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Production Networks and Capital Structure

Abstract

We develop a dynamic structural model to investigate the relationships among characteristics of an economy’s
production network—the network of input-output linkages that influence firms’ production decisions—and
firms’ financial decisions. We analytically characterize the equilibrium of the economy and derive novel
implications for the impact of the production network on firms’ capital structures and default risks. An
increase in network concentration leads to lower leverage ratios and default probabilities for larger industries,
but higher leverage ratios and default probabilities for smaller industries. Network sparsity has a positive
effect on firms’ leverage ratios. We then calibrate the model to match relevant identifying moments in
the data and obtain quantitative implications for the effects of network characteristics on firms’ financial
structures and default risk. As proportions of their baseline values, a 20% increase (decrease) in the network
concentration alters (i) the mean leverage ratios of the representative firms in the largest, median and smallest
industries by −12.4%, 66.3% and 254% (14.4%,−38.8% and −69.2%), respectively; and (ii) the mean default
probabilities of the representative firms in the largest, median and smallest industries by −17.3%, 49.7%
and 164.8% (25.3%,−30.6% and −62.8%), respectively. An increase in network sparsity increases the mean
leverage ratios of firms in all industries with a 20% increase in network sparsity leading to a 54.3% increase in
average industry leverage. We examine how resilient the U.S. production network is to contagion by analyzing
how unexpected shocks to industry parameters impact the default probabilities firms in other industries. A
200% increase in the firm-level idiosyncratic volatility in the largest industry leads to a relative increase of
19.2% in firms’ default probability in the most impacted industry and generates an average relative increase
of 13.3% in the default probability for firms in the remaining industries. A similar percentage increase in
the default threshold parameter of the largest industry causes a relative increase of 151% for firms in the
most impacted industry and an average increase of 106.7% for firms in the other industries.

JEL Classification: G32, G33, D21, D22, L11, L14

Keywords: Networks, Capital Structure, Production, Default Risk, Contagion
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1 Introduction

Networks are a fundamental feature of the modern production economy. Firms do not produce in isolation,

but as part of a system of input-output linkages. Relatively independent streams of the literature explore

how (i) characteristics of the economy’s production network influence firms’ production decisions and asset

prices; and (ii) how the nature of links between financial institutions—specifically banks—influence systemic

risk and the potential for contagion in bank failures. The first stream of the literature abstracts away from

firms’ financial structures, while the second stream focuses solely on financial firms with exogenous financial

structures comprising primarily of debt. Hence, the research questions of how input-output links among

non-financial firms endogenously influence their capital structures and default risks as well as the degree of

resilience of the production network to contagion among firm defaults are largely unexplored.

We develop a dynamic structural model to show how characteristics of the economy’s production network

influence non-financial firms’ production and financing decisions as well as the potential for contagion among

firm defaults. We analytically characterize the equilibrium of the economy in which firms’ production and

financing decisions are endogenously determined by the input-output linkages among industries, as well as

industry-wide and firm-specific productivity shocks. We derive novel implications for the impacts of key

characteristics of the production network—the concentration and sparsity—-on firms’ capital structures and

default risks. Interestingly, network concentration has differential impacts on firms’ leverage ratios and

default probabilities in large and small industries. A higher network concentration lowers leverage ratios

and default probabilities for firms in larger industries, but raises leverage ratios and default probabilities for

firms in smaller industries. A higher network sparsity increases firms’ leverage ratios in all industries. We

then calibrate the model to match relevant moments in the data and exploit the calibrated model to obtain

quantitative implications for the effects of network characteristics on firms’ financial structures and default

risk. Network concentration and sparsity both have quantitatively substantial effects on firms’ leverage

ratios and default probabilities. We examine the resilience of the U.S. production network to contagion

by analyzing how unexpected shocks to key parameters in each industry affect firm default probabilities in

other industries. Shocks to the firm-specific productivity shock volatility and default threshold of the largest

industry have quantitatively substantial impacts on firm default probabilities in other industries, but shocks

to the bankruptcy cost have only marginal effects. The effects of contagion are highly nonlinear and decline

significantly with the size of the industry being impacted.

We model a discrete-time open economy over an infinite time horizon. There are two types of agents:

entrepreneurs who operate firms, and investors who provide capital to firms via equity and debt. The

economy is organized into a finite number of industries or sectors each with ex ante identical firms. Firms
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in each industry produce a distinct industry good by combining capital as well as goods produced by all

industries as intermediate inputs. Agents derive utility from the consumption of the basket of imperfectly

substitutable industry goods at the end of each period. Industry goods are, therefore, used for consumption

and as intermediate inputs for the production of other industry goods.

Firms’ financial and production decisions are affected by two types of shocks. At the beginning of a

period, firms in each industry experience an industry-wide productivity shock. After the shock is realized,

firms rent capital from investors via equity and debt. For tractability, we consider single-period debt that

is due at the end of the period. We can, however, reformulate the model with longer-term debt, but with

firms being able to frictionlessly alter their debt levels in each period. In either scenario, a firm’s debt

level is determined by the debt payment due at the end of each period. After they rent capital, firms in

each industry experience idiosyncratic productivity shocks that are independently and identically distributed

across firms conditional on the industry-level productivity shock. Firms then make their production decisions

by purchasing industry goods in spot markets at endogenously determined prices. Finally, firms’ earnings

for the period are realized from which they make debt and dividend payments.

The key friction that drives capital structure choices is that insiders (management and employees) can

extract private benefits from a firm’s free cash flow. Debt is a hard claim that reduces a firm’s free cash

flow—total earnings net of debt payments—thereby restricting the extraction of private benefits by insiders

(e.g., Jensen (1986), Stulz (1990), Hart and Moore (1995), Williams (1995), and Zwiebel (1996)). Firms’

financing decisions in each period reflect the tradeoff between the benefits of debt in limiting private benefit

extraction by insiders and financial distress costs that are incurred when firms’ earnings are insufficient to

make debt payments. We model distress costs via a decline in an insolvent firm’s productivity relative to the

level when it is solvent. For tractability, similar to studies such as Elenev et al. (2021), a firm is insolvent

when its maximum earnings fall below a proportion of the required debt payment. An insolvent firm returns

to its normal, solvent state at the beginning of the next period, that is, insolvency does not persist over time.

We analytically derive the unique equilibrium in which firms’ financing decisions at the beginning of each

period, the capital rental rate, the spot prices of industry goods, and firms’ production decisions at the end

of the period are all endogenously determined. In the equilibrium, firm insolvency propagates through the

production network. Specifically, the lower productivity of insolvent firms in an industry affects the supply of

the industry good, thereby influencing industry good prices as well as all firms’ output decisions and agents’

consumption decisions. Firms’ financing decisions reflect the impact of industry good prices on their outputs

and earnings. In this manner, the production network influences firms’ financial structures. We show that

the equilibrium is determined by a complex fixed-point problem for the vector of default probabilities of firms

in different industries. We analytically show that the fixed-point problem has a unique solution, thereby
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determining the equilibrium.

Firms’ production and financing decisions are determined by two key characteristics of the production

network—the network concentration and sparsity—that serve as sufficient statistics for how the network

structure influences firms’ capital structures and default probabilities. A high network concentration corre-

sponds to a scenario in which a relatively small number of industries dominate economic output. We show

that we can express the network concentration in terms of a parameter that closely approximates a power

law in the data, thereby greatly facilitating a “comparative static” analysis. Interestingly, the network con-

centration has sharply contrasting effects on large and small industries, where industry size is determined

by the fraction of the economy’s total gross output that is generated by the industry. An increase in the

network concentration decreases firms’ leverage ratios and default probabilities in each period for firms in

large industries, but increases leverage ratios and default probabilities in small industries. The intuition

is that, ceteris paribus, the insolvency of firms in larger industries has a relatively greater negative impact

on the economy via industry good prices that determine all firms’ output decisions and earnings. Firms’

financing decisions incorporate this negative externality via its impact on industry good prices and firm

profits. Hence, firms in larger industries are more conservative in their financing decisions relative to firms in

smaller industries. A higher network concentration implies a redistribution of weights from larger industries

to smaller ones. Consequently, larger industries shrink in size, which increases the risk of insolvency for

firms in these industries with the opposite happening for smaller industries. As a result, a higher network

concentration leads to lower leverage ratios for firms in larger industries, but higher leverage ratios for firms

in smaller industries. Network sparsity measures the extent to which industries are self-reliant. The less

that industries depend on the inputs from other industries for their production, the more sparse the network

is. Controlling for network concentration, an increase in sparsity, therefore, leads to an increase in leverage

ratios for firms in all industries.

We also analytically explore the effects of contagion by showing how unanticipated shocks to key parame-

ters in each industry—the firm-level idiosyncratic volatility, default threshold and bankruptcy cost—influence

firms in other industries. Specifically, as the shocks are unanticipated, we assume that firms’ leverage levels

are equal to their equilibrium values, and then examine how the shocks affect the default probabilities of

firms in other industries. Interestingly, the default probability of firms in any industry increases with an

unexpected increase in the firm-level idiosyncratic volatility in another industry if it is below a threshold,

but decreases if it is above the threshold. The intuition for the non-monotonic impact of the idiosyncratic

volatility is that volatility has two offsetting effects. A higher volatility increases the risk of insolvency by

making negative scenarios more common, but it can also increase the upside by augmenting the likelihood

of positive shocks. Given that shocks have a positively skewed log-normal distribution, the negative effects
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dominate when the volatility is below a threshold, but the positive effects prevail when the volatility is above

the threshold. The default probability of firms in any industry unambiguously increases with an unexpected

increase in the default threshold or the proportional bankruptcy cost in another industry. Indeed, in ei-

ther scenario, firm insolvency in the affected industry has a more negative impact on firm profits in other

industries, thereby increasing firms’ default probabilities.

We then take our structural model to the data to conduct a quantitative analysis of how character-

istics of the production network influence firm leverage ratios, default probabilities and the likelihood of

contagion. We combine firm-level financial statements data from Compustat and industry-level data on

network/productivity factors from the Bureau of Economic Analysis (BEA) as well as data on default prob-

abilities from Standard and Poors (S&P). We group firms into 55 major industries, following the classification

used by the BEA in which industries are aggregated according to the first three NAICS numbers. We ex-

clude financial and regulated industries as our model focuses on non-financial productive firms that are not

subject to significant regulation. We exploit the analytical tractability of the model to directly calibrate

the industry-level parameters by using relevant identifying moments in the data for each industry that have

closed-form expressions in the model. We, thereby, circumvent the need to numerically solve the model to

estimate a large number of parameters across the 55 industries.

We use our calibrated model as the baseline for our quantitative analysis. A 20% relative increase (de-

crease) in the network concentration parameter changes the average leverage ratios of the representative firms

in the largest, median and smallest industries by −12.4%, 66.3% and 254% (14.4%,−38.8% and −69.2%),

respectively; and the default probabilities by −17.3%, 49.7% and 164.8% (25.3%,−30.6% and −62.8%) ,

respectively. A 20% increase in network sparsity leads to a relative increase of 54.3% in the industry average

leverage ratio, while a 20% decrease in network sparsity leads to a decrease of 35.2% in the average industry

average leverage. Hence, the effects of concentration and sparsity that we derive analytically in the model

are also quantitatively significant.

We examine the resiliency of the U.S. production network to contagion by investigating the propagation

of firm defaults through the network as a result of unexpected shocks to industry parameters. Specifically,

mirroring our earlier theoretical analysis of contagion, we apply unanticipated shocks to key parameters—the

firm-level idiosyncratic volatility, the default threshold, and bankruptcy cost—in each industry, and then

determine their effects on firms’ default probabilities in other industries. A 200% increase in the idiosyncratic

volatility of firms in the largest industry leads to a 19.2% increase in the default probability of firms in the

most affected industry and an average increase of 13.3% in firms’ default probabilities in the remaining

industries. A 200% unexpected increase in the default threshold parameter in the largest industry can

generate up to a 151% relative increase in the probability of default of firms in the most impacted industry.
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This shock also causes the average default probability of firms in other industries to rise by 106.7%. The

shock in the default threshold parameter is more significant than the industry-level volatility, since the former

has an unambiguously positive effect on the probability of default. Finally, shocks to the bankruptcy cost

parameters are relatively small as they only affect firm profits in bankruptcy and firm default probabilities

in the data are relatively small across industries. The overall takeaways from our quantitative analysis is

that the contagious effects of unexpected shocks are highly nonlinear and depend critically on industry size,

the nature of the shocks and their magnitudes.

The paper is organized as follows. In the next section we review of relevant literature and highlight what

we believe to be our main contributions. In Section 3 we present the model. We derive the equilibrium

and our main analytical results in Section 4. We describe the calibration of the model in Section 4.6. We

present the results of our quantitative analysis in Section 5. Section 6 concludes. We provide supplementary

analysis, including the proofs of all results, in the Appendix.

2 Literature Review

One stream of the literature theoretically analyzes how the characteristics of financial networks—the links

among financial institutions, specifically banks—influence systemic risk and the potential for contagion in

bank failures. Eisenberg & Noe (2001) develop an equilibrium model in which banks are linked to other

banks via the interbank lending market, and the default of one institution can trigger additional defaults in

the network. Acemoglu et al. (2015) analyze how the network structure impacts the propagation of shocks

in financial institutions. In this vein, Amini & Minca (2016) and Amini et al. (2016) propose a random

graphs approach, where contagion spreads throughout the banking system depending on the distribution of

in-degrees and out-degrees and the number of defaults that each bank can tolerate from its counterparties.

A different strand within this stream of the literature focuses on how fire sales affect contagion via common

holdings by financial institutions. In these papers, the authors focus on how deleveraging in response to an

initial shock can cause a feedback loop where the pressured sale of assets leads to fire sales, market losses

and further deleveraging (see Cont & Shaanning (2017), Bichuch & Feinstein (2019), Braouzec & Wagalath

(2019), Banerjee & Feinstein (2021) and Detering et al. (2022) for details).

Although the literature on financial networks and contagion in financial institutions (particularly banks)

is substantial, it is relatively more sparse in the case of non-financial firms that represent the main focus

of our paper. One of the key issues being addressed by several studies, such as Acemoglu et al. (2012),

Acemoglu & Tahbaz-Salehi (2020) and Herzkovic et al. (2020), is how macroeconomic fluctuations arise

from production networks and the resulting impacts on firms’ production decisions and asset returns. These
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studies develop models where firms react to exogenous shocks by modifying inputs demanded from other

firms. This change in the amount of inputs also leads to fluctuations in production, which propagate through

the production network. In terms of the modeling approach, Herzkovic (2018) is the closest antecedent to

our paper. He proposes an endogenous model of production, in which network sparsity and concentration

affect asset prices and macroeconomic quantities such as GDP and consumption.

Another less closely related, but important strand of the literature endogenizes the formation of pro-

duction networks. Oberfield (2018) examines a dynamic model of network formation, wherein producers

strategically select one input from a set of suppliers that evolves randomly. His findings reveal that this

endogenous decision-making process leads to the emergence of star suppliers who serve as major intermedi-

aries. Other studies, such as Acemoglu and Azar (2020), develop a tractable model where multiple products

can be produced by combining labor and an endogenous subset of other products as inputs. They highlight

that the introduction of new products significantly expands the set of technological possibilities for existing

industries and these cost reductions then propagate to other industries through lower input prices. Finally,

Taschereau-Dumouchel (2020) investigates an economy where firms’ interconnections and decisions to oper-

ate or shut down affect the production network. The findings suggest that the endogenous reorganization of

the network plays a crucial role in mitigating the impact of shocks on aggregate fluctuations. In contrast to

this literature, we take the network as given in our framework as in Herzkovic (2018).

We contribute to the literature by developing a dynamic equilibrium model to show how the production

network influences firms’ financial and production decisions. Our framework is parsimonious and tractable,

thereby allowing us to analytically derive testable implications for how characteristics of the production

network—its concentration and sparsity—influence firms’ capital structures and default probabilities. We

are also able to exploit the analytical tractability of the model to directly calibrate its parameters to the data,

thereby facilitating a robust quantitative analysis of the effects of network characteristics and the degree of

resilience of the network to contagion.

3 Model

We model a discrete-time open economy with an infinite time horizon and dates t ∈ {0, 1, 2, ...}. The

economy is populated by investors and entrepreneurs, who establish and operate firms. We alternatively

refer to entrepreneurs as “firms” wherever there is no danger of confusion. The firms are organized into

N > 0 industries with firms in each industry producing a distinct industry good I ∈ {1, 2, ..., N}. There is

a mass, MI , of firms in industry I. Industry goods can be directly consumed or used as intermediate inputs

for the production of other industry goods. Goods are non-durable and cannot be stored.
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Each individual firm in an industry manufactures the industry good in each period using physical capital

and other industry goods as inputs. Firms rent capital from investors at the beginning of each period via

equity and debt contracts and purchase industry goods in spot markets. Capital cannot be consumed; it

is used solely as an input in firms’ production processes. The aggregate capital stock, which is held by

investors, is Kt at date t.We take Kt, which can evolve stochastically over time, as a parameter of the model

in each period. We can also interpret the capital stock, Kt,as the “effective” or “installed” capital that is

employed in production.

Figure 1: Model Timeline

Figure 1 shows the timeline of events in each period. A time period in the model is defined as [t, t +

1],where t ∈ {0, 1, 2...}. At the beginning of each period, firms in each industry experience an industry-

wide productivity shock. Firms observe the industry-wide productivities and rent capital from investors via

debt and equity. At time t + 1, firms experience idiosyncratic productivity shocks. Firms then make their

productions decision using the capital that they have rented and industry goods that they purchase in spot

markets. Consumers choose their baskets of consumption goods. Firms’ earnings are realized. Firms remain

solvent and make their required debt payments if their realized earnings are above a threshold relative to

their debt. If the realized earnings are below the threshold, they declare insolvency and their earnings flow

to debtholders. We now describe the main ingredients of the model in detail.
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3.1 Consumers

Agents in the economy—investors and entrepreneurs—have identical preferences over the consumption of the

N industry goods in each realized state of the economy at date t that are described by the utility function,

ut =
∏
I∈[N ]

cαI

I,t, (1)

where cI,t is the amount consumed of good I at date t by the representative agent, and {αI > 0; I ∈ [N ]}

are preference weights, such that
∑
I∈[N ] αI = 1. We hereafter employ the shorthand notation [N ] to refer

to the set {1, 2, ..., N}. In each realized state at date t, the representative agent maximizes her utility given

by (1) subject to her budget constraint, ∑
I∈[N ]

PI,tcI,t ≤ yt. (2)

In the above, yt is the agent’s allocation to consumption in the realized state at date t and {PI,t; I ∈ [N ]}

are the spot prices of the industry goods that are determined endogenously in equilibrium. Given that∑
I∈[N ] αI = 1, each agent’s maximum utility in each state is proportional to her payoff, yt. Note that

different agents have different payoffs depending on their roles in the economy. We develop an industry

equilibrium framework in which the focus is on firms’ production and financing decisions. Consequently, as

will become clear below, our analysis only requires the specification of agent preferences over the basket of

consumption goods in each realized state at date t as described by (1), but not preferences vis-a-vis the risk

and timing of consumption.

3.2 Firms

At the beginning of each period, [t, t+ 1], each industry I experiences an industry-wide productivity shock,

ZI,t, that affects the productivity of all firms in the industry. The subscript, I, explicitly indicates that all

firms in the industry experience the industry shock, ZI,t. Throughout, we use uppercase and lowercase letters

as subscripts to denote industry-level and firm-level variables, respectively. The industry shocks are publicly

observable and could be correlated across industries. After observing the industry shock, ZI,t, each firm i in

industry I rents capital from investors via equity and debt. The capital rental rate in period t, which is the

same for all firms in the economy, is RK,t, and is endogenously determined in equilibrium. For simplicity,

a firm’s debt level in each period is determined by the required debt payment at the end of each period.

This is the case if debt is single-period with the principal and interest payment being due at the end of the

period, or if debt is longer-term, but firms can frictionlessly restructure—either increase or decrease—their

debt levels in each period. We remain agnostic about debt maturity as it is not pertinent to our analysis
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and its main implications.

After it rents capital, each firm i experiences an idiosyncratic productivity shock, zi,t+1, where the

subscript, t+1, explicitly indicates that the productivity shock is realized at the end of the period after the

firm rents its capital. Conditional on the industry shock, firm-specific productivity shocks are independently

and identically distributed across firms in the industry. After realizing its firm-specific productivity shock,

the firm makes its production decision by using its rented capital and industry goods as intermediate inputs

that it purchases in spot markets.

Productivity shocks for firm i ∈ I have the following lognormal forms:

zi,t+1 = e(1−βI)
(
− 1

2η
2
I+ηIεi,t+1

)
,

ZI,t = e(1−βI)(µIt+σIεt), (3)

where σI > 0 is a parameter that determines the industry shock volatility, ηI > 0 is a parameter that

determines the firm-level idiosyncratic volatility, and µI determines the drift of the industry shock. The

parameter, βI ,is the elasticity of the basket of industry goods in the production function of firms in industry

I and is defined in (4) below when we specify firms’ production functions. We introduce it as a normalizing

variable in (3) without loss of generality to simplify the subsequent analytical expressions. The industry-level

shocks εt ∀t and idiosyncratic shocks εi,t∀i, t are independent and identically distributed (i.i.d.) standard

normal random variables.

We model financial distress as in Elenev et al. (2021). If a firm i’s realized idiosyncratic productivity,

zi,t+1, is high enough that its maximum earnings are above a threshold relative to its required debt payment,

then its total productivity is ZI,tzi,t+1. However, if zi,t+1 is below a threshold such that the firm’s maximum

earnings are below the threshold relative to its debt, then the firm’s productivity declines to χIZI,tzi,t+1

where χI ∈ (0, 1) is an industry-wide parameter that determines the firm’s cost of insolvency.1 In other

words, the firm’s productivity is lower than it would otherwise be if it were not in distress, thereby lowering

its earnings. The precise specification of the insolvency condition necessitates a description of the firm’s

production functions when it is solvent and insolvent, respectively.

1Elenev et al. (2021) assume that a firm is insolvent if its earnings fall below the required debt payment. We adopt a more
general formulation in which a firm is insolvent if its earnings fall below a proportion of its debt level, where the proportion is
a calibratable parameter.
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An individual firm i’s production function in period [t, t+ 1] is given by

xi,t+1 = AIZI,tzi,t+1k
γI
i,t

 ∏
J∈[N ]

xwIJ

iJ,t+1

βI

when it is solvent,

x
(b)
i,t+1 = AIχIZI,tzi,t+1k

γI
i,t

 ∏
J∈[N ]

xwIJ

iJ,t+1

βI

when it is insolvent. (4)

In the above, the superscript in x
(b)
i,t+1 explicitly indicates that this is the firm’s production when it is

bankrupt or insolvent. In (4), βI ∈ (0, 1) is the elasticity of the basket of industry goods for industry I in the

production function; AI := β
− βI

1−βI

I is a normalizing constant that is introduced to simplify the subsequent

analytical expressions; ki,t is the amount of capital that the firm rents at date t; and xiJ,t+1 is the amount

of industry good J that the firm chooses. The additional time subscripts on capital and the industry goods

explicitly indicate that capital is rented at the beginning of the period, while industry goods are purchased

in spot markets at the end of the period after the firm realizes its idiosyncratic productivity shock. In (4),

γI > 0 is the weight of capital, and wIJ ∈ (0, 1) is the weight that the input from industry J ′s good has in

industry I’s production function. Here
∑
J∈[N ] wIJ = 1 for all I ∈ [N ]. The matrix, [wIJ ], represents the

production network of the economy.

A firm i’s maximum gross profit or earnings given its capital, ki,t, are given by

πi,t+1(ki,t) = sup
{{xiJ,t+1}J∈[N]}

PI,txi,t+1 −
∑
J∈[N ]

PJ,txiJ,t+1 when it is solvent,

π
(b)
i,t+1(ki,t) = sup

{{xiJ,t+1}J∈[N]}
PI,tx

(b)
i,t+1 −

∑
J∈[N ]

PJ,txiJ,t+1 when it is insolvent. (5)

The argument in the firm’s earnings explicitly indicates that it depends on the capital it chooses at the

beginning of the period. In the above, the firm’s outputs when it is solvent and insolvent, respectively, xi,t+1

and x
(b)
i,t+1, are given by (4). As the notation above indicates, the vector of spot prices of industry goods,

{PI,t; I ∈ [N ]}, depend only on the industry-wide productivity shocks that are realized at the beginning of

the period.

We now precisely specify the condition for firm solvency. Let di,t be the debt level chosen by the firm

at the beginning of the period, that is, di,t is the debt payment that is due at the end of the period. We
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assume that

If πi,t+1(ki,t) ≥ ρIdi,t; the firm is solvent,

If πi,t+1(ki,t) < ρIdi,t, the firm is insolvent, (6)

where ρI > 0 is an industry-level parameter. In the above, πi,t+1(ki,t), is the maximum earnings the firm

would generate if its productivity were not affected by solvency, and is given by the first equation in (5).

For tractability, we assume that each firm is in financial distress (if at all) only in the current period, that

is, insolvency does not persist over time.

3.3 Firm Financial Decisions

We now describe each firm’s financial decisions or, equivalently, its capital structure choice at the beginning

of each period [t, t + 1]. Firms’ decisions at any date maximize their expected discounted stream of future

earnings, where the discount rate is determined by the firm’s cost of capital, rI , I ∈ [N ], that is constant

through time and is the same for all firms in an industry. As in several prior studies, the friction that drives

capital structure choices is that a firm’s insiders (its management and employees) can extract private benefits

from a firm’s free cash flow. Debt is a hard claim that reduces a firm’s free cash flow—total earnings net

of capital rental and debt payments—thereby restricting the extraction of private benefits by insiders (e.g.,

Jensen (1986), Stulz (1990), Hart and Moore (1995), Williams (1995), and Zwiebel (1996)). Firms’ financing

decisions in each period reflect the tradeoff between the benefits of debt in limiting private benefit extraction

by insiders and costs of insolvency.

By the above discussion, for a given choice of capital, ki,t, and debt, di,t, the end-of-period payout to the

firm’s shareholders and debtholders is

πnet
i,t+1(ki,t, di,t) =

solvent︷ ︸︸ ︷
[(1− τI) [πi,t+1(ki,t)− (1 + rI)RK,tki,t] + τIdi,t] 1πi,t+1(ki,t)≥ρIdi,t

+

insolvent︷ ︸︸ ︷
(1− τI)

[
π
(b)
i,t+1(ki,t)− (1 + rI)RK,tki,t

]
1πi,t+1(ki,t)<ρIdi,t (7)

In the above, τI ∈ (0, 1) is the proportion of the firm’s free cash flow that the firm’s insiders are able to

extract as their private benefits. We allow for the private benefit parameter to vary across industries, which

captures the fact that the nature of industries could determine the extent to which insiders can extract

private benefits. The first term on the R.H.S. of (7) indicates the benefit of debt in limiting private benefit

extraction. Recall that RK,tki,t is the cost of renting capital, ki,t, where the capital rental rate, RK,t, is
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endogenously determined in the model by the market-clearing condition for capital.

Firms rent capital in each period, there are no capital adjustment costs, the debt level is determined by

the payment due at the end of the period, and firm insolvency does not persist over time. Hence, each firm’s

full optimization problem is reduced to a period-by-period optimization problem. Each firm in industry, I,

therefore chooses its capital structure at the beginning of each period to maximize its expected discounted

end-of-period net payoff as described by the following:

sup
ki,t,di,t

Et
[

1

1 + rI
πnet
i,t+1(ki,t, di,t)

]
. (8)

3.4 Equilibrium Conditions

In each period, [t, t+ 1], the following conditions must hold in the industry equilibrium.

