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Abstract

This paper presents a Bayesian analysis of the endogenous treatment model with misclassified treat-

ment participation. Our estimation procedure utilizes a combination of data augmentation, Gibbs

sampling, and Metropolis-Hastings to obtain estimates of the misclassification probabilities and the

treatment effect. Simulations demonstrate that the proposed Bayesian estimator accurately estimates

the treatment effect in light of misclassification and endogeneity.
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1 Introduction

Misclassification (or misreporting) occurs when subjects incorrectly report their status or participation

in a particular program. For example, in job tenure surveys, a job change may be incorrectly recorded

or respondents may incorrectly classify a promotion as a job change (Brown and Light, 1992), leading to

misclassification of the job change indicator. Similar evidence of misclassification arises in a wide range of

studies. Bollinger and David (1997), among others, find evidence of misreporting in food stamp program

participation; Bitler, Currie, and Scholz (2003) in their study of WIC eligibility and participation from

the Current Population Survey and the Survey of Income and Program Participation; Barron, Berger,

and Black (1997) in their analysis of job training; Card (1996) in his study of union coverage; and Black,

Sanders, and Taylor (2003) in their analysis of group health insurance eligibility. In general, there is

substantial evidence that misclassification is at least somewhat prevalent in a variety of situations in

which individuals self-report.1

The empirical problems resulting from misclassification have been well-documented.2 For misclassified

binary dependent variables, Bollinger and David (1997) and Hausman, Abrevaya, and Scott-Morton (1998)

show that ignoring misclassification yields biased and inconsistent coefficient estimates. For misclassified

binary covariates, Kreider (2010) notes that even a slight amount of misclassification can generate esti-

mated treatment effects whose confidence intervals do not overlap those from the the true data. Additional

empirical problems arise if the misclassified treatment is also endogenous (Kreider et al., 2009). In this

paper, we propose a Bayesian estimator that allows for both misclassified and endogenous treatment in

a single framework. Through a series of simulations, we demonstrate the important impact misclassifi-

cation and endogeneity can have if ignored. We show that: 1) our proposed estimator corrects for the

bias introduced by misclassification and endogeneity under certain parametric assumptions; 2) in order

to accurately estimate the treatment effect, accounting for endogeneity may be more important than

accounting for misclassification in certain situations; and 3) with more information (e.g., more individuals

in the data) accounting for both misclassification and endogeneity becomes more critical.

Separately, misclassification and endogenous treatment have each been well-studied in the literature.

For the purposes of this paper, it is useful to classify the relevant literature into one of three approaches:

1) structural; 2) program evaluation; and 3) Bayesian. Heckman (2003, p. 361) differentiates between
1See Bound, Brown, and Mathiowetz (2001) for a review of misclassification and, more generally, measurement error in

survey data.
2See Millimet (2010) for a thorough review of the literature on measurement error.
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the program evaluation and structural approaches as follows: “The goal of the structural econometrics

literature, like the goal of all science, is to understand the causal mechanisms producing effects so that one

can use empirical versions of models to forecast the effects of interventions never previously experienced, to

calculate a variety of policy counterfactuals and to use theory to guide choices of estimators to interpret

evidence and to cumulate evidence across studies. These activities require models for understanding

‘causes of effects’ in contrast to the program evaluation literature that focuses only on the ‘effects of

causes’ (Holland 1986).”3 Heckman’s definition of the structural approached appears to encompass the

Bayesian approach; however, for the purposes of this paper, we limit the “structural” umbrella to a

frequentist approach only.

Among the structural approach, endogenous treatment can be considered part of a larger class of

simultaneous equation models with limited dependent variables (SLDV models). This class of models was

first studied in detail by Amemiya (1978) and Heckman (1978). Numerous authors have since applied

this class of models in a variety of settings and with a variety of estimators, including two-stage least

squares, maximum likelihood, semi-parametric, and method of moments. Examples include Rivers and

Vuong (1988), Blundell and Smith (1989, 1994), Vella (1993), Cameron and Heckman (1998), Carneiro,

Hansen, and Heckman (2003), and Lewbel (2006), among others.4

Regarding misclassification, Aigner (1973), Bollinger (1996), Black, Berger, and Scott (2000), Fazis

and Lowenstein (2003), Imbens and Manski (2004), Hu (2006), and Molinari (2008), among others,

examine the estimation of models with misclassified binary covariates. Absent additional information,

a common solution is to bound the unidentified parameter associated with the misclassified regressor.

Authors have also proposed refinements to these bounds, and in some cases point-identification, through

the use of auxiliary data, repeated measurement, or instrumental variables. For misclassified dependent

variables, Hausman, Abrevaya, and Scott-Morton (1998) propose an adjusted maximum likelihood that

can estimate the extent of misclassification and consistently estimate the coefficients of the latent utility

specification. Sullivan (2007) adopts a similar approach in his study of occupational choice. Other studies

of misclassified, discrete dependent variables include Li, Trivedi, and Guo (2003) and Abrevaya and

Hausman (2004).

In the program evaluation literature, studies of endogeneity (i.e., selection on unobservables) include
3Heckman is slightly more critical of the program evaluation approach, citing Holland (1986) and others’ statements

that the program evaluation approach cannot estimate causal effects for variables that cannot be randomly assigned, such
as gender.

4See Manski (1994) and Vella (1998) for surveys on sample selection in general.
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Manski (1990), Imbens and Angrist (1994), Agrist, Imbens, and Rubin (1996), Klein and Vella (2009),

and Millimet and Tchernis (2010). These approaches tend to adopt a more robust bounds analysis or

rely on instrumental variables to identify the treatment effect. Studies of misclassification in the program

evaluation literature include Lewbel (2007), Battistin and Sianesi (2007), and Kreider et al. (2009).

