]. This

model was adapted from the conductance-based Plant model of endogenous parabolic

bursters, originally used to model the R15 neuron in the abdominal ganglion of the sea

slug Aplysia Californica [188]. We show the activity regimes of the extended model based

on changes in intrinsic cell properties. We will then demonstrate how a HCO composed of

two such non-intrinsic bursters can give rise to emergent network bursting. This is impor-

tant to model experimental data, where often network bursting is observed in intrisically

tonic spiking cells [2,31,65,179,180]. This is followed by the description of further modifi-

cations in the extended Plant model, to produce qualitatively similar dynamics as seen in

the swim CPG of the sea slug Dendronotus Iris [2,31,65,179,180]. We employ detailed bi-

parametric sweeps of intrinsic cell properties as well as external parameters chosen such
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that they can be controlled in neurophysiological experiments through dynamic clamp. A

bottom up reconstruction of its simplified 4-cell circuit, with multiple inhibitory, excitatory

and electrical synapses, that mimics experimentally determined CPG behavior is pre-

sented, starting from individual cells, to pairs of HCO oscillators, all the way up to the

fully connected 4-cell circuit, with emergent network bursting. Neither the individual cells

nor the HCO pairs can themselves sustain bursting, without the synergistic interactions of

excitation, inhibition and electric coupling.

3.2 Methods

3.2.1 Symbolic dynamics of neurons and circuits

Figure (3.1) (A) Symbolic partitions for a complex mixed-mode chaotic bursting trace in
the extended Plant model. Using Vbins = [−60,−40, 10]mV (purple dashed lines) results
in a set of 4 symbols (a ≤ −60 < b ≤ −40 < c ≤ 10 < d). A short segment within a
burst is magnified in (B), showing two spikes, with corresponding descriptions of maximal
and minimal voltage events (purple dots). Using Vbins, this segment is encoded as (dbdb)
(in purple). The encoding is (qpqpq) (in gray) if we use Tbins = [100]ms, resulting in a
set of 2 symbols (p ≤ 100 < q), for the time intervals between successive events (gray
dashed lines enclosing spikes). A combination of both partitions gives a detailed symbolic
sequence (qdpbqdpbq).

Our method of symbolic encoding is inspired from experimental neurophysiology,

where voltage wave-forms are usually the only observables available. One simple way to



23

Figure (3.2) Symbolic encoding of anti-phase bursting oscillations in a HCO composed
of a pair of the extended Plant model cells, that mutually inhibit each other (left). We use
Vbins = [10]mV to detect all maximal events above this threshold (purple dots), and Tbins =

2.5s to encode the intervals between successive events (gray vertical lines), resulting in
the symbols (a ≤ 2.5 < b) for cell 1 and (c ≤ 2.5 < d) for cell 2. When the first spike of
a burst is encountered for cell 1, it is marked by the symbol b > 2.5. The second spike
is marked by the symbol a < 2.5. Successive spikes within the burst (to be marked a,
otherwise) are omitted, to avoid conflicts when cells in the network have overlapping burst
durations. Thus the repeating anti-phase bursting oscillations in the HCO are encoded as
(dcba).

construct a partitioning scheme is to break a voltage wave-form into equally spaced time-

bins, shorter than the typical duration of a spike. Within each bin, we observe whether

there is a spike, and mark its presence or absence using the symbols 1 and 0. Thus, a

continuous voltage trace can be converted into a binary sequence. Another partitioning

scheme can identify events of maximal and minimal voltage values in the trace. Whenever

a maximal value above the firing threshold is detected, it is marked by the symbol 1, while

a minimal value detected below the threshold is marked by the symbol 0. This approach

is similar to spike counting, for a typical square-wave burster without sub-threshold oscil-

lations. For our analysis, we employ a multi-bin symbolic partitioning scheme using both

voltage and timing information to identify a variety of neuronal dynamics including qui-

escence, tonic spiking, spike addition, square-wave bursting, plateau-busting, parabolic

bursting, mixed-mode oscillations, quasi-periodicity and chaos. Depending on the scope

of investigation, one may appropriately choose as many symbols as needed, as described
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below. Fig. 3.1 shows a chaotic bursting trace recorded in the extended Plant model [65]

(described in the following sections), with unpredictable numbers of both spikes per burst

as well as sub-threshold oscillations separating such bursts. We compute all the events

corresponding to maximal and minimal voltage values (red dots in Fig. 3.1), and the time

intervals between successive events (vertical gray dashed lines). Using voltage and time

interval partitions, Vbins and Tbins, we map the event and timing information from the trajec-

tory into a sequence of symbols. For Vbins = [−60,−40, 10]mV (red dashed lines), we get

four symbols (a ≤ −60 < b ≤ −40 < c ≤ 10 < d), corresponding to quiescence or burst ter-

mination, sub-threshold oscillations, plateau burst, and spiking, respectively. On the other

hand, using Tbins = [100]ms, results in a set of 2 symbols, (p ≤ 100 < q), representing suc-

cessive events of maxima/minima that are separated by a duration shorter or longer than

100ms, respectively. The symbolic representation of the short magnified segment of two

spikes from inside a burst shown in Fig. 3.1B, using Vbins, Tbins, and a combination of both,

are given by (dbdb) (red), (qpqpq) (gray) or (qdpbqdpbq), respectively. Using an overbar

to represent repeating sequences, a tonic spiking trace similar to this segment can be

marked as (db), (qp) or (qdpb). Similarly, a bursting trajectory with 3 spikes and no MMOs

can be shown as (dbdbda). Since there is no limit on the number of symbols that can

be used with DCP, we can incorporate disparate symbol sets to simultaneously analyze

the voltage traces of multiple cells within a circuit and study network rhythms, using these

same techniques. Fig. 3.2 shows a HCO composed of a pair of the extended Plant model

cells, mutually inhibiting each other. The modified symbolic encoding scheme for the anti-

phase bursting rhythm in the network is shown. We use a combination of Vbins = [10]mV

and Tbins = [2.5]s, with relatively loosely defined criteria compared to the encoding of

isolated cells, in order to allow for some variability in spike timing across cells, while pro-

ducing stable rhythms. All maximal events (purple dots) in voltage above the threshold

of Vbins are detected. The time intervals between successive events (gray vertical lines)

is computed and encoded using Tbins. The symbols (a ≤ 2.5 < b) are used for cell 1 and

(c ≤ 2.5 < d) for cell 2. When the first spike of a burst is encountered for cell 1, it is marked
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by the symbol b > 2.5s. The second spike is marked by the symbol a < 2.5s. Succes-

sive spikes within the burst (to be marked a, otherwise) are omitted, to avoid spike timing

conflicts when cells in the network have overlapping burst durations. Thus the repeating

anti-phase bursting oscillations in the HCO are encoded as (dcba). We also measure and

keep track of the average number of spikes per burst, when there is a well defined rhythm,

or the total spikes, if there is no network bursting. Since this study deals with dedicated

circuits producing a single stable network rhythm, these set of loose criteria are sufficient

as demonstrated below. For multifunctional circuits, an appropriate combination of the

partitions and other criteria must be chosen to account for multiple phase locked states.

For the Dendronotus model described below, we use Vbins = [10]mV to detect maximal

events and Tbins = [1]s for burst detection.

3.2.2 Biparametric sweeps

Biparametric sweeps such as Fig. 3.3 are obtained by computing long voltage traces

of individual neurons or networks, as two parameters are varied across a grid. We use

the fourth order Runge-Kutta method with fixed step size for numerical integration. The

computation of these trajectories is parallelized on separate GPU threads using CUDA.

Visualization is performed in Python. Appropriate combinations of Vbins, Tbins and other

criteria are chosen for symbolic encoding. Long-term behaviors of solutions are analyzed

after omitting long transients. All shift-symmetric periodic sequences are normalized using

a one-way hash function that produces identical hash value for all circular variations of a

periodic sequence [189]. For example, the HCO burst in 3.2 can be represented by any

of (dcba), (cbad), (badc) or (adcb), depending upon the length of the omitted transient. All

of these are normalized to result in the same numerical hash value. Parameters resulting

in topologically identical behaviors, result in the same hash value, and are shown in the

same colors in the sweep. Chaotic traces are marked by aperiodic symbolic sequences,

which are processed using the Lempel-Ziv (LZ) compression algorithm [4,190] to measure

its complexity. The algorithm works by scanning a string, and adding new words to its
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vocabulary continuously. The size of LZ-vocabulary towards the end, normalized by the

length of the string, is used as the complexity measure. These are represented in the bi-

parametric sweeps in gray shades, with darker gray representing greater LZ-complexity

and greater instability. For biparametric sweeps of a HCO, we also track the average

number of spikes per burst and enrich the sweep with this data (Fig. 3.5) when network

burst is detected. When it not detected, the total number of spikes in each of cells 1 and

2 is used to differentiate between tonic spiking state, one cell suppressing the other, or

quiescence (Fig.3.6). For the Dendronotus network, this is done using the spike numbers

of cells 3 and 4, to determine the behavior of their HCO, as they undergo external synaptic

influence from cells 1 and 2. Several biparametric sweeps can be evaluated and inspected

together, as additional parameters are varied, as seen in 3.10 with additional third and

fourth parameters. Compare this with 3.11 to see the affects of a fifth parameter. All

the techniques and methods developed are open source and freely available at https:

//bitbucket.org/pusuluri_krishna/deterministicchaosprospector/

3.3 Extended Plant model

The equations of the extended Plant model [65] used for the swim CPG of the sea

slug Melibe Leonina are given below:

ÛV = −INa − IK − ICa − IKCa − Ih − Ileak − Isyn

ÛCa = ρ[Kc x(VCa − V + Cashi f t) − Ca]

Ûx = ((1/(e0.15(−V−50+xshi f t ) + 1)) − x)/τx

Ûz = [z∞(V) − z]/τz(V),where z = h, n, y (3.1)

This is a conductance based model employing the Hodgkin-Huxley formalism, with

fast inward sodium current INa, outward potassium current IK , slow TTX-resistant calcium

current ICa and an outward calcium sensitive potassium current IKCa. In addition, there

are also the generic ohmic leak current Ileak , h-current Ih, and synaptic current Isyn (due

https://bitbucket.org/pusuluri_krishna/deterministicchaosprospector/
https://bitbucket.org/pusuluri_krishna/deterministicchaosprospector/
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Figure (3.3) (A) Biparametric sweep of the extended Plant model showing a variety of
activity types and transitions as the intrinsic properties of the cell are varied. Bursting,
quiescence and tonic spiking are depicted in Fig. 3.4A and B. Chaotic (gray regions) spik-
ing/bursting occurring near the boundary between bursting and tonic spiking is magnified
in B and a sampled trajectory is shown in Fig. 3.4D. Chaotic mixed mode oscillations oc-
curring near the boundary between bursting and quiescence are magnified in C, with a
sampled trajectory depicted in Fig. 3.4C. Black dots near the bottom boundary between
tonic spiking and quiescence in A mark four different sets of parameter values (left to right
for Fig. 3.5 A to D) sampled for emergent HCO bursting from non-intrinsic bursters shown
in Fig. 3.5.

to one or more presynaptic neurons). Ca describes the intracellular calcium concentration

given by the slowest equation. h, x, n, and y represent the inactivation, slow activation,

inactivation gating and h-current activation variables, respectively. Compared to the orig-

inal Plant model of parabolic bursters for R15 neurons [188], two additional bifurcation

parameters Cashi f t and xshi f t were introduced for Melibe swim interneurons, which do not

burst in isolation. The parameter Cashi f t serves as an intrinsic parameter controlling the
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Figure (3.4) Repertoire of activity types shown by the extended Plant model. (A) Bursting
with 10 spikes per burst (blue) and quiescence (red, shifted downwards by 25mV) (B)
Tonic spiking (C) Bistability with chaotic mixed mode oscillations (blue) and hyperpolar-
ized quiescent state (red, shifted downwards by 25mV) with spiral convergence, with the
corresponding phase space projection shown in (E). The bistable states are separated
by a saddle periodic orbit (not seen) that emerges following a subcritical Andronov-Hopf
bifurcation. (D) Chaotic spiking/bursting

reversal potential of Calcium, which is known to vary between 80mV to 140mV . The sec-

ond parameter xshi f t modifies the dynamics of the slow variable x and is used to eliminate

bursting or hysteresis in the model. At Cashi f t = xshi f t = 0, the system is similar to the

original Plant model with intrinsic bursting. Further details of the model can be found

in [65].

3.3.1 Isolated cell dynamics

Fig. 3.3 shows the biparametric sweep of the extended Plant model, depicting var-

ious activity types and transitions, as the intrinsic properties of the cell are varied. The

model can exhibit bursting with spike adding, quiescence and tonic spiking, as well as two

different modes of chaotic behavior. Example trajectories for different activity types are

shown in Fig. 3.4. Near the boundary between tonic spiking and bursting, as shown in

the magnification of Fig. 3.3B and the trajectory in Fig. 3.4D, chaotic spiking/bursting can

occur. Alternatively, close to the boundary between quiescence and bursting, magnified
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in Fig. 3.3C and the trajectory shown in Fig. 3.4C, chaotic mixed mode oscillations occur

with an unpredictable number of spikes within bursts, separated also by an unpredictable

number of subthreshold oscillations. The system is bistable along with a hyperpolarized

quiescent state with spiral convergence, separated by a saddle periodic orbit that emerges

following a subcritical Andronov-Hopf bifurcation.

