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802.11 FINGERPRINTING TO DETECT WIRELESS STEALTH ATTACKS

by

ARAVIND VENKATARAMAN

Under the Direction of Raheem A. Beyah

ABSTRACT

We propose a simple, passive and deployable approach for fingerprinting traffic on the

wired side as a solution for three critical stealth attacks in wireless networks. We focus on

extracting traces of the 802.11 medium access control (MAC) protocol from the temporal arrival

patterns of incoming traffic streams as seen on the wired side, to identify attacker behavior.

Attacks addressed include unauthorized access points, selfish behavior at the MAC layer and

MAC layer covert timing channels. We employ the Bayesian binning technique as a means of

classifying between delay distributions. The scheme requires no change to the 802.11 nodes or

protocol, exhibits minimal computational overhead and offers a single point of discovery. We

evaluate our model using experiments and simulations.

INDEX WORDS: 802.11 MAC protocol, Distributed coordination function, Rogue access
points, MAC misbehavior, Covert channel.
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1. PROLOGUE

As corporate and university stance increasingly shifts towards enterprise wireless local

area networks (WLANs) and the scope of wireless-fidelity (commonly known as Wi-fi)

improves in terms of location, speed, range and deployability, malicious interest follows suit.

The renewed popularity of WLANs owing to the indispensability of mobile computing,

combined with the relative ease of hacking into such networks has attracted security research

and start-up attention. However, as is invariably the case with security, defenders have to keep

pace with attackers, and hence the state-of the art market-wide wireless intrusion detection

systems (WIDSs) often lack the necessary defense against the latest breed of attacks. Moreover,

the open environment for communication in WLANs together with the hasty development of

architectural standards and independent vendor-specific product implementations lead to

challenges previously unseen, and introduce the potential for novel attacks that encompass a

diverse range of design flaws.

We address the problem of covert attacks in WLANs the motivation for which is multi-

fold. Given the shared unconstrained nature of operation of WLANs, the attacker is able to sneak

under the radar undetected while continuing to inflict some form of damage to the network or

beyond. The fruits of such a process could include unauthorized access to resources, network

service disruption, increased channel access on a common medium, information leakage, among

others. Since all of the above directly affect either the confidentiality, authentication or integrity

of a system, monitoring schemes that address specific wireless network security issues are

required outside of the encryption standards that have been proposed, such as 802.11i and

encryption algorithms, such as WEP, WPA, WPA2, etc. 

In particular, we seek to arrive at associated solutions for three such covert attacks based

on the fundamental nature of operation of the 802.11 MAC protocol. The attacks include
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unauthorized or rogue access point insertion, MAC layer misbehavior and covert timing

channels at the MAC layer. The consequences of the concealed nature of functioning of each of

these attacks can be anywhere between minor and serious, because the attackers would be

strategically located behind the intrusion detection system, if any.

A key motivation for coming up with a solution that can be easily implemented is that

existing WIDSs do not perform well against covert attacks. There are simple ways, that will

discussed later, to defeat rogue access point detection schemes widely used today in the industry.

Moreover, the current WIDSs do not monitor for protocol manipulation, and hence do not offer

sufficient defense against MAC layer misbehavior and MAC layer covert timing channels. 

We propose a common architecture that can be implemented on the wired side of the

network and can detect each of the attacks, by sampling incoming traffic streams and seeking

expected behavioral traits. To this end, a study of the working of the 802.11 MAC protocol is

necessary so as to create a foolproof approach that is centered on the inherent mechanism. The

system employs its knowledge of the procedure followed by 802.11 compliant terminals in

identifying events of legitimate operation as per protocol or lack of the same. 

An important attribute of the MAC standard is the collision avoidance functionality by

means of which a wireless node may operate in cooperation with its neighbors. Unlike a

switched network, the shared medium in a wireless setting poses a restriction on the number of

concurrent transmissions. As a consequence, on an average, each node spends a significant

portion of time yielding to competing traffic before it can transmit its own. To avoid

synchronization of waiting periods, apart from a fixed time interval, the protocol also requires

the wireless node to back-off for a random duration. Such delays are however bounded by well-

specified upper limits, and along with the physical transmission times, make up the time interval

between a pair of successful transmissions. From the specifications, the expected values of a
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sequence of such inter-packet arrival times can be determined analytically for an average

transmission, in the form of a finite random variable. A classifier may be trained on such

baseline distributions and made to seek anomalous behavior. Additionally, it may be necessary

to create individual attacker profiles depending on the type of attack.

The first attack that we deal with is the insertion of rogue access points. Attacks on

wireless networks can be classified into two categories: external wireless and internal wired. In

external wireless attacks, an attacker uses a wireless device to target the access point (AP) or

other wireless nodes on the network. In internal wired attacks, an attacker or authorized insider

inserts an unauthorized (or rogue) AP into the wired backbone for malicious activity or

misfeasance. This proposal addresses detecting the internal wired attack of inserting rogue APs

in a network by monitoring on the wired side for characteristics of wireless traffic. We focus on

two 802.11 MAC layer features as a means of fingerprinting wireless traffic in a wired network.

In particular, we study the effect of the Distributed Coordination Function (DCF) and rate

adaptation specifications on wireless traffic by observing their influence on packet inter-arrival

times (IATs). By focusing on fundamental traits of wireless streams, unlike existing techniques,

we demonstrate that it is possible to extract wireless components from a flow without having to

train our system with network-specific wired and wireless traces. Our approach is generic as it

does not assume that the wired network is inherently faster than wireless network, is effective

for networks that do not have sample wireless traffic, is independent of network speed/type,

protocol and application, and is immediately deployable. We evaluate our approach using

experiments and simulations. Using a Bayesian classifier we show that we can correctly identify

wireless traffic on a wired link with 86-90% accuracy.

The second attack that we deal with is MAC layer misbehavior. We propose a simple,

deployable scheme for classifying selfish behavior achieved by manipulating the 802.11 MAC
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protocol. Specifically, attacks that alter the DCF parameters and data rate are addressed by

employing a combination of supervised and unsupervised learning techniques that extract

differences in the delay patterns of protocol-abiding and illegitimate traffic. We apply an

anomaly-based categorization which obviates the need to train on traces from different network

instances. Further, we employ a rule-based system that uses analytically created attacker profiles

to provide us with granularity about the degree of cheating. Our method requires no change to

the 802.11 nodes or protocol, exhibits minimal computational overhead and offers a single point

of discovery. Since the approach is holistic and does not rely on a feature selection using

individual parameters, the technique is free of adaptive cheating. Additionally, the accuracy of

classification is independent of number of terminals in the network, number of colluding

attackers, protocol, rate adaptation and higher layer transmission behavior. Accuracy measures

are evaluated with the help of simulations and a naïve Bayes classifier.

The third attack is covert timing channels. We propose a wireless network specific covert

timing channel at the 802.11 medium access control (MAC) layer by configuring the protocol's

delay parameters to values not used under normal behavior. Currently familiar to the research

community as a means for selfish behavior and network-wide denial of service, this approach

can be leveraged to create a timing channel outside the legitimate frequency bands. This way,

our model is based on the previous attack. The ease of manipulation of the 802.11 driver,

combined with the broad range of unused parameters gives an increased freedom of choice with

the implementation by means of operating at several reduced or larger delays, as well as scope

for trade-off between covertness and accuracy of extraction. Patterned to shadow the

randomness in the temporal characteristics of wireless traffic, the channel design introduces the

use of multi-packet representation per symbol and synchronization-less operation, that create an

environment of increased decoding accuracy and immunity to regularity test based detectability
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respectively. We also show how anomalous components in traffic, exhibited by both the channel

and the underlying MAC layer misbehavior can be detected using simple stateless monitoring.

Though meant for extracting information from machines compromised on the wireless side, both

decoding and detection schemes are such that they may also be run from the wired side, which is

important considering that covert channels are likely to steal across the Internet. Apart from

information leakage, another timely application for the channel in a wireless setting is stealthy

communication within a wireless ad hoc bot-net. Appropriate experiments are performed to

validate the concepts behind both the channel and its detection.

Each of the above described attacks and the proposed detection schemes will be

presented in detail in terms of analysis, model design, validation and discussion in the following

sections - rogue access point detection in Section 2, MAC layer misbehavior in Section 3, and

MAC layer covert timing channel in Section 4. Finally, we conclude in Section 5 and discuss our

plans for future work in Section 6.
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2. ROGUE ACCESS POINT DETECTION

2.1 Introduction

A dangerous insider attack is one where cheaply available APs are illicitly plugged in

with the motivation of extending the network. Like other insider attacks, the AP stays invisible

to a firewall as it is actually behind it, thus making it difficult to detect. Hence the AP creates a

back door for attackers obviating the need to go through the firewall. This proposal presents a

practical solution for this attack which can happen in one of the two scenarios shown in figure 1

- wired networks with or without existing legitimate wireless APs.

The core of our detection scheme is an agent sitting atop a switch, or a separate

monitoring device that is connected to the mirror port of a switch that passively sniffs passing

traffic streams on the wired side. Using inherent differences in wireless characteristics as

compared to wired traffic, this agent is able to deem the originating link as being wired or

wireless. The idea is that discovery of traffic with wireless characteristics in an otherwise wired

network infers the presence of a rogue AP on the network.

While similar designs exist in some current solutions, this proposal is centered on a

procedure more fundamental, offering two distinct approaches based on elements native to the

802.11 protocol. Though some of the existing methods work with proven efficacy, they do not

Figure 1. Wired networks (a) with, and (b)without existing legitimate wireless APs.
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try to exploit the underlying facets of the wireless MAC protocol to detect rogue APs, but

instead attempt to classify wireless traffic based on the greater delay observed in network

statistics (e.g., round-trip-time (RTT), inter-packet arrival time (IAT)). This is based on an

assumption that the wireless link capacity will never reach that of wired. A more general

solution is needed as this may not always be the case. Also, since many of the previous

algorithms need to be trained on both wired and wireless traffic for a given network, they cannot

be used in networks without existing APs as there would be no prior wireless trace available. 

