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Probabilistic Risk Attitudes and Local Risk Aversion: a Paradox 

 

 

 Abstract: Prominent theories of decision under risk that challenge expected utility theory model 

risk attitudes at least partly with transformation of probabilities. This paper shows how 

attributing local risk aversion (partly or wholly) to attitudes towards probabilities can produce 

extreme probability distortions that imply paradoxical risk aversion. 

 

Keywords: risk aversion, probability transformation, calibration 

 

1. Introduction 

The first paradox to challenge expected utility theory was offered by Allais (1953). The Allais 

patterns violate the independence axiom, which gives the expected utility functional its 

idiosyncratic feature of linearity in probabilities. In order to avoid the Allais paradox, theories of 

decision under risk that relax the independence axiom were developed (see Starmer, 2000 for an 

accessible presentation).  

 The idea of representing risk aversion with nonlinear probability transformations 

originated in the psychology literature about mid-twentieth century (Preston and Baratta, 1948; 

Edwards, 1954) and entered the economics literature in late the seventies (Handa, 1977; 

Kahneman and Tversky, 1979; Quiggin, 1982). Some early models of probability weighting 

(Handa, 1977; Kahneman and Tversky, 1979) were shown to violate first order stochastic 

dominance. Subsequent models with rank dependence of prizes avoid that problem (Tversky and 

Kahneman, 1992; Quiggin, 1993). Further development and applications of rank dependent 

models, and other alternatives to expected utility, have continued to the present. Wakker (2010) 

provides a comprehensive presentation of the literature. Rank dependent utility models have 

been relatively successful in explaining several behavioral ‘anomalies’ that have been observed 

in the laboratory and in the field, which accounts for their recent widespread use in field 

applications. 

       This paper, however, is concerned with the implications of probabilistic sensitivity and 

rank dependence for risk aversion. I argue that attributing local (with respect to probabilities) 

risk aversion to attitudes towards probabilities can produce paradoxical risk aversion. This calls 
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into question the ability of rank dependent utility models to rationalize risk aversion at small and 

large probabilities.    

 

2. Risk Aversion as Attitude toward Probabilities: An Example of the Paradox 

In order to provide an intuition for the main result in the paper, this section presents an 

illustrative example of risk-avoiding choices that provide a challenge to modeling risk 

preferences with probabilistic attitudes.  

 Suppose that an individual is offered a choice between two prospects represented by urn 

Sg and urn Rg. Urn Sg contains 100 balls in the following composition: 10 white balls, g green 

balls and b black balls. Each white ball pays $1000, each green ball pays $4000 and each black 

ball pays $0. Urn Rg is constructed from urn Sg by replacing 10 white balls with 5 green balls and 

5 black balls. Table 1 summarizes all the information on prizes and compositions of balls for the 

two urns.  

 

Table 1. Illustration of composition of urns Sg and Rg ; g is from {0,5,…, 90} 

Ball Prizes $4000 $1000 $0  

Ball Colors Green White Black Total 

Ball composition in urn Sg g 10 b 100 

Ball composition in urn Rg g+5 0 b+5 100 

 

 

 Thus, the decision problem the individual is facing is the choice between urn Sg that 

offers prizes $4K, $1K and $0 with probabilities g/100, 10/100 and b/100 and a relatively riskier 

urn Rg that offers only extreme prizes, $4K and $0 with probabilities (g+5)/100 and (b+5)/100.1 

                                                 

 

1 Formally, for ( 5) /100 and 10p g n    , urn Rg is prospect {$4 ,0; ,1 }K p p  whereas urn Sg is prospect 

{$4 ,$1 ,0; 1 / 2 ,1 / ,1 1 / 2 }K K p n n p n   . All prospects R and S considered in this paper are of these types. 
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(1K and 4K, respectively, denote $1000 and $4000.) Figure 1 illustrates, in the probability 

triangle, pairs of two prospects offered by urns Sg and Rg for different combinations of green and 

black balls.   