3.3.2 Emergent HCO bursting from non-intrinsic bursters

In this section, we discuss the emergence of HCO bursting in a pair of identical non-

intrinsic bursting cells given by Eq.3.1, mutually coupled with slow inhibitory synapses

given by:

Isyn = ginhS(Vpost − Vrev)

ÛS = α(1 − S)/(1 + e−10(Vpre+20)) − βS/(1 + e10(Vpre+20)) (3.2)

Here, Vpre and Vpost refer to the voltages in the pre- and post-synaptic cells, respectively,

and Vrev is the reversal potential of the ion channel. The parameters ginh = 0.01, α and β

are set to be identical for both the synapses in the HCO. For the sake of simplicity, one may

treat α as the amount of neurotransmitter released into the synapse from the presynaptic

neuron and β as the rate at which the neurotransmitter is removed from the synapse

through reuptake or enzymatic degradation. As such, a strengthening synapse can be

modeled by increasing α or decreasing β values, while keeping ginh constant. These

synaptic parameters can be regulated in neurophysiological experiments through dynamic

clamp. Fig.3.5 shows four bi-parametric sweeps for the HCO (Fig. 3.2 left), composed

of either both intrinsic tonic firing cells (A,B) or both quiescent (C,D), using parameters

xshi f t = −2. and Cashi f t = [−55.,−50,−45,−40] sampled at the black dots in Fig. 3.3 near the

boundary between tonic spiking and quiescence. As we vary the slow synaptic properties

αinh and βinh of mutual inhibition in the biparametric sweeps, we observe that the network

can produce a variety of firing patterns including both cells tonically spiking (red regions),
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Figure (3.5) Emergent network bursting in a HCO composed of two identical neurons of
the extended Plant model (Fig. 3.2 left), that are not intrinsic bursters. The intrinsic param-
eters for (A-D) are sampled along the black dots in Fig. 3.3 near the boundary between
tonic spiking and quiescence with xshi f t = −2. and Cashi f t = [−55.,−50,−45,−40]. Bipara-
metric sweeps varying the slow synaptic properties αinh and βinh of mutual inhibition, show
how the intrinsic and synaptic parameters regulate network behaviors, including both cells
tonically spiking (red), both cells quiescent (white), chaotic bursting (gray), one tonic firing
cell suppressing the other into quiescence (green), as well as emergent HCO bursting
(blue) superimposed with the average number of spikes per burst in cell 2 (darker blue
indicates higher spikes per burst). The neurons are intrinsic tonic spikers in A and B,
while they are quiescent in C and D, in the absence of synapses. This is also seen by the
respective red and white regions near weak synaptic coupling (at low values of αinh). As
xshi f t and Cashi f t values are sampled away from the boundary between tonic spiking and
quiescence (as well as bursting) in Fig. 3.3, the regions of emergent HCO bursting (blue)
vanish, see Fig. 3.8(right).

both cells quiescent (white), chaotic bursting (gray), one tonic firing cell suppressing the

other into quiescence (green), as well as emergent HCO bursting (blue) superimposed

with the average number of spikes per burst in cell 2 (darker blue indicates higher spikes

per burst). The presence of red tonic spiking regions near weak synaptic coupling (at low

values of αinh) in A and B, and that of quiescence (white) in C and D is expected based
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Figure (3.6) Voltage trajectories and emergent behaviors in a HCO (Fig. 3.2 left) of non-
intrinsic bursters. (A) Both cells tonic spiking (B) Chaotic bursting and (C) One tonic
spiking cell suppression the other into quiescence (D) Emergent bursting with 21 spikes
per burst (E) Emergent bursting with 8 spikes per burst (F) Both cells return to stable
quiescence after an external perturbation induces brief spiking. By virtue of symmetry in
the network, at the parameter values for C, the system is bistable, where cell 2 can also fire
tonically suppressing cell 1, depending on the initial conditions or external perturbations.
A,B,C are sampled from Fig. 3.5A at Cashi f t = −55 for the slow synaptic parameters (A)
α = 0.01, β = 0.04 (B) α = 0.02, β = 0.04 (C) α = 0.02, β = 0.01. D, E are sampled from
Fig. 3.5B at Cashi f t = −50 for the synaptic parameters (D) α = 0.04, β = 0.01 for 21 spikes
(E) α = 0.04, β = 0.03 for 8 spikes per burst. F is sampled from Fig. 3.5C at Cashi f t = −45.,
α = 0.01 and β = 0.04.

on the intrinsic behaviors of the cells at these Cashi f t values. The corresponding voltage

trajectories are shown in Fig. 3.6A,B and C for both cells tonic spiking, chaotic bursting

and one tonic spiking cell suppressing the other into quiescence at parameter values

sampled from Fig. 3.5A. When cell 2 can fire tonically and suppress cell 1, by virtue

of symmetry in the network, the system is bistable at these parameter values and cell

1 can also suppress cell 2, depending on the initial conditions or external perturbations.

Emergent bursting with 21 spikes per burst and 8 spikes per burst are shown in Fig. 3.6D,E

for parameters sampled from Fig. 3.5B. Fig. 3.5B shows the stable quiescent state for both
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the cells, sampled in the white region of Fig. 3.5C. An external perturbation can briefly

induce spiking in these cells, but they eventually return to quiescence. As the synapses

are strengthened in Fig.3.5 through increasing values of αinh, or decreasing values of

βinh, the network transitions gradually through tonic spiking, chaotic bursting, emergent

network bursting and suppression for the case of intrinsic tonic spikers (Fig.3.5A,B). For

intrinsic quiescent cells (Fig.3.5C,D), the network transitions through quiescence, chaotic

bursting and emergent network bursting as the synapse is strengthened gradually. If xshi f t

and Cashi f t values are sampled further away from the boundary between tonic spiking and

quiescence (as well as bursting) in Fig. 3.3, the regions of emergent HCO bursting (blue)

shrink and eventually vanish eliminating network bursts (compare with Fig. 3.8B). The

parametric sweeps thus reveal how the synergistic interactions of intrinsic and synaptic

properties control emergent bursting in the HCO, as well as other important properties

such as the average number of spikes per burst.

3.4 Dendronotus model

The CPG governing the swimming behavior of the sea slug Dendronotus Iris is de-

scribed in [ [2, 179, 180]]. The simplified 4-cell circuit and the bursting rhythm generated

by the network model (described below) producing similar rhythmic output as seen in real

animals are presented in Fig. 3.7. Such bursting oscillations of the network control the

rhythmic motions of the animal during swimming. The network essentially consists of a

pair of HCOs with synergistic interactions. Cells 1 and 2 mutually inhibit each other (blue

connections), as do cells 3 and 4. In addition, there is a strong cross excitation (purple)

from 3 to 2, and from 4 to 1, as well as inhibitory connections going in the opposite direc-

tions (blue). A pair of electrical cross connections also exist between these cells. Recent

recordings due to A. Sakurai have shown that this could be a unidirectional rectified elec-

trical coupling. In the absence of synaptic coupling, none of the cells burst intrinsically.

Cells 1 and 2 are quiescent, while cells 3 and 4 are modeled as intrinsic tonic spikers.

In the rest of this section, we will describe how parametric sweeps can be employed to
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Figure (3.7) The simplified 4-cell circuit modeled after the Dendronotus swim CPG and
the bursting rhythm generated by this network model, resembling typical neurophysiolog-
ical recordings in the animal. The network consists of a pair of HCOs with synergistic
interactions. Inhibitory, excitatory and rectified electrical connections are shown in blue,
purple and gray, respectively. In the absence of synaptic coupling, none of the cells
burst intrinsically, with cells 1 and 2 modeled as quiescent, and cells 3 and 4 as intrin-
sic tonic spikers. Parameter values for the network bursting rhythm (right) are given by
g14_23_inh = 0.006, g41_32_exc = 0.04, α34_43_inh = 0.04, β34_43_inh = 0.006, see Fig.3.11D at
18 spikes per burst.

study the synergistic interactions of various network parameters to produce successful

network bursting oscillations and to control important properties such as the spikes per

burst or burst durations as seen in Fig. 3.7 and Fig. 3.9C (with 18 or 14 spikes per burst in

cell 4, here). The model employed for this network is similar to the extended Plant model

in Eq.3.1, although the individual properties of the synaptic currents are tuned to match

experimental recordings, such as shorter spikes, faster sodium and potassium currents,

scaled voltage dependent time rates etc. Detailed equations and parameters of the model

can be found in the software repository accompanying this chapter at

https://bitbucket.org/pusuluri_krishna/deterministicchaosprospector/.

https://bitbucket.org/pusuluri_krishna/deterministicchaosprospector/
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Inhibitory and excitatory connections are modeled using slow alpha synapses given by:

Isyn = ginh_or_excS(Vpost − Vrev)

ÛS = αinh_or_exc(1 − S)/(1 + e−10(Vpre+20)) − βinh_or_excS (3.3)

The default values of the synaptic connections, unless otherwise specified, are as fol-

lows. The network is bilaterally symmetric from left to right. As such, g12_inh = g21_inh =

g12_21_inh = 0.02 , represents the mutual inhibitory strength between cells 1 and 2, while

the corresponding parameters controlling the synapse are given by α12_21_inh = 0.04 and

β12_21_inh = 0.001. The mutual inhibition is given by g34_43_inh = 0.04, α34_43_inh = 0.01,

β34_43_inh = 0.005; cross excitatory coupling g41_32_exc = 0.08, α41_32_exc = 0.02, β41_32_exc =

0.004; cross inhibition g14_23_inh = 0.0055, α14_23_inh = 0.01, β14_23_inh = 0.001; and rectified

electrical coupling g14_23_elec = 0.002.

3.4.1 Absence of bursting in isolated cells and HCOs

Fig.3.8 (left) shows the Cashi f t vs. xshi f t parametric sweep (left) of the Dendrono-

tus neuron model. These neurons in isolation mostly produce tonic spiking or quies-

cence, with a smaller region of the parameter space corresponding to intrinsic bursting,

compared to the extended Plant model in Fig. 3.3. The parameters Cashi f t = −110.,

xshi f t = −3.5 in the tonic spiking region (white dot) are chosen to model the intrinsic tonic

spiker cells 3 and 4 in the network of Fig.3.7. We then analyzed the HCO of these cells

varying the synaptic parameters α34_43_inh and β34_43_inh in Fig.3.8 (right). This sweep

shows that the HCO can only produce tonic spiking or suppression, but not emergent

bursting, in the absence of synaptic connections with cells 1 and 2. Compare this sweep

with Fig. 3.5 for a different HCO of the extended Plant model neurons, where emergent

bursting can be seen.
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Figure (3.8) Cashi f t vs. xshi f t parametric sweep (left) of the Dendronotus neuron model
reveals that the neurons intrinsically produce mostly tonic spiking (purple) or quiescence
(white), with very small regions of intrinsic bursting behavior, compared to the extended
Plant model in Fig. 3.3. White dot (Cashi f t = −110., xshi f t = −3.5) in the tonic spiking
region corresponds to the parameter values used to model the HCO between intrinsic
tonic spiker cells 3 and 4 in the network of Fig.3.7. The parametric sweep of this HCO
(right) as the synaptic parameters α34_43_inh and β34_43_inh are varied, reveals that the HCO
produces only tonic spiking or suppression, but not emergent bursting, in the absence of
synaptic connections with cells 1 and 2.

3.4.2 Synergistic interactions of excitation, inhibition and electric coupling for emer-

gent 4-cell bursting

For modeling the full 4-cell circuit, intrinsic parameters Cashi f t and xshi f t for tonic

spiking cells 3 and 4 are set at Cashi f t = −110., xshi f t = −3.5 (white dot in Fig. 3.8left),

while those for the intrinsic quiescent cells 1 and 2 are set at Cashi f t = 0., xshi f t = −3.5

(in the white quiescent regions to the right, outside the plot boundaries of Fig. 3.8left). In

the absence of all of cross inhibition, cross excitation and electrical coupling between the

two HCOs, neither of the HCOs is capable of emergent bursting. The parametric sweep

for the tonic spiking HCO between cells 3,4 in Fig. 3.8right shows just tonic spiking and

suppression. Such a sweep for the HCO between cells 1,2 would have just the white
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Figure (3.9) Activity types seen in the 4-cell network include (A) All cells tonic spiking (B)
Chaotic spiking/bursting (C) Emergent network bursting (with 14 spikes per burst, here)
and (D) Suppression. Parameter values given by g41_32_exc = 0.04, g14_23_inh = 0.006 (see
Fig.3.11D); α34_43_inh through [0.004, 0.01, 0.02] and β34_43_inh = 0.008 for A-C; α34_43_inh =

0.04 and β34_43_inh = 0.004 for D;

quiescent region. In the following sections, we will keep the synaptic properties of the

quiescent HCO between cells 1,2 constant and study the behavior of the HCO between

the tonic spiking cells 3, 4 and therefore, of the whole network, as modulated by cross

excitation, cross inhibition and electrical coupling, as well as the synaptic properties of

the mutual inhibition between cells 3 and 4. The voltage trajectories of activity types seen

in the 4-cell network are shown in Fig.3.9. At parameter values given by g41_32_exc =

0.04, g14_23_inh = 0.006 (see Fig.3.11D), and β34_43_inh = 0.005, the network can produce
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Figure (3.10) A grid of α34_43_inh vs. β34_43_inh parametric sweeps, varying the cross ex-
citation g41_32_exc horizontally, and the cross inhibition g14_23_inh vertically. Each individual
sweep shows the network behavior as the synaptic properties of the mutual inhibition be-
tween the tonic spikers 3,4 are varied. The sweeps show that the synergistic interactions
between various synapses can result in tonic spiking (red), chaotic bursting (gray), sup-
pression (green) as well as emergent network bursting with varying number of spikes per
burst (numbers for cell 4 are shown in bursting regions). Voltage trajectories are shown in
Fig.3.9. Here, g14_23_elec = 0.001. See Fig.3.11 for this grid at g14_23_elec = 0.002



38

Figure (3.11) A grid of α34_43_inh vs. β34_43_inh parametric sweeps, as we vary the cross
excitation g41_32_exc horizontally, and the cross inhibition g14_23_inh vertically at g14_23_elec =

0.002. Descriptions similar to Fig.3.10 at g14_23_elec = 0.001.

different behaviors including all cells tonic spiking in Fig.3.9A, chaotic spiking/bursting

in Fig.3.9B, and emergent network bursting (with 14 spikes per burst in cell 4, here) in

Fig.3.9C, as the synaptic inhibition (α34_43_inh) between cells 3,4 is gradually increased

through [0.004, 0.01, 0.02]. At α34_43_inh = 0.04 and β34_43_inh = 0.004, we see suppression
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of cell 4 by cell 3 ,or vice versa, (as well as suppression between cells 1 and 2) in Fig.3.9D.