Our first approach exploits the collision avoidance process of the DCF in the 802.11

MAC. To avoid collisions while transmitting, a wireless node has to sense the channel prior to

an attempt at sending. Once the channel is clear, the node will wait for a random time period

(chosen from 0 time units to a fixed upper bound) before attempting to transmit. If the node

senses that the channel is occupied or in case of a collision, the node has to back-off

exponentially before retransmitting (i.e., the fixed upper bound increases exponentially,

increasing the probability of choosing a higher back-off value). This procedure, carrier sense

multiple access with collision avoidance (CSMA/CA), of the DCF has both fixed components

and bounded random components that can be artificially produced and used as a baseline for

wireless traffic.

The second approach exploits the process of rate adaptation in the 802.11 MAC. Rate

adaptation algorithms allow wireless hosts to alter their encoding scheme (transmission rate) to

account for channel interference during transmission. When interference is detected, the node

adapts its rate and transmits at a slower rate in an attempt at reducing packet loss. As the rate

adjusts (lower or higher), there are noticeable and unique �jumps� in the packet IAT. These

�jumps� can be artificially produced and used as a signature for wireless traffic. For both of the

above techniques, we show that the signature created stays intact and can be detected on the
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wired side allowing us to deem specific traffic as originating from a wireless node.

Each of the two approaches work best in specific cases. The first approach works best

when there is little interference and the transmission rate essentially stays constant. Intuitively,

the second approach works best when the network is more volatile as more �jumps� are produced

during that period. Since network stability is unpredictable, we combine the two schemes and

present a solution that accounts for realistic, unpredictable network conditions. 

To quantify the accuracy of the aforementioned techniques, we use a Bayesian classifier.

The goal is to segregate link classes based on the differences observed in the IAT patterns of

monitored traffic. To identify these patterns, we compare them to artificially constructed

signatures of each network type and rate, allowing us to classify traffic without measured traces

of the classes the traffic are expected to be placed into.

Details of the above mentioned design and validation of the model will be subsequently.

The remainder of this section is organized as follows. Section 2.2 outlines previous work

broadly classifying them into three categories based on the techniques used. In Section 2.3 we

briefly illustrate why magnitude-based approaches are not optimal. An introduction to the

802.11 MAC protocol�s DCF and a breakdown of the delay pattern induced by it on wireless

traffic is presented in Section 2.4. An analytical representation is derived from the inherent

mechanism of the DCF following which we validate the model using a Bayesian classifier. A

similar pattern of presentation is taken in Section 2.5 as in Section 2.4 where we perform an

analysis of the manner in which rate adaptation occurs, followed by accuracy measures of our

model. In Section 2.6, we perform a comparative study of the two techniques in an attempt to

come up with a bridged solution. Finally, we present the scalability of our techniques in Section

2.7.
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2.2 Related work

Current work on rogue AP detection can be classified into three categories. The first two

categories contain techniques that use the magnitude of statistics (mean, median, entropy, etc.)

of IATs and RTTs as the primary metric for classification respectively. The third category

contains industry work that primarily make use of radio frequency scanning to discover wireless

activity within a network.

References [1 - 6] fall in the first category. Beyah R., et al [1] were among the earliest to

suggest the possibility of using temporal characteristics, such as IATs, for rogue AP detection.

They used the IATs of data packets and TCP ACK packets to identify the type of traffic flow.

The authors in [2] take a similar approach as that taken in [1] but extend the work by creating an

automated classifier. Wei W., et al in [3, 4] present two similar proposals that examine IATs of

TCP ACK pairs to identify the type of traffic flow. However, the use of ACK pairs limits this

technique to TCP traffic only. A noteworthy effort in the area of traffic classification is [5]

which attempts to categorize different types of access links using median and entropy of packet

IATs. The approach is however not applicable for detecting rogue APs because it is active

(requires probing) and requires cooperation (probe responses) from malicious nodes. In [6], the

authors create a spectral profile for WLANs based on the entropy of IATs. They assume link

quality and unpredictability of the wireless medium as the cause for greater wireless 'uncertainty'

and do not study the effect of the DCF.

In the second category, [7 - 9] make use of RTT as a metric for classification. Since these

methods rely on RTT, they cannot accommodate traffic streams other than TCP. Though [7]

briefly mentions the effect of the DCF, it does not go into detail to study its mechanics.

Reference [8] uses a distinctive approach for segregating network types, complete with traffic

conditioning to eliminate noise. However, it demarcates wired and wireless traffic with the help
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of mean and deviation of the RTT dataset which is not advisable as these parameters differ with

varying types, speeds, and congestion levels of networks. Their approach is claimed to be non-

intrusive. However, since it involves conditioning of traffic it is still, at minimum, pseudo-

active. In [9], although for a disparate motive and in a dissimilar context, Cheng L., et al were

among the first to work on identifying wireless traffic for the purpose of access link type

recognition. However, their model employs a probing process to gain information about nodes in

the network and thus not likely to be of assistance in the �rogue AP� problem space for the same

reason that [5], as mentioned above, falls short.

The third category includes several industry implementations [10 - 17], many of which

exhibit non-scalability and limited effectiveness because of the use of either radio frequency

(RF) scanning and/or MAC address based authentication. The use of RF scanning is not practical

as the malicious user can use directional antennas, can adjust the power of the AP as to not be

detected, and in large networks it becomes analogous to finding a needle in a haystack. The use

of the MAC address as a parameter for authentication is not appropriate because of the ease of

spoofing.

Outside of the three categories, [18-20] propose frameworks consolidating the above

mentioned wired and wireless side detection models and inherit the flaws from each type. 

As previous schemes primarily compare the relative behavior of traffic on each link, they

require traces of each class of network traffic for their scheme to be effective. This approach is

limiting, as a network without existing legitimate APs would not be able to easily provide a

wireless trace. Further, because many use threshold-based separation metrics, another limiting

assumption made is that wireless networks will always be slower than their wired counterparts.

As will be shown in subsequent sections, our method is free of each of the above mentioned

assumptions.
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2.3 Problem with magnitude based classification

As mentioned in Section 2.1, many of the existing works focus on the difference, in some

form, of the magnitude of the IAT or RTT to differentiate wireless from wired traffic. In this

section, we illustrate, via simulation, the challenge with these approaches as wireless speeds

begin to approach and exceed that of wired traffic.

Simulations were performed using ns2 [24], and cumulative distribution functions

(CDFs) of the IAT and RTT are given in Figures 2 and 3 respectively. Figures 2a and 3a

illustrate why the magnitude-based approaches work when the assumption is that WLANs are

slower than LANs (WirelessIAT,RTT > WiredIAT,RTT). However, as shown in Figures 2b and 3b,

Figure 2. IAT distribution for (a) slower WLAN, (b) faster WLAN.

Figure 3. RTT distribution for (a) slower WLAN, (b) faster WLAN.
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these schemes will breakdown if WLAN speed exceeds that of the LAN (WirelessIAT,RTT <

WiredIAT,RTT). It should be noted that Figures 2b and 3b show why a threshold-based approach

does not work in theory. At first glance it appears that the schemes could merely adjust the

threshold to account for the inverse characteristics of the links. However, in practice, since the

wireless bridge (AP) would be connected to a slower wired network, the traffic would be slowed

such that it closely resembles the wired traffic, making it difficult to adjust the threshold to

distinguish the two. Partially motivated by this fact, we propose an adaptable solution that makes

no assumption about the link speed.

2.4 Scheme I - DCF based classification

A wireless node�s packet transmission mechanism is dictated by the specifications of the

802.11 MAC layer protocol, the Distributed Coordination Function (DCF). The DCF employs a

carrier sense multiple access with collision avoidance (CSMA/CA) distributed algorithm for

collision avoidance. In this method, a node inclined to transmit on a wireless link has to wait for

a fixed duration, namely a Distributed Inter Frame Space (DIFS) and a bounded random amount

of time (�) before using the channel. On receiving the data, the node at the other end waits for a

fixed period called the Short Inter Frame Space (SIFS) before answering with a MAC-level

acknowledgment (MAC-ACK), and the cycle follows thereon. Further, if the channel is sensed

busy or if a collision is detected the originating node backs-off before trying again. The bounded

random delay (Contention Window) has an exponentially increasing upper bound to reduce the

chances of collisions. Accordingly, the DCF has both fixed components and bounded random

components that can be artificially produced and used as a signature for wireless traffic. The

process employed for transmission in a wireless medium and the delay between packet arrivals

(IATwl) as observed at the receiver end are shown in Figure 4.
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Drawing from the DCF�s basic mode of operation, we deduce a pattern unique to

wireless streams that allows one to anticipate packet arrivals at known intervals. This property

will be derived analytically and later exploited to algorithmically construct profiles for use in a

classifier. 

2.4.1. Analysis

First, in order to demonstrate the effect of the DCF on the delay, we arrive at

representations for the IATs of wired and wireless networks (IATwd and IATwl respectively). Here

dtrans and dprop are the transmission and propagation delays for a network respectively. Since

dtrans >> dprop, the propagation delay is neglected in our analysis.

IAT
wd

 = dtrans
wd

+ dprop
wd  (1)

IAT wl  = dtranswl + dpropwl (2)

dtrans
wd

 = dtrans
frame

+ dtrans
overheadwd

(3)

dtrans
wl

= dtrans
frame

+ dtrans
overhead

wl

+ DCF
constant

+ DCF
random (4)

In Equation 4, dtransframe is the transmission time per frame; dtransoverhead is the overhead

incurred in transmitting the packet header in the wired case, and packet header and MAC-ACK

in the wireless case. Note that dtranswl is essentially representative of the waiting time incurred

because of the DCF, the constituents of which are as follows.

 Figure 4. Illustration of the DCF in 802.11 networks  
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DCF
constant

= DIFS + SIFS
 (5)

DCF
random

�=
 (6)

dtransoverheadwl
= overhead pkt + overhead macACK  

(7)

The back-off (�) is the random period a node has to wait in addition to the DIFS, one

which is repeated for each unsuccessful transmission attempt. In other words, the back-off for

the ith retransmission (�i) is randomly chosen from within the contention window (CWi) which is

an increasing function of the number of retransmission attempts and the number of times the

channel was sensed as busy by the sender. The DCF uses a Binary Exponential Back-off (BEB)

algorithm where for each retry the contention window size (starting at a lower bound (CWmin) is

doubled until a maximum value (CWmax) is reached.

�
i
��0, CW

i��slot time
 

(8)

CW
i
=min [2CW

i�1
,CW

max ]=min [2i
CW

min
,CW

max ] (9)

�
i
�CW

i
�CW

min  (10)

Hence arrival times can be predicted as a function of Cwmin. This is an important result

which shows that the DCF provides us with an increasing trend for wireless links, one whose

base frequency (�) is presented below. Since the rogue AP problem space would often involve a

single client node (the malicious intruder), we consider the case where there are minimal

collisions in the network, and thus assume that � varies between 0 and Cwmin.

�=1/ �dtrans
frame

+ DCF
constant

� [0,CW
min ] �  

(11)

This forms the basis for our scheme. Specifically, we seek to discover a wireless segment

by extracting a basic recurring pattern that exists in all wireless streams. Further, a wireless

series can be determined analytically which spares us from having to train a classifier with real

traces. 
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Also, from Equation 4, it is important to consider two traffic types - TCP and UDP.

Figures 5 and 6 show how the IAT distribution would look for the two different classes.

The frame transmission time for each case would differ as shown in Hypothesis I. 

Because of the difference in characteristics, considering an 802.11b network as an

example, the transmission delay for the two classes would follow from the information in Table II

(taken from [21]) as shown below.

IAT wl
UDP

�dtranswl
UDP

=DCFconstant �DCFrandom�dtrans frame�dtrans overhead wl

=DCFconstant �DCFrandom�dtrans data�dtransoverhead wl

=60���1018�215�10

=1303��

 

(12)

IAT
wlTCP

�dtrans
wlTCP

=2DCF
constant

�2DCF
random

�dtrans
frame

�2dtrans
overhead wl

=2DCF
constant

�2DCF
random

�dtrans
data

�dtrans
tcpACK

�2dtrans
overheadwl

=120� �2 �1018�30�2 �215�10�

=1618� �2 (13)

 Figure 5. Packet arrival pattern - UDP .

Figure 6. Packet arrival pattern � TCP.

TABLE I. Hypothesis I

1:  if trafficUDP then
2:     dtransframe = dtransdata

3:  else if trafficTCP then
4:     dtransframe = dtransdata + dtranstcpACK

5:  end if
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Figures 7a and 7b display the CDF of the IAT of TCP and UDP flows generated via

experimentation, simulation, as well as those constructed synthetically using Equations 12 and 13.

The figures illustrate how closely the experimental and simulated values follow the ones

synthetically constructed.

Note that TCP does not always have to wait for an ACK before transmitting the next

packet. Also, when a node is transmitting TCP traffic with a congestion window size greater

than one (W>1), it is likely to exhibit UDP-like behavior (multiple sequential packets) except for

the time when it is waiting for ACKs. In fact, in the case of traffic going to the Internet, a node

is highly likely to transmit in bursts. Thus, TCP�s IAT distribution would resemble that of UDP

for the most part. Hence, having taken into account the frequency of packet arrivals for both

UDP and the extreme-case TCP (W = 1), our model is scalable for all traffic types.

As part of our groundwork, we used the expression from Equation 4 - which repeats with

the frequency shown in Equation 11, combined with the expected values for each type of WLAN

(for example, the data from Table II was imported for 802.11b WLAN) to synthetically

construct a profile set. To this end, we used a pseudo-random number generator to emulate the

DCF back-off. Values were generated from within a range equivalent to the initial contention

window. Also from Figure 7b, while more than 90% of the sample set follows a uniform random

Figure 7. (a) CDF of IAT for UDP. (b) CDF of IAT for TCP.
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dispersal over the window size, a fraction of the flow tends to deviate out of bounds. We

attribute this to the overhead in the network caused by dpropwl and possible limited link-layer

retransmissions. 

This shows that it is possible to independently conjecture how a wireless stream would

behave in different types of networks. A Bayesian classifier was used for classification based on

comparison of an incoming stream�s IAT values with the synthetically created IAT profile set.

2.4.2. Classification scheme

We build a Naïve Bayes classifier which bins the IAT datasets (the analytical profiles

and experimental/simulation traces used for the purpose of testing the system), calculates for

each dataset the number of occurrences in each bin, compares the bin frequencies of each profile

with those of the trace and predicts the trace as being akin to the profile whose frequency

distribution closest resembles that of the trace. The inputs are binned into �n� number of bins,

where n depends on the bin width and input data size. For both the bin width and input data

size, different values are tried with the goal of optimizing n to furnish maximum accuracy.  

Profiles fi are compared with an unknown sample fx based on frequency of occurrences in

each bin.

Because the nature of incoming traffic cannot be predicted, prior probability is unknown

and is assumed equally distributed over the n profiles.

TABLE II.
802.11b MAC Transmission overhead

Variable Parameter Time (µs) Formula

DCFconstant
DIFS
SIFS

50
10

2*Slot time + SIFS = 50
SIFS

DCFrandom Average � 310  (Number of slots * Slot time)/2 = (31*20)/2 = 310

dtransframe
dtransdata

dtranstcpACK

1018
30

Packet size/data rate = (1400*8)/11 = 1018
TCP ACK/data rate = (40*8)/11 = 30

dtransoverhead
overheadpkt

overheadmacACK

215

10

(Preamble + PLCP hdr.)/data rate + MAC hdr./data rate + MAC CRC bits/data rate
= (144 + 48)/1 + (30*8)/11 + (4*8)/11 = 192+21+2 = 215

MAC ACK/data rate = (14*8)/11 = 10
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Likelihood (measure of how similar the unknown trace is to a given profile) is calculated

for each profile using a two-sample Chi-square test which is run independently on all sample-

profile bin frequency pairs. Posterior probability (measure of how likely a profile is the closest

match for the unknown) is derived by aggregating the Likelihood measures (Chi-square values)

each of which is calculated as shown below.

�2 =

i=1

k �S 1
i

�S
2

i
�
2

S
1
+ S

2  

(19)

S1 and S2 are bin frequencies of the two samples to be compared. They represent an

unknown and a profile sample. k is the number of bins. 

2.4.3. Experimental setup

An experimental testbed was built using three Lenovo laptops, three Dell desktops, a

Netgear 10/100 Mbps Fast Ethernet switch and a Linksys 2.4Ghz wireless-b/g AP. To ensure

that our technique for wired side detection is viable, we first determined whether the temporal

characteristics of the IAT observed on the wireless link were in tact on the wired side. The

arrival times on the wired side were recorded at the receiver node. On the wireless side, a laptop

acting as sniffer was used in promiscuous mode to capture traffic from the wireless sender. We



19

observed that the arrival rates were retained albeit with a uniformly witnessed lag (as a result of

router queuing, etc.) as shown in Figure 8.

Next, for the purpose of testing the classifier's False Positive Rate (FPR), it was trained

on traces from a simple wired connection between two computers. The analytically created

'wireless' profiles were used to train the classifier to test its True Positive (TPR).

The classifier was then tested on traces from both wired and wireless TCP/UDP data

transfers. Experiments were performed on the WLAN for both 802.11b and 802.11g

specifications by configuring the AP to operate in the required mode. For each network type and

protocol, 50 sets of 1000 data packets each were fed into the classifier. The detections from the

50 trials were used in determining TPR/FPR measures for the classifier.

In a rogue AP attack, the attacker often hops on the connection for short bursts of time to

avoid detection. Given the attacker's short-lived stay online, it is important that the classifier be

able to work on minimum data. Accordingly, we tested our classifier with different input sizes and

observed that it works with optimum accuracy for a minimal input trace of  1000 data packets

(Figure 9).

  Figure 8. Packet arrival times on wired and wireless sides.
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2.4.4. Accuracy measures

As a preliminary measure towards testing the precision of detection, the width of the bins

used in the Bayesian approach was tuned in an effort to determine the optimal width - one that

yields peak accuracy. In Figure 10, note that with an increase in bin width the accuracy drops,

which makes sense as the classifier works better with a higher number of bins. 

The optimal bin width of 30µs was chosen, as it gives the minimum FPR of 0.1 and

maximum TPR of 96. On testing the system with the chosen parameters for a total of 12 additional

trials, it was observed that the technique is accurate in detection approximately 98% of the time, as

can be seen from Figure 11.

  Figure 9. Input data size tuning.
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0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

Bin Width (us)

A
cc

u
ra

c
y

 

 

TPR

FPR

Figure 11. TPR for chosen bin width and FPR.

2 4 6 8 10 12
80

85

90

95

100

105

110

Trials

T
P

R

TPR measures for Bin Width = 30us and FPR = 0.1



21

However, this scheme is optimal when there is no interference on the channel and the link

is stable. As will be shown in Section 2.6, its performance degrades as rate adaptation occurs in

response to poor link quality. Therefore, in the next section we present a scheme that thrives

during rate adaptation.

2.5 Scheme II � Rate adaptation based classification

The 802.11 MAC protocol provides wireless entities with the ability to change their

encoding scheme (data transmission rate) when the need arises. Using automatic rate fallback

(ARF), when a node reaches a threshold of not receiving MAC-layer ACKs, it reduces its rate to

one that corresponds to a stronger encoding algorithm in order to ensure more robust

transmission.

The switching of the data rate creates a variation in throughput in a wireless transmission

that is rarely found in wired.  We exploit the unique behavioral characteristics at the time of a rate

switch to identify wireless traffic.

2.5.1. Analysis

As shown in [21], rate switching occurs regularly in wireless networks because signal and

link-layer interference are common phenomena. Given that rate switching is common, we seek to

exploit this property, unique to wireless streams, to distinguish them from their wired counterparts.

Figure 12 is an example of the expected packet arrival sequence for a given wireless transfer. Note

that the IATs of packet pairs vary for each rate as slower rates trigger greater delays.

 Figure 12. Packet arrivals during rate adaptation.  
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The probability of the event Ri occurring (Pi) depends on what we call the Signal

Interference index (SI) which has a range {0 1}.�

IAT wl =

i

IAT i P i (20)

If �i�k�SI �0 �P
i
�P

k

If �i�k�SI�1�P
i
�P

k

 
(21)

In other words, the probability of occurrence of a lower rate is inversely proportional to

signal interference and collisions. Our model safely assumes that the measure of interference is not

known prior, hence Pi is unknown. This being the case, unlike Scheme I which assumed minimal

rate adaptation, we choose to look not at sets of IATi (IAT between two packets transferred at same

rate) but at IATj (IAT between two packets transferred at different rates). As shown in Figure 13,

IATj is the delay during the �jump� from one rate to the next.

Accordingly, in our classifier, we associate IATj with IATwl. To determine which link type

the test data (IATx) belongs to, we use the basic premise given in Hypothesis II. An initial set of

experiments were performed on an 802.11b wireless network and IATs for packet pairs

transmitted at the same rate and different rates were extracted. Investigating  the behavior

exhibited during the jump, it can be seen in Figure 14 that the IAT in this stage falls in between

those of the stable rate phases before and after. This leaves us with Hypothesis III.

The rationale behind this (as shown in Figure 15) is that during the transition from R1 to R2,

the MAC-level ACK is transmitted at R1 and the subsequent frame at R2. In other words, a node

which decides to reduce its data rate transmits at the new rate but the MAC ACK for the previous

data packet would still be sent from the AP at the old rate. Also, as can be seen from Figure 14,

 Figure 13. IAT pattern during a rate switch.  



because of the difference in frame and MAC ACK sizes, the IAT during the jump (IATj) is biased

towards that corresponding to the rate following the jump. That is, since the frame size >> MAC

ACK size and the data frame is sent at the new rate, IATj is closer to the IAT associated with the

new rate.

This difference in behavior during a rate switch can be exploited by studying how it

reflects on the corresponding IATs. Of particular interest is dtransoverhead which looks different

during a jump as shown below.

 
dtransoverhead

�1,2�
= overheadmacACK

�1,2�
� overhead pkt

�1,2�
(22)

dtrans overhead
j

= overheadmacACK
1

� overhead pkt
2  

(23)

Similarly, dtransframe (packet size/data rate) would be 207µs (1400*8/54) during a jump

from 36mbps to 54mbps and 311µs (1400*8/36) for a jump from 54mbps to 36mbps. 

Using Equation 4 as the base for our synthetic profiles again, substituting jump-specific

dtransframe  and dtransoverhead values, our classifier can be trained as shown in Figure 16.

 

 Figure 15.  DCF behavior during a rate switch.
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2.5.2. Classification scheme

The classifier used for this method is similar to the one employed for the previous scheme

with appropriate changes to incorporate the fact that only the IAT values during �jumps� in rates

are considered as opposed to the values during a stable period. Hence though a Bayesian classifier

is used, instead of block comparison of a trace of IAT readings with the profiles, individual values

are inspected for possible �jumps�. Since a comparison of two datasets is not required, it is

sufficient to check individual values to see which IAT jump signature it is closest to. 

2.5.3. Experimental setup

To determine whether a node is switching rates when capturing packets on the wireless

side is simple, as its physical layer header contains the actual transmission rate.  However,  the rate

in the wireless frame is not carried over to the wired side. Accordingly, on the wired side, we have

to infer the rate by observing the packets� IATs. We verified that this approach is viable by

capturing traffic on the wireless side and on the wired side.  We observed packets that switch rates

on the wireless side with a laptop acting as a wireless sniffer capturing promiscuously (by looking

at the radiotap header in the wireless frame) and captured the IATs of the same packets on the

Figure 16. TCP Analytical vs. Experimental Signatures - 802.11g WLAN.
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wired side.  From this we were able to determine that specific IAT values on the wired side

correlated to confirmed rate adaptation on the wireless side.

Figure 17 gives a representative sample of the rates of the packets extracted on the wireless

side and inferred on the wired side, illustrating the correlation of rates of the same packets

observed at both points. A total of 6000 packets were transmitted with 81% of the rates seen on the

wireless side accurately inferred by using the IAT on the wired side. This indicates the viability of

inferring rates of wireless packets on the wired side. 

It is important to note that though the accurate classification on the wired side of the rates

of the packets was only 81% (Figure 17), we are still able to obtain a TPR of 97 % (Figure 20).

This is because even the incorrectly inferred rates are closer to the synthetic �jumps� that the

classifier was trained on as opposed to the wired IAT values. 

The experimental setup is similar to that used for Scheme I. As in [20], we use a

synthetic means (microwave interference) to force rate switching to investigate Scheme II.

Ten trials were performed, in each of which the classifier was tested on 1000 TCP/UDP

data packet pairs. TPR/FPR were generated from the share of the 1000 pairs accurately classified

each time.
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2.5.4. Accuracy measures

As in Scheme I, to validate the system, the bin width used in the classifier was tuned as

before to first determine an optimum value. Though as anticipated, an increase in bin width

caused a decrease in the TPR, a corresponding decrease was observed in the FPR. In order to deal

with this inconsistency, we calculate what we call the Effective Accuracy (TPR-FPR) and find the

optimum value that maximizes the difference between TPR and FPR in an attempt to make a

balanced trade-off between the two metrics. For the chosen bin width (20 µs), 12 additional trials

are run over the network to observe the accuracy distribution. The results are shown in Figures 18-

20.

2.6      Consolidated model

While Scheme I compares samples as a whole with the profiles, Scheme II checks

individual IATs of each packet pair for a switch in data rate. This implies that since the sample

trace compared may encompass several rates, Scheme I�s accuracy (TPR) is likely to subside with

increased rate adaptation as shown in Figure 23.

2.6.1. Analysis

In an effort to present a general solution that works when the link is stable as well as when

 Figure 18. Bin width tuning.
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rate adaptation is occurring, we consider the Signal Interference index (SI) defined as:

SI �
Accuracy Scheme II

AccuracyScheme I  

(24)

This essentially captures the inverse relationship between Schemes I and II. Scheme I

works better when there is no interference, while Scheme II works better during interference.

Specifically, Scheme I�s accuracy (TPR) decays with increased signal interference while Scheme

II has a high FPR during less rate adaptation. Thus, it is important to consolidate the benefits of the

two approaches in a way that the resulting system is effective regardless of the stability of the link.

2.6.2. Classification scheme

To work around these problems and in an attempt at combining the two schemes, we

partition the data set into blocks of a basic unit with the expectation that each block will be

comprised of data at a specific rate. Of course this need not be the case. So, in addition to this, to

bridge the two methods, we exploit the fact that Scheme I detects stable rate periods better and

Scheme II detects the jumps. For the combined solution, Scheme I contributes the network

type/speed observation for the partitions and Scheme II tells where two stable rate periods intersect

(jumps), the aggregation of which gives us the temporal distribution of rates for a series of packet

pairs (Figure 21).

2.6.3. Experimental setup

The experimental setup used for the first two schemes were employed. Similar to Scheme

Figure 21. Depiction of combined scheme. 
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I, 50 trials of 1000 packets each were fed into the classifier which performed the aggregation.

2.6.4. Accuracy measures

The accuracy measures of the consolidated system are shown in Figures 22 and 23. Note

that the accuracy of the combined scheme is not as high as Scheme I. However, this technique is

still effective, and unlike Scheme I and Scheme II, the combined technique is more realistic as it

makes no assumption about the link quality.

2.7      Scalability study

Finally to test the combined system�s scalability, simulations were performed where

detection would be performed several hops downstream as opposed to just the switch immediately

after the AP. Ideally the system should sit on the gateway since it is the last hop before the

Internet. We consider the effect of different access-link and bottleneck delays including the best-

case (1ms, 10ms, and 50ms) as well worst-case (300ms and 500ms). The measures we observed

(Figure 24), indicate that despite the decrease in accuracy with multiple hops, even in the worst

case the system averages above 60% accuracy.
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3. MAC MISBEHAVIOR DETECTION

3.1 Introduction

As a considerable portion of 802.11 wireless driver functionality shifts to software with

the goal of increased customization, it becomes easier to cheat at the MAC layer by breaking the

inherent behavioral fairness. Noted ways of performing this include tweaking DCF parameters

(contention window, slot time, SIFS, NAV, CTS/RTS thresholds), scrambling frames and

intentionally impinging on external CTS/RTS frames.

We do not consider attacks that target specific frames. We present an abstract

methodology for detecting DCF parameter manipulation as a whole. We also introduce the

possibility of MAC layer cheating by switching off rate adaptation and scale our model to

include this type of cheating. 

The most familiar motive for cheating at any layer is bandwidth gain when sharing a

medium (for example, access to the Internet) with others. Hence, we address the problem in an

infrastructure wireless setting as opposed to an ad hoc network, strategically performing the

detection on the wired side. Like the previously proposed Rogue AP detection solution, the core

of our detection scheme is an agent sitting atop a switch, or a separate monitoring device that is

connected to the mirror port of a switch, that passively samples passing traffic streams on the

wired side and observes the influence of misbehavior on IATs. 

Figure 25. MAC layer misbehavior  scenario. 
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Our model is primarily based on an anomaly-based classifier that monitors for exceptions

from the normal delay of nodes that do not cheat on DCF. The classifier makes no assumption

on the distribution of the normal values and is not trained on a predefined behavior. Instead it

works by seeking a deviation in the closeness value of incoming IAT sequences. It runs a

Bayesian test at runtime to do so. As a second line of defense, analytical profiles that represent

attacker delay distributions help refine the detection by providing the degree of misbehavior.

This helps administrators to decide on an appropriate punishment scheme.

