
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

3-23-2009

An Adaptive Mesh MPI Framework for Iterative C++ Programs An Adaptive Mesh MPI Framework for Iterative C++ Programs

Karunamuni Charuka Silva

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Silva, Karunamuni Charuka, "An Adaptive Mesh MPI Framework for Iterative C++ Programs." Thesis,
Georgia State University, 2009.
doi: https://doi.org/10.57709/1059405

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @
Georgia State University. It has been accepted for inclusion in Computer Science Theses by an authorized
administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_theses
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/1059405
mailto:scholarworks@gsu.edu

AN ADAPTIVE MESH MPI FRAMEWORK FOR ITERATIVE C++ PROGRAMS

by

CHARUKA SILVA

Under the Direction of Sushil K. Prasad

ABSTRACT

Computational Science and Engineering (CSE) applications often exhibit the pattern of adaptive

mesh applications. Adaptive mesh algorithm starts with a coarse base-level grid structure

covering entire computational domain. As the computation intensified, individual grid points are

tagged for refinement. Such tagged grid points are dynamically overlayed with finer grid points.

Similarly if the level of refinement in a cell is greater than required, all such regions are replaced

with coarser grids. These refinements proceed recursively. We have developed an object-oriented

framework enabling time-stepped adaptive mesh application developers to convert their

sequential applications to MPI applications in few easy steps. We present in this thesis our

positive experience converting such application using our framework. In addition to the MPI

support, framework does the grid expansion/contraction and load balancing making the

application developer’s life easier.

INDEX WORDS: Adaptive mesh, Parallelization, Time-stepped, Battlefield management
simulation, Space Filling Curve (SFC), Object-oriented

AN ADAPTIVE MESH MPI FRAMEWORK FOR ITERATIVE C++ PROGRAMS

by

CHARUKA SILVA

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in the College of Arts and Sciences

Georgia State University

2009

Copyright by

Charuka Silva

2009

AN ADAPTIVE MESH MPI FRAMEWORK FOR ITERATIVE C++ PROGRAMS

by

CHARUKA SILVA

 Committee Chair: Sushil K. Prasad

 Committee: Raj Sundarraman
 Saeid Belkasim

Electronic Version Approved:

Office of Graduate Studies
College of Arts and Sciences
Georgia State University
May 2009

iv

DEDICATION

To my mother,

Who took tremendous challenge to bring me up this far.

To my sister,

Who always stands next to me as my second mother.

v

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Sushil K. Prasad, for his expert guidance. He is always open

to new ideas and eager to explore options.

Also I would like to thank Dr. Raj Sundarraman, Dr. Raheem Beyah and subsequently Dr. Saeid

Belkasim for reviewing my thesis and putting valuable inputs.

I thank my project group members Chad, Srilaxmi, Akshaye, Sunetri, Sara and Joseph for

extending their helpful hands in many ways to make my research work as well as my time in

Georgia State University a success.

Also I thank my husband and my family for all their support and encouragements.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

LIST OF FIGURES viii

LIST OF TABLES xi

CHAPTER

1. INTRODUCTION 1

1.1 Goal of the Framework 2

 1.2 Section Breakdown 2

2. RELATED WORK 4

3. FRAMEWORK ARCHITECTURE 9

3.1 Program Flow of Control 12

4. DETAILED DATA STRUCTURES 16

4.1 Grid Point Data Structure 16

4.2 Computation Node Data Structure 21

5. ALGORITHMS AND IMPLEMENTATION DETAILS 23

 5.1 Initialization Phase 23

 5.2 Computation and Communication Phase 23

 5.3 Load Balancing Phase 26

 5.4 Class Description 27

 5.5 Overheads 35

vii

6. EXPERIMENTAL RESULTS 37

 6.1 Case Study: Polytrope Differential Equation Solver 37

 6.2 Case Study: Wave Propagation in Media 48

7. CONCLUSION AND FUTURE WORK 52

REFERENCES 53

APPENDICES

APPENDIX A CLASS DIAGRAM OF THE FRAMEWORK 57

APPENDIX B DAPTIVE MESH FRAMEWORK CODE 58

viii

LIST OF FIGURES

Figure 1: Layered architecture of the framework 9

Figure 2: Detailed architecture of the framework 10

Figure 3: Control flow of the framework 15

Figure 4: First three stages in the generation of Hilbert’s space filling curve [3] 17

Figure 5: Initial mesh structure of the program graph 18

Figure 6: Grid refined to 3 levels 19

Figure 7: Convention of labeling grid point coordinates (2D) 19

Figure 8: Grid point coordinate naming convention for 3D mesh 20

Figure 9: NodeInfo properties 21

Figure 10: Mapping the adaptive grid to the extended hash table 22

Figure 11: Node refining algorithm 24

Figure 12: Grid coarsening algorithm 25

Figure 13: Computation and communication functions 26

Figure 14: Grid distribution among processors 27

Figure 15: MPIFramework class definition 28

Figure 16: NodeInfo class definition 29

Figure 17: ExtendedHash class definition 30

Figure 18: DataNode class definition 31

Figure 19: BuffNode DataNode class definition 31

Figure 20: Graph class definition 32

Figure 21: FileIO class definition 32

ix

Figure 22: Point class definition 33

Figure 23: 2D point class definition 33

Figure 24: 3D point class definition 34

Figure 25: Coordinate system class definition 34

Figure 26: Coordinate system for 2D meshes 35

Figure 27: Coordinate system for 3D meshes 35

Figure 28: Speedup vs. mesh size on 2 processors without adaptive refinement 39

Figure 29: Speedup vs. mesh size on 4 processors without adaptive refinement 40

Figure 30: Speedup vs. mesh size in on 8 processors without adaptive refinement 41

Figure 31: Speedup vs. mesh size on 16 processors without adaptive refinement 42

Figure 32: Execution time vs. number of processors without adaptive refinement 43

Figure 33: Execution time vs. mesh size on 2 processors with regular/adaptive

refinement
43

Figure 34: Execution time vs. mesh size on 4 processors with regular/adaptive

refinement
44

Figure 35: Execution time vs. mesh size on 8 processors with regular/adaptive

refinement
44

Figure 36: Execution time vs. mesh size on 16 processors with regular/adaptive

refinement
45

Figure 37: Relative speed up vs. mesh size when adaptive behavior is enabled 45

Figure 38: Error rate of the application on different mesh sizes 46

Figure 39: Normalized load metric on different processors 47

Figure 40: Percentage time taken for different execution unit on 128X128 mesh 48

Figure 41: 64x64 mesh execution time comparison with PETSc and framework 48

Figure 42: Speedup vs. Processors on 32x32x32 mesh 49

x

Figure 43: Speedup vs. Processors on 64x64x64 mesh 49

Figure 44: Speedup vs. Processors on 32x32x32 mesh 50

Figure 45: Speedup vs. Processors on 64x64x64 mesh 50

Figure 46: Overhead introduced from the framework 51

xi

LIST OF TABLES

Table 1: Execution time (in seconds) on 2 processors without adaptive refinement 39

Table 2: Execution time (in seconds) on 2 processors with adaptive refinement 39

Table 3: Execution time (in seconds) on 4 processors without adaptive refinement 40

Table 4: Execution time (in seconds) on 4 processors with adaptive refinement 40

Table 5: Execution time (in seconds) on 8 processors without adaptive refinement 41

Table 6: Execution time (in seconds) on 8 processors with adaptive refinement 41

Table 7: Execution time (in seconds) on 16 processors with adaptive refinement 42

Table 8: Execution time (in seconds) on 16 processors without adaptive

refinement
42

Table 9: Normalized load metric and number of processors 46

Table 10: Time taken for different execution units 47

 1

1. INTRODUCTION

In the field of Computational Science and Engineering many applications exhibit irregular

structure and dynamic behavior with dynamic load patterns. One such application domain can be

recognized as using Adaptive Mesh Refinement techniques (AMR). Basic algorithm of AMR

technique is to begin with coarser grain mesh structure covering the entire computational area and

later refine the particular grid points where interesting physical phenomena occur. It could be

replacing the coarser grain with finer grain grid points or the other way round. This refinement

proceed recursively when program progresses. Due to refinement at arbitrary points, mesh will

eventually result in as an imbalance system. Sequential implementations of conventional adaptive

mesh applications are very complex and difficult to validate. The parallel applications of those are

far more complex than those. Therefore providing an infrastructure to such applications is clearly

a benefit to the application developers. In this thesis we propose an object-oriented framework

which takes few parameters to convert C++ adaptive mesh application into MPI application. This

work follows our previous work iC2MPI [18] which converts graph structured –time stepped

sequential C programs into MPI applications.

Many time-stepped applications such as fluid dynamics [6] or mesh structured applications such

as difference equations [9], finite element methods [7], and cellular automata [21], incompressible

flows [23], low Mach number models for atmospheric flow [24] and combustion [25] will

definitely benefit from our framework as it handles the bulk of extra work required by

programmers in parallelization of those applications.

2

1.1 Goal of the Framework

1. Design an open architecture framework for class of mesh structured C++ applications,

which may require adaptive mesh refinement and dynamic load balancing.

2. Enable programmers to easily plug-in application code to the framework with minor

changes to the original code to convert sequential C++ code into MPI based distribute

applications and add the adaptive mesh refinement behavior to applications, which requires

the same.

3. Enable developers performance tuning of the computation, communication and load

balancing of the framework itself to effect in overall porting applications benefit

Our resultant framework is an improvement to our previous work iC2mpi [2]. Compared to any

other AMR framework exist, we have provided quite easy conversion from sequential C++ AMR

based application into MPI application and at the same time, if not already in-built, to support the

AMR behavior to applications which require that, fulfilling our first and second goals. We have

proved our concept porting sample applications with few code changes to the original application.