Battistin and Sianesi (2007) adopt a bounding technique to estimate the average treatment effect on

the treated (ATT) with misclassified treatment status. In addition to offering an extension for multiple

treatments, Battistin and Sianesi’s approach is novel in that they permit heterogeneous misclassification

probabilities and focus specifically on the ATT. Kreider et al. (2009) provide one of the few techniques

to analyze both misclassification and endogeneity in the same framework. Using data on food stamp

program participation, the authors estimate a potential outcomes model that allows for both selection

and misclassification. Similar to Battistin and Sianesi, the authors adopt partial identification bounding

methods in order to estimate a range of the estimated treatment effect, and they show that the commonly

found negative relationship between food stamp participation and health outcomes is largely reversed

after accounting for endogeneity and misclassification. Although the allowance of both misclassification

and endogeneity in a potential outcomes framework is clearly an important advancement, these estimators

do not permit point-identification of the treatment effect nor do they permit point-identification of the

misclassification probabilities.

Authors have also developed Bayesian estimators robust to endogeneity and, more recently, misclassi-

fied dependent variables. Li (1998), in an extension of Albert and Chip (1993), develops an estimator that

permits endogeneity in the probit specification. Li adopts a Bayesian approach to the SLDV model and

uses a sampling technique based on a combination of data augmentation and Gibbs sampling; however,

Li does not allow for misclassification of the endogenous variable(s).

Balcombe et al. (2007) introduce misclassification in a conditional logit model. Balcombe and Fraser

(2009) also apply Bayesian methods to estimate a model similar to Hausman, Abrevaya, and Scott-Morton

(1998), adopting a probit specification rather than a logit. Other Bayesian studies of misclassified data,

often focusing on medical applications, include Gaba and Winkler (1992), Evans et al. (1996), Prescott

and Garthwaite (2002), Swartz et al. (2004), Gerlach and Stamey (2007), and Perez et al. (2007).

Despite advances in the structural, program evaluation, and Bayesian approaches, we are not aware

of any estimator that currently permits point-estimation of treatment effects and misclassification prob-

abilities in light of both misclassified and endogenous treatment participation. Leaning on the work of

Hausman, Abrevaya, and Scott-Morton (1998), Li (1998), and Balcombe and Fraser (2009), our pro-
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posed estimator and sampling algorithm adopts a combination of data augmentation, Gibbs sampling,

and Metropolis-Hastings to obtain estimates of the misclassification probabilities and the treatment effect

when participation is endogenous and misclassified.

Our Bayesian approach to misclassified or mismeasured data has some important advantages over

the structural and program evaluation approaches. As Heckman (2003) discusses, perhaps the most

important distinction from the program evaluation approach is the ability to formally model underlying

behavioral mechanisms and focus on the specific coefficients of interest. This has important implications

for policy analysis, particularly with regard to out-of-sample inferences and estimating the effects of

various alternative policies under consideration.

Comparing the structural and Bayesian approaches, Balcombe et al. (2007) show that their proposed

Bayesian estimator outperforms that of Hausman, Abrevaya, and Scott-Morton (1998) based on an anal-

ysis of Bayes factors. Bollinger and Hasselt (2009) also show that the use of priors with misclassified

data help narrow the bounds on unidentified coefficients relative to the bounds estimated in a classical

regression context. This result from Bollinger and Hasselt mirrors the sentiment of Winkler and Gaba

(1990), who showed that non-identifiability in a likelihood analysis can be avoided with a Bayesian esti-

mator. Balcombe and Fraser (2009) also note that the Bayesian approach more easily incorporates various

parameter constraints, such as restrictions on the extent of misclassification.

A Bayesian estimator also has advantages in accounting for endogeneity. For example, most classical

applications to the SLDV model do not apply a full-information maximum likelihood (FIML), but rather

adopt computationally simpler techniques such as simulated ML or alternative two-step algorithms (Blun-

dell and Smith, 1994). But as Li (1998) notes, a Bayesian approach avoids the direct evaluation of the

likelihood while still providing draws from the exact posterior distribution of the SLDV model. Li also

notes that the Bayesian approach provides more precise small sample results compared to the classical

treatment of the SLDV model.

In general, although it may be theoretically possible to implement our proposed estimator with simu-

lated likelihood techniques, our Bayesian estimator avoids theoretical problems with maximization (e.g.,

convergence) and does not rely on additional asymptotic assumptions to estimate the standard errors.

The remainder of this paper is organized as follows. Section 2 presents the model in question and our

proposed estimator; Section 3 presents the sampling methodology to allow draws from the relevant pos-

terior distributions; Section 4 presents the simulated data used to assess the performance of our proposed

estimator and the estimation results for each respective dataset; and Section 5 concludes.
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2 The Model and Estimator

We consider the following simultaneous equation system (the Roy model):

y1i = X′1iγ + δiα+ ε1i

y∗2i = X′2iβ + ε2i,
(1)

where δi = 1(y∗2i > 0), ε1
ε2

 ∼ N(0,Σ), (2)

and

Σ =

σ11 σ12

σ12 1

 . (3)

In this system, y∗2i represents the latent treatment participation variable (i.e., the latent utility) with

δi an indicator for whether person i received treatment. y1i represents the outcome, and the effect of

treatment on the outcome is measured by the coefficient α. The covariates, X1 and X2, are of dimensions

K1 ×N and K2 ×N , respectively. For identification of the selection equation coefficients, we assume at

least one covariate in the selection equation is excluded from the outcome equation (K2 > K1). We allow

for endogenous treatment with the condition σ12 6= 0. As indicated in equation (3), we also normalize

the (2, 2) element of Σ to one in order to identify the remaining coefficients in the model.5 For ease of

notation, we express the system in equations (1)-(3) as a standard seemingly unrelated regression (SUR)

model,

y1

y∗2

 =

X1 δ

X2



γ

α

β

+

ε1
ε2

 . (4)

Or, more compactly,

Y = XΛ + ε, where

ε ∼ N (0,Σ) .