This proposal is centered on a simple solution that does not require procedurally

intensive functionality to be implemented on wireless terminals/access points or modifications to

the 802.11 standard. As all wireless traffic through the base station passes (or can be routed) into

the wired backbone where detection takes place, the scheme is centralized and is not affected by

issues that accompany wireless-side detection, such as, interference, collisions, visibility and

scalability. Since the classifier performs a relative, basis-less comparison of legitimate and

misbehavior traffic, attackers cannot make subtle adaptations to their routine and sneak under the

radar. Also, it is not limited to 'available' signatures and can detect patterns that may be missed

by analytical feature set generators. In other words, a set of inputs need not entirely represent all

types of behavioral traces. Depending on the number of nodes, collision probability, protocol,

rate adaptation and other similar influential factors, there may be more that a purely supervised

classifier does not account for. We also take into account the scenario of colluding attackers,

where a group of malicious individuals or single-user controlled bots could target a well-

behaved network in an attempt to cause a network-wide denial of service.

The remainder of this section is organized as follows. Section 3.2 outlines previous work

broadly classifying them into three categories based on techniques used. Section 3.3 provides an

analysis on the effect of cheating at the MAC layer. The proposed model is discussed in Section
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3.4. Our simulation setup is explained in Section 3.5. We discuss some of the scheme's

scalability in Section 3.6. Accuracy evaluations are given in Section 3.7. 

3.2 Related work

Current work on MAC misbehavior can be broadly classified into three categories. The

first category consists of approaches that analytically reproduce �random� back-off in an attempt

to emulate the idle time between legitimate transmissions. They try to extract a deterministic

behavior model from a stochastic system in order to recreate expected base-line profiles. The

second category assumes that fabricating back-off values is not scalable and proposes changes

that incorporate detection in nodes. The third category focuses on the effect of misbehaving

senders in the absence of an arbiter in ad hoc networks.

References [26 - 27] fall in the first category. In [26], the proposed method requires

nodes to monitor the idle time between an RTS and the subsequent CTS from and to their

immediate neighbors. Based on collision probability (pc), nodes analytically construct profiles

for legitimate terminals' distributions, to be compared against unknown traffic. Nodes calculate

pc from the frequency of collisions, as observed in their vicinity. The work introduces the

collision factor - average number of collisions in a network with n nodes. The method in [27]

assumes that the network operates at saturation point. It uses a Markov chain based model to

determine the IAT distribution, complete with consideration for pc. It introduces the greedy

factor - an indication of how often a node is expected to transmit. However [26, 27] do not

account for the fact that apart from being a function of the system state (number of terminals at a

given instance), pc is also a function of frequency and duration of transmissions, which depend

on higher layers. Further, [27] assumes that nodes transmit at a constant rate and does not take

into account the influence of rate adaptation on legitimate traffic while emulating it.
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In the second category, [28-30] suggest changes to be made to either the driver or

protocol in order to include detection into the 802.11 wireless architecture. The authors in [28]

introduce the Predictive Random Back-off algorithm which involves tuning the Binary

Exponential Back-off algorithm to generate a reproducible back-off that can be monitored for. In

[29], the receiver assigns back-off values to sender. The receiver assigns an initial back-off

following which the sender calculates a new back-off as a function of the assigned back-off and

number of retransmissions. On receiving data from the sender, the receiver calculates the new

back-off based on the number of retransmissions to check for misbehavior. This active method

requires changes to be made to the driver, and induces computational overhead as well as

redundancy on the receiver and sender sides in calculating the new back-off. In [30], detection is

done at the access point and involves a series of tests to check for misbehavior on different

levels. However, it uses the magnitude of statistics, such as mean of back-off, as the primary

metric for classification. This is not advisable as the attacker may adjust the back-off sequence in

a way that the effective mean equals the expected. Also, it supervises the number of idle slots,

which means that if the attacker cheats on slot time and not on contention window, he would not

be detected because the mean number of idle slots stays constant.

The third category [31-36] includes studies that analyze the consequence of misbehavior

in ad hoc networks. References [31-33] work on similar lines where individual nodes monitor

their neighbors' back-off. The model in [31] assumes that the monitoring node follows the same

back-off sequence as it's neighbors and anticipates synonymous behavior from them. In [32], the

sender and receiver strike a mutual agreement on the expected back-off values at the beginning.

This model works on the logic that as long as one of the two nodes is honest, the system is free

of cheaters. In [33], tagged nodes announce the state of their pseudo-random generator (PRNG)

based on which monitoring neighbors determine the expected sequence. Since the MAC address
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is used as seed for the PRNG, MAC spoofing can result in others getting caught while the

attacker remains undetected. The above solutions do not account for interference and hidden

terminal problems. Game theoretic ideas are utilized in [34,35] to conceptualize the working of a

setting of colluding attackers. They conceive a Nash equilibrium and seek to determine the

existence of a Pareto optimal point of functioning baring which the network would collapse

under the pressure of the combined greedy operation. A new type of misbehavior is discussed in

[36], where a receiver forces a timeout at the sender by choosing a large SIFS, thereby causing

the corresponding frames to be dropped. Since they involve different scenarios and misbehavior

models, [33-36] fall out of the scope of this work.

Our model is free of the above mentioned problems as it performs a proportion study of

unidentified traces as opposed to a comparison with analytically constructed profiles. It is

independent of rate adaptation and higher layer behavior unlike the first category, does not

require changes to the protocol/driver unlike the second category, and does not seek to address

misbehavior in ad hoc networks as the related work in the third category does.

3.3 Analysis

This section illustrates the working of the three kinds of misbehavior addressed in this

proposal, highlighting the consequence on legitimate terminals. 

Figure 26 outlines the effect of cheating on DCF parameters has on the fair working of

CSMA.

Cheating on DIFS reduces the minimum delay incurred by a wireless node (Figures 26b

and 27a). Cheating on contention window (CW) shrinks the random period that follows DIFS

(Figures 26b and 27b). Cheating on rate adaptation involves transmitting at a constant data rate 
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by switching off Auto Rate Fall-back (ARF), while the legitimate nodes adapt to lower data rates

to handle signal interference (Figure 27c). Note that the constant bit rate referred to here is the

link-layer rate and is different from the application layer terminology used in the context of

UDP. Given the sub-optimal operation of ARF [37], it is tempting to switch off rate adaptation

to transmit faster.

3.4 Classification scheme

The working of our model is two-fold. First, we identify the cheaters in the group. Next,

we obtain more detail about the stream in order to be able to better deal with the cheater.

Figure 27. (b) CW cheating.Figure 27. (a) DIFS cheating. Figure 27. (c) Rate adaptation cheating.
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3.4.1 Misbehavior detection

While some related work perform a signature-based categorization, our classifier

compares unknown sequences with each other to find the closeness 'c'. Each subsequent trace is

examined for likeness to the first incoming trace. A hypothesis test is performed over a threshold

(cthresh) that is initially fed to the classifier, but is dynamically updated as the classifier learns.

The motivation behind using an anomaly-based detection scheme is that during a given time

window, all nodes in a network are expected to converge to a similar profile. 

3.4.2 Degree of misbehavior

Following the detection of an attacker, to extract more details from a misbehaving

distribution, we need baselines to compare with. To this end, while some existing work create

profiles for legitimate transmissions, we emulate attacker behavior analytically. 

A preliminary screening is performed to check for DIFS cheating. This is done by

extracting from the IAT the portion of the delay contributed by DCF. It is checked to see if the

minimum value of the extracted sequence equals the default DIFS. Degree of misbehavior m is

determined as a function of the difference between observed and expected DIFS.

Next, to check for CW cheating, we derive analytical back-off representations for various

attacker choices of CW.

We consider three classes of misbehavior, as shown in Hypothesis IV.

 Note that the default values for (CWmin,,CWmax) and DIFS in the 802.11b standard are

Table V. Hypothesis IV

1: Class A: 
�Cwmin ,Cwmax ��{�2,2 � ,�5,5 �}

DIFS={1�10}

2: Class B: 
�Cwmin ,Cwmax ��{�7,7 � ,�10,10�}

DIFS ={11�25}

3: Class C: 
�Cwmin , Cwmax ��{�15,15� ,�20,20�}

DIFS ={26�40}
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(32,1024) and 50 µs respectively.

The attacker profiles are not created beforehand. They are created at runtime as a

function of dtransframe and dtransoverhead (refer Section 2.4.1). The above parameters are calculated

from packet size and transmission rate. This being the case, it is important to account for

different transmission rates as a result of rate adaptation.

Given that packet data rates are not available on the wired side where detection is

performed, we employ the mechanism we introduced in Section 2.5 to infer the rates of a

sequence of packets.

Also, unlike legitimate profiles, we do not need to consider pc for misbehavior profiles

because attackers avoid exponential back-off to steal more (that is, CWmin = CWmax).

Note that there is no degree of misbehavior pertaining to cheating on rate adaptation

because an attacker would and hence neglected.

3.4.3 Bayesian classifier

We employ the Bayesian classifier for classification - one with a similar template as that

introduced in Section 2.4.2. 

In the case of misbehavior detection, it compares the bin frequencies of the first trace

with those of every other trace to calculate c. This is done using a two-sample Chi-square test.

In the case of misbehavior degree prediction, it compares the bin frequencies of each

attacker profile with those of the unknown trace and predicts the trace as being akin to the

profile whose frequency distribution closest resembles that of the trace.

3.5 Simulation setup

A generic simulation template of up to 50 nodes was created in ns2, each of which could
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choose from different traffic models, protocols, WLAN speeds, locations, mobility patterns,

packet sizes, etc. Of course, MAC parameters would be altered by selfish nodes. Though

simulations were performed for a longer duration, individual 10 second time windows were

monitored for anomalies.

3.6 Scalability study

In the simulation setup, several parameters were varied to study their effect and to check

the robustness of our concept. Parameters changed include number of nodes, data rate, protocol,

location, mobility, traffic model, etc.

The model's foundation is such that since the attacker steals irrespective of the number of

nodes at any given instance of time, we should be able to see the difference in distributions

(Figure 28). 