Experiment results section exemplifies the speed up achieved (upto 12 speed up with 16 procs for

256 x 256 mesh) and error rate drop for quality achievement. The open architecture of our design

provides ample room for interested developers to improve our framework from many aspects

concentrating single area.

1.2 Section Breakdown

This thesis is organized as follows. Section 2 contains background information required for

implementation of the framework. There we try to present the basic idea of space-filling curve and

3

expandable hash structure. Section 3 describes the related work. Section 4 presents the

architecture of the framework and flow control. There we describe the application user input and

points of inputs to the framework. In Section 4 we explain the design and implementation of our

framework in detail. Section 5 describes our Experimental results while Section 6 summarizes our

work and exposes the future improvements to the framework.

4

2. RELATED WORK

In this section we will discuss existing literature on adaptive mesh refinement frameworks and

similar research work. The work of [22] investigates the use of spatial keys to uniquely identify

and order the objects defining a triangular mesh. They do the triangular refinement using newest-

node bisection. When refining they divide the mesh integral distance by four. They replace a line

with a new node and two new lines. And bisect a triangle, replacing it with a new line and two

new triangles. However their load balancing and communication between processors are not

clearly described.

Rendleman et al., present [20] parallelization of block-structured adaptive refinement algorithms.

Their work is supported by the software infrastructure provided by BoxLib library of [11].

BoxLib is a C++ library, which can be used for adaptive mesh refinement applications. BoxLib

includes the basic parallelization facility hiding the detailed information from application

developer. BoxLib creates the mesh structure required for the application and it handles the

communication via MPI calls. Charles and team describe their implementation as having five

components: error estimation and re-gridding routine to mark the refinement nodes, grid

management routine manages the grid hierarchy, interpolation routines initializes a solution on

newly created fine grids and interpolate the boundary conditions, synchronization routines correct

mismatches at coarse/fine boundaries and integration routine distribute the grids among physical

processors. The paper describes refinement algorithm and load balancing algorithm in detail. The

differences in their work and ours are ease of porting, fairly large problem domain we address and

control that a user has on his application on the framework.

5

Chien et al., focus on large scale shared memory systems for writing SMAR methods [14]. Their

runtime supports the programs to utilize varying degree of shared memory support. Their

implementation is done on top of Illinois Concert System and C++. Several threads employ in

single address space. Shared memory is used for all communication and sharing.

Teng et al., propose to use balanced quadtrees and octrees to represent well shaped meshes[13].

Quadtrees and octrees can grow dynamically and adaptively to approximate the process of

adaptive refinement of unstructured mesh. They focus on reducing dynamic load balancing to

static partitioning and reducing parallel mesh refinement to a collection of traditional mesh

refinements. Scheme first builds a balanced 2d tree to model the unstructured mesh. And they

assume at refinement mesh will be refine at every region. Also they do not consider coarsening.

The work has not presented their experimental results.

PARAMESH [26] is a package of Fortran90 implementation of Adaptive Mesh Refinement

framework developed in NASA. As with our framework, goals of the PARMESH are to enable

application developers to convert their serial code into parallel code and enable the regular mesh

structured framework, the adaptive mesh behavior. The package builds a hierarchy of sub grids

covering the entire computational domain. The sub grid blocks are organized as quad tree (for

2D) or oct-tree (for 3D). Each grid block has a logical Cartesian mesh. In this framework one of

the restriction imposed on refinement is that a refinement level cannot jump by more than one

refinement level at any location in the spatial domain. After every refinement stage, framework re-

organizes the grid distribution among processors. At refinement, each block maintains the initial

6

mesh structure. They use Morton Space filling curve. Communication between processors is

supported by MPI standard

PETSc [30] is a suite implemented in Mathematics and Computer Science Division of Argonne

National Laboratory to produce numerical solution of partial differential equations and related

problems on high-performance computers. PETSc use MPI standard for message passing

communication as well. PETSc includes parallel linear, nonlinear equation solvers and time

integrators for applications developed in C, C++ and Fortran.

Bhandarkar et al., focus on load balancing in MPI programs in [17]. They use the charm++ in

their work to bring the dynamic load balancing capability to MPI programs. Charm++ [29] is an

object-oriented parallel programming language. It gives the dynamic load balancing capabilities

using runtime measurements of computational loads and communication patterns. Then it employs

object migration to achieve load balance. Therefore any MPI program should be able to get the

benefit of charm++ load balancing capability by simply transforming the MPI code into charm++

code. But conversion from MPI to charm++ requires the understanding of charm++ language.

They propose a framework to do the conversion job.

Libmesh [32] library and toolkit provide underling adaptive mesh refinement capability for

numerical simulation of partial differential equations. Currently it supports 1D, 2D, and 3D steady

and transient finite element simulations. It makes use of existing software for solvers.

7

Chombo [35] provides software infrastructure for finite difference methods for the solution of

partial differential equations on block-structured adaptively refined rectangular grids. Framework

makes use of the previous work of work BoxLib [11]. It addresses both elliptic and time-

dependent modules. The tools incorporated the visualization tool ChomboVis to visualize the data

sets. MPI is used for communication in Chombo framework.

AMR framework [34] is designed for predicting physically complex flows. Framework is limited

to 1 D and 2 D flows. It provides the basis for development of computational analysis tools for

complex flow prediction. Block based adaptive mesh refinement is done and parallel implicit time

stepping approach is applied.

Parashar et al., in their work [19] present data structures for adaptive mesh refinement. Two basic

data structures are presented here: a Scalable Distributed Dynamic Grid, which is a single grid in

an adaptive grid hierarchy and a Distributed Adaptive Grid Hierarchy, which is a dynamic

collection of SDDGs. Computational data associated with the grids in the hierarchy is maintained

as a scalable distributed dynamic array. Grid points are ordered according to the space-filling

curve. The work shows experimental results with a representative application from numerical

relativity and proves that the presented data structure has no significant overhead.

FEM [31] is an automatic load balancing framework developed for the Converse [31]

interoperable runtime system. Framework records the computation time taken for each virtual

process or char defined in charm++ [29] and communication end points for each virtual

processor. With this information it creates the communication graph in each physical processor. It

8

implements a mechanism for object migration and plug in for load balancing strategy. The

limitation of the framework is that it is designed for specific domain.

Autopilot [27] presents ways of collecting information at runtime for parallel programs. Also it

provides fuzzy logic based decision engine to aid resource management in parallel programs. But

it is left to the programmer to implement the decision provided by the fuzzy logic. Since the

runtime system of the parallel program does not actively carry out the decision, the load balancing

is not transparent to the parallel program. In our framework we manage the load balancing on

behalf of the application developer.

Similarly system CARMI [28] informs the parallel program the load imbalance and leaves the load

balancing process to be implemented by the application developer.

Aluru, Fatih [33] describe load balancing technique based on space filling curve. They present

algorithms to linearly order points in multi dimensional space using the Z-curve and Graycode

curve. Since the proximity preserving nature of the space filling curve, from multi dimensional

space to one dimensional space, they are used for partitioning.

J¨orn Behrens and Jens Zimmermann [5] introduce new recursive space-filling curve algorithm for

adaptively refined triangular meshes for their dynamic distribution. Their experiment results show

good load balancing and edge cut characteristics.

9

3. FRAMEWORK ARCHITECTURE

This framework is designed to have a layered architecture to decouple the user application and the

framework. Application user does not require having knowledge on node partition, distribution,

load balancing and MPI calls. Application sits on top of the framework. Figure 1

shows the layered architecture of the platform. Application provides the underlying mesh

structure, which is essentially the width of the mesh (number of grid points in each direction),

node data structure, which can be a class implementation and node computation function, which

may define the criteria for expansion and contraction of mesh, as user plug-ins to the framework.

Platform uses a space-filling curve to convert n-dimensional mesh into 1-dimensional list, which

will then partition among the processors. Also platform supports the adaptive behavior of the

application carrying out mesh expansion and contraction when required. At the same time

framework will take care dynamic load balancing. Load balancing algorithm can be replaced not

harming to the existing framework functionality. The platform uses an MPI [12] approach for

parallelization, one of the most widely used methods to achieve parallelism on today’s clusters

and multiprocessor supercomputers.

Figure 1: Layered architecture of the framework

10

The Figure 2 shows the detailed architecture of the framework and it explicitly shows the user

plug-in points (underlying mesh size, node data structures and node computation function). White

boxes in the figure show the user plug-ins to the framework and dark gray boxes represent the

framework while light gray boxes shows the external applications and libraries used in the

framework.

Figure 2: Detailed architecture of the framework

Hilbert
Space
Filling
Curve

Application
Underlying
Mesh size

Initialize

Data Node
Structure

Message Passing Interface

Node
Computation
Function

Computation

Communication

Load Balancing

……….

Node Information List

11

Application provides following inputs to the framework to interact with it.

1. Application mesh size. And degree (two dimensional or three dimensional) of the mesh

handling by setting a variable in the framework.

2. Computational node structure definition, which can be a C++ structure or class and its

implementation.

3. Computational function defined on each node. This function accepts pointer to grid point

object on which the computation function is called, and a pointer to hash table of

computational data list. Function defines the error function for node refinement and

coarsening.

 The application use the third party ‘Hilbert’s Space-Filling Curve’ to get the one dimensional

space filling curve generated from user application mesh. Framework will partition the generated

one dimensional node list among the processors and create node-to-processor mapping, which

will be used later to find out the shadow nodes for a processor as well as for load balancing. The

second user input, the structure of computational data node of the application is recognized by the

initialize phase of the framework to generate data nodes hash tables associated with the

application graph. At the end of initialization phase all required data structures are created for

next phase.

