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AN ADAPTIVE MESH MPI FRAMEWORK FOR ITERATIVE C++ PROGRAMS  

 

by 
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Under the Direction of Sushil K. Prasad 

 

ABSTRACT 

 

Computational Science and Engineering (CSE) applications often exhibit the pattern of adaptive 

mesh applications. Adaptive mesh algorithm starts with a coarse base-level grid structure 

covering entire computational domain. As the computation intensified, individual grid points are 

tagged for refinement. Such tagged grid points are dynamically overlayed with finer grid points. 

Similarly if the level of refinement in a cell is greater than required, all such regions are replaced 

with coarser grids. These refinements proceed recