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Diverse cortical structures are known to coordinate activity as a network in relaying
and processing of visual information to discriminate visual objects. However, how this
discrimination is achieved is still largely unknown. To contribute to answering this
question, we used face-house categorization tasks with three levels of noise in face and
house images in functional magnetic resonance imaging (fMRI) experiments involving
thirty-three participants. The behavioral performance error and response time (RT) were
correlated with noise in face-house images. We then built dynamical causal models
(DCM) of fMRI blood-oxygenation level dependent (BOLD) signals from the face and
house category-specific regions in ventral temporal (VT) cortex, the fusiform face area
(FFA) and parahippocampal place area (PPA), and the dorsolateral prefrontal cortex
(dlPFC). We found a strong feed-forward intrinsic connectivity pattern from FFA and PPA
to dlPFC. Importantly, the feed-forward connectivity to dlPFC was significantly modulated
by the perception of both faces and houses. The dlPFC-BOLD activity, the connectivity
from FFA and PPA to the dlPFC all increased with noise level. These results suggest
that the FFA-PPA-dlPFC network plays an important role for relaying and integrating
competing sensory information to arrive at perceptual decisions.

Keywords: face-house categorization, dynamical causal modeling, FFA, PPA

Introduction

Humans are efficient in perceiving and discriminating the visual objects. How does the
brain receive, relay, and integrate relevant sensory information to make such perception and
discrimination known as perceptual decision? Specifically, what are the brain regions involved
and how do these regions coordinate activity in perceptual decision-making processes? Previous
studies showed that the brain areas on the ventral visual pathway process object category-
specific visual information (Kanwisher et al., 1997; Haxby et al., 2000, 2001, 2002; Engell
and Mccarthy, 2010). However, visual information processing in these early visual areas was
found insufficient in discrimination of visual objects (Rossion et al., 2003; Avidan et al., 2005;
Avidan and Behrmann, 2009). In spite of the abundant research in the field (Wilson et al.,
1993; Haxby et al., 2000, 2002; Ishai et al., 2005; Fairhall and Ishai, 2007; Heekeren et al.,
2008; Ishai, 2008), we do not exactly know where and how visual information is processed
in the brain to arrive at a difficult perceptual decision. In this study, we used face-house
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categorization tasks with three levels of noise in face-house
images in functional magnetic resonance imaging (fMRI)
experiments to answer these questions.

The encoding of relevant sensory information is one of
the main steps of the brain processes in the cognitive chain
leading to perceptual decisions. Experiments on both humans
and non-human primates have demonstrated that the first stage
of perceptual decision-making involves lower order regions
receiving and representing sensory information (Newsome and
Paré, 1988; Britten et al., 1992; Salzman et al., 1992; Romo
et al., 1998; Hernández et al., 2000; Binder et al., 2004). For
example, perception of faces showed stronger response in the
fusiform face area (FFA; Kanwisher et al., 1997) and that
of house in the parahippocampal place area (PPA; Aguirre
et al., 1998; Epstein and Kanwisher, 1998; Haxby et al.,
2001; Vuilleumier et al., 2001) and interaction between these
regions is important in perception of face and house (Stephan
et al., 2008). However, relatively recent studies in the field
have shown that the representation of visual information in
these areas, also called core system, is not sufficient (Marotta,
2001; Avidan et al., 2005; Schiltz et al., 2006; Avidan and
Behrmann, 2009), and further processing of visual information
in the higher order cortical area, also called the extended
system, is crucial to discriminate visual objects (Fairhall and
Ishai, 2007; Heekeren et al., 2008; Avidan and Behrmann,
2009).

The frontal cortex activity, especially activity in the
dorsolateral prefrontal cortex (dlPFC), was reported in semantic
analysis (Gabrieli et al., 1998), disambiguation (Carlson et al.,
2006), and temporal processing (Smith et al., 2003). The dlPFC
was also found to be involved in social decision-making (Sanfey
et al., 2003; Knoch et al., 2006; Lamichhane et al., 2014) and
cognitive control (Miller and Cohen, 2001). The dlPFC has
been understood to accumulate relayed sensory information to
form a decision (Bar et al., 2001). In a previous study, similar
to ours, the core system was found to be functionally organized
in a hierarchical, feed-forward architecture, in which the core
exerted a strong causal influence on the extended system in
frontal cortex (Fairhall and Ishai, 2007).