1. Each firm i in an industry chooses its capital structure to solve (8) after observing the industry shock,

ZI,t.

2. At the end of the period, after each firm’s idiosyncratic productivity shock, zi,t+1, is realized, the firm

purchases industry goods in competitive spot markets to solve (5).

3. In each realized state at the end of the period, each agent in the economy purchases industry goods to

maximize her utility given by (1) subject to her budget constraint, (2).

4. Markets for industry goods clear, that is, the total production of each industry good equals its total

consumption plus its use as an intermediate good in the production of industry goods.

5. The market for capital clears in each period, that is, the aggregate demand for capital by firms in the

economy equals the aggregate supply of capital, Kt.

4 The Equilibrium

We now derive the unique equilibrium of the model in which firms’ financing and production decisions are

endogenously determined. We first analyze firms’ production decisions at the end of each period given their

financing decisions and then their capital structure choices at the beginning of the period. Recall that firms

in each industry experience the same industry-wide productivity shock, make their capital and financing

decisions, experience idiosyncratic productivity shocks, and then make their production decision. As firms

are ex ante identical when they choose their capital structures, it follows that, in equilibrium, all firms in an

industry choose the same capital structure in each period. The capital structures of firms, therefore, depend
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only on the vector of industry productivity shocks, {ZI,t; I ∈ [N ]} that are realized before firms make their

capital and financing decisions as we formalize in the following preliminary proposition.

Proposition 1. [Symmetric Equilibrium] All firms in an industry I choose the same capital structure,(
k∗I,t, d

∗
I,t

)
, that depends only on the vector of industry productivity shocks, {ZI,t; I ∈ [N ]}.

Our focus in this study is on how the network structure impacts inter-industry differences in firm leverage

rather than on intra-industry leverage heterogeneity. We can, therefore, interpret our theory as one of

industry leverage, which can be viewed as the average firm leverage in an industry. An extensive body of

empirical evidence shows that industry leverage is among the most important determinants of firm leverage

(Frank and Goyal (2009)). By Proposition 1, we can hereafter focus on the representative firm in each

industry I ∈ [N ] without loss of generality.

Remark 1. We can, in fact, extend our model to incorporate intra-industry firm heterogeneity without

altering our main implications, but at the expense of additional notational complexity. Specifically, instead

of firms’ productivities being identical at the beginning of each period, suppose that the productivity of firm

i in industry I at the beginning of period t is ζiZI,t, where ζi is a strictly positive parameter that is drawn

from a distribution FI(.). As the notation indicates, the distribution FI(.) can vary across industries. We

can then show that firm i’s optimal capital structure is given by

k∗i,t = gI(ζi)k
∗
I,t; d

∗
i,t = hI(ζi)d

∗
I,t, (9)

where gI(.), hI(.) are functions determined by industry-level parameters, and
(
k∗I,t, d

∗
I,t

)
is the optimal capital

structure of firms in the main model without intra-industry heterogeneity in capital structures that we

characterize in Theorem 1 below. We can show that our main results regarding the impacts of network

characteristics on leverage, default risk and contagion extend to this more general setting.

4.1 Aggregate Production

In equilibrium, industry goods markets must clear. Hence, the total amount produced by industry I in

period [t, t+ 1] must be equal to the sum of the consumption of the industry good and the amount used as

an intermediate input by firms in industry I and other industries.

X∗
I,t = C∗

I,t +
∑
J∈[N ]

X∗
JI,t. (10)

By the law of large numbers, the total production and consumption depend only on the industry-wide
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productivity shocks realized at the beginning of the period as the notation above indicates.

Let Π∗
t ≡

(
Π∗

1,t, ...,Π
∗
N,t

)
denote the vector of industry gross profits, that is, Π∗

I,t is the sum of the profits

generated by all firms in industry I in period [t, t+1]. The industry gross profits are known at the beginning

of period [t, t+ 1] after the industry-wide productivity shocks are realized. The following proposition shows

the familiar result that each industry’s gross profit is a constant proportion of the total gross profit generated

by all industries, which follows from the Cobb-Douglas preferences of consumers (see (1)) and the production

functions of firms (see (4)).

Proposition 2. [Industry Gross Profits] The vector of industry gross profits in period [t, t+ 1]is

Π∗
t = θ

∑
I∈[N ]

Π∗
I,t, where (11)

θ := (I − diag(β))[I −W ′diag(β)]−1α, and (12)

∑
I∈[N ]

θI = 1.

In the above, Π∗
t := (Π∗

1,t, ...,Π
∗
N,t)

′, α := (α1, ..., αN )′, β := (β1, ..., βN )′, W is the matrix with IJ-th entry

[wIJ ] and θ := (θ1, ..., θN )′. The diag(x) operator denotes the diagonalization function, which takes a vector

x and transforms it into a diagonal square matrix with entry [i, i] equal to xi. This result shows shows that

each industry I’s share of the total gross profit of the economy is θI ∈ [0, 1]. The share, θI , depends on

the vector of elasticities of intermediate inputs, β, the input-output network marix W , and the vector of

elasticities, α, that determine consumer preferences. The profit proportions vector, θ, corresponds to the

Katz centrality measure2. This measure quantifies the indirect effects that each industry has on the rest as

follows.

θ =

Preference component︷ ︸︸ ︷
(I − diag(β))α +

Network component︷ ︸︸ ︷[
W ′diag(β)︸ ︷︷ ︸
1st order effect

+(W ′diag(β))2︸ ︷︷ ︸
2nd order effect

+(W ′diag(β))3︸ ︷︷ ︸
3rd order effect

+ ...︸︷︷︸
Higher order effects

]
α

The above captures the intuitive implications that industry I ∈ [N ] generates a higher proportion of total

profits if (i) consumers have a greater preference for the industry good (i.e., larger αI); (ii) a relatively

greater number of other industries in the economy use the good as an intermediate input (which is captured

by the input-output matrix, W ); or (iii) the industry’s production function puts more weight on inputs from

other industries (i.e., higher βI).

As firm-level shocks are independently and identically distributed across firms, and all firms in an industry

2See Katz (1953).
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choose the same capital structure, it follows from the law of large numbers that the proportion of firms that

default in an industry coincides with the default probability of the representative firm in the industry.

Further, the spot prices of industry goods at the end of the period and the gross profits of all industries

depend only on the vector of industry-wide productivity shocks, {ZI,t; I ∈ [N ]} that are realized at date

t. Define the aggregate price index, which is a function of the vector of spot prices of industry goods,

{P1,t,...,PN,t} ,as follows.

P t =
∏
I∈[N ]

PαI

I,t > 0 (13)

Note that, by our earlier discussion, the industry good prices depend only on the industry-wide productivity

shocks that are realized at date t. As with other aggregate variables, we incorporate this explicitly in our

notation for clarity.

The following proposition analytically characterizes the total gross profit in the economy in period [t, t+1].

Proposition 3. [Total Economic Profit] Let {(kI,t, dI,t; I ∈ [N ]} be the vector of capital and debt level

choices by the representative firms in the different industries. The total gross profit in the economy is given

by

∑
I∈[N ]

Π∗
I,t = exp

{
δ − θ′ log(θ) + θ′ log(1− β) + θ′ log(M) + log(P t)+

θ′µt+ θ′σεt + θ′ log(ξt) + θ′[I − diag(β)]−1diag(γ) log(kt)

}
,

(14)

δ := θ′[I − diag(β)]−1diag(β)Ws, (15)

ξI,t := 1−
(
1− χ

1
1−βI

I

)
Φ

(
ψI,t(kI,t, dI,t)−

1

2
ηI

)
, (16)

ψI,t(kI,t, dI,t) :=
1

ηI
log

(
ρIdI,t

M−1
I θI1

′Π∗
t+1

ξI,t

)
. (17)

In the above, Ws is a vector with I-th entry equal to
∑
J∈[N ] wIJ log(wIJ), ξt := (ξ1,t, ..., ξN,t)

′, γ :=

(γ1, ..., γN )′ and kt := (k1,t, ..., kN,t)
′. The vector, M := (M1, ...,MN )′, is the vector of the masses of firms

in the various industries.

Note that, by the discussion preceding the proposition, the total economic profit depends only on the

industry-wide productivity shocks that are realized at date t. The expression in (14) can be unpacked as

follows. The term, Ws, in (15) is a measure of the sparsity of the network (see Herzkovic (2018)), which

captures how self-reliant industries are. The more that industries depend on their own industry good as

an input for production and less on other industry goods, the larger the value for the sparsity measure. To
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further highlight the intuition for the sparsity measure, consider its values in the extreme cases of complete

self-reliance and equal dependence on all industries for any industry I ∈ [N ]:

� Complete self-reliance: In this scenario, the vector of weights for industry I is given by

wIJ =


1 if I = J

0 if I ̸= J

In this case, the sparsity measure takes the highest possible value of 0 (i.e.,
∑
J∈[N ] wIJ log(wIJ) =

(N − 1) log(00) + log(11) = 0).

� Equal dependence: The other extreme corresponds to the case in which wIJ = 1
N for all J ∈ [N ].

The sparsity measure now takes on the lowest possible value of − log(N) (i.e.,
∑
J∈[N ] wIJ log(wIJ) =∑

J∈[N ]
1
N log

(
1
N

)
= − log(N)).

Hence, we conclude that − log(N)1 ≤ Ws ≤ 0. We make the important observation from (14) and (15) that

sparsity affects total profits positively. The intuition is that, as sparsity increases, firms in each industry are

less affected by negative shocks that impact other industries.

Continuing with the interpretation of the terms in (14), the expression, θ′ log(θ), can be interpreted as a

concentration measure (or the negative of entropy). Following the same extreme scenarios that we used for

the case of sparsity, we find that − log(N) ≤ θ log(θ) ≤ 0. This implies that the total gross profit depends

negatively on concentration. Intuitively, a more concentrated network leads to increased dependence on

shocks that affect more central industries in the economy.

The variable ξI,t in (16) determines the impact on gross profits of firm insolvency that lowers firm

productivity as indicated by (4). As expected, ξI,t depends positively on the recovery rate parameter, χI , in

(4) that determines firm productivity in insolvency and negatively on the probability of default which is given

by the term Φ
(
ψI,t(kI,t, dI,t)− 1

2ηI
)
. The term ψI,t(kI,t, dI,t), which influences the probability of default,

is the default threshold that depends on the capital structure choice of firms in industry I. Intuitively, the

probability of default increases with the default threshold parameter, ρI and the debt level, dI,t,and declines

with the industry’s profit as a proportion of the total economic profit, θI
∑
J∈[N ] Π

∗
J,t.

An important feature of the model is that ξI,t and ψI,t(kI,t, dI,t) are jointly determined by (16) and (17).

This captures the externality imposed on other industries by insolvent firms in industry I. Insolvency lowers

firm productivity, which lowers the production of the industry good that is employed as an intermediate

input by firms in other industries. This, in turn, affects all industry good prices and, thereby, the profits of

firms in all industries. As we discuss later, the coupled set of equations, (16) and (17), generates a fixed-point
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problem for the vector of equilibrium default probabilities of firms in all industries that plays a central role

in determining firms’ capital structure decisions in equilibrium. For future reference, the probability that

the representative firm in industry I ∈ [N ] is insolvent at time t+ 1 is given by

φI,t = Pr(πi,t+1(kI,t) < ρIdI,t) = Φ

(
ψI,t(kI,t, dI,t) +

1

2
ηI

)
. (18)

4.2 Firm Capital Structures

We now characterize the equilibrium capital structures and default probabilities of firms. It is useful to

verbally describe the characterization before presenting the formal results. Firms’ capital structure choices

trade off the private benefits of debt against costs of insolvency that manifest in the lowering of firm pro-

ductivities upon insolvency. The insolvency of a firm affects the production of its good that is used as an

intermediate input for other firms in its own industry and other industries as well as for consumption by

agents. As we discussed above, the distortions in the production of goods due to firm insolvency in each

industry affects equilibrium spot market prices for the goods. The spot market prices, in turn, influence firm

profits and, therefore, their capital structure decisions.

We make the following assumption on parameter values to ensure the existence of equilibrium.

∑
I∈[N ]

θIγI
1− βI

< 1 (19)

The above inequality implies decreasing returns to scale for the overall economy. Note that we don’t require

each individual industry to exhibit decreasing returns to scale in production, but for all the industries to

collectively experience decreasing returns.

We need to define the following intermediate functions that play key roles in the characterizations of

firms’ capital structures and default probabilities. Let φI ∈ [0, 1] for I ∈ [N ] be a parameter. Define the

following functions of φI :

ΞI(φI) := 1−
(
1− χ

1
1−βI

I

)
Φ
(
Φ−1(φI)− ηI

)
, (20)

ΛI(φI) :=

1 +
ηIΞI(φI)(

1− χ
1

1−βI

I

)
ϕ

[
Φ−1

(
1−ΞI(φI)

1−χ
1

1−βI
I

)]


−1

, (21)

ΨI(φI) :=
ϕ
(
Φ−1(φI)

)
(1− ΛI(φI))

ηI
, (22)
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ΩI(φI) :=

[
(1− φI −ΨI(φI))

(
1− θ′Λ (φ)

)
θIΛI(φI)

−ΨI(φI)

]−1

, (23)

where Λ (φ) ≡ (Λ1(φ1), ....,ΛN (φN )).

Theorem 1. [The Equilibrium] There is a unique equilibrium of the economy that can be characterized as

follows

1. The default probability of firms in industry I during period [t, t + 1] is φ∗
I ∈ (0, φ̄I), where φ

∗
I is the

unique solution of the following fixed point problem for each I ∈ [N ]:

φ∗
I = Φ

(
1

ηI

[
log

(
(1− τI)ρI

τI

)
+ log(ΩI (φ

∗
I)) + log(ΞI (φ

∗
I))

]
+

1

2
ηI

)
. (24)

2. The upper bound, φ̄I ,on possible values of the equilibrium default probability, φ∗
I , is given by

φ̄I := min

{
φI

∣∣∣∣φI − [1− νI

(
1 +

θIζI

1− θ′ζ

)]
= 0

}
. (25)

3. The capital and debt level choices of firms in industry I ∈ [N ] are given by

k∗I,t =
θ2I

γI
1−βI

(1 + ΨI (φ
∗
I) ΩI (φ

∗
I))

MI

∑
J∈[N ] θ

2
J

γJ
1−βJ

(1 + ΨJ (φ∗
J) ΩJ (φ

∗
J))

Kt, (26)

d∗I,t =
(1− τI)θI
MIτI

ΩI (φ
∗
I)
∑
I∈[N ]

Π∗
I,t. (27)

4. The gross profit of all firms in the economy in period [t, t+ 1] is

∑
I∈[N ]

Π∗
I,t = exp

{
δ − θ′ log(θ) + θ′ log(1− β) + log(P t) + θ′µt+ θ′σεt+

θ′ log(Ξ(φ∗)) +
∑
I∈[N ]

γI
1− βI

θI log

(
γIθ

2
IKt(1 + ΨI (φ

∗
I) ΩI (φ

∗
I))

(1− βI)
∑
J∈[N ] θ

2
J

γJ
1−βJ

(1 + ΨJ (φ∗
J) ΩJ (φ

∗
J))

)}
,

(28)

5. The leverage ratio of firms in industry I is

LevI,t =
d∗I,t
k∗I,t

=
(1− τI)ΩI (φ

∗
I)
[∑

J∈[N ] θ
2
J

γJ
1−βJ

(1 + ΨJ (φ
∗
J) ΩJ (φ

∗
J))
]

τIθI
γI

1−βI
(1 + ΨI (φ∗

I) ΩI (φ
∗
I))

∑
I∈[N ] Π

∗
I,t

Kt
(29)

6. The rental rate of capital is given by

RK,t =

[∑
I∈[N ] θ

2
I

γI
1−βI

(1 + ΨI (φ
∗
I) ΩI (φ

∗
I))
]∑

I∈[N ] Π
∗
I,t

(1 + rI)(1− θ′Λ (φ∗))Kt

. (30)

As noted earlier, firm insolvency in each industry affects the production of the industry good that, in turn,
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influences the production decisions of all other firms and industry good prices. The industry good prices, in

turn, affect the earnings of an individual firm in each industry. Each firm chooses its debt level rationally

anticipating its probability of insolvency. In equilibrium, however, the law of large numbers implies that

the probability of insolvency of an individual firm equals the proportion of insolvent firms in the industry

that is reflected in industry good prices. Hence, as described by Theorem 1, firms’ capital structure choices

and default probabilities are determined by the solution to the system of fixed-point equations, (24), for

the equilibrium default probabilities that, in turn, depend on the functions defined in (23) – (25). Note in

particular that the function, ΩI , defined in (27) captures the interaction among the different industries via

the term θ′Λ (φ).

4.3 Network Characteristics, Capital Structures and Firm Default Probabilities

4.3.1 Concentration and Sparsity

We now analytically examine how the structure of the production network affects firms’ capital structures

and probabilities of default. The network affects leverage via two channels: the industry weights vector θ

defined in (12) and the weighted sparsity, δ defined in (15). As discussed earlier, the θ vector represents

industry profits as proportions of the total profit of the economy. The parameter, δ, represents the weighted

average sparsity of the input-output matrix W , which captures how much of an industry’s inputs come from

the same industry or from its peers in the economy.

As shown in Theorem 1, the industry weights vector, θ, directly affects the probabilities of default and

leverage ratios of firms. However, the weighted average sparsity only affects leverage via the total gross profit

in the economy,
∑
I∈[N ] Π

∗
I,t given by (14). As each industry’s gross profit scales with the total gross profit,

each firm’s optimal debt level also scales proportionally with the total gross profit given that it reflects the

tradeoff between the private benefits of debt and insolvency costs both of which are proportional to profits.

Consequently, controlling for the industry weights vector, θ, the default probability, which depends on the

ratio of the debt level to firm profit, is unaffected by network sparsity. The only channel through which the

network structure affects default probabilities is via the vector of industry weights, θ.

4.3.2 Power Law for Industry Weights

To simplify the analysis and facilitate more concrete implications, we assume that the vector of industry

weights, θ, sorted in decreasing order, can be calibrated to a power law function that depends on a single
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scalar parameter, θ ∈ [0, 1] , as follows.

θI =
θ

(1− θ)(1− (1− θ)N )
(1− θ)I . (31)

We can verify that
∑
I∈[N ] θI = 1, as expected. The scalar θ can be interpreted as a measure of industry

concentration. The higher the value of θ, the higher the concentration. This can be gleaned from measures

such as the Herfindahl–Hirschman index - HHI, that can be expressed as a function of θ:

HHI(θ) =
∑
I∈[N ]

θ2I =
θ

(1− θ)(1− (1− θ)N )

∑
I∈[N ]

(1− θ)2I =
θ

2− θ
· 1 + (1− θ)N

1− (1− θ)N
.

We can show that ∂HHI
∂θ > 0. We can also generate the extremes of lowest and highest concentration with

the above functional form. Specifically,

θmin = lim
θ→0

θ =

(
1

N
,
1

N
, ...,

1

N

)′

⇒ HHI(θmin) = 0,

and

θmax = lim
θ→1

θ = (1, 0, ..., 0)′ ⇒ HHI(θmax) = 1.

The following graph shows the relationship between the actual and estimated patterns for the weight

vector, θ, with the 55 industries in our dataset sorted from largest to smallest on the horizontal axis. It

shows that a power law is a good approximation for the observed variation of θ across industries.

Figure 2: Comparison between actual and estimated weights θ
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4.3.3 Impacts of Network Structure

The following proposition shows how the network structure impacts the leverage levels and default proba-

bilities.

Proposition 4. [Network Characteristics, Leverage Levels, and Default Probabilities] Let I ∈ [N ] be ordered

in decreasing order by the vector of industry weights, θ.

1. An increase in concentration (i.e., increase in θ) affects the industry weights as follows.

∂ log(θN )

∂ log(θ)
≤ ∂ log(θN−1)

∂ log(θ)
≤ ... ≤ ∂ log(θ2)

∂ log(θ)
≤ ∂ log(θ1)

∂ log(θ)
(32)

2. There exists a strictly positive vector ρ∗ :=
(
ρ∗
1, ρ

∗
2, ..., ρ

∗
N

)
> 0, such that if ρI < ρ∗I for all I ∈ [N ],

then we have the following results:

∂ log(φ∗
1)

∂ log(θ)
≤ 0 ≤ ∂ log(φ∗

N )

∂ log(θ)
. (33)

3. Similarly for leverage, if ρI < ρ∗I for all I ∈ [N ], then we have the following results:

∂ log(Lev1)

∂ log(θ)
≤ 0 ≤ ∂ log(LevN )

∂ log(θ)
. (34)

4. Controlling for the industry weights,θ , the sensitivity of leverage with respect to sparsity satisfies

∂ log(LevI(θ, δ))

∂δ
> 0,∀I ∈ [N ]. (35)

The above proposition shows that network concentration has differential impacts on the leverage levels

and default probabilities of firms in larger and smaller industries. More precisely, provided the default

threshold in each industry, I ∈ [N ], is below a trigger level, ρ∗I , the probabilities of default and leverage

levels increase with θ for firms in smaller industries (i.e., higher values of I) and decrease with θ for firms

in larger industries (i.e., lower values of I). In the calibrated model of Section 4.3.4, we find that the

default thresholds in all the industries are, indeed, below the trigger levels, {ρ∗I ; I ∈ [N ]}. Since θ is a

measure of concentration (with higher values implying greater concentration), we can conclude that a higher

concentration, ceteris paribus, leads to a lower (higher) probability of default and leverage for firms in larger

(smaller) industries.

The intuition for these results hinges on the observation that firms’ leverage choices rationally incorporate
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the impact of firm insolvency on their profits via the production network. Firms in larger industries impose

greater externalities on firms in other industries and the total output of the economy due to their potential

insolvency relative to firms in smaller industries. An increase in network concentration further increases the

influence of larger industries, and decreases the influence of smaller industries. Consequently, firms in larger

industries become more conservative in their leverage choices, while firms in smaller industries become less

conservative. These effects hold provided the industry default thresholds are below respective thresholds.

If the default thresholds are sufficiently high, then the nonlinear effects of firm insolvency make it difficult

to pin down the comparative statics of leverage levels and default probabilities with network concentration.

However, as we mentioned above, in the calibrated model, we find that the default thresholds are, indeed,

below the trigger levels so that the conclusions of Proposition 4 hold.

As we discussed in Section 4.3.1, controlling for the vector of industry weights, θ, and hence the network

concentration, an increase in sparsity (i.e., increase in δ) increases firm leverage levels, without affecting the

probability of default. As mentioned in Section 4.1, sparsity captures how self-reliant industries are with

regard to their production inputs. The more sparse the network, the less that each industry depends on

the others for their productive activity. Hence, an increase in sparsity allows industries to increase their

leverage, without generating additional insolvency risk. Given that industries share the total gross profit in

the economy, only the weighted average measure for sparsity affects leverage, and not individual industry

sparsities. This implies that the sensitivity of leverage with respect to the aggregate sparsity measure is

similar for all industries in the economy.

4.3.4 Contagion Analysis

In this section, we examine the impact of unancipated shocks to key parameters in each industry—the

firm-level idiosyncratic volatility, ηI ,the default threshold, ρI , and the recovery proportion, χI , upon firm

insolvency—on the probabilities of default of firms in the other industries. As the shocks are unanticipated,

we assume that firms have already chosen their optimal leverage levels according to (29) and that the

unexpected shock occurs in period t+ 1.

Proposition 5. [Effects of Unanticipated Shocks]

1. There exists a vector of threshold values of the firm-level idiosyncratic volatility, η∗ ≡ (η∗1 , ..., η
∗
N ), such

that the probability of default for industry I with respect to an unexpected increase in firm-level idiosyncratic
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volatility of industry J satisfies the following.

∂φ∗
I

∂ηJ
=


≥ 0 ηJ ≤ η∗J

< 0 ηJ > η∗J

· (36)

2. The default probability for industry I with respect to an unexpected increase in the default threshold of

industry J satisfies

∂φ∗
I

∂ρJ
≥ 0, (37)

3. The default probability for industry I with respect to an unexpected increase in the recovery proportion

of industry J satisfies

∂φ∗
I

∂χJ
≤ 0· (38)

Part 1 of the proposition shows that the default probability of firms in an industry increases with an

unexpected increase in the firm-level idiosyncratic volatility in another industry if it is below a threshold,

but decreases if it is above the threshold. The intuition for the non-monotonic behavior of the idiosyncratic

volatility is that volatility has two offseting effects. A higher volatility increases the risk of insolvency by

making negative scenarios more common, but it can also increase the upside by augmenting the likelihood

of positive shocks. Given that shocks have a positively skewed log-normal distribution, the negative effects

dominate when the volatility is below a threshold, but the positive effects prevail when the volatility is above

the threshold. In the calibrated model, we find that the idiosyncratic volatilities are below the respective

thresholds so that
∂φ∗

I

∂ηJ
≥ 0, for all I, J ∈ [N ]. This implies that unexpected shocks to the idiosyncratic

volatility can generate contagion effects, by increasing the probability of default in other industries of the

economy.

Part 2 shows that the default probability of firms in an industry increases with an unexpected increase

in the default threshold in another industry. The intuition is that, an unexpected increase in the default

threshold for an industry increases the proportion of insolvent firms that, in turn, lowers the total profit of

the economy and the profits of firms in other industries. Hence, the default probabilities of firms increase.

Part 3 shows that the default probability of firms in an industry decreases with an unanticipated increase

in the recovery proportion upon insolvency of firms in another industry. The intuition is analogous to that

of Part 2. An increase in the recovery proportion lowers the negative impact of firm insolvency on the profits
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of firms in other industries, thereby lowering their default probabilities.Calibration

We now calibrate our structural model to the data to obtain baseline values of the parameters to facilitate

our subsequent quantitative analysis.

4.4 Data

We obtain data from two primary sources—Compustat and the Bureau of Economic Analysis (BEA)—

from 1997 to 2021. The time period is determined by the availabaility of relevant data at the BEA. The

Fundamentals Annual data from Compustat contains information on balance sheet variables for a large

sample of firms. BEA provides annual information on the input-output tables that we use to determine the

industry network weights. We also obtain additional data on firm productivities from the Bureau of Labor

Statistics (BLS), and firm default probabilities from S&P Global Ratings (2021).

To arrive at the final Compustat dataset, we select only companies incorporated or legally registered in

the United States and with the US dollar as the native currency. We exclude firms that have missing or

nonsensical values (i.e., negative values for asset size, debt, sales and interest payments). The final dataset

includes 89, 715 observations of 11, 655 unique firms. The following table presents summary statistics for the

Compustat data.