Third user input, “application computation function” is supplied during the computation and

communication phase of the framework. Framework will call the computation function on each

node and transport the communication data between relevant processors. New nodes may create

12

or destroy as a result of computation. Nodes requiring coarsening or refinement will be marked as

a result of error function calculations and framework will do the actual node generation and

coarsening according to the flag. Also location assignment (new mesh generation) neighbor nodes

update and load balancing caused due to adaptive mesh refinement will be handled by the

framework. So the framework essentially saves the programmer from doing all the background

work and let him concentrate on the business logic. At the end of computation phase, framework

supports communication between processors (packing, sending and receiving, updating

information to prepare for next computation cycle.) If it is the load balancing cycle, framework

does the re-partitioning and distribution of nodes between the processors without harming the

program state.

3.1 Program Flow of Control

We recognize three main phases in the program as described below.

Initialization Phase

‘Initialize Data Structures’ uses the node data structures provided by the user. And set up the data

structures for maintaining node information and node data in local memories of the processors.

Node information contains the information about its neighbors and shadow node information to

the processor. This phase could be a considerable overhead to large mesh applications. Since this

overhead occurs only once in lifetime of an application, it should be bearable.

13

Computation and Communication Phase

‘Compute over Nodes’ function supplied from the framework initiate the computation of the

framework. We pass a pointer to application specific, user given “computational function” as a

parameter to the ComputeOverNodes function. Application Node function provided by the user

incorporates the actual code for the node computation. Updated node data from the application

node function is packed into communication buffers. The framework data structure keeps the

neighbor information of each node, so that application developer can easily track the neighboring

nodes for inter-grid computation and communication.

CommunicateShadows function calculates number of shadow nodes going to the neighboring

processors. And pack the relevant data nodes and send them through MPI_Send. At the same

time each processor prepare for receiving the updated shadow nodes from their neighbors. In

every iteration framework needs to calculate the new buffer size for sending shadow nodes since

there could be node splitting and contraction taken place during the computation phase. This

buffer size calculation could be an extra overhead introduced by the framework. If we can keep

some information on mesh configuration changes, we can control the buffer node creation. We are

planning to consider this fact for further improvements on our framework. Computation and

communication phases may be called several times as application flows.

Load Balancing Phase

The load balancing routine is periodically invoked. The load normalization is done in a centralized

heuristic algorithm. Normalized load is calculated dividing the total number of nodes in the system

by number of processors. We use the updated Space filling curve to re-partition the nodes among

14

processors. The information required to re-partition the nodes, will be gathered to processor 0.

Then processor 0 will do the re-partition and inform everybody their new boundaries, so that each

processor can eventually pack the outgoing nodes and send them to relevant processors or

prepare to receive incoming new nodes from their neighboring processors.

Since the space-filling curve preserves the spatial locality, it is fair enough to consider the

resulting distribution to be comparable with its traditional grid distribution in terms of

communication overhead.

Figure 3 shows the flow control of the framework.

To run the application type mpirun –np <numberOfProcessors> Framework <meshSize> ,

Where numberOfProcessors is the number of processors the application is running and

meshSize is the length of an edge of square or cubic mesh. To compile the application use the

command make all and make clean will delete the objects files if any. Before each run output.txt

should be deleted. This file stores the space filling curve order.

15

Figure 3: Control flow of the framework

Initialization

Space
Filling
Curve -

partitioning

Grid
Formation/Contract

ion

Communication

Check
Load

Load Balancing

Computation

Stop

Y
ES

N
O

Start

16

4. DETAILED DATA STRUCTURES

Selection of data structure is vital to efficient computation of distributed systems. When designing

the data structures we considered several factors: fast access, flexibility and ability to

accommodate mesh expansion and contraction. We recognize two types of data structures,

1. Data structure for adaptive mesh grid points, and

2. Data structure for associated computation data nodes

4.1 Grid Point Data Structure

Maintaining node information is important apart from maintaining node data. Node information

might change during the course of execution. (Due to new node creation and re-partition during

the computation and load balancing) We designed the data structure for mesh grid points as a

linear representation of hierarchical and multi-grid points, generated from a space-filling curve

[3,4], which preserves the locality of d-dimensional space mapping to 1-dimensional space,

i.e. Nd - >N1, such that each point in Nd is mapped to a unique point in N1. Grid point creation,

refinement, coarsening, partitioning and dynamic repartitioning operations can be efficiently

carried out on the linear representation. The self similar nature of the space filling curve is used to

maintain the locality across levels of the grid hierarchy. We used Hilbert space-fillling curve [3] in

our experiments. Because of the open architecture the type of the pace-filling curve can be

changed as one required, since it is being used as a plug-in to the framework. In addition to the

locality preservation, choice of space filling curve is beneficial due to its inexpensive mapping

17

computational cost. Generated one dimensional representation can be partitioned between

processors equally facilitating fast and efficient. The resulting partitions have very good load

balancing and edge cut characteristics.

Hilbert-Type Space-Filling Curves

We used the Hilbert’s space filling curves [3] for our application. Figure 4 shows the first 3

stages of Hilbert’s space filling curve.

Figure 4: First three stages in the generation of Hilbert’s space filling curve [3]

18

Consider the 2D mesh of 16 nodes in Figure 5. When applied the Hilbert’s space filling curve,

new order of the one dimensional list would be {0,1,5,4,8,12,13,9,10,14,15,11,7,6,2,3}.

12

13

14

15

8

9 10

11

4

5

6 7

0 1

2 3

Figure 5: Initial mesh structure of the program graph

When 2D mesh is represented in 1D list, it is easy to partition the grid points among the

processors. As seen in the Figure 5 different colors represent the partition received by each

processor. This proves that chopping the 1D list will result in consecutive chunks of nodes for

each processor. Figure 6 show a refined grid, which has been refined to 3 levels. The space filling

curve generated for that graph is

 {0,1,{0,1,3,2},4,8,12,13,9,{0,{0,1,3,2},3,2},14,15,11,7,6,2,3}

Each grid point in the mesh will store its coordinates. We name the grid points according to

conventional X-Y-Z coordinates. Figure 7 and Figure 8 show the labeling convention of grid

point coordinates for 2 dimensional and 3 dimensional meshes respectively. As you can notice

from the Figure 7, each set of new refined nodes will consider new X-Y origin, which is bottom-

left coordinate of their parent node, to label their coordinates. For a 3 dimensional mesh, the

19

origin for the new refined grid points will be bottom-left-rear coordinates. This coordinate system

is a repetition of original system.

12 13 14 15

2 3 2 0 1 8 9
0 1

11

2 3 4
0 1

6 7

0 1 2 3

Figure 6: Grid refined to 3 levels

0,3 1,3 2,3 3,3

0,1 1,1 0,
1 0,0 1,0

0,2 1,2
0,
0 1,0

3,2

0,1 1,1
0,1

0,0 1,0
2,1 2,1

0,0 1,0 2,0 3,0

Figure 7: Convention of labeling grid point coordinates (2D)

Each grid point in the mesh is identified by its grid point id. Grid point id represents the location

of the grid point as well as its level. Node id for the gray grid point marked in Figure 7 is

composed as follows.

20

Figure 8: Grid point coordinate naming convention for 3D mesh

In addition to node id, grid data structure keeps the neighboring nodes id list to keep the

information about neighbors of the node and shadow node processor information for

communication purposes. Two nodes are considered to be neighbors if they share a common

edge, if it were 2D list or share a common face, if it were a 3D mesh. Also a node is a shadow

node for another node if two nodes are neighbors but belong into two processors. Then first node

becomes a shadow node to second and visa versa. If nodes depend on neighbor node information

for computation, computation data of shadow nodes are duplicated in appropriate processors. At

each communication phase those shadow nodes are updated with current data values for next

computation phase. Figure 9 shows the class definition of NodeInfo class, grid point information

definition.

21

Figure 9: NodeInfo properties

4.2 Computation Node Data Structure

A processor requires fast access to computation data. Thus the natural choice for the data

structure holding computation data would be a hash table. Location of the node data is obtained

from the node global ID sufficed on modulo hash function. Buckets carry pointers to the node

data associate with the global ID. Figure 10 displays how the grid points relate to the

computation node data when refining takes place at different levels. Definition of the computation

node data is provided by the application user

Entire mesh associated computation data nodes are created and stored in each processor. When

node data is required during the computation phase, it will be retrieved using the node id. At the

end of communication phase shadow nodes will be sent and incoming shadow nodes are updated

in the hash table. In this way, each processor is furnished with required and up-to-date data for its

next computation phase.

private:
 int owingProc;
 int level;
 char refine_de_refine; //refine R derefine D none N

public:

 string id;
 set<int> shadowForProcs;
 char peripheral_internal;
 CordinateSystem *system;
 set<string> neighbors;

22

Figure 10: Mapping the adaptive grid to the extended hash table

Each processor set up following lists in local memories.

1. Grid point node list. Processors create and maintain only the grid points belong to own

processor. Neighbor information and shadow node information are also maintained with

them.

2. Hash map of computation data list. Note that processors keep not only computation node

data associated with grid point belong to own processor but computation node data

belong to shadow nodes.

23

5. ALGORITHMS AND IMPLEMENTATION DETAILS

We will elaborate in detail the three phases recognized in the program flow, in this section.

5.1 Initialization Phase

During this phase data structures are created in local memories of the processors to keep graph

connectivity, node information and computational node data. Hilbert space-filling curve is called

on given mesh structure and generate the one dimensional node list, which is then equally

partitioned between the processors to form local node information lists and fill their associated

information. Node to processor mapping data will be stored in appropriate data structures. Beside

these hash map creation and buffer initialization also take place in this phase.