However, the area-specific activity alone, such as activity
in the ventral cortex and dlPFC, has been suspected not to
be sufficient for the perception of faces (Simon et al., 2011).
Thus, the neural underpinning underling ability of visual
perception remain unclear and understanding of how these
regions in core and extended system coordinate activity in
relaying and integrating competing sensory information to arrive
at perceptual decisions is very important. Here, we aimed
to map out the neural mechanisms for perceptual decision-
making processes by examining categorization-task specific
brain activations, brain connectivity and their modulations
by decision-making task difficulty. We included pictures of
faces and houses as the stimuli and hypothesized that there
would be a significant connectivity from FFA and PPA to
the dlPFC during face-house categorization. We also added
three levels of noise in our stimuli and predicted that there
would be an increase in connectivity within category-specific
brain areas in the ventral temporal (VT) region (the FFA

and the PPA) and feedforward connectivity between these
regions and the extended system (the dlPFC) by face-house
categorization difficulty. The rationale for this prediction is based
on the notion that as noise in face-house stimuli increases,
the neural representation of category specific information in
FFA and PPA decreases (Heekeren et al., 2004). As the result
of decrease in category specific information in these regions
with noise, the sparse sensory information has to be gathered
and evaluated and potentially increasing decision-related brain
activity in decision-making processes (Gabrieli et al., 1998;
Bar et al., 2001; Carlson et al., 2006; Hernández et al.,
2010).

Materials and Methods

Participants
Thirty-three human participants (17 females; mean age 27.54 ±

4.67 years) participated in this study. All participants had normal
or corrected to normal vision and reported normal neurological
history. Participants provided written signed informed consent
forms and were compensated for their participation in the
experiments. Institutional Review Board (IRB) for Joint Georgia
State University and Georgia Institute of Technology Center for
Advanced Brain Imaging, Atlanta, GA, USA approved this study.

Stimuli
We used a total of 14 neutral images of faces and 14 images of
houses as stimuli. All the presented pictures were downloaded
from F.A.C.E. Training–an interactive training by Paul Ekman.1

All the images were equalized for luminance and contrast by
converting them to gray scale and were cropped to make
equal size. Furthermore, both face- and house- images were
degraded by manipulating images and adding noise (Rainer and
Miller, 2000). Image pixel phase randomization and addition of
Gaussian noise enabled us to make visual image stimuli noisy.
Stimuli consisted of three different noise levels: 0, 40 and 55%,
for both sets of images (Figure 1A). The stimulus software
Presentation2 was used to display stimuli and to control task trial
sequences.

Task and Behavioral Paradigms
The experimental task was divided into two separate sessions:
the first session involved acquiring behavioral data outside the
MRI scanner and the second session was inside the scanner,
where we acquired both fMRI and behavioral data. In both cases,
participants were asked to decide whether the presented gray
scale images were faces or houses. They indicated their decisions
by keyboard or button presses on a response box. Prior to the
experimental tasks, participants were briefly explained about the
study and the task. Some sample stimuli were shown and the
participants were asked to make decisions about the presented
stimuli, allowing them to be familiar with the task.

1https://www.paulekman.com/product/pictures-of-facial-affect-pofa/
2http://www.neurobs.com
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Outside the fMRI Scanner
This behavioral study consisted of a single run. There were three
noise conditions and each condition was repeated 60 times (30
times each for faces for houses) in a random order, generating
180 trials in total. Participants were asked to indicate their
decisions as quickly and as accurately as possible by the right and
left mouse clicks (right for house stimuli and left for face stimuli).
They were instructed to press the space bar in the computer
keyboard to proceed to the next trial. The type of stimuli, the
stimulus presented times, and the response times (RTs) to that
stimuli were all recorded.