Table 1: Summary Statistics
Variables Obs Mean Std. Dev Min P25 P50 P75 Max

Assets ($bn) 89,715 3,28 15,46 0,00 0,04 0,29 1,44 551,67

Sales ($bn) 89,715 2.75 13.45 0.00 0.04 0.27 1.29 569.96

Debt Expense ($bn) 89,715 0.19 1.60 0.00 0.00 0.01 0.06 105.09

Gross Profit ($bn) 89,715 0.89 4.33 0.00 0.01 0.09 0.41 220.39

Debt Expense-to-Assets 89,715 0.43 10.94 0.00 0.02 0.04 0.10 1,280.00

Debt Expense-to-Gross Profit 89,715 2.60 55.21 0.00 0.05 0.15 0.39 6,182.75

Asset Turnover 89,715 1.42 44.15 0.00 0.57 0.99 1.55 13,203.00

We group the firms into 55 major industries aggregated according to the first three NAICS codes following

the classication used by the BEA. We exclude FIRE (i.e., Finance, Insurance, Real Estate, Rental, and

Leasing), Utilities and Government as our model is one of non-financial firms that are not regulated by the

Government. Figure 3 illustrates the network structure implied by the input-output matrix for firms grouped

into 12 major industries at the two-digit NAICS level purely for illustrative convenience. The nodes represent

each industry and the edges correspond to the linkages with other industries. The closed loops (i.e., edges

that go from one industry back to itself) indicate that firms in the industry utilize goods produced within

the industry. We, however, carry out our analysis for firms grouped into 55 industries at the three-digit

NAICS level.
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Figure 3: Network Structure: 12 Major Industries (2-digit NAICS)

We obtain the matrix of input-output weights using the “commodities by industries” database provided by

the BEA. Figure 4 shows the average weight matrix for the entire historical period for a subset of industries.

We present the complete matrix for all 55 industries in Appendix B.

Figure 4: Average Network Weight Matrix for Subset of Industries

The average network matrix (i.e., W ) has the property that all rows must add up to 1 (i.e.,
∑
j∈[N ] wIJ =

1). The colors indicate the relative magnitude of the weight values, ranging from 0.03% (i.e., white) to 98.71%
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(i.e., dark blue).

4.5 Model Parameters

The model has nine parameters for each industry that can be represented by the following parameter vectors:

α, the elasticities of consumption of the industry goods in the representative consumer’s utility function;

β, the elasticities of the intermediate good inputs in the production function; γ, the elasticities of capital

in the production function; η, the volatilities of firm-level idiosyncratic productivity shocks; µ, the mean

growth rates of the industry-level productivity shocks; σ, the volatilities of the industry-level productivity

shocks; ρ; the insolvency threshold parameters; χ, the proportional recovery rates in insolvency; and τ ;

the agency cost/private benefit parameters. As the parameters are all at the industry level, and there are

55 industries, we have a total of 495 parameters. We calibrate the parameters for each industry using

industry-level statistics in the data that facilitate their direct identification, thereby significantly alleviating

the computational complexity of estimating the model. The following table summarizes the parameters of

the model.

Table 2: Model Parameters
Parameter Description

α Preference elasticities
β Intermediate input elasticities
η Volatilities of firm-level idiosyncratic productivity shocks
µ Mean growth rates of industry-level productivity shocks
σ Volatilities of industry-level productivity shocks
ρ Default threshold parameters
χ Proportional insolvency recovery rates
γ Capital elasticities
τ Private benefit parameters

4.6 Calibration of Model Parameters

The calibration of the model parameters requires the following intermediate result.

Proposition 1. The revenue of firm i ∈ I is linked to the average revenue of firms in industry I ∈ [N ] via

the following expression:

PI,tx
∗
i,t+1 = z

1
1−βI
i,t+1PI,tx̄

∗
I,t = e−

1
2η

2
I+ηIεi,t+1PI,tx̄

∗
I,t, (39)

where PI,t+1x̄
∗
I,t+1 := 1

m1

∑
i∈I PI,t+1x

∗
i,t+1.
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We now describe the calibration of each model parameter. Since the target moments for our calibration

are at the industry level, we aggregate firm-level variables according to their 3-digit NAICS codes. The

following table summarizes the variables used in the model and their sources.

Table 3: Model variables and their sources
Variable Source Description

Xt Compustat (variable: sale) Revenue
Πt Compustat (variable: sale - cogs) Gross profits
Kt Compustat (variable: at) Capital levels
Dt Compustat (variable: dlc + xint) Debt levels
[N ] Compustat (variable: naics) Industry classification
W BEA Input-output network
α BEA Preference elasticies
χ Jankowitsch et al. (2014) Recovery rates given default
Zt BLS Multifactor productivities
φ Standard & Poor’s Probabilities of default

� α - We calibrate the consumption elasticities to match the means of relative consumption expenditures

from the BEA

αI = E

[
Consumption ExpendituresI,t∑

J∈[N ] Consumption ExpendituresJ,t

]
,∀I ∈ [N ]. (40)

We approximate the expectation on the R.H.S. above by the time-series average of the corresponding

relative consumption expenditures of each industry I ∈ [N ]. We obtain consumption expenditure data

by industry from the BEA.

� β - We calibrate the elasticities of the intermediate good inputs in the production function as follows.

By the first order conditions for (5), a firm’s profit is a constant proportion of its revenue , that is,

πi,t+1(kI,t) = (1− βI)PI,tx
∗
i,t+1.

3 As firms in an industry are ex ante identical in the model, the total

profit of all firms in industry I ∈ [N ] equals (1−βI) times the total revenue. Accordingly, we calibrate

the elasticity vector to match the expectation of industry profit as a proportion of industry sales,

βI = 1−E
[

Π∗
I,t

PI,tX∗
I,t

]
,∀I ∈ [N ]. (41)

We approximate the expectation on the R.H.S. above by the time-series average of the industry profits

as a proportion of industry revenues. The time series for firm-level gross profits (π∗
i,t) and sales (PI,tx

∗
i,t)

are provided by Compustat. We calculate gross profit for each firm by subtracting the cost of goods

sold from sales.

3See the Appendix 6 for further details.
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� η - In the model, the volatility of the firm-level idiosyncratic productivity shock for each industry

equals the volatility of the growth in firm sales. By (39), the sales of each firm is equal to the industry

average sales multiplied by the idiosyncratic shock. Accordingly, we can calibate ηI using the following

relation:

ηI =
1√
2

√√√√V [log(PI,t+1x∗i,t+2

PI,tx∗i,t+1

)]
+V

[
log

(
PI,t+1x̄∗I,t+1

PI,tx̄∗I,t

)]
,∀I ∈ [N ]. (42)

In the R.H.S. above, PI,tx
∗
i,t+1 represents the sales of the representative firm i in industry I in period

t, while PI,t+1x̄
∗
I,t is the average sales of all firms in the industry in period t. We approximate the

variance on the R.H.S. above using time-series data on individual and industry-average firm sales.

Recall that, as firm-level productivity shocks are i.i.d., it follows by the law of large numbers that the

average sales of all firms in an industry depends only on the industry-level productivity shocks that

are realized at the beginning of the period. In contrast, the revenue of an individual firm depends on

its firm-specific productivity shock that is realized at the end of the period. The notation explicitly

incorporates the distinction as in Sections 3 and 4.

� µ and σ - The mean growth rate and volatility of the industry-level productivity shock can be calibrated

by using (3) and noticing that the logarithmic return for the industry-level productivity factor has the

form log
(

ZI,t

ZI,t−1

)
= (1 − βI)[µI + σI(εt − εt−1)]. We then proceed to find the expected value and

variance of the previous equation and solve for µI and σI . The results are as follows:

µI =
1

1− βI
E

[
log

(
ZI,t
ZI,t−1

)]
,∀I ∈ [N ]. (43)

σI =
1√

2(1− βI)

√
V

[
log

(
ZI,t
ZI,t−1

)]
,∀I ∈ [N ]. (44)

We use time-series data on multi-factor productivities provided by the Bureau of Labor Statistics (BLS)

to represent ZI,t and approximate the expectation and variance on the R.H.S. of the equations above

using the corresponding time-series mean and variance, respectively.

� ρ - The default threshold parameter is obtained by using (18), solving for ρI and calculating expecta-

tions.

log(ρI) = ηIE[Φ
−1(φ∗

I)]−
1

2
η2I −E log

(
D∗
I,t

Π∗
I,t

)
− log(ΞI (φ

∗
I)),∀I ∈ [N ]. (45)

The above equation expresses the default threshold in terms of the default probability, φ∗
I , of firms

in industry I and the ratio of debt expenses to profit. We use data on default probabilities provided

by S&P Global Ratings to set the values of the default probabilities. We employ the ratio of total

29



industry debt to industry profit as the proxy for the term,
D∗

I,t

Π∗
I,t
, and approximate the expectations by

the time-series averages of the quantities. We obtain data on the firm-level debt expense (d∗i,t) from

Compustat by adding short term debt and interest payments.

� χ: We obtain the proportional salvage values upon insolvency from Jankowitsch et al. (2014).

� γ: We calibrate the capital intensities vector so that the following system of fixed-point equations

that determine the expected leverage ratio is satisfied. We solve the system numerically to obtain the

capital intensity parameters.

E

[
D∗
I,t

K∗
I,t

]
=

(1− τI)ΩI (φ
∗
I)
∑
J∈[N ] θ

2
J

γJ
1−βJ

(1 + ΨJ (φ
∗
J) ΩJ (φ

∗
J))

τIθI
γI

1−βI
(1 + ΨI (φ∗

I) ΩI (φ
∗
I))

E

[∑
I∈[N ] Π

∗
I,t

Kt

]
,∀I ∈ [N ]. (46)

We obtain data on firm-level capital (i.e., assets) (ki,t) from Compustat.

� τ : The agency cost/private benefits parameter vector can be obtained by solving for τI in the following

expression for the expected debt expense-to-gross profit ratio

E

[
D∗
I,t

Π∗
I,t

]
=

1− τI
τI

ΩI (φ
∗
I) ,∀I ∈ [N ]. (47)

4.7 Baseline Parameter Values

Table 4 in Appendix C shows the baseline parameter values from our calibration of the model. From the

table we can see that there is a lot of variation across industries. We can summarize the results as follows:

� α: Industries have a very varied behavior with respect to the preference weight parameter. The

concentration is very high, since only six industries represent over 50% of the purchasing decisions

made by consumers. There are several industries that have a negligible weight, since their goods are

primarily used as intermediate goods rather than for final consumption.

� β: The input elasticities are more evenly distributed across industries, with values ranging from 37.69%

for the Publishing industries to 87.77% for the Wholesale trade industry. Most industries use input

proportions lying between 60% and high 90%.

� η: The firm-level idiosyncratic volatilities vary from 12.06% for General Merchandise Stores up to

53.33% for Air Transportation.

� µ: The mean growth rates of industry-level productivities vary widely across industries. While some

industries have a large and positive mean growth rate (e,g., Computer and Electronic Products and
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Wholesale trade), some industries exhibit negative mean growth rates (e.g., Other Transportation and

Support Activities and Hospitals).

� σ: The volatilities of industry-level productivity shocks also vary widely across industries, capturing

the fact that productivity risks are quite heterogeneous as is the case with mean growth rates.

� χ: We obtain the default recovery parameters from Jankowitsch et al. (2014). Since the authors have

a less granular grouping of industries, we match industries in their grouping to industries in our sample

and assign the corresponding default recovery parameters from their study.

� γ: The capital elasticities also exhibit a wide range of values, with most being significantly lower than

1− β. This confirms that most industries exhibit decreasing returns to scale, since βI + γI < 1. The

constraint in (19) is preserved, since
∑
I∈[N ]

θIγI
1−βI

≈ 0.89 < 1 for our data.

� τ : the agency cost/private benefits parameters also vary widely across industries ranging from 0.07%

for Pipeline Transportation to 18.73% for Apparel and Leather and Allied Products.
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5 Quantitative Analysis

We now analyze the calibrated model to obtain quantitative implications for the impact of network charac-

teristics.

5.1 Network Characteristics, Firm Leverage Ratios, and Default Probabilities

We examine how changes in the network concentration parameter, θ, and sparsity parameter, δ, infuence the

mean firm leverage ratios and default probabilities across industries. Figures 5, 6 and 7 show the variations of

mean firm leverage with respect to the concentration parameter, θ, and sparsity, δ, across different industry

samples. Industry size is determined by the parameter vector θ, which are the proportions of gross profits

that each industry generates.

Figure 5: Variation of mean firm leverage with network concentration for large industries

Figure 5 shows that, for the largest industries, a 20% increase (decrease) in the network concentration,

θ, results in a 12.4% decrease (14.4% increase) in mean firm leverage. Figure 6 shows that, for the smallest

industries, similar increases (decreases) in network concentration lead to changes in mean firm leverage of

254% and −69.2%, respectively. The results are consistent with Proposition 4 showing differential impacts

of network concentration on firm leverage levels in large and small industries. The figures demonstrate that

the effects of network concentration are quantitatively more significant for firm leverage levels in smaller

industries.

Figure 7 shows that, as predicted by Proposition 4, mean firm leverage increases with network sparsity.

Mean firm leverage increases by 54.3% for a 20% increase in network sparsity but decreases by 35.2% for a

similar percentage decrease in network sparsity.
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Figure 6: Variation of mean firm leverage with network concentration for small industries

Figure 7: Variation of mean firm leverage with sparsity

Figures 8 and 9 show how firm default probabilities vary with network concentration.
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Figure 8: Variation of firm default probabilities with network concentration for large industries

Figure 9: Variation of firm default probabilities with network concentration for small industries

These graphs confirm the results in Proposition 4 that the default probabilities of firms in larger indus-

tries decline with network concentration, while those of firms in smaller industries increase with network

concentration. A 20% increase (decrease) in θ leads to a −17.3% (25.3%) relative change in the probability

of default for the largest industry. The median and smallest industries, on the other hand, exhibit a sharp

increase (decrease) in the probabilities of default of 49.7% (30.6%) and 164.8% (62.8%), respectively.

34



5.2 Contagion Analysis

We now examine the potential for contagion in the network as a consequence of unexpected shocks to

key parameters. In this analysis, we assume that firms in all industries choose their equilibrium debt levels

described in Theorem 1. We then apply unanticipated shocks to the firm-level idiosyncratic volatility (ηI), the

default threshold parameter (ρI) and the recovery rate parameter (χI) in each industry I ∈ [N ] and examine

the effects on firm default risk in the remaining industries given firms’ equilibrium debt levels. According

to the analytical results outlined in section 4.3.4, a positive shock to ηI and ρI increases the probability of

default of firms in all industries, while a positive shock to χI has the opposite effect. Intuitively, a higher

firm-level idiosyncratic volatility increases the likelihood of firm insolvency, which increases the negative

impact on firms in other industries. The same is true for the default threshold parameter, with higher values

indicating that firms need additional profits to pay off their debt expenses. In the case of the recovery rate

parameter, the greater the portion of the production that is retained after financial distress, the lower the

probability of the firm defaulting.

Figure 10 shows how large discrete shocks to the top four largest industries impact the rest of the industries

in the economy. Each graph represents a box plot of the percentage change in the probability of default for

all industries J ̸= I in response to a significant unexpected shock in the firm-level idiosyncratic volatility

for industry I. We apply three shocks of size 50%, 100% and 200% for ηI . For example, the first graph on

the top left corner shows the distribution of the impact of unexpected shocks to the firm-level idiosyncratic

volatility of the largest industry on the probabilities of default of firms in the remaining industries.
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Figure 10: Effects of shocks to firm-level idiosyncratic volatilities in top four industries

As expected, the potential for contagion is higher for the largest industries in the economy, and the effect

decreases rapidly with industry size. The median (maximum) relative increases in the probabilities of default

are 12.5% (19.2%), 12.9% (16.7%), 8.8% (13.6%) and 5.8% (8.9%), given the largest shock in the firm-level

idiosyncratic volatility in each of the top four industries, respectively.

Figure 11 shows the weighted average increase (i.e., weighted by the industry proportions vector, θ) in

the overall probability of default in the economy, given the unexpected shock in each industry. Consistent

with the previous graphs, industries are sorted from largest to smallest on the horizontal axis.
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Figure 11: Effects of shocks to firm-level idiosyncratic volatilities on weighted average default probability
across industries

Figure 11 shows that unexpected shocks to the firm-level idiosyncratic volatilities of larger industries have

quantitatively significant and nonlinear effects on the probabilities of default of firms in other industries.

A 200% increase in the firm-level idiosyncratic volatility of the largest industry can increase the average

probability of default in the remaining industries by 13.3%. The effect dies out quickly with a reduction in

industry size, and it never exceeds 5% starting with the sixth largest industry.

A similar analysis can be performed for the default threshold parameter. Figure 12 plots the impact of

different shocks to the four largest industries on the default probabilities of firms in the remaining industries.

The potential for contagion increases exponentially with shock size, but decreases fast with impacted

industry size. The median (maximum) relative increases in the the probabilities of default are 99.6% (151%),

80.3% (122.6%), 74% (113.3%) and 48.5% (74.7%), given the largest shock for the idiosyncratic volatility in

each of the top four industries, respectively.

Figure 13 shows how the shock in each industry increases the weighted (by concentration) average default

probability of firms in the remaining industries .

The contagious effect of an unanticipated shock to the default threshold parameter is even larger than

that of the firm-level idiosyncratic volatility. A 200% increase in ρI for the largest industry more than

doubles the average of the probability of default of firms in the remaining industries. The key difference

between ηI and ρI is that, while an increase in the former can also lower default probabilities in certain cases

(i.e., such as when the probability of default is already relatively high and the greater volatility increases the
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Figure 12: Effects of shocks to the default threshold in top four industries

Figure 13: Effects of shocks to default thresholds on weighted average default probability across industries

likelihood of positive scenarios), the latter unambiguously increases firm default probabilities.

For the insolvency recovery parameter, we perform an analysis with different shock levels (i.e., 25%, 50%

and 100%). The impacts of these shocks to χI are marginal, since the level of the actual probability of

default in all industries is relatively low. Intuitively, the recovery rate only has an effect in the scenario in
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which firms default, but this scenario is relatively unlikely. Hence, shocks to the recovery rates have limited

potential for contagion. Figure 14 shows how even the largest shock (i.e., 100%) only generates a modest

relative decrease in the average probability of default of firms in the remaining industries of only −0.5%.

Figure 14: Effects of shocks to insolvency recovery rates on weighted average default probabilities across
industries

5.3 Summary

To summarize, we have the following quantitative implications:

� Concentration: An increase in concentration redistributes weight from smaller industries to larger ones.

This redistribution leads to larger industries having a higher weight, which decreases their expected

leverage and probability of default. On the other hand, smaller industries have a smaller weight, which

increases their expected leverage and consequently, their probability of default. The relationship be-

tween concentration and leverage/ probability of default shows a higher curvature for both the largest

and smallest industries in the economy. A 20% relative increase (decrease) in the concentration pa-

rameter leads to relative changes in leverage of −12.4%, 66.3% and 254% (14.4%,−38.8% and −69.2%)

for the largest, median and smallest industries. In the case of the probability of default we have that

a 20% relative increase (decrease) in the concentration parameter translates to −17.3%, 49.7% and

164.8% (25.3%,−30.6% and −62.8%) relative changes in the largest, median and smallest industries,

respectively.
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� Sparsity: An increase in sparsity leads to higher expected leverage, without affecting the probability

of default. This means that, all else equal, industries that depend less (i.e., more sparse) on other

industries in the economy, can afford to have higher expected leverage levels, without affecting their

risk profile. Intuitively, more sparse networks imply that industries are more self-reliant, which means

that they depend less on the risk factors that affect other industries. The elasticity of expected leverage

to network sparsity is identical for all industries and exhibits a positive curvature, with a 20% increase

in δ leading to a relative change of 54.3% in leverage, vis-a-vis a change of −35.2% for a drop of equal

magnitude.

� Contagion and Spillover Effects: As expected, shocks to larger industries have a higher impact on the

economy. A 200% unexpected increase in the firm-level idiosyncratic volatility ηI in the largest industry

can generate up to a 19.2% relative increase in the probability of default for firms in the most impacted

industry. This same shock generates an average relative increase of 13.3% in the probabilities of default

of all of the remaining industries in the economy. The potential for contagion is highly nonlinear and

dies off swiftly with decreases in industry size. A 200% unexpected increase in the default threshold

parameter ρI in the largest industry can generate up to a 151% relative increase in the probability

of default for the most impacted industry. This shock also causes the average of the probabilities

of default in other industries in the economy to rise by 106.7%. The shock in the default threshold

parameter is more significant than the industry-level volatility, since the former has an unambiguously

positive effect on the probability of default. Finally, shocks to the recovery rate parameter χI are

marginal, since the current level for the probabilities of default is relatively low and χI only affects the

profit in the distress scenario.

6 Conclusions

We demonstrate how an economy’s production network influences non-financial firms’ production and fi-

nancing decisions in a dynamic structural framework. We analytically characterize the equilibrium of the

economy and derive novel implications for the impacts of key characteristics of the production network—

the concentration and sparsity—-on firms’ capital structures and default risks. Network concentration has

sharply contrasting effects on firms’ leverage ratios and default probabilities in large and small industries.

A higher network concentration lowers leverage ratios and default probabilities for larger industries, but

increases them for smaller industries. An increase in network sparsity increases firms’ leverage ratios in all

industries. We carry out a quantitative analysis of the effects of network characteristics by calibrating the

model to match identifying moments in the data. Network concentration and sparsity both have quantita-
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tively substantial effects on firms’ average leverage ratios and default probabilities. Shocks to the firm-level

idiosyncratic volatility and default threshold of the largest industry have quantitatively significant impacts

on firm default probabilities in other industries, thereby suggesting the potential for significant contagion

in firm defaults. However, shocks to firm salvage values upon insolvency have only marginal effects. The

effects of contagion are highly nonlinear and depend on the size of the industry being impacted as well as

the magnitudes of the shocks.

In future research, it would be interesting to incorporate investment and capital accumulation with

possible capital adjustment costs, which could generate implications for how production networks influence

economic growth via firms’ investment and financing decisions. It would also be important to allow for

intra-industry firm and product heterogeneity as well as production networks within an industry. We could

allow for the production network itself to evolve over time, perhaps stochastically.
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Appendix A

Proof of Proposition 1

We begin by deriving the expressions for firm profits that are determined by firms’ production decisions
at the end of the period after their idiosyncratic productivity shocks are realized. Let a firm i in industry
I choose capital and debt levels that are given by ki,t, di,t, respectively. The first order conditions for the
maximization of the profit function in (5) are

x∗iJ,t+1(ki,t) = βI
PI,t
PJ,t

wIJx
∗
i,t+1(ki,t),

and

x
(b)∗
iJ,t+1(ki,t) = βI

PI,t
PJ,t

wIJx
(b)∗
i,t+1(ki,t).

In the above, we explicitly indicate the dependence of the output levels on the capital level, ki,t, for clarity.

Plugging x∗iJ,t+1(ki,t) and x
(b)∗
iJ,t+1(ki,t) into the profit functions, we get

π∗
i,t+1(ki,t) = (1− βI)PI,tx

∗
i,t+1(ki,t),

π
(b)∗
i,t+1(ki,t) = (1− βI)PI,tx

(b)∗
i,t+1(ki,t).

where

x∗i,t+1(ki,t) = Z
1

1−βI

I,t z
1

1−βI
i,t+1P

βI
1−βI

I,t k
γI

1−βI
i,t

 ∏
J∈[N ]

(
wIJ
PJ,t

)wIJ


βI

1−βI

,

and

x
(b)∗
i,t+1(ki,t) = χ

1
1−βI

I Z
1

1−βI

I,t z
1

1−βI
i,t+1P

βI
1−βI

I,t k
γI

1−βI
i,t

 ∏
J∈[N ]

(
wIJ
PJ,t

)wIJ


βI

1−βI

.

Let
x̃∗i,t+1(ki,t, di,t) =: x∗i,t+1(ki,t)1π∗

i,t+1(ki,t)≥ρIdi,t + x
(b)∗
i,t+11π∗

i,t+1(ki,t)<ρIdi,t

be the final production for an individual firm i in industry I. We have the following:

Et[x̃∗i,t+1(ki,t, di,t)] =

(
1−

(
1− χ

1
1−βI

I

)
Et
[
1π∗

i,t+1(ki,t)<ρIdi,t
z

1
1−βI
i,t+1

])
x̄∗I,t(ki,t) (48)

where

x̄∗I,t(ki,t) := Z
1

1−βI

I,t P
βI

1−βI

I,t k
γI

1−βI
i,t

 ∏
J∈[N ]

(
wIJ
PJ,t

)wIJ


βI

1−βI

(49)

We note that, as its subscripts indicate, the function, x̄∗I,t(ki,t),is the same for all firms in the industry, and
is determined at date t after the industry-wide productivity shocks are realized.

We can rewrite the expectation in (48) as follows.
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Et
[
1π∗

i,t+1(ki,t)<ρIdi,t
z

1
1−βI
i,t+1

]
= Et

[
1
z

1
1−βI
i,t+1 <

ρIdi,t
(1−β)PI,tx̄

∗
i,t

(ki,t)

z
1

1−βI
i,t+1

]

= Et
[
1εi,t+1<ψI,t(ki,t,di,t)+

1
2ηI

e−
1
2η

2
I+ηIεi,t+1

]
=

∫ ψI,t(ki,t,di,t)+
1
2ηI

−∞
e−

1
2η

2
I+ηIzϕ(z)dz

=
1√
2π

∫ ψI,t(ki,t,di,t)+
1
2ηI

−∞
e−

1
2 (z−ηI)

2

dz

=
1√
2π

∫ ψI,t(ki,t,di,t)− 1
2ηI

−∞
e−

1
2 z

′2
dz′

= Φ

(
ψI,t(ki,t, di,t)−

1

2
ηI

)
,

where,

ψI,t(ki,t, di,t) :=
1

ηI
log

(
ρIdi,t

(1− βI)PI,tx̄∗I,t(ki,t)

)
.

The subscript on the function ψI,t(.) indicates that it is the same for all firms in industry I.
Plugging the above into (48), we conclude that

Et[x̃∗i,t+1(ki,t, di,t)] = ξI,tx̄
∗
I,t(ki,t),

where

ξI,t(ki,t, di,t) := 1− (1− χ
1

1−βI

I )Φ

(
ψI,t(ki,t, di,t)−

1

2
ηI

)
.

The expected end-of-period payout to the firm’s shareholders and debtholders in (7) can be expressed as
follows.

Et

[
π*net
i,t+1(ki,t, di,t)

]
= (1− τI)Et

[
π∗
i,t+1(ki,t)1π∗

i,t+1(ki,t)≥ρIdi,t + π
(b)∗
i,t+1(ki,t)1π∗

i,t+1(ki,t)<ρIdi,t +
τI

1− τI
di,t1π∗

i,t+1(ki,t)≥ρIdi,t − (1 + rI)RK,tki,t

]
= (1− τI)Et

[
(1− βI)PI,t

(
x∗
i,t+1(ki,t)1π∗

i,t+1(ki,t)≥ρIdi,t + x
(b)∗
i,t+1(ki,t)1π∗

i,t+1(ki,t)<ρIdi,t

)
+

τI
1− τI

di,t1π∗
i,t+1(ki,t)≥ρIdi,t − (1 + rI)RK,tki,t

]
= (1− τI)Et

[
(1− βI)PI,tx̃

∗
i,t+1(ki,t, di,t) +

τI
1− τI

di,t
(
1− 1π∗

i,t+1(ki,t)<ρIdi,t

)
− (1 + rI)RK,tki,t

]
= (1− τI)

[
(1− βI)PI,tξI,tx̄

∗
I,t(ki,t) +

τI
1− τI

di,t
(
1− Et

[
1π∗

i,t+1(ki,t)<ρIdi,t

])
− (1 + rI)RK,tki,t

]
= (1− τI)

[
(1− βI)PI,tξI,tx̄

∗
I,t(ki,t) +

τI
1− τI

di,t
(
1− Pt

[
π∗
i,t+1(ki,t) < ρIdi,t

])
− (1 + rI)RK,tki,t

]
= (1− τI)

[
(1− βI)PI,tξI,tx̄

∗
I,t(ki,t) +

τI
1− τI

di,t(1− φI,t)− (1 + rI)RK,tki,t

]
, (50)

where

φI,t(ki,t, di,t) = Pt(π∗
i,t+1(ki,t) < ρIdi,t) = Φ

(
ψI,t(ki,t, di,t) +

1

2
ηI

)
.

