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Socially regulated sex change in teleost fishes is a striking example of social status
information regulating biological function in the service of reproductive success. The
establishment of social dominance in sex changing species is translated into a cascade
of changes in behavior, physiology, neuroendocrine function, and morphology that
transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis
(HPI, homologous to HP-adrenal axis in mammals and birds) has been hypothesized
to play a mechanistic role linking status to sex change. The HPA/I axis responds
to environmental stressors by integrating relevant external and internal cues and
coordinating biological responses including changes in behavior, energetics, physiology,
and morphology (i.e., metamorphosis). Through actions of both corticotropin-releasing
factor and glucocorticoids, the HPA/I axis has been implicated in processes central to sex
change, including the regulation of agonistic behavior, social status, energetic investment,
and life history transitions. In this paper, we review the hypothesized roles of the HPA/I
axis in the regulation of sex change and how those hypotheses have been tested to
date. We include original data on sex change in the bluebanded goby (Lythyrpnus dalli),
a highly social fish capable of bidirectional sex change. We then propose a model for
HPA/I involvement in sex change and discuss how these ideas might be tested in
the future. Understanding the regulation of sex change has the potential to elucidate
evolutionarily conserved mechanisms responsible for translating pertinent information
about the environment into coordinated biological changes along multiple body axes.

Keywords: hypothalamic-pituitary-adrenal/interrenal axis, sex change, corticotropin-releasing factor, cortisol,

metamorphosis, stress

INTRODUCTION
The mechanisms underlying the initiation of teleost sex change
remain of great scientific interest in part because this life his-
tory transition is often socially regulated. Following the removal
of the dominant fish in the social group, the individual that
establishes and maintains dominance over the group changes sex
(Godwin, 2009). Across species, the social environment exerts
a powerful influence over individual phenotype, behavior, neu-
roendocrine state, reproductive success, and survival (Wilson,
1980; Ellis, 1995; Adkins-Regan, 2009). Here, we highlight sex
change as a unique opportunity to understand the dramatic and
diverse biological processes regulated by the social environment.

In addition, sex change has important fitness consequences.
Dominance in sex changing species offers a significant repro-
ductive advantage, as it does in many non-sex changing species
(Smuts and Smuts, 1993). Social groups often have a heav-
ily skewed sex ratio, and those dominant individuals of the
underrepresented sex reproduce with multiple subordinate group
members. The ability to transition from a subordinate of one sex
to the dominant of the other sex allows individuals to reproduce
as female when young and small, for example, and as a male
when older, larger, and able to defend a territory. Sex change

thus results in an exponential increase in reproductive success
(Ghiselin, 1969; Warner, 1975). Therefore, in understanding sex
change, there is the potential to uncover mechanistic links con-
necting social information to the biological state of an individual
to lifetime fitness.

In this paper, we review what is known about sex change in
fishes, articulate the hypothesized roles for the hypothalamic-
pituitary-adrenal axis (HP-interrenal in fish and amphibians;
HPA/I) in sex change and how those hypotheses have been tested,
and present original data that support roles for both cortisol
and corticotropin-releasing factor (CRF) in both social hierar-
chy establishment/maintenance and sex change in the bluebanded
goby (Lythrypnus dalli), a highly social, bidirectionally sex chang-
ing fish. We then synthesize our findings and propose future
research directions that will more clearly elucidate the role(s) of
the HPI axis in sex change.

SEX CHANGE IN TELEOST FISHES
Teleost fishes display a remarkable amount of sexual plastic-
ity, including the ability to sexually reorganize in adulthood
(reviewed in Devlin and Nagahama, 2002; Godwin et al., 2003;
Sadovy de Mitcheson and Liu, 2008; Kobayashi et al., 2013).
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Here, we focus on sex change in sequential hermaphrodites.
Protogynous sex changing fish (e.g., wrasses, Labridae) can
transition from a functional female (i.e., producing female
gametes) to a functional male (i.e., producing male gametes).
Protandrous species (e.g., clownfish, Pomacentridae) change
from male to female, and bidirectionally sex changing species
(e.g., gobies, Gobiidae) can change back and forth multiple
times (i.e., serial adult metamorphosis). For each type of sequen-
tial hermaphrodite, individuals reproduce as male or female
but not both simultaneously (see simultaneous hermaphrodite).
Sex change involves coordinated biological changes along mul-
tiple body axes. Behavioral sex change is the earliest observable
transition, often occurring within minutes in a permissive envi-
ronment. During this phase, individuals adopt patterns of ago-
nistic, courtship, and even reproductive behavior typical of the
sex to which they are transitioning (Reavis and Grober, 1999;
Godwin, 2009), changes that can occur independently of the
gonad (Godwin et al., 1996). Physiologically, the most critical
changes occur within the hypothalamic-pituitary-gonadal axis
and result in the growth of new, and regression of old, gonadal
tissue (Bass and Grober, 2001; Frisch, 2004; Godwin, 2009, 2010;
Guiguen et al., 2010). Gonadal steroid hormones drive morpho-
logical sex change (Bass and Grober, 2001), which can range from
relatively subtle changes in external genitalia for species that are
not sexually dimorphic (St Mary, 1993) to dramatic changes in
coloration and size (Godwin, 2009). Together, this coordinated
cascade of behavioral, physiological, and morphological changes
results in a functional female becoming a functional male, or vice
versa.

Although previous research has elucidated many of the bio-
logical changes occurring during the different phases of sex
change, particularly within the hypothalamic-pituitary-gondal
axis (reviewed in Godwin, 2010), the biological signaling that
interprets a permissive social environment and translates that
information into the initiation of sex change has yet to be
identified. A number of neuromodulators have been investi-
gated as a potential biological switch important for the initi-
ation of sex change, including neural steroid hormones (i.e.,
estradiol, 11-ketotestosterone, testosterone, cortisol) (Godwin,
2010; Lorenzi et al., 2012), gonadotropin-releasing hormone,
arginine vasotocin (Reavis and Grober, 1999; Godwin et al.,
2000; Bass and Grober, 2001), aromatase (Black et al., 2011),
and serotonin (Lorenzi et al., 2009), with an increasing inter-
est in kisspeptin (Godwin, 2010). Despite this focus, the bio-
logical link between social environment and sex change has
not been resolved. Here, we address the roles that the HPA/I
axis might play in the initiation or elaboration of adult sex
change.

HYPOTHESES FOR HYPOTHALAMIC-PITUITARY-ADRENAL/
INTERRENAL AXIS REGULATION OF SEX CHANGE
The HPA/I axis has been implicated on multiple levels in the
mechanistic control of sex change (e.g., Perry and Grober,
2003) because of its unique biological position translating envi-
ronmental cues into biological responses (Lowry and Moore,
2006; Denver, 2009). In all vertebrates, the HPA/I axis inte-
grates important internal and external information in response

to environmental stressors, or external conditions that disrupt or
threaten to disrupt homeostasis, and coordinates responses such
as changes in behavior and physiology. In fish, CRF released from
the hypothalamus signals the release of adrenocorticotropic hor-
mone, which then initiates the release of glucocorticoids (GCs,
e.g., cortisol) from the interrenal gland (Wendelaar Bonga, 1997;
Mommsen et al., 1999). Previous research supports a role for
the HPI axis in the regulation of three, non-mutually exclusive
functions related to sex change: (1) social status, (2) agonistic
behavior, and (3) life history transitions.

First, HPA/I axis activity plays a role in the establishment and
maintenance of social status. In a range of social vertebrates, there
are consistent differences in basal GC levels between dominant
and subordinate social group members. Across species, domi-
nants are almost equally likely as subordinates to have elevated
GCs, and factors such as the distribution of resources, social
stability, reproduction, and the nature of agonistic interactions
among group members largely determine which status class is
more socially “stressed” (Creel, 2001; Sapolsky, 2005). In coop-
erative breeders, for example, basal GCs are typically higher in
dominant individuals (Creel, 2001). Correlations between social
status and GCs have been reported in a number of teleosts,
including rainbow trout (Øverli et al., 2004; Gilmour et al., 2005;
Bernier et al., 2008), cichlids (Mileva et al., 2009), zebrafish (Filby
et al., 2010), protandrous anemonefish (Iwata et al., 2012), and
protogynous sandperch (Frisch et al., 2007). There are also sta-
tus differences in brain CRF activity. In zebrafish, for example,
CRF is more highly expressed in dominant hypothalamus but
subordinate telencephalon (Filby et al., 2010). In rainbow trout,
social subordination increases CRF expression in the preoptic
area (Bernier et al., 2008), and in the cichlid Astatotilapia bur-
toni, transitioning from dominant to subordinate status results in
a transient decrease in CRF, CRF receptor 2, and CRF binding
protein (Chen and Fernald, 2011). Together, these data support
HPI axis activity as an indicator of status that could be utilized in
sex changing species to distinguish dominant from subordinate. A
change in social status concurrent with a change in HPI function
could play a role in the initiation of sex change.

Second, the HPA/I axis is implicated in the control of agonis-
tic behavior. In mammals, fish, amphibians, and reptiles, neurons
that express CRF are found throughout the brain in a conserved
distribution (Lovejoy and Balment, 1999; Denver, 2009), and CRF
signaling has highly conserved effects on arousal and anxiety-
related behaviors, locomotion, exploration, and feeding (Koob
and Heinrichs, 1999; Bale and Vale, 2004; Lowry and Moore,
2006). Exogenous manipulation of CRF signaling can also affect
agonistic behavior and social status, although the direction of the
effect is not fully resolved (Carpenter et al., 2009; Backström et al.,
2011). The behavioral effects of CRF are likely mediated, in part,
by monoamine signaling (e.g., serotonin, dopamine) (Summers
and Winberg, 2006; Carpenter et al., 2009; Backström et al.,
2011). At the level of GCs, fish that release greater amounts of cor-
tisol in response to a stressor (high responsive) are consistently
subordinate to low stress responders (Pottinger and Carrick,
2001), and individual variation in the amount of cortisol released
in response to a stressor can be used to predict dominance out-
come in a novel pair of fish (Øverli et al., 2004). Because agonistic
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behavior is critical during status establishment, and there are
persistent behavioral differences among statuses in stable groups
(Drews, 1993; e.g., Smuts and Smuts, 1993; Clarke and Faulkes,
2001; Graham and Herberholz, 2008), the role of the HPI/A axis
in the control of agonistic behavior may be closely related to its
role as a correlate of social status.

Third, the HPA/I axis could serve in an evolutionarily con-
served role as a mediator of vertebrate life history transitions
(Denver, 1999). Importantly, this role as a regulator of devel-
opmental plasticity seems to be independent of HPA/I-mediated
responses to “unpredictable” environmental stressors, responses
that might include the mobilization of energy reserves or altering
behavior. Just prior to major transitions including birth/hatching
(mammals, reptiles, birds, “large egg” fish), fledging (birds), dis-
persal (mammals, reptiles, birds), metamorphosis (amphibians),
and smoltification (anadromous fish), both CRF and GCs have
been shown to naturally increase (reviewed in Wada, 2008; Crespi
et al., 2013). Exogenous elevation of GCs has also been used to
initiate life history transitions (e.g., partuition in sheep), increase
the success of the transition (e.g., hatching success in turkeys),
and facilitate behavior (e.g., dispersal behavior in ground squir-
rels). In amphibians and fish, CRF stimulates the secretion of
both thyroid hormone and GCs, which promote developmental
transitions between life history stages and regulate developmen-
tal plasticity (e.g., amphibians: Denver, 1997; Boorse and Denver,
2004; Okada et al., 2007; fish: Larsen et al., 1998; Ebbesson et al.,
2011) through both individual and synergistic actions (Hayes,
1997; Krain and Denver, 2004; Bonett et al., 2010; Kulkarni
and Buchholz, 2012). Increases in thyroid hormone also pre-
cede reproductive maturation in fishes (also in mammals, Mann
and Plant, 2010), and it has been hypothesized that serial adult
sex change is simply the reoccurrence of these maturation pro-
cesses (Dufour and Rousseau, 2007). Although there has been
limited research on the thyroid axis and sex change (An et al.,
2010; Park et al., 2010), sex change shares many characteris-
tics of “classical” metamorphoses that are largely facilitated by
actions of thyroid hormone and GCs. For example, smoltifi-
cation in salmon, amphibian metamorphosis, and sex change
all involve environmentally triggered morphological, physiolog-
ical, and behavioral transformations in post-embryonic animals
(Laudet, 2011). Therefore, we hypothesize that evolutionary con-
served hormonal systems that mediate developmental plasticity,
such as the HPA/I axis, are also acting during sex change in fishes.