 What might be the decision of our individual? Cox, Sadiraj, Vogt and Dasgupta (2012) 

reports that in their experiments the majority of subjects, who were asked to make similar 

choices as our individual, were either indifferent or preferred the safer prospect, Sg over the 

riskier prospect Rg for all compositions of green and black balls that they faced. So suppose that 

our individual is like the majority of subjects in the Cox et al. experiments in that he weakly 

prefers urn Sg to urn Rg for all g from {0,5,…,90}.2 Note that, in the probability triangle in 

Figure 1, such choices are expected wherever linear (but not necessarily parallel) indifference 

curves are steeper than the 45o line.  

What are the implications for rank dependent models if these risk avoiding choices are 

attributed (partly) to sensitivity towards probabilities? The implications are potentially extreme 

distortions of probabilities that produce paradoxical risk aversion at large probabilities as 

illustrated below.  If ( )   denotes the value function defined over the prizes3, normalized such 

that (0) 0,   and ( )f   denotes the transformation of decumulative probabilities then it can be 

shown (see the proof of Proposition A.1 in the Appendix) that indifference or preference for urn 

Sg over Rg when the number of green balls is from { , 5, ,..., 5 }g g g k   for some feasible integer 

k  reveals that  

(1)  15( 2) 5( 1) 5
( ) ( ) ( ) ( )

100 100 100 100
kg k g k g g

f f q f f         
 

where 1 (4 ) / (1 ).q K K     Inequality (1) shows that the slope of the transformation of 

decumulative probabilities increases geometrically and therefore severe underweighting of 

                                                 

 

2 The supposition that the safer prospect is weakly preferred for all g from {0, 5, ...,90} is made here for simplicity 
of exposition; section 3 provides general results for cases when the weak preference for the safer urn is observed 
only for some subset of {0,5,…,90}. 
 
3 In this paper the value function (.)v  is defined over prizes. For the terminal wealth model , as in rank dependent 

utility model, ( ) ( )v y u w y  ; for the income model,  as in cumulative prospect theory, ( ) ( )v y u y .  
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probabilities is expected when 1.q  4  An implication of such preferences is for example 

10 20(0.5) ( 1) / ( 1)f q q   . If, consistent with Abdellaoui et al. (2007), we set (4 ) / (1 ) 3v K v K   

then the last inequality implies (0.5) 0.00098f  . This extreme probability distortion and sub-

additivity of ( )   imply preference for a sure amount of $20 over a prospect that offers $20,000 

or 0 with equal probability.5  

 

2.b Payoff Scale Invariance 

The above example uses payoffs of $4000, $1000, and $0. Inspection of statement (1) reveals 

that the only way in which the valuation of prizes enters the inequalities is through 

[ (4 ) / (1 )] 1q K K   . Hence, irrespective of the size of payoffs (whether they are very large or 

very small or moderate in size), weak preference for urn Sg over a range of green balls implies 

the same paradoxical risk aversion for any pair of payoffs with the same ratio of valuation 

( 1).q   For example, the prizes can be $40 (for a green ball), $10 (for a white ball) and $0 (for a 

black ball) and risk aversion implications are similar for corresponding prizes that involve 

millions as long as the valuation of $40 (or $40 million) is more than twice the valuation of $10 

(or $10 million). Cox et al. (2012) report an experiment conducted in Magdeburg where payoffs 

$40/$10/0 were used. Arguably, at these small stakes the utility should be approximately linear 

and therefore q is expected to be larger than 2. The estimated percentage of subjects who 

revealed weak preference for the three outcome lottery Si over lottery Ri, (i=1,…,9) is 65% 

which is similar to the 72% figure reported for another experiment conducted in Calcutta with 

payoffs 400/80/0 in rupees.  

 

                                                 

 

4 The supposition that the value of $4K is more than twice the value of $1K is consistent with estimates reported in 
Abdellaoui, Bleichrodt and L’Haridon (2008). This paper offers an appealing preference-based methods for 
measuring utility of (positive and negative) prizes under prospect theory; reported measurements of utility were 
robust to probabilities used in elicitation. In Abdellaoui et al. (2008) the reported estimated (mean) power exponent 
on the gain domain is 0.86. Since 4K and 1K are within the range of payoffs in their study, our numerical 
illustrations will build on the value of 4K being at least 3 times the value of K, which is satisfied for the power 
estimates in their study.  
5 Verify that (20000) (0.5) 1000 (20) (0.5) (20)v f v f v 

 

where the first inequality follows from subadditivity of v(.) 

whereas the second inequality follows from f(0.5)<0.00098. 
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3. Paradoxical Probabilistic Sensitivity and Risk Aversion 

This section contains the main result of the paper. It reports on implausible implications that 

follow from attributing risk-aversion (partly or wholly) to attitudes towards probabilities. All 

proofs are collected in the appendix. 