5.2 Computation and Communication Phase

Each processor performs computation for each of its nodes using its neighbors. After updating the

node data, a processor sends the updated shadow nodes information to the appropriate

processors. Neighboring processors who receive such information update their data structures to

keep up to date for the next computation cycle. Mesh expansion and contraction may occur in this

phase as a result of error function. Application developer may define an error function with

required criteria for expansion and contraction. According to such criteria application should

mark required mesh points to be refined or de-refined. When calculation is done on all grid points

framework will call refinement and de-refinement methods on marked nodes. Refer Algorithm 1

24

for refinement – de-refinment routine. Algorithm 2 shows the node splitting while Algorithm 3

shows the contraction on a grid point. We assume each node will be split into exactly four child

nodes. Similarly when contraction occurs, four neighbor nodes in the same level will be reduced

to single node. When not all four siblings are marked for de-reinement, coarsening will be ignored

on that grid points. At splitting and contraction data node list and node information list will be

adjusted accordingly. For an example when new nodes are created as in figure 4 nodes order of

the mesh is found out as listed above. In addition to that, neighbors of the previous configuration

will be updated with new node information.

Figure 11: Node refining algorithm

Computation function is supplied by the application developer. Framework defined ”computation”

function accepts a parameter as a pointer to user supplied computation function. This function

splitNode()
{

- Retrieve the DataNode for the expanding nodeId

- Retrive the location of NodeInfo object of the node

- Create four new nodes with level = parent level +1.

- Assign local id and compose the global id from both parent
id and local id.

- Fill the neighbor node list and shadow nodes list of new
nodes.

- Duplicate parent DataNode data in all four child data nodes.

- Insert child DataNode to extended hash table

- Find the space-filling curve order for new child nodes and
replace parent NodeInfo node from the new child NodeInfo
nodes list

}

25

will be called on each grid node belongs to the processor. This allows for a clean and robust

decoupling between the framework and the application program code. From the initialization

phase, a processor already knows the neighboring processors it needs to communicate the shadow

node information to, and the number of such shadow nodes. By the time the computation routine

returns, the communication buffers are all set up, and communication can proceed

Figure 10: Algorithm of splitNode function

Figure 12: Grid coarsening algorithm

For physical communication of these buffers, new class is defined and committed to an MPI data

type (using MPI_Type_commit). All the processors send these buffers at the same time.

reduceNodes()

{

- Traverse all “marked for reduction” nodes

- Check if they are in the same level and not level 0

- Check if they are neighbors

- Retrieve DataNode objects of the marked nodes

- Retrive NodeInfo nodes related to each marked nodes

- Create one NodeInfo object for every four neighbor
group

- Level of new node = level -1 of new nodes

- Create neighbor list and shadow nodes list for new
node.

- Replce each four-group nodes with one DataNode

- Replace four marked nodes in the NodeInfo list with
one newly created NodeInfo object.

}

26

MPI_Bsend(), is used for sending these buffers to appropriate processors. MPI_Recv() receives

these buffers which are then used to update the locally maintained shadow node information.

Figure 13: Computation and communication functions

5.3 Load Balancing Phase

Computational workload changes when new nodes are created or old nodes destroyed at random

locations of the mesh. Therefore it is equally important to address the load balancing phase of the

framework. Repartitioning should not only balance the work load among the processors but also

void computeOverNodes (pointer to application
computation function)
{
 For each node
 {
 invoke application node function();
 add each marked nodeId to markedList
 }
 For each nodeId in markedList
 {
 call splitNode or reduceNodes functions
 }
}

void communicateShadows()
{
 Create shadow buffers

for each shadow processor
{

MPI_Bsend(shadow nodes);
}
for each shadow processor
{

MPI_Recv(shadow nodes);
}

}

27

keep the edge-cut to a minimum, so as to minimize the inter-processor communication. Figure 14

shows a sample processor grid mapping so that edge cut is kept minimum and the work load is

distributed comparably equally. Different shading of the mesh shows, how four different

processors have divided the grid points between them.

2 3 12 13 14

0 1

2 3 8

0 1

10 11

2 3 2
0 1

4 5

0 1

7

2 3 2
0 1

0

0 1

2 3

Figure 14: Grid distribution among processors

5.4 Class Description

MPIFramework

Class definition of the framework and implements the MPI calls for send and receive. An instance

of the class will be created at each processor, representing the framework. Processor zero will call

the Hilbert curve and create the 1 dimensional space filling curve out of n-dimensional mesh.

MPIFramework instance of each processor will then create the memory structures from the

generated space-filling curve grid point list and find out the own partition in the list. According to

28

the partitioned list, framework will create the memory structure for NodeInfo objects. And create

the hash table for objects dataNode defined by user. According to the program graph information,

neighbor lists and shadow node lists are created for each nodeInfo object.

MPIFramework class is responsible for defining computation and communicate functions for the

application. In addition to that, MPIFramework defines the send and receive node count, node

mapping after receiving from remote processor and load balancing. Figure 15 shows the definition

of the MPIFramework class.

Figure 15: MPIFramework class definition

NodeInfo

This class defines a grid point. Each grid point is recognized with a unique id, each grid point lies

on a certain grid level. When the grid get finer new grid points will be created and old grid point

will be replaced. When further fine grids are required, grid points at those locations will be further

splitted into smaller grids. On the other way hand grid points will be reduced to fewer grid points

class MPIFramework
{
private:
 ExtendedHash dataHash;
 vector<NodeInfo> nodeList;
 int procID;

public:
 int numOfProcs;
 MPIFramework(int size);
 ~MPIFramework();
 void computeOverNodes(void (*simulator_ptr)(NodeInfo* node));
 void communicateShadows(int* sendCountArray);
 void init(int size);
 int* createShadowCountToSend(int* sendCountArray);
 void MPIFramework::loadBalance();
};

29

when it is required to be coarser. This process is continued in hierarchical order. Therefore each

grid point is defined to be in a certain level and this property is stored in NodeInfo class. Other

than those properties NodeInfo class keeps the neighbor list and shadow nodes list of each

nodeInfo object.

Figure 16: NodeInfo class definition

NodeInfo class defines the splitting and reducing methods required for mesh refinement.

According to the error function, application developer can set refine or derefine property of the

class NodeInfo
{
private:
 int owingProc;
 int level;
 char refine_de_refine; //refine R derefine D none N

public:

 string id;
 set<int> shadowForProcs;
 char peripheral_internal;
 CordinateSystem *system;
 set<string> neighbors;
 NodeInfo(string globalId,int procID);
 ~NodeInfo();
 void setInitialNeighbors(int x, int y);
 void setInitialNeighbors(int x, int y, int z);
 void setShadowNodes(map<string,int> nodsProcMap);
 int getLevel();
 void setRefine();
 void setDerefine();
 void resetRefineDerefine();
 char isRefinedDerefined();
 void setPeripheralOrInternal(char nodeType);
 void setLevel(int parentLevel);
 void splitNode(int meshLength, vector<NodeInfo>& nodeList,map<string,int>
 nodesProcMap, ExtendedHash& hashMap);
};

30

nodeInfo object so that framework can later call split or reduce function on the object to obtain

finer or coarser grids. Figure 16 shows the NodeInfo class definition.

ExtendedHash

This class is defined to create a hash table to keep data objects as hash entries. Key to the hash

entry is the nodeId and value of a hash entry is a pointer to the NodeData object. ExtendedHash

class facilitates the dynamic insert; delete which are beneficial in mesh refinements. Essentially

hash entry is important since its nature of fast access to the data through hash keys.

Figure 17: ExtendedHash class definition

NodeData

NodeData class defines the application grid point class which keeps the data values involved in

calculations.

class ExtendedHash
{
private:
 int depth;
 map<string, DataNode*> hashMap;
 int getKey(char* key);

public:
 ExtendedHash();
 ~ExtendedHash();
 DataNode * getElement(string key);
 void deleteElement(string key);
 void insertElement(string key,DataNode* dataNode);
};

31

Figure 18: DataNode class definition

BuffNode

This class is defined for the communication purposes. Fields which should be transferred to the

other processor will be defined in this class to make it light in weight. Application developer

should change this class according to its application grid point class.

Figure 19: BuffNode DataNode class definition

Graph

Graph class handles the mesh structure. It reads the output file generated from the Hilbert space-

filling curve to create data structure and load to the memory.

class BuffNode
{
public:
 char nodeId[NAME_LENGTH];
 DataNode dataNode;

 BuffNode();
 ~BuffNode();
};

class DataNode
{
private:
 int id;
 int data;

public:
 DataNode();
 ~DataNode();
 DataNode* createClone(DataNode& dataNode, DataNode &
cloneNode);
};

32

Figure 20: Graph class definition

In addition to that, Graph class is responsible for mapping the grid points and the processor id to

which the grid points belong. Figure 20 shows the Graph class definition.

FileIO

FileIO class is responsible for reading the output file generated from Hilbert space-filling curve

call.

Figure 21: FileIO class definition

Point

Point is the base class for 2D and 3D point classes which define the 2 dimensional and three

dimensional points respectively.

class Graph
{
public:
 Graph();
 ~Graph();
 vector<string> getGraph(const char* fileName, int size);

 void nodeProcMap(map<string,int> & procMapping,vector<string> nodeList, int
noOfprocs);

};

class FileIO
{
public:
 FileIO();
 ~FileIO();
 vector<string> getOutput(const char* fileName);
};

33

Figure 22: Point class definition

Figure 23 and Figure 24 show the two dimensional and three dimensional points’ definitions

respectively. One of these class definitions will be called to create point objects depending on the

dimension of application porting.

Point2D

Figure 23: 2D point class definition

class Point2D : public Point {

public:
 int y;
 ~Point2D(){};
 Point2D(int ix, int iy)
 {
 x =ix;
 y =iy;
 };
};

class Point {

public :
 int x;
 Point(){ };
 ~Point(){};
};

34

Figure 24: 3D point class definition

CordinateSystem

This class is used to store the coordinates of each grid point. Two dimensional and three

dimensional coordinate systems are derived from this class.