Compare the activity types of cells 3,4 in these trajectories, with those seen in HCOs

made from intrinsic tonic spiking neurons of the extend Plant model in Fig.3.5A,B which

also show tonic spiking, chaotic bursting, emergent bursting and suppression.

Fig.3.10 shows a grid of parametric sweeps at g14_23_elec = 0.001, varying the cross

excitation g41_32_exc horizontally, and the cross inhibition g14_23_inh vertically. Each individ-

ual sweep shows the network behavior as the synaptic properties α34_43_inh and β34_43_inh

of the tonic spiking HCO cells 3,4 are varied. The sweeps show that the synergistic inter-

actions between various synapses can result in tonic spiking (red), chaotic bursting (gray),

suppression (green) as well as emergent network bursting with varying number of spikes

per burst. The voltage trajectories of the network are shown in Fig.3.9. Tonic spiking is

seen for weak synapses (at low values of α34_43_inh), as expected from their intrinsic tonic

spiking nature, while suppression is seen for strong synapses (at high values of α34_43_inh

or low values of β34_43_inh). At moderate values of α34_43_inh and β34_43_inh , emergent burst-

ing and chaotic bursting (less pronounced) are seen. Increasing the cross inhibition as

we move vertically upwards on the grid, the regions of emergent bursting diminish in size,

while the number of spikes per burst increase. Increasing the cross excitation as we move

horizontally on the grid, the size of emergent bursting regions remain almost the same,

while the number of spikes per burst gradually decrease. The grid for g14_23_elec = 0.002 is

shown in Fig.3.11, with similar behaviors of cross excitation and cross inhibition. Increas-

ing g14_23_elec from Fig. 3.10 to Fig. 3.11, results in smaller/vanishing regions of emergent

bursting, while increasing the number of spikes per burst. Outside of these ranges of

cross inhibition, cross excitation and electrical coupling, emergent bursting becomes less

pronounced.

3.4.3 The role of excitation and inhibition in emergent 4-cell bursting

We end this section with a discussion of the individual roles of cross excitation, cross

inhibition and the mutual inhibition between the tonic spiking HCO cells 3,4 while all other
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Figure (3.12) The role of excitation and inhibition is depicted, as all other network param-
eters remain constant. (left) Biparametric sweep of the slow synaptic properties α41_32_exc
and β41_32_exc of cross excitation shows tonic spiking (red) and suppression (green) at
weaker strengths, while emergent bursting appears for stronger excitation (larger α val-
ues). (middle) Biparametric sweep of the strength of mutual inhibition of the tonic spikers
g34_43_inh vs cross excitation g41_32_exc shows that for low values of g41_32_exc, the network
produces only tonic spiking or suppression. As we increase g41_32_exc, emergent bursting
can be seen at moderately strong mutual inhibition. Fig.3.12(right) inspects the role of
cross inhibition g14_23_inh vs. cross excitation g41_32_exc. For weak synaptic strengths in ei-
ther, we see suppression (green). Emergent bursting is seen at moderate values of both,
with the number of spikes per burst decreasing at larger values.

parameters remain constant. It was shown in [ [179]] that cross excitation plays an impor-

tant role in emergent bursting and removing the cross excitation can suppress network

bursting. Fig.3.12left shows a biparametric sweep as we vary the slow synaptic proper-

ties α41_32_exc and β41_32_exc of this cross excitation. For weak excitatory synapses, we see

tonic spiking (red) and suppression (green), while emergent bursting appears at stronger

synapses (larger α values). This can be elaborated further in Fig.3.12(middle) showing

the biparametric sweep of the strength of mutual inhibition of the tonic spikers g34_43_inh

vs cross excitation g41_32_exc. For zero or low values of g41_32_exc, the network produces

only tonic spiking or suppression, as the mutual inhibition of the tonic spikers g34_43_inh is

increased. This is expected from their intrinsic nature as well as seen from the parametric

sweep for the tonic spiker HCO in Fig. 3.8(right). As we increase g41_32_exc, emergent

bursting can be seen at moderately large values of the mutual inhibition. Fig.3.12(right)

inspects the role of cross inhibition g14_23_inh vs. cross excitation g41_32_exc. For weak
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synaptic strengths in either, we see suppression (green). Emergent bursting is seen at

moderate values of both, with the number of spikes per burst decreasing at larger values.

These results confirm the essential role of both cross excitation and cross inhibition.

3.5 Summary

We adapted our toolkit, Deterministic Chaos Prospector, and presented a powerful

approach of symbolic dynamics and parametric sweeps to study complex behaviors aris-

ing in neuron models, and emergent network phenomena in neural circuits. We discussed

a variety of activity types in individual neurons, the onset of half-center bursting oscilla-

tions from non-intrinsic bursting cells, as well as emergent 4-cell bursting dynamics in

the Dendronotus network model, where the individual cells or the HCOs can not produce

bursting, without the synergistic interplay of excitation, inhibition and electric coupling in

the full network. We explored detailed transitions and the roles of various intrinsic cell

properties and the synaptic dynamics. Our approach can be employed to study the ef-

fects of several realistic and essential network parameters, that can be manipulated in

neurophysiological experiments. Future work could include detailed modeling and fitting

of the parameters, integrating with experimental data. For larger networks, with several

tens or hundreds of parameters, these symbolic methods may be employed for a detailed

study of the essential parameters, in conjunction with other machine learning and pa-

rameter optimization techniques based on cost functions for error minimization between

observed and modeled behaviors.
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CHAPTER 4

COMPUTATIONAL EXPOSITION OF MULTISTABLE RHYTHMS IN 4-CELL NEURAL

CIRCUITS

The co-existence of multistable rhythms generated by oscillatory neural circuits made

up of 4 and more cells, their onset, stability conditions, and the transitions between such

rhythms are not well understood. This is partly due to the lack of appropriate visual and

computational tools. In this chapter, we employ modern computational approaches includ-

ing unsupervised machine learning (clustering) algorithms and fast parallel simulations

powered by graphics processing units (GPUs) to further extend our previously developed

techniques based on the theory of dynamical systems and bifurcations. This allows us

to analyze the fundamental principles and mechanisms that ensure the robustness and

multifunctionality of such neural circuits. In addition, we examine how network topology

affects the dynamics, and the rhythmic patterns transition/bifurcate as network configura-

tions are altered and the intrinsic properties of the cells and the synapses are varied. This

chapter elaborates on a set of inhibitory coupled 4-cell circuits that can exhibit a variety

of mono- and multistable rhythms including pacemakers, paired half-centers, traveling-

waves, synchronized states, as well as various chimeras. Our detailed analysis is helpful

to generate verifiable hypotheses for neurophysiological experiments with biological cen-

tral pattern generators. This chapter is edited with permission based on the publication

and further details on multistability of 4-cell networkss can be found in [191]. Detailed

multistability analysis of symmetric and asymmetric 3-cell networks can be found in [182].

4.1 Multistability in Central Pattern Generators

Rhythmic oscillations underlie a variety of sensory, motor and cognitive functions.

Brain disorders such as schizophrenia, epilepsy, autism, Alzheimer’s disease, and Parkin-
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son’s disease are characterized by dysfunction of neural oscillations. As such, mech-

anisms underlying rhythmic activities can help in designing therapeutic interventions for

such conditions. Brain networks are composed of smaller structural and functional build-

ing blocks of neural networks called motifs [1, 8–10]. Such motifs have been identified in

various animal central pattern generators (CPGs), which are biological neural networks

producing rhythmic motor output without sensory feedback or central input. Rhythmic

patterned motor activity under the control of CPGs is widespread across many verte-

brate and invertebrate species in a diversity of neural networks including ones governing

locomotion, swimming, respiration and heartbeat [1, 11–23]. As networks evolve and be-

come more complex, the existing motifs are preserved while new elements are added

to maximize the available number of configurations and to support the robustness of the

networks [1,24–26]. For example, a common constituent of many known CPGs is a half-

center oscillator (HCO) that is made up of 2 bilaterally symmetric neurons that reciprocally

inhibit each other to produce alternating bursting patterns in anti-phase. Multiple HCOs

can be combined using chemical and/or electrical synapses to form complex modular

CPG networks such as the well described swim CPGs in sea slugs Melibe leonina and

Dendronotus iris [17,25,27–32]. In order to gain insights into the dynamical principles that

regulate the behaviors of larger networks, it is essential to understand the workings of in-

dividual neurons as well as the basic motifs. Mathematical modeling studies at multiple

levels ranging from isolated neurons to small networks and populations have resulted in

significant understanding of the working principles of biological neural networks [33–39].

A fundamental challenge in theoretical and experimental research on CPGs is to

understand the mechanisms by which such neural networks can adapt structurally and

functionally to serve as dedicated circuits for monostable rhythms, or as multifunctional

circuits producing several stable rhythmic behaviors [2,26,38,60–65]. Moreover, intrinsic

capability for rhythm switching, such as gait transitions in locomotion and changes in the

direction of blood flow in leeches, can be accomplished by input-driven perturbations that

switch between multiple attractors representing various rhythmic patterns generated by
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a multistable CPG [24, 66–68]. In addition, these attractors, which can be fixed points

or periodic orbits, can bifurcate – lose stability or vanish, thereby explaining the continu-

ous or the sudden transitions in the system state due to changes in network connectivity,

external inputs and the intrinsic dynamics of individual neurons [49]. The emergence

of stable polyrhythms, and their transitions, exhibited by half-center oscillators and 3-

cell motifs, along with their dynamics under the influence of external input and varying

chemical (inhibitory and excitatory) and electrical synaptic connectivity, have been thor-

oughly demonstrated using Poincaré return maps for phase lags (described in the next

section) and other techniques. Note that 4-cell circuits and more complicated CPGs that

produce dedicated functionality have also been studied in real animals as well as compu-

tational models [1,18–24,60,192–196]. The basic principles underlying the co-existence

and stability of multiple rhythms in 4-cell networks and larger CPGs have long remained

unclear, in part, due to the exponentially increasing algorithmic complexity and computa-

tional costs needed to systemically explore such networks. Another major problem with

using approaches like Poincaré return maps for larger networks is that, unlike the 3-cell

circuits that are well described by 2-dimensional (2D) maps, the corresponding well pop-

ulated maps for larger networks become 3D and higher dimensional, which are hard to

analyze visually.

Traditional computational approaches using single threaded computing fall short both

in terms of the amount of time required for the computations as well as the breadth and

comprehensiveness that could be achieved. Recent advances in parallel processing and

GPU computing with technologies such as CUDA, OpenAcc, OpenMP and OpenMPI of-

fer tremendous performance improvements and make it possible to study problems in

neuroscience and nonlinear dynamics that could not be solved earlier [3–5,47,48]. In this

chapter, we will address the lack of such visual and computational tools and further extend

the developed techniques based on dynamical systems theory for neuroscience applica-

tions by implementing elements of unsupervised machine learning for clustering analysis

in higher dimensions [40–46] and GPU parallelization for faster simulations of densely
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Figure (4.1) A fully connected 3-cell network of the generalized Fitzhugh-Nagumo type
cells with mutually inhibitory synapses is shown in (a). The phase space of a neuron (un-
der weak coupling) is depicted in (b), with the slow recovery variable x and the fast voltage
variable V , superimposed with the corresponding nullclines (light gray): slow dx

dt = 0 and
fast dV

dt = 0, and the limit cycle (dark gray). The colored dots depict the phase space
coordinates of the three coupled cells traversing the limit cycle to generate a traveling-
wave pattern. Horizontal dashed line represents the activation threshold Vth. Two long
trajectories converging towards (c) the blue pacemaker rhythm (∆θ12 , ∆θ13) = (0.55, 0.55)
or (d) the clockwise traveling-wave rhythm (∆θ12 , ∆θ13) = (0.67, 0.33) are shown. Evolu-
tion of the phase lags ∆θ12 and ∆θ13 at those moments when the reference cell 1 (blue)
crosses above the threshold (vertical dotted lines) are shown at the top and the bottom,
respectively. Multistability analysis (e) of the network using 2D Poincaré return map on a
grid of 70 × 70 initial conditions or phase lags between the reference cell 1, and cells 2
and 3. All the initial conditions that converge to the same attractor are shown in identical
colors to visualize the attraction basins of the five co-existing fixed points (shown as white
dots), representing five stable rhythms of the circuit. These are 3 pacemaker (red, green,
and blue) and two travelling wave (pink - clockwise, black - anti-clockwise) rhythms. Here,
Iapp = 0.426, ginh = 0.01 and ε = 0.3.
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populated trajectories in such coupled circuits. By combining the analytical tools with

these computational approaches, we deconstruct the operating rules for the co-existence,

stability and robustness of stable polyrhythms in complex CPGs. We demonstrate the ef-

fectiveness of this approach in homogenous 4-cell neural circuits with inhibitory coupling

and show how network topologies, intrinsic and extrinsic parameters result in bifurcations

and alter network behaviors. The development and incorporation of such mathemati-

cal and computational tools is essential to unravel the multifarious behaviors arising in

neuroscience. The methods developed are interdisciplinary with applications to complex

dynamical systems and networks of coupled oscillators ranging across (electro)chemical

reactions, population dynamics, electronic circuits, nonlinear optics, regulatory genetic

networks and excitatory dynamics of cellular membranes and heart beats, to name a few.

4.2 Models and numerical methods

We construct our neural circuits using identical neurons of a generalized Fitzhugh-

Nagumo type with a cubic fast nullcline and a sigmoidal slow nullcline as described in [68].

The equations are given by:

dVi

dt
= Vi − Vi

3 − xi + Iapp +
∑
j,i

g
ji
inh G(Vi,Vj)

dxi

dt
= ε [x∞(Vi) − xi] (4.1)

The voltage variable Vi and the recovery variable xi together determine the state of

the ith neuron. The parameter ε for time-scale separation determines the slow dynamics

of xi with respect to Vi; the slow nullcline dxi
dt = 0 is given by the sigmoidal function:

x∞(Vi) =
1

1 + e−10 (Vi−Vsh)
where Vsh = 0.

Parameter values are initially chosen so that the system has a unique repelling equi-

librium state at the intersection of the middle, unstable branch of the V-nullcline (where



47

dV
dt = 0) and the slow x-nullcline (where dx

dt = 0), surrounded by a stable limit cycle, as

shown in Fig. 4.1b. The reciprocal interactions between these two variables result in

oscillatory behavior through dynamical hysteresis where the voltage variable becomes

bistable between the active (Vi ≥ Vth) and the inactive (Vi < Vth) states for a fixed value

of the recovery variable, with the activation threshold given by Vth = 0. Relaxation os-

cillations are constituted by the relatively slow transient active and inactive meta-states

and the fast switching between the corresponding branches (for 0 < ε < 1). The external

drive Iapp horizontally shifts the position of the V-nullcline and controls the release and

escape mechanisms of the otherwise stationary states of the neuron [68]. The parameter

range for Iapp is chosen between 0.4 and 0.6, where the cells produce intrinsic bursting-

like behaviors. Below and above this range, the cells become quiescent and tonic spiking,

respectively.

Inhibitory synaptic coupling between the neurons in a network is modeled using fast-

threshold modulation with a sigmoidal coupling function. An inhibitory synapse, due to

Erev = −1.5, from neuron j to neuron i, with strength g
ji
inh in equation (4.1) is given by

G(Vi,Vj) = (Erev − Vi) Γ(Vj), where Γ(Vj) =
1

1 + e−100 (Vj−Eth)
, and Eth = 0

The voltage variable Vi is driven by a summation of such synaptic inputs from all

other neurons j , i in the circuit. Identical values are used for all the synaptic strengths

g
ji
inh within a network, except where specified otherwise. The range for ginh is chosen be-

tween 0.005 and 0.03 for stable network bursting. For very large values of ginh beyond this

range, a cell in the active state forcibly drags down the other cells due to strong synaptic

inhibition, and various chimera-like behaviors described later become more prominent.

The external drive Iapp, the time-scale constant ε, and the network coupling strength ginh

serve as key bifurcation parameters that determine the circuit dynamics. The choice of

the model used in the chapter provides computational simplicity while retaining the essen-

tial dynamical features and mechanisms of rhythmogenesis seen in the detailed Hodgkin-

Huxley type of neuronal models. Further details of this neuron model and the multistability
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analysis of 3-cell networks can be found in [68], while such analysis for detailed Hodgkin-

Huxley type of neurons is presented in [24].

4.2.1 Poincaré return maps for phase lags

Figure 4.1a shows a 3-cell motif comprised of generalized Fitzhugh-Nagumo type

neurons with mutually inhibitory synapses, as described by equations (4.1). Fig-

ures 4.1c,d show two voltage traces that converge to stable pacemaker (blue) and

traveling-wave (clockwise) rhythms with phase-locked states in this network. The pos-

sible polyrhythms in such 3-cell motifs have been previously described using Poincaré

return maps for phase lags (see Fig. 4.1e) to determine the attraction basins, stability

and bifurcations of the fixed points corresponding to phase locked states in the voltage

patterns [24,63,64,68,197,198]. These maps are built using specific events in time when

the cells cross the threshold voltage from below. A sequence of phase lags is defined for

each cell, as the delay in the burst initiation of a reference cell with respect to that of this

cell, normalized over the bursting period. Thus, in the 3-cell CPG shown in Fig. 4.1a, if tn
1 ,

tn
2 , and tn

3 represent the times at which cell 1 (blue), cell 2 (green) and cell 3 (red) cross

the threshold for the nth time, using cell 1 as the reference cell, the (nth) phase lags are

given by:

∆θ12 =
tn+1
1 − tn

2

tn+1
2 − tn

2
and ∆θ13 =

tn+1
1 − tn

3

tn+1
3 − tn

3

Ordered pairs of phase lags (∆θ12, ∆θ13) are used to construct a Poincaré return map in

the 2D discrete phase space. A sequence of ordered pairs yields a forward phase trajec-

tory on a 2D torus (Fig. 4.1e), which maps the phases of cells 2 and 3 with respect to the

reference cell 1, defined for values between 0 and 1. A phase lag of either 0 or 1 repre-

sents an in-phase relationship with the reference cell while a phase lag of 0.5 represents

an anti-phase relationship. A fixed point in the system corresponds to a stable rhythmic

oscillatory pattern that arises out of well defined phase lags between the burst initiations

of individual neurons of the CPG, which remain phase-locked over time. All trajectories
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Figure (4.2) Homogenous network topologies for 4-cell circuits with inhibitory synaptic
coupling between neurons: (a) One-way inhibitory loop (b) Two-way inhibitory loop (c)
Mixed (d) Fully connected. In each of these network configurations, all the neurons have
identical parameter values and receive the same number of incoming synapses of identi-
cal strengths.

starting from a wide range of initial phase lags that converge to the same fixed point or

stable rhythm are marked by identical colors, depicting the attractor of the rhythm in the

phase space. By analyzing the phase space of the Poincaré map, it is possible to predict

the characteristics of the rhythmic behaviors of the corresponding CPG. The Poincaré

map in Fig. 4.1e reveals the existence of a penta-rhythmic state in the CPG with 3 pace-

makers (blue - Fig. 4.1c, green and red) and two traveling-waves (pink - Fig. 4.1d, black).

The blue, green and red pacemakers correspond to the fixed points on the Poincaré map

represented by the ordered pairs (0.5, 0.5), (0.5, 0) and (0, 0.5) respectively, for the phase

lags (∆θ12, ∆θ13), while the clockwise (pink) and anti-clockwise (black) traveling-waves are

represented by (0.67, 0.33) and (0.33, 0.67), respectively. Using Poincaré return maps for

phase lags, the problem of existence and stability of multiple bursting rhythms in the CPG

is reduced to the bifurcation analysis of fixed points, attractors and invariant cycles in the

system.

4.2.2 Unsupervised machine learning

In order to analyze multistability of larger networks whose corresponding Poincaré

return maps are of dimension 3D and higher, we employ unsupervised machine learning
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techniques to computationally evaluate the attraction basins of the stable polyrhythms

(read stable fixed points), and analyze their corresponding bifurcations. We investigate

multi-stable dynamics in homogenous networks comprised of 4 generalized Fitzhugh-

Nagumo type neurons given by equations (4.1), with identical mutual inhibition between

neurons. Such a model provides computational simplicity while showing the dynamics

topologically similar to more complex models based on the Hodgkin-Huxley formalism [24,

68]. For meaningful application of Poincaré maps, homogeneity ensures similar bursting

periods across different neurons by (1) using identical parameter values for all the neurons

and (2) keeping the sum of the synaptic strengths of all the inputs received by a neuron the

same as those of any other neuron in the network. Figure 4.2 shows various homogenous

network topologies for the 4-cell circuits, with gradually increasing complexity, starting

from the one-way inhibitory loop (Fig. 4.2a), to the two-way inhibitory loop (Fig. 4.2b), to

the mixed network (Fig. 4.2c), and finally the fully connected network (Fig. 4.2d).

We analyze the Poincaré return maps using hierarchical clustering schemes [40–46].

We begin by first identifying multiple initial conditions with varying phase lags for the cells,

spread out uniformly across the 3D phase torus on a (25 × 25 × 25) grid. For each of

those initial conditions, we obtain long traces of firing activity of the circuit and compute

the corresponding phase trajectory of ordered tuples ( ∆θ12 , ∆θ13, ∆θ14 ) of phase lags.

Using clustering methods, all the trajectories from different initial conditions that converge

to a very close neighborhood of each other are determined to be within a cluster. This

is done by first identifying the converging ordered tuples of phase lags for each trajec-

tory and then performing agglomerative hierarchical clustering with complete linkage on

those converging ordered tuples. Since the phase lags are defined on the 3D torus with

modulo-1, implying the phase lags 0.0 and 1.0 are identical, the distance metric for clus-

tering the converging phase lag ordered tuples was obtained as the sum of squares of

the smallest difference along each dimension, wrapping around the phase torus. For

example, the smallest difference between the phase lags 0.05 and 0.95 is 0.1 and not

0.9, as we wrap around. The circular mean of all the phase lag ordered tuples within
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Table (4.1) Multistability analysis of the fully connected 4-cell CPG (Fig. 4.2d) with 3D
phase torus of Poincaré maps is simplified using clustering to reveal three stable paired
half-center rhythms.

CCM CCSD PC

(0.5, 0., 0.5) (0., 0., 0.) 33.2%
(0.5, 0.5, 0.) (0., 0., 0.) 33.5%
(0., 0.5 ,0.5) (0., 0., 0.) 33.2%

ginh = 0.025, Iapp = 0.575 and ε = 0.5

a cluster defines the fixed point or the stable rhythm marked by the cluster. We also

measure the circular standard deviation to reflect the degree of variability within a clus-

ter. Circular means and circular standard deviations are rounded to two decimal points.

The total number of initial conditions whose trajectories converge to each cluster serves

as a measure for the relative size of the attraction basin of the stable rhythm. Numeri-

cal integration is performed using the fourth order Runge-Kutta method with a fixed step

size. Computation of neural trajectories and phase lags, and parallelization across GPU

threads is achieved using CUDA and OpenAcc [6]. Clustering analysis and visualizations

are done using Python. The software tools developed are open source and available at

https://bitbucket.org/pusuluri_krishna/cpg_multistability. The mul-

tistablity results obtained remain generally consistent across a reasonable range of val-

ues for the settings of the clustering algorithm, with the values becoming significant near

bifurcations where fixed points (and therefore, the clusters) undergo transitions.

For example, the Poincaré return map on the 3D phase torus for the fully connected

4-cell circuit (see Fig. 4.2d) has three distinct attractors (with green, blue, and red basins)

of the paired half-center rhythms, where two pairs of cells fire in anti-phase while cells

within a pair fire in synchrony (see Fig. 4.4 paired half-center). The phase lag ordered

tuples ( ∆θ12 , ∆θ13, ∆θ14 ) for these rhythms are given by (0.5, 0., 0.5), (0.5, 0.5, 0.), and

(0., 0.5, 0.5) for the green, blue, and red attractors, respectively. Constructing and decod-

ing such 3D phase space trajectories visually is rather hard and time consuming. Table 4.1

https://bitbucket.org/pusuluri_krishna/cpg_multistability
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illustrates the results of the clustering approach to automate the detection of these mul-

tistable states (fixed points), the phase relationships of the cells at these attractors, the

degree of variability in their convergence, and the relative sizes of the attraction basins of

various rhythmic states by means of cluster circular means (CCM), cluster circular stan-

dard deviations (CCSD) and the percentage of convergence (PC). We emphasize that

GPU parallelization allows this multistability analysis to be performed within just a couple

of minutes.

While phase dynamics and the parametric sweeps such as Fig. 4.3 effectively por-

tray the broad picture of system dynamics for stable network bursting, we note that several

other chimera-like behaviors are also seen at very strong synaptic inhibition. It is also pos-

sible that there could be small regions or transitory periods within the parameter ranges

studied, that can also exhibit chimera like rhythms, but are not seen here as only a few

discrete parameter values are used in constructing these sweeps. Depending on the ob-

jective of parametric exploration and the rhythms under consideration, future work could

focus on particular transitions and perform detailed sweeps near those regions to obtain

such states, as well as enhance such sweeps by incorporating other details such as ampli-

tude differences during post processing to, say, distinguish between the fully synchronous

states and the phase synchronous states highlighted later.

We investigate the multistable rhythms generated by various homogenous network

configurations of 4-cell CPGs given in Fig. 4.2. We find the network topologies that drive

monostable or multistable behaviors. We also identify the transitions occurring in these

networks as parameters such as the synaptic and external drives are varied, to determine

the principles underlying stable polyrhythms in such networks.

4.3 Multifunctionality repertoire of the fully connected network

Figure 4.3 is an illustration of the multistability and bifurcation analysis performed on

the fully connected 4-cell circuit, as we vary two parameters of the network, the synaptic

strength (ginh) and the external drive (Iapp), on a 7 × 6 grid, while keeping a fixed ε = 0.5.
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For each set of parameters in the grid, clustering analysis of Poincaré return maps of the

3D torus is performed to identify the stable rhythmic behaviors (clusters). Each block in

the grid represents the clusters and the rhythmic behaviors identified for the particular

parameter values. The rhythmic state associated by each cluster is given by the cluster

circular mean (CCM). Homogeneity and symmetry of the network imply that, for every

stable rhythm in the network, one can find stable symmetric variations of the rhythm ob-

tained by circular permutations or relabeling of the identical cells in the network. We will

refer to such coexisting rhythms as isomorphisms. For example, the orange block marked

A at ginh = 0.025 and Iapp = 0.575 represents the existence of 3 stable isomorphisms of

the paired half-center rhythms whose phase lag ordered tuples (∆θ12 , ∆θ13, ∆θ14) are

given by (0.5, 0., 0.5), (0.5, 0.5, 0.), and (0., 0.5, 0.5). Cell 1 could fire in phase with either

of cells 2, 3 or 4, while the remaining two cells fire in anti-phase relationship with cell 1

(and synchronously with each other). This is also shown in the clustering results for the

3D phase torus in Table 4.1. For any given parametric block of Fig. 4.3, each color indi-

cates the existence of a stable rhythm, along with all of its isomorphisms. Multiple colors

within the same block indicate the co-existence of different stable rhythmic patterns in the

phase space. The sizes of the colored regions proportionately relate to the sizes of the

attraction basins of those rhythms, given by the percentage of trajectories converging to

those rhythms (PC). Noise within the colored region representing a cluster is proportional

to the cluster’s circular standard deviation (CCSD) and is indicative of the variability within

the cluster. The clustering analysis for the network across different ginh vs. Iapp blocks at

ε = 0.5 in Fig. 4.3 shows that the network can exhibit a plethora of different stable rhythms,

pictured in Fig. 4.4. Clustering details with CCM, CCSD and PC at some of these para-

metric blocks are presented in Table. 4.2. Mixed traveling-waves are seen at a different

ε = 0.05 (see supplementary Fig.4.8).
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4.3.1 Paired half-centers

This is the most dominant rhythm of the fully connected network as seen from the

bifurcation diagram of Fig. 4.3 (orange regions such as A) at ε = 0.5, as well as at ε = 0.3

shown in the bifurcation diagram of supplementary Fig. 4.7. These 2-phasic rhythms

are characterized by two pairs of cells that oscillate in anti-phase relationship with each

other, while the cells within each pair oscillate in-phase. By virtue of symmetry of the

fully connected network, there exist 3 stable isomorphisms of this rhythm. The phase-

lag ordered tuple for one such rhythm is given by (∆θ12, ∆θ13,∆θ14) = (0., 0.5, 0.5) and is

shown in Fig. 4.4, while the corresponding limit cycle orbit of the voltage and the recovery

variables is represented in Fig. 4.5 (orange). Note here that the voltage amplitude of the

orbit for the paired half-center rhythm is slightly smaller than that of an isolated cell (grey),

due to the continuous inhibition experienced by a cell in its active state from its phase

locked counterpart.