Inside the fMRI Scanner
Participants performed face-house categorization tasks in three
functional runs, each 614 s long. The number of trials for each
noise condition was 36 (18 faces and 18 houses), and the total
trials were 108 for all three conditions in each run. Stimuli were
presented in a random order as in an event-related design within
each run. There were rest periods of 30 s at the beginning and of
35 s at the end of each run. Participants were instructed to focus
on the central crossbar on the screen during experimental run.
They were asked to perceive the presented stimuli, to wait for the
display of a question mark on the screen and then to indicate
their choice by pressing a response key on a button-box by using
either the index or the middle finger of their right hand. Each
picture was presented for 500 ms, followed by an 8 s-long display
of the fixation cross, then a briefly presented question mark for
500 ms at the end of this 8 s’ interval. The next 6 s time was
allowed for participants to report their decisions by responding
on a button box. Trials in which participants were failed to
respond were discarded from the final analysis. Figure 1B shows
a schematic representation of the behavioral paradigm used in
the experiment.

Data Acquisition and Analysis
Behavioral Data
A participant’s RT, the time between the onset of a stimulus
and the button press in each trial was recorded for the tasks
performed outside the scanner. Participants were required to do
button presses only to indicate their decisions inside the scanner.
Participants’ behavioral performance, both outside and inside the
scanner, was analyzed by using Matlab. Trial by trial RTs of each
participant from outside-scanner button presses were separated
and averaged across noise conditions. No RT calculation was
done for the recorded behavioral data inside the scanner as
participants were instructed to wait until the question mark was
displayed to indicate their decisions. T-tests were used to assess
the significance levels of performance accuracy and RT across
noise levels in face-house stimuli. The behavioral responses (RT
and performance accuracy) were collected from 32 participants.

Functional Magnetic Resonance Imaging (fMRI) Data
The whole-brain MR imaging was done on a 3-Tesla Siemens
scanner available at Georgia State University and Georgia
Institute of Technology Center for Advanced Brain Imaging
(CABI), Atlanta, Georgia. High-resolution anatomical images
were acquired for anatomical references using an MPRAGE

FIGURE 1 | Experimental paradigm. (A) Sample images at three noise
levels for sets of both face and house stimuli. (B) Task paradigm during a
functional run, starting from the initial 30 s rest followed by a task trial that
included 500 ms-stimulus presentation, 8 s of decision time, and
500 ms-display of a question mark, requiring participants to indicate their
decision within the next 6 s.

sequence (with TR = 2250 ms, TE = 4.18 ms, Flip angle = 90◦,
inversion time = 900 ms, voxel size = 1 × 1 × 1 mm3). Three
functional runs each of 307 scans with the measurement of the
T2∗-weighted blood-oxygenation level dependent (BOLD) effect,
were acquired with a gradient echo-planar imaging protocol and
these parameters: echo time (TE) = 30 ms, repetition time (TR)
= 2000 ms, flip angle = 90◦, voxel size = 3 × 3 × 3 mm3, field of
view = 204 mm × 204 mm, matrix size = 68 × 68 and 37 axial
slices each of 3 mm thickness.

FMRI data were analyzed by using Statistical Parametric
Mapping (SPM8, Wellcome Trust Center, London).3 The
analysis steps included slice timing correction, motion
correction, co-registration to individual anatomical image,
normalization to Montreal Neurological Institute (MNI)
template (Friston et al., 1994). Spatial smoothing of the
normalized image was done with an 8 mm isotropic Gaussian
kernel. A random-effects model-based univariate statistical
analysis was performed in two level procedures. At the first level,
a separate general linear model (GLM) was specified according to
the task sequences and behavioral responses for each participant.
Only correct trials for each of the three noise-levels (0, 40 and
55%), rest and six motion parameters were included in GLM
analysis. Here, six motion parameters were entered as nuisance
covariates and were regressed out of the data. The individual

3http://www.fil.ion.ucl.ac.uk/spm
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TABLE 1 | Brain activations of face-and-house perception.

MNI coordinates

Contrast Brain area x y z Cluster size Z-score

Face > House∗ Fusiform face area (FFA) 42 −49 −17 (R) 31 4.33
House > Face∗ Parahippocampal place area (PPA) −27 −46 −8 (L) 27 5.64
All pictures > Rest∗∗ Inferior parietal lobe (IPL) −27 −58 46 (L) 12 5.69

Pre-supplementary motor area (Pre-SMA) −3 14 49 (L) 49 6.64
Dorsolateral prefrontal cortex (dlPFC) 42 8 25 (R) 32 6.35
Insula 33 26 7 (R) 38 6.29

−30 26 1 (L) 24 6.15
Venteral temporal cortex (VT) 30 −46 −14 (R) 489 7.62

−27 −55 −11 (L) 383 9.91
Occipital cortex 15 −85 −8 (R) 489 9.42

−12 −100 −4 (L) 383 7.13
Posterior cingulate cortex (PCC) 12 −70 13 (R) 41 6.06

R, Right, L, left. Family-wise error corrected (FWC) at ∗p << 0.05 and ∗∗∗p << 0.001.

contrast images of all participants from the first level analysis
were then submitted into a second level analysis for a separate
one-sample t-test (for details of the contrasts used in first level
and corresponding second level, please see section: Brain Activity
and Effective Connectivity Analysis and Table 1). The resulting
summary statistical maps were then threshold and overlaid
on high-resolution structural images in MNI orientation. For
display purposes, the functional images were overlayed on the
MNI template available in MRIcro.4

Brain Activity and Effective Connectivity Analysis
We examined the brain activity of hypothesized regions of
interest (ROIs) in our experimental condition (i.e., face-house
discrimination task at different noise-levels). We defined the
ROIs from the group level activation results. To localize FFA
activation in-group level, we used face > house contrast.
Similarly to localize PPA, we contrasted house with face (house
> face). The peak-activity location of the dlPFC was chosen
using face + house > rest contrast. The ROIs analysis were
performed using a spherical region of 6 mm radius centered
at the maxima peak activity voxel of group level result using
MarsBaR (Brett et al., 2002). The beta parameters (also called
contrast values) were extracted for each experimental condition
that was defined in design matrix for each subject. The beta
parameters of condition of interest were then averaged over
the subjects. Finally, statistical tests (a paired t-test following a
repeated ANOVA) were performed to determine whether there
was a statistically significant difference in contrast values between
the conditions of interests.

The effective connectivity established by our experimental
conditions between ROIs were examined using dynamical causal
modeling (Friston et al., 2003; Marreiros et al., 2008; Stephan
et al., 2009) implemented in SPM8 (DCM10). For this purpose,
we used group level peak activity coordinates as a reference
to find the local maxima from the first level brain map. Then
we extracted the eigenvariate by defining a sphere of radius 6
mm for the contrast of interest adjusted for the equivalent F-

4http://www.mccauslandcenter.sc.edu/CRNL

contrast. While extracting eigenvariate, the center of each ROI
was positioned on themost significant voxel in the cluster nearest
to the peak cluster coordinate obtained from group analysis and
activated at a significant level (p < 0.1, uncorrected) and lie
within twice the width of the Gaussian smoothing kernel used
while smoothing the data. The details of modal specification and
comparison procedure were included below.

Results

Behavioral Response
The mean performance (i.e., the group level accuracy) for images
with 0% noise-level was very high. The accuracy rate for 0%
noise was 99.26% for outside scanner and that for inside the
scanner was 97.89%. The performance level decreased for 40%
noise-level and the rates were 89.48 and 87.01% for outside and
inside the scanner respectively. The rates further decreased to
68.52 and 65.07% for outside and inside the scanner respectively
when the noise level increased to 55%. A repeated ANOVA
on the performance and RT revealed the significant effect of
noise (of task difficulty) on behavioral performance (F(2,62) =
265.02, p = 0.000 (outside the scanner) and F(2,62) = 186.34,
p = 0.000 (inside the scanner) and on RT F(2,62) = 76.2, p =
0.000). Following significant ANOVA, a post hoc paired t-test
was preformed. The decrease in performance with three noise
levels was statistically significant both inside and outside the
scanner (paired t-test, all p< 0.001; Figures 2A,C). Similarly RTs
significantly increased with noise level (paired t-test, all p< 0.01).
The mean RT for clear images (0% noise) was 0.79 s and that for
40% noisy-images was 0.94 s. The RT further increased to 1.13 s
for 55% noise level (Figure 2B).

Brain Activations
With the face-house decision vs. rest contrast, we observed
significant brain activations in the occipital, lateral occipital
cortex (LOC), FFA and PPA in the VT cortex (VT),
inferior parietal lobe (IPL), dlPFC, insular cortex (INS), pre-
supplementary motor cortex in middle frontal cortex (Pre-SMA;
Figures 3A,B). To localize the category specific brain regions
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FIGURE 2 | Behavior response. The bar plots of (A) mean performance (%)
outside the scanner, (B) response time (RT) outside the functional magnetic
resonance imaging (fMRI) scanner and (C) mean performance (%) inside the
fMRI scanner for three noise-levels. Error bars show standard error of the
mean. ∗∗p < 0.01 and ∗∗∗p < 0.001.

in VT, we further contrasted face vs. house and house vs. face
conditions (Table 1). The face vs. house contrast showed a
stronger response in the FFA (Figure 3D). Similarly, the house vs.
face contrast activated PPA more (Figure 3C). The ROI analysis
showed higher BOLD responses for face in FFA (a repeated
ANOVA, (F(1,32) = 17.34, p = 0.0002 and paired t-test, p < 0.05)
and that of house in PPA (a repeated ANOVA, (F(1,32) = 48.55,
p = 0.000 and paired t-test, p < 0.01; Figure 4A). Similarly, a
repeated ANOVA was performed to find the effect of noise on
dlPFC activity (F(2,64) = 17.27, p = 0.000) and BOLD activity
increased with noise level (paired t-test, all p < 0.05; Figure 4B).

Dynamic Causal Modeling (DCM) Results
Choosing a functional architecture of a network of hypothesized
ROIs is very important in dynamical causal models (DCM)
analysis. To determine which model most likely generated
the data (for example; whether the data is best explained by

FIGURE 3 | Brain activations. Activations associated with (A) face and
house stimuli > rest (p < 0.001). (B) Right dlPFC for face and house > rest
(p < 0.001). (C) Left parahippocampal place area (PPA) for house > face
(p < 0.05), and (D) right fusiform face area (FFA) for face>house (p < 0.05). All
activations are familywise error corrected (FWC). For the display purpose, the
functional images were overlayed on the Montreal Neurological Institute (MNI)
template available in MRIcro and the coordinates of brain activation were
shown in the Table 1.

bottom-up, or in combination with top– down, or considering
the presence/absence of connections), we considered various
endogenous DCM (Kahan and Foltynie, 2013). First, we defined
eight models for the network consisting of the dlPFC (region
1), FFA (region 2) and PPA (region 3; Figure 5A). The
‘‘minimal’’ model (model 1) was systematically modified by
adding connections to build other models (model 2 to model
8). In these eight models, both face and house trials were used
as input on both FFA and PPA. However, the other important
factor is deciding which input to be considered as a driving input
(for example, what input to be provided in a particular node?).
Thus, we considered additional eight models (model 9 to16) in
which face stimuli were considered to be the input to FFA and
house stimuli to PPA. We designated bidirectional connections
between FFA and PPA and inputs to FFA and PPA (not to dlPFC)
based on our hypothesis and evidence provided by previous
studies in the field (Kanwisher et al., 1997; Aguirre et al., 1998;
Epstein and Kanwisher, 1998; Haxby et al., 2001; Marotta, 2001;
Vuilleumier et al., 2001; Avidan et al., 2005; Schiltz et al., 2006;
Fairhall and Ishai, 2007; Heekeren et al., 2008; Stephan et al.,
2008; Avidan and Behrmann, 2009). The random effects Bayesian
model selection procedure (BMS) was then used to select the
optimal model at the group level (Stephan et al., 2009). Out of
16 plausible intrinsic models, between FFA, PPA and dlPFC,
the model 8 consisting of bidirectional connections between all
the ROIs came out to be the optimal model with exceedance
probability (xp) = 0.54 (Figure 5B). So for further DCM analysis,
we kept matrix A, the matrix of intrinsic connections, fully
connected between ROIs across all models and both face and
house trials were used as input on both FFA and PPA.

In order to quantify effective connectivity, we considered four
types of models by allowing varying connection to be modulated
by task. In all models contextual modulation was allowed to the
connection between FFA and PPA (i.e., both FFA to PPA and
PPA to FFA connection). The models were then systematically
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FIGURE 4 | Bar plots of mean contrast values. (A) For face and house
presented conditions in PPA and FFA. (B) According to the noise-level in
dorsolateral prefrontal cortex (dlPFC). Error bars show standard error of the
mean. ∗p < 0.05 and ∗∗p < 0.01.

varied allowing further modulation in connection between brain
areas. The first model was constructed by allowing feedforward
connection (FFA and PPA to dlPFC) to be modulated by task in
addition to FFA to PPA and PPA to FFA connections. The second
model was then constructed by further modulating dlPFC to FFA
connection in the first model. The third model consisted of an
additional dlPFC to PPA modulation on the first model. Finally,
the fourth mode was designed by allowing all the connections to
be modulated by the task.

We performed two sets of DCM analysis. The first set of
DCM models was object-category specific: face and houses,
regardless of noise, were used modulatory inputs to the
models described above. Then, the random effects Bayesian
model averaging (BMA) procedure (BMA.rfx) was used to
compute resultant patterns of connection strengths (intrinsic
and modulatory) established by the perception of faces and
houses. The intrinsic connections between nodes (except dlPFC
to PPA and FFA to PPA) were found significant (t-test,
p < 0.05; Figure 6A). Next, we investigated whether the
connections were modulated by picture category presented.
In the face conditions, the connectivities from FFA to dlPFC

FIGURE 5 | (A) Dynamical causal models (DCM) model specifications. Model
number 1 is a basic model that included the minimal number of connections
between dlPFC (1) with FFA (2) and PPA (3). The endogenous connectivity of
this “minimal” model was then modified by systematically adding connections
(from model 2 to 4). Models 5–8 were construct model from 1 to 4 by adding
bidirectional connections between FFA and PPA. In these models (1–8), all
face-house images were the inputs to both FFA and PPA. We further used
face image input to FFA and house input to PPA and expanded our model
space to 16. (B) Bar plots of exceedance probability for 16 models.

and PPA to FFA were significantly modulated (t-test < 0.05)
and PPA to dlPFC was also found marginally significant
(p = 0.06; Figure 6B). In house conditions, all connections
were significantly modulated (t-test < 0.05) except dlPFC to
FFA and PPA connections (Figure 6C). Additionally, the face
viewing enhanced the FFA to dlPFC connectivity much higher
(by 21%) compared PPA to dlPFC (by 12%). Similarly, the
house condition boosted connectivity from PPA to dlPFC
by 33% where as the FFA to dlPFC increased by 23%.
The connectivity from PPA to FFA was found increased
by face but decreased by house condition by 36 and 26%
respectively.

In the second set of DCM models, three noise conditions (0,
40 and 55%), independent of face and house, were allowed to
modulate the connections. In this set too, we considered four
models as in first set and the modulation matrix (B-matrix)
was defined per noise condition as in first set. After BMA,
the intrinsic connections from FFA and PPA to dlPFC, PPA
to FFA, and dlPFC to FFA were found significant as in the
first set (Figure 6D). Our modulation parameter analysis further
revealed that all feedforward connections from FFA and PPA to
dlPFC were significantly (t-test, p < 0.05) modulated my noise
(Figures 6E–G). The FFA to dlPFC connectivity strengths were
increased by 10, 16, and 17% for images of noise level 0, 40
and 55% respectively. Similarly, PPA to dlPFC connectivity was
enhanced by 11, 15 and 18% respectively in 0, 40 and 55% noise
level.