Let 1,.., 1,..,{( ) ;( ) }j n j nL x p   denote a prospect with n prizes: it pays jx  with probability 

.jp  As usual, let the outcomes be rank-ordered from best to worst. The rank dependent utility of 

prospect  L is  

 

(2) 1
1...

( ) ( )( ( ) ( ))j j j
j n

U L v x f P f P 


    

where: Pr( : }j jP x x x  ; ( )f   is the transformation of decumulative probability; and ( )v   is a 

strictly increasing valuation function defined over prizes. Without any loss of generality the 

valuation of prize $0 is normalized to 0, (0) 0.v   I assume that the function ( )v   is subadditive 

over relatively large gains, which is consistent with the literature.  

 I am concerned herein with individual preferences over prospects { ,0; },i iR h p
 
and 

{ , ,0; 1/ 2 ,1/ }i iS h m p n n   where / 2ip i n , 1, ,2 1i n    and .n N  In words, the three 

outcome lottery Si pays h with probability / 2 1/ 2 ,i n n  m with probability 1/n (that does not 

depend on i) and 0 otherwise whereas the two outcome lottery Ri pays h with probability / 2i n  

and 0 otherwise. Figure 1 illustrates such pairs of lotteries in the probability triangle. Note that 

all two-outcome lotteries, Ri are on the hypotenuse whereas all three-outcome lotteries, Si lie on 

a line parallel with the hypotenuse at a distance 1/n. Note also that lines that join lotteries Ri and 

Si are parallel with slope 1. So, wherever in the probability triangle indifference curves are not 

flatter than the 45o line lotteries Si are weakly preferred to lotteries Ri. 

The theorem below states implications of a risk avoiding pattern for the transformation of 

probabilities and paradoxical risk aversion that follow from it.  Part (a) of the theorem offers an 

upper bound on the difference between the transformed probabilities of any *
*( , )p p p  and *p  

that follows from weak preference for Si over Ri for all pairs *
*(2 , 2 )i np np N  ; that is for all 

pairs i with Ri from a “connected” subset of the hypotenuse in the  probability triangle.  Part (b) 

states risk aversion implications that follow from part (a). 
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The following standard notation is used: 


 for weak preference,   for strong preference, 

 x   for the smallest integer larger than x, and x    for the largest integer smaller than x. In 

addition, hereafter whenever no confusion is expected symbols q and   will be used as short 

notations for functions ( ) / ( ) 1,q v h v m   
1

0 0

( , , ) 1 .
t s

j i

j i

q t s q q  

 

     

Theorem: Let prizes 0h m   and the integer n N  be given. Suppose that 1q  and ,i iS R  

for all *
*/ 2 ( , )ip i n p p  . Then 

a. *
*( , )p p p   

(*)   *
* *

1
( ) ( ) ( ) ( )   f p f p f p f p


    

 

where  *
*, 2 1 2 , 2 2 1 .q np np np np                     

b.  *
*(0, )p p   , z N  and G N  there exists *n N  such that for all *n n   

* *
* *{zG,z; , } {zG; }p p p p    

 

What does part (a) tell us? Suppose that for some interval *
*( , ) [0,1],p p   the three outcome 

lottery, Si is weakly preferred to the two outcome lottery Ri for all *
*/ 2 ( , )ip i n p p   for some 

.n N
 
Then statement (*) offers an upper bound on the difference between the transformed 

probability of any given *
*( , )p p p  and *p . Note that the smaller the upper bound the more flat 

the transformation of the probabilities, hence the more implausible the implication with respect 

to risk avoiding behavior. This leads to the result stated in part (b). 