We simulate a group of attackers to check the robustness of our scheme. As seen in

Figure 29, when the attackers perform the same changes to the protocol, the model should see a

cluster of good and bad nodes. 

Similarly, the gap between attacker and other delays persists independent of the transport

protocol, as shown in Figure 30.
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Figure 28. Larger network.
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Further, Figure 30 and 31 show how flows that follow different traffic models compare.

Figure 30 shows saturated constant rate transmissions. Figure 31 shows exponential flows with

varying frequency of transmissions (that is, with on/off periods). This is an important result as it

shows that our model supports varying higher layer behavior. It is important to note that the

closeness between TCP attacker and UDP legitimate traffic is minimal, but that becomes a trivial

concern if traces from a traffic class are compared with those from the same class. It is possible

to extract the transport protocol from the IP header of incoming traffic flows even if the data is

encrypted because the detection is performed on the wired side.

Note that the scenarios outlined in this section were used in measuring the system's

Figure 30. UDP vs TCP - Saturated.
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Figure 29. Colluding attackers scenario.
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accuracy, the results of which will be presented in the next section. 

Also, as one of the scenarios to test the system, we introduced mobility in the nodes and

varied their locations. Different combinations of node placements were tried within a given

topology. The attacker could be placed close to or far from the other nodes. He could be close to

a few and far from the others. He could be close to (worst-case misbehavior) or far from (best-

case misbehavior) the base station. The idea behind this type of testing is to see how the

closeness varies for different scenarios. As noticed in the results shown in this section, there is

minimal overall variance in accuracy.

Further, our scheme is free of adaptive cheating because the bad node's influence over

good nodes shows up in a comparison of distributions. Since the model does not expect specific

parameters, it is free of parametric adaptive cheating where a clever attacker may choose a

different parameter from the one being monitored for. Also, since we do not look at magnitude

based metrics, we do not suffer from effective-mean adaptive cheating.

3.7 Accuracy measures

As a preliminary measure towards testing the precision of detection, the width of the bins

used in the Bayesian approach was tuned in an effort to determine the optimal width - one that

yields peak accuracy. Traces from 10 windows of 10 seconds each were fed into the classifier.

The detections from the 10 trials were used in determining True Positive Ratio (TPR) and False

Positive Ratio (FPR) measures for the classifier. This procedure was followed for different bin

widths.

In Figure 32a, note that with an increase in bin width the accuracy drops, which makes

sense as the classifier works better with a higher number of bins.
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An optimal bin width of 200µs was chosen, as it gives the minimum FPR of 0.1 and

maximum TPR of 98. On testing the system with the chosen parameters for a total of 10

additional trials, it was observed that the technique is accurate in detection approximately 96%

of the time, as seen in Figure 32b. For the trials in Figure 32b, traces from different scenarios

were tested, in each of which network parameters were changed (as will be shown in the next

section) in an attempt to test the scheme's robustness.

A similar round of bin width tuning was performed to optimize the prediction of the

degree of misbehavior. For each bin width, a total of 6 tests were performed, each corresponding

to a CW value from Hypothesis IV. An optimal bin width of 7us (Figure 33a) was chosen,
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which gives an accuracy of 89%. Note that relatively low bin widths provide considerable

accuracy in this scheme. This is because unlike classification, only the back-off portion of IAT

is considered to perform the degree prediction. With the chosen bin width, each CW was tested

to arrive at a pattern of accuracy as a function of degree of misbehavior (Figure 33b). 
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4. MAC LAYER COVERT TIMING CHANNEL DETECTION

4.1 Introduction

Most of the WIDSs in market today do not monitor for protocol misuse. In this section,

we introduce the possibility of creating a stealthy timing channel for communication in a

wireless network, through misbehavior at the native protocol level, and also present a detection

scheme to counter the attack. This way, we exploit the attack discussed in the previous section to

create the foundation for another.

Owing to its stochastic nature, a WLAN provides scope for an increased degree of

information hiding. To maximize the strategy of utilizing the randomness in such a network to

leverage covertness, we focus our channel design on the random portion of the inter-packet

arrival delay between successive data transmissions. To this end, we use the random delay

produced by the collision avoidance functionality of the 802.11 MAC protocol as cover for the

intended covert channel.

While covert timing channels have long been studied at higher layers, and covert storage

channels, using 802.11 headers, have been discussed recently, we propose a timing channel at

the MAC layer that is based on misbehavior and normal behavior at the protocol stack. We study

the fundamental operation of the 802.11 MAC protocol in an attempt to arrive at a platform that

can generate distinct attacker profiles out of varying degrees of protocol manipulation. We show

that despite such channels being distinct enough to be extracted at the receiver end, third party

detectability is difficult because the working of the model is such that it contributes minimally to

net throughput and does not exhibit regularity in transmission.

Ideally, we must consider the case where an attacker has compromised a machine, but

not necessarily to the extent that he has uprooted the current user off the machine. The current

user of the machine may still be using it not knowing that it has been compromised. In such a
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case, if an attacker tries to open a traffic stream of his own, he may be recognized. So, for him to

operate stealthily, not just on the network, but also at the host, his program should be able to

encode covert delays on to existing legit user generated traffic. The receiver, that may be on

either side of the network, is equipped with suitable knowledge of the 802.11 MAC protocol's

delay generation process and decodes accordingly. We show that despite being on the wired

side, a receiver would be still be able to extract traces of the 802.11 MAC protocol by observing

the delay pattern in traffic.

Two of the most important application scenarios for such a channel include covert

information relay from a wireless node to the other side, and secretive command exchange

between the bot-master and zombies in an ad hoc wireless bot network. 

Such a channel may theoretically be used not just for malicious reasons, but also as a

means for authentication without being overheard by sniffers [42, 43]. Alternatively, it may be

used to create individual traffic classes in a Multi-level Security (MLS) system where various

levels of confidentiality and integrity are required depending on the security clearance.

However, given the malicious nature of MAC misbehavior, we consider the non-generic case

where an attacker implements the channel to get information out of a compromised machine

unnoticed.

We underline the importance of fingerprinting wireless traffic on the wired side,

especially in the context of covert channels, because often the attacker's intent is to withdraw

information to his own machine which may be on the other side of the Internet.

We analyze the effect of changing the contention window, which is the upper bound on

the random back-off process, in such a way that it produces a relatively anomalous behavior

when compared to the cooperative behavior exhibited by regular terminals on the network. This

action has been shown in the past to lead to network performance gain at the attacking node as 
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well as network disruption throughout. We focus on studying how the overall delay in a wireless

transmission is a function of the back-off and how changing the contention window can affect

the arrival pattern of a process at the receiver end, in the context of its ability to create localized

channels for secret communication.

The owner of the covert channel may transmit at different levels of back-off. The process

at the receiving end would decode the incoming traffic by comparing the extracted delay to the

analytically created 'expected delay' feature set.

Each varied degree of misbehavior, that is, each choice of an unused value for the

contention window, can be used to represent a symbol in covert data. We introduce the

possibility of creating channels out of delays that are both smaller and greater than the expected

delay for wireless transmission, in such a way that the dual nature neutralizes the effect of the

faster or slower transmission respectively on system and network performance. This improves

the covertness of the model, if the system administrator or an intrusion detection system were to

be performing basic traffic analysis - for instance, monitoring the system or network

performance in terms of bandwidth utilization.

A second design choice for the channel is that a chunk of packets is used for each symbol

of covert data to be transmitted. The reasoning behind this is that in order to be able to expect a

Figure 34. MAC covert timing channel.
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delay at a particular selection of contention window, the receiver must account for the

randomness over a range of values. Also, unlike using a magnitude of delay (and hence using a

single packet pair) to constitute covert data, this approach is not affected by adverse network

conditions (packet loss, delayed out of order arrival, etc).

The fact that the receiver would monitor traffic a block of packets at a time negates

having to resort to covert transmission at predefined intervals. In other words, the sender and

receiver do not settle on a frequency of embedding of covert data, but instead on the amount of

data sent each time. This aspect greatly improves the channel's covertness.

Additionally, the covert block is sent at a pre-determined data rate for the sake of

convenience at the receiver side. This will be elaborated in a later section. Note that this is not an

attribute a detector can easily leverage while searching for the covert channel because if

detection were performed on the wired side, the rates would not be available, and if detection

were performed on the wireless side, the attacker may cycle through several predefined rates,

rotating rates in pseudo-random intervals (the seed would be known only to the attacker at the

receiving end apart from his covert channel application on the compromised machine).

Detection of such a channel is non-trivial given that crucial knowledge such as block

size, data rate and chosen degree of misbehavior is limited to the owner of the channel. In such a

case, the only way to detect the attack would be to monitor in chunks for block-wise anomalies

in delay. Accordingly, our detection model is primarily based on an anomaly-based classifier

that monitors for exceptions from the normal delay of nodes that do not cheat on DCF. The

detection scheme is similar to the one introduced in Section 3.

The above aspects of the model will be discussed in the subsequent sections, backed up

by experimental results. The remainder of the section is organized as follows. The next

subsection introduces existing covert channel proposals and their detection models. In Section



46

4.3, we propose a model for MAC layer covert timing channels and Section 4.4 presents the

results from the decoding accuracy tests. Finally, in Section 4.5, we present a detection scheme

to counter the attack.

4.2 Related work

Covert timing channels have a prolonged history of research, but primarily with an

emphasis on the wired network and higher layers of the TCP/IP protocol stack. Known covert

channels include timing, side and storage channels. A simple, efficient timing channel at the IP

layer is proposed in [38] that involves transmission or the lack of during regular intervals to

represent covert information. An entropy-based detection method is presented in [39] that is

shown to detect several common timing channels using a conditional rareness test. A TCP

timing channel is discussed in [40] where covert relay is strategically delayed till periods of TCP

burst in order to avoid the effect of jitter. The work in [41] discusses statistical measures, such as

mean and variance to detect regularity based timing channels. The authors in [42] introduce a

timing based authentication procedure that involves choosing two delay values larger than the

delay observed under normal operation, to represent two covert symbols. A similar

authentication method is proposed on the wireless side in [43], by means of modulating the

watermark using different transmission rates. Also, on the wireless side, [44, 45] discuss storage

channels on the wireless side by manipulating the 802.11 header. In [46], the AODV routing

protocol is exploited to embed covert data in an ad hoc network setting.