It is important to note that for each hypothesized role for
the HPI axis in sex change, HPA/I axis regulation of energy
may also be relevant. Basal GCs are indicative of an individ-
ual’s energetic demands and may be affected by time of day (e.g.,
appetite/foraging patterns), season (e.g., reproductive state), and
life history stage. Stress-induced GC levels indicate the response of
the HPA/I axis to an environmental challenge that requires energy
mobilization to fuel behavioral and/or physiological responses
(Sapolsky et al., 2000). In the case of social stressors, energetic
demands may be elevated simply by the perception of domi-
nant individuals (Sapolsky, 2005), and status differences in HPA/I
activity could serve to facilitate differences in rates of behav-
ior and/or reproductive demands. During life history transitions,
changes in behavior, physiology, and morphology dramatically

increase energetic requirements (Wada, 2008). For a transition
like sex change, the exponential increase in reproductive success
clearly outweighs energetic costs of sexual reorganization (Warner
et al., 1975; Warner, 1984; Schreck, 2010). Finally, following a life
history transition, HPA/I activity may be set to a new baseline
because the energetic demands of the pre- and post-transition
animal differ. In protogynous sex change, for example, repro-
ductive investment might decrease because the energy required
to produce sperm is traditionally considered lower than the
energy to produce eggs. For some species, however, this dif-
ference may not be as sexually dimorphic as predicted (Yong
and Grober, 2013), particularly for externally fertilizing species
(Warner, 1997).

Together, these multiple lines of evidence strongly suggest a
role for the HPI axis as a critical, proximate regulator of sex
change. Here, we present original data that elucidates the roles
of cortisol and CRF in a sex changing fish. All experiments were
conducted in accordance with IACUC regulations and standards
(Georgia State University, Atlanta, GA).

CORTISOL, SOCIAL HIERARCHIES, AND SEX CHANGE
Cortisol has been implicated in environmentally controlled sex
determination in both gonochoristic (e.g., Hattori et al., 2009)
and sex changing fish (Perry and Grober, 2003). For example,
in gonochoristic fish with temperature-dependent sex determi-
nation, cortisol plays a critical mechanistic role in masculin-
ization. At high water temperatures that normally cause testes
to develop, pejerrey have elevated cortisol compared to fish at
female-producing temperatures (Hattori et al., 2009). Exogenous
cortisol administration can induce masculinization in the absence
of high water temperatures in pejerrey (Hattori et al., 2009),
Japanese flounder (Yamaguchi et al., 2010), and medaka, and
an antagonist can prevent this masculinization (Hayashi et al.,
2010). Cortisol seems to induce these changes through effects on
enzymes involved in androgen pathways (Yamaguchi et al., 2010;
Fernandino et al., 2012), and there is evidence in medaka that
coritsol can also suppress feminization (Hayashi et al., 2010).

In sex changing fish, cortisol could serve a similar role, link-
ing environmental conditions to sexual differentiation. In one of
the first mechanistic hypotheses, Perry and Grober (2003) sug-
gested that dominant males of protogynous species prevent sex
change in subordinate females via aggressive interactions that
cause an increase cortisol levels. They hypothesized that this
chronically elevated female cortisol is responsible for inhibiting
sex change. If the dominant male were removed from the social
group, then the most dominant female would be released from
social subordination stress and her cortisol levels would decrease
to male-typical levels. This release from social stress could trigger
the initiation of sex change (Figure 1A). The remaining females
in the social group would not change sex despite the permissive
environment because aggression from the dominant female/sex
changer would keep their cortisol elevated (Perry and Grober,
2003). Frisch et al. (2007) tested this hypothesis with the pro-
togynous sandperch (Parapercis cylindrica) by inserting cortisol
implants into the dominant female of a social group to prevent
sex change once the male was removed. While the implants suc-
cessfully elevated cortisol levels, they did not inhibit sex change
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FIGURE 1 | Hypotheses for HPI axis involvement in teleost sex change.

(A) The release of social stress hypotheses, originally put forth by Perry and
Grober (2003), suggests that baseline HPI axis activity is maintained at
relatively constant, elevated levels in females of protogynous species
because of the stress of subordination imposed by the dominant male.
After male removal from the social group, HPI axis activity decreases in the
most dominant female as she is released from the social stress of
subordination. It is this decrease in HPI activity that allows for the initiation
of sex change. Lower ranking females do not change sex because the
dominant female/sex-changer maintains their subordinate status and,
subsequently, their elevated baseline HPI axis activity. (B) The classical
facilitation of metamorphosis hypothesis, discussed here for the first time,
suggests that following male removal, baseline HPI axis activity increases
in the dominant female/sex changer. Elevated HPI axis activity could be
used to fuel the energetically costly changes in behavior, physiology, and
morphology that occur during sex change and/or activate the thyroid axis,
which could regulate cellular differentiation and apoptosis associated with
sex change. This hypothesis is consistent with an evolutionarily conserved
role for the HPA/I axis in the regulation of life history transitions.

(Frisch et al., 2007). If elevated CRF associated with social stress
is involved in sex change, however, this manipulation would not
recapitulate that condition. Interestingly, although designed to
test the Release from Social Stress hypothesis (Figure 1A), the cor-
tisol manipulation in Frisch et al. actually mimics the action of
GCs in the competing hypothesis we present in this paper, the
Classical Facilitation of Metamorphosis hypothesis (Figure 1B,
discussed below). It cannot be determined from the data pre-
sented in Frisch et al. whether elevated cortisol facilitated or
accelerated sex change, which could provide support for this
alternative hypothesis.