5As discussed in more detail in Section 3, this restriction is not sufficient to point-identify σ12, provided there is some
amount of misclassification.
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One of the main contributions of our proposed estimator is the allowance of misclassified participation

in the above SLDV model. To incorporate potential misclassification, we adopt the specification and

notation in Balcombe and Fraser (2009). This requires a distinction between the observed treatment

indicator y2i and the actual treatment indicator δi, where individual i misreports their treatment partic-

ipation if y2i 6= δi. We denote by θy2i|δi the conditional probability of the observed treatment given the

actual treatment, so that:

θ1|0 = P (y2i = 1|δi = 0) ;

θ0|1 = P (y2i = 0|δi = 1) ;

θ0|0 = P (y2i = 0|δi = 0) = 1− θ1|0; and

θ1|1 = P (y2i = 1|δi = 1) = 1− θ0|1.

θ1|0 therefore represents the conditional probability of any given individual reporting that they did

receive treatment when in fact they did not receive treatment. Conversely, θ0|1 represents the conditional

probability of any given individual reporting that they did not receive treatment when in fact they did

receive treatment. θ1|1 and θ0|0 represent the probability of the individual correctly reporting that they

did and did not receive treatment, respectively. We also denote by Ψδi|y2i
the conditional probability of

the actual treatment given the observed treatment, and we denote the probability of person i receiving

treatment by Φi = P (y∗2i > 0). In this case, unlike the standard probit model where Φi represents the

value of the standard normal CDF evaluated at X2iβ, Φi now represents the value of the conditional

distribution of ε2|ε1 evaluated at X
′
2iβ. From equation (2), ε2|ε1 follows a normal distribution with mean

ε1
σ12
σ11

and variance 1− σ2
12
σ11

.

Similar to Hausman, Abrevaya, and Scott-Morton (1998) in their estimation with symmetric misclas-

sification probabilities and Bollinger and Hasselt (2009), we assume that θ1|0 ≤ 0.5 and θ0|1 ≤ 0.5. This

amounts to the requirement that individuals are on average more likely to correctly report their partic-

ipation than to misreport. In other words, no matter the value of the observed covariates for a given

individual, the researcher always places more weight on the reported participation decision than on the

alternative. Although Balcombe and Fraser (2009) indicate that this assumption may not be necessary

for formal identification of the misclassification probabilities, this is intuitively an important assumption

if one is to make any meaningful, practical interpretation of the final results.

Based on the observed y2i and X2i, we want to estimate the actual treatment indicator δi. From
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Bayes’ Theorem, it follows that

Ψδi|y2i
=

P (y2i|δi,X2i)P (δi|X2i)∑1
δ=0 P (y2i|δi,X2i)P (δi|X2i)

=
θy2i|δi

θy2i|δi=0 (1− Φi) + θy2i|δi=1Φi
. (5)

Our estimation procedure described in the next Section 3 relies heavily on the relationship in (5) in

order to estimate the true δi based on the observed y2i and X2i. Intuitively, equation (5) indicates that

as Φi increases (i.e., it becomes more likely that person i’s latent utility is positive), Ψδi=1|y2i=1 increases

while Ψδi=1|y2i=0 decreases. The observed data underlying the latent utility function therefore informs

the researcher, along with the reported treatment participation, as to the probability of misclassification.

The resulting likelihood can be factored as follows:

f (y1,y∗2, δ,y2|Λ,Σ,Θ) ∝f (y1|y∗2, δ,y2,Λ,Σ,Θ)× f (y∗2|δ,y2,Λ,Σ,Θ)

× f (δ|y2,Λ,Σ,Θ)× f (y2|Λ,Σ,Θ) ,

where f (y1|·) and f (y∗2|·) are each normal distributions with means and variances discussed in Section

3. Note that f (δ|·) = Ψδi|y2i
, and f (y2|·) is the same likelihood derived in Hausman, Abrevaya, and

Scott-Morton (1998):

f (y2|·) =
N∏
i=1

{[
θy2i|0(1− Φi) + θy2i|1Φi

]y2i
[
θy2i|0(1− Φi) + θy2i|1Φi

]1−y2i
}
. (6)

3 Sampling Algorithm

To estimate the coefficients in the selection and outcome equations, we adopt a Bayesian Markov Chain

Monte Carlo (MCMC) approach. As Li (1998) discusses, there is an equivalent representation of (1)-

(3) that simplifies the MCMC sampling process. The equivalent system is based on a decomposition of

the joint distribution of (ε1, ε2) into the product of the conditional distribution of ε1|ε2 and marginal

distribution of ε2, which yields

y1i = X′1iγ + δiα+
ε1i︷ ︸︸ ︷

σ12ε2i + νi

y∗2i = X′2,iβ + ε2i

(7)
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where δi = 1(y∗2i > 0), νi ∼ N(0, σ2), ε2i ∼ N(0, 1), with νi independent of ε2i. From ε1i = σ12ε2i + νi

and the joint normality assumption (equation (2) above), it follows that σ2 = σ11 − σ2
12. Based on this

representation, we can rewrite Σ as

Σ =

σ2 + σ2
12 σ12

σ12 1

 . (8)

We specify prior distributions for β, α, γ, Θ, σ2, and σ12 in order to obtain draws from the posterior

distributions. Our assumed prior distributions are

f(Λ) ∼ N(0,VΛ),

f(σ12) ∼ N(0, Vσ12),

f(σ2) ∼ IG(a, b−1), and

f(θ0|1) = f(θ1|0) ∼ U [0, 0.5].