Part (b) of the theorem says that no matter how large the multiplier G is and how small   

is for sufficiently large n N  (that is for prospects Si sufficiently close to the hypotenuse) weak 

preference for the safer prospect Si for *
*( , )ip p p  implies that the agent would not be willing to 

trade-off prize z with probability *
*p p  for the alternative prize zG with probability *

*p p    

and 0 with probability . 

   The following examples provide numerical illustrations of parts (a) and (b) of the 

theorem for different intervals of probabilities where prospect Si is preferred over prospect Ri.  
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Example 1: ,i iS R  for all /100 (0.5,1).ip i   In the probability triangle this means that the 

pattern of risk aversion holds for each pair i above the 45o ray. An application of inequality (*) 

with *0.75, 1p p   and * 0.5p   reveals that  (0.75) (0.5) 1 (0.5) / ( , 24, 24).f f f K q  
 

If 

prizes h and m are such that ( ) 2.5 ( )v h v m  then one has  (0.75) (0.5) 0.00004 1 (0.5)f f f   . 

What are risk avoiding implications of a probability transformation that is this flat on the interval 

[0.5, 0.75]? Our individual strictly prefers a lottery that offers prizes $20 and $500,000 with 

equal probability to the lottery that offers $500,000 with probability 0.75 and $0 otherwise.6 

Thus, our individual would be unwilling to trade-off $20 with probability 0.5 in exchange for 

$500,000 with probability 0.25 and 0 with probability 0.25, which is implausible risk aversion. 

 

Example 2: ,i iS R  for all /100 (0,0.5).ip i   In the probability triangle such i pairs of 

prospects are located below the 45o line.  For p=0.25 a direct application of statement (*) with 

( ) 2.5 ( )v h v m  reveals that (0.25) 0.00004 (0.5).f f  Again severe probability distortions are 

implied. The last inequality implies preference for a prospect that pays $100 or $0, each with 

probability 0.5, over a prospect that offers $2.5 million or $0 with probabilities 0.25 and 0.75 

respectively.  

 

Example 3: ,i iS R  for all /100 (0.2,0.8).ip i    In terms of the example in section 2 our 

individual weakly prefers having two white balls in the urn over replacing them with one black 

(increasing this way the number of black balls by one) and one green ball (increasing this way 

the number of green balls by one); he has this preference whenever the number of black balls in 

the safer urn is between 20 and 70. If ( ) 2.5 ( )v h v m  an implication of this preference for rank 

dependent models is preference for a prospect that pays $1.9 million with probability 0.2, $10 
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with probability 0.6 or $0 with probability 0.2 over a prospect that pays $1.9 million or $0 each 

with probability 0.5. So, our agent would not be willing to exchange $10 with probability 0.6 for 

increasing the probability of getting $1.9 million from 0.2 to 0.5 when that exchange increases 

the probability of prize $0 from 0.2 to 0.5.  

 

Table 2 reports further numerical illustrations of probability distortions and paradoxical 

risk aversion. For example, if one prefers the three outcome lottery for all / 20 (0,1)ip i   then 

according to rank dependent models his perception of probability 0.1 must be no larger than 
50.29 10  (row n=10 and column “f(0.1)<”), which is an implausible prediction. Figures in the 

bottom part of Table 2 show numerical illustrations of paradoxical risk aversion. For example, 

preference for the three outcome lottery for all / 20 (0,1)ip i   implies that $100 for sure is 

preferred to 34 million with probability 0.1 or 0 otherwise (see row n=10, p=0.1 column in Table 

2).  Or preference for the three outcome lottery for all / 50 (0, 0.5)ip i   implies that the even 

odds prospect with prizes $100 or $0 is preferred to $0.10 billion with probability 0.1 or 0 

otherwise (see row n=25, most right G column in Table 2).  

 

4. Implausibility of Modeling Risk Aversion as Attitude towards Probabilities 

Previous literature has focused on the inability of expected utility theory (EUT) to rationalize 

some postulated patterns of choices. Allais (1953) introduced patterns of choices under risk that 

(if observed) refute expected utility.  Allais’ critique was directed at the linearity in probabilities 

property of the EUT functional. Rabin’s (2000) patterns of risk aversion were directed at the 

nonlinearity in payoffs property of the EUT functional; they call into question the ability of the 

expected utility of terminal wealth model to rationalize risk aversion at large stakes and at small 

stakes.  