4.3.2 Synchronized state

Surprisingly, we see that the fully connected network of neurons reciprocally coupled

with fast-inhibition can also exhibit stable synchronization of neuronal activity with (∆θ12

, ∆θ13, ∆θ14) = (0., 0., 0.), for particular values of the parameters: Iapp = 0.435 and for

0.013 ≤ ginh ≤ 0.025 (see green regions in Fig. 4.3). The synchronized state coexists

with the 3 paired half-center rhythms at these parameter values. The corresponding orbit

for the voltage and recovery variables is shown in Fig.4.5 (green). The voltage ampli-

tude of this orbit is even shorter than those of either the isolated cell (grey) or the paired

half-center rhythm (orange), due to the greater inhibitory push experienced by a neuron

in its active state from the 3 other phase locked counterparts. With increasing ginh in

Fig. 4.3, the size of the attractor for the synchronized state gradually increases through

ginh = 0.025 (Fig. 4.3B), beyond which it loses stability and gives rise to a chimera state

at ginh = 0.029 (Fig. 4.3C). Note that the stable synchronized state is seen in the network

only at ε = 0.5 (Fig. 4.3) but not at either ε = 0.3 (supplementary Fig. 4.7) or ε = 0.05 (sup-
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Figure (4.3) Multistability and bifurcation analysis of the fully connected 4-cell circuit with
varying synaptic strength (ginh) and external drive (Iapp) on a 7 × 6 grid, at ε = 0.5. Each
block in the grid depicts the clusters and the stable rhythms identified for the particular pa-
rameter values, shown in different colors in proportion to the size of their attraction basins
in the phase space. Noise within a cluster is proportional to its circular standard devia-
tion. Clustering results for some of these parametric blocks are shown Table 4.1,4.2. The
bifurcation diagram identifies the rich repertoire of stable rhythms and all their isomor-
phisms expected from the symmetry of the circuit, including paired half-centers, pace-
makers, traveling-waves, synchronization, stable transitory rhythms, and trajectories with
non-converging phase lags (chimeras), as pictured in Fig. 4.4.
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Figure (4.4) Rhythmic capacity of the fully connected 4-cell circuit (Fig. 4.2d), depending
on the parameter values (see Fig. 4.3), includes 3 paired half-centers, 4 pacemakers,
a single fully synchronous state, 6 full traveling-waves, 12 mixed traveling-waves, stable
transitory rhythms between paired half-centers and full traveling-waves, and 4 chimera
states featuring a 11:10 resonance.

plementary Fig. 4.8). We also note that, as Iapp = 0.435 and ginh = 0.025 are kept constant

(see Fig. 4.3B) while ε is gradually reduced from 0.5 to 0.48, the corresponding synchro-

nized orbit undergoes period doubling such that all the four cells yet continue to maintain

phase synchrony, while splitting into two pairs that continuously alternate between orbits

of slightly shorter and longer amplitudes.

4.3.3 Chimera states

Further increase of ginh through 0.029 at Iapp = 0.435 (see Fig. 4.3C) shows a non-

converging state (black regions) from the clustering analysis of Poincaré maps. Detailed

inspection reveals the presence of chimera states characterized by two sub-populations
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firing at distinct frequencies. Three of the cells continuously fire in phase, while the fourth

cell experiences phase slipping and synchronizes with the other three once every 10 cy-

cles, when those cells complete 11 cycles, thereby resulting in a chimera with a 11:10

resonance as shown in Fig. 4.4. Note the shorter voltage amplitude of the three cells

firing in sync compared to the cell undergoing phase slipping, for reasons described pre-

viously. By virtue of the symmetry of the network, there exist four isomorphisms of this

rhythm, with any one of the four cells undergoing phase slipping while the other three fire

in phase. Further increase of ginh to 0.033 (not shown in Fig. 4.3) results in the chimera

states morphing into pacemaker rhythms. Thus, the chimera state serves as a transition

mechanism between the synchronized state and the pacemaker patterns. At other values

of the parameters, we also observe chimera states with different resonances, including 7:8

resonance at ε = 0.55 and 14:16 resonance at ε = 0.56 for ginh = 0.025 and Iapp = 0.435.

For larger values of ginh > 0.03, several other chimera like states become prominent as

cells in the active state, through strong inhibition, quickly inactivate or shutdown the post

synaptic cells.

4.3.4 Pacemakers

At small values of external drive Iapp = 0.4, the fully connected network can exhibit

2-phasic pacemaker rhythms co-existing with the paired half-center rhythms (Fig. 4.3,

supplementary Fig. 4.7). These rhythms are characterized by one cell driving the rhythm

and firing in anti-phase with three other cells that oscillate in-phase. Four stable iso-

morphisms exist for this rhythm, with each of the four cells capable of driving such a

pacemaker pattern. The phase lag ordered tuple for one such rhythm is given by (∆θ12 ,

∆θ13, ∆θ14) = (0.5, 0.5, 0.5) and is shown in Fig. 4.4, which also reveals the shorter voltage

amplitudes of the three driven cells in comparison to that of the driving pacemaker cell.



58

Figure (4.5) Voltage-recovery phase space shows how the limit cycle of an isolated neu-
ron (grey) changes its shape in a fully connected 4-cell circuit based on its initial condi-
tions, to produce either a paired half-center rhythm (orange) or the synchronized state
(green) (Fig. 4.3B). The size of the orbit for the paired half-center (orange) is smaller than
that of an isolated cell (grey) due to the continuous inhibition from their phase locked coun-
terparts affecting the cells in their active state (and shortening the corresponding section
of the limit cycle). For the synchronized state, the orbit becomes even smaller (green) due
to the greater consolidated inhibition on a postsynaptic cell by the 3 other cells in sync.

4.3.5 Traveling-waves

The network can produce 6 isomorphisms of a full 4-phasic traveling-wave rhythm,

where the cells fire sequentially one after the other in a cyclic fashion (see Fig. 4.3, sup-

plementary Fig. 4.7, supplementary Fig. 4.8). The phase-lag ordered tuple for one such

rhythm is given by (∆θ12 , ∆θ13, ∆θ14) = (0.25, 05., 0.75), while the corresponding voltage

trace is depicted in Fig. 4.4. We observe that at ε = 0.05 (supplementary Fig. 4.8), the

network can also exhibit a different type of traveling-wave rhythm that is referred to as

a mixed 3-phasic traveling-wave, where two cells fire in phase while oscillating sequen-

tially with the other two cells. The network can produce a total of 12 isomorphisms of
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Table (4.2) Details of the clustering analysis for multistability of the fully connected net-
work at three representative parametric blocks of Fig. 4.3 at ginh = 0.025 and ε = 0.5.

Iapp CCM CCSD PC

0.4 (0.5, 0., 0.5) (0., 0., 0.) 18.9%
(0.5, 0., 0.) (0., 0., 0.) 8.9%
(0.5, 0.5, 0.5) (0., 0., 0.) 15.8%
(0.5, 0.5, 0.) (0., 0., 0.) 18.8%
(0., 0., 0.5) (0., 0., 0.) 8.9%
(0., 0.5, 0.5) (0., 0., 0.) 18.9%
(0., 0.5, 0.) (0., 0., 0.) 9.3%

0.435 (0., 0., 0.) (0., 0., 0.) 28.5%
(0., 0.5, 0.5) (0., 0., 0.) 23.9%
(0.5, 0., 0.5) (0., 0., 0.) 23.8%
(0.5, 0.5, 0.) (0., 0., 0.) 23.8%

0.54 (0.5, 0.25, 0.74) (-0., 0.02, 0.02) 12.7%
( 0.74, 0.25, 0.5 ) ( 0.03, 0.03, -0. ) 12.6%
( 0.25, 0.5, 0.74) ( 0.03, -0., 0.03) 12.4%
( 0.25, 0.74, 0.5 ) ( 0.03, 0.03, -0. ) 12.9%
( 0.74, 0.5, 0.25) ( 0.02, -0., 0.02) 12.8%
( 0.5, 0.74, 0.25) (-0., 0.03, 0.03) 12.7%
( 0.49, 0.98, 0.49) (0.03, 0.04, 0.04) 4.3%
( 0.95, 0.47, 0.48) ( 0.03, 0.03, 0.03) 2.6%
(0.05, 0.52, 0.53) ( 0.03, 0.03, 0.04) 3.1%
( 0.48, 0.47, 0.95) ( 0.03, 0.04, 0.03) 1.5%
( 0.53, 0.53, 0.05) ( 0.04, 0.04, 0.04) 6%

such mixed traveling-wave rhythms; one is shown in Fig. 4.4 with the phase lags locked

at (∆θ12 , ∆θ13, ∆θ14) = (0., 0.67, 0.33).

4.3.6 Stable transitions

Figure 4.4 shows a stable “transitory” rhythm given by (∆θ12 , ∆θ13, ∆θ14) =

(0.41, 0.5, 0.91) at ginh = 0.025 and Iapp = 0.552. Such rhythms serve as stable interme-

diate states between some of the rhythms previously described. As we move downward

from Fig. 4.3A where there are just 3 paired half-center rhythms at Iapp = 0.575, the sys-

tem gives rise to 6 full traveling-wave rhythms at Iapp = 0.505, in addition to the 3 paired
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half-centers. Between these values of Iapp, the full traveling-waves lose stability via a su-

percritical pitch fork bifurcation and give rise to two such stable transitory rhythms (grey).

For example, when the full traveling-wave given by (∆θ12 , ∆θ13, ∆θ14) = (0.25, 0.5, 0.75)

loses stability, the anti-phase relationships ∆θ13 = 0.5 and ∆θ24 = 0.5 are maintained, but

the active phase of cell 1 could get closer and closer to that of either of cell 2 or 4, while the

phases of the remaining two cells also start getting closer and closer, until they give rise

to either of the paired half-centers given by (0., 0.5, 0.5) (1,2 vs. 3,4) or (0.5, 0.5, 0.) (1,4 vs.

2,3). Therefore, for intermediate values of Iapp, we could gradually see stable transitory

rhythm pairs such as (0.15, 0.5, 0.65), (0.35, 0.5, 0.85), and (0.05, 0.5, 0.55), (0.45, 0.5, 0.95).

4.4 Robust monostable/bistable network topologies

Multistability and bifurcation analysis for the other 4-cell network topologies of Fig. 4.2

(see supplementary Fig.4.9,4.10,4.11) shows that the two-way inhibitory loop (Fig. 4.2b)

and mixed (Fig. 4.2c) networks exhibit robustly monostable rhythms (their ginh vs. Iapp

parametric sweeps show a single stable rhythm across all parametric blocks) given by the

phase lag ordered tuples (0.5, 0., 0.5) (paired half-center) and (0.25, 0.5, 0.75) (full traveling-

wave), respectively, while the one-way inhibitory loop network (Fig. 4.2a) exhibits robust

bistability with both these rhythms (0.5, 0., 0.5) and (0.25, 0.5, 0.75), as the parameters ginh,

Iapp, and ε are varied. Note that no other stable isomorphisms of these full traveling-

wave and paired half-center rhythms are stable in these network configurations due to

the missing connections from the fully connected circuit (Fig. 4.2a). Compare the full

traveling-wave rhythm of the mixed network (Fig. 4.2c) with a similar reduced swim CPG

found in the sea slug Melibe leonina (with additional excitatory connections) [31,65] (see

Fig. 3.3 from Ref. [65]). Neurophysiological experiments with this CPG reported the oc-

currence of a similar full traveling-wave pattern in the voltage traces.
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Figure (4.6) Structural changes in a network promote or suppress rhythmic behaviors.
Gradual strengthening or weakening of the synapses converts the circuits on the left
into the circuits on the right. Purple regions represent the 4-phasic full traveling-wave
rhythm of (0.25, 0.5, 0.75) while orange regions represent the 2-phasic paired half-center
(0.5, 0., 0.5), with sizes proportional to their attractors in the phase space. One-way in-
hibitory loop network exhibits robust bistability with both these rhythms while two-way
inhibitory loop and mixed networks show robust mono-stability with the paired half-center
and the traveling-wave pattern, respectively. (a) Transition from bistability to monostable
paired half-center rhythm while the traveling-wave rhythm is gradually suppressed. (b)
Bistable network transitions to monostable traveling-wave rhythm. (c) Transitions from
one monostable rhythm (paired half-center) to another (full traveling-wave). At intermedi-
ate synaptic changes when not all synapses between the neurons have equal strengths,
the network is bistable. Here, gNetwork

inh = 0.029, Iapp = 0.54 and ε = 0.3
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4.5 Network transitions/rewiring

Our approach can generate verifiable hypotheses for experimental manipulations and

rewiring of real animal CPGs with dynamic clamping experiments [199]. We can investi-

gate how network topologies and synaptic changes can alter the rhythmic behavior of the

network and promote or suppress multistability. Fig. 4.6 shows the functional changes in

CPG rhythms and their mono/multi-stable behaviors due to structural changes in network

topology. The network on the left is gradually transitioned into the network on the right

by synaptic changes, while the rhythmic behaviors and multistability are analyzed during

these transitions. Purple regions represent the full traveling-wave rhythm (0.25, 0.5, 0.75)

while orange regions represent the paired half-center (0.5, 0., 0.5), with sizes proportional

to their attractors in the phase space. Gradual strengthening of the anti-clockwise in-

hibitory connections in Fig. 4.6a converts the bistable one-way inhibitory loop network

into the monostable two-way inhibitory loop network. The paired half-center rhythm is

promoted while the traveling-wave rhythm is suppressed. In Fig. 4.6b, mutual inhibitions

between cells 1,3 and cells 2,4 are gradually strengthened to convert the bistable one-

way inhibitory loop network on the left to the monostable mixed network on the right.