Discussion

We investigated the brain activity, effective connectivity and
their modulations by task in visual stimuli-directed perceptual
decision-making. Consistent with previous findings (Haxby
et al., 2000, 2001, 2002; Leveroni et al., 2000; Ishai et al.,
2005; Ishai, 2008), we identified two category-responsive regions
FFA and PPA in VT area of the brain and the prefrontal
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FIGURE 6 | Schematic representations of significant connections and
parameter estimates from Bayesian model averaging (BMA). Unless
stated otherwise, all connections shown were statistically significant
(p < 0.05). The blue arrows: significant intrinsic connectivity between nodes.
The number next to the blue arrow represents the connection strength. The
red arrow: significant increased in effective connectivity. The number next to
red arrow represents percentage increased in connectivity due to task. (A,D)
Intrinsic connectivity pattern between FFA, PPA and dlPFC established by first
and second sets of DCM. (B,C) Modulation during face and house viewing
condition respectively. (E–G) Modulation by 0%, 40% and 55% noise stimuli
respectively. ∗p = 0.06, marginally significant.

region (dlPFC). We computed resultant connection (intrinsic
and modulatory) strengths established by our task. In one
set of models, we allowed face and house conditions to
modulate various connections between nodes in an optimal
neural architecture and in the other set according to noise level.
Using BMA, we consistently observed significant feedforward
connectivity from category-responsive regions to the dlPFC
during perceptual decision of faces and houses in both sets of
DCM.

The observed significant intrinsic connectivity, also known
as average connectivity established by task, from category-
responsive brain regions to more anterior regions of the brain,
the dlPFC, in particular, is consistent with the proposal that
ventral visual system is the pathway for relaying and processing
sensory information of visual objects (Kanwisher et al., 1997;
Aguirre et al., 1998; Epstein and Kanwisher, 1998; Haxby et al.,
2001; Vuilleumier et al., 2001).These results are also consistent
with the function of the visual system that it may not be involved
in a higher order perceptual analysis (Ploran et al., 2007) but
may provide a causal input to the extended system (Mechelli
et al., 2004; Fairhall and Ishai, 2007; Kveraga et al., 2007) and the
relayed sensory information is further processed by downstream
processing areas to produce visual perception (Rossion et al.,
2003; Avidan et al., 2005).

In addition to the significant feed-forward intrinsic
connectivity from FFA and PPA to dlPFC, we also observed

significant feed-back intrinsic connectivity from dlPFC to FFA
which underscores the importance of feedback mechanism in
processing of visual information (Haxby et al., 2000). This top-
down (or feedback) connectivity might regulate the bottom-up
process of visual processing (Mechelli et al., 2004; Summerfield
et al., 2006). These findings show that the involvement of both
bottom-up and top-down processes are necessary for successfully
evaluating visual stimuli consistent with previous studies (Haxby
et al., 2000; Mechelli et al., 2004; Summerfield et al., 2006; Ishai,
2008; Li et al., 2009).