Our sampling algorithm derives from a combination of data augmentation, Gibbs sampling, and Metropolis-

Hastings, and draws heavily from Gelfand and Smith (1990), Chib (1992), Rossi, McCulloch and Allenby

(1996), Li (1998), and Balcombe and Fraser (2009). The idea is to draw the latent δi (the true treatment

indicator) using observed data, with which we can draw the latent y∗2i from the univariate truncated

normal distribution. The model then reduces to a standard SUR model, where we can draw Λ, σ12, and

σ2. We obtain draws of the misclassification probabilities θ0|1 and θ1|0 from Metropolis-Hastings based

on the likelihood for Θ =
(
θ0|1, θ1|0, θ1|1, θ0|0

)′. This algorithm is presented in more detail below:

1. Begin with initial values of all coefficients and denote by s the current iteration in the MCMC.

Given Θs−1, the probability of the “true” participation conditional on the observed participation is

given directly from equation (5):

Ψs
δi=1|y2i

=
θs−1
y2i|1Φs−1

i

θs−1
y2i|1Φs−1

i + θs−1
y2i|0(1− Φs−1

i )
,

where Φi is the CDF of the standard normal distribution evaluated at X
′
1iγ. Note that we need

only form Ψi for δi = 1 or δi = 0 since Ψδi=1|y2i
= 1−Ψδi=0|y2i

.

2. Draw the “true” treatment participation variable based on the probabilities from step 1 above: δsi =

1 (ri ≤ Ψs
i ), where ri is a draw from a uniform distribution with support [0, 1]. The intuition behind
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this deserves some detail. Ψi represents the conditional probability of δi = 1, given the observed

choice y2i and the underlying data X2i. As X
′
2iβ increases, the probability of δi = 0 decreases.

If X
′
2iβ is a large positive number and y2i = 1, then the probability of misclassification will be

minimal; however, if X
′
2iβ is a large positive number and y2i = 0, the probability of misclassification

will be higher.

3. Draw latent treatment variables y∗2i for i = 1, ..., N . Conditional on Λ, Σ, and δ, y∗2i follows a

truncated normal distribution, truncated below by 0 if δi = 1 and truncated above by 0 if δi = 1:

y∗,s2i |X2i, δ
s
i = 1,Λs−1

∼ N[0,∞)

(
X
′
2iβ

s−1 +
σs−1

12

σ2,s−1 + σ2,s−1
12

(
y1i −X

′
1iγ

s−1 − αs
)
, 1− σ2,s−1

12

σ2,s−1 + σ2,s−1
12

)
∀i and

y∗,s2i |X2i, δ
s
i = 0,Λs−1

∼ N(−∞,0]

(
X
′
2iβ

s−1 +
σs−1

12

σ2,s−1 + σ2,s−1
12

(
y1i −X

′
1iγ

s−1
)
, 1− σ2,s−1

12

σ2,s−1 + σ2,s−1
12

)
∀i.

We adopt the inverse transform method in order to obtain draws of the latent y∗2i from the univariate

truncated normal distribution.

4. Draw the outcome and selection equation coefficients, Λ. Conditional on y∗2 and Σ, and with a

normal prior distribution, Λ follows a normal distribution:

Λs|y∗,s2 ,Σs ∼ N (AB,A) , where

A =

(
N∑
i=1

X
′
iΣ
−1,s−1Xi + VΛ

)−1

and

B =
N∑
i=1

X
′
iΣ
−1,s−1Yi.

5. Draw the covariance, σ12. Conditional on Λ, y∗1i, δ, and σ2, and with a normal prior distribution,

10



σ12 also follows a normal distribution:

σs12|Λs,y∗,s2 , δs, σ2,s−1 ∼ N (Dd,D) , where

D =

(
ε̂
′
2ε̂2

σ2,s−1
+ V −1

σ12

)−1

,

d =
ε̂
′
2ε̂1

σ2,s−1
,

ε̂1 = y1 −X
′
1γ
s − δsαs, and

ε̂2 = y∗,s2 −X
′
2β

s.

6. Draw the variance, σ2. Conditional on Λ, σ12, y∗2, and δ, and with an inverse gamma prior, σ2

follows an inverse gamma distribution:

σ2,s|Λs, σs12,y
∗,s
2 , δs ∼ IG

N
2

+ a,

[
1
b

+
1
2

N∑
i=1

(
y1i −X

′
1iγ

s − δsiαs − σs12ε̂2

)2
]−1

 .

7. Draw the misclassification probabilities, Θ =
(
θ1|0, θ0|1, θ0|0, θ1|1

)
. To obtain draws from the pos-

terior distribution of Θ, first recall the conditional likelihood function of the observed treatment

indicator given in equation 6 above, and denote the natural log of equation 6 by L (Θ). We follow

the standard Metropolis-Hastings algorithm to obtain draws from the posterior distribution. First,

we obtain candidate draws

θc1|0 = θs−1
1|0 + ρ1 and

θc0|1 = θs−1
0|1 + ρ2,

where ρ1 and ρ2 are independent draws from normal distributions with mean zero and variance t21

and t22, respectively. In practice, the t1 and t2 represent the tuning parameters, which we adjust (if

necessary) every 10 iterations to ensure the probability of accepting the candidate draws remains at

acceptable levels. In our case, we adjust the tuning parameter up or down to maintain an acceptance

probability of between 20% and 60%. We accept the candidate draw Θc with probability min{1, p},

where p = exp
{
L (Θc)− L

(
Θs−1

)}
.
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4 MCMC Simulations

4.1 Simulated Data

To test our estimation procedure, we present a variety of simulations consistent with the model presented

in equations (1)-(3). Our “baseline” simulation consists of N = 5, 000 people. To simulate covariates in

the outcome equation, we generate random draws for X1 = {x1,1,x1,2}, where

x1,1 ∼ LN (−1, 1) and

x1,2 ∼ N (−1, 3) ,

where LN (−1, 1) denotes a log-normal distribution with a mean of e−1 and standard deviation of e, and