We note from the R.H.S. of the final equality in (50) that the function, Et
[
π*net
i,t+1(ki,t, di,t)

]
, is the same for

all firms in industry I.
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The optimal capital structure choice of firm i in industry I solves the following.

(k∗i,t, d
∗
i,t) = arg sup

kl,t,dl,t

Et
[

1

1 + rI
π*net
i,t+1(ki,t, di,t)

]
. (51)

As the function, Et
[

1
1+rI

π*net
i,t+1(ki,t, di,t)

]
is the same for all firms in industry I, each firm in industry

I faces exactly the same optimal capital structure choice problem and, therefore, chooses the same capital
structure.

Without loss of generality, therefore, we can consider the representative firm in industry I that chooses
a capital structure, (kI,t, dI,t). For future reference, we collect together the expressions derived above as
functions of the capital and debt levels chosen by the representative firm for convenience.

x̄∗I,t(kI,t) := Z
1

1−βI

I,t P
βI

1−βI

I,t k
γI

1−βI

I,t

 ∏
J∈[N ]

(
wIJ
PJ,t

)wIJ


βI

1−βI

(52)

ψI,t(kI,t, dI,t) :=
1

ηI
log

(
ρIdi,t

(1− βI)PI,tx̄∗I,t (kI,t)

)
, (53)

φI,t(kI,t, dI,t) = Φ

(
ψI,t(kI,t, dI,t) +

1

2
ηI

)
. (54)

ξI,t(kI,t, dI,t) := 1− (1− χ
1

1−βI

I )Φ

(
ψI,t(kI,t, dI,t)−

1

2
ηI

)
, (55)

(k∗I,t, d
∗
I,t) = arg sup

kI,t,dI,t

Etπnet*
I,t+1(kI,t, dI,t) (56)

= arg sup
1− τI
1 + rI

[
(1− βI)PI,tξI,tx̄

∗
I,t(kI,t) +

τI
1− τI

dI,t(1− φI,t(ki,t, di,t))− (1 + rI)RK,tkI,t

]

φI,t(kI,t, dI,t) = Pt(π∗
I,t+1(kI,t) < ρIdI,t) = Φ

(
ψI,t(kI,t, dI,t) +

1

2
ηI

)
. (57)

Proof of Proposition 2

As firm-specific productivity shocks are i.i.d., it follows by the law of large numbers that the total production
of firms in industry I is given by the mass of firms, MI , times the expected production of the representative
firm.

X∗
I,t :=MIEt[x̃∗I,t+1] =MIξI,tx̄

∗
I,t.

In the above, we have suppressed the arguments of the functions—the capital and debt levels of the repre-
sentative firm—to ease the notation. This leads to the following expression for the total profit for industry
I:

Π∗
I,t := (1− βI)PI,tX

∗
I,t. (58)

Since x∗iJ,t+1 and x
(b)∗
iJ,t+1 are linear in x∗i,t+1 and x

(b)∗
i,t+1, we can also express the total inputs bought by

industry I from industry J as

X∗
IJ,t :=MIβI

PI,t
PJ,t

wIJξI,tx̄
∗
I,t = βIwIJ

PI,t
PJ,t

X∗
I,t
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Switching to the consumer’s problem, the Lagrangian function is

Lt = max
{cI,t}I∈[N]

∏
I∈[N ]

cαI

I,t + λt

yt − ∑
I∈[N ]

PI,tcI,t

 .

The first order condition with respect to cJ,t leads to the following result:

∂Lt
∂cJ,t

= 0 ⇒ cJ,t =
αJ
∏
I∈[N ] c

αI

I,t

λtPJ,t
.

Take cJ,t and cK,t for all J,K ∈ [N ]. The previous expression implies the following:

PJ,tcJ,t = PK,tcK,t
αJ
αK

.

Replacing this condition in the budget constraint and noticing that
∑
j∈[n] αj = 1, we obtain the optimal

consumption of good I:
PI,tc

∗
I,t = αIyt.

The total consumption of good I in the economy is given by the following expression:

PI,tC
∗
I,t = αI

∑
J∈[N ]

Π∗
J,t = αI

∑
J∈[N ]

(1− βJ)PJ,tX
∗
J,t

Replacing the optimal values C∗
I,t and X

∗
IJ,t in the market-clearing condition in (10), we obtain the following:

PI,tX
∗
I,t = αI

∑
J∈[N ]

(1− βJ)PJ,tX
∗
J,t +

∑
J∈[N ]

βJwJIPJ,tX
∗
J,t

We proceed to multiply by (1− βI) to obtain the following expression:

βI
1− βI

Π∗
I,t = αIβI

∑
J∈[N ]

Π∗
J,t + βI

∑
J∈[N ]

βJ
1− βJ

wJIΠ
∗
J,t

This can be expressed in vector form as:

diag(β)[I − diag(β)]−1Π∗
t =diag(β)α

∑
J∈[N ]

Π∗
J,t + diag(β)W ′diag(β)[I − diag(β)]−1Π∗

t

=[I − diag(β)W ′]−1diag(β)α
∑
J∈[N ]

Π∗
J,t

=diag(β)[I −W ′diag(β)]−1α
∑
J∈[N ]

Π∗
J,t.

This leads to the final result

Π∗
t = (I − diag(β))[I −W ′diag(β)]−1α

∑
J∈[N ]

Π∗
J,t = θ

∑
J∈[N ]

Π∗
J,t,

where Π∗
t := (Π∗

1,t, ...,Π
∗
N,t)

′, β := (β1, ..., βN )′, α := (α1, ..., αN )′, W is the matrix with IJ-th entry [wIJ ]
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and θ := (θ1, ..., θN )′. We can show that
∑
I∈[N ] θI = 1 as follows∑

I∈[N ]

θI = 1′θ =1′(I − diag(β))[I −W ′diag(β)]−1α

=1′(I − diag(β))

∞∑
k=0

(W ′diag(β))kα

=(1− β)′
∞∑
k=0

(W ′diag(β))kα

=1′α = 1

Proof of Proposition 3

We start by multiplying both sides of (52) by PI,t:

PI,tx̄
∗
I,t = P

1
1−βI

I,t Z
1

1−βI

I,t k
γI

1−βI

I,t

 ∏
J∈[N ]

(
wIJ
PJ,t

)wIJ


βI

1−βI

.

We apply the natural logarithm function to both sides of the previous equation and multiply by 1− βI

(1− βI) log(PI,tx̄
∗
I,t) = log(PI,t) + (1− βI)(µIt+ σIεt)+

γI log(kI,t) + βI

 ∑
J∈[N ]

wIJ log(wIJ)−
∑
J∈[N ]

wIJ log(PJ,t)

 .

This expression can be represented in vector form as follows:

(I − diag(β)) log(P t ⊙ x̄∗
t ) = log(P t) + (I − diag(β))(µt+ σεt)+

diag(γ) log(kt) + diag(β)(Ws −W log(P t)),

with x̄∗
t := (x̄∗1,t, ..., x̄

∗
N,t)

′, µ := (µ1, ..., µN )′,σ := (σ1, ..., σN )′, kt := (k1,t, ..., kN,t)
′,γt := (γ1, ..., γN )′ and

Ws is a vector with I-th entry equal to
∑
J∈[N ] wIJ log(wIJ). Solving for prices, we obtain

log(P t) = [I − diag(β)W ]−1(I − diag(β))

{
log(P t ⊙ x̄∗

t )−

(µt+ σεt)− [I − diag(β)]−1diag(γ) log(kt)− [I − diag(β)]−1diag(β)Ws

}
.

We proceed to pre-multiply the price vector equation by α′ and notice that α′[I − diag(β)W ]−1(I −
diag(β)) = θ′ and θ′1 = 1, which leads to the following:

α′ log(P t) = θ′ log(P t ⊙ x̄∗
t )− (θ′µt+ θ′σεt)−

θ′[I − diag(β)]−1diag(γ) log(kt)− θ′[I − diag(β)]−1diag(β)Ws.

Using the price normalization in equation 13 we have

θ′ log(P t ⊙ x̄∗
t ) = θ′[I − diag(β)]−1diag(β)N + log(P t) + θ′µt+ θ′σεt+

θ′[I − diag(β)]−1diag(γ) log(kt).
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We sum θ′ log(1 − β) + θ′ log(ξt+1) + θ′ log(M) at both sides of the previous equation to obtain the final
result ∑

I∈[N ]

Π∗
I,t = exp

{
θ′[I − diag(β)]−1diag(β)Ws − θ′ log(θ) + θ′ log(1− β) + θ′ log(M)+

log(P t) + θ′µt+ θ′σεt + θ′ log(ξt) + θ′[I − diag(β)]−1diag(γ) log(kt)

}
.

Proof of Theorem 1

We split the proof into several steps for clarity.
Step 1:
Using the expected discounted net profits function in (56), and the total profit for industry I in (58) and
(11), we have:

Et
[

1

1 + rI
π*net
I,t+1(kI,t, dI,t)

]
=

1− τI
1 + rI

[
(1− βI)PI,tξI,tx̄

∗
I,t (kI,t) +

τI
1− τI

dI,t(1− φI,t)− (1 + rI)RK,tkI,t

]
=

1

MI

1− τI
1 + rI

[
Π∗
I,t +

τI
1− τI

DI,t(1− φI,t)− (1 + rI)RK,tKI,t

]

=
1

MI

1− τI
1 + rI

θI ∑
J∈[N ]

Π∗
J,t +

τI
1− τI

DI,t(1− φI,t)− (1 + rI)RK,tKI,t

 .
In the above, we simplify subsequent expressions by making the change of variables, KI,t := MIkI,t and
DI,t :=MIdI,t. Ignoring the constant terms, which do not affect the optimal capital structure decision, the
optimization problem (51) reduces to

sup
kI,t,dI,t

Et
[

1

1 + rf
πnet
i,t+1(kI,t, dI,t)

]
= sup
KI,t,DI,t

{
θI
∑
J∈[N ]

Π∗
J,t +

τI
1− τI

DI,t(1− φI,t)− (1 + rI)RK,tKI,t

}
.

Let K̂I,t := log(KI,t) and D̂I,t := log
(
DI,t

)
. The optimization problem can then be re-expressed as follows.

sup
K̂I,t,D̂I,t

{
θI
∑
J∈[N ]

Π∗
J,t +

τI
1− τI

eD̂I,t(1− φI,t)− (1 + rI)RK,te
K̂I,t

}
,

where

∑
J∈[N ]

Π∗
J,t = exp

{
δ − θ′ log(θ) + θ′ log(1− β) + log(P t)+

θ′µt+ θ′σεt + θ′ log(ξt) + θ′[I − diag(β)]−1diag(γ)K̂t

}
,

ψI,t(K̂I,t, D̂I,t) =
1

ηI

D̂I,t + log

(
ρI
θI

)
− log

 ∑
J∈[N ]

Π∗
J,t

+ log(ξI,t)


Step 2:

The first order conditions with respect to K̂I,t and D̂I,t can be expressed as

eK̂I,t =
1

rK(1 + rI)
θI
∑
J∈[N ]

Π∗
J,t

(
∂θ′ log(ξt)

∂K̂I,t

+
γI

1− βI
θI

)
− 1

RK,t(1 + rI)

τI
1− τI

eD̂I,t
∂φI,t

∂K̂I,t
(59)
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eD̂I,t = −
(1−τI)
τI

θI
∑
J∈[N ] Π

∗
J,t+1

∂θ′ log(ξt)

∂D̂I,t

1− φI,t − ∂φI,t

∂D̂I,t

. (60)

The partial derivative term, ∂θ
′ log(ξt)

∂K̂I,t
, can be obtained from (16) as follows:

∂ log(ξJ,t)

∂K̂I,t

=
(1− χJ)ϕ

(
ψJ,t(K̂J,t, D̂J,t)− 1

2ηJ

)
ηJξJ,t

(
∂θ′ log(ξt)

∂K̂I,t

− ∂ log(ξJ,t)

∂K̂I,t

+
γI

1− βI
θI

)
.

This leads to:
∂ log(ξJ,t)

∂K̂I,t

= ζJ,t

(
∂θ′ log(ξt)

∂K̂I,t

+
γI

1− βI
θI

)
, (61)

where

ζJ,t :=

1 +
ηJξJ,t(

1− χ
1

1−βJ

J

)
ϕ
(
ψJ,t(K̂J,t, D̂J,t)− 1

2ηJ

)


−1

.

Next, we observe that
∂θ′ log(ξt)

∂K̂I,t

= θ′ζt
∂θ′ log(ξt)

∂K̂I,t

+ θ′ζt
γI

1− βI
θI ,

which implies that

∂θ′ log(ξt)

∂K̂I,t

=
θ′ζt

γI
1−βI

θI

1− θ′ζt
. (62)

Similarly, we obtain
∂ log(ξJ,t)

∂D̂I,t

= ζJ,t

(
∂θ′ log(ξt)

∂D̂I,t

− 1{I=J}
)
, (63)

which implies that
∂θ′ log(ξt)

∂D̂I,t

= − θIζI,t

1− θ′ζt
. (64)

Plugging (62) and (64) into (61) and (63), respectively, and setting J to I, we obtain the following:

∂ log(ξI,t)

∂K̂I,t

=
γI

1− βI
θIζI,t

(
θ′ζt

1− θ′ζt
+ 1

)
, (65)

and

∂ log(ξI,t)

∂D̂I,t

= −ζI,t
(

θIζI,t

1− θ′ζt
+ 1

)
. (66)

The remaining partial derivative terms
∂φI,t

∂K̂I,t
and

∂φI,t

∂D̂I,t
can be obtained as follows:

∂φI,t

∂K̂I,t

=
ϕ
(
Φ−1(φI,t)

)
ηI

(
− ∂θ′ log(ξt)

∂K̂I,t

+
∂ log(ξI,t)

∂K̂I,t

− γI
1− βI

θI

)
=

−νI,t
γI

1− βI
θI

(
θ′ζt

1− θ′ζt
+ 1

)
,

∂φI,t

∂D̂I,t

=
ϕ
(
Φ−1(φI,t)

)
ηI

(
− ∂θ′ log(ξt)

∂D̂I,t

+
∂ log(ξI,t)

∂D̂I,t

+ 1

)
=

νI,t

(
θIζI,t

1− θ′ζt
+ 1

)
,
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where

νI,t :=
ϕ
(
Φ−1(φI,t)

)
(1− ζI,t)

ηI
.

Step 3:
The above analysis leads to the following results for the equilibrium total capital and debt levels of the

industry expressed in terms of the vector of default probabilities,

φt ≡ (φ1,t, ...., φN,t) (67)

K∗
I,t =

θ2IγI
(1− βI)RK,t(1 + rI)

(
1 + ΨI (φI,t) ΩI (φI,t)

1− θ′Λ (φt)

) ∑
J∈[N ]

Π∗
J,t, (68)

D∗
I,t =

(1− τI)θI
τI

ΩI (φI,t)
∑
J∈[N ]

Π∗
J,t, (69)

where

ΩI (φI,t) :=

[
(1− φI,t −ΨI (φI,t))(1− θ′Λ (φt))

θIΛI (φI,t)
−ΨI (φI,t)

]−1

,

ΞI (φI,t) := 1− (1− χ
1

1−βI

I )Φ(Φ−1(φI,t)− ηI),

ΛI (φI,t) :=

1 +
ηIΞI (φI,t)(

1− χ
1

1−βI

I

)
ϕ

(
Φ−1

(
1−ΞI(φI,t)

1−χ
1

1−βI
I

))


−1

,

ΨI (φI,t) :=
ϕ
(
Φ−1(φI,t)

)
(1− ΛI (φI,t))

ηI
.

We then have

log(K∗
I,t) = log

(
γIθ

2
I

(1− βI)(1 + rI)RK,t

(
1 + ΨI (φI,t) ΩI (φI,t)

1− θ′Λ (φt)

))
+ log

 ∑
J∈[N ]

Π∗
J,t

 =

log

(
γIθ

2
I

(1− βI)(1 + rI)RK,t

(
1 + ΨI (φI,t) ΩI (φI,t)

1− θ′Λ (φt)

))
+ δ−

θ′ log(θ) + θ′ log(1− β) + log(P t) + θ′µt+ θ′σεt + θ′ log(Ξ (φt)) + θ′[I − diag(β)]−1diag(γ) log(K∗
t ),

This leads to the following expression for the total production:∑
J∈[N ]

Π∗
J,t = exp

{
1

1−
∑
I∈[N ]

θIγI
1−βI

[
δ − θ′ log(θ) + θ′ log(1− β) + log(P t)+

θ′µt+ θ′σεt + θ′ log(Ξ (φt)) +
∑
I∈[N ]

γI
1− βI

θI log

(
γIθ

2
I

(1− βI)(1 + rI)RK,t

(
1 + ΨI (φI,t) ΩI (φI,t)

1− θ′Λ (φt)

))]}
.

(70)

Step 4:
The next step is to derive the equilibrium rental rate of capital RK,t using the market clearing condition for
total capital. We start by summing up capital in (68) to obtain
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Kt =

∑
I∈[N ] θ

2
I

γI
1−βI

(1 + ΨI (φI,t) ΩI (φI,t))

RK,t(1 + rI)

∑
J∈[N ]

Π∗
J,t.

This allows us to write RK,t as follows:

RK,t =

∑
I∈[N ] θ

2
I

γI
1−βI

(1 + ΨI (φI,t) ΩI (φI,t))

(1 + rI)
(
1− θ′Λ (φt)

) ∑
J∈[N ] Π

∗
J,t

Kt
.

Plugging (30) into 70 we obtain the following. ∑
J∈[N ]

Π∗
J,t = exp

{
δ − θ′ log(θ) + θ′ log(1− β) + log(P t)+

θ′µt+ θ′σεt + θ′ log(Ξ (φt)) +
∑
I∈[N ]

γI
1− βI

θI log

(
γIθ

2
IKt (1 + ΨI (φI,t) ΩI (φI,t))

(1− βI)
∑
J∈[N ] θ

2
J

γJ
1−βJ

(1 + ΨJ (φJ,t) ΩJ (φJ,t))

)}
.

(71)

We proceed to plug in the previous value for RK,t in (68) to obtain:

K∗
I,t =

θ2I
γI

1−βI
(1 + ΨI (φI,t) ΩI (φI,t))∑

J∈[N ] θ
2
J

γJ
1−βJ

(1 + ΨJ (φJ,t) ΩJ (φJ,t))
Kt.

Step 5:
In the final step, we observe that the capital structures of firms are expressed in terms of the vector

of firm default probabilities, (67). However, the default probabilities are given by (54), which depend on
firms’ capital structure choices. Hence, we have a fixed-point problem for firm default probabilities whose
solution determines the equilibrium capital structures and default probabilities of firms. We now show that
the fixed-point problem has a unique solution that, in turn, determines the unique equilibrium.

We start by defining

φ̄I,t := min

{
φI,t

∣∣∣∣φI,t − [1−ΨI (φI,t)

(
1 +

θIΛI (φI,t)

1− θ′Λ (φt)

)]
= 0

}
.

We want to show that φ̄I,t ∈ (0, 1). Let

F (φ̃I,t) = Φ(φ̃I,t)−
[
1−ΨI (φI,t)

(
1 +

θIΛI (φI,t)

1− θ′Λ (φt)

)]
,

where φ̃I,t = Φ−1(φI,t). We have the following intermediate result:

(ΨI (φI,t) | ˜φI,t → −∞) = (ΨI (φI,t) |φ̃I,t → ∞) → 0

This implies the following:
F (φ̃I,t → −∞) → −1,

and
F (φ̃I,t → ∞) → 0.

We will show that there exists some δI > 0, such that F (δI) > 0. Since the function F (φ̃I,t) is continuous,
there exists some value φ̄I,t ∈ (0, 1) such that F (Φ−1(φ̄I,t)) = 0. First, we have the following inequality.

F (φ̃I,t) = Φ(φ̃I,t)−
[
1−ΨI (φI,t)

(
1 +

θIΛI (φI,t)

1− θ′Λ (φt)

)]
> Φ(φ̃I,t) + ΨI (φI,t)− 1 =

(1− Φ(φ̃I,t))(1− ΛI (φI,t))

ηI

[
ϕ(φ̃I,t)

1− Φ(φ̃I,t)
− ηI

1− ΛI (φI,t)

]
.
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Next, we note that

ΛI (φI,t) <

1 +

√
2πηIχ

1
1−βI

I

1− χ
1

1−βI

I

−1

= Λ̄I

This leads to the inequality

F (φ̃I,t) >
(1− Φ(φ̃I,t))(1− Λ̄I)

ηI

[
ϕ (φ̃I,t)

1− Φ(φ̃I,t)
− ηI

1− Λ̄I

]
.

The function
ϕ(φ̃I,t)

1−Φ(φ̃I,t)
, which is known as the inverse Mills ratio, is an increasing function of φ̃I,t. This

means that there exists some value −∞ < δI <∞ such that

ϕ (δI)

1− Φ(δI)
>

ηI
1− Λ̄I

Finally,

F (δI) >
(1− Φ(δI))(1− Λ̄I)

ηI

[
ϕ (δI)

1− Φ(δI)
− ηI

1− Λ̄I

]
> 0.

Since F (φ̃I,t → −∞) = 0, F (δI) > 0 and the function F (·) is continuous, there must exist some value
φ̄I,t ∈ (0, 1) such that F (Φ−1(φ̃I,t)) = 0.

The final step is to show that there exists a unique value φ∗
I,t ∈ (0, φ̄I) for all I ∈ [N ] such that the

equilibrium probability of default is the solution to the fixed point equation

φ∗
I,t = Φ

(
1

ηI

[
log

(
(1− τI)ρI

τI

)
+ log(ΩI

(
φ∗
I,t

)
) + log(ΞI

(
φ∗
I,t

)
)

]
+

1

2
ηI

)
We define the following function for all industries I ∈ [N ]:

ΨI(φ̃I,t) := Φ(φ̃I,t)− Φ

(
1

ηI

[
log

(
(1− τI)ρI

τI

)
+ log (ΩI (φ̃I,t)) + log (ΞI (φ̃I,t))

]
+

1

2
ηI

)
.

First, we have that ΨI(φ̃I,t → −∞) = 0 and limφ̃I,t↑Φ(φ̄I) ΨI(φ̃I,t) = −(1 − Φ(φ̄I,t)) < 0. In the second
expression it is necessary to use the limit from the left, since the function has a discontinuity at φ̃I,t = Φ(φ̄I,t).

Next, we will show that there exists some −∞ < δI < Φ(φ̄I) such that ΨI(δI) > 0. We begin with the
following series of inequalities:

ΨI(δI) > Φ(δI)− Φ

(
1

ηI

[
log

(
(1− τI)ρI

τI

)
+ log (ΩI (δI))

]
+

1

2
ηI

)
=

Φ(δI)− Φ

(
1

ηI

[
log

(
θI(1− τI)ρI

τI

)
− log

(
(1− Φ(δI)−ΨI (δI))(1− θ′Λ (δ))

ΛI (δI)
− θIΨI (δI)

)]
+

1

2
ηI

)
.

We need to show that

Φ(δI) > Φ

(
1

ηI

[
log

(
θI(1− τI)ρI

τI

)
− log

(
(1− Φ(δI)−ΨI (δI))(1− θ′Λ (δ))

ΛI (δI)
− θIΨI (δI)

)]
+

1

2
ηI

)
.

This is equivalent to

exp

{
ηIδI + log

(
(1− Φ(δI)−ΨI (δI))(1− θ′Λ (δ))

ΛI (δI)
− θIΨI (δI)

)}
>
θI(1− τI)ρI

τI
e

1
2η

2
I .
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We have the following inequalities

exp

{
ηIδI + log

(
(1− Φ(δI)−ΨI (δI))(1− θ′Λ (δ))

ΛI (δI)
− θIΨI (δI)

)}
>

(1− Φ(δI)−ΨI (δI))(1− θ′Λ (δ))

ΛI (δI)
− θIΨI (δI) >

(1− Φ(δI)− ϕ(δI )
ηI

)(1− Λ̄I)

ΛI (δI)
− θIϕ (δI)

ηI
> (1− Λ̄I)

[(
1− Φ(δI)

ϕ(δI)
− 1

ηI

)
ϕ(δI)

ΛI (δI)
− θI

ηI
√
2π(1− Λ̄I)

]
.

The term ϕ(δI)
ΛI(δI)

can be bounded from below as follows

ϕ(δI)

ΛI (δI)
= ϕ(δI)

1 +
ηI
[
1−

(
1− χ

1
1−βI

I

)
Φ
(
δI − ηI

)]
(
1− χ

1
1−βI

I

)
ϕ (δI − ηI)

 >

ηI
[
1−

(
1− χ

1
1−βI

I

)
Φ
(
δI − ηI

)]
(
1− χ

1
1−βI

I

) >
ηIχ

1
1−βI

I(
1− χ

1
1−βI

I

) .
Using the previous bound, we then have the following

(1− Λ̄I)

[(
1− Φ(δI)

ϕ(δI)
− 1

ηI

)
ϕ(δI)

ΛI (δI)
− θI

ηI
√
2π(1− Λ̄I)

]
>

ηI(1− Λ̄I)χ
1

1−βI

I

1− χ
1

1−βI

I

[
1− Φ(δI)

ϕ(δI)
− 1

ηI
−

θI
(
1− χ

1
1−βI

I

)
η2Iχ

1
1−βI

I

√
2π(1− Λ̄I)

]
.

The function 1−Φ(δI)
ϕ(δI)

, i.e., the Mills ratio, is monotonically decreasing in δI . Hence, it is possible to choose

an arbitrarily small −∞ < δI < Φ(φ̄I) such that

ηI(1− Λ̄I)χ
1

1−βI

I

1− χ
1

1−βI

I

[
1− Φ(δI)

ϕ(δI)
− 1

ηI
−

θI
(
1− χ

1
1−βI

I

)
η2Iχ

1
1−βI

I

√
2π(1− Λ̄I)

]
>
θI(1− τI)ρI

τI
e

1
2η

2
I .

Since ΨI(·) is continuous, Ψ(φ̃I → −∞) = 0 > −(1 − Φ(φ̄I)) = limφ̃I↑Φ(φ̄I) Ψ(φ̃I) and there exists some
−∞ < δI < Φ(φ̄I) such that Ψ(δI) > 0, we can conclude that there exists a unique solution φ̃∗

I,t ∈
(−∞,Φ(φ̄I)) to the fixed point equation (i.e., ΨI(φ̃

∗
I,t) = 0).

Step 6:
In Step 5, we have shown the existence of a unique solution to the fixed point problem in the vector

of firm default probabilities.
(
φ∗
1,t, ..., φ

∗
N,t

)
. Plugging these into (68) and (69), we obtain the equilibrium

capital structures of all firms. Q.E.D.

Proof of Proposition 1

The only difference between individual firms and the industry average is the idiosyncratic shock. From 6 we
have the following relationship

PI,t+1x
∗
i,t+1 = z

1
1−βI
i,+1 PI,t+1x̄

∗
I,t+1 = e−

1
2η

2
I+ηIεi,t+1PI,t+1x̄

∗
I,t+1.

We proceed to find the logarithmic difference

log

(
PI,t+1x

∗
i,t+1

PI,tx∗i,t

)
− log

(
PI,t+1x̄

∗
I,t+1

PI,tx̄∗I,t

)
= ηI(εi,t+1 − εi,t).

54



The next step is to find the variance:

V

[
log

(
PI,t+1x

∗
i,t+1

PI,tx∗i,t

)]
+V

[
log

(
PI,t+1x̄

∗
I,t+1

PI,tx̄∗I,t

)]
= 2η2I ,

which leads to the final result

ηI =
1√
2

√
V

[
log

(
PI,t+1x∗i,t+1

PI,tx∗i,t

)]
+V

[
log

(
PI,t+1x̄∗I,t+1

PI,tx̄∗I,t

)]

Proof of Proposition 4

We can rewrite the probability of default in equation 24 as

Φ−1(φ∗
I) =

1

ηI

[
log

(
(1− τI)ρI

τI

)
+ log(ΩI (φ

∗
I)) + log(ΞI (φ

∗
I))

]
+

1

2
ηI

We begin by deriving the results for the probability of default.

∂φ∗
I

∂θ
=

1

ηI

[
ϕ(Φ−1(φ∗

I))

ΩI (φ∗
I)

∂ΩI (φ
∗
I)

∂θ
+
ϕ(Φ−1(φ∗

I))

ΞI (φ∗
I)

∂ΞI (φ
∗
I)

∂θ

]
=

1

ηI

[
ϕ(Φ−1(φ∗

I))

ΩI (φ∗
I)

∂ΩI (φ
∗
I)

∂θ
− 1

ΞI (φ∗
I)
(1− χ

1
1−βI

I )ϕ(Φ−1(φ∗
I)− ηI)

∂φ∗
I

∂θ

]
=
ϕ(Φ−1(φ∗

I))

ηIΩI (φ∗
I)

∂ΩI (φ
∗
I)

∂θ
− ΛI (φ

∗
I)

1− ΛI (φ∗
I)

∂φ∗
I

∂θ

=
ΨI (φ

∗
I)

ΩI (φ∗
I)

∂ΩI (φ
∗
I)

∂θ

We can rewrite equations 23, 22 and 21 as

log

(
ΨI (φ

∗
I) +

1

ΩI (φ∗
I)

)
= log(1− φ∗

I −ΨI (φ
∗
I))− log(θI) + log

(
1−

∑
J∈[N ]

θJΛJ (φ
∗
J)

)
− log(ΛI (φ

∗
I)),

log(ΨI (φ
∗
I)) = log(ϕ(Φ−1(φ∗

I)) + log(1− ΛI (φ
∗
I))− log(ηI)

= −1

2
log(2π)− 1

2
Φ−1(φ∗

I)
2 + log(1− ΛI (φ

∗
I))− log(ηI),

log

(
1

ΛI (φ∗
I)

− 1

)
= log(ηI) + log(ΞI (φ

∗
I))− log(1− χ

1
1−βI

I )− log(ϕ(Φ−1(φ∗
I)− ηI))

= log(ηI) + log(ΞI (φ
∗
I))− log(1− χ

1
1−βI

I ) +
1

2
log(2π) +

1

2
(Φ−1(φ∗

I)− ηI)
2,

where,

θI :=
θ

(1− θ)(1− (1− θ)N )
(1− θ)I .
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Now we will proceed to find the partial derivatives:

∂ΩI (φ
∗
I)

∂θ
= ΩI (φ

∗
I) (ΩI (φ

∗
I)ΨI (φ

∗
I) + 1)·[

1

1− φ∗
I −ΨI (φ∗

I)

∂φ∗
I

∂θ
+

1 + ΩI (φ
∗
I) (1− φ∗

I)

(1− φ∗
I −ΨI (φ∗

I))(ΩI (φ
∗
I)ΨI (φ

∗
I) + 1)

∂ΨI (φ
∗
I)

∂θ
+

1

ΛI (φ∗
I)

∂ΛI (φ
∗
I)

∂θ
+

1

θI

∂θI
∂θ

+
1

1−
∑
J∈[N ] θJΛJ (φ

∗
J)

( ∑
J∈[N ]

∂θJ
∂θ

ΛJ (φ
∗
J) +

∑
J∈[N ]

θJ
∂ΛJ (φ

∗
J)

∂θ

)]
,

∂ΨI (φ
∗
I)

∂θ
= −1− ΛI (φ

∗
I)

ηI
Φ−1(φ∗

I)
∂φ∗

I

∂θ
− ΨI (φ

∗
I)

1− ΛI (φ∗
I)

∂ΛI (φ
∗
I)

∂θ
,

∂ΛI (φ
∗
I)

∂θ
=

ΛI (φ
∗
I) (1− ΛI (φ

∗
I))

ϕ(Φ−1(φ∗
I))

[
1

ΞI (φ∗
I)
(1− χ

1
1−βI

I )ϕ(Φ−1(φ∗
I)− ηI)− (Φ−1(φ∗

I)− ηI)

]
∂φ∗

I

∂θ

=
ΛI (φ

∗
I) (1− ΛI (φ

∗
I))

ϕ(Φ−1(φ∗
I))

[
ηI

1− ΛI (φ∗
I)

− Φ−1(φ∗
I)

]
∂φ∗

I

∂θ

=
ΛI (φ

∗
I) (1 + κI (φ

∗
I))

ΨI (φ∗
I)

∂φ∗
I

∂θ
,

and
∂ log(θI)

∂ log(θ)
= 1− θ

1− θ

[
I − 1 +N

(1− θ)N

1− (1− θ)N

]
,

with

κI (φ
∗
I) := −ΛI (φ

∗
I)−

(1− ΛI (φ
∗
I))

2

ηI
Φ−1(φ∗

I).

Replacing
∂ΛI(φ

∗
I )

∂θ into
∂ΨI(φ

∗
I )

∂θ we have

∂ΨI (φ
∗
I)

∂θ
= −1− ΛI (φ

∗
I)

ηI
Φ−1(φ∗

I)
∂φ∗

I

∂θ
− ΛI (φ

∗
I)

[
1− 1− ΛI (φ

∗
I)

ηI
Φ−1(φ∗

I)

]
∂φ∗

I

∂θ

= −
[
(1− ΛI (φ

∗
I))

2

ηI
Φ−1(φ∗

I) + ΛI (φ
∗
I)

]
∂φ∗

I

∂θ

= κI (φ
∗
I)
∂φ∗

I

∂θ
,

Replacing these results in the expression for
∂ΩI(φ

∗
I )

∂θ we obtain

∂ΩI (φ
∗
I)

∂θ
= ΩI (φ

∗
I) (ΩI (φ

∗
I)ΨI (φ

∗
I) + 1)

(
AI +BI (φ

∗
I)
∂φ∗

I

∂θ
+
∑
J∈[N ]

CJ (φ
∗
J)
∂φ∗

J

∂θ

)
,

where

AI :=
1

θ

∂ log (θI)

∂ log (θ)
+
∑
J∈[N ]

1

θ

∂ log (θJ)

∂ log (θ)

[
θJΛJ (φ

∗
J)

1−
∑
J∈[N ] θJΛJ (φ

∗
J)

]

BI (φ
∗
I) :=

1

ΨI (φ∗
I)

1 + κI (φ
∗
I)

1− ΨI(φ∗
I)

1−φ∗
I

+
ΨI (φ

∗
I) ΩI (φ

∗
I)κI (φ

∗
I)

1 + ΩI (φ∗
I)ΨI (φ

∗
I)

 ,
and

CI (φ
∗
I) :=

1

ΨI (φ∗
I)

[
θIΛI (φ

∗
I)

1−
∑
J∈[N ] θJΛJ (φ

∗
J)

]
(1 + κI (φ

∗
I)) .
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Notice that the sign of ∂θI∂θ depends on I. We have the following relationship

∂ log(θI)

∂ log(θ)
≥ ∂ log(θI+1)

∂ log(θ)
,∀I ∈ {1, 2, ..., N − 1}

For the extremes we have:

∂ log(θ1)

∂ log(θ)
= 1− θ

1− θ

[
N

(1− θ)N

1− (1− θ)N

]
= 1− N(1− θ)N−1∑N−1

k=0 (1− θ)k
≥ 0

∂ log(θN )

∂ log(θ)
= 1− θ

1− θ

[
N − 1 +N

(1− θ)N

1− (1− θ)N

]
=

1

1− θ

[
1− N∑N−1

k=0 (1− θ)k

]
≤ 0

This implies the following series of inequalities:
A1 ≥ A2 ≥ ... ≥ AN−1 ≥ AN . (72)

Assuming that BI ̸= 1

ΨI(φ∗
I)(ΩI(φ∗

I)ΨI(φ∗
I)+1)

and putting these results together we have

∂φ∗
I

∂θ
= ΨI (φ

∗
I) (ΩI (φ

∗
I)ΨI (φ

∗
I) + 1)

(
AI +BI (φ

∗
I)
∂φ∗

I

∂θ
+
∑
J∈[N ]

CJ (φ
∗
J)
∂φ∗

J

∂θ

)

= −
(
BI (φ

∗
I)−

1

ΨI (φ∗
I) (ΩI (φ

∗
I)ΨI (φ

∗
I) + 1)

)−1(
AI +

∑
J∈[N ]

CJ (φ
∗
J)
∂φ∗

J

∂θ

)
.

Multiplying by CI (φ
∗
I) and summing through I ∈ [N ] we have

∑
I∈[N ]

CI (φ
∗
I)
∂φ∗

I

∂θ
= −

∑
I∈[N ]

(
BI (φ

∗
I)− 1

ΨI(φ∗
I)(ΩI(φ∗

I)ΨI(φ∗
I)+1)

)−1

AICI (φ
∗
I)

1 +
∑
I∈[N ]

(
BI (φ∗

I)−
1

ΨI(φ∗
I)(ΩI(φ∗

I)ΨI(φ∗
I)+1)

)−1

CI (φ∗
I)

.

Replacing this into the partial derivative for φI and transforming the expression into an elasticity, we have

∂ log(φ∗
I)

∂ log(θ)
= − θ

φ∗
I

(
BI (φ

∗
I)−

1

ΨI (φ∗
I) (ΩI (φ∗

I)ΨI (φ∗
I) + 1)

)−1

AI −

∑
J∈[N ]

AJCJ(φ∗
J)

BJ(φ∗
J)−

1

ΨJ(φ∗
J)(ΩJ(φ∗

J)ΨJ(φ∗
J)+1)

1 +
∑

J∈[N ]

CJ(φ∗
J)

BJ(φ∗
J)−

1

ΨJ(φ∗
J)(ΩJ(φ∗

J)ΨJ(φ∗
J)+1)


= − θ

φ∗
I

(
BI (φ

∗
I)−

1

ΨI (φ∗
I) (ΩI (φ∗

I)ΨI (φ∗
I) + 1)

)−1
1 +

∑
J∈[N ]

CJ (φ∗
J)

BJ (φ∗
J)−

1

ΨJ(φ∗
J)(ΩJ(φ∗

J)ΨJ(φ∗
J)+1)

−1

·

AI +
∑

J∈[N ]

(AI −AJ)CJ (φ∗
J)

BJ (φ∗
J)−

1

ΨJ(φ∗
J)(ΩJ(φ∗

J)ΨJ(φ∗
J)+1)

 .

Hence,

∑
J∈[N ]

(AI −AJ)CJ (φ
∗
J)

BJ (φ∗
J)−

1

ΨJ(φ∗
J)(ΩJ(φ∗

J)ΨJ(φ∗
J)+1)

=
∑
J∈[N ]

1
θ

(∂ log(θI)
∂ log(θ) − ∂ log(θJ )

∂ log(θ)

)
CJ (φ

∗
J)

BJ (φ∗
J)−

1

ΨJ(φ∗
J)(ΩJ(φ∗

J)ΨJ(φ∗
J)+1)

=
1

1− θ

∑
J∈[N ]

(
J − I

)
CJ (φ

∗
J)

BJ (φ∗
J)−

1

ΨJ(φ∗
J)(ΩJ(φ∗

J)ΨJ(φ∗
J)+1)

.

Finally, we have
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∂ log(φ∗
I)

∂ log(θ)
= − θ

φ∗
I

(
BI (φ

∗
I)−

1

ΨI (φ∗
I) (ΩI (φ∗

I)ΨI (φ∗
I) + 1)

)−1
1 +

∑
J∈[N ]

CJ (φ∗
J)

BJ (φ∗
J)−

1

ΨJ(φ∗
J)(ΩJ(φ∗

J)ΨJ(φ∗
J)+1)

−1

·

AI +
1

1− θ

∑
J∈[N ]

(
J − I

) CJ (φ∗
J)

BJ (φ∗
J)−

1

ΨJ(φ∗
J)(ΩJ(φ∗

J)ΨJ(φ∗
J)+1)

 .

The sign of
∂ log(φ∗

I )
∂ log(θ) depends on the level of ρ and the size of the industry given by its position I.

Let ρ∗I > 0

ρ∗I =

{
ρI |κI (φ∗

I) = −
[
1 +

ΩI (φ
∗
I)ΨI (φ

∗
I)

1 + ΩI (φ∗
I)ΨI (φ

∗
I)

(
1− ΨI (φ

∗
I)

1− φ∗
I

)]−1
}
.

If ρI < ρ∗I for all I ∈ [N ], then BI (φ
∗
I) >

1

ΨI(φ∗
I)(ΩI(φ∗

I)ΨI(φ∗
I)+1)

and CI (φ
∗
I) > 0, for all I ∈ [N ]. This

implies that

CI (φ
∗
I)

BI (φ∗
I)−

1

ΨI(φ∗
I)(ΩI(φ∗

I)ΨI(φ∗
I)+1)

≥ 0,∀I ∈ [N ] ,

and,

∂ log(φ∗
I)

∂ log(θ)
= −

>0︷︸︸︷
θ

φ∗
I


>0︷ ︸︸ ︷

BI (φ
∗
I)−

1

ΨI (φ∗
I) (ΩI (φ∗

I)ΨI (φ∗
I) + 1)


−1


>0︷ ︸︸ ︷
1 +

∑
J∈[N ]

CJ (φ∗
J)

BJ (φ∗
J)−

1

ΨJ(φ∗
J)(ΩJ(φ∗

J)ΨJ(φ∗
J)+1)


−1

·

AI +
1

1− θ

∑
J∈[N ]

(
J − I

) ≥0︷ ︸︸ ︷
CJ (φ∗

J)

BJ (φ∗
J)−

1

ΨJ(φ∗
J)(ΩJ(φ∗

J)ΨJ(φ∗
J)+1)

 .

Hence, the sign of
∂ log(φ∗

I )
∂ log(θ) ultimately depends on the term AI . We have A1 ≥ 0 ≥ AN , which implies

∂ log(φ∗
1)

∂ log(θ)
≤ 0 ≤ ∂ log(φ∗

N )

∂ log(θ)
.

We can rewrite leverage in equation 29, as follows

LevI(θ, δ) =
(1− τI)ΩI (φ

∗
I) θI

τIλI (φ∗
I)

Πt+1(θ, δ)

Kt
, (73)

where

Πt+1(θ, δ) = exp

{
δ − θ′ log(θ) + θ′ log(1− β) + log(P )+

θ′µt+ θ′σεt + θ′ log(Ξ (φ∗)) +
∑
I∈[N ]

γI
1− βI

θI log(λI (φ
∗
I)) +

∑
I∈[N ]

γI
1− βI

θI log(Kt)

}
.
, (74)

and

λI (φ
∗
I) :=

γI
1−βI

θ2I (1 + ΩI (φ
∗
I)ΨI (φ

∗
I))∑

J∈[N ]
γJ

1−βJ
θ2J(1 + ΩJ (φ∗

J)ΨJ (φ
∗
J))

.
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Finally, we will proceed to determine ∂LevI(θ,δ)
∂ log(θ) . We can rewrite LevI(θ, δ) as follows:

log(LevI(θ, δ)) = log(θI) + log(1− τI) + log(ΩI (φ
∗
I)) + log(Πt+1(θ, δ))− log(τI)− log(λI (φ

∗
I))− log(Kt).

To simplify the analysis, we will find ∂ log(LevI(θ,δ))
∂ log(θ) − ∂ log(Lev(θ,δ))

∂ log(θ)

∂ log(Lev(θ, δ))

∂ log(θ)
− ∂ log(LevJ(θ, δ))

∂ log(θ)
=

∂ log(θI)

∂ log(θ)
− ∂ log(θJ)

∂ log(θ)
+

θ

(
1

ΩI (φ∗
I)

∂ΩI (φ
∗
I)

∂θ
− 1

ΩJ (φ∗
J)

∂ΩJ (φ∗
J)

∂θ
− 1

λI (φ∗
I)

∂λI (φ
∗
I)

∂θ
+

1

λJ (φ∗
J)

∂λJ (φ∗
J)

∂θ

)
= (J − I)

θ

1− θ
+

θ

(
1

ΨI (φ∗
I)

∂φ∗
I

∂θ
− 1

ΨJ (φ∗
J)

∂φ∗
J

∂θ
− 1

λI (φ∗
I)

∂λI (φ
∗
I)

∂θ
+

1

λJ (φ∗
J)

∂λJ (φ∗
J)

∂θ

)
.

The next step is to determine
∂λI(φ

∗
I )

∂θ

1

λI (φ∗
I)

∂λI (φ
∗
I)

∂θ
=

2

θI

∂θI
∂θ

+
1

1 + ΩI (φ∗
I)ΨI (φ

∗
I)

(
ΨI (φ

∗
I)
∂ΩI (φ

∗
I)

∂θ
+ΩI (φ

∗
I)
∂ΨI (φ

∗
I)

∂θ

)
−∑

J∈[N ]
γJ

1−βJ

[
2θJ(1 + ΩJ (φ

∗
J)ΨJ (φ

∗
J))

∂θJ
∂θ + θ2J

(
ΨJ (φ

∗
J)

∂ΩJ (φ
∗
J )

∂θ +ΩJ (φ
∗
J)

∂ΨJ (φ
∗
J )

∂θ

)]∑
J∈[N ]

γJ
1−βJ

θ2J(1 + ΩJ (φ∗
J)ΨJ (φ

∗
J))

=
2

θI

∂θI
∂θ

+
ΩI (φ

∗
I) (1 + κI (φ

∗
I))

1 + ΩI (φ∗
I)ΨI (φ

∗
I)

∂φ∗
I

∂θ
−∑

J∈[N ]
γJ

1−βJ
θ2J(1 + ΩJ (φ

∗
J)ΨJ (φ

∗
J))
[

2
θJ

∂θJ
∂θ +

ΩJ (φ
∗
J )(1+κJ (φ

∗
J ))

1+ΩJ(φ∗
J)ΨJ(φ∗

J)
∂φ∗

J

∂θ

]
∑
J∈[N ]

γJ
1−βJ

θ2J(1 + ΩJ (φ∗
J)ΨJ (φ

∗
J))

.

This allows us to write ∂ log(LevI(θ,δ))
∂ log(θ) − ∂ log(LevJ (θ,δ))

∂ log(θ) as

∂ log(LevI(θ, δ))

∂ log(θ)
− ∂ log(LevJ(θ, δ))

∂ log(θ)
= (I − J)

θ

1− θ
+

1− ΩI (φ
∗
I)ΨI (φ

∗
I)κI (φ

∗
I)

ΨI (φ∗
I) (1 + ΩI (φ∗

I)ΨI (φ
∗
I))

φ∗
I

∂ log(φ∗
I)

∂ log(θ)
−

1− ΩJ (φ
∗
J)ΨJ (φ

∗
J)κJ (φ

∗
J)

ΨJ (φ∗
J) (1 + ΩJ (φ∗

J)ΨJ (φ
∗
J))

φ∗
J

∂ log(φ∗
J)

∂ log(θ)
.

If ρI < ρ∗I for all I ∈ [N ], then we have
∂ log(Lev1(θ, δ))

∂ log(θ)
≤ 0 ≤ ∂ log(LevN (θ, δ))

∂ log(θ)
.

Finally, controlling for the concentration level, we have the following sensitivity for leverage with respect to
the sparsity term:

∂ log(LevI(θ, δ))

∂δ
=
∂ log(Πt+1(θ, δ))

∂δ
= 1 > 0.

Proof of Proposition 5

Given that leverage is held constant, equation 18 can be rewritten depending on the type of unanticipated
shock as:

φ
(η)
I = Φ

 1

η
(η)
I

ηIΦ−1 (φI)−
1

2
η2I − log

 ΞI (φI)

Ξ
(η)
I

(
φ
(η)
I

)
+

∑
J∈[N ]

θJ log

 ΞJ (φJ)

Ξ
(η)
J

(
φ
(η)
J

)
+

1

2
η
(η)
I

 , (75)

φ
(ρ)
I = Φ

 1

ηI

ηIΦ−1 (φI) + log

(
ρ
(ρ)
I

ρI

)
− log

 ΞI (φI)

ΞI

(
φ
(ρ)
I

)
+

∑
J∈[N ]

θJ log

 ΞJ (φJ)

ΞJ

(
φ
(ρ)
J

)
 , (76)
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φ
(χ)
I = Φ

 1

ηI

ηIΦ−1 (φI) + log

Ξ
(χ)
I

(
φ
(χ)
I

)
ΞI (φI)

−
∑
J∈[N ]

θJ log

Ξ
(χ)
J

(
φ
(χ)
J

)
ΞJ (φJ)

 , (77)

where

Ξ
(η)
I

(
φ
(η)
I

)
= 1−

(
1− χ

1
1−βI

I

)
Φ
(
Φ−1

(
φ
(η)
I

)
− η

(η)
I

)
, (78)

and

Ξ
(χ)
I

(
φ
(χ)
I

)
= 1−

(
1− χ

(χ) 1
1−βI

I

)
Φ
(
Φ−1

(
φ
(χ)
I

)
− ηI

)
. (79)

In the previous equations the superscript denotes the parameter that suffered the unanticipated shock. From
these expressions we conclude

Ξ
(η)
I

(
φ

(η)
I

)
= 1−

(
1− χ

1
1−βI
I

)
·

Φ

 1

η
(η)
I

ηIΦ−1 (φI)−
1

2

(
η2
I + η

(η)2
I

)
− log

 ΞI (φI)

Ξ
(η)
I

(
φ

(η)
I

)
+

∑
J∈[N ]

θJ log

 ΞJ (φJ)

Ξ
(η)
J

(
φ

(η)
J

)
 , (80)

Ξ
(ρ)
I

(
φ

(ρ)
I

)
= 1−

(
1− χ

1
1−βI
I

)
·

Φ

 1

ηI

ηIΦ−1 (φI)− η2
I + log

(
ρ
(ρ)
I

ρI

)
− log

 ΞI (φI)

ΞI

(
φ

(ρ)
I

)
+

∑
J∈[N ]

θJ log

 ΞJ (φJ)

ΞJ

(
φ

(ρ)
J

)
 , (81)

and

Ξ
(χ)
I

(
φ

(χ)
I

)
= 1−

(
1− χ

(χ) 1
1−βI

I

)
Φ

 1

ηI

ηIΦ−1 (φI)− η2
I + log

Ξ
(χ)
I

(
φ

(χ)
I

)
ΞI (φI)

−
∑

J∈[N ]

θJ log

Ξ
(χ)
J

(
φ

(χ)
J

)
ΞJ (φJ)

 .

(82)

Equations 80, 81 and 82 constitute each a system of fixed point equations, in which the functions Ξ
(η)
I

(
φ
(η)
I

)
,

Ξ
(ρ)
I

(
φ
(ρ)
I

)
and Ξ

(χ)
I

(
φ
(χ)
I

)
denote the mean fraction of production that is retained after the unanticipated

shock in the parameters ηI , ρI and χI considering possible defaults. The parameters η
(η)
I , ρ

(ρ)
I and χ

(χ)
I cor-

responds to the shocked values for the idiosyncratic volatilty, and default threshold and recovery parameters

for industry I. We can interpret the ratios
Ξ

(η)
I

(
φ

(η)
I

)
ΞI(φI)

,
Ξ

(ρ)
I

(
φ

(ρ)
I

)
ΞI(φI)

and
Ξ

(χ)
I

(
φ

(χ)
I

)
ΞI(φI)

as the relative recovery after

default, with smaller ratios indicating a greater loss. If there is no surprise in the recovery, then we can see

that φ
(η)
I = φ

(ρ)
I = φ

(χ)
I = φI .

Before proving the results, we can conclude from the functional forms for Ξ
(η)
I

(
φ
(η)
I

)
, Ξ

(ρ)
I

(
φ
(ρ)
I

)
and

Ξ
(χ)
I

(
φ
(χ)
I

)
that
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∂Ξ
(η)
I

(
φ
(η)
I

)
∂φ

(η)
I

< 0,

∂Ξ
(ρ)
I

(
φ
(ρ)
I

)
∂φ

(ρ)
I

< 0,

∂Ξ
(χ)
I

(
φ
(χ)
I

)
∂φ

(χ)
I

< 0.

We will begin by deriving the elasticity results for unanticipated shocks to ηI . We start by finding the

partial derivative of log
(
Ξ
(η)
I

(
φ
(η)
I

))
in equation 80 with respect to η

(η)
J :
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Ξ
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(
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I
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=
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η
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I Ξ
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)
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(
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J

(
φ
(η)
J

))
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(η)
J

+
∑
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(
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(η)
K

))
∂η

(η)
J

+
1{I=J}
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(η)
J

·
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1

2
η2J − log

 ΞJ (φJ)

Ξ
(η)
J

(
φ
(η)
J

)
+

∑
K∈[N ]

θK log

 ΞK (φK)

Ξ
(η)
K

(
φ
(η)
K

)
+

1

2
η
(η)2
J

).
The next step is to solve for

∂ log
(
Ξ

(η)
I

(
φ

(η)
I

))
∂η

(η)
J

∂ log
(
Ξ
(η)
I

(
φ
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(
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·
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η2J − log
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Ξ
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J

(
φ
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)
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∑
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θK log
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Ξ
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(
φ
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 ,
where

Λ
(η)
I

(
φ
(η)
I

)
:=

1 +
η
(η)
I Ξ

(η)
I

(
φ
(η)
I

)
(
1− χ

1
1−βI

I

)
ϕ

(
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(
1−Ξ

(η)
I

(
φ

(η)
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1
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−1

.

The next step is to multiply by θI both sides of the equation, sum through I ∈ [N ] and solve for
∑
I∈[N ] θI

∂ log
(
Ξ

(η)
I

(
φ

(η)
I

))
∂η

(η)
J
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∑
I∈[N ]
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∂ log

(
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 .
Replacing this result into the expression for
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we obtain the expression
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This can be restated as
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.
The sign of the sensitivity depends on the last term inside the square brackets. Hence, we obtain two different
conditions

∂ log
(
Ξ
(η)
I

(
φ
(η)
I

))
∂ log

(
η
(η)
J

) =

{
≤ 0 η

(η)
J ≤ η∗J

> 0 η
(η)
J > η∗J

·

This leads to the following result:

∂ log
(
φ
(η)
I

)
∂ log

(
η
(η)
J

) =

{
≥ 0 η

(η)
J ≤ η∗J

< 0 η
(η)
J > η∗J

·

Next we derive the results for unanticipated shocks to ρI . The partial derivative of log
(
ξ
(ρ)
I

)
in equation 81

with respect to ρ
(ρ)
J corresponds to
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The following step is to solve for
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Analogous to the previous derivation, we need to multiply by θI both sides of the equation, sum through

I ∈ [N ] and solve for
∑
I∈[N ] θI
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Replacing this result into the expression for
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This is equivalent to
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We conclude that

∂ log
(
Ξ
(χ)
I

(
φ
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(
χ
(χ)
J

) ≤ 0.

Which is equivalent to
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Finally, we will derive the results for unanticipated shocks to χI . The partial derivative of log
(
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in equation 82 with respect to χ
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J is given by
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The following step is to solve for
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Next, we proceed to multiply by θI both sides of the equation, sum through I ∈ [N ] and solve for∑
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Replacing this result into the expression for
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(
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we obtain
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This is equivalent to
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We conclude that
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Appendix B

Complete average input - output matrix for all 55 industries

Figure 15: Average input-output matrix

The colors represent a heat map from highest proportion (in red) to lower proportion of inputs (in blue).
As we can see, several industries have a concentration of less than 50%,which means that over half of their
good is produced with inputs from other industries.
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Appendix C

Table 4: Calibrated parameters

Industry α (%) β (%) η (%) µ (%) σ (%) χ (%) ρ γ (%) τ (%)

Wholesale trade 0.00 87.78 23.88 9.40 14.91 33.40 3.99 89.48 0.10

Other transportation equipment 0.42 77.41 21.07 -1.60 10.11 38.93 2.73 18.29 0.84

Computer and electronic products 1.91 58.24 26.00 14.22 8.77 38.93 5.02 12.28 1.93

Administrative and support services 0.64 66.03 24.05 1.16 3.80 38.65 4.49 22.35 0.87

Chemical products 5.94 45.59 27.17 -1.14 3.25 38.93 3.50 5.28 3.44

Motion picture and sound recording industries 0.55 58.83 38.83 -0.52 9.83 34.70 2.85 31.21 0.56

Air transportation 1.40 79.62 53.34 5.96 37.27 38.17 0.87 11.26 0.22

Pipeline transportation 0.00 80.09 35.59 5.71 36.24 38.17 0.97 95.27 0.07

Machinery 0.27 65.56 23.25 -0.35 6.02 38.93 1.80 24.03 0.41

Miscellaneous professional, scientific, and technical services 0.74 71.11 26.66 0.78 4.86 38.65 3.63 37.87 0.51

Data processing, internet publishing, and other information services 0.35 45.60 27.62 2.20 15.45 34.70 4.03 32.23 0.93

Other services, except government 6.73 66.59 19.69 -0.89 4.07 38.65 3.67 5.90 5.85

Broadcasting and telecommunications 3.57 48.70 23.89 1.47 4.55 34.70 2.81 10.85 2.96

Electrical equipment, appliances, and components 0.98 70.15 25.18 0.69 7.28 38.93 3.00 14.13 0.92

Fabricated metal products 0.42 69.97 17.57 -0.64 6.05 38.93 3.70 31.77 0.76

Miscellaneous manufacturing 3.07 45.24 22.25 1.39 3.73 38.93 5.30 5.71 5.13

Publishing industries, except internet (includes software) 1.56 37.69 28.73 2.52 5.27 34.70 5.25 11.93 2.81

Other transportation and support activities 0.20 81.65 23.92 -6.04 13.64 38.17 4.44 36.36 0.50

Apparel and leather and allied products 4.81 55.21 16.76 0.01 5.51 38.93 9.56 1.68 18.73

Food and beverage stores 0.00 73.40 14.99 3.92 4.76 33.40 9.40 10.47 2.55

Water transportation 0.18 71.61 19.73 2.69 11.21 38.17 2.37 25.61 1.09

Oil and gas extraction 0.00 62.78 37.51 5.45 16.38 44.37 2.73 147.34 0.14

Farms 1.55 61.53 30.81 3.84 8.83 38.50 3.93 9.62 2.08

Other retail 0.04 69.69 18.33 3.44 4.18 33.40 8.92 24.72 1.35

Textile mills and textile product mills 0.89 70.68 16.48 1.12 6.34 38.93 2.63 11.85 1.36

Support activities for mining 0.00 73.29 33.84 8.88 26.42 44.37 3.14 50.08 0.34

Waste management and remediation services 0.25 63.90 25.99 -0.50 6.70 38.65 2.36 29.63 0.65

Motor vehicles, bodies and trailers, and parts 4.03 80.19 22.51 2.11 18.27 38.93 0.55 8.64 0.41
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Table 4: Continued

Industry α (%) β (%) η (%) µ (%) σ (%) χ (%) ρ γ (%) τ (%)

Paper products 0.57 69.63 16.81 0.33 5.96 38.93 2.40 20.97 0.83

Food and beverage and tobacco products 11.54 61.29 19.12 -0.28 3.28 38.93 3.05 1.89 8.83

Primary metals 0.04 83.75 26.34 3.52 8.95 38.93 2.50 61.53 0.15

Furniture and related products 1.36 65.43 15.04 -0.04 4.96 38.93 8.41 4.74 8.11

Petroleum and coal products 3.99 84.17 30.30 6.22 26.76 38.93 3.35 9.51 0.94

Ambulatory health care services 10.41 75.81 24.54 -1.68 5.40 38.65 3.93 1.07 8.65

Nonmetallic mineral products 0.27 73.46 19.28 1.37 6.44 38.93 3.03 28.89 0.73

General merchandise stores 0.00 73.42 12.06 3.92 4.77 33.40 8.24 19.42 2.13

Construction 0.00 83.41 28.54 -4.00 4.38 38.50 1.61 48.80 0.13

Truck transportation 0.15 86.48 19.40 1.82 8.65 38.17 2.45 29.88 0.34

Plastics and rubber products 0.78 72.07 18.43 1.78 4.36 38.93 3.07 17.25 1.05

Printing and related support activities 0.11 68.34 18.13 2.09 4.37 38.93 4.29 14.57 1.38

Mining, except oil and gas 0.01 67.43 28.63 0.97 10.34 44.37 2.24 59.28 0.34

Food services and drinking places 7.32 73.21 17.11 -1.10 5.06 34.70 4.83 2.83 11.91

Wood products 0.11 77.40 24.90 -1.02 7.34 38.93 2.35 31.24 0.37

Nursing and residential care facilities 2.49 85.95 19.54 -3.97 12.58 38.65 1.34 4.49 1.33

Amusements, gambling, and recreation industries 1.99 58.52 24.24 0.85 4.62 34.70 1.74 10.47 1.95

Rail transportation 0.01 63.57 15.04 3.12 6.20 38.17 3.92 77.41 1.10

Forestry, fishing, and related activities 0.12 57.55 47.56 -0.31 7.14 38.50 0.92 67.71 0.09

Warehousing and storage 0.01 70.89 14.58 5.26 10.39 38.17 2.56 52.98 0.51

Accommodation 1.45 68.20 27.46 0.11 3.52 34.70 1.65 15.83 1.19

Educational services 3.61 52.49 25.43 -0.86 5.14 38.65 4.59 4.82 3.69

Performing arts, spectator sports, museums, and related activities 0.73 69.81 38.27 -1.38 8.76 34.70 2.23 25.03 0.57

Social assistance 2.02 77.45 21.03 0.16 17.51 38.65 1.96 4.72 1.59

Transit and ground passenger transportation 0.42 80.74 36.97 1.20 10.76 38.17 2.05 19.43 0.36

Motor vehicle and parts dealers 0.00 76.36 19.45 4.41 5.36 33.40 1.41 19.57 0.25

Hospitals 10.02 82.54 22.31 -4.43 5.90 38.65 1.76 1.33 4.92
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Abstract

We show how product variety affects asset prices in a general-equilibrium model. We ana-

lytically characterize the unique equilibrium and estimate the model to match asset pricing and

product market moments. The equity premium and risk-free rate can be reconciled for risk aver-

sion levels around 4 and plausible annual discount factors. Our model generates new implications

for how product market characteristics influence asset prices. We find that while competition

leads to product substitution within industries, product complementarity is observed between

industries. The market risk premium decreases with the both the average intra-industry and

inter-industry product substitutabilities. We show empirical support for the novel cross-sectional

prediction that industry excess returns increase with intra-industry product substitutabilities.
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1 Introduction

Traditional asset pricing models assume that there is a single consumption good (see Duffie (2001),

Ljungvist and Sargent (2004), Cochrane (2005) for surveys). In reality, however, there are multiple

consumption goods that are only imperfectly substitutable. The incorporation of product variety

could lead to a more volatile stochastic discount factor (SDF) that reflects not only the risk in

consumption levels, but also the composition risk of the basket of consumption goods. Moreover,

if the set of available consumption goods itself varies endogenously with aggregate shocks to the

economy, then the covariation of the SDF with the market return could also be altered significantly.

Hence, the incorporation of endogenous product heterogeneity and the imperfect substitutability

of consumption goods could significantly impact asset prices.

We develop a parsimonious, analytically tractable general-equilibrium asset pricing model that

incorporates agents’ preferences for product variety. The number of products produced by the

economy and their heterogeneity depend on aggregate economic shocks. We obtain closed-form

analytical characterizations of the unique equilibrium and the corresponding SDF. We estimate

the model and demonstrate that product variety, indeed, substantially influences asset prices. The

observed market risk premium and risk-free rate can be reconciled for moderate relative risk aver-

sion levels around 4 and empirically plausible annual discount factors. We employ our structurally

estimated model to derive novel implications for how product market characteristics influence asset

prices. The market risk premium increases with the average intra-industry product substitutability

Our theory also generates the novel cross-sectional prediction that industries with higher product

substitutabilities have higher excess returns which we verify empirically. In summary, composition

risk arising from the imperfect substitutability of multiple consumption goods is, indeed, an im-

portant determinant of asset prices and can explain the observed equity premium and risk-free rate

for empirically reasonable risk aversion levels and discount factors.

We begin with our baseline model of a discrete-time, single-sector economy with monopolistically

competitive firms producing distinct, imperfectly substitutable products. There is a continuum of

identical agents with “constant elasticity of substitution” (CES) preferences for the goods. Agents

rent capital to firms in each period. At the beginning of each period, the aggregate state of the
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economy is realized and observed by all market participants. To operate during the period, each firm

must supply a fixed amount of capital that depends on the aggregate state (Comin and Gertler

(2006) and Jaimovich and Floetotto (2008)). Firms then experience idiosyncratic productivity

shocks with a distribution that depends on the aggregate state and make their production decisions

for the period.

We derive the unique competitive equilibrium that satisfies free entry and market clearing con-

ditions in each period. The mass of active firms and the aggregate price index—a moment of the

distribution of product prices that depends on the product substitutability—are endogenously de-

termined in equilibrium and vary with the aggregate state. With complete markets, the real SDF

(that values real returns) is the marginal rate of substitution of the representative agent at the

aggregate real consumption process analogous to the traditional consumption-based capital asset

pricing model (CCAPM). However, in contrast with the CCAPM, where there is a single consump-

tion good (or, alternatively, all goods are perfect substitutes) so that aggregate consumption is the

sum of individual good consumptions, the aggregate real consumption in our model is determined

by the consumptions of individual goods aggregated using the CES aggregator.

The rationale for the equity premium and risk-free rate puzzles in the standard CCAPM is that

the aggregate real consumption assumed by the CCAPM—the aggregate nominal consumption

deflated by the consumer price index (CPI)—is not volatile enough and does not covary sufficiently

with the market return. In our model, however, the aggregate real consumption is given by the

aggregate nominal consumption weighted by the aggregate price index, which incorporates the

endogenous heterogeneity of products as well as the nontrivial elasticity of substitution between

them. This potentially increases the volatility of the utility an agent derives from a consumption

bundle due to the composition risk of imperfectly substitutable goods. We show that the aggregate

price index and, therefore, the SDF can be expressed in terms of the growth in the variety of

products in the economy, and the productivity growth of firms. In particular, the volatilities of the

aggregate price index and the SDF rise with an increase in product variety and firms’ productivity,

and their covariations with the market return also become more negative. We show that, if product

variety grows over time and is procyclical, the volatility of the SDF and its negative covariation with

the market could be high for even moderate levels of the relative risk aversion of the representative
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agent. Several studies predict that product variety grows over time and, moreover, the growth in

product variety is procyclical (Schumpeter (1939), Schmookler (1966), Shleifer (1986)). More recent

studies show empirical support for procyclical product variety growth (Axarloglou (2003), Broda

and Weinstein (2006)). Therefore, the increase in the volatility of the SDF with product variety,

and the fact that the SDF covaries more negatively with the market, together imply a higher equity

premium and lower risk-free rate than what can be explained by the traditional CCAPM. In other

words, as we alluded to earlier, the market risk premium and risk-free rate reflect not only the risk

in consumption levels, but also the composition risk of consumption goods.

We conduct an empirical analysis of the extent to which the incorporation of product hetero-

geneity is able to reconcile the equity premium and risk-free rate puzzles using the generalized

method of moments (GMM) and the representative agent’s Euler equations as in Hansen and Sin-

gleton (1982). To facilitate the estimation, we show that the SDF in our model can be re-expressed

in terms of the growth rates of the average productivity of firms and the aggregate nominal con-

sumption. We employ productivity data over the period 1987-2020 provided by the Bureau of

Labor Statistics (BLS) to construct the empirical measure of the SDF. Consistent with the model,

we use the capital productivity to measure the average productivity of firms and the average sales-

to-earnings ratio to calibrate the product substitutability. We measure aggregate consumption by

the expenditure on nondurable personal consumption and services.

Following the previous literature we use the Fama-French 25 and 2 x 3 portfolios defined us-

ing Size and Book-to-Market (B/M), and the Fama-French 3 factor portfolios, as well as Fama-

French portfolios with lagged instruments such as lagged dividend-price ratio (Campbell and Shiller

(1988)), lagged CAY (Lettau and Ludvigson (2001)), lagged productivity growth and lagged prod-

uct variety growth. Our GMM estimates of the relative risk aversion of the representative agent

average about 5 across specifications and the average estimate of the annual discount factor is 0.94.

Hence, the incorporation of product heterogeneity, even in the basic model with a single-industry

economy, is able to reconcile the observed equity premium and risk-free rate for relative risk aver-

sion levels and discount factors that are much closer to empirical values. We also compare the

aggregate price index computed from the data with the CPI. The aggregate price index is much

more volatile and its covariance with the market return is significantly more negative, thereby pro-
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viding empirical support for the reasons why our model generates a higher equity premium and

lower risk-free rate for standard risk aversions and discount factors.

In reality, the economy has multiple industries with products of firms within an industry being

closer substitutes than those of firms in different sectors. Relatedly, the impact of product market

competition is more pronounced among firms operating within the same industry rather than across

industries. The distinctions between intra-industry and inter-industry product substitutabilities,

as well as intra-industry competition, are likely to significantly influence the SDF and, thereby,

asset prices. Accordingly, we extend the basic model to a multi-industry economy. As in the

basic model, there is a unique equilibrium. The SDF has the same form as in the basic model

except that the aggregate consumption index incorporates intra-industry and inter-industry product

substitutabilities.

Our GMM analysis of the multi-industry model leads to lower relative risk aversion estimates

of around 2.6 and average annual discount factors of 0.95. Hence, the extended model does an even

better job than the basic model in reconciling the equity premium and risk-free rate for empirically

reasonable relative risk aversion levels and discount factors. Although the GMM estimation exercise

has the advantage that it does not rely on parametric assumptions, it does not exploit the structure

of our fully specified general equilibrium model. We next employ the Simulated Method of Moments

(SMM) to structurally estimate the model by matching asset price and product market moments,

and exploit the estimated model to generate additional testable empirical predictions. We choose

standard parametric specifications for the aggregate consumption process and the productivity

distribution of firms. The estimated model matches all relevant moments related to the equity

premium, the risk-free rate, and the dispersion of industrial risk premia. The estimated relative

risk aversion, annual discount factor and inter-industry product substitutability are approximately

5.97, 0.99 and -1.21, respectively. Interestingly, while goods are substitutes within industries, they

are complements between industries. Although the risk aversion parameter is higher than in the

multi-industry GMM specification, the results of the structural estimation are consistent with those

of the GMM estimation.

The rich specification of the multi-industry model generates a broader set of predictions. The

market risk premium decreases with the average intra-industry product substitutability, while the
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risk-free rate remains stable. The results arise from the fact that the SDF’s sensitivity to the mar-

ket return, the SDF’s volatility, and its expectation all decline with the average intrasector product

substitutability. The market risk premium decreases with the inter-industry product substitutabil-

ity. Indeed, an increase in the inter-industry product substitutability has an analogous but stronger

effect on the SDF relative to the intra-industry case, thereby causing the market risk premium to

increase. The differing effects of intrasector and intersector product substitutabilities on the market

risk premium imply that there are subtle differences between the impacts of product heterogeneity

within and across industries. Our analysis also leads to the novel cross-sectional prediction that

industries with higher product substitutabilities have higher excess returns. In line with the the-

ory, we use the industrial sales to profit ratio as the empirical proxy for the intra-industry product

substitutability and provide empirical support for the prediction.

We contribute to the literature by building a general-equilibrium model that incorporates en-

dogenous product variety and studying its implications for asset prices. A few earlier studies analyze

the CCAPM in a multi-good framework. Piazzesi, Schneider, and Tuzel (2007) incorporates a con-

sumption bundle of non-housing consumption and housing services into the CCAPM. Assuming

that both components are nonseparable in utility, the authors show that cyclical variation in the

housing share raises the expected equity premium, while long-run trends and volatility in the hous-

ing share reduce the risk-free rate. Pakoš (2004) and Yogo (2006) focus on a consumption bundle

comprising nondurable and durable components and show how the interaction of both components

can increase aggregate consumption risk. Aït-Sahalia, Parker, and Yogo (2004) introduces luxury

goods into the CCAPM and shows how the covariance of the consumption of luxury goods with

equity returns raises the equity premium. In a different vein, Savov (2011) highlights the impact

of the mismeasurement of real consumption in empirical analyses of the CCAPM. He shows that

real consumption as measured by garbage generation is much more volatile and covaries more

strongly with the market than traditional measures of consumption. In the sam light, we highlight

the mismeasurement of real consumption in traditional empirical analyses by showing that real

consumption should be measured by nominal consumption deflated by the aggregate price index,

rather than by the CPI.

A number of studies modify the traditional CCAPM by altering the preferences of the represen-
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tative agent to incorporate recursive preferences (Epstein and Zin (1989, 1991)) or habit formation

(Campbell and Cochrane (1999)). We complement these studies by developing a general-equilibrium

model of an economy with multiple, imperfectly substitutable products. We show that the explicit

incorporation of preferences for (endogenous) product variety has a quantitatively significant im-

pact on asset prices even with otherwise standard CRRA utility functions for agents. A few recent

studies employ different perspectives to examine the impact of investors’ preferences for differ-

ent goods on asset prices. Van Binsbergen (2016) introduces habit formation for individual good

varieties (“deep” habit) and studies cross-sectional returns. In his model, the price elasticity of

demand differs across goods, leading to cross-sectional variation in expected returns. He shows

that firms with high relative product prices have low expected returns. Product variety, however,

is fixed in his framework. Opp, Parlour and Walden (2012) focus on the strategic competition

between a fixed number of firms in each sector. They do not structurally estimate their model

to obtain quantitative implications for asset prices. Loualiche (2021) demonstrates the impact of

heterogeneity in industry entry costs and concentration on the cross-sectional variation in sectoral

premia. He assumes recursive Epstein-Zin (1989, 1991) and translog preferences and homogeneous

productivity across (the four) sectors in a stylized calibrated example. Scanlon (2019) also allows

for multiple products, but assumes that an agent’s utility exogenously depends on variety and qual-

ity growth in addition to real consumption, which he identifies with nominal consumption deflated

by the CPI. He shows that cyclical product variety growth can influence asset prices, generating

not only risk-free rates in line with observed historical averages, but also equity premia of about

one-third of the observed values. Corhay, Kung and Schmid (2020) analyze a general-equilibrium

model with recursive Epstein-Zin preferences and a single final consumption good that is produced

using heterogeneous intermediate goods. The authors show that higher industry markups, which

vary across industries because of differing entry costs, are associated with higher expected returns

over time and across industries.

We complement the above studies in the following aspects. First, we incorporate endogenous

product variety, and focus on explaining the equity premium and risk-free rate in addition to

cross-sectional returns. As we discussed earlier, the endogenous determination of the number of

goods/firms plays an important role in explaining the market equity premium and risk-free rate.
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Second, we develop a parsimonious, analytically tractable model with standard CRRA preferences

and constant price elasticity of demand across goods within each sector (CES). The closed-form

characterizations of the product and asset markets equilibrium greatly facilitate the estimation of

the model. The tractability of the model makes it potentially useful as a tool for further explo-

rations into the asset pricing implications of product variety. Third, we carry out a comprehensive

estimation of our model in two ways. 1) We use GMM to estimate the model using productivity

data from the Bureau of Labor Statistics with the benefit of the approach being that it only employs

the expressions of the pricing kernel in our model and does not depend on parametric assumptions.

2) We conduct a full-fledged structural estimation of our model using SMM by matching product

market and asset price moments. In both the GMM and SMM estimations of the model, we are able

to reconcile the equity premium and risk-free rate for empirically plausible values of the relative

risk aversion and discount factor. Moreover, our estimates of the relative risk aversion and discount

factor are consistent across the two estimation approaches. Fourth, we exploit our structurally

estimated model to derive novel implications for the effects of intersector and intrasector product

substitutabilities on asset prices.

Finally, we also differ from the aforementioned studies in that we emphasize the important

distinction between the consumer price index (CPI) and the aggregate price index in measuring real

consumption. As in Dixit and Stiglitz (1977), the aggregate real consumption—the consumptions

of individual goods aggregated using the CES aggregator—is the aggregate nominal consumption

weighted by the product-variety-based aggregate price index that differs in general from the CPI.

While the CPI is the average price of a specific, exogenous basket of commodities, the aggregate

price index is a nontrivial moment (that depends on the product substitutability) of the distribution

of prices of the endogenously determined products in the economy. In other words, real returns

are obtained from nominal returns using the aggregate price index (rather than the CPI) as the

deflator. The impact of product heterogeneity on asset prices and returns thus stems from the

distinction between the exogenously specified CPI and the endogenously determined aggregate price

index. Consequently, we do not use the CPI to deflate nominal returns as in the aforementioned

studies, but instead employ productivity data to construct our empirical measure of the aggregate

price index. The distinction between the CPI and the aggregate price index is intimately tied

76



to the composition risk across consumption goods that is a key feature of our model and plays

a quantitatively important role in reconciling the observed equity premium and risk-free rate for

plausible risk aversion levels and discount factors.

2 The Basic Model

We first present a basic model of a discrete-time, single-industry economy. The analysis of this

model illustrates the intuition for our results in a simple setting. In Section 4, we develop the more

general model of a multi-industry economy.

2.1 Model Overview

We consider an economy with heterogeneous, monopolistically competitive firms producing imper-

fectly substitutable products (Dixit and Stiglitz (1977)). The economy has an infinite horizon with

discrete dates, 0, 1, 2, 3, . . . For simplicity, we refer to the period [t, t + 1] as period t. There is a

continuum of identical agents in each period with measure one. At date 0, each agent is endowed

with K units of capital. Capital cannot be consumed so that agents derive no direct utility from

it, but it can be used to produce multiple consumption goods.

In each period, firms rent capital from agents. At the beginning of a period, the aggregate state

of the economy is observed by all market participants. To operate during the period, each firm must

supply a fixed amount of capital that depends on the aggregate state as in studies such as Comin and

Gertler (2006) and Jaimovich and Floetotto (2008). After the capital is supplied, firms experience

idiosyncratic productivity shocks that are independently and identically distributed across firms

with a distribution that depends on the aggregate state. Firms then make their production decisions

for the period. Production requires additional variable capital that firms rent from agents. If a

firm chooses not to produce, its owners can reinvest its capital stock in other active firms in the

economy.

An important aspect of the model is that the mass of active firms (and, therefore, the mass of

goods) in the economy is endogenous and varies with the aggregate state. We assume for simplicity

that capital cannot be augmented or depleted so that the output produced by firms is consumed

by agents in each period. Economic growth, therefore, arises from growth in the mass and variety
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Figure 1: Model Timeline

of products in the economy. In Appendix B, we show that our main implications are robust to the

incorporation of capital depreciation and investment. In Appendix C, we allow for long-lived firms

who incur sunk entry costs rather than fixed costs in each period. Further, firms can experience

“death” shocks in any period that force them to exit the market (Melitz (2003), Bilbiie et al (2012)).

The extensions do not alter the main results of our analysis.

Figure 1 shows the timeline of events in the model. We now describe the elements of the model

in more detail.

2.1.1 Preferences

At any date s, the representative consumer has preferences for consumption of the continuum of

goods produced by the economy in future periods that are described by

Us = Es

∞∑
t=s

βt−sU(Λt), (1)

where β > 0 is the consumer’s time discount factor, and Es[·] denotes the expectation conditional

on the information available to agents at date s. The function U is strictly increasing and concave

and satisfies the Inada conditions, U ′(0) = ∞ and U ′(∞) = 0. In (1),

Λt =
[∫

Ωt

qt(ωt)ρdωt

] 1
ρ

; 0 < ρ < 1, (2)
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where Ωt is the set of available goods in the economy in period t, and ωt is a finite measure on the

Borel σ-algebras of Ωt. The set of available goods, Ωt, in period t is endogenous and could vary

over time.

We write all prices in nominal terms (dollars). As we discuss in more detail later, this clarifies a

central message of our study that the appropriate incorporation of product variety implies that the

consumer price index (CPI) is not the appropriate numeraire to express prices in real terms. Money

plays no other role in the economy. If pt(ωt) is the price of good ωt in period t then, as shown by

Dixit and Stiglitz (1977), the optimal consumption and expenditure decisions for individual goods

are

qt(ωt) = Λt

[
pt(ωt)

Pt

]−σ

, (3)

ξt(ωt) = Yt

[
pt(ωt)

Pt

]1−σ

. t ∈ {0, 1, 2, 3, ...} . (4)

In the above,

σ = 1
1 − ρ

> 1 (5)

is the elasticity of substitution between products or the product substitutability. Yt is the aggregate

expenditure of the representative consumer in period t, and

Pt =
[∫

Ωt

pt(ωt)1−σdωt

] 1
1−σ

(6)

is the aggregate price index in period t—a moment of the distribution of product prices—that

determines the consumption and expenditure decisions by (3) and (4). The aggregate consumption

index, Λt, can also be expressed as

Λt = Yt

Pt
. (7)

Each active firm produces a single product in which the firm has a monopoly. However, the

firms compete monopolistically in the sense that they take the aggregate price index Pt as given in

making the output and pricing decisions for their individual products.
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2.1.2 Production

In each period, agents rents their capital to firms. At the beginning of period t, the aggregate

state of the economy, which is observed by all agents, is ζt ∈ (0, ∞). Production requires fixed and

variable amounts of capital, where the variable capital depends on the quantity of a firm’s output.

Specifically, after observing the aggregate state ζt, each firm rents a fixed amount of capital ft

that can vary with the aggregate state. Firms subsequently experience idiosyncratic productivity

shocks that are i.i.d. across firms and drawn from a continuous distribution with density gt. The

distribution, gt, also depends on the aggregate state. To simplify notation, we do not explicitly

indicate the dependence of ft, gt and other variables on the aggregate state.

If a firm with productivity α chooses to produce q units of its good, the amount of variable

capital it requires is

k = q

α
. (8)

Let rt be the capital rental rate in period [t, t + 1]. As shown by Dixit and Stiglitz (1977), the

optimal price set by the firm, as well as its output, revenue and profit (revenue less capital rental

costs) are, respectively

Price pt(α) = rt

ρα
, (9)

Output qt(α) = Yt (Pt)σ−1
(

ρα

rt

)σ

, (10)

Revenue ξt(α) = pt(α)qt(α) = Yt(Ptρα)σ−1r1−σ
t , (11)

Profit πt(α) = ξt(α) − rtkt(α) = ξt(α)
σ

. (12)

2.2 Product Market Equilibrium and Asset Prices

We now derive the product market equilibrium.