                                                                                                                                                             

 

6 Indeed, let 0.5M denote $500,000 and use subadditivity of (.)v  and the upper bound on (0.75) (0.5)f f  to 

verify that  (0.5 )( (0.75) (0.5)) 25000 (20) (0.75) (0.5) (20)(1 (0.5)).v M f f v f f v f     Then 

rearrange terms in the last inequality to get (0.5 ) (0.75) (0.5 ) (0.5) (20)(1 (0.5).v M f v M f v f    
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This paper introduces a pattern of risk aversion that, if explained by probabilistic risk 

attitudes, implies implausible risk aversion. It is shown how attributing risk aversion to attitude 

towards small probabilities can produce extreme probability distortions that have paradoxical 

implications. Rank Dependent Utility and Cumulative Prospect Theory that are not vulnerable to 

the Allais paradox are vulnerable to the paradoxical risk aversion that follows from nonlinear 

transformation of probabilities, the very property that makes them accommodate the Allais 

paradox. This paper argues that rank dependent utility models have problems rationalizing risk 

aversion for both small and large probabilities. This is true whether the size of payoffs is small 

(as like in most laboratory experiments) or large.  
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Figure 1. Illustration of pairs of lotteries (Si, Ri) in the probability triangle 
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Table 2. Numerical Illustrations of Implications of Risk Aversion Pattern in the supposition 

on the Theorem for ( )/ ( ) 3v h v m    

 

Distortions of Probabilities 

* / 2 1/ 2k n n  * / 2 1 1 / 2k n n   * / 2 0.5 1 / 2k n n   

n * / 2k n  (0.1)f   (0.5)f   * / 2k n  (0.1)f   

5 0.9 0.00098 0.03031 0.4 0.03226 (0.5)f  

10 0.95 0.29x10-5 0.00098 0.45 0.00294 (0.5)f  

25 0.98 0.28x10-13 0.30x10-7 0.48 0.93x10-6 (0.5)f  

50 0.99 0.81x10-27 0.89x10-15 0.49 0.91x10-12 (0.5)f  

Paradoxical Risk Aversion 

* / 2 1/ 2k n n  100 { , 0; ,1 }G p p  {100, 0; 0.5, 0.5} { , 0; 0.1, 0.9}G  

n 
 

* / 2k n  
0.1p   

G 
0.5p   

G 
 

* / 2k n  
G 

5 0.9 102,000 3,300 0.4 3,100 

10 0.95 0.34x108 102,000 0.45 34,100 

25 0.98 0.36x1016 0.33x1010 0.48 0.10x109 

50 0.99 0.12x1030 0.11x1018 0.49 0.11x1015 
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Appendix: Proof of the Theorem 

 

We first prove one proposition and one lemma. Then we use these two results to prove the main 

theorem.  

For any given n N   and for any given two integers *
*,k k N such that *

*1 2 1,k k n     

let *
*( , )k k  denote the following finite set *

* *{ / 2 , ( 1) / 2 ,..., / 2 }.k n k n k n  Recall that for given  

0,h m   ( ) / ( ) 1q v h v m   and for given ,n N  { , ,0; ( 1) / 2 ,1 / ,1 ( 1) / 2 }iS h m i n n i n     

and { ,0; / 2 ,1 / 2 }.iR h i n i n   

 

Proposition A.1: Let prizes 0h m   and n N  be given. Suppose that 1q  and ,i iS R  for 

all *
*( , )ip k k .  Then *

*k ( , )k k    

(a.1)   
*

* 11 1
( ) ( ) ( )  
2 1 2 1 2

kk k
f f f

n n n

 
 

   
 

where 
*

*
1

0 0

/
k k k k

j j

j j

q q
 

 

 

     

Proof.   If i iS R for some *
*{ , , }i k k   then according to statement (2) in the text the agent 

has revealed  

(a.2)  *
*

1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,

2 2 2 2

i i i i
v h f v m f f v h f i k k

n n n n

       
 

  