N (−1, 3) denotes a normal distribution with a mean of -1 and standard deviation of 3. For the selection

equation covariates, we set x2,1 = x1,1, x2,2 = x1,2, and x2,3 ∼ U [−2, 1]. We therefore identify the

selection equation coefficients by excluding x2,3 from the outcome equation.

The observed outcome and latent participation variables are then simulated as follows:

y1i = X′1iγ + δiα+ ε1i

y∗2i = X′2iβ + ε2i, where

γ =

−1

1

 , α = 1.5, β =


−1

2

1/2

 , and

ε1
ε2

 ∼ N

0,

 2 0.1

0.1 1

 .

We also set the misclassification probabilities θ1|0 = 0.3 and θ0|1 = 0.1.

Given Θ and the actual participation δi = 1 {y∗2i > 0}, we simulate the observed participation y2i

as follows. We first generate a random number r ∼ U [0, 1]. If δi = 1, then y2i = δi with probability

θ1|1 = 1−θ0|1 = 0.9, which we simulate by setting y2i = 1 if r ≤ θ1|1 = 0.9 (or equivalently r > θ0|1 = 0.1).

Otherwise, we set y2i = 0. Alternatively, if δi = 0, then y2i = δi with probability θ0|0 = 1 − θ1|0 = 0.7,

which we simulate by setting y2i = 1 if r ≤ θ1|0 = 0.3. Otherwise, y2i = 0.

We refer to the above simulation as the baseline data, and consider alternative specifications as follows:

1) the number of individuals analyzed (N = 5, 000 and N = 500); 2) the magnitude of the variance-

covariance matrix Σ (σ11 = 2, σ12 = 0.1; σ11 = 1, σ12 = −0.9; σ11 = 9, σ12 = −1.5; and σ11 = 2, σ12 = 0);
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3) values of the misclassification probabilities (θ1|0 = 0.3, θ0|1 = 0.1; θ1|0 = θ0|1 = 0.4; and θ1|0 = θ0|1 = 0);

4) exclusion of relevant variables in the selection equation; and 5) non-normal residuals. This yields a

total of ten different simulated datasets. In each case, we are interested in the effect of misclassification

and endogeneity on the coefficient estimates, particularly the treatment effect α. We therefore estimate

each of the ten simulated datasets under four alternative specifications of the data generating process:

1) a correctly specified model accounting for both endogeneity and misclassification (“Model A”); 2)

a model accounting for endogeneity but not misclassification (“Model B”); 3) a model accounting for

misclassification but not endogeneity (“Model C”); and 4) a model ignoring both misclassification and

endogeneity (“Model D”). Models B-D are therefore intentionally misspecified models designed to assess

the impact of failing to account for certain aspects of the underlying data.

4.2 MCMC Results

We follow the steps in Section 3 above for 7,000 draws and drop the first 2,000. The posterior means and

standard deviations for the baseline data are summarized in Table 4.1 below.

As Table 4.1 shows, the estimator proposed in this paper accurately estimates the coefficients in the

selection and outcome equations (β1, β2, β3, γ1, and γ2). More importantly, our approach accurately

estimates the treatment effect (α) as well as the misclassification probabilities (θ0|1 and θ1|0) using no

additional information than what is used in the standard treatment model with selection on observables.

We also note that, consistent with Bollinger (1996) and others, σ12 is only partially identified in our model.

Simulation results also show that σ12 is point-identified under certain restrictions on the misclassification

process. However, the focus of our proposed estimator is on the accurate estimation of the misclassification

probabilities and the treatment effect. As such, additional identification considerations regarding σ12 are

beyond the scope of this paper.

Consistent with the general misclassification literature, Table 4.1 shows that failing to account for

misclassification leads to biased coefficient estimates in the selection equation, where the posterior means

for β1 and β2 are each at least approximately 30 standard deviations away from their respective true

values. Failing to account for misclassification can also introduce bias in the estimate of the treatment

effect. In this case, the estimated treatment effect of 1.299 is over 4 standard deviations away from the

true treatment effect of 1.5.6

6These results are consistent across each of the ten data generating processes considered. The corresponding tables of
posterior means and standard deviations for the remaining eight datasets are presented in the attached Appendix A.
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Table 4.1: MCMC Results for Baseline Model

True Posterior Meansa

Value
Model A Model B Model C Model D

γ1 -1 -1.004 -1.077 -0.978 -0.916
(0.024) (0.026) (0.024) (0.023)

γ2 1 1.002 1.089 1.014 1.107
(0.008) (0.007) (0.008) (0.007)

α 1.5 1.475 1.299 1.331 0.771
(0.052) (0.051) (0.047) (0.033)

β1 -1 -0.994 0.058 -0.835 0.058
(0.122) (0.019) (0.123) (0.019)

β2 2 2.093 0.192 2.002 0.187
(0.109) (0.007) (0.111) (0.007)

β3 0.5 0.396 -0.059 0.376 -0.064
(0.078) (0.019) (0.097) (0.020)

σ11 2 2.066 2.380 2.105 2.265
(0.042) (0.053) (0.044) (0.045)

σ12 0.1 -0.295 -0.568 0 0
(0.051) (0.042)

θ1|0 0.3 0.313 0 0.310 0
(0.009) (0.008)

θ0|1 0.1 0.105 0.000 0.106 0.000
(0.008) (0.009)

aStandard deviations are in parenthesis.