The traveling-wave rhythm is gradually promoted while the paired half-center rhythm is

suppressed. In Fig. 4.6c, by gradually weakening the anti-clockwise inhibitory loop and

simultaneously strengthening mutual inhibitions between cells 1,3 and cells 2,4, the net-

work transitions from one monostable rhythm (paired half-center) to another (full traveling-

wave). At intermediate synaptic changes, the network is bistable. Also, note that at such

intermediate stages, the synaptic strengths in the network are not all identical, but the ho-

mogeneity of the neurons in the network is maintained, with all of them receiving similar

total synaptic inputs.
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4.6 Summary and future directions

In summary, we combine the existing techniques of dynamical systems theory with

modern computational approaches such as unsupervised machine learning (clustering)

algorithms and faster GPU-parallelized simulations of heavily populated trajectories to re-

veal the rhythmic capacities of homogenous 4-cell networks. This chapter extends our

knowledge of the basic principles guiding multi-stable rhythmic behaviors in such neural

networks and shows that mono/multistability of a CPG depends on the complex interac-

tion of several intrinsic and extrinsic factors including network topology, slow-fast dynam-

ics, synaptic strength, and external current drive. Such factors alter the positions and

shapes of the fast V-nullcline and the slow x-nullcline, as well as the gap between them,

to control the release and escape mechanisms of a bursting neuron [68]. We identify

network topologies that exhibit robust monostable rhythms (Fig. 4.2b,c) or robust bistabil-

ity (Fig. 4.2a) for a range of parameter values and are resilient to external perturbations,

while other network configurations (Fig. 4.2d) display a rich array of multistable behaviors

that intricately depend upon the internal and external parameters. We demonstrate how

the fully connected 4-cell network can exhibit a plethora of multistable rhythmic states

composed of pacemakers, paired half-centers, full and mixed traveling-waves, synchro-

nized states, and chimeras. Symmetry of the network implies the coexistence of several

stable isomorphic rhythms. We note that the paired half-center rhythms, where half the

cells are firing at any point of time in anti-phase with the remaining half, are prominent in

the fully connected network at faster ε = 0.5 (Fig.4.3 orange regions), while various travel-

ing wave rhythms (full and mixed) become prominent for slower ε = 0.05 (supplementary

Fig.4.8 pink and purple regions).

We identify the transitions and bifurcations that occur with changing network topolo-

gies and other parameters to identify factors promoting or suppressing monostable/multi-

stable rhythmic output, allowing us to predict the changes in patterns of activity and mul-

tistability. Such synaptic modifications and rewiring (as shown in Fig. 4.6) on real animal
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CPGs can be performed using dynamic clamping technique, and our analysis can serve

as a precursor to determine the most relevant hypotheses to test in such experiments,

in order to identify the significance of various connections of the circuit in producing ro-

bust rhythmic behaviors. For example, the reduced swim CPG of the sea slug Melibe

leonina [31,65] closely resembles the mixed network (Fig. 4.2c) (with additional excitatory

connections), and produces a robust full traveling wave rhythm. Our analysis shows that

rewiring of this mixed network can lead to bistability (Fig. 4.6b) or a monostable paired

half-center rhythm (Fig. 4.6c). Such analyses can, therefore, be performed with models

tuned to the particular animal CPGs of interest and the most relevant hypotheses identi-

fied can then be tested in neurophysiological experiments.

Our analysis can help non-biological systems from engineering, economics, and en-

vironmental studies, where loss of resilience is a challenge to predict and can cause

catastrophic effects. Such understanding is also essential to study motor control, dynamic

memory, information processing, and decision making in animals and humans [200]. It

also has implications for gaining insights into complex neurological phenomena in higher

animals along with neurological disorders related to CPG arrhythmia, and the develop-

ment of mechanisms to treat such disorders. Before such techniques can be applied to

humans, we need to achieve a comprehensive understanding of the working of these

modular networks in lower animals and through computational models. While this project

deals with networks of single neurons, the methodology might also be applied to study

networks of brain regions or neural populations that synergistically excite or inhibit each

other and produce rhythmic patterns of firing [201,202]. The insights in CPG multistability

gained from this research might help in the design and development of more efficient robot

locomotion [203–214]. An important aspect of these analytical and computational tech-

niques is their validity across a wide range of oscillatory networks without dependence on

the underlying mathematical equations. Hence they are applicable to a variety of rhyth-

mic neuronal and non-neuronal activities beyond motor control and will benefit a wide

audience of interdisciplinary researchers for studies of diverse nonlinear applications.
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Figure (4.7) Multistability and bifurcation analysis of the fully connected 4-cell network at
ε = 0.3 shows similar rhythmic capacity as Fig.4.3 (at ε = 0.5), except for the lack of stable
synchronized state.

Supplementary Material

Supplementary figures are presented below.
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Figure (4.8) Multistability and bifurcation analysis of the fully connected 4-cell circuit at
ε = 0.05 shows the dominant expression of the traveling-wave (full and mixed) rhythms,
compared to the paired half-centers.
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Figure (4.9) Robust bistability of the one-way inhibitory loop network with the full travelling
wave rhythm of (0.25, 0.5, 0.75) and the paired half-center (0.5, 0., 0.5). No other stable
isomorphisms of these rhythms exist due to the missing synaptic connections compared
to the fully connected network. ε = 0.5.
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Figure (4.10) Robust monostability of the two-way inhibitory loop network with the paired
half-center rhythm (0.5, 0., 0.5) (no other stable isomorphisms). ε = 0.5.

Figure (4.11) Robust monostability of the mixed network with the full travelling wave
rhythm of (0.25, 0.5, 0.75) (no other stable isomorphisms). ε = 0.5.
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CHAPTER 5

APPLICATIONS BEYOND NEUROSCIENCE: CHAOTIC NONLINEAR SYSTEMS

Although the main focus of this thesis is to understand the behaviors of biological

neural network dynamics, the methods and approaches we developed have broad ap-

plications for the study of cross-disciplinary nonlinear phenomena at large. The tech-

nique Deterministic Chaos Prospector (DCP) reduces phase space dynamics to symbolic

representations, allowing us to detect regions of simple and complex dynamics, and to

elaborate on the onset mechanisms of deterministic chaos due to complex homoclinic

bifurcations in diverse systems with a Lorenz-like chaotic attractor. Massively parallel

simulations can shorten the computational time to disclose highly detailed bifurcation di-

agrams to just a few seconds. In this chapter, we demonstrate this for a nonlinear laser

model and discuss the multiplicity and self-similarity of homoclinic and heteroclinic bifur-

cation structures in its 2D and 3D parameter spaces. We show detailed computational

reconstructions of key bifurcation structures such as Bykov T-point spirals and inclination

flips in 2D parameter space, as well as the spatial organization and 3D embedding of

bifurcation surfaces, parametric saddles, and isolated closed curves (isolas). This chap-

ter is edited with permission based on the publications and further details can be found

in [4,183]. The application of these techniques for the global organization of bi-parametric

structures that underlie the emergence of chaos in a simplified resonantly coupled wave

triplet system can be found in [3]. The knowledge and the methodology created in these

studies would further advance new ideas and approaches for nonlinear science, while the

generality of our modeling approaches makes them applicable to other biological, medi-

cal, and engineering systems [89].
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5.1 Background

New directions in science are launched by new tools much more often than by new

concepts. Dyson F. [215]. Break-through discovery of deterministic chaos in [infra-red

gas] lasers in nonlinear optics was established and pioneered both theoretically and ex-

perimentally long time ago [216–220]. Recent developments in semiconductor lasers and

nano-optics have stimulated newest advances in optical synchronization and photonic in-

tegrated circuits for the needs of cryptography [221–226]. Nowadays, a real advance

in deterministic nonlinear science stimulating the progress of cutting-edge engineering

is hardly possible without significantly deepening the knowledge and beneficial usage of

complex elements borrowed from dynamical systems theory. This in turn is hardly possi-

ble without development and incorporation of new mathematical and computational tools,

including for parallel Graphics Processing Unit(GPU) based platforms.

In this chapter, we demonstrate how our newly developed toolkit, called “Deterministic

Chaos Prospector (DCP),” lets us disclose and elaborate on the origin of complex chaotic

dynamics in a 6D model of a resonant 3-level optically-pumped laser (OPL) [227,228]. In

addition to simple dynamics associated with stable equilibria and periodic orbits, it reveals

a broad range of bifurcation structures that are typical for many ODE models from non-

linear optics and other diverse applications [229–233]. These include homoclinic orbits

and heteroclinic connections between saddle equilibria that are the key building blocks

of deterministic chaos in most systems. Their bifurcation curves with characteristic spi-

rals around T(terminal)-points along with other codimension-2 points are the organizing

centers that shape regions of complex and simple dynamics in the parameter space of

such systems. The detection of these bifurcations has long remained the state-of-the-art

involving a meticulous and time consuming parameter continuation technique to disclose

a few sparse elements of the otherwise rich and fine organization of the bifurcation set.

We note that while the brute-force approach based on the evaluation of Lyapunov expo-

nents can effectively locate stability windows within regions of chaos [234, 235], it fails to
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disclose these essential structures that are imperative for the exhaustive understanding of

complex dynamics and their origin. We will demonstrate how our approach exploiting the

sensitivity of deterministic chaos and its symbolic representation using binary sequences

combined with Lempel-Ziv complexity algorithms [236], can effectively reveal regions of

complex, structurally unstable and simple stable dynamics in this and other systems.

5.2 3-level optically pumped laser model

The 3-level optically pumped laser model [227,228] is given by

Ûβ = −σβ + 50p23,

Ûp21 = −p21 − βp31 + aD21,

Ûp23 = −p23 + βD23 − ap31,

Ûp31 = −p31 + βp21 + ap23, (5.1)

ÛD21 = −b(D21 − D0
21) − 4ap21 − 2βp23,

ÛD23 = −b(D23 − D0
23) − 2ap21 − 4βp23,

with variable β and parameter a, being the Rabi flopping quantities representing the elec-

tric field amplitudes at emission and pump frequencies, resp.; σ = {1.2; 1.5; 10} is the cav-

ity loss parameter; b is the ratio of population to polarization decay rates; pi j is the normal-

ized density matrix element corresponding to the transitions between levels i and j, while

Di j is the population difference between the i-th and j-th levels. Note that this system is

Z2-symmetric under the involution (β, p21, p23, p31,D21,D23) ↔ (−β, p21,−p23,−p31,D21,D23),

which is typical for Lorenz-like systems [231, 237]. Depending on (a, b)-values, the

laser model has either a single non-lasing steady state, O, or an extra pair of equi-

libria, C± (Fig. 5.1a), emerging as O loses stability through a pitch-fork (PF) bifurca-

tion and becomes a saddle. All three steady states can independently undergo super-
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critical Andronov-Hopf (AH) bifurcations (curves labelled with AH0 and AH1,2 in the (a, b)-

parameter plane in Fig.5.2) giving rise to stable periodic orbits (PO) in the phase space

of the laser model.

Figure (5.1) (color online) (a) (β,−D23)-phase space projection showing the primary
homoclinic orbit (red, coded as {1}) splitting leftward/rightward (green/blue, {11...} or
{11...}) when the separatrix Γ1 misses the saddle O (black dot) after completing a sin-
gle turn around the saddle-focus C+, with the Lorenz attractor (in grey) in background
(b) Chaotic transient of Γ1 generating a binary sequence starting with {10100101...} (c)
Time-evolutions of the β-coordinate of Γ1 (in (b)) and of a close trajectory (red), and their
binary codes, before they diverge. (d) Two stable symmetric POs coded as {01}) and
{0011} (e) Heteroclinic connections (red {101}, blue symmetric counterpart) at the T1-
point (Fig. 5.2) (f) Samples (Pj) of the primary homoclinic orbit morphing to a double loop
after the inclination-flip, IF1, on the curve H0 in the (a, b)-parameter plane in Fig.5.2; here
σ = 1.5
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5.3 Symbolic encoding and parametric sweeps

Both structural and dynamical instability in the model are due to an abundance of ho-

moclinic bifurcations (HB) of the saddle O, whose 1D unstable separatrix Γ1 (and the sym-

metric counterpart Γ2) densely fills out the two spatially-symmetric wings of the butterfly-

shaped strange attractor (Fig. 5.1a,e) [237]. As parameters are varied Γ1 constantly and

unpredictably changes its flip-flop switching patterns within the Lorenz attractor. These

patterns change whenever Γ1 comes back to O to undergo a homoclinic bifurcation. This

observation is the core for the proposed symbolic approach that converts chaotic and

periodic patterns of Γ1 around the equilibria C± into binary sequences {kn} as follows:

kn =


1, when the separatrix Γ1 turns around C+;

0, when the separatrix Γ1 turns around C−.

As such, the periodic sequence {111 . . . }, or {1}, corresponds to Γ1 converging to the

equilibrium state C+ or a periodic orbit emerging from it through AH-bifurcation, while the

sequence {100 . . . } or {10} corresponds to Γ1 converging to C− and so forth. Wherever

small parameter variations do not change Γ1-progressions and hence their binary repre-

sentations, the system demonstrates structurally stable dynamics, which can be due to

stable equilibria or periodic orbits (PO), such as the symmetric POs turning once [figure-8

shaped] or twice around C− and C+ in Fig. 5.1d, with corresponding binary sequences

{01} and {0011}, resp. An aperiodic binary sequence is associated with chaotic dynam-

ics that is characterized by the sensitive dependence on small parameter variations that

change Γ1-progressions and corresponding symbolic sequences (Fig. 5.1c). Changes oc-

cur at homoclinic bifurcations when Γ1 comes back to saddle O. The primary homoclinic

orbit (shown in Fig. 5.1a,f) coded with a finite sequence {1} separates periodic patterns

coded as {1} and {10}. It occurs on the bifurcation curve H0 in the (a, b)-parameter plane

in Fig. 5.2. There are two special points labeled as IF1 and IF2 on H0 that correspond to

the so-called inclination-flip (IF) bifurcation of codimension-two [238]. Its feature is that it
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Figure (5.2) (color online) (a, b)-parameter sweep of [5–12]-length reveals an abundance
of homoclinic bifurcations emerging from two cod-2 points, IF1 & IF2, on H0, that cor-
responds to the primary homoclinic butterfly of saddle O, along with self-similar charac-
teristic spirals around T-points, labelled T0,1,2, corresponding to distinct heteroclinic cy-
cles between O and saddle-foci C±. Cod-2 Bogdanov-Takens, BT , unfolding includes
Andronov-Hopf AH0, AH1,2 and pitch-fork PF bifurcation curves for O and C±, resp.; here
σ = 1.5.

gives rise to instant homoclinic chaos in the phase space and complex bifurcation struc-

tures in the parameter space of the system. With our new computational-symbolic toolkit
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Figure (5.3) (color online) (a) Short [8–15] and (b,d) long [100–123]-length (a, b)-sweeps
reveal fine self-similar organization of homo- and heteroclinic bifurcations underlying the
regions of chaotic and regular dynamics of the laser model for σ = 1.5. A small area (white
box) in (a) is magnified with a longer [15–22]-sweep in (c). (b,d) reveal stability windows
(solid colors) within “noisy” regions of structurally unstable chaos; white lines demarcate
boundaries of some stability windows.

we can clearly and quickly identify such bifurcations and their fine organizations in the

parameter space along with regions of chaotic and regular dynamics. First, we define a
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formal power series P(N) for a finite binary sequence {kn} of length N, after omitting the

first j symbols for initial transients of the separatrix Γ1 or any other trajectory, as follows:

P(N) =
j+N∑

n= j+1

kn

2(N+ j+1)−n
. (5.2)

By construction, the range of P(N) is [0, 1], including the sequences {0} and {1} (in the

limit as N → ∞). For example, P(8) for the aperiodic sequence {10100101} generated

by Γ1 in Fig. 5.1b, with j = 0 and N = 8, is given by: P(8) = 1/28 + 0/27 + 1/26 + 0/25 +

0/24 + 1/23 + 0/22 + 1/21 = 0.64453125. The P-quantities are used as invariants to dis-

criminate or conjugate finite progressions of the separatrix Γ1 of the saddle against each

other to identify and trace down corresponding bifurcation curves in the parameter space.

Moreover, the quantities generated from long periodic and aperiodic binary sequences

let us efficiently detect regions of regular and chaotic dynamics, resp. Keeping σ fixed

at 1.2, 1.5 or 10, we 1) vary a and b to get a bi-parametric sweep on a 2000x2000 grid

2) to follow Γ1-progressions 3) generating binary sequences {kn} that 4) result in P(N)-

quantities. Next 5) we colormap all found P(N) values onto the parameter plane, where

regions are identified by their equivalent colors, and the borderlines between adjacent re-

gions correspond to homoclinic bifurcation curves. The colormap differentiates between

P(N)-values grouped into 28 bins with preset RGB-color values. Numerical integration is

performed using the classic Runge-Kutta method (RK4) with fixed step size dt = 0.01.

The computation of these trajectories is massively parallelized by running on separate

GPU threads using CUDA. This allows for the construction of bi-parametric scans such

as Fig. 5.2, in as little as 8 seconds on an Nvidia Tesla K40 GPU. Visualizations are

done in Python. In order to construct complex bifurcation structures in the 3D paramet-

ric space, such as Figs. 5.7a,5.8,5.10, we obtain a large number of biparametric scans

in the (a, b) parametric plane, as we continuously vary the third parameter σ. Such ar-

rays of scans are then rendered together using the open source volume exploration tool

Drishti [239], which performed the best with our huge datasets, compared to other avail-
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Figure (5.4) (color online) [2–9]-length sweep discloses organization of homo/heteroclinic
bifurcations originating from cod-2 inclination-flip IF2 and multiple T-points: primary T0
coded as {10}, secondary T1 as {101}, and a pair T1

2 − T2
2 with code {110} separated by a

saddle (S) in the (a, b)-parameter plane; here σ = 10. Inset (a) shows a larger (a, b)-sweep
of [1–7]-length; (b) [16–23]-long sweep depicts dense loci of homoclinic bifurcation curves
originating from IF2.

able tools for 3D rendering. The open source software developed is available at https:

//bitbucket.org/pusuluri_krishna/deterministicchaosprospector/.

https://bitbucket.org/pusuluri_krishna/deterministicchaosprospector/
https://bitbucket.org/pusuluri_krishna/deterministicchaosprospector/
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5.3.1 Transient dynamics

The sweep of [5–12]-length in Fig. 5.2 is superimposed with the curves, obtained

by parametric continuation, corresponding to pitch-fork (PF), Andronov-Hopf (AH0 and

AH1,2 for O and C±) and the primary homoclinic (H0) bifurcations all originating from the

codimension-2 Bogdanov-Takens point (BT) [238]. Fig. 5.1f shows how the primary ho-

moclinic loop transmutes into a double loop along the curve H0. The sweep reveals the

way the inclination-flip IF1 and IF2 points give rise to jets of homoclinic bifurcation curves

spiraling to various self-similar cod-2 Bykov terminal T-points, including T0 and T1, that

correspond to heteroclinic connections linking the saddle O with saddle-foci C+, C− and

generating periodic sequences {10}, {101} (Fig. 5.1e), resp.

Figure 5.3a shows that with longer sequences we can obtain more detailed sweeps dis-

closing multiple T-points of smaller scales near the saddle point, S, that are not seen

in Fig. 5.1. These spiral structures around T-points (identical to T1
2 and T2

2 in Fig. 5.4)

morph into closed loops (like those shown in Fig. 5.3c) after collapsing into the saddle

as σ-parameter is varied Figures 5.3b,d present the sweep of [100–123]-length, i.e., after

skipping the first 100 transient symbols. Here regions with solid colors of constant P(23)-

values represent the stability windows corresponding to simple (periodic) Morse-Smale

dynamics, whereas multi-colored noisy regions refer to structurally unstable chaotic dy-

namics, as described later.

The (a, b)-sweep of [2-9]-length in Fig. 5.4 demonstrates the intrinsic re-arrangement of

the bifurcation constituents of complexity for a different cut at σ = 10. Here, the sec-

ondary inclination-flip point, (IF2), gives rise to loci of outgoing homoclinic curves that

are re-directed by a saddle point (S), and spiral onto multiple T-points. The heteroclinic

connections at the T-points, T0-T3, are given by {10}, {101}, {110}, and {1}, respectively.

The T-points T1
2 and T2

2 , separated by the saddle S, correspond to the same heteroclinic

connection {110}. Note that here the primary homoclinic curve spirals onto the primary

T-point T0. The T-point T3 belongs to the stability window dominated by the symmetric
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figure-8 periodic orbit (Fig. 5.1d) in the long run. The semi-annular structures around C

are, in fact, the remnants of the spirals around T3, where the other halves of the spirals

are disintegrated by the stable periodic orbit existing near T3. With small σ-variations, T3

crosses over the stability boundary near C, so that both ends of the semi-annular struc-

tures merge to complete spirals around T3. Meanwhile, T-points T1
2 and T2

2 merge with the

saddle S to transform into concentric cycles.

5.3.2 Long-term system behavior

While a detailed sweep for short-term transient dynamics lets us reveal the underlying

homoclinic bifurcations, longer sweeps omitting initial transients are designed to localize

stability windows corresponding to regular dynamics and regions of chaotic dynamics in

the parameter space. We implemented two algorithms into our computational DCP toolkit

to classify such regions depending on whether the corresponding binary sequences of

solutions are periodic or not for the given parameter values. The first algorithm based on

Eq. (2) includes periodicity correction (PC) to identify periodic structure within a binary

sequence and to normalize it to its smallest valued circular permutation. For example,

the symmetric figure-8 periodic orbit in Fig. 5.1d is coded with {01}) not with {10}. The

second algorithm utilizes the Lempel-Ziv-76 (LZ) compression [236], to determine the

normalized complexity (the number of words in vocabulary per sequence length) of the

binary sequence. The LZ compression algorithm scans a sequence from left to right and

adds a new word to the vocabulary every time a previously unencountered substring is de-

tected. Since all circular permutations of a periodic orbit have the same complexity, with

this approach we can also detect stability windows amidst structurally unstable chaotic

regions. This approach requiring only one solution per parameter set complements more

expensive computational approaches based on the evaluations of the largest or several

Lyapunov exponents.

Figure 5.5 represents the bi-parametric [1000-1999]-long sweeps to identify regions of

simple and complex dynamics in model; here insets a/c and b/d represent the PC- and
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Figure (5.5) (color online) Long [1000–1999]-length sweeps to detect a multiplicity of
stability windows (solid colors; dark red due to stable PO {0011}) in Fig. 5.1d) within
noisy/multi-color regions of chaos adjacent to IF1 and IF2 points in the (a, b)-parameter
plane using PC algorithm in (a) and (c), and LZ-complexity in (b) and (d). Sweeps at
σ = 1.5 (a,b) and σ = 10 (c,d) to compare with Fig. 5.2 and 5.4.

LZ-algorithm based sweeps, respectively. Regions of solid monotone colors correspond

to the stability windows with stable equilibrium states and periodic orbits, while multi-
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colored noisy regions indicate that the dynamics are structurally unstable and chaotic.

The sweeps in Figs. 5a-b (at σ = 1.5) are superimposed with the primary and secondary

inclination-flip points, IF1 and IF2, along with the primary T-point T0 located next to the

boundary between the regions of chaotic and stable periodic dynamics. They reveal mul-

tiple stability windows adjacent to IF1 and IF2 (magnified insets), including the wide one

(in dark red) corresponding to a stable periodic orbit {0011} (shown in Fig. 5.1d). This

approach can clearly identify distinct periodic orbits and their stability windows mapped

by different colors. Note that same stability windows (indicated with same colors) emerge

near both IF1 and IF2 in the reversed order. The sweeps in Figs. 5.5c-d (at σ = 10) de-

pict the primary T-point T0 located inside the region of chaotic dynamics, and the stability

windows accumulating to IF2. We note that the PC-algorithm lets one detect and iden-

tify a variety of stable periodic orbits efficiently even with short symbolic sequences (see

Figs. 5.5b,d) compared to quite long sequences required by the LZ-algorithm that suits

better for the detection of chaotic regions. To harness the best of both worlds, we can

combine both PC and LZ, by first running the symbolic sequences through PC to detect

the existence of, and to normalize, periodic orbits. The normalized sequences are then

used to compute the power series sum P and colored with the colormap as previously

described. We then run aperiodic sequences through LZ to detect their complexity. We

color the LZ-complexity values in shades of gray, with darker gray representing greater

complexity. Together, this results in long term bi-parametric sweeps such as Figs. 5.6b.

5.4 Special organizing structures in parameter space

In this last section, we present a brief discussion of complex organizing structures in

the parameter space, including inclination flip points, Bykov T-points, parametric saddles

and isolas (isolated closed curves). Such structures have been theoretically described

previously [240–243]. To our knowledge, this is the first detailed three dimensional com-

putational reconstruction of such bifurcation surfaces in parameter space, made possible

by the fast parallel computation of trajectories on GPUs.
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5.4.1 Inclination flips and Bykov “terminal” T-points

Figure (5.6) Short-term and long-term sweeps to disclose the multiplicity of basic
inclination-flip bifurcation points (white dots) at σ = 1.2. (a) {ki}

9
i=2 sweep illustrates a

locus of homoclinic curves converging towards the primary and secondary T-points to the
inclination-flip points IF2 (b) Long {ki}

1999
i=1000 DCP-based sweep reveals a variety of large

and narrow stability windows, also known as the Shilnikov flames, originating below sub-
sequent inclination flip points located on the boundary (not shown here) separating the
region of the Lorenz attractor (above it) from that of quasi-attractors coexisting with stable
periodic orbits.

A typical signature for Lorenz-like systems is the complex universal and self-similar

characteristic spirals in the parameter plane, organized around a central point called a

Bykov terminal point (T-point) as seen in Figs. 5.2,5.4. Each characteristic spiral around

a T-point in the parameter plane corresponds to a homoclinic loop of the saddle O in the

phase space, such that with each turn of the spiral approaching the T-point, the outgoing

separatrix of saddle makes increasing number of loops around a saddle-focus C±, be-

fore finally forming a closed heteroclinic connection between the saddle and the saddle

focus at the T-point. Fig. 5.1e shows a one-way heteroclinic connection (red) between the

saddle and the saddle focus for parameter values near the T-point T1 in Fig. 5.2b, with

(a, b) ∼ (3.68179, 0.3517). Here, the unstable separatrix Γ1 (red) of the saddle O makes
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one loop around C+, followed by another loop around C−, then merges with the incoming

separatrix of C+, thus effectively making infinite loops around C+ before emerging out.

The symmetric heteroclinic connection along Γ2 from O to C−, is shown in blue.

Near a T-point, there exist countably many secondary T-points with increasing com-

plexity of heteroclinic connections in the phase space and with similar bifurcation struc-

tures as the central T-point in the parameter plane, although on a smaller scale (see

Figs. 5.2b, 5.6). Multiple inclination flip (IF) homoclinic bifurcations of the saddle occur-

ring along the characteristic spirals of the T-points (detected with MatCont and shown as

white dots in Fig. 5.6) give rise to saddle-node and period-doubling bifurcations of peri-

odic orbits [70,240]. Fine organization of the structure of the chaotic regions and stability

windows near the T-point and surrounding IF points is revealed in greater detail in 5.6b.

In addition, the unfolding of a T-point also includes other curves corresponding to the ho-

moclinic connections of the saddle-focus satisfying the Shilnikov condition [77, 244, 245]

that give rise to a denumerable set of saddle periodic orbits nearby [78], as well as those

corresponding to heteroclinic connections between both saddle-foci [71,246,247].