We took a different approach to testing the Release from Social
Stress hypothesis (Figure 1A) and measured endogenous cortisol
levels in experimental social groups of another sex changing fish,
the bluebanded goby (L. dalli). This small [standard length (SL)
18–45 mm] marine goby is highly social and lives on rocky reefs
in the Pacific Ocean, from Morro Bay, California to as far south
as the Galapagos Islands, Ecuador (Miller and Lea, 1976; Béarez
et al., 2007). Mixed-sex social groups of L. dalli vary from small
and isolated (3–10 fish) to aggregations of 120 fish/m2 (Steele,
1996) and are comprised of a dominant, territorial male and

multiple subordinate females (St Mary, 1993). On the reef, L.
dalli primarily undergoes protogynous sex change, and this could
occur when a male is eliminated from his territory by predation or
when multiple females converge on a territory without a male. In
the laboratory, L. dalli is capable of both protogynous and protan-
drous sex change (e.g., bidirectional sex change, Rodgers et al.,
2007).

The fish used in the following experiments were collected dur-
ing the reproductive season from reefs offshore of Santa Catalina
Island, CA using hand nets and SCUBA diving. For experiments
described in Figures 2A,B, fish were then shipped to Georgia
State University (Atlanta, GA) and housed communally before
being placed into individual social groups (38 l aquaria). These
tanks were maintained with artificial salt water and exposed to
a 12:12 light-dark cycle. All other experiments took place at
the Wrigley Institute for Environmental Studies (University of
Southern California) on Catalina Island where water tables were
continuously supplied with ocean water and exposed to a natural
light cycle. To form social groups of specific sizes and sex ratios,
fish were briefly anesthetized in tricaine methanesulfonate (MS-
222), and we measured SL and determined sex based on genital
papilla morphology (St Mary, 1993).

We conducted 3 experiments to determine whether elevated
cortisol levels could be responsible for the chronic inhibition of
sex change in female L. dalli. First, we tested whether cortisol
levels were elevated in females compared with males by form-
ing social groups (n = 39) of 1 large dominant male, 1 large
dominant female (alpha; smaller and subordinate to the male),
and 2 smaller females (beta and gamma). Hierarchies in these
social groups were allowed to establish and be maintained for 21
days, and 10 min behavioral observations were conducted mul-
tiple times to verify hierarchy stability. On day 22, water-borne
hormones were collected, a measure of systemic hormones closely
related to hormone levels in circulation (i.e., plasma, Kidd et al.,
2010). Fish of each social status were placed individually in a
beaker of salt water for 1 h. Steroids were extracted from the
water using C18 columns and measured using cortisol enzyme
immunoassay kits (Cayman Chemical, Ann Arbor, Michigan) as
in Lorenzi et al. (2008). The hormone pellet was resuspended
in enzyme immunoassay buffer (5% EtOH), and we completed
the assay according to the supplied instructions. All samples were
assayed in duplicate.

We found that water-borne cortisol levels differed significantly
among social statuses in stable L. dalli hierarchies. Cortisol levels
were highest in the alpha females and lowest in males. Beta and
gamma cortisol levels were intermediate between the males and
alphas (Figure 2A). These results are consistent with the hypothe-
sis of Perry and Grober (2003) that protogynous sex change could
be inhibited in females via elevated cortisol, especially in the alpha
female. Elevated alpha cortisol levels could result from aggression
received from the male, the hybrid social position of being sub-
ordinate to the male yet needing to maintain dominance over the
beta and gamma females, and/or increased energetic demands to
fuel higher rates of agonistic interaction.

Next, we tested whether these status differences in cortisol
were due to intrinsic differences rather than a consequence of
the social hierarchy, as hypothesized. To determine whether social
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FIGURE 2 | Variation in water-borne cortisol levels. (A) Mean (± s.e.m.)
cortisol levels in each status class from stable social groups. Cortisol levels
differed significantly among males, alpha females, beta females, and
gamma females after 21 days in a stable social group (n = 39) (one-way
ANOVA following a natural log transformation: F(3, 149) = 3.64, p = 0.014).
(B) Mean water-borne cortisol in males, alpha females, beta females, and
gamma females prior to being placed in a social group (“before”) (n = 15),
after 21 days in a social group (“after”) (n = 15), and following at least 1 day
in a social isolation chamber (“physical isolation”) (n = 15). There were no
differences in cortisol levels within statuses following 1, 2 or 3 days in the
isolation chamber (p > 0.05); therefore, cortisol levels were pooled and
presented in one column (“physical isolation”). Male cortisol “before” was
significantly higher than “after” [paired t-test: t(14) = 2.06, p = 0.05],
whereas female cortisol was significantly higher “after” than “before”
[paired t-tests: t(14) > 2.8, p < 0.01]. Following isolation, cortisol levels
were not significantly different from “before” for any social status [paired
t-test: t(14) < 1.8, p > 0.09]. For alpha, beta, and gamma females, “after”
cortisol levels were significantly higher than isolation (paired t-tests: t(14) >

1.9, p < 0.07); however, there was no difference for males [paired t-test:
t(14) = 0.52, p = 0.60]. (C) Mean water-borne cortisol differed significantly
over time in alpha females in a stable social hierarchy (“pre”) (n = 12) and
2 h, 1, 3, 7, and 15 days (n = 12 each time point) following the removal of
the male [one-way ANOVA: F(5, 64) = 7.77, p < 0.0001]. Asterisks and
different letters (p = 0.05) indicate significant differences.

status drives differences in cortisol, we identified fish from the
communal holding tank to form an additional 15 social groups
and measured water-borne cortisol in those individuals prior to
being placed in a social group, after 21 days in a social group,

and then following 1 (n = 5), 2 (n = 5), or 3 (n = 5) days
in isolation. The isolation chamber consisted of four compart-
ments separated by glass partitions with 5 cm of space between
each compartment. In this apparatus, the male and 3 females
from a social group remained in visual and olfactory contact
but could not physically interact. Fish were allowed to main-
tain some sensory contact because total isolation has been shown
to independently increase cortisol in some individuals, partic-
ularly males (Earley and Grober, unpublished data). We found
that before being placed into a social group, males had higher
cortisol levels than after 21 days in a social group. Interestingly,
females showed the opposite pattern and had higher cortisol levels
after being in the social group. Following isolation, female corti-
sol decreased significantly to levels comparable to before being
in the social group. Male cortisol levels did not change following
isolation (Figure 2B). These data strongly suggest that the status-
and sex-dependent cortisol differences after 21 days of interaction
(Figure 2A) emerge as a consequence of the social environment
rather than being reflective of intrinsic variation.