We argue that using single packet pairs to represent covert data (like most of the above

methods) is not suitable for noisy mediums, such as wireless networks, because of potential packet

loss and out of order arrival. Hence, we suggest the use of multiple packet pairs for each bit of

covert information. Also, our channel is hard to detect using regularity tests, because it does not
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rely on transmitting in regular intervals. Note that though our covert channel is based on MAC

layer misbehavior, it would be hard to detect the channel using existing misbehavior detection

schemes, most of which assume that attacker (misbehaving) traffic is saturated, and hence perform

continuous monitoring. On the other hand, our detection scheme performs generic anomaly

monitoring on partitioned time slices of traces.

4.3 Proposed model

The covert channel created at the MAC layer is a subtle timing based design whose

existence is not observed easily at the TCP/IP layers because the existing detection schemes

work with the information available at the higher layers.

The model is centered around the random delay period in DCF and requires nodes at both

ends of the channel to be aware of the delay sequence. Though the back-off period constitutes a

succession of random delays, the range is bounded, and this way, it is possible to predict a

distribution for each chosen CW. We create analytical profiles pertaining to different degrees of

misbehavior as shown in Figure 35.

The application that modulates higher layer transmissions with an appropriate delay

Figure 35. Analytical vs Experimental profiles for different CW.
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works at the sender S. At the receiver end R, a decoder extracts the DCF components from each

IAT and compares the resulting distribution with sample profiles. The DCFrandom portion is the

only part of IAT that is influenced by modifying CW and hence negating the contribution from

the rest of IAT makes our study clearer and decoding more effective. Observe from Equations

12 and 13 that the share of DCFconstant and DCFrandom is minimum compared to that of dtransframe

and the rest of IAT. Hence it is important to set apart the uninfluenced portion so as to zoom in

to the relatively negligible DCF part. It is important to note that the data rate of attacker traffic is

set constant. This way, dtransframe and dtransoverhead (both of which are functions of data rate) will

not vary for each packet. This is necessary so that R can subtract out the same chunk each time.

Given that R may not be on the wireless side, and hence cannot see the rates in the wired side,

this assumption is required. Following the DCF extraction, attack classification is performed

using the Bayesian binning technique presented for the previous two attacks .

Design decisions on how an appropriate value of CW may be chosen for the channel are

discussed with experimental results in a later section. Covert CW values are proportionally

chosen from each side of the legitimate (CWmin , Cwmax) pair. Such low (�) and high (�) values

represent 0 and 1 in case of a two-symbol embedding strategy. The attacker may also use

multiple symbols to speed up the transmission of covert data. In such a case, �1 and �2 would

represent bit symbols '00' and '01'; �1 and �2 would represent '10' and '11'. Also, MAC

misbehavior works best if the same values are chosen for both CWmin and CWmax so that there is

minimal variation in delay. This also negates the effect of competing terminals in the network

which makes sure that profile matching in larger networks take place just as good. That is,

repeated backing off due to a significant number of nodes in the network can lead to

distributions that exceed the expected delay pattern from a network with minimal cross-traffic.

By canceling out the property of continuing to back-off despite the CW reaching CWmax, we can



49

expect traffic that does not vary beyond a point proportional to the number of neighboring

nodes.

As mentioned before, S transmits all information (covert and non-covert) in blocks. Note

that when we state that we transmit in a block of packets, we refer to encoding covert bits of data

in the packets from higher layers in blocks, by means of choosing different delay values. For a

given block size b, depending on when covert data is required to be transmitted, R chooses

whether or not to encode the bits in each successive block of packets sent out of the

compromised machine. Accordingly, R monitors in blocks of size b and inspects each incoming

sequence of packets for a match with one of the stored signatures. Block size b acts as a kind of

secret key in such a communication model.

The reason for using a 'block' to represent each bit of covert information is as follows. In

the case of high delay, regular traffic is less likely to fall into the covert frequency band.

However, the reduced delay bands used to represent the other half of the covert channel (low)

are not free from interference from the legitimate traffic band. This is because the back-off in

regular traffic is chosen from a random window in the range of (0, CW). While there is no upper

bound on the high delay that can be chosen (high can be anywhere above CWmax depending on

the number of nodes in the network), there exists a lower bound on the low delay. For example,

since the default CWmin is 16µs for an 802.11g network, in order to produce a delay pattern lower

than that of legitimate traffic, low can only be chosen in the range (0, 15). That being the case,

profile overlap issues would arise if a magnitude was used for low and high because the filter at

R will not be able to tell the difference between low (purposely transmitted at a reduced CW) and

a reduced legitimate back-off (incidentally chosen randomly between 0 and 15). Hence, it is

important to handle traffic in 'blocks' (instead treating packets individually) for the purpose of

accuracy when filtering out, because a sequence of packets cannot be transmitted continuously at
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reduced back-off values unless it were made to do so on purpose. That is, over a sequence of

packets, it is likely that legitimate delay can be expected to be distributed uniformly over a large

CW, say (0, 15) as opposed to say, (0, 3). Furthermore, using a block of packets to represent a

bit of information means that unlike single packets, the channel is not influenced by unfavorable

network conditions, including packet loss, delayed out of order arrival, etc. An immediate

consideration for such case is that utilizing a group of packets to send out a bit of covert data

could be expensive in terms of covert channel speed. We show in a later section that the number

of packets required per covert piece of information is minimal.

An important attribute of our scheme is that since a block of secretly known number of

packets is transmitted each time, it is not necessary to transmit in regular intervals. S and R need

not synchronize on the period of covert data transmission, but instead on the amount of covert

data sent out at a stretch. Since S and R do not settle a priori on an interval of transmission

(constant or pseudo-random), the channel exhibits increased covertness. Apart from the fact the

using a 'block' to represent covert data negates the requirement to settle on a frequency of

embedding, it also obviates the need to synchronize on modulation start and end points because

the whole block represents only one bit of covert data.

Since R is not waiting on S to transmit at regular intervals, S can transmit at his

convenience. With this luxury comes the freedom for S to dynamically adapt to channel

conditions. Instead of transmitting at static predefined intervals, he may improve the covertness

of his channel by reducing the cycle length during times of increased traffic density on the

network. In other words, he may transmit more frequently during rush hour and ease out when

the compromised host is idle. He can also increase the amount of covert data being sent per cycle

during times of high traffic (by increasing the block size). It is especially important to increase

the block size during such times, because by nature of our model, since every block of packets
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represents only 1 bit of covert data, the channel could use the speedup.

The degree of misbehavior m may be chosen according to the channel operator's

preference of level of covertness and decoding accuracy at R. Higher degree of misbehavior

means greater accuracy of receiver extraction and faster transmission of covert data but reduced

covertness. We distribute the class of misbehavior as shown in Table VI. Degrees 1-4 are the

options to choose low from; degrees 5-7 fall in the category of high.

Given that the chosen block size b, frequency of embedding f, and degree of misbehavior

m are not public, an intrusion detection system D would not be able to reproduce the operation of

R. Additionally, the channel's existence cannot be observed using regularity based tests. For this

reason, a different detection strategy is required. To this end, we present an anomaly based

monitoring scheme in Section 4.5.

4.4 Validation

The experimental testbed used for validating the model is the same as the one used for

testing Rogue AP detection. The laptops act as clients sending data to the desktop. One of the

laptops is the compromised machine where the covert channel is implemented. Other laptops

Degree of misbehavior
(m)

(CWmin,CWmax)

0 (16, 1024)

1 (1, 1)

2 (2, 2)

3 (4, 4)

4 (8, 8)

5 (32, 32)

6 (64, 64)

7 (128, 128)

TABLE VI
Class of misbehavior
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exhibit cooperative behavior.

MAC misbehavior is performed by modifying the CW values in the madwifi driver. A

simple method for doing this is by taking advantage of the wireless QoS provisioning in 802.11e

compatible wireless routers. In such a setting, it is possible to configure the Enhanced Distributed

Coordination Access (EDCA) parameters (including CW) for each QoS traffic class - best effort,

background, voice and video. 

We briefly tested the effect of MAC misbehavior on both 802.11b and 802.11g networks.

For each network type, a TCP trace of close to 10000 packets for both misbehaving and legitimate

nodes was collected. The misbehaving node was configured with a (CWmin, CWmax) of (1,1) in an

attempt to study the share of throughput being stolen from the network. It was observed that the

effect of misbehavior is more severe in 802.11g networks. As seen in Figure 36, the magnitude

gain in average throughput achieved by an aggressive attacker in an 802.11g network is up to three

times as much than that in an 802.11b network. Hence, for our accuracy measurement experiments

in the next section, we choose to work with a 802.11g network, as it presents the worst case. Note

that in the above experiment, both misbehaving and legitimate nodes were made to transmit equal

amount of data at the same time. Hence, since the frequency of embedding (proportion of covert

data to legitimate data) is 100%, the large variation.

To validate the working of our model, we performed a step-wise accuracy examination,

Figure 36. Throughput variation: 802.11g vs 802.11b.
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starting with the accuracy of decoding at R. 

First, we seek to tune the bin width w of each of the bins in the Bayesian classifier. Given

the number of parameters that have to be tuned, we set out by assuming base values for the other

parameters - b, f and m for the sake of validating w. Following this step, the optimum value of w

would be used to correct the others. We assume b = 10 packets. This is the lowest upper bound

on back-off possible in an 802.11g network. That is, if (CWmin , Cwmax) takes the lowest possible

combination (1, 1), it performs a back-off in the range (0, 10) [Refer to Equation 6]. This

represents worst case in that it is the minimum amount of information required for each bit of

covert data, and hence it must give a true picture of the accuracy. Since each 'block' is inspected

individually, the decoding accuracy of each block of data is independent of that of others.