Figure 25: Coordinate system class definition

System2D

Defines the coordinate system for two dimensional meshes.

class Point3D : public Point {
public:
 int y;
 int z;
 ~Point3D()
 {
 };
 Point3D(int ix, int iy, int iz)
 {
 x =ix;
 y = iy;
 z = iz;
 };
};

class CordinateSystem {

public:

 virtual void setCordinates(Point2D initPoint, int level, int x, int y)=0;
 void setCordinates(Point3D initPoint, int level, int x, int y, int z){};
 bool isNeighbor(vector<Point2D> cordinates){return false;}
 bool isNeighbor(vector<Point3D> cordinates){return false;}
};

35

Figure 26: Coordinate system for 2D meshes

System3D

Defines the coordinate system for three dimensional meshes.

Figure 27: Coordinate system for 3D meshes

Figure 27: Coordinate system for 3D meshes

Please refer Appendix A for the complete class diagram of the system and Appendix B for the

source code.

5.5 Overheads

When designing a generic platform, an overhead will be introduced definitely. One of the key

issue is that how do we invoke the application specific functions on adaptive mesh and enable user

to call error function on them. Application user is required to pass a pointer to the computation

class System2D: public CordinateSystem
{
public:
 vector<Point2D> cordinates;
 System2D();
 ~System2D();
 void setCordinates(Point2D initPoint, int level, int x, int y);

 bool isNeighbor(vector<Point2D> cordinates);
};

class System3D: public CordinateSystem
{
public:
 vector<Point3D> cordinates;
 System3D();
 ~System3D();
 void setCordinates(Point3D initPoint, int level, int x, int y, int z);
 void setCordinates(Point2D initPoint, int level, int x, int y){};
 bool isNeighbor(vector<Point3D> cordinates);
};

36

function which accepts following parameters: pointer to the grid point, on which we call the

computation function, hash table containing computation data. Since grid point is passed to the

function, application user can access the neighbors and shadow nodes list of the grid point. Also

user can access the hash map using global node id of grid point, to get the associated

computational data. Computation function should contain an error function to decide the refining

and coarsening criteria. When the criteria is met user can mark the grid points to be refined or de-

refined. Buffer creation and send and receiving of grid point information and computation node

information is again an overhead. Also, an overhead will be introduced at neighbor information

and shadow information filling whenever a grid-restructuring occurs. During the calculation, load

balancing checking is done. This could add few overhead processor cycles to the application flow.

Finally, during the load balancing phase, we call few MPI_Send and MPI_Recv routines to collect

required information and calculate the load distribution. We tested have tested the overhead

introduced from the framework and have received the results to be at an acceptable level. Refer

Section 6 for experimental results.

37

6. EXPERIMENTAL RESULTS

The experiments were conducted on Silicon Graphics Origin- 2000 computer with 24 CPUs with

hypercube cc-NUMA architecture. We used two applications, one for 2D mesh for solving the

Partial Differential Equation with Euler and Heun, developed by Kurt Bingham [21] and one for

3D mesh for acoustic waveforms developed with Clawpack [23] for our experiments. First we

consider 2D mesh application. Original application is a VB.net program and later converted into

C++ language. The original application does not support the adaptive mesh refinement. Our

framework has successfully added the joy of experiencing adaptive mesh refinement on

application.

6.1 Case Study: Polytrope Differential Equation Solver

A polytrope is a model for gaseous mass whose thermodynamics can be approximated by

P = Kρ((n + 1) / n)

Where P is pressure, ρ is density and K is a constant. The constant n is known as the polytropic

index. Gas following such an equation of state produces a polytropic solution to the Lane-Emden

equation.

The Lane-Emden Equation in familiar differential equation notations,

38

The equation we are trying to solve, when written as an Euler's Equation for hydrostatic

equilibrium of a star is,

Where ρ(r) density, M(r) mass and P(r) pressure as functions of r which is the distance from the

center of the star.

To get the initial values for y and y' Taylor expansions is used.

 Seed value (e) is very small.

The solutions calculated from the above Tailor expansions are then considered to be scalar known

quantities.

Equations are solved for the position where F becomes zero, i.e. the pressure/density crosses the

x-axis. This point is a point on surface. The application consists of a second order partial

differential equation solver which is incorporated into a polytrope class. The solver can use either

Euler or Heun [26] methods.

39

Table 1 shows the time taken for 300 iterations of mesh sizes 8X8, 16X16, 64X64, 128X128 and

256X256 on 2 processors without mesh re-gridding (without adaptive performance). The

average time is recorded from all four processors. Table 2 shows the execution time taken for

8X8, 16X16, 64X64, 128X128 and 256X256 on two processors with re-grinding.

Table 1: Execution time (in seconds) on 2 processors without adaptive refinement

Mesh Size 8X8 16X16 64X64 128X128 256X256

Execution Time
0.4064

1.6433

23.8125

95.165

381.587

Table 2: Execution time (in seconds) on 2 processors with adaptive refinement

Mesh Size 8X8 16X16 64X64 128X128 256X256

Execution Time 1.787

22.88

97.09

386.81

1532.2

Figure 28: Speedup vs. mesh size on 2 processors without adaptive refinement

40

Table 3 and 4 shows the timing recorded for 300 iteration of Euler computation on mesh sizes

8X8, 16X16, 64X64, 128X128 and 256X256 on four processors with and without adaptive

behavior respectively.

Table 3: Execution time (in seconds) on 4 processors without adaptive refinement

Mesh Size 8X8 16X16 64X64 128X128 256X256

Execution Time 0.2243

0.8663

12.359

49.4975

192.729

Table 4: Execution time (in seconds) on 4 processors with adaptive refinement

Mesh Size 8X8 16X16 64X64 128X128 256X256

Execution Time 0.932

13.12

50.92

192.98

756.32

Figure 29: Speedup vs. mesh size on 4 processors without adaptive refinement

41

Figure 23 shows the speedup achieved at each mesh size. We observed a decrease of speed up

increase as mesh size grows. Tables 5 and 6 give the execution time on 8 processors with similar

conditions given as for the above cases.

Table 5: Execution time (in seconds) on 8 processors without adaptive refinement

Mesh Size 8X8 16X16 64X64 128X128 256X256

Execution Time 0.1386

0.4315

6.6648

26.6942

105.631

Table 6: Execution time (in seconds) on 8 processors with adaptive refinement

Mesh Size 8X8 16X16 64X64 128X128 256X256

Execution Time 0.4587

6.8753

27.344

107.09

437.87

Figure 30: Speedup vs. mesh size in on 8 processors without adaptive refinement

42

Figure 24 shows the speedup plot obtained. We observed about 6 to 7 speedup when the size of

the mesh size increases when run on 8 processors. Further we achieved up to 11 times speedup

when tested on 16 processors. Figure 25 shows the plot drawn for speedup vs. mesh size.

Table 7: Execution time (in seconds) on 16 processors with adaptive refinement

Mesh Size 8X8 16X16 64X64 128X128 256X256

Execution Time (s) 0.3987

3.2671

15.875

57.34

222.84

Table 8: Execution time (in seconds) on 16 processors without adaptive refinement

Mesh Size 8X8 16X16 64X64 128X128 256X256

Execution Time (s) 0.0911

0.2757

3.7897

15.3324

56.3959

Figure 31: Speedup vs. mesh size on 16 processors without adaptive refinement

Figure 26 shows the timing speeds up of achieved with different number of processors. We used

64X64 and 128X128 meshes with 300 iterations on Euler method.

43

Figure 32: Execution time vs. number of processors without adaptive refinement

Figure 33: Execution time vs. mesh size on 2 processors with regular/adaptive refinement

44

Figure 34: Execution time vs. mesh size on 4 processors with regular/adaptive refinement

Figure 35: Execution time vs. mesh size on 8 processors with regular/adaptive refinement

45

Figure 36: Execution time vs. mesh size on 16 processors with regular/adaptive refinement

Figure 37: Relative speed up vs. mesh size when adaptive behavior is enabled

We plot in Figure 37, speed up of application with adaptive mesh behavior on 8X8, 16X16,

64X64, 128X128 and 256X256 meshes on 8 and 16 processors. This is a approximated behavior

we can expect. Because the original application does not support the adaptive mesh behavior, we

calculated the sped up with framework ported application run on single processor.

46

Figure 38: Error rate of the application on different mesh sizes

Application calculates various properties such as pressure, density etc. of very large collection of

points in space inside the polytrope. The application can be utilized to find properties and

behavior of strange mass/radius combinations.

We experiment the adaptive mesh of size 16 X16 on different processor, and at some instances

recorded load on each processor. Average of different instances resulted in Table 9 for

normalized load metric.

Table 9: Normalized load metric and number of processors

Number of Processors 1 2 4 8

Normalized Load Metric 1 0.85 1.3 1.6

47

Normalized Load Metric Vs. Number of
Processors

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1 2 4 8

Number of Processors

No
rm

al
iz

ed
 L

oa
d

M
et

ric

Achieved
ideal

Figure 39: Normalized load metric on different processors

We explored the overhead introduced by the framework. We can recognize four main parts of the

framework in terms of functionalities: initialization, computation, communication and load

balancing. Figure 36 shows the percentage of time taken from each part when 128X128 mesh is

employed on 4 processors. As Figure 40 dipicts considerable amount of time is consumed for

computation.

Table 10:Time taken for different execution units

Execution Unit Name Execution Time (s)

Initialization 7.66

Computation 82.06

Communication 5.44

Load balancing 5.45

48

Figure 40: Percentage time taken for different execution unit on 128X128 mesh

We compared the performance of framework when above application is ported, with PETSc [30]

when the same application is ported. Figure 41 shows the execution time achieved.

Figure 41: 64x64 mesh execution time comparison with PETSc and framework

6.2 Case Study: Wave Propagation in Media

This is a three dimensional mesh implementation by CLAW [37] to analyze the wave propagation

behavior in media.

49

We conducted experiments porting their application on 32x32x32 mesh and 64x64x64 mesh.

Experiment setup was as follows. Four equations were considered in hyperbolic system and two

waves are assumed in each Reimann solutions. To run the experiments we used a system with

Silicon Graphics Origin- 2000 computer with 24 CPUs as described at the beginning of the

section 6.