2.2.1 Equilibrium Conditions

There is free entry of firms in every period, and each firm is required to supply the fixed capital

ft at the beginning of period t. Note that the fixed capital must be rented before firms undertake
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production for the period. The free entry equilibrium condition implies that the expected profit of

an active firm must equal the cost of renting the fixed amount of capital ft:

capital rental cost︷︸︸︷
rtft =

expected profit of active firm︷ ︸︸ ︷∫ ∞

0
πt(α)gt(α)dα . (13)

Second, product market clearing requires that the aggregate revenue of producing firms in each

period equal the aggregate expenditure by consumers.

aggregate expenditure︷︸︸︷
Yt =

aggregate revenue︷ ︸︸ ︷
Mt

∫ ∞

0
ξt(α)gt(α)dα = σMt

∫ ∞

0
πt(α)gt(α)dα, (14)

where the last equality above follows from (11) and (12). Mt is the mass of producing firms that is

endogenously determined by the above condition. Further, the aggregate expenditure of consumers

must equal their capital rental income:

Yt = rtK. (15)

2.2.2 Equilibrium Characterization

Dividing (13) by (14) and using (15),

Mt = K

ftσ
. (16)

The mass of firms (and, therefore, the mass of goods) declines with the fixed capital ft and the

elasticity of substitution σ. In particular, because ft varies with the aggregate state, ζt, of the

economy, the mass of firms also varies. In particular, if the required fixed capital investment

declines as the aggregate state of the economy improves (as one might expect), it follows from (16)

that the mass of firms/products then increases with the aggregate state. That is, better aggregate

states are associated with a greater variety of products that is consistent with empirical evidence

for procyclical product variety growth (Axerloglou (2003), Broda and Weinstein (2007)).

By (11), (12) and (13), we have

rtft =
∫ ∞

0

Yt (Ptρα)σ−1 r1−σ
t

σ
gt(α)dα. (17)
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Substituting (15) in (17), using (16) and re-arranging terms, we get‘

rt

Pt
= ρM

1
σ−1

t ᾱt, (18)

where ᾱt represents the “average productivity”,

ᾱt :=
(∫

ασ−1gt(α)dα

) 1
σ−1

. (19)

The quantity, rt
Pt

, in (18) is the real rental rate of capital. Equivalently, from (9) and (18), the real

price of the product of the firm with average productivity, ᾱt, is

pt(ᾱt)
Pt

= M
1

σ−1
t . (20)

As the productivity distribution gt varies with the aggregate state of the economy, it follows

from (18) that the real rental rate of capital also varies. From (7), (18) and (20), we see that the

aggregate price index, Pt, is the appropriate numeraire with respect to which nominal prices and

returns should be normalized to express them in real terms. Indeed, a key message of our study

is that the aggregate price index, Pt, differs in general from the consumer price index (CPI) in

the data. The CPI is computed using the prices of an exogenously specified basket of products.

Hence, the CPI does not correspond to the moment of the distribution of prices of the endogenously

determined products in the economy that determines Pt in (6). We explore the implications of this

crucial distinction for asset prices below.

2.2.3 Asset Markets and Asset Prices

In what follows, all period t variables (carrying a subscript t) are viewed as the realizations at

time t of stochastic processes adapted to the filtration generated by the aggregate state process

(ζt). Expectations conditional with respect to information at t are denoted by Et[·]. At each

date, there is a complete set of (nominal) one-period Arrow securities promising one dollar next

period contingent on the future aggregate state. The pricing kernel generated by the prices of these

Arrow securities is denoted by the process (Qt). Since all agents are identical, we can focus on
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the representative agent who holds capital K and enters period t with holdings of at units of the

Arrow security purchased in period t − 1. Initial financial wealth is a0 = 0, and rental income in

period t is rtK. In addition to consuming, the agent acquires a portfolio at+1 of one-period Arrow

securities traded at t corresponding to every possible aggregate state in the next period,leading to

the sequence of budget constraints

PtΛt + Et

(
Qt+1
Qt

at+1

)
≤ at + rtK, ∀t. (21)

To rule out Ponzi schemes, debt is bounded by the present value of future income,

at+1 ≥ − 1
Qt+1

Et+1

( ∑
s>t+1

QsrsK

)
, ∀t. (22)

The agent chooses a consumption plan and holdings of Arrow securities to maximize (1) subject

to the sequence of budget constraints (21) and the borrowing constraints (22), or equivalently

(Hernandez and Santos, 1996), subject to the intertemporal budget constraint

E

∑
t≥0

QtPtΛt

 ≤ E

∑
t≥0

QtrtK

 . (23)

From the first order conditions, the SDF for valuing nominal assets is

Φt+1 := Qt+1
Qt

= β
U ′(Λt+1)Pt

U ′(Λt)Pt+1
= β

U ′(Λt+1)Λt+1Yt

U ′(Λt)ΛtYt+1
, (24)

where the aggregate consumption index Λt satisfies

Λt = Yt

Pt
= K

rt

Pt
= KρM

1
σ−1

t ᾱt. (25)

In (25), the first equality follows from (7), the second follows from (15), and the third follow from

the expression (18) for the real rental rate of capital, rt
Pt

.

By (24), the real SDF (for valuing real returns) is β U ′(Λt+1)
U ′(Λt) . In other words, as in traditional

consumption-based asset pricing models, the real SDF is the marginal rate of substitution of the

representative agent at the “aggregate consumption” process. In traditional models, which assume
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a single consumption good (or, alternatively, perfectly substitutable consumption goods), aggregate

consumption is simply the linear aggregation of the consumptions of individual goods. In contrast,

with heterogeneous consumption goods that are imperfectly substitutable, the aggregate consump-

tion is determined by the consumptions of individual goods aggregated using the CES aggregator.

Further, as discussed earlier, real returns are obtained from nominal returns using the aggregate

price index (rather than the CPI) as the deflator. In other words, the rate of inflation is the growth

rate of the aggregate price index rather than the CPI. In our empirical and quantitative analysis,

we use firm productivity data from the Bureau of Labor Statistics to infer the aggregate price index

and, thereby, construct the SDF that correctly incorporates product heterogeneity and imperfect

product substitutability.

2.2.4 Equity Premium and Risk-free Rate Puzzles: Qualitative Analysis

Consider any asset in the economy. If Rt+1 is the realized nominal return of the asset over the

period [t, t + 1], then the following Euler equation must be satisfied:

1 = Et [Φt+1Rt+1] = Et

[
β

U ′(Λt+1)Λt+1
U ′(Λt)Λt

Yt

Yt+1
Rt+1

]
, (26)

where the second equality above follows from (7). As in the traditional asset pricing literature,

assume that

U(x) = x1−γ

1 − γ
; γ > 0. (27)

By (24) and (25), the nominal SDF can be expressed as

Φt+1 = β

(Λt+1
Λt

)−γ Pt

Pt+1
. (28)

Since the aggregate consumption index, Λt = Yt
Pt

, by (7), we have

Φt+1 = β

(
Yt+1
Yt

)−γ ( Pt

Pt+1

)1−γ

(29)

It is instructive to qualitatively compare the key properties of the SDF in our model and the

SDF in the traditional consumption-based asset pricing model (CCAPM). The nominal SDF in the
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CCAPM is

Φt+1 = β

(
Yt+1
Yt

)−γ ( CPIt

CPIt+1

)1−γ

, (30)

where CPIt is the consumer price index at date t. The central sources of the “equity premium”

and “risk-free rate” puzzles in the traditional consumption-based asset pricing model (CCAPM) is

that the growth rates in aggregate consumption and the CPI are not volatile enough and do not

covary sufficiently with the market. Consequently, we need very high values of γ to ensure that the

volatility of the SDF in the CCAPM is high enough, and its covaration with the market return is

sufficiently negative. This worsens the risk-free rate puzzle as the expectation of the SDF decreases

with high γ (e.g., Cochrane (2005)).

In contrast, by (29), the SDF in our model contains the factor,
(

Pt
Pt+1

)1−γ
, instead of the factor,(

CP It
CP It+1

)1−γ
. The consumer price index is the price of an exogenously specified basket of com-

modities whose variation over time is relatively smooth. In contrast, the aggregate price, Pt,is

determined by a moment of the firm productivity distribution that depends on the product sub-

stitutability as well as the endogenously determined mass of products. Both the firm productivity

distribution and the mass of products vary with the aggregate shock. To understand the impact of

these key differences, we can use (25) to re-express the term,
(

Pt
Pt+1

)1−γ
, as

(
Pt

Pt+1

)1−γ

=
(

Yt

Yt+1

)1−γ (Mt+1
Mt

) 1−γ
σ−1

(
ᾱt+1
ᾱt

)1−γ

(31)

The term
(

Mt+1
Mt

)
in (31) is the growth in the mass of products, while ᾱt+1

ᾱt
is the growth in the

average productivity of firms. If, as is quite plausible, firms’ productivity distribution increases

with the aggregate state (in the sense of first order stochastic dominance), then the number of

products and the average productivity of firms both covary with the market return. Further, if σ

is small (products are imperfectly substitutable), the term,
(

Mt+1
Mt

) 1−γ
σ−1 ,appearing in (31) could be

large and negative for even moderate levels of the relative risk aversion coefficient γ.

In the next section, we estimate the parameters of the model using firm productivity data from

the Bureau of Labor Statistics and data on the number of establishments from the Bureau of Labor

Statistics to infer the aggregate price index and, thereby, construct the SDF in our model. We

illustrate the impact of the distinction between the aggregate price index and the consumer price
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index that drives the difference between the SDFs in our model and the CCAPM.

3 Empirical Analysis of Basic Model

In this section, we examine whether the basic model is able to reconcile the empirically observed

equity risk premium and risk-free rate. We use the Generalized Method of Moments (GMM) to

estimate the risk aversion and discount factor using the Euler equations (26) corresponding to var-

ious portfolios of assets (see Hansen and Singleton (1983)). We employ annual capital productivity

measures provided by the Bureau of Labor Statistics (BLS) over the period 1987-2020. We begin in

1987 because the BLS provides productivity measures for multiple industries starting in 1987 and

we use these data in the analysis of our more general, multi-industry model developed in Section 4.

Consistent with the model, we use the annual capital productivity reported by BLS as the proxy

for the average productivity ᾱt for firms appearing in the SDF by (28) and (31). We use the

number of establishments reported by the BLS to represent Mt, and the aggregate expenditure on

nondurable personal consumption and services from the National Income and Product Accounts

(NIPAs) published by the BEA to represent Yt. Note that, by (29) and (31), the SDF depends only

on the ratios, Yt+1
Yt

, Pt+1
Pt

, αt+1
αt

. The summary statistics for the key variables are presented in Table

1.As we noted in the previous section, the key difference between the pricing kernels in our model

and the CCAPM ((29) and (30)) arises from the difference in the price indices in the models. To

illustrate the contrast in the data, we first compare the price indices in our model and the CCAPM

and their correlations with the market risk premium in Table 2. The table shows that the growth

in the aggregate price index, Pt+1
Pt

, in our model (computed using BLS/BEA data) is more than

twice as volatile as the growth in the CPI, CP It+1
CP It

. Further, Pt+1
Pt

is negatively related to the excess

market return with a correlation of -0.42, whose magnitude is much larger than the correlation, 0.06,

of the CPI growth, CP It+1
CP It

, with the excess market return. In Figure 2, we display the time series

of the growths in the two price indices and the excess market return. It is clear that the growth

in the aggregate price index is not only more volatile but significantly more negatively correlated

with the excess market return. These results provide support for our theoretical arguments in the

previous section suggesting that our model has the potential to explain the equity premium and

risk-free rate.
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Figure 2: Aggregate Price Index with Product Variety and CPI

We next carry out a formal GMM estimation. Let the return over period [t, t + 1] for an

arbitrary portfolio of assets be Rt+1 and the risk-free return be Rrf
t . By (28) and (31), the asset

Euler equation corresponding to the return on the portfolio and the risk-free return are

Et

[
β

(
Mt+1
Mt

) 1−γ
σ−1

(
ᾱt+1
ᾱt

)1−γ Yt

Yt+1
Rt+1

]
= 1, (32)

Et

[
β

(
Mt+1
Mt

) 1−γ
σ−1

(
ᾱt+1
ᾱt

)1−γ Yt

Yt+1
Rrf

t

]
= 1. (33)

Furthermore, following Hansen and Singleton (1993), we can also include a set of variables It

that encode information available at the start of period t as instruments and consider the following

Euler equation:

Et

[(
β

(
Mt+1
Mt

) 1−γ
σ−1

(
ᾱt+1
ᾱt

)1−γ Yt

Yt+1
Rt+1 − 1

)
⊗ It

]
= 0. (34)
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We choose σ = 6.27, which corresponds to the average industry markup (Sales/EBIT) in our

sample. We estimate the relative risk aversion γ and the discount factor β simultaneously using

the sample analogues of the moment conditions, (32) and (33), where we employ several groups of

portfolios. In particular, consistent with previous literature, we use the Fama-French 25 portfolios

defined using Size and Book-to-Market (B/M), the Fama-French 3 factor returns and the Fama-

French 2x3 portfolios , as well as Fama-French portfolios with lagged instruments such as lagged

dividend-price ratio (Campbell and Shiller (1988)), lagged CAY (Lettau and Ludvigson (2001)),

lagged average productivity growth ᾱt
ᾱt−1

and lagged firm/product variety growth Mt
Mt−1

. In all

specifications, we also include the market return and risk-free return as test asset returns in (32)

and (33).

Table 3 reports the results, where we adjust standard errors for heteroskedasticity and autocor-

relation following Newey and West. Table 3 shows that, when we use the pricing kernel, (28), of our

basic model, the estimated risk aversion coefficients are 5.77, 3.60, 2.43, 5.34 and 6.75, when we use

the FF25 portfolios, FF3, FF3 with instrument, FF2x3 and FF2x3 with instruments, respectively.

The estimates of the discount factor β are 0.90, 0.97, 0.99, 0.92 and 0.90 , respectively, for the

five sets of GMM estimations. We also report Hansen’s J-statistics for overidentifying restrictions

and the associated p-values. With the exception of the FF3 specification, the J-statistics from

the moment conditions are statistically indistinguishable from zero. Therefore, the model fits the

moments well.

As the actual economy has many different industries/sectors, the basic model is a simplification.

Therefore, the above results, although encouraging, should be viewed as a preliminary attempt to

reconcile the equity premium and risk-free rate puzzles. Further, the GMM estimation approach

does not exploit the full structure of our general equilibrium model. As we will see shortly, the GMM

and structural estimations of the extended model with multiple industries generate significantly

lower estimates of γ and higher estimates of β that are much closer to empirically plausible values.

4 The Extended Model

In reality, the economy has multiple industries with products of firms within an industry being closer

substitutes than those of firms in different industries. For example, products within the “Retail” or
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“Accomodation” industries are closer substitutes than products across these industries. Relatedly,

intra-industry product market competition is more intense than competition between firms across

industries. In fact, products between industries can be complements, such as is the case with

tourism, in which different industries (i.e., “Transportation”, “Accomodation”, “Entertainment”

and “Retail”) have a complementary relationship. The incorporation of differing inter- and intra-

industry product substitutabilities could have a significant impact on the SDF and asset prices.

Accordingly, we extend the basic model by modeling an economy with multiple industries and

differing intra-industry and inter-industry product substitutabilities.

4.1 Model Description

There are N industries 1, 2, ..., N. The preferences of the representative consumer are given by

Us = Es

∞∑
t=s

βt−sU (Λt) , 0 < β < 1 (35)

where

Λt =


[∑N

i=1 Λδ
it

] 1
δ , −∞ < δ < 1, δ ̸= 0

∏N
i=1 Λit, otherwise

(36)

Λit =
[∫

Ωit

qit(ωit)ρidωit

] 1
ρi ; 0 < ρi < 1; 1 ≤ i ≤ N, (37)

In (36) and (38), Λit is the contribution to the consumer’s total consumption index, Λt, from the

goods produced by industry i, δ determines the degree of product substitutability across industries,

while ρi determines the degree of product substitutability within industry i.

If pit(ωit) is the price of good ωit produced by industry i in period t, then we can show that the

optimal consumption and expenditure decisions for individual goods are

qit(ωit) = Λit

[
pit(ωit)

Pit

]−σi

, (38)

ξit(ωit) = Yit

[
pit(ωit)

Pit

]1−σi

, t ∈ {0, 1, 2, 3, ...} . (39)
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In the above Yit = PitΛit is the aggregate expenditure of the representative consumer on industry

i (or the size of industry i) in period t, and

Pit =
[∫

Ωit

pit(ωit)1−σidωit

] 1
1−σi (40)

is the aggregate price index of industry i in period t, where

σi = 1
1 − ρi

(41)

is the intra-industry product substitutability of the products in industry i.

The consumer’s expenditure minimization program leads to the following expression for the

industrial sizes:

Yit =


Yt

P 1−τ
it

P 1−τ
t

, τ ̸= 1

1
N Yt, otherwise

, (42)

where

Pt =


[∑N

i=1 P 1−τ
it

] 1
1−τ , τ ̸= 1

∏N
i=1 Pit, otherwise

(43)

is the aggregate price index for the entire economy, and

τ = 1
1 − δ

> 0 (44)

is the inter-industry product substitutability.

The information structure is as described in the basic model. The initial fixed capital invest-

ment, however, could vary across industries and is denoted as fit for industry i. The productivity

distribution of firms in industry i in period t is git. If rt denotes the capital rental rate then, by

the same arguments used in Section 2, the price of the good produced by a firm with productivity

α in industry i is

pit(α) = rt

ρiα
, (45)
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and its output is

qit(α) = Yit (Pit)σi−1
(

ρiα

rt

)σi

, (46)

The firm’s revenue and profit are

ξit(α) = pit(α)qit(α) = Yit(Pitρiα)σi−1r1−σi
t , (47)

πit(α) = ξit(α)
σi

. (48)

4.2 Product Market Equilibrium

We can characterize the product market equilibrium that we summarize in the following proposi-

tion.1

Proposition 1 (Product Market Equilibrium in Extended Model). The aggregate price index, Pt,

solves

1 =
∑

i

(
Pt

rt

)(τ−1) σi−1
σi−τ

(
Yt (ρiᾱit)σi−1

rtfitσi

) τ−1
σi−τ

, (49)

where

ᾱit :=
[∫ ∞

0
ασi−1git(α)dα

] 1
σi−1

. (50)

The total revenue/size of industry i is given by

Yit = Y
σi−1
σi−τ

t

(
(ρiᾱit)σi−1

rtfitσi

) τ−1
σi−τ (Pt

rt

)(τ−1) σi−1
σi−τ

. (51)

The mass of firms and aggregate price index for industry i (in units of capital) are given by

Mit = Yit

rtfitσi
, (52)

Pit

rt
=
(

M
1

σi−1
it ρiᾱit

)−1
. (53)

This characterization of the product market equilibrium facilitates the structural estimation of the

extended model.
1The proof is presented in Appendix A.
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4.3 Asset Markets and Asset Prices

The asset market structure is as described in Section 2.2.3 except that we now have multiple indus-

tries. The economy in any period t is determined by the aggregate state history ζt, the distribution

of fixed capital investments across industries,
{
fit(ζt); i = 1, ..., N

}
, and the distributions of firm

productivities in each industry,
{
git(ζt); i = 1, ..., N

}
. The budget constraints of the representative

agent now are
N∑

i=1
PitΛit + Et

Qt+1
Qt

at+1 ≤ at + rtK, ∀t ≥ 0, (54)

where Qt is the price of the nominal one-period Arrow security at date t as in the basic model.

Maximizing (35) subject to the budget constraints (54), the non-binding debt constraints (22),

and using (42), (44), we obtain the same expression for the SDF as in (24),

Φt+1 := Qt+1
Qt

= β
U ′(Λt+1)Pt

U ′(Λt)Pt+1
, (55)

where the consumption indices, Λt, Λt+1 in periods t, t + 1, respectively, now determined in terms

of the industrial consumption indices and given by (36). For CRRA utility with coefficient of

relative risk aversion γ, it follows directly from (55) that the SDF is

Φt+1 = β
Λ1−γ

t+1 Yt

Λ1−γ
t Yt+1

. (56)

5 Empirical and Quantitative Analysis of Extended Model

To facilitate a direct comparison with our analysis of the single-industry model, we first use GMM

to estimate the risk aversion and discount factor parameters in the extended model using the Euler

equations corresponding to various asset portfolios.

5.1 GMM Estimation

Using similar arguments as in Section 3, we have

Λit = ρiYitM
1

σi−1
it ᾱit

1
rt
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and

Φt+1 =



β

[∑N

i=1

(
ρiYi,t+1M

1
σi−1

i,t+1 ᾱi,t+1

)δ
] 1−γ

δ

[∑N

i=1

(
ρiYitM

1
σi−1

it ᾱit

)δ
] 1−γ

δ

(
Yt

Yt+1

)2−γ
, δ ̸= 0

β
∏N

i=1

[
Yi,t+1

Yit

(
Mi,t+1

Mit

) 1
σi−1 ᾱi,t+1

ᾱit

]1−γ (
Yt

Yt+1

)2−γ
, otherwise

. (57)

Analogous to Section 3, we use the aggregate nondurable consumption and services from the

BEA as a proxy for Yt and the number of establishments in each industry as a proxy for Mit. The

BLS provides capital productivity data for firms in different industries since 19872. Based on (47)

and (48), we use the average sales to profits ratio in industry i over our sample period as empirical

analogues for the intra-industry product substitutability parameters σi and set ρi = σi−1
σi

. We

report calibrated values of σi using this procedure in Table 4. Our final sample consists of data for

14 industries over 34 years from 1987 to 2020.3

To construct the proxy for industry output Yit, we use Gross Domestic Product Value Added

from the BEA. We classify a firm as a “final consumption” firm if it produces categories of the con-

sumption goods surveyed in the Consumer Expenditure Surveys (CEX). We show the classification

(based on the Fama-French 48 industries of firms) in Table 5.

The inter-industry product substitutability, δ = τ−1
τ , cannot be directly calibrated from the

data. Accordingly, we employ the estimate of the inter-industry product substitutability from our

structural estimation exercise in Section 5.2. Our baseline estimate is δ = −1.21, which means

that inter-industry products exhibit a complementary relationship. As in the GMM analysis of the

basic model in Section 3, we use the Euler equations corresponding to the market return, risk-free

return, FF 25, FF 3 and FF2x3 portfolio returns, as well as lagged instruments, to estimate the

relative risk aversion, γ and the discount factor, β.

Table 6 shows the results of the GMM estimation. The estimates of the relative risk aversion γ

are around 2.44, 1.99, 1.09, 4.03 and 3.51 for the FF25, FF3, FF3 with instruments, FF2x3, FF2x3
2Given that the capital productivity measures are in index form and the inter-industry scaling does matter for

the SDF, we use the GDP Value Added / Private Fixed Assets by industry in 1987 as a proxy for the initial capital
productivity level. The data for the Private Fixed Assets was obtained from the BEA.

3We exclude Agriculture, Mining, Wholesale, Finance and Insurance and Government from out sample.
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with instruments, portfolio returns, respectively. The corresponding estimates of the discount

factor, β, are between 0.9103 and 0.9999 We conclude that the extended model is compatible with

the observed market risk premium, risk-free return, and the selected Fama-French portfolio excess

returns for empirically plausible values of the risk aversion and discount factor. We also report

Hansen’s J-statistics for overidentifying restrictions and the associated p-values. With the exception

of the FF3 specification, the J-statistics are not significantly different from zero, suggesting that

the model fits the moment conditions well.

5.2 Structural Estimation of the Extended Model

The GMM analysis does not exploit the structure of our fully specified general equilibrium model.

We next proceed to structurally estimate the model using the simulated method of moments. We

then exploit the estimated model to generate additional novel testable empirical predictions that

pertain to the effects of product market competition—specifically, intra-industry and inter-industry

product substitutabilities—on asset prices and returns. We exploit the closed-form characteriza-

tion of the equilibrium in Proposition 1. For the structural estimation, it is necessary to choose

parametric forms for the aggregate sales process, the industrial productivity distributions and the

entry costs.

5.2.1 Parametric Specifications

We assume that the nominal aggregate revenue/sales follows the process

ln Yt = zt + λ(1)
z + λ(2)

z t, (58)

where the zt term is an ARIMA(1,1,0) process with

∆zt = az∆zt−1 + εzt (59)
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and εzt ∼ N(0, σ2
z) are normally distributed shocks that are independent across time. For each

industry i, the entry cost follows

ln fit = ciwt + λ
(1)
fi

+ λ
(2)
fi

t, (60)

where wt is an ARIMA(1,1,0) process with

∆wt = aw∆wt−1 + εwt, εtw ∼ N(0, σ2
w). (61)

The shocks εwt are i.i.d. across time. The shocks εzt and εwt have a contemporaneous correlation

ρzw at each date t. The process wt can be viewed as an aggregate shock process that affects the

entry costs of industries with differing sensitivities captured by the parameters, {ci}.

The productivities of firms in industry i are distributed as

ln αit = biwt + λ(1)
αi

+ λ(2)
αi

t + εαit, εαit ∼ N(0, σ2
αi

). (62)

The shock process, εαit, is independent of the processes εzt and εwt.

From Proposition 1 and (56), the SDF in the extended model can be written as

Φt =



β

[∑N

i=1

(
Y

σi
σi−1

i,t+1 ρiᾱi,t+1(σirt+1fi,t+1)
1

1−σi

)δ
] 1−γ

δ

[∑N

i=1

(
Y

σi
σi−1

it ρiᾱit(σirtfit)
1

1−σi

)δ
] 1−γ

δ

(
Yt

Yt+1

)2−γ
, δ ̸= 0

β
∏N

i=1

[(
Yi,t+1

Yit

) σi
σi−1 ᾱi,t+1

ᾱit

(
rt+1fi,t+1

rtfit

) 1
1−σi

]1−γ (
Yt

Yt+1

)2−γ
, otherwise

. (63)

Due to the complexity of the above formula, we do not have simple closed-form representations of

the risk-free return and market return in this setting. Therefore, we use (63) and simulation to

compute the unconditional asset pricing moments implied by the model.

5.2.2 Calibrated and Estimated Parameters

We use aggregate consumption data to calibrate the parameters of the aggregate processes az, σz,

λ
(1)
z , and λ

(2)
z . We use the 2-digit NAICS 14 industry GDP Value Added data for final consumption
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firms, the number of establishments in the industries, and the equilibrium conditions in Proposition

1 to calibrate the industrial parameters (σi, aw, σw, ρzw, ci, λ
(1)
fi , λ

(2)
fi , σαi). Specifically, we use the

average sales to profit margin in each industry to calibrate the intra-industry product substitutabil-

ity σi. We calibrate the entry cost fit using the GDP Value Added, private fixed assets, and the

number of establishments in (52):

fit = YitK

σiMitYt
. (64)

Next, we detrend the process fit and obtain the first principal component to extract the aggregate

shock process wt and obtain the parameters λ
(1)
fi , λ

(2)
fi , aw, σw,ρzw, and ci. We use the BLS data on

capital productivity as the measure of ᾱit and use linear regressions to directly estimate bi, λ
(1)
αi ,λ(2)

αi

and σαi in (62).

We employ the Simulated Method of Moments (SMM) to estimate the remaining free parameters

β, γ and δ to match moments associated to the risk-free rate and the risk premium, as well as the

dispersion of industry risk permia across different industries. We describe further details of the

simulation and estimation procedure in Appendix D.

Table 7 shows the results of the SMM estimation as well as the standard errors of estimated pa-

rameters and simulated moments that we compute using bootstrapping as we describe in Appendix

D. Table 8 reports the calibrated values of the industrial parameters (σi, σαi , bi, ci, λ
(1)
fi

, λ
(2)
fi

, λ
(1)
αi , λ

(2)
αi ).