One of the primary interests of this paper is the accurate estimation of the treatment effect in light of

misclassification and endogenous treatment. From Table 4.1, it is clear that our proposed estimator can

accurately estimate the treatment effect under at least some circumstances; however, in order to assess the

robustness of our proposed estimator, we simulated additional datasets and looked for any changes in our

estimate of α (relative to the true value) under different data generating processes. Figure 4.1 presents

the densities for α under four of the simulated datasets discussed previously, and for each dataset, we

present densities for all four models under consideration.

The densities plotted in Figure 4.1 illustrate some important points. First, the posterior distributions

for α under the correctly specified models (the solid line) most accurately cover the true values in each

of the four datasets considered, while the distributions under the most misspecified model (the dash-

dotted line) never cover the true value. Second, there is evidence that accounting for misclassification and

endogeneity becomes more important as more information is considered, as illustrated by the increased
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Figure 4.1: Box Plots for αa
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aBox plots for Model A ( correctly specified model), Model B (ignoring misclassification), Model C (ignoring endogeneity),
and Model D (ignoring endogeneity and misclassification).

bias for N = 5, 000 relative to N = 500.

We summarize additional simulations as follows: Figure 4.2 presents densities for the baseline data,

data without misclassification but with endogeneity (θ1|0 = θ0|1 = 0), data with misclassification but

without endogeneity, and data without either misclassification or endogeneity. Figure 4.3 presents den-

sities for the baseline data, data with an excluded relevant variable in the selection equation, data with

high misclassification probabilities, and data with non-normal errors.
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Figure 4.2: Box Plots for αa
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aBox plots for Model A ( correctly specified model), Model B (ignoring misclassification), Model C (ignoring endogeneity),
and Model D (ignoring endogeneity and misclassification).

Two points to note from Figure 4.2 are: 1) as long as there is no misclassification in the true data

generating process, a model that assumes σ12 = 0 (Model C) still performs relatively well; and 2) if the

true data generating process is subject to misclassification but not endogeneity, a model that ignores

misclassification but allows for endogeneity can still improve the estimate of the treatment effect relative

alternative specifications. Point (2) is somewhat surprising at first glance. Intuitively, the justification for

this result is that even with ex ante independence between ε1 and ε2, the outcome equation is still subject

to a misclassified binary covariate. And as discussed in Kreider (2010) and others, such a misclassification

yields a negative correlation between the true and observed participation. Therefore, the presence of

16



misclassification introduces endogeneity into the model, and models that ignore potential endogeneity

may not accurately estimate the treatment effect. This is also clear in Table A.5, where the posterior

mean for σ12 is approximately −0.55 despite the true σ12 = 0.

Figure 4.3: Box Plots for αa
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aBox plots for Model A ( correctly specified model), Model B (ignoring misclassification), Model C (ignoring endogeneity),
and Model D (ignoring endogeneity and misclassification).

We are also interested in the performance of our estimator with non-normal errors, excluded relevant

variables, and high misclassification probabilities. Figure 4.3 therefore illustrates the draws for α under

each of these considerations. The lower-left quadrant presents the posterior distributions for α based on

data with high misclassification probabilities (θ1|0 = θ0|1 = 0.4), the upper-right quadrant presents draws

where a relevant variable has been intentionally excluded from the selection equation, and the lower-left
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presents draws with non-normal errors.7 In all cases, Figure 4.3 illustrates that our proposed estimator

accurately estimates the treatment effect in light of non-normal errors, high misclassification probabilities,

or excluded relevant variables. Figure 4.3 also illustrates that, with high misclassification probabilities,

a model that allows for endogeneity and ignores misclassification largely improves the estimate of α

relative to a model that accounts for misclassification but ignores endogeneity. This is consistent with

the discussion above regarding ex post correlation in the presence of misclassification.

5 Summary and Conclusions

This paper contributes to the growing literature on misclassified and endogenous treatment participation.

We propose a Bayesian estimator that can incorporate both misclassified and endogenous treatment in

a single framework. MCMC simulations demonstrate that, without accounting for misclassification or

endogeniety of treatment assignment, estimates of the treatment effect and other coefficients are incon-

sistent. We show that our proposed Bayesian estimation procedure and sampling algorithm accurately

estimate the treatment effect in light of misclassified and endogenous treatment.

Our work has a number of important and natural extensions to be addressed. First, the misclassifica-

tion probability could be modeled on an individual level, particularly if there data that can help model

these probabilities. For example, the personal misclassification probability could be modeled as a function

of both personal data, either included in the selection model, or excluded from it, as well as data from

a higher level of aggregation, e.g. state or county level data. Second, a panel data version of this model,

where misclassification probabilities could be a function of both past and future participation, could prove

to be useful.