Figure 42 and Figure 43 shows the speedup achieved on respective mesh sizes when AMR is not

enabled.

Figure 42: Speedup vs. processors on 32x32x32 mesh

Figure 43: Speedup vs. processors on 64x64x64 mesh

50

Following experiments were carried out with AMR behavior enabled on both implementations:

CLAWPACK and our framework. Figure 44 and Figure 45 shows the achieved speed up porting

to the framework.

Figure 44: Speedup vs. processors on 32x32x32 mesh with adaptive refinement

Figure 45: Speedup vs. processors on 64x64x64 mesh with adaptive refinement

We have run a toy application on framework for different mesh sizes and plot the behaviour of the

framework in Figure 46 . We ran the framework on four processors. Toy application does no

51

computation but initialization of grid structure, initialization of computation data, filling shadow

nodes list and setting up communication bufferes

Figure 46: Overhead introduced from the framework

52

7. CONCLUSION AND FUTURE WORK

The methodology presented in this thesis provides a strategy for parallelization of adaptive mesh

structured applications. We have presented efficient way of keeping data related to the mesh

application, dynamic algorithms for grid expansion, contraction and load balancing. It is relatively

easy transition to an application developer from sequential application to MPI parallel application,

being just few inputs required by the framework. We demonstrated the performance of our

framework with 2 dimensional and 3 dimensional applications: an application solving Partial

Differential Equation with Euler and an application for acoustic waveforms. Our load balancing

algorithm also demonstrates good performance in balancing the load. We believe with very little

changes, we can improve the performance of our framework further. Future work may include

making the framework enable to plug-in third party load balancing algorithms, and mapping the

processor architecture to mesh architecture. Also we require an overlap of computation and

communication phase so that we can further reduce the overhead. At the same time we are

exploring the possibility of integrating our previous work iC2mpi[18] so that the framework

should be able to port graph structured application to the framework opening huge domain of

programs to get the benefit of the platform.

 53

REFERENCES

[1] MPI: A Message-Passing Interface Standard, Version 2.1, Message Passing Interface Forum,

June 23, 2008.

[2] Hans Sagan, Space Filling Curves, Springer_Verlag , New York, 1994

[3] Nicholas J. Rose, Hilbert-Type Space-Filling Curves,

[4] Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger and H. Raymond Strong, Extendible

Hashing-A Fast Access Method for Dynamic Files, ACM Transaction on Database Systems, Vol.

4, No. 3, September 1979

[5] J¨orn Behrens and Jens Zimmermann, Parallelizing an Unstructured Grid Generator with a

Space-Filling Curve Approach

 [6] R. Henderson, D. Meiron, M. Parashar and R, Samtaney, "Parallel Computing in

Computational Fluid Dynamics". In J. Dongarra et al., editors, "Sourcebook of Parallel

Computing", Chapter 5, Morgan Kaufmann, 2003.

[7] I.M. Smith and D.V. Griffiths : Programming the finite element method, (John Wiley & Sons,

2004, 4th edn.)

[8] Michael J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw Hill, 2004.

[9] Marsha J. Berger and Joseph E. Oliger, Adaptive mesh refinement for hyperbolic partial

differential equations, Stanford University Stanford, CA, USA , Technical Report: NA-M-83-02,

1983.

[10] Jose G. Castanos and John E. Savage, “The Dynamic Adaptation of Parallel Mesh-Based

Computation”, Technical Report: CS-96-31, 1996.

[11] http://seesar.lbl.gov/ccse/Software/index.html

54

[12] A. Osman , H. Ammar, Dynamic Load Balancing Strategies for Parallel Computers,

International Symposium on Parallel and Distributed Computing (ISPDC) 2002.

[13] Xiang Yang Li and Shang-Hua Teng, Dynamic Load Balancing for Parallel Adaptive Mesh

Refinement, 5th International Symposium on Solving Irregularly Structured Problems in Parallel

1998.

[14] Bishwaroop Ganguly and Andrew Chien, High-Level Parallel Programming of An Adaptive

Mesh Application Using the Illinois Concert System, Department of Computer Science,

University of Illinois.

[15] Youhui Zhang, Dan Pei, Dongsheng Wang and Weimin Zheng, A Task Migration

Mechanism for MPI Applications, Department of Computer Science, Tsinghua University,

Beijing 100084, China.

[16] William George, Dynamic Load-Balancing for Data-Parallel MPI Programs, Message

Passing Interface Developer's and User's Conference (MPIDC'99) 1999.

[17] Milind Bhandarkar, L. V. Kale, Eric de Sturler, and Jay Hoeflinger, Adaptive Load

Balancing for MPI Programs, Center for Simulation of Advanced Rockets, University of Illinois

at Urbana-Champaign.

[18] Botadra, H., Cheng, Q., Prasad, S.K., Aubanel, E., Bhavsar, V., iC2mpi: A Platform for

Parallel Execution of Graph-Structured Iterative Computations, Parallel and Distributed

Processing Symposium, 2007. IPDPS 2007.

[19] Manish Parashar and James C. Browne, Distributed Dynamic Data-Structures for Parallel

Adaptive Mesh-Refinement, Proceedings of the International Conference for High Performance

Computing 1995.

55

[20] Charles A. Rendleman, Vincent E. Beckner, Mike Lijewski, William Crutchfield and John B.

Bell, Parallelization of Structured, Hierarchical Adaptive Mesh Refinement Algorithms,

Lawrence Berkeley National Laboratory.

[21] R. Cappuccio , G. Cattaneo , G. Erbacci , U. Jocher, A parallel implementation of a cellular

automata based model for coffee percolation, Parallel Computing, v.27 n.5, p.685-717, April

2001.

[22] S. Roberts, S. Kalyanasundaram, M. Cardew-Hall and W. Clarke A Key Based Parallel

Adaptive Refinement Technique for Finite Element Methods.

[23] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome. A conservative

adaptive projection method for the variable density incompressible Navier-Stokes equations. J.

Comput. Phys., 142:1–46, May 1998.

[24] D. E. Stevens, A. S. Almgren, and J. B. Bell. Adaptive simulations of trade cumulus

convection submitted for publication, 1998.

[25] R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield, W. A. Fiveland, and J.

P. Jessee, An adaptive projection method for unsteady low-Mach number combustion, Comb.

Sci. Tech., 140:123–168, 1998.

[26] http://spiff.rit.edu/classes/phys317/lectures/heun/heun.html

 [27] Randy L. Ribler, Jeffrey S. Vetter, Huseyin Simitci and Daniel A. Reed, Autopilot: Adaptive

Control of Distributed Applications, High Performance Distributed Computing, 1998. The

Seventh International Symposium.

[28] J. Pruyne and M. Livny. Parallel Processing on Dynamic Resources with CARMI.

[29] The Charm++ Programming Language Manual, Parallel Programming Laboratory

University of Illinois at Urbana-Champaign.

56

[30] Portable, Extensible Toolkit for Scientific Computation, PETSc,

www.mcs.anl.gov/petsc/petsc-as

[31] Milind Bhandarkar and L. V. Kale. A Parallel Framework for Explicit FEM, In proceedings

of the International Conference on High Performance Computing, Bangalore, India, December

2000.

[32] http://libmesh.sourceforge.net

[33] Sirinivas Aluru, Faith E. Sevilgen, Parallel Domain Decomposition and Load Balancing

Using Space-Filling Curves.

[34] Clinton P. T. Groth, A Parallel Adaptive Mesh Refinement (AMR) Computational

Framework for Physically Complex Flows, University of Toronto Institute for Aerospace Studies,

MITACS & Fields Aeronautics Workshop, April 28-29, 2005

[35] http://seesar.lbl.gov/ANAG/chombo

[36] http://kbingham.net/polytropes.htm

[37] www.clawpack.org

57

APPENDIX A CLASS DIAGRAM OF THE FRAMEWORK

58

APPENDIX B DAPTIVE MESH FRAMEWORK CODE

This file includes the definition used in the framework.

Define.h

#include <iostream>

#define MAX_NEIGHBORS 4

#define SHADOWS_FOR_PROCS 4

#define CHILD_NODES_WIDTH 2

#define MAX_SIZE_FOR_RECVBUFFER 6

#define NAME_LENGTH 20

#define LOAD_LIMIT 4

This file includes the class definition of NodeInfo class. This class holds the node information of

the application node.

Nodeinfo.h

#ifndef NODE_INFO_H

#define NODE_INFO_H

#include <iostream>

#include "define.h"

#include <vector>

#include "extendedHash.h"

#include "node.h"

#include <map>

59

#include <set>

using namespace std;

/* Node information common for every application*/

class NodeInfo

{

private:

 int owingProc;

 int localId;

 int level;

 vector<string> neighboringNodes;

public:

 string id;

 set<int> shadowForProcs;

 NodeInfo(string globalId,int localId,int procID);

 ~NodeInfo();

 void setNeighbors(NodeInfo& node,int meshLength = 2);

 void setShadowNodes(map<string,int> nodsProcMap);

 void setLevel(int parentLevel);

60

 void splitNode(int meshLength, vector<NodeInfo>& nodeList,map<string,int>

nodesProcMap, ExtendedHash& hashMap);

};

#endif

This file includes the implementation of NodeInfo class

nodeInfo.cpp

#include <iostream>

#include <string>

#include "nodeInfo.h"

#include <map>

#include <sstream>

using namespace std;

NodeInfo::NodeInfo(string globalId,int localId,int procID)

{

 this->owingProc = procID;

 this->id = globalId;

 this->localId = localId;

 this->level =0;

61

}

NodeInfo::~NodeInfo()

{

}

void NodeInfo::setLevel(int parentLevel)

{

 level = parentLevel++;

}

void NodeInfo::splitNode(int meshLength,vector<NodeInfo> & nodeList, map<string,int>

nodesProcMap,ExtendedHash& hashTable)