We depict the parametric sweeps at σ = 1.2, which nicely summarize the behavior of

the inclination flips and secondary T-points for short term (Fig. 5.6a, {ki}
9
i=2) and long term

dynamics (Fig. 5.6b, {ki}
1999
i=1000 with DCP). Several inclination flips (white dots) close to the

primary T-point T0 are clearly seen as the congregation centers of homoclinic curves lead-

ing up to secondary T-points vis-à-vis transient dynamics, while those same inclination flip

points also give rise to stability windows in the long term, amidst regions of structurally

unstable and chaotic dynamics.

5.4.2 Parametric saddles for homoclinic curve branching

In this section, we describe a saddle in the parameter space that causes branch

switching between homoclinic bifurcation curves. Between σ = 1.5 and σ = 2.0, the

primary homoclinic bifurcation curve shifts from a complete loop to a spiral organization

around the primary T-point T0. This implies the existence of a saddle in between the
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Figure (5.7) Bifurcation diagram in (a, b, σ)-parameter space showing the transformation
of the primary homoclinic bifurcation curve H0, when it starts to spiral towards the pri-
mary T-point T0 instead of making a full loop (see Fig. 5.2). This 3D reconstruction
(with σ on the vertical axes) is made of 100 sweeps with {ki}

7
i=0 in the range 1.7418

(top)≤ σ ≤ 1.7439 (bottom). The P-point marks the location of the branching saddle near
σ ≈ 1.7428. (right) Sketch of a bifurcation surface featuring a saddle causing the homo-
clinic bifurcation branching in the 3D parameter space of the Shimizu-Morioka system
(courtesy A.L. Shilnikov et. al., 1993 [7])

two σ values that branches the primary homoclinic bifurcation curve H0. Fig. 5.7(left)

shows a detailed 3D (a, b, σ) bifurcation diagram close to this saddle. It is constructed

using 100 bi-parametric sweeps in the (a, b)-plane with 1.7418 (top surface) ≤ σ ≤ 1.7439

(bottom surface), using {ki}
7
i=0 and 3D volume is rendered with Drishti software [239]. This

branching of H0 occurs at σ ≈ 1.7428 and is marked by P. Detailed zooms close to P,

shown in Fig. 5.8, further unravel this 3D organization of the homoclinic bifurcation surface

at the homoclinic branching saddle P. A similar 3D bifurcation surface with a saddle in

the Shimizu-Morioka system is presented in [7] and shown in Fig. 5.7(right).

5.4.3 Parametric saddles bridging T-points

We now focus on another kind of saddle ubiquitous to parametric sweeps, serving

as a bridge between two identical T-points, marked S in Figs.5.2,5.3,5.4. The interesting
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Figure (5.8) Magnifications of the saddle P in Fig. 5.7 to better reveal the organization of
the homoclinic bifurcation surface H0 and how it branches to originate from 1D IF1-curve
and scroll onto the primary T-line in the (a, b, σ)-parameter space.

feature of such a saddle is that the T-point spirals above and below have identical con-

struction and the same heteroclinic connections, as described previously in Fig. 5.4 for

σ = 10, with T1
2 above and T2

2 below S. In order to see how such T-points on either side of

a saddle are related to each other, we run multiple sweeps with closely varying σ values

and observe the structural changes in the spiral organization. Fig. 5.9 shows such chaotic

mixing close to the saddle S as σ values are varied from (a) σ = 1.372, (b) σ = 1.352, (c)

σ = 1.288, and through (d) σ = 1.264. As σ changes, the T-points above and below the

saddle appear to be merging together, as depicted in the transitions: Fig. 5.9a→b and

Fig. 5.9c→d.

The 3D scrolling structure of the bifurcation surface around the hyperbolic saddle S

for 1.344 ≤ σ ≤ 1.374985 constructed using 2000 bi-parametric sweeps using {ki}
11
i=4 and

rendered with open-source scientific visualization software Drishti is shown in Fig. 5.10.

Fig. 5.10a,b,c reveal with gradually increasing depth, the continuous structural connec-

tions between the T-points on either side of this bridging saddle S. As we move along the

T-point curve by varying σ, the curve undergoes a change in orientation and re-enters the
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Figure (5.9) Chaotic mixing near the bridging saddle S (white dot in panel (a)) (see
Fig. 5.2) is revealed using four {ki}

11
i=4-sweeps for varying σ values: (a) σ = 1.372, (b)

σ = 1.352, (c) σ = 1.288 and (d) σ = 1.264. As σ is changed, the symmetric T-points
(with an identical binary coding) above and below the saddle merge together, giving rise
to annular isolas. Compare with Fig. 5.10 and watch the supplementary movie in the
Appendix.
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Figure (5.10) 3D bifurcation structure near the bridging saddle S (see 2D bifurcation di-
agrams in Figs. 5.2 and 5.9) in the (a, b, σ)-parameter space is rendered using 2000
{ki}

11
i=4-sweeps (each of 2000x2000-resolution) in the σ-range: 1.344 ≤ σ ≤ 1.374985. It

reveals the connectivity between two identical T-points on either side of the saddle, with a
gradually increasing depth, as a bending T-curve with the saddle S in the middle. Depend-
ing on how these structures are sliced, they will look like spirals or concentric circles/isolas
in the corresponding 2D parametric sweeps shown above and below.

bifurcation planes of previous T-points, giving birth to the saddles in between them. Note

that each sweep has 2000x2000 resolution. All 2000 such produced slices imply a total

computation of 20003 = 8×109 trajectories. Despite being computationally heavy, this was

achieved in just about 8 hours on a single Nvidia Tesla-K40 GPU.

5.4.4 Annular isolas from a bridging saddle

As seen in Fig. 5.9, as the T-points on either side of a bridging saddle merge to-

gether with varying σ, it results in the formation of isolas of homoclinic bifurcation curves
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resembling concentric annular structures. This is due to the fact that the T-point curve

changes its orientation with respect to the bifurcation planes and the T-point becomes

non-transverse to this plane, which was described as a codimension-two-plus-one event

[241, 242]. Such isolas are also seen in Figs.5.2,5.3,5.4. As we slice several (a, b) bi-

parametric sweeps in Fig. 5.10 for changing σ-values, moving from the top towards the

bottom surface, the T-points appear to be merging as they become non-transverse to the

bifurcation plane and we can only observe isolas made of homoclinic bifurcation curves.

See [183] for a detailed description of semi-annular isolas arising from the ghost of a T-

point (T3) as seen near the point C in Fig.5.4, where the other halves of the spirals are

disintegrated by the stable periodic orbit.

5.5 Summary

In this chapter, we presented a novel framing combining applied dynamical systems,

GPU-based parallel computation, and 2D/3D parameter space visualization to extend the

theory of non-local homoclinic bifurcations of lower codimensions. With this approach

we can explore and determine the universal rules of complex dynamics in diverse sys-

tems. We could identify regions of simple and chaotic dynamics in the parameter space

of a classic nonlinear laser model with a Lorenz-like attractor, as well as disclose the key

underlying bifurcation structures, including Bykov T-point spirals and inclination flips. We

performed detailed computational reconstruction and visualization of the 3D embedding of

bifurcation surfaces, parametric saddles and isolas. This methodology and understand-

ing can further advance the studies of cross-disciplinary nonlinear phenomena across

biological, medical, and engineering systems [89].

Supplementary Material

Parameters of the model are set as follows:

Fig. 5.1: (a) trajectory {1} (a = 3.827, b = 0.51903); trajectory {11...} (a = 3.827,

b = 0.54); trajectory {10...} (a = 3.827, b = 0.50); background (a = 3.765, b = .4); (b)
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trajectory {10100101...} (a = 3.765, b = .44); (c) trajectory {10100110...} (a = 3.765, b = .47);

(d) periodic orbit {01} (a = 4.2, b = 0.583); periodic orbit {0011} (a = 3.37326, b = 0.313333);

(e) T1 (a = 3.68199, b = .35171); (f) chaotic background of one-sided loops (a = 3.72,

b = 0.48954338);

Fig. 5.2: T0 (a = 3.95902, b = 0.438616); S (a = 3.37386, b = 0.269558); BT (a =

4.56255, b = 0.637487); P1 (a = 4.124910, b = 0.595354); IF1 (a = 3.827, b = 0.51903); P2

(a = 3.546020, b = 0.353647); IF2 (a = 3.98, b = .40037); P3 (a = 4.125120, b = 0.479283);

P4 (a = 4.241910, b = 0.598092);

Fig. 5.3: S (a = 3.37386, b = 0.269558);

Fig. 5.4: IF2 (a = 1.157, b = 0.1935); T0 (a = 1.10054, b = 0.192854); T1 (a = 1.07446,

b = .138992); T1
2 (a = 1.06744, b = .122637); T2

2 (a = 1.05398, b = .0885933); T3 (a = 1.13485,

b = .109461); C (a = 1.10738, b = .106295); T1 (a = 1.03528, b = .0975449);

Fig. 5.10: Bottom surface a ∈ (3.68, 3.86), b ∈ (0.23, 0.255); Top surface; a ∈

(3.57, 3.86), b ∈ (0.235, 0.27); 1.344(bottom surface) ≤ σ ≤ 1.374985(top surface)
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CHAPTER 6

CONCLUSIONS

This project is truly cross-disciplinary, requiring the formulation, development and in-

tegration of theories, models and tools spanning across several research scopes includ-

ing (a) central pattern generators and coupled oscillators; b) dynamical systems analysis,

homoclinic chaos, and mathematical modeling; (c) high-performance GPU computing,

visualization, and unsupervised machine learning. Although the particular emphasis of

this project is in understanding network phenomena in Neuroscience, we also demon-

strate the applications of these tools to study nonlinear phenomena occurring in diverse

disciplines. This will help to bridge some of the gap in communication and enable multidis-

ciplinary cooperation between researchers in Neuroscience and other non-linear science

communities.

Multistability analysis

This project extends our knowledge of the principles guiding multi-stable rhythmic

behaviors in complex neural network topologies from their basic constituent motifs and al-

lows us to predict the changes in patterns of activity and multistability, based on changes

in the network configurations and external inputs. It also helps us to understand the plau-

sible biophysical mechanisms that control and modulate rhythmic activity. We showed

how network topologies and synaptic changes can alter the rhythmic behavior of the net-

work and promote or suppress multistability. This can generate verifiable hypotheses

for neurophysiological experiments and manipulations of real animal CPGs with dynamic

clamp technique [199]. We identified network topologies that produce robust monostable

rhythms and are resilient to external perturbations. This can also help non-biological sys-

tems from engineering, economics, and environmental studies, where loss of resilience
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is a challenge to predict and can cause catastrophic effects. Future studies can be ex-

panded to the complete dynamical analysis of detailed and realistic animal CPG models.

Such understanding is essential to study motor control, dynamic memory, information pro-

cessing, and decision making in animals and humans [200]. It also has implications for

gaining insights into complex neurological phenomena in higher animals along with neuro-

logical disorders related to CPG arrhythmia, and the development of mechanisms to treat

such disorders. Before such techniques can be applied to humans, we need to achieve

a comprehensive understanding of the working of these modular networks in lower ani-

mals and through computational models. An important aspect of this analytical technique

is that it is valid across a wide range of oscillatory networks without dependence on the

underlying mathematical equations and hence is applicable to a variety of rhythmic neu-

ronal and non-neuronal activities beyond motor control. This can further be expanded to

the study of real world neural networks composed of large populations of neurons. While

this project deals with networks of neurons, the methodology might also be applied to

study networks of brain regions that synergistically excite or inhibit each other and pro-

duce rhythmic patterns of firing. Hence the modeling approaches could enhance whole

brain computational modeling research that models the structural and functional connec-

tivity across several parcellations of the human brain to study various cognitive processes

during resting state, task conditions, or under pathological disorders [201,202].

Symbolic dynamics

The symbolic methods developed will expedite examinations of dynamics of sim-

ple and biologically plausible models of individual neurons, as well as emergent network

behaviors and the sweeps of their parameter spaces. For Lorenz like systems with ho-

moclinic chaos, these tools will help identify the essential organizing structures of com-

plexity such as the various homoclinic, heteroclinic connections and characteristic spirals

of Bykov terminal points, in addition to detecting regions of simple, stable dynamics or

those with structurally unstable, chaotic dynamics in the parameter space. Such complex
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behaviors can also occur in neural and other biological systems at transitions between

oscillatory activity types. The symbolic toolkit can thus offset and complement other com-

putational tools such as spike counting, Lyapunov exponents and parameter continuation

to study a broad spectrum of complex dynamical phenomena and will help determine

the origin and universal rules of complex dynamics. Such symbolic approaches in con-

junction with the previously described multistability analysis can lead to improved insights

for data analysis of event related brain potentials, functional neuroimaging and cogni-

tion [248–256].

Computational advances

Computationally expensive simulations are sped up by making use of parallel com-

puting and GPU based technologies such as CUDA, OpenAcc, OpenMP, and Open-

MPI [3–5, 47, 48]. This allows the reconstruction of highly detailed biparametric sweeps

and bifurcation diagrams in just a few seconds, as well as enable highly detailed three di-

mensional sweeps. Multistability analysis of larger networks using Poincare return maps

is automated using unsupervised machine learning [40–46]. The insights in CPG mul-

tistability gained from this research will help in the design and development of more

efficient robot locomotion [203–214]. The computational tools developed in the project

will benefit a wide audience of interdisciplinary researchers for studies of a variety of

diverse nonlinear applications. The tools developed are open source and freely avail-

able online at the following repositories, including some that are simple and readily ac-

cessible for classroom teaching: a) https://bitbucket.org/pusuluri_krishna/

deterministicchaosprospector/

b) https://github.com/jusjusjus/Motiftoolbox

c) https://bitbucket.org/pusuluri_krishna/cpg_multistability/

https://bitbucket.org/pusuluri_krishna/deterministicchaosprospector/
https://bitbucket.org/pusuluri_krishna/deterministicchaosprospector/
https://github.com/jusjusjus/Motiftoolbox
https://bitbucket.org/pusuluri_krishna/cpg_multistability/
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