Finally, we tested whether cortisol decreases in the alpha
female following the removal of the male. These data would pro-
vide support for the release of social stress initiating sex change
(Figure 1A). To quantify cortisol over the course of sex change,
we formed social groups (n = 60) of 1 large dominant male, 1
large dominant female, and 3 smaller females. Eight days after
the groups were established, the male was removed to facilitate
sex change in the alpha female. Water-borne cortisol was col-
lected from the alpha female when the male was still present
(n = 12) and then subsequently from alphas in different social
groups (n = 12 each) 2 h, 1 day, 3 days, 7 days, and 15 days follow-
ing male removal. Cortisol levels differed significantly over time,
peaking 1–3 days after male removal (Figure 2C). These data
show that contrary to the Perry and Grober (2003) hypothesis,
cortisol in the alpha female/sex changer increased following the
removal of the male. Interestingly, in the protandrous anemone-
fish (Amphiprion melanopus), cortisol levels do not differ between
males in females but increases in the sex changer following the
removal of the dominant female (Godwin and Thomas, 1993).
This elevation in cortisol may be more consistent with the classi-
cal facilitation of metamorphosis hypothesis in which the HPA/I
axis acts in a conserved role to facilitate vertebrate life history
transitions (Figure 1B).

These data, in combination with Frisch et al. (2007), strongly
indicate that there is no simple relationship between cortisol and
sex change such that removing the male (the assumed source of
elevated alpha cortisol) removes social subordination stress and
leads to the initiation of sex change. Instead, cortisol may increase
in the first few days of sex change, indicating increased CRF sig-
naling and HPI axis activity. This increase could be necessary to
meet the increased energetic demands involved with sex change
and/or activate the thyroid axis, which could regulate cellular
differentiation and apoptosis associated with sex change, similar
to the gene programs activated by these axes during amphibian
metamorphosis (Figure 1B). Interestingly, environmental cues
such as increased density, reduced water volume, and reduced
food availability activate the HPI axis in amphibian tadpoles and
facilitate “stress-induced” metamorphosis (reviewed in Crespi
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and Denver, 2005). There could be a similar role for the HPI
axis during sex change whereby a change in the environment (i.e.,
the removal of a social cue), or the behavioral changes induced
by the environmental change, facilitates an important life history
transition.

CORTICOTROPIN-RELEASING FACTOR, SOCIAL STATUS,
AND SEX CHANGE
To further investigate the increase in HPI axis activity during
sex change (Figure 2C), we focused on a role for CRF, the sig-
nal that drives the increase in cortisol. We hypothesized that a
change in social environment, from a stable social group to an
environment permissive for sex change, leads to an increase in
CRF that could be involved in the establishment of dominance,
agonistic behavior, and/or the metamorphic process of sex change
(Figure 1B). To test these hypotheses, we exogenously elevated
CRF using intracerebroventricular (icv) injection that was timed
to coincide with a permissive environment: 2 size-matched female
L. dalli in the absence of a male.

We collected females from reefs offshore of Catalina Island,
CA and housed them in water tables at the Wrigley Institute
for Environmental Studies. One day prior to pairing females,
we briefly anesthetized fish (MS-222) to measure SL and mass.
Paired females were size matched and differed in SL by an
average of 0.19 ± 0.028 (s.e.m.) mm and differed in mass by
0.033 ± 0.0042 g. Females were then held in isolation overnight.
The next morning, immediately prior to pairing, we used
an established protocol for icv injection (Solomon-Lane and
Grober, 2012) to acutely elevate CRF (Sigma-Aldrich, St. Louis,
MO). Corticotropin-releasing factor-injected fish received 500 ng
CRF/50.6 nL 0.1 M sterile phosphate buffer solution. All CRF-
injected fish (n = 15) were paired with a size-matched female that
received an injection of vehicle only (50.6 nL phosphate buffer) to
control for the effects of injection during dominance establish-
ment [similar design to Carpenter et al. (2009), Backström et al.
(2011)]. Pairs of injected fish were compared to non-anesthetized,
non-injected control pairs (n = 14). After both females in a pair
recovered from the injection (described below), they were trans-
ferred simultaneously into a novel tank. Control females were
not anesthetized and were transferred into the novel tank directly
from their isolated housing.

Injections were performed using a Nanoject II Auto-Nanoliter
Injector (Drummond Scientific Company, Broomall, PA, USA).
Anesthetized fish were gently held under a dissecting microscope,
and the pulled capillary tube needle attached to the Nanoject was
lowered into position using a micromanipulator. The external
anatomy of the head was used to correctly position the needle, and
after penetrating the skull at the midline of the brain, the solution
was injected into the third ventricle. Following injection, the nee-
dle was held in place for 5 s to reduce leakage, and after the needle
was removed entirely from the fish, we performed a test injection
to ensure that the needle was not clogged and to validate proper
Nanoject function. Between injections, the needle was wiped with
ethanol and allowed to dry, and the needle was changed between
injections of CRF and vehicle. This technique has a success
rate of at least 85% (Solomon-Lane and Grober, 2012) and has
been used successfully in L. dalli to manipulate enzyme activity

in the brain (Pradhan, Solomon-Lane, Willis, and Grober, in
review).

Following injection, fish recovered in a 200 mL beaker of fresh
salt water. Observing recovery provides independent verification
that the injection procedure does not compromise an individ-
ual’s locomotion or capacity for social interaction. Recovery from
anesthesia is stereotyped and involves first initiating ventilation,
indicated by movement of the opercula, and then regaining equi-
librium, when the dorsal fin of the fish first reoriented to a vertical
position. Observers were blind to the treatment of the recover-
ing fish. Vehicle-injected fish did not differ from CRF-injected
fish in the time required to initiate ventilation (Mann–Whitney
U-test: U = 76.50, nCRF= 15, nveh= 15, p = 0.14) or regain equi-
librium (independent t-test: t = 1.23, d.f . = 28, p = 0.23) fol-
lowing anesthetization and injection, suggesting that CRF did not
negatively affect basal physiology or behavior. We also recorded
ventilation rate for the first 300 s following the initiation of ven-
tilation. This serves as a bioassay for injection efficacy because
CRF has an evolutionarily conserved role in elevating ventilation
rate. As previously shown in L. dalli (Solomon-Lane and Grober,
2012), CRF injection significantly increased ventilation rate com-
pared to vehicle-injected fish (Figure 3), indicating the successful
elevation of central CRF.