Adding and subtracting ( ) ( / 2 )v m f i n  on the left-hand-side of the above inequality, rearranging 

terms and using notation ( ) / ( ) 1q v h v m  , one has 

(a.3)  *
*

1 1
( ) ( ) ( ) ( ) , , ,

2 2 2 2

i i i i
f f q f f i k k

n n n n

      
 

  

If j jS R for all ,...,j i i t   where *
*, { , , }i i t k k    then apply inequality (a.3) t  

times to get 

(a.4)   11 1 1
( ) ( ) ( ) ( ) ... ( ) ( )

2 2 2 2 2 2
ti t i t i t i t i i

f f q f f q f f
n n n n n n

                 
   

 

To complete the proof it suffices to show that *
*{ ,..., },k k k   
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(a.5)   
*

*

0

1 1
( ) ( ) ( ) ( )
2 2 2 2

k k
j

j

kk k k
f f f f q

n n n n






     
 

   

and  

(a.6)   
**

1

0

1 1
 ( ) ( ) ( ) ( )

2 2 2 2

k k
j

j

k k k k
f f f f q

n n n n






     
 

  

because the last two inequalities imply that 

*
*

*
*

1

0 0

11 1 1
( ) ( ) ( ) ( ) ;
2 2 2 2k k k k

j j

j j

kk k k
f f f f

n n n n
q q

 
 

 

       
    

  

rearrange terms and use notation 
*

*
1

0 0

/
k k k k

j j

j j

q q
 

 

 

     to obtain statement (a.1) 

Inequality (a.5) follows directly from inequality (a.4) and some rearrangement of terms  

*

*

*

0

1 1 1
( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 2 2

k kk
j

i k j

kk i i k k
f f f f f f q

n n n n n n




 

            
   

   

Similarly, for inequality (a.6) verify that 

* ** 1
1

1 0

1 1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2

k k k
j

i k j

k k i i k k
f f f f f f q

n n n n n n

 


  

            
   

 
 

 

Lemma A.1. If 1q   then  lim , ,
t

q t s


   

Proof. It follows from 
2

1 1
1

0 0

1
( , , ) 1 /

1

t st s
j i t

s
j i

q
q t s q q q

q


 
  


 


   

   

 

Proof of the Theorem 

Part a.  Suppose that ,i iS R  for all *
*/ 2 ( , )ip i n p p   for some .n N  Let *

*( , )p p p  be given. 

Let *k  denote the largest integer smaller than *2 1,np   i.e. * *2 1 .k np     Let k denote the smallest 

integer larger than 2np, that is 2k np     and k* denote the largest integer smaller than 2np*-1, that is 
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* *2 1 .k np     By the supposition in the theorem and the construction of *
* and k k  one has  ,i iS R  

for all *
*( , )ip k k . By Proposition A.1 and construction of k one has   

*
**

*

11 1 1
( ) ( ) ( ) ( ) ( ) ( )  

2 1 2 1 2 1 1

kk k
f p f f f f p f p

n n n

  
    

       
 

Subtract *( )f p  from both sides of the last inequality and note that (1 ) /     to complete the proof 

* *
* * *

1
( ) ( ) ( ) ( ) = ( ) ( )  

1
f p f p f p f p f p f p


           

 
where *

*( , , ).q k k k k    . 

 

Part b. For any given *
*(0, ),p p   G N  and 1q   take  * 21 ln / ln /n G q   . Take any 

n N  such that  *n n  and suppose that ,i iS R  for all *
*/ 2 ( , ).ip i n p p   As above construct 

*2 ,k np p p       and * * *
*2 1 , 2 1k np k np          . Apply Lemma A.1 and inequality *n n   

to get 

** 1 2( 1)
*( , , ) k k nq k k k k q q G        . 

Next applying subaditivity of (.)v , the last inequality and inequality (*) in part (a) of the theorem 

one has 

* * *
* * *

*
*

( )( ( ) ( )) ( )( ( ) ( )) ( )( ( ) ( ))

( ) ( ) ( )   

v zG f p f p Gv z f p f p v z f p f p

v z f p f p

          

   
 

Hence, * *
* *( ) ( ) ( ) ( ) ( ) ( ) ( ) ,v zG f p v zG f p v z f p f p      

 
which completes the proof  

* *
* *{zG, ; , } {zG; }.z p p p p    
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