{

 vector <NodeInfo>::iterator Iter;

 int position=0;

 DataNode* dataNode = hashTable.getElement(this->id);

 //iterate to find the location of the parent nodeInfo

 for (Iter = nodeList.begin() ; Iter != nodeList.end() ; Iter++)

 {

 if((*Iter).id == this->id)

 {

62

 nodeList.erase(Iter);

 break;

 }

 position++;

 }

 // Create new 4 nodes

 for(int j=0; j<MAX_NEIGHBORS; j++)

 {

 char* str;

 string globalId = id+","+itoa(j,str,10);

 NodeInfo node = NodeInfo(globalId,j,this->owingProc);

 node.setLevel(this->level);

 node.setNeighbors(node,meshLength);

 nodesProcMap[globalId] = this->owingProc;

 DataNode childNode;

 childNode.createClone(*dataNode , childNode);

 hashTable.insertElement(node.id,&childNode);

 // consider the order of adding the nodes to the vector

 nodeList.insert(nodeList.begin()+position,node);

 position++;

 }

 position - 3;

63

 for(Iter = nodeList.begin()+position; Iter< nodeList.begin()+4; Iter++)

 {

 (*Iter).setShadowNodes(nodesProcMap);

 }

 hashTable.deleteElement(this->id);

}

void NodeInfo::setNeighbors(NodeInfo& node, int meshLength)

{

 int localid;

 if(node.level == 0)

 {

 localid = atoi(this->id.c_str());

 if((localId-meshLength) >0)

 {

 stringstream out;

 localid =localid-meshLength;

 out<<localid;

 this->neighboringNodes.push_back(out.str());

64

 }

 else

 this->neighboringNodes.push_back("");

 if(((localId+1)%meshLength)>0)

 { stringstream out;

 out<<localid+1;

 this->neighboringNodes.push_back(out.str());

 }

 else

 this->neighboringNodes.push_back("");

 if(((localId-1)%meshLength)==0)

 {

 stringstream out;

 localid =localid-1;

 out<<localid;

 this->neighboringNodes.push_back(out.str());

 }

 else

 this->neighboringNodes.push_back("");

 if((localId+meshLength)<meshLength*meshLength)

65

 {

 stringstream out;

 localid = localid+meshLength;

 out<<localid;

 this->neighboringNodes.push_back(out.str());

 }

 else

 this->neighboringNodes.push_back("");

 }

 else

 {

 localid = node.localId;

 switch (localId)

 {

 case 0:

 {

 stringstream out1, out2;

 node.neighboringNodes.push_back(this-

>neighboringNodes[0]);

 out1<<localid +1;

 node.neighboringNodes.push_back(out1.str());

 out2<<localId+ CHILD_NODES_WIDTH;

 node.neighboringNodes.push_back(out2.str());

66

 node.neighboringNodes.push_back(this-

>neighboringNodes[3]);

 break;

 }

 case 1:

 {

 stringstream out1, out2;

 node.neighboringNodes.push_back(this-

>neighboringNodes[0]);

 node.neighboringNodes.push_back(this-

>neighboringNodes[1]);

 out1<<localId +CHILD_NODES_WIDTH;

 node.neighboringNodes.push_back(out1.str());

 out2<<localId -1;

 node.neighboringNodes.push_back(out2.str());

 break;

 }

 case 2:

 {

 stringstream out1, out2;

 out1<<localId -CHILD_NODES_WIDTH;

 node.neighboringNodes.push_back(out1.str());

 out2<<localId +1;

67

 node.neighboringNodes.push_back(out2.str());

 node.neighboringNodes.push_back(this-

>neighboringNodes[2]);

 node.neighboringNodes.push_back(this-

>neighboringNodes[3]);

 break;

 }

 case 3:

 {

 stringstream out1, out2;

 out1<<localId -CHILD_NODES_WIDTH;

 node.neighboringNodes.push_back(out1.str());

 node.neighboringNodes.push_back(this-

>neighboringNodes[1]);

 node.neighboringNodes.push_back(this-

>neighboringNodes[2]);

 out2<<localId -1;

 node.neighboringNodes.push_back(out2.str());

 break;

 }

 }

 }

68

}

void NodeInfo::setShadowNodes(map<string, int> nodesProcMap)

{

 for(int i=0; i<this->neighboringNodes.size(); i++)

 {

 if(nodesProcMap[this->neighboringNodes[i]]!=this->owingProc)

 {

 this->shadowForProcs.insert(nodesProcMap[this-

>neighboringNodes[i]]);

 }

 }

}

This class defines the application node data structure. User should supply this class and its

implementation.

Node.h

#ifndef NODE_H

#define NODE_H

69

#include <iostream>

#include "define.h"

#include <vector>

using namespace std;

/* User application defined data node class */

class DataNode

{

private:

 int id;

 int data;

public:

 DataNode();

 ~DataNode();

 DataNode* createClone(DataNode& dataNode, DataNode & cloneNode);

};

class BuffNode

{

70

public:

 char nodeId[NAME_LENGTH];

 DataNode dataNode;

 BuffNode();

 ~BuffNode();

};

#endif

This file is the implementation of the DataNode class

dataNode.cpp

#include <iostream>

#include "node.h"

DataNode::DataNode()

{

}

DataNode::~DataNode()

{

71

}

DataNode* DataNode::createClone(DataNode & dataNode, DataNode & cloneNode)

{

 cloneNode.id = dataNode.id;

 cloneNode.data = dataNode.data;

 return &cloneNode;

}

BuffNode::BuffNode()

{

 sprintf(nodeId,"");

}

BuffNode::~BuffNode()

{

}

Extended hash is defined in this file.

extendedHash.h

#ifndef EXTENDEDHASH_H

#define EXTENDEDHASH_H

72

#include <iostream>

#include <map>

#include "node.h"

#include <string>

using namespace std;

class ExtendedHash

{

private:

 int depth;

 map<string, DataNode*> hashMap;

 int getKey(char* key);

public:

 ExtendedHash();

 ~ExtendedHash();

 DataNode * getElement(string key);

 void deleteElement(string key);

 void insertElement(string key,DataNode* dataNode);

};

73

#endif

Extended hash implementation is done in this file

extendedHash.cpp

#include <iostream>
#include "extendedHash.h"

using namespace std;

ExtendedHash::ExtendedHash()
{
}

ExtendedHash::~ExtendedHash()
{

}

DataNode * ExtendedHash::getElement(string key)
{
 return hashMap[key];
}
void ExtendedHash::deleteElement(string key)
{
 delete(hashMap[key]);

}

void ExtendedHash::insertElement(string key,DataNode* node)
{
 hashMap[key]=node;
}

74

int ExtendedHash::getKey(char* key)
{
 ///*int first,second,third;
 //
 //first = atoi(strtok(key,","));
 //second = atoi(strtok(NULL,","));
 //t*/hird = atoi(strtok(NULL,","));

 return 0;
}

Initial file handling is done in FileIO class and it is defined in following file.

fileIo.h

#ifndef FILEIO_H

#define FILEIO_H

#include <iostream>

#include <fstream>

#include <string>

#include <vector>

using namespace std;

class FileIO

{

public:

 FileIO();

75

 ~FileIO();

 vector<string> getOutput(const char* fileName, int size);

};

#endif

Implementation of the FileIO is done here.

fileIO.cpp

#include <iostream>

#include <string>

#include "fileIO.h"

using namespace std;

FileIO::FileIO()

{

}

FileIO::~FileIO()

{

}

vector<string> FileIO::getOutput(const char* fileName, int size)

76

{

 string line;

 int i = 0;

 vector<string> strVect;

 char** stringArray;

 ifstream file(fileName);

 if(!file)

 {

 cerr << "Unable to open file "<< fileName <<endl;

 exit(1);

 }

 if(file.is_open())

 {

 cout<<endl<<"printing the text file"<<endl;

 while(!file.eof())

 {

 getline(file,line);

 strVect.push_back(line);

 cout<<strVect[i]<<endl;

 i++;

 }

 file.close();

 }

77

 return strVect;

}

Graph handling is done in following file.

Graph.h

#ifndef GRAPH_H

#define GRAPH_H

#include <iostream>

#include <vector>

#include <map>

#include <string>

using namespace std;

class Graph

{

public:

 Graph();

 ~Graph();

78

 vector<string> getGraph(const char* fileName, int size);

 /*how the redistribution take place? */

 void nodeProcMap(map<string,int> & procMapping,vector<string> nodeList, int

noOfprocs);

};

#endif

Implementation of the Graph is done in following file.