Hence, f does not influence accuracy and only affects covertness (measured as a function of

variation in network throughput), the initial value for f does not concern bin width tuning. We

randomly decide on a ratio of 1:9 for covert and legitimate data. Hence f = 10%. For the sake of

convenience and the purpose of full visibility into the process, we choose two extreme values for

low and high. We configure S with m = (1, 6), that is, low = (1, 1) and high = (128, 128) [Refer

to Table VI]. 50 trials each for TCP and UDP were performed, where each trial is a transfer of

1000 packets (10 cycles of 100 packets each) Since b = 10 packets and f = 10%, a block (10

packets) of covert data was transmitted for every 9 blocks (90 packets ) of legitimate data. In

other words, each life cycle comprises a total of (b + 9b) packets; 10 such cycles comprise of

1000 packets in total. The resulting True Positive Ratios (TPR) and False Positive Ratios (FPR)

for varying w are shown in Figure 37. An optimum bin width of 20µs that gives an FPR of 0.2

was chosen, for which 10 additional trials each were performed for TCP and UDP to study the

variation of TPR, as shown in Figure 38.
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In the second step, block size b was tuned with w = 20µs, f = 10% and m = (1, 6). The

block size was varied to study the effect on TPR and network throughput variation. The

difference in the average throughput of legitimate and attacker traffic is employed as an

indication of covertness, where covertness is inversely proportional to throughput variation.

Note in Figure 39 that with an increase in b, there is improvement in decoding accuracy and a

corresponding increase in variation of throughput as well, meaning reduced covertness. The

experiments performed were similar to the trials from the previous phase. The amount of data

transmitted in each trial varies as a function of b and f ; it is 1000 packets (10 cycles of 100

packets each) for b = 10 packets and 10000 packets (10 cycles of 1000 packets each) for b =

100 packets. 

Figure 32. (b) Degree prediction accuracy.
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Figure 37. Bin width tuning.
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Figure 38. True positive ratio (TPR) measure.
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In the third phase, we tune f - the proportion of covert data in a life cycle. We assume m

as before and set w = 20µs. From Figure 39, we select three values of b that provide a suitable

trade-off between decoding accuracy and covertness. With these parameters, we tune f to

determine its effect on covertness. Ten trials of 10 cycles each were performed. We notice from

Figure 40 that to achieve 100% accuracy, one needs to compromise on covertness, as it exhibits

a relatively high deviation in bandwidth usage. However, note that the average variation is

minimal across the range of f. Note that f is tuned only as a means of measuring the system's

performance. The attacker would ideally want to adapt f proportional to the current state of

network traffic, because he has to option of transmitting with non-regular periods.

Next, we seek to study the effect of different combinations of low and high on covertness

and accuracy. We set w = 20µs, and set b and f in such a way that an appropriate trade-off

between accuracy and covertness is achieved. For 98% accuracy, b = 10 packets, and f = 5%,

note from Figure 38 that the trade-off is optimal. With these parameters, mlow was varied

between 1 and 4, and mhigh between 5 and 7. Figures 41 and 42 provide the channel owner a neat

idea of covertness and accuracy respectively for different m.

Note that in each of the above cases, 100% accuracy would still possible even in lossy

networks by means of using forward error correction codes on top of the regular covert data. 
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Figure 41. Misbehavior degree tuning:
Covertness.

Figure 42. Misbehavior degree tuning:
Accuracy.
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4.5 Detection

A third party detector will not be able to use existing MAC misbehavior detection

schemes to detect our covert channel, most of which assume saturated attacker traffic. In fact,

we cannot use our MAC misbehavior detection method discussed in Section 3 for the same

reason. Hence, we adapt our detection scheme to monitor in chunks of time, so as to give better

visibility into the anomalies when they occur. This is necessary considering that the attacker

would likely transmit covert data with reduced frequency.

A detector D lacks information such as block size, degree of misbehavior and data rate;

hence, he cannot use the same classification scheme used by R. We suggest the use of an

anomaly-based intrusion detection scheme, monitoring on time chunks of traces, where chunk

size t is chosen by D after tuning to decide on the size that is optimum for accurately sensing the

deviation. If chosen t is too small, detector may not sense the deviation because of inadequate

packets to judge whether or not there is a deviation (might result in false positives); if t is too

large, the detector may not see the deviation because the proportion of covert data compared to

legit data is negligible and also because of possible ON/OFF transmission activity over a large

interval of time.

The reason for monitoring chunks of time instead of blocks of packets is as follows. R

compares each stream's DCF with a baseline. Each stream's classification process is independent

of that of other streams. Hence, he waits for a block of sequentially transmitted packets to

compare. On the other hand, D performs a relative comparison of streams with each other. Since

the classification of one stream is dependent on the that of others, he cannot compare blocks of

packets, because the individual traffic streams are not symmetric - that is, data can be

transmitted at different times for each stream. To perform relative comparison, D requires traces

of more than one stream transmitted at the same time. Thus, D monitors for chunks of time
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instead of a sequence of packets, and compares the IAT sequences of traces from different

streams transmitted during each chunk. In the absence of more than one stream, D may compare

the trace from one chunk of time with those from subsequent time frames in the same stream.

Given sufficient knowledge, one should be able to extract further accuracy of detection

out of D by in turn processing each chunk of time in blocks of packets. This might be necessary

considering that the chosen block size b would likely be negligible compared to the amount of

data sent even in a chunk of a fraction of a second. In other words, b << pktst, where pktst is the

number of packets transmitted per chunk of time (0.1s < t < 1s). However, even if D assumes

worst case attacker block size b = 10 packets (that provides maximum attacker covertness), a

choice of a different b hampers detection accuracy because D would end up looking at the wrong

places for an anomaly. Hence, we stick to monitoring data in chunks of time, as opposed to

blocks of packets. Of course, this implies decreased degree of detection accuracy because of a

large number of sampled packets  per chunk of time, as will be shown. 

Also, since the detector does not know the data rate, he cannot extract the DCF portion.

So in our model, R extracts DCF while D uses IAT as a whole for classification.

For detection, we again use the Bayes classifier, except with appropriate changes to reflect

the type of classification: supervised vs unsupervised. In the case of decoding at R, it compares the

bin frequencies of each known profile with those of the unknown trace and predicts the trace as

being akin to the profile whose frequency distribution closest resembles that of the trace. In the

case of detection at D, it compares the bin frequencies of the first trace with those of every other

trace in parts (one chunk of time at a time) to calculate c. 

To validate the detection scheme, we used the same experimental setup as in the

previous section, with one of the laptops acting as the detector, one acting as attacker and one as

a legitimate node. We tested the anomaly-based detection concept by varying t, where t is a chunk
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of time in seconds. For every value of t, 500 traces each of purely legitimate and covert traffic

each were collected to test D on. As before, we create a covert channel with parameters configured

in a way that maximizes the optimality. Referring to Figures 40, 41 and 42, we choose values that

provide a decent trade-off between decoding accuracy and channel covertness. The channel was

set with b = 10, f = 5, mlow = 2, and mhigh = 6. Accuracy tends to decrease, as shown in Figure 43,

with an increase in t. This makes sense because as D monitors for longer time periods, given that

the attacker is transmitting at very small values of b and f, the covert portion of traffic is hidden

easily amidst the relatively large trace and anomalies are hard to detect. Having said that the

scheme is able to detect with up to 80% accuracy even for increasingly stealthy attacker operation. 

Figure 43. Detection accuracy.
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5. CONCLUSION

In this thesis, we have proposed a solution for three covert attacks in a wireless network.

The motive for addressing this problem space is that the state-of-the-art in market WIDSs do not

possess strong defenses against the stealth attacks addressed herein - unauthorized APs, greedy

behavior at the MAC layer, and MAC layer covert timing channels. Our model relies on

fingerprinting wireless traffic from the wired side by extracting traces of the native (802.11 MAC)

link-layer protocol from the observed traffic delay patterns. Since it does not require changes to be

made to the existing wireless network infrastructure or protocol, and acts as a single point of

discovery, it is an immediately deployable alternative to existing WIDSs. We have shown the

efficiency of the model by means of experiments on a network testbed and network simulations.
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6. FUTURE WORK

As a part of our future work, we plan to deploy and validate the scalability of the system

on a real network as opposed to a testbed. Such scalability measures will be in terms of accuracy

of detection in larger networks, that include both longer bridge distances between the wireless

network and wired backbone, as well as increased competing traffic on the wireless  and wired

sides. Particularly, we would study the effect of such an increase in network size on the inter-

packet arrival delay at the receiver end on the wired side, so that our analytical model may be

tuned with a derived offset.

In the rogue access point detection problem space, we plan to extend our model with

functionality to differentiate between legitimate and unauthorized APs through traffic analysis. To

this end, we will study the differences in traffic patterns exhibited by different commercial APs, in

an attempt to arrive at a range of distinct signatures. Such a profile set may be used in identifying

APs of a make not used within a network. This logic is especially valid assuming corporate

networks would employ high-end APs or wireless routers, whereas an attacker would likely bring

in a cheaply available one.

We plan to study types of MAC layer misbehavior other than basic DCF parameter

manipulation and extend our solution to detect any generic deviation from the protocol by means

of misuse.

 We will perform tests to show that our covert timing channel cannot be detected by

regularity tests as well as existing MAC layer misbehavior detection techniques. Also, we will

check if our detection model is able to detect other existing timing channels, including ones at the

TCP and IP layers. We will measure the capacity and reliability of our covert channel. We will

take into account an implementation of the channel that exploits delay parameters to represent

multiple symbols, instead of just 0s and 1s. We will work towards formalizing our theory that
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usage of reduced and larger delays results in stabilization of throughput, and seek to analytically

arrive at trade-off threshold points that can be used in designing the channel. We will study in

detail how link-layer retransmissions and out of order packet arrivals affect our channel. We will

address the covert channel prevention scheme of radio frequency jamming, and see how that

affects our channel. As network throughput variation is not the only measure of covertness, we

will address other means an intrusion detection system may use to monitor the network.
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