7Our process for simulating non-normal errors is summarized in Appendix B.
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A Summary Tables for Additional Simulations

Table A.1: MCMC Results for σ11 = 1 and σ21 = −0.9

True Posterior Meansa

Value
Model A Model B Model C Model D

γ1 -1 -1.003 -1.075 -0.951 -0.888
(0.016) (0.019) (0.016) (0.017)

γ2 1 1.000 1.090 1.023 1.110
(0.005) (0.005) (0.005) (0.005)

α 1.5 1.514 1.315 1.254 0.692
(0.033) (0.035) (0.033) (0.024)

β1 -1 -0.928 0.052 -0.883 0.050
(0.084) (0.019) (0.116) (0.019)

β2 2 1.748 0.190 1.832 0.184
(0.081) (0.007) (0.118) (0.007)

β3 0.5 0.413 -0.023 0.537 -0.043
(0.053) (0.018) (0.100) (0.020)

σ11 1 0.939 1.303 0.987 1.144
(0.020) (0.032) (0.021) (0.023)

σ12 -0.9 -0.586 -0.666 0 0
(0.028) (0.029)

θ1|0 0.3 0.321 0 0.310 0
(0.009) (0.008)

θ0|1 0.1 0.127 0 0.106 0
(0.010) (0.009)

aStandard deviations are in parenthesis.
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Table A.2: MCMC Results for σ11 = 9 and σ21 = −1.5

True Posterior Meansa

Value
Model A Model B Model C Model D

γ1 -1 -1.019 -1.083 -0.960 -0.869
(0.048) (0.053) (0.048) (0.047)

γ2 1 0.996 1.087 1.022 1.111
(0.016) (0.014) (0.016) (0.014)

α 1.5 1.509 1.309 1.214 0.609
(0.108) (0.103) (0.097) (0.067)

β1 -1 -0.893 0.063 -0.596 0.063
(0.131) (0.019) (0.113) (0.019)

β2 2 2.072 0.188 1.697 0.187
(0.119) (0.007) (0.130) (0.007)

β3 0.5 0.447 -0.054 0.404 -0.052
(0.089) (0.020) (0.081) (0.021)

σ11 9 8.760 9.216 8.832 9.011
(0.179) (0.194) (0.178) (0.181)

σ12 -1.5 -0.577 -0.750 0 0
(0.108) (0.087)

θ1|0 0.3 0.311 0 0.304 0
(0.009) (0.008)

θ0|1 0.1 0.114 0 0.107 0
(0.009) (0.009)

aStandard deviations are in parenthesis.
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Table A.3: MCMC Results for N = 500

True Posterior Meansa

Value
Model A Model B Model C Model D

γ1 -1 -0.975 -1.068 -0.918 -0.840
(0.093) (0.111) (0.092) (0.092)

γ2 1 0.982 1.062 1.001 1.086
(0.027) (0.025) (0.027) (0.024)

α 1.5 1.440 1.276 1.241 0.695
(0.174) (0.189) (0.162) (0.114)

β1 -1 -0.847 0.136 -0.808 0.153
(0.339) (0.069) (0.427) (0.070)

β2 2 1.937 0.191 2.108 0.191
(0.289) (0.022) (0.587) (0.021)

β3 0.5 0.179 0.024 0.313 0.039
(0.225) (0.060) (0.302) (0.062)

σ11 2 2.239 2.577 2.277 2.430
(0.147) (0.187) (0.147) (0.154)

σ12 0.1 -0.349 -0.582 0 0
(0.156) (0.151)

θ1|0 0.3 0.291 0 0.292 0
(0.026) (0.027)

θ0|1 0.1 0.105 0 0.100 0
(0.029) (0.031)

aStandard deviations are in parenthesis.
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Table A.4: MCMC Results for θ1|0 = θ0|1 = 0

True Posterior Meansa

Value
Model A Model B Model C Model D

γ1 -1 -1.001 -1.002 -1.005 -1.005
(0.022) (0.022) (0.022) (0.022)

γ2 1 1.001 1.001 0.999 0.999
(0.008) (0.008) (0.008) (0.007)

α 1.5 1.490 1.493 1.507 1.507
(0.045) (0.045) (0.042) (0.042)

β1 -1 -1.018 -1.018 -1.019 -1.021
(0.073) (0.064) (0.067) (0.064)

β2 2 2.065 2.074 2.055 2.075
(0.100) (0.078) (0.080) (0.078)

β3 0.5 0.481 0.491 0.478 0.490
(0.046) (0.050) (0.054) (0.050)

σ11 2 1.996 1.995 1.995 1.994
(0.040) (0.040) (0.040) (0.040)

σ12 0.1 0.065 0.053 0 0
(0.067) (0.065)

θ1|0 0 0.001 0 0.001 0
(0.001) (0.001)

θ0|1 0 0.001 0 0.001 0
(0.001) (0.001)

aStandard deviations are in parenthesis.
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Table A.5: MCMC Results for σ21 = 0

True Posterior Meansa

Value
Model A Model B Model C Model D

γ1 -1 -0.995 -1.087 -0.958 -0.919
(0.024) (0.027) (0.023) (0.023)

γ2 1 1.003 1.087 1.019 1.106
(0.008) (0.007) (0.008) (0.007)

α 1.5 1.469 1.364 1.290 0.804
(0.051) (0.053) (0.048) (0.033)

β1 -1 -0.992 0.051 -0.815 0.048
(0.152) (0.019) (0.119) (0.019)

β2 2 2.077 0.185 1.699 0.185
(0.156) (0.007) (0.109) (0.007)

β3 0.5 0.562 -0.030 0.414 -0.055
(0.086) (0.019) (0.085) (0.020)

σ11 2 2.048 2.340 2.097 2.209
(0.042) (0.053) (0.044) (0.044)

σ12 0 -0.328 -0.596 0 0
(0.053) (0.045)

θ1|0 0.3 0.315 0 0.309 0
(0.009) (0.009)

θ0|1 0.1 0.110 0 0.104 0
(0.009) (0.009)

aStandard deviations are in parenthesis.
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Table A.6: MCMC Results for σ21 = 0 and θ1|0 = θ0|1 = 0