The feedforward connectivity from FFA and PPA to dlPFC
was found modulated by perception of both face and house.
This evidence as well as the observed the high BOLD response
in FFA and PPA for non-prefered category (Figure 4A) favors
the hypothesis that the FFA and PPA not only each process
its preferred category but also represents the other form of
visual objects (for example, non-preferred category) and their
physical properties (Ishai et al., 1999; Haxby et al., 2000,
2001; Freedman et al., 2002; Kiani et al., 2007; Li et al.,
2009). Furthermore, the stronger the modulation of FFA to
dlPFC connectivity (by 21%, increased compared with intrinsic
connectivity) by faces compared to PPA to dlPFC (12%), the
higher BOLD response in FFA for face, and the stronger
the modulation of PPA to dlPFC connectivity (by 33%) by
house compared to FFA to dlPFC (23%), the higher BOLD
response in PPA for houses, which supports area-specific
dominant roles on face and house processing as purposed
by many previous studies (Kanwisher et al., 1997; Aguirre
et al., 1998; Epstein and Kanwisher, 1998; Haxby et al., 2001;
Vuilleumier et al., 2001). Our DCM results also favored the
neural interaction between FFA and PPA. This supports the
importance of interactions between these regions in visual
processing (Rossion et al., 2003; Sorger et al., 2007; Stephan et al.,
2008).

We have measured the decision-making difficulty
behaviorally both in terms of performance accuracy and
RT. The result showed that noise added to face or house images
made perceptual categorization decisions difficult. In brain
level, the modulation of feedforward connectivity to dlPFC and
brain activity in dlPFC by task difficulty was consistent with the
notion that the brain requires more effort to accumulate sensory
information together from ambiguous sensory information
before a decision about stimulus category can be formed
(Gabrieli et al., 1998; de Lafuente and Romo, 2005; Carlson et al.,
2006; Hernández et al., 2010). Here, the function of the dlPCF
also fits with its role in disambiguation (Carlson et al., 2006), in
semantic analysis involved in recognition (Gabrieli et al., 1998)
and in decision making (Miller and Cohen, 2001; Pasupathy
and Miller, 2005; Weissman et al., 2008). The greater response
to the noisy but recognized stimuli (Bar et al., 2001) in dlPFC
further supports its role in evaluation of sensory information
(Hernández et al., 2010).

We focused our analysis on category-responsive regions
in VT area of the brain (Kanwisher et al., 1997; Aguirre
et al., 1998; Epstein and Kanwisher, 1998; Haxby et al., 2001;
Vuilleumier et al., 2001) and the dlPFC, the decision making
hub (Gabrieli et al., 1998; Bar et al., 2001; Miller and Cohen,
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2001; Rossion et al., 2003; Sanfey et al., 2003; Smith et al.,
2003; Mechelli et al., 2004; Avidan et al., 2005; Carlson et al.,
2006; Knoch et al., 2006; Fairhall and Ishai, 2007; Kveraga
et al., 2007; Ploran et al., 2007). Other brain regions such
as Pre-SMA, bilateral IPL and bilateral the INS were also
activated by the task. However, we excluded these regions
in DCM analysis as these regions are known for supporting
cognitive processes such as attention, working memory (Lau
et al., 2004; Olson and Berryhill, 2009). The peak activation
coordinates for pre-SMA obtained in our study are close to
the peak activity locations reported in previous studies and
was found associated with the attention (Pessoa et al., 2003;
Heekeren et al., 2004, 2008). The insular activation is known
to related with the subjective experience of emotional states
and feelings (Sterzer and Kleinschmidt, 2010). Similarly, IPL
is known to be involved in visual short-term memory (Marois
et al., 2004; Marois and Ivanoff, 2005; Olson and Berryhill,
2009). However, we exclude IPL from our DCM analysis
mainly because: IPL is not a part of ventral processing stream
(Ungerleider et al., 1998; Kravitz et al., 2013) for mediating
the visual recognition of objects (‘‘what’’ an object is) and the
choice of a fewer nodes also worked in our favor for the DCM
analysis since a large number of nodes in DCM analysis can be

computationally expensive and at times, problematic (Stephan
et al., 2010).

Summarizing, we showed how the dynamics of distinct
cortical areas contributes to the processing of visual-sensation
that leads to perceptual decisions. In relation to our task,
evidence supports us to argue that the FFA-PPA-dlPFC
network represents a minimal brain circuitry necessary for
relaying and integrating competing sensory information, and
has a role in perceptual decision-making. Future studies
using this type of experiment in multisensory domains can
lead to uncovering brain functional architectures necessary
for more complex perceptual decision-making processes in
the brain.
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