Graph.cpp

#include <iostream>

#include <vector>

#include "graph.h"

#include "fileIO.h"

#include <map>

#include <cmath>

using namespace std;

Graph::Graph()

{

79

}

Graph::~Graph()

{

}

vector<string> Graph::getGraph(const char* fileName,int size)

{

 FileIO fileio;

 int arraysize;

 arraysize = size*size;

 vector<string> output;

 int i=0, j=0 , k=0;

 vector<string> graphVector;

 vector< vector<int>> graphArray(size,size);

 for (i =0; i<size; i++)

 {

 for(j=0; j<size; j++)

 {

 graphArray[i][j] = k;

 k++;

 }

80

 }

 char * str = new char();

 output = fileio.getOutput(fileName,arraysize);

 cout<<"output to graph"<<endl;

 for(i=0; i< arraysize;i++)

 {

 j=atoi(output[i].substr(0,int(output[i].find(","))).c_str());

 k=atoi(output[i].substr(int(output[i].find(",")+1)).c_str());

 graphVector.push_back(itoa(graphArray[j][k],str,10));

 }

 return graphVector;

}

void Graph::nodeProcMap(std::map<string,int> &procMapping,vector<string> nodeList, int

noOfprocs)

{

 double nodeSize;

 nodeSize = (double)nodeList.size();

 int noOfItems =ceil(nodeSize/noOfprocs);

 int i,j,k;

 j=0;

 k=0;

 for(i=0;i<nodeList.size();i++)

81

 {

 if(j<noOfItems)

 {

 procMapping[nodeList[i]]= k;

 j++;

 }

 else

 {

 k++;

 procMapping[nodeList[i]]= k;

 j=1;

 }

 }

}

Framework.h

#ifndef FRAMEWORK_H

#define FRAMEWORK_H

#include <iostream>

#include "graph.h"

#include <vector>

#include <string>

82

#include "nodeInfo.h"

#include "extendedHash.h"

#include "node.h"

#include "define.h"

using namespace std;

class MPIFramework

{

private:

 ExtendedHash dataHash;

 vector<NodeInfo> nodeList;

 int procID;

public:

 int numOfProcs;

 MPIFramework(int size);

 ~MPIFramework();

 void computeOverNodes(void (*simulator_ptr)(NodeInfo* node));

 void communicateShadows(int* sendCountArray);

 void init(int size);

 int* createShadowCountToSend(int* sendCountArray);

 void MPIFramework::loadBalance();

83

};

#endif

#include <iostream>

#include "mpiframework.h"

#include <cmath>

using namespace std;

MPIFramework::MPIFramework(int size)

{

 init(size);

}

MPIFramework::~MPIFramework()

{

}

void MPIFramework::init(int size)

{

 char cmmd[40];

84

 //string comm;

 int meshLength;

 this->procID=0;

 this->numOfProcs =4;

 meshLength = size;

 /*MPI_Init(&argc,&argv);

 MPI_Comm_rank(MPI_COMM_WORLD,&procID);

 MPI_Comm_size(MPI_COMM_WORLD,&num_procs);

 MPI_Barrier(MPI_COMM_WORLD);

 time_elapsed = -MPI_Wtime();*/

 /* Invoking hilbert curve for the initial node orientation of the mesh*/

 if (procID == 0 && numOfProcs > 1)

 {

 /*sprintf(hilbert_str,"./hilbert %d",size);

 printf("hilbert str=%s",hilbert_str);*/

 sprintf(cmmd,"hilbert.exe %d ",size);

 int i = system(cmmd);

 }

 /* Create the list of nodes generated from hilbert's curve*/

85

 Graph graph;

 vector<string> graphList;

 graphList = graph.getGraph("output.txt",size);

 std::map<string,int> nodeProcMap;

 graph.nodeProcMap(nodeProcMap,graphList,numOfProcs);

 for(int i =0; i<graphList.size();i++)

 {

 if(nodeProcMap[graphList[i]] == procID)

 {

 NodeInfo node = NodeInfo(graphList[i],atoi(graphList[i].c_str()),this-

>procID);

 node.setLevel(0);

 node.setNeighbors(node,meshLength);

 node.setShadowNodes(nodeProcMap);

 this->nodeList.push_back(node);

 }

 }

 /* Create the Data node list */

 for(int i =0; i< graphList.size(); i++)

 {

86

 DataNode* dataNode = new DataNode();

 dataHash.insertElement(graphList[i],dataNode);

 }

}

void MPIFramework::computeOverNodes(void (*simulator_ptr)(NodeInfo*))

{

 vector<NodeInfo>::iterator Iter;

 for(Iter = this->nodeList.begin(); Iter <nodeList.end(); Iter++)

 {

 (*simulator_ptr)(&(*Iter));

 }

}

void MPIFramework::communicateShadows(int* sendCountArray)

{

 BuffNode **recvbuffer_arr,** sendbuffer_arr, buff;

 int i,j,k =0;

 int* objCount = new int[numOfProcs];

 //int blockcounts[2];

 //MPI::Datatype buffer_datatype, oldtypes[2];

87

 //MPI::Aint offsets[2];

 //MPI::Status status;

 //MPI::Request pending;

 //bufcounts[0]=20;

 //bufcounts[1]=1;

 //offsets[0] = 0;

 //offsets[1] = (int)&buff.nodeId - (int)&buff;

 //oldtypes[0]=MPI::CHAR;

 //oldtypes[1]=DataNode;

 // /* Define structured type & commit it...*/

 //MPI_Type_struct(2,bufcounts,offsets,oldtypes,&buffer_datatype);

 //MPI_Type_commit(&buffer_datatype);

 //

 recvbuffer_arr = new BuffNode*[numOfProcs];

 sendbuffer_arr = new BuffNode*[numOfProcs];

 /* Allocate memory for recvbuffers...*/

 for (i=0;i<this->numOfProcs;i++)

 {

88

 if (sendCountArray[i]!=0)

 {

 recvbuffer_arr[i] = new BuffNode[MAX_SIZE_FOR_RECVBUFFER];

 sendbuffer_arr[i] = new BuffNode[sendCountArray[i]];

 }

 else

 {

 /* get exception*/

 recvbuffer_arr[i]=NULL;

 sendbuffer_arr[i]=NULL;

 }

 }

 for(i=0;i<numOfProcs;i++)

 objCount[i] = 0;

 set<int>::iterator itr;

 /* send shadow nodes data*/

 for(i=0; i<this->nodeList.size(); i++)

 {

89

 for(itr= nodeList[i].shadowForProcs.begin(); itr!=

nodeList[i].shadowForProcs.end(); itr++)

 {

 strcpy(sendbuffer_arr[*itr][objCount[*itr]].nodeId,nodeList[i].id.c_str());

 sendbuffer_arr[*itr][k].dataNode = *(this-

>dataHash.getElement(nodeList[i].id));

 objCount[*itr]++;

 }

 }

 // Recv buffers...

 for (i=0;i<numOfProcs;i++)

 {

 /*if (sendCountArray[i]!=0)

 {

 MPI::send();

 MPI::Recv(recvbuffer_arr[i],MAX_SIZE_FOR_RECVBUFFER,buffer_datatype,i,1,com

m,&status);

 }*/

 }

 /* unpack the buffer array */

90

 /* delete allocated space*/

 for(i=0; i<this->numOfProcs;i++)

 {

 delete []recvbuffer_arr[i];

 }

 delete [] recvbuffer_arr;

}

/*x?"True":"False")*/

int* MPIFramework::createShadowCountToSend(int* sendCountArray)

{

 vector<NodeInfo>::iterator Iter;

 for(int i=0; i<this->numOfProcs; i++)

 {

 sendCountArray[i] = 0;

 //cout<<sendCountArray[i];

 }

 set<int>::iterator itr;

91

 for(Iter= nodeList.begin(); Iter<nodeList.end(); Iter++)

 {

 /* travers each shadow proc to find the no of elements to send*/

 for(itr =(*Iter).shadowForProcs.begin(); itr!=(*Iter).shadowForProcs.end(); itr++)

 {

 sendCountArray[*itr]++;

 }

 }

 return sendCountArray;

}

void MPIFramework::loadBalance()

{

/*proc 0 get nodes from each procs.

put them together and divide equally.

then bcast boundary to all procs

each proc will prepare for send and recieve of nodes from neighbors*/

 int * nodesCount = new int[numOfProcs];

 int i,totSize,avgCount,rem,totBefore;

 bool unbalance = false;

 for(i=0; i<numOfProcs;i++)

92

 nodesCount[i] =0;

 int size = this->nodeList.size();

 nodesCount[this->procID] =size;

 //MPI_Bcast(size);

 /* receive nodesize from each processor*/

 //MPI_Recv();

 for(i=0; i<numOfProcs; i++)

 totSize +=nodesCount[i];

 avgCount = floor((double)totSize/numOfProcs);

 rem = totSize - (avgCount * numOfProcs);

 for(i=0; i<numOfProcs; i++)

 {

 if(nodesCount[i]-avgCount > LOAD_LIMIT)

 {

 unbalance =true;

 break;

 }

93

 }

 if(unbalance)

 {

 totBefore =0;

 for(i=0; i<this->procID; i++)

 {

 if(rem >0)

 {

 if(nodesCount[i] - avgCount > 0)

 {

 rem--;

 totBefore += avgCount + 1;

 }

 else

 totBefore += avgCount;

 }

 else

 totBefore += avgCount;

 }

 }

94

}

Main.cpp

#include <iostream>

#include "mpiframework.h"

#include <math.h>

using namespace std;

void SimulatorFunction(NodeInfo *);

int main(int argc, char *argv[])

{

 int* sendCountArray;

 int width = -1;

 double p =0.0;

95

 while (width < 2) {

 cout<<"Enter the width of mesh in number of nodes."<<endl;

 cin>>width;

 if (width<0)

 {

 // exit(0);

 return -1;

 }

 p = (log10((double)width)/log10((double)2));/* Check width is result of 2^m*/

 if (p != ((int)p)) {

 cout<<"Mesh width must be >= 2, and the result of 2^m (m =

1,2,3,4...)"<<endl;

 width = -1;

 }

 }

 /*MPI::Init(&argc,&argv);

 MPI_Barrier(MPI_COMM_WORLD);

 time_elapsed = -MPI_Wtime();*/

96

 MPIFramework framework = MPIFramework(width);

 sendCountArray = new int[framework.numOfProcs];

 for(int i =0 ; i<5; i++)

 {

 sendCountArray = framework.createShadowCountToSend(sendCountArray);

 for(int i=0; i<4; i++){

 cout<<sendCountArray[i];

 }

 /* create a class to send and receive shadow nodes and fill them here*/

 framework.computeOverNodes(SimulatorFunction);

 /*framework class know where the shadow nodes coming from*/

 framework.communicateShadows(sendCountArray);

 }

 //MPI::Finalize();

 cin.get() ;

 return 0;

};

void SimulatorFunction(NodeInfo* node)

{

 /*do some work here*/

97

 cout<<" simulator function was called"<<endl;

}

	An Adaptive Mesh MPI Framework for Iterative C++ Programs
	Recommended Citation

	Microsoft Word - Silva_karunamuni_200905_master_final.doc