True Posterior Meansa

Value
Model A Model B Model C Model D

γ1 -1 -0.996 -0.996 -0.991 -0.991
(0.023) (0.022) (0.022) (0.022)

γ2 1 1.001 1.001 1.003 1.003
(0.008) (0.008) (0.008) (0.007)

α 1.5 1.496 1.495 1.473 1.475
(0.047) (0.045) (0.042) (0.042)

β1 -1 -0.996 -0.998 -1.012 -1.000
(0.057) (0.063) (0.071) (0.063)

β2 2 1.888 1.894 1.923 1.896
(0.055) (0.075) (0.088) (0.075)

β3 0.5 0.456 0.467 0.470 0.465
(0.048) (0.049) (0.046) (0.049)

σ11 2 1.989 1.988 1.990 1.987
(0.040) (0.040) (0.040) (0.040)

σ12 0 -0.080 -0.072 0 0
(0.065) (0.062)

θ1|0 0 0 0 0 0
(0.000) (0.000)

θ0|1 0 0.002 0 0.002 0
(0.001) (0.002)

aStandard deviations are in parenthesis.
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Table A.7: MCMC Results for θ1|0 = θ0|1 = 0.4

True Posterior Meansa

Value
Model A Model B Model C Model D

γ1 -1 -0.995 -1.039 -0.992 -0.826
(0.025) (0.027) (0.041) (0.024)

γ2 1 1.003 1.146 1.032 1.138
(0.008) (0.007) (0.010) (0.007)

α 1.5 1.477 1.353 1.105 0.550
(0.053) (0.053) (0.061) (0.035)

β1 -1 -1.083 -0.035 0.017 -0.036
(0.176) (0.018) (0.336) (0.019)

β2 2 1.933 0.057 1.371 0.057
(0.153) (0.006) (0.232) (0.006)

β3 0.5 0.272 0.002 -0.277 0.004
(0.105) (0.018) (0.213) (0.019)

σ11 2 2.083 2.645 2.201 2.391
(0.044) (0.063) (0.048) (0.048)

σ12 0.1 -0.375 -0.806 0 0
(0.046) (0.042)

θ1|0 0.4 0.412 0 0.400 0
(0.009) (0.010)

θ0|1 0.4 0.412 0 0.423 0
(0.013) (0.014)

aStandard deviations are in parenthesis.
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Table A.8: MCMC Results for Excluded Relevant Variable

True Posterior Meansa

Value
Model A Model B Model C Model D

γ1 -1 -1.027 -1.096 -0.982 -0.940
(0.024) (0.027) (0.025) (0.024)

γ2 1 0.981 1.076 0.999 1.093
(0.008) (0.007) (0.008) (0.007)

α 1.5 1.596 1.405 1.401 0.884
(0.055) (0.055) (0.050) (0.034)

β1 -1 -0.671 0.052 -0.665 0.051
(0.095) (0.018) (0.107) (0.019)

β2 2 1.563 0.184 1.472 0.181
(0.119) (0.006) (0.122) (0.006)

β3 0.5 0.452 -0.014 0.428 -0.027
(0.065) (0.020) (0.078) (0.020)

σ11 2 2.182 2.479 2.236 2.367
(0.045) (0.055) (0.045) (0.048)

σ12 0.1 -0.312 -0.553 0 0
(0.047) (0.046)

θ1|0 0.3 0.303 0 0.301 0
(0.009) (0.009)

θ0|1 0.1 0.106 0 0.102 0
(0.009) (0.010)

aStandard deviations are in parenthesis.

26



Table A.9: MCMC Results for Non-Normal, Correlated Errors

True Posterior Meansa

Value
Model A Model B Model C Model D

γ1 -1 -1.012 -1.129 -0.989 -0.936
(0.019) (0.022) (0.019) (0.019)

γ2 1 1.002 1.088 1.010 1.108
(0.006) (0.006) (0.006) (0.005)

α 1.5 1.516 1.413 1.436 0.839
(0.038) (0.041) (0.037) (0.026)

β1 -1 -1.333 0.068 -1.336 0.067
(0.113) (0.020) (0.135) (0.021)

β2 2 2.555 0.183 2.422 0.181
(0.155) (0.006) (0.190) (0.006)

β3 0.5 0.773 -0.009 0.787 -0.034
(0.100) (0.018) (0.106) (0.020)

σ11 1 1.131 1.449 1.160 1.315
(0.024) (0.035) (0.025) (0.026)

σ12 0.5 -0.177 -0.603 0 0
(0.034) (0.035)

θ1|0 0.3 0.315 0 0.315 0
(0.008) (0.008)

θ0|1 0.1 0.092 0 0.089 0
(0.008) (0.008)

aStandard deviations are in parenthesis.
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B Process for Simulating Non-Normal Errors

We simulated correlated and skewed errors as follows:

1. Obtain two N × 1 vectors of standard normal errors, (ε ∼ N(0, 1));

2. Transform (ε1, ε2) by setting ε̃ = (exp {ε1} , exp {ε2});

3. Transform ε̃ by setting e = ε̃ × Chol
(
C−1

)
× Chol (S), where C is the 2 × 2 variance-covariance

matrix of ε̃1 and ε̃2, and

S =

 1 0.5

0.5 1

 ;

4. Demean the resulting errors to obtain mean-zero, skewed, and correlated errors.

The resulting errors simulated from this process are mean-zero, with a variance-covariance matrix given

by

Ŝ =

 1.000 0.5004

0.5004 1.000

 ,

and as indicated in the QQ-plot in Figure B.1, the errors are non-normal.
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Figure B.1: Normal Q-Q Plots for Simulated Errorsa
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aThe red and black plots represent ε̃1 and ε̃2, respectively.
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