The estimated values of the discount factor and risk aversion are 0.99985 and 5.97, respectively,

which are comparable to the GMM estimates obtained in Section 5.1. We note that all moments

are matched well, including the mean of the market risk premium, the mean and volatility of the

risk-free return and the dispersion of industrial risk premia. This is verified using Hansen’s J test

for overidentifying restrictions, which confirms the validity of the model with a p-value of 0.9534.

For robustness purposes we run the GMM exercises for both single and multi-industry models,

as well as the SMM exercise, using the number of firms instead of the number of establishments.

As Table 9 shows, the parameter estimates under the different specifications are broadly consistent

with the previous results using the total and industry number of establishments as measures for

Mt and Mit, respectively. This is unsurprising given the high correlation (i.e., above 0.95) between
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the number of firms and the number of establishments.

5.2.3 Results

Figure 3 presents the comparative statics of risk-free returns and market equity premia in the

multi-industry model when we allow parameters to vary around their baseline values in Table 7.

Figure 3: Comparative Statics of Risk-Free Rate and Market Risk Premia: Multis-
Industry Model The vertical dotted lines correspond to the baseline values of the parameters.

The market risk premium declines with the average intra-industry product substitutability σi,

while the risk-free return exhibits a relatively flat behavior. The intuition hinges on the fact

that the magnitude of the SDF’s sensitivity to the market return, the SDF’s volatility, and its

expectation all decline with the average intra-industry product substitutability. The market risk

premium increases with the standard deviation of intra-industry substitutabilities. An increase

in the standard deviation of intra-industry product substitutabilities increases composition risk

stemming from the variability of the basket of consumption goods, thereby increasing the volatility

of the SDF and increasing the market risk premium. Therefore, the market risk premium depends

not only on the mean but also the distribution of sector product substitutabilities.
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The equity premium is decreasing in the inter-industry product substitutability τ = 1
1−δ . An

increase in the inter-industry product substitutability has a similar but stronger effect on the SDF

relative to the intra-industry substitutability case, thereby causing the market risk premium to

decrease. The differing effects of intra-industry and inter-industry product substitutabilities on

the market risk premium imply that there are subtle differences between the effects of product

heterogeneity within and across industries.

Figure 4: Industry Risk Premia and Intra-industry Product Substitutabilities

Our model also generates cross-sectional predictions that relate industry risk premia to in-

dustrial product market characteristics. Figure 4 shows that the expected risk premia of the 14

industries in the simulated economies depend positively on (intra-industry) product substitutabil-

ities (σi).

We can understand the intuition for the positive relation between industrial risk premia and

intra-industry product substitutabilities as follows. Using Yt = Krt, (51) in Proposition 1 can be

rewritten as (
Yit

rt

) τ−σi
σi−1

= (fitσi)
τ−1
σi−1 (ρiᾱit)1−τ

(
Pt

rt

)1−τ 1
K

. (65)

From the above, the elasticity of (real) industry i revenues (and profits) with respect to real
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aggregate consumption is

d ln Yit/Pt

d ln Yt/Pt
= d ln Yit/Pt

d ln Yt/rt

Pt/rt

= −
d ln Yit/rt

Pt/rt

d ln Pt/rt
= 1 − d ln Yit/rt

d ln Pt/rt
= 1 + (1 − τ)

(
1 − 1 − τ

σi − τ

)
. (66)

The elasticity measures the sensitivity of the profits in industry i to changes in the stochastic

discount factor, and is increasing in σi. The elasticity is akin to an asset pricing beta for the

returns in industry i. This suggests that risk premia are higher for industries with high elasticities

of substitution as the profits of such industries are more responsive to aggregate shocks.

6 Conclusions

We develop a parsimonious and tractable general-equilibrium model to show how product hetero-

geneity and product market competition affect asset prices. We estimate the basic and extended

versions of the model using a nonparametric GMM approach as well as a parametric structural

approach. Our analysis shows that product heterogeneity, indeed, substantially influences asset

prices. The observed market risk premium and risk-free rate can be reconciled for moderate rela-

tive risk aversion levels around 4 and empirically plausible annual discount factors . We employ our

structurally estimated model to derive novel implications for how product market characteristics

influence asset prices. Interestingly, we find that while products are substitutes within industries,

they are complements between industries. The market risk premium decreases with the average

intra-industry product substitutability, but increases with the inter-industry product substitutabil-

ity. We also derive the novel cross-sectional prediction that industries with higher product substi-

tutabilities have higher excess returns that we verify empirically. In summary, our study shows that

composition risk arising from the imperfect substitutability of multiple heterogeneous consumption

goods is an important determinant of asset prices and reconciles the observed equity premium and

risk-free rate for reasonable risk aversion levels and discount factors.
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Appendix A Proof of 1

Using the logic in the derivation of (16), we have

Mit = K

fitσi
, ∀i,

which can be rewritten, using (15), as

Mit = Yit

rtfitσi
. (A1)

Applying the logic used in the derivation of (18),we obtain

Pit

rt
=
(

M
1

σi−1
it ρiᾱit

)−1
. (A2)

Now we proceed to replace (A1) into (A2), and replace Pit using (42)

Yit = Yt

((
Yit

rtfitσi

) 1
σi−1

ρiᾱit
Pt

rt

)τ−1

.

Next we solve for Yit

Yit = Yt

((
Yit

rtfitσi

) 1
σi−1

ρiᾱit
Pt

rt

)τ−1

= Y
τ−1
σi−1

it Yt

(
(ρiᾱit)σi−1

rtfitσi

) τ−1
σi−1 (Pt

rt

)τ−1

= Y
σi−1
σi−τ

t

(
(ρiᾱit)σi−1

rtfitσi

) τ−1
σi−τ (Pt

rt

)(τ−1) σi−1
σi−τ

.

To derive (49) we obtain ∑i Yit

∑
i

Yit = Yt =
∑

i

Y
σi−1
σi−τ

t

(
(ρiᾱit)σi−1

rtfitσi

) τ−1
σi−τ (Pt

rt

)(τ−1) σi−1
σi−τ

.

Finally, we simplify to arrive at the following expression

1 =
∑

i

(
Pt

rt

)(τ−1) σi−1
σi−τ

(
Yt (ρiᾱit)σi−1

rtfitσi

) τ−1
σi−τ

.
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Appendix B Capital Depreciation and Investment

In this Appendix, we present a variation of the model in which capital depreciates, and consumers
can invest in the accumulation of capital. To simplify the exposition, we consider the basic model
although the extended model can be analogously modified to incorporate capital depreciation and
investment. As in Section IV and Appendix E of Bilbiie et al. (2012), investment in capital
(It) requires the same composite of available product varieties as the consumption basket. The
aggregate capital accumulation equation is

Kt+1 = (1 − δK)Kt + It,

where δK is the depreciation rate, and It is the investment at period t. Denote by at the (nominal)
Arrow securities holdings the representative agent starts period t with. We assume that the Arrow
security holdings are subject to the same “no Ponzi” conditions as before (debt bounded by the
present value of future income). Capital is nonnegative. These nonnegativity constraints do not
bind due to the Inada conditions imposed on U . The budget constraint of the representative agent
is

PtΛt + PtIt + EtΦt+1at+1 = at + rtKt.

From the above equation, we see that the total income from renting the capital stock, rtKt, and
the agent’s holdings in Arrow securities, at, are used to finance the purchase of the consumption
“basket”, Λt, the investment “basket”, It, and the next period Arrow securities. The first order
conditions for Arrow security holdings give the stochastic discount factor,

Φt+1 = β
U ′(Λt+1)Pt

U ′(Λt)Pt+1
,

which has the same expression as in (24). The first order conditions with respect to capital invest-
ment lead to

1 = EtΦt+1
Pt+1
Pt

(
1 − δK + rt+1

Pt+1

)
,

or equivalently, to
1 = βEt

U ′(Λt+1)
U ′(Λt)

(
1 − δK + rt+1

Pt+1

)
.

The market clearing condition at = 0 implies the aggregate accounting equation

PtΛt + PtIt = rtKt.

We can use the Euler equations to estimate the risk aversion and discount factor as in the ba-
sic model. The difference, however, is that aggregate revenue equals aggregate consumption plus
investment. Recall, however, that we also carried out estimation exercises in the main body re-
stricting consideration to the sales of final “consumption goods,” and obtained similar estimates
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for the relative risk aversion and discount factor parameters. Those results are, therefore, directly
applicable to the extended model with capital depreciation and investment. In summary, the in-
corporation of capital depreciation and investment does not significantly alter the results of our
analysis of the basic model (see Section 3).

Appendix C Sunk Entry Costs and Firm Exit

In this Appendix, we present a variation of the model that allows firms to incur sunk costs upon
entry, but no fixed costs in each period. Further, firms can experience a “death” shock in any
period that forces them to exit. Again, we consider the basic model for simplicity.
A firm must incur an exogenous sunk entry cost fe

t (in units of capital) if it decides to enter in period
t. There are no fixed production costs, and thus entering firms produce every period until they are
hit by a death shock that occurs with probability η in every period. Entrants start producing only
next period, while the death shock can occur even at the end of the entry period. The expected
value of discounted profits of a new entrant at t (and also the ex-dividend value of a firm at t) at
t is

vt := Et

[∑
s>t

(1 − η)s−t Qs

Qt
ds

]
,

where ds := Eαπs(α) are the average dividends (profits) of a firm active at s and Q is the nominal
pricing kernel. Denoting by M e

t the mass of new entrants at t, the evolution of the number of firms
is

Mt+1 = (1 − η)(Mt + M e
t ).

The free entry condition implies

vt

{
= fe

t rt if M e
t > 0,

≤ fe
t rt otherwise.

The agent can buy a fraction xt of the total market index (total firms) priced at a unit price vt and
invest in nominal one-period ahead Arrow securities with face values at+1, hence his budget is

PtΛt + Et

[
Qt+1
Qt

at+1

]
+ vt(Mt + M e

t )xt = rtK + at + (vt + dt)Mtxt−1.

In equilibrium, xt = 1. The optimality conditions for Arrow securities imply that the SDF is

Φt+1 := Qt+1
Qt

= β(1 − η)U ′(Λt+1)Pt

U ′(Λt)Pt+1
= β(1 − η)U ′(Λt+1)Λt+1Yt

U ′(Λt)ΛtYt+1
,

while the optimality condition for holding shares in the market index is

1 = Et

[
Φt+1

vt+1 + dt+1
vt

]
.
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From the standpoint of GMM empirical analysis, this model is equivalent to our basic model with
fixed costs in each period. The only difference is that the estimate for the discount factor of an
agent is now in fact an estimate for β(1 − η), rather than only of β. Incorporating the possibility
of firm exits leads to higher discount factors than those in the basic model, thereby bringing them
even closer to empirically plausible values.

Appendix D Details of the Structural Estimation Procedure

As we discussed in the Section 5.2 on the estimation of the multi-industry model, the remaining
three parameters that we need to estimate are Θ = {β, γ, δ}. We use the Simulated Method of
Moments (SMM) to estimate these parameters. For a given candidate set of parameters Θ, we
simulate the model to create 1,000 artificial economies. Each economy contains a time-series of 100
years of data. Specifically, we first begin with a set of seed values Θ = {β0, γ0, δ0} and condition
on the initial values of the aggregate shocks {∆zt, ∆wt}. We then use equations (58) to (62) and
the equilibrium conditions (49) to (53) in Proposition 1 to generate the fundamental states of the
simulated economy and determine industry sales, entry costs, and all other variables. Since ∆zt

and ∆wt are normally distributed, we use a Gauss-Hermite (GH) Quadrature grid composed of 25
4 different combinations of shocks, and repeat the previous procedure for each grid point.
We then use the simulated economies to compute “simulated moments”, and estimate the param-
eters that best match the simulated moments with the empirical moments. In particular, for each
simulated economy, we calculate the means and standard deviations of the risk-free returns and
market risk premia as well as the dispersion of industry risk premia. For each set of 1,000 artificial
economies with 100 years of data, we obtain the risk-free rate, market return and industry returns.
In what follows, j denotes both the market return case (i.e., j = M) and the different industry
returns cases (i.e., j = {1, 2, ..., N}):

Rrf
t = 1

Et [Φt+1] ,

Rj,t+1 = vj,t+1 + dj,t+1
vj,t

,

where

vj,t =
∑

s>t+1
Et

[
βs−t Q

′
s

Q
′
t

Yj,s

]
,

dj,t+1 = Yj,t+1,

4We choose 5 nodes for each aggregate shock variable and then obtain a grid with all possible combinations.
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Q
′
t =

[
N∑

i=1
η1−δ

i

(
Y

σi
σi−1

it ρiᾱit (σirtfit)
1

1−σi

)δ
] 1−γ

δ

Y γ−2
t .

We then compute the following moments using the GH quadrature, with each combination of initial
aggregate shocks containing 1,000 simulated economies:

• Unconditional mean of risk-free rate: E
[
Rrf

t

]
.

• Unconditional standard deviation of risk-free rate:
√
V
[
Rrf

t

]
.

• Unconditional mean of market risk premium: E
[
RM,t+1 − Rrf

t

]
.

• Unconditional dispersion of expected industry risk premia:
√
E
[
R

(P )2
i

]
− E

[
R

(P )
i

]2
,where

R
(P )
i = E

[
Ri,t+1 − Rrf

t

]
.

We do not calculate the standard deviation of the market risk premium, since this would imply
doing a nested simulation that increases the computing time exponentially. While the law of total
expectation allows for a straightforward calculation of the expected value of the market return,
this is not necessarily true for higher moments. We denote by V̂ (Θ) the 4 × 1 vector of the
average simulated moments, and V the vector of empirical values of these moments in the data.
We determine the parameter set θ∗ that solves the following optimization problem,

Θ∗ = arg min
Θ

(V − V̂ (Θ))T W (V − V̂ (Θ)), (A3)

where W is the identity matrix5. The empirical and theoretical moments can be expressed in the
following form:

V = 1
T

T∑
t=1

gt,

V̂ (Θ) = 1
Tsim

Tsim∑
t=1

ĝt (Θ) ,

where T is the number of observations in the empirical data and Tsim is the total number of
simulations.
The asymptotic distribution of Θ is given by

√
T
(
Θ̂ − Θ0

)
→ N

(
0, (1 + τ̄)

(
GT W G

)−1
GT W ΩW T G

(
GT W G

)−1
)

, (A4)

with
5This is consistent with Herzkovic et al. (2020).
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T

Tsim
→ τ̄ ,

G = E [∇Θĝt (Θ) |Θ=Θ0 ] ,

Ω =
∞∑

t=−∞
E
[
(gt − E (gt)) (gt − E (gt))T

]
.

To compute the standard errors of the estimated parameters we estimate the necessary inputs (i.e.,
Ĝ and Ω̂) and take the squared root of the main diagonal elements of V

[
Θ̂
]
, which is obtained

directly from (A4). Model validity is addressed by using the Hansen J test for overidentifying
restrictions.
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Table 1: Summary Statistics

The table below shows summary statistics for the key variables in the model, from 1987 to 2020. The
variables considered are both the levels and relative changes in the aggregate consumption expenditures
(Yt), number of establishments (Mt) and capital productivity (αt).

Obs Mean. Std. Dev. Min p25 p50 p75 Max
Yt ($ b) 34 7267 3197 2634 4387 6937 9829 12882
∆Yt

Yt−1
(%) 34 4.91 2.29 -3.2 3.89 5.3 6.35 8.38

Mt (mm) 34 5.50 0.53 4.47 5.09 5.62 5.90 6.26
∆Mt

Mt−1
(%) 34 1.07 1.01 -1.94 0.64 1.15 1.78 2.71

αt 34 0.30 0.02 0.26 0.28 0.30 0.32 0.33
∆αt

αt−1
(%) 34 -0.62 1.78 -5.85 -1.3 -0.23 0.37 2.49
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Table 2: Comparison of Price Indices

This table compares the growth in the product-variety-based aggregate price index (Pt) and the growth of
the Consumer Price Index (CPIt), and their covariance with the market return RM . We consider annual
returns over the period 1987 to 2020.

Mean Std. Dev. Corr(RM ) Cov(RM )
Pt+1

Pt
1.0537 0.0207 -0.4188 -0.001468

CP It+1
CP It

1.0257 0.0126 -0.0647 -0.000138
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Table 3: GMM Estimates of Risk Aversion γ and Discount Factor β in Basic Model

This table reports the results of the GMM estimation of the risk aversion and discount factor in the basic
model. Our sample consists of annual data from 1987 to 2020. In each column, the moments for the cor-
responding portfolio returns, market return, and risk-free return are used. We use aggregate nondurable
consumption and services from NIPA in the GMM estimation. “FF25” means that the returns of Fama-
French 25 portfolios by size and book-to-market are used in the moment conditions. “FF3” means that the
returns of Fama-French 3 factors are used in the moment conditions. . “FF3 and Instruments” indicates
that additional instruments, including lagged consumption growth, lagged CAY, lagged dividend-price ratio,
lagged productivity growth, and lagged growth in number of establishments, are used in the moment condi-
tions. “FF2x3” means that the returns of the Fama-French 2x3 portfolios by size and book-to-market value
are used in the moment conditions. “FF2x3 and Instruments” is analogous to the “FF3 and Instruments”
case, in which additional instruments are included in the moment conditions. Standard errors in the GMM
estimation are calculated following Newey and West and reported in parentheses.

GMM Estimation: Single-Industry Model with Product Variety
FF25 FF3 FF3 and

Instruments
FF2x3 FF2x3 and

Instruments

β 0.9038 0.9749 0.9999 0.9242 0.902
(0.0304) (0.0835) (0.0085) (0.0627) (0.0054)

γ 5.7751 3.6031 2.427 5.3412 6.7456
(7.3836) (16.4775) (1.3037) (12.9192) (0.5608)

J-test 11.8615 9.7873 10.8747 10.2107 11.7242
p-value 0.9876 0.0205 0.5397 0.1161 0.9828
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Table 4: Intra-Industry Product Substitutability Parameters in the Extended Model

This table shows the values of intra-industry product substitutability parameters estimated by the mean sales
to profits ratios in the 14 2-digit NAICS industries. We only consider firms that produce final consumption
goods.

NAICS (2 digit) Industry Name Mean Sales/Profits Ratio (σi)
22 Utilities 5.44
23 Construction 8.97
31-33 Manufacturing 6.75
44-45 Retail 15.94
48-49 Transportation 8.39
51 Information 3.21
53 Real Estate 3.48
54 Professional Services 5.94
56 Administrative Services 9.11
61 Education 6.12
62 Health 7.65
71 Entertainment 5.58
72 Accomodation 9.94
81 Other Services 7.34

112



Table 5: Classification of Final Consumption Goods in Fama-French 48 Industries

This table reports the classification of Fama-French 48 industries into industries that produce final consump-
tion goods (1) or that do not (0). The classification is based on the categories of consumption goods in the
Consumption Expenditure Survey by the Bureau of Labor Statistics.

Number Abbreviation Description Consumption Goods
1 Agric Agriculture 0
2 Food Food Products 1
3 Soda Candy & Soda 1
4 Beer Beer & Liquor 1
5 Smoke Tobacco Products 1
6 Toys Recreation 1
8 Books Printing and Publishing 1
9 Hshld Consumer Goods 1
10 Clths Apparel 1
11 Hlth Healthcare 1
12 MedEq Medical Equipment 0
13 Drugs Pharmaceutical Products 1
14 Chems Chemicals 0
16 Txtls Textiles 0
17 BldMt Construction Materials 0
18 Cnstr Construction 1
19 Steel Steel Works Etc 0
20 FabPr Fabricated Products 0
21 Mach Machinery 0
22 ElcEq Electrical Equipment 1
23 Autos Automobiles and Trucks 1
24 Aero Aircraft 0
25 Ships Shipbuilding, Railroad Equipment 0
26 Guns Defense 0
27 Gold Precious Metals 0
28 Mines Non-Metallic and Industrial Metal Mining 0
29 Coal Coal 0
30 Oil Petroleum and Natural Gas 0
31 Util Utilities 1
32 Telcm Communication 1
33 PerSv Personal Services 1
34 BusSv Business Services 0
35 Comps Computers 1
36 Chips Electronic Equipment 0
37 LabEq Measuring and Control Equipment 0
38 Paper Business Supplies 0
39 Boxes Shipping Containers 1
40 Trans Transportation 1
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(Continued)

Number Abbreviation Description Final Goods
41 Whlsl Wholesale 0
42 Rtail Retail 1
43 Meals Restaurants, Hotels, Motels 1
44 Banks Banking 0
45 Insur Insurance 0
46 RlEst Real Estate 1
48 Other Almost Nothing 0
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Table 6: GMM Estimates of Risk Aversion γ and Discount Factor β in Extended Multi-Industry
Model

This table reports the results of GMM estimation of the risk aversion and discount factor in the extended
model. Our sample consists of annual data from 1987 to 2020. We use Gross Domestic Product Value
Added of final consumption firms to generate the SDF in the extended model. In each column, the moments
for the corresponding portfolio returns, market return, and risk-free return are used. “FF25” means that
the returns of Fama-French 25 portfolios by size and book-to-market are used in the moment conditions.
“FF3” means that the returns of the Fama-French 3 factor model are used in the moment conditions. “FF3
and Instruments” indicates that additional instruments, including lagged consumption growth, lagged CAY,
lagged dividend-price ratio, lagged productivity growth, and lagged growth in number of establishments, are
used in the moment conditions. “FF 2x3” means that the returns of Fama-French 2x3 portfolios by size and
book-to-market value are used in the moment conditions. “FF2x3 and Instruments” is analogous to the “FF3
and Instruments” case, in which additional instruments are included in the moment conditions. Standard
errors in the GMM estimation are calculated following Newey and West and reported in parentheses.

GMM Estimation: Multi-Industry Model with Product Variety
FF25 FF3 FF3 and

Instruments
FF2x3 FF2x3 and

Instruments

β 0.9152 0.9881 0.9999 0.9187 0.9103
(0.0145) (0.0398) (0.0031) (0.0249) (0.0027)

γ 2.4363 1.9907 1.0888 4.0273 3.512
(3.0471) (6.348) (0.3339) (4.1264) (0.1521)

J-test 12.2094 10.6658 11.9598 10.917 12.2288
p-value 0.9848 0.0137 0.4489 0.091 0.9772
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Table 7: Structural Estimation of the Extended Multi-Industry Model

This table reports the results of the structural estimation of the extended model using the Simulated Method
of Moments (SMM). In Panel A, we report the directly estimated parameters. In Panel B, we report the
indirectly estimated structural parameters using SMM with the standard errors of the estimated parameters
in parentheses. In Panel C, we report the empirical and simulated moments along with the corresponding
standard errors of the simulated moments in parentheses.

Panel A: Directly Estimated Parameters

Parameter Estimate
Directly Estimated Parameters
Persistence of aggregate consumptions expenditures az 0.6249
Intercept of aggregate consumption expenditures λ

(1)
z 12.67

Growth rate of aggregate consumption expendittures λ
(2)
z 0.0668

Volatility of aggregate consumption expenditures shocks σz 0.022
Persistence of entry costs aw 0.5199
Volatility of entry costs σw 0.049
Correlation of shocks ρzw -0.3164

Panel B: Indirectly Estimated Parameters using SMM

Parameter Estimate
Discount Factor β 0.9998

(0.0033)
Risk Aversion γ 5.97

(0.4113)
Inter-industry Product Substitutability δ -1.21

(0.5987)
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Table 7: Continued

Panel C: Empirical and Simulated Moments

Empirical Moments Simulated Moments
Mean of Market Risk Premia 6.55% 6.72%
Mean Risk-free Return 3.19% 3.63%
Std. Dev. Risk-free Return 2.53% 2.76%
Dispersion of Industry Risk Premia 1.86% 0.81%

Model Validity
J-test 0.0034
p-value 0.9534
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Table 8: Calibrated Industrial Parameters in Structural Estimation of the Extended Model

This table reports the calibrated industrial parameters in the structural estimation of the extended model.

Industry σi σαi λ
(1)
fi

λ
(2)
fi

λ
(1)
α λ

(2)
α bi ci

Utilities 5.44 0.0735 0.83 -0.0258 -1.48 -0.0057 -0.4795 0.7424
Construction 8.97 0.1045 -2.79 -0.0068 1.12 -0.0295 0.023 -0.1114
Manufacturing 6.75 0.0408 -0.64 -0.0082 -0.29 -0.0093 -0.2133 0.251
Retail 15.94 0.0571 -3.53 -0.0056 0.17 -0.0102 -0.1494 -0.1024
Transportation 8.39 0.0682 -1.71 -0.0148 -1.08 0.0052 -0.0813 0.3027
Information 3.21 0.0407 0.15 -0.0133 -0.82 -0.0118 -0.1806 0.37
Real Estate 3.48 0.0644 0.06 -0.0111 -2.26 -0.0032 0.1908 0.1818
Professional Services 5.94 0.1208 -2.03 -0.0056 0.82 -0.0359 0.3484 0.1948
Administrative Services 9.11 0.0979 -2.72 0.0004 0.43 -0.029 0.0715 -0.0632
Education 6.12 0.0654 -1.64 -0.007 -0.88 -0.0075 -0.2134 0.1547
Health 7.65 0.0556 -2.31 -0.0064 -0.38 -0.0096 0.1883 0.1352
Entertainment 5.58 0.1053 -1.91 -0.0076 -0.45 -0.0015 -0.1927 0.0443
Accomodation 9.94 0.0582 -3.15 -0.0101 -0.42 0.0024 0.0868 -0.0929
Other Services 7.34 0.0551 -3.16 -0.0129 -0.2 -0.013 -0.2999 -0.0808
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Table 9: GMM and SMM Robustness Exercises Using Number of Firms

Panel A: GMM Single Industry

This table reports the results of the GMM estimation of the risk aversion and discount factor in the basic
model using the number of firms as the measure of Mt.

GMM Estimation: Single-Industry Model with Product Variety
FF25 FF3 FF3 and

Instruments
FF2x3 FF2x3 and

Instruments

β 0.9026 0.972 0.9999 0.9258 0.9011
(0.0331) (0.0908) (0.0078) (0.0677) (0.0042)

γ 5.6344 3.7674 2.3611 4.7645 6.2594
(7.3026) (16.292) (1.1536) (12.9145) (0.5268)

J-test 11.8621 9.7701 10.8685 10.2166 11.7958
p-value 0.9876 0.0206 0.5402 0.1158 0.9821

Panel B: GMM Multi Industry

This table reports the results of the GMM estimation of the risk aversion and discount factor in the extended
model using the number of firms as the measure of Mit, for all industries i ∈ {1, 2, ..., N}.

GMM Estimation: Multi-Industry Model with Product Variety
FF25 FF3 FF3 and

Instruments
FF2x3 FF2x3 and

Instruments

β 0.9106 0.9756 0.9999 0.908 0.906
(0.02) (0.0574) (0.0034) (0.0343) (0.0026)

γ 2.7642 3.0037 1.1518 4.6569 3.7191
(3.1594) (6.5697) (0.3742) (4.4372) (0.2002)

J-test 12.2104 10.6444 11.8348 10.9257 12.2253
p-value 0.9848 0.0138 0.459 0.0907 0.9772

Panel C: Indirectly Estimated Parameters using SMM

Parameter Estimate
Discount Factor β 0.9998

(0.0029)
Risk Aversion γ 5.66

(0.3141)
Inter-industry Product Substitutability δ -1.20

(0.6918)
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