Injected females were paired as soon as both members of
the pair had recovered fully (i.e., regained equilibrium) (CRF-
injected: 16.2 ± 1.5 min post-injection; vehicle-injected: 22.8 ±
1.7 min post-injection). To pair females, we gently transferred
each fish into a novel tank simultaneously. Tanks were supplied
with a PVC tube (15.2 cm length, 1.9 cm diameter) that domi-
nant L. dalli establish as their territory and males use as a nest.
Following a 1 min acclimation period, we began behavioral obser-
vations (10 min each) and recorded approaches, when one fish
swims directly toward any part of another fish’s body, within 2
body lengths, and displacements, in which the approached fish
retreats or swims away. We also recorded lateral displays, an
escalated aggressive interaction. We conducted up to 3, rolling
behavioral observations (maximum 30 min). If dominance was
established and one fish displaced the other 5 times without
being displaced itself, we did not conduct additional morning
observations.

Overall, significantly fewer injected pairs than control pairs
had an established dominant fish based on our original criteria
(5 uninterrupted displacements) within the first 30 min of pair-
ing (injected: 3 of 15 pairs; control: 12 of 14 pairs) (Chi-square:
χ2 = 12.54, d.f . = 1, p < 0.001). Using a broader definition of
dominance that included occupation of the nest territory and
high agonistic efficiency, the proportion of approaches that lead
to a displacement, a ratio that is substantially higher in domi-
nants, there were still significantly fewer injected pairs with a clear
dominant fish (injected: 7 of 15 pairs; control: 13 of 14 pairs)
(Chi-square: χ2 = 7.24, d.f . = 1, p = 0.01). To determine if CRF
facilitates dominance establishment in L. dalli, we compared the
number of pairs with a CRF-injected and a vehicle-injected dom-
inant fish. Of the 7 injected pairs with a clear dominant, only 1
dominant fish had been injected with CRF, which was not a sig-
nificant difference from random (Chi-square: χ2 = 2.28, d.f . =
1, p = 0.13). During the afternoon observation, approximately

Frontiers in Neuroscience | Neuroendocrine Science November 2013 | Volume 7 | Article 210 | 6

http://www.frontiersin.org/Neuroendocrine_Science
http://www.frontiersin.org/Neuroendocrine_Science
http://www.frontiersin.org/Neuroendocrine_Science/archive


Solomon-Lane et al. HPA/I axis and sex change

FIGURE 3 | Mean (± s.e.m.) ventilation rate, measured as the number

of opercular beats recorded in 30 s intervals during the first 300 s

following the initiation of ventilation. A two-way mixed factorial ANOVA
with time interval as the within subjects factor and treatment as the
between subject factor demonstrated a significant effect of treatment
[F(1, 280) = 88.11, p < 0.0001] and time [F(9, 280) = 3.187, p = 0.0011] on
ventilation rate. Post-hoc analysis revealed that CRF-injected fish had a
significantly higher ventilation rate in the first 300 s following the initiation
of ventilation (independent t-test: t = 4.83, d .f . = 298, p < 0.0001),
indicating the successful injection of CRF. Post-hoc testing showed no
significant effect of time on ventilation rate (one-way ANOVA:
F(9, 290) = 0.78, p = 0.635).

3 h after pairing, all 14 control pairs had an established domi-
nant fish, defined by occupation of the nest territory and/or the
consistent displacement of the subordinate fish. For the injected
pairs, 13 of 15 pairs had an established dominant fish, and there
was no difference between the number of CRF-injected (5) and
vehicle-injected (8) dominants (Chi-square: χ2 = 0.3, d.f . = 1,
p = 0.58).

These data demonstrate that contrary to our hypothesis, acute
elevation of central CRF in this context did not facilitate dom-
inance establishment. In fact, within the first 30 min of pairing,
CRF-injected fish tended to become subordinate. In two simi-
larly designed studies using juvenile rainbow trout (Oncorhynchus
mykiss), CRF had conflicting effects on dominance establishment.
Carpenter et al. (2009) showed that icv CRF at the same dose
used in this study positively affected dominance establishment
(Carpenter et al., 2009); however, Backström et al. (2011) report
the same status outcomes after 60 min as we do for L. dalli during
the afternoon observation: 5 CRF-injected and 8 vehicle-injected
rainbow trout became dominant. Interestingly, at a higher dose,
they show a negative effect of CRF on dominance (Backström
et al., 2011). These data suggest that CRF may facilitate subor-
dinate status, which could be confirmed for L. dalli with a larger
sample size and/or by increasing the dose of CRF.

To investigate why status establishment was significantly
delayed in injected pairs, we compared rates of agonistic behavior
during the morning observations. Fish that were injected, includ-
ing both CRF-injected and vehicle-injected fish, approached
(Figure 4A) and displaced (Figure 4B) less than controls and
engaged in fewer lateral displays (Figure 4C). These differences in
agonistic behavior were driven specifically by dominants. Injected

dominant fish (1 CRF, 6 vehicle) approached (Figure 4D) and dis-
placed (Figure 4E) significantly less than control dominants, yet
there were no differences in subordinate approaches (Figure 4F)
or displacements (Figure 4G). These data demonstrate that the
injection procedure, independent of substance injected, depressed
behavior, which is critical to the establishment of dominance.
Interestingly, this effect was mediated by social context: rates of
behavior were depressed only in dominant fish.

Although there was no significant difference in the number
of CRF-injected vs. vehicle-injected dominants, vehicle-injected
fish tended to become dominant in the first 30 min. To determine
whether behavioral differences explain this skew and/or whether
CRF affected agonistic behavior, we compared rates of approaches
and displacements between CRF-injected and vehicle-injected
fish, independent of status outcome. There were no differences
in approaches (Figure 5A) or displacements (Figure 5B) in the
first 30 min of pairing. Because there was only 1 CRF-injected
dominant and only 1 vehicle-injected subordinate, we could not
analyze whether agonistic behavior differed between CRF domi-
nants and subordinates or vehicle dominants and subordinates.
During the afternoon observation, when 5 CRF-injected and
8 vehicle-injected fish were dominant, there were no signifi-
cant differences between CRF- and vehicle-injected dominants in
approaches (Figure 5C) or displacements (Figure 5D). Although
rates of behavior were lower in CRF-injected dominants, CRF
did not seem to reduce agonistic efficiency: nearly all dominant
approaches lead to a successful displacement. Among subordi-
nates, there were no differences in approaches (Figure 5E) or
displacements. Despite the low rates of subordinate behavior in
the afternoon observation, CRF-injected subordinates interacted
more than vehicle-injected subordinates, showing that CRF did
not consistently decrease behavior further than the vehicle alone.
Contrary to our hypothesis, therefore, exogenous elevation of
central CRF did not affect agonistic behavior during status estab-
lishment and initiation of sex change. The lower rates of behavior
due to injection, an effect also observed in rainbow trout injected
with icv CRF (Carpenter et al., 2009), could also have limited our
ability to detect differences.

To test for an effect on HPI activity, resulting from the exoge-
nous CRF and/or stress of the injection, on status establishment
and agonistic behavior, we collected water-borne cortisol follow-
ing the afternoon behavioral observation. Afterwards the pair was
returned to their home tank. Injected fish had significantly higher
cortisol levels than control fish, but there was no significant differ-
ence between CRF-injected and vehicle-injected fish (Figure 6A).
This indicates that the injection rather than the exogenous CRF
activated the HPI axis. For both dominants (Figure 6B) and sub-
ordinates (Figure 6C), CRF-injected and vehicle-injected fish had
significantly higher cortisol than control fish but did not dif-
fer from each other. Despite similar HPI axis activation between
injected groups, these data provide additional support for our
ability to manipulate CRF centrally because the treatment dif-
ference in ventilation rate was not driven by a CRF effect on
cortisol. Overall, there was no effect of social status on cortisol
(Figure 6D).

Both the injection and the novel social environment, which
was designed to be competitive by pairing size-matched females,
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FIGURE 4 | Mean (± s.e.m.) agonistic behaviors within the first 30 min of

pairing. Injected fish (A) approached (independent t-test following natural log
transformation: t = −3.09, d .f . = 44, p = 0.0035) and (B) displaced
(Mann–Whitney U-test: U = 214.5, nInj = 30, nCon = 26, p = 0.0039)
significantly less than control fish. (C) Injected fish also engaged in
significantly fewer lateral displays (independent t-test following natural log
transformation: t = −3.53, d .f . = 24, p = 0.0017). Injected dominants (D)

approached (independent t-test following natural log transformation:
t = −3.22, d .f . = 18, p = 0.0079) and (E) displaced (Mann–Whitney U-test:
U = 9.0, nInj = 7, nCon = 13, p = 0.0043) significantly less than control
dominants. There were no significant differences in subordinate (F)

approaches (Mann–Whitney U-test: U = 38.5, nInj = 7, nCon = 13, p = 0.61)
or (G) displacements (Mann–Whitney U-test: U = 36.5, nInj = 7, nCon = 13,
p = 0.50). ∗∗p < 0.01.

FIGURE 5 | Mean (± s.e.m.) agonistic behaviors in injected fish on day 1

of pairing. There were no differences in (A) approaches (independent t-test
following natural log transformation: t = 0.052, d .f . = 24, p = 0.95) or (B)

displacements (Mann–Whitney U-test: U = 92.5, nCRF = 15, nVeh = 15,
p = 0.41) by CRF-injected and vehicle-injected fish, independent of social
status, within the first 30 min of pairing. In the afternoon observation,

dominant CRF-injected fish did not (C) approach (Mann–Whitney U-test:
U = 9.5, nCRF = 5, nVeh = 8, p = 0.13) or (D) displace (Mann–Whitney U-test:
U = 12.5, nCRF = 5, nVeh = 8, p = 0.28) significantly more than
vehicle-injected dominants. (E) There were not a sufficient number of
subordinate approaches to analyze statistically, and subordinate
displacements are not shown because all values are 0.

likely contributed to the elevated cortisol levels, as both of these
factors have been shown to activate the HPA/I axis. Interestingly,
in a previous L. dalli study, CRF injected icv in the absence of a
social manipulation did not affect cortisol levels when compared
to anesthetized controls that were not injected (Solomon-Lane
and Grober, 2012). This suggests a possible synergistic effect of
the stressors. Elevated levels of CRF or cortisol also have been

associated with suppression of behaviors, such as foraging, repro-
ductive behaviors, and aggressive behaviors (Tokarz, 1987; Moore
and Mason, 2001; Crespi and Denver, 2004). This is relevant to
the present study because rates of behavior were depressed and
cortisol levels were elevated in injected fish. Our inability here
to distinguish between HPI activity in CRF-injected and vehicle-
injected fish suggests that future tests of HPI involvement in
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FIGURE 6 | Mean (± s.e.m.) water-borne cortisol levels (pg/sample).

(A) Injected fish had significantly higher cortisol levels than control fish
(independent t-test following natural log transformation: t = 5.03,
d .f . = 56, p < 0.0001). Control, CRF-injected, and vehicle-injected fish
cortisol also differed significantly (one-way ANOVA following natural log
transformation: F(2, 55) = 12.68, p < 0.0001). (B) Cortisol levels differed
significantly among dominant (one-way ANOVA following natural log
transformation: F(2, 21) = 10.30, p = 0.0008) and (C) subordinate (one-way
ANOVA following natural log transformation: F(2, 21) = 8.98, p = 0.0015)
fish. (D) There were no differences between all (control, CRF-injected, and
vehicle-injected) dominant and all subordinate fish (independent t-test
following natural log transformation: t = −0.18, d .f . = 46, p = 0.86).
Asterisks and different letters (p < 0.05) indicate significant differences.

L. dalli sex change may be limited by the current techniques.
The challenge of manipulating the HPA/I axis without indepen-
dently activating it via handling or administration procedure is
frequently encountered by researchers, and we discuss potential
future directions below.

Finally, to test whether CRF affected sex change, we allowed
females to remain in their pairs for 12 days, a sufficient time for
L. dalli to change sex (Reavis and Grober, 1999). By day 6, all con-
trol (n = 14) and injected (n = 15) pairs had a clear dominant
fish, and except for status reversals in two control pairs, domi-
nance remained stable through day 12. On day 6, CRF-injected
fish had established and maintained dominance in 5 of 15 pairs,
which was not significantly different from random (Chi-square:
χ2 = 1.06, d.f . = 1, p = 0.30). We evaluated sex change from
digital images of the sexually dimorphic genital papilla (St Mary,
1993) and gonad morphology. Female L. dalli have a rounded
genital papilla with a length-to-width ratio less than 1.4, whereas
the male papilla is pointed with a ratio greater than 1.4 (St Mary,
1993; Carlisle et al., 2000). In all pairs, the dominant fish changed
sex, indicated by the significantly higher genital papilla ratio in
dominant compared to subordinate fish (Figure 7A), which is
consistent with many past studies in this species (Reavis and
Grober, 1999; Rodgers et al., 2007). Visual inspection of the
gonads also confirmed that all dominants had transitional or
male-typical gonads. Among dominants, there was no effect of
treatment on the genital papilla ratio (Figure 7B) suggesting that
neither a single icv injection of CRF nor the injection procedure,
both of which delayed status establishment and elevated cortisol,
affected the rate of sex change.

FIGURE 7 | Mean (± s.e.m.) genital papilla length-to-width ratio. (A)

Dominant fish (control, CRF-injected, and vehicle-injected) had significantly
higher genital papilla ratios than subordinate fish (Mann–Whitney U-test:
U = 12.0, ndom = 25, nsub = 27, p < 0.0001). Dominant fish had
male-typical length-to-width ratios (average 1.99 ± 0.11) and subordinates
had female-typical ratios (average 0.89 ± 0.023). (B) There were no
differences in genital papilla ratio among dominant control, CRF-injected, or
vehicle-injected fish [one-way ANOVA: F(2, 22) = 0.099, p = 0.91]. Similarly,
there was no difference among subordinates (data not shown, one-way
ANOVA: F(2, 24) = 0.22, p = 0.81). Asterisks indicate significant differences
(p < 0.05).

SUMMARY AND FUTURE RESEARCH DIRECTIONS
In this paper, we have discussed multiple hypotheses about HPI
axis involvement in the regulation of teleost sex change and pre-
sented original data from our initial experiments with L. dalli that
test those hypotheses. We have shown that in L. dalli, variation
in HPI axis activity (measured as cortisol) was associated with
social status in the hierarchy, and these differences were socially
mediated. We also showed that cortisol increased during early
stages of sex change, suggesting that activation of the HPI axis
may be involved with stimulating the process of sex change simi-
lar to the ways in which HPA/I axis activation is involved in other
life history transitions (Wada, 2008). Additional experiments sug-
gested below could elucidate whether the HPI axis is acting in this
evolutionarily conserved manner during sex change.

Corticotropin-releasing factor, either through its hypophys-
iotopic actions or its own actions as a neurotransmitter, also
could facilitate sex change through two possible scenarios. First,
naturally occurring sex change is always coupled with social
dominance; therefore, if CRF facilitated dominance, CRF could
indirectly mediate sex change. We showed that this is not the
case for L. dalli. Acute elevation of CRF in the brains (through
icv injection) of fish in a permissive environment was not associ-
ated with dominance establishment or the expression of agonistic
behavior, although there may be a role for CRF (and cortisol)
in subordinate status and/or behavior. Instead, both icv CRF
and vehicle reduced agonistic behaviors and delayed dominance
establishment. Acute increases in CRF resulting from environ-
mental stressors (e.g., predation threat, threatening abiotic con-
ditions) could inhibit aggression because this switch in behavior
favors survival in such conditions, as it does in other vertebrates
(e.g., Tokarz, 1987), independent of its role in the regulation of
behaviors that maintain hierarchies. More research is needed to
examine both of these hypotheses.

Second, if CRF was the biological signal for the initiation of
sex change, then CRF could directly regulate this process, possibly
even in the absence of social dominance. It is important to note
that since sex change is socially regulated by nuanced interactions
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among several individuals, there may not be one agonist or antag-
onist, within or outside of the HPI axis, capable of overriding
the effects of social interactions and context. While we showed
that a single icv injection of CRF prior to status establishment in
a permissive environment did not trigger sex change, this does
not necessarily rule out a role for CRF in its initiation. For exam-
ple, it is likely that a prolonged elevation of hypothalamic CRF is
necessary to activate the physiological hormonal cascade involved
in sex change, as we detected elevated cortisol in alpha females
days after removal of a dominant male. Indeed, Denver (1997)
used repeated intraperitoneal (ip) injections of CRF to initiate
precocious metamorphosis in tadpoles beyond a certain stage of
development, and conversely, used repeated ip injections of a CRF
antagonist to prevent metamorphosis.

Similar experiments could be conducted in L. dalli to test
whether CRF administered to a dominant female in a permis-
sive environment for sex change can accelerate the transition. This
could be accomplished using multiple ip injections, which would
allow for CRF to have hypophysiotropic effects (Denver, 1997)
but may be less stressful than icv injections because less handling
is required and anesthesia may not be necessary. Alternatively, icv
injection of CRF in a viral vector could activate CRF over a longer
period of time, thereby allowing fish to more fully recovery from
the injection procedure before being exposed to a social chal-
lenge or an environment permissive to sex change. Repeated icv
injections via indwelling cannula would also be possible in larger
species of sex changing fish (e.g., wrasses, Labridae; parrotfishes,
Scaridae). Another critical experiment would involve chronically
inhibiting CRF in an environment permissive to sex change via
administration of an antagonist (e.g., alpha-helical CRF), vivo
morpholino (e.g., Ferguson et al., 2013), siRNA, or shRNA.

Overall, we encourage further investigation into the mecha-
nisms underlying sex change in order to broadly elucidate social
regulation of metamorphic processes, and, more specifically,
identify a potentially evolutionarily conserved role for the HPI
axis in this dramatic life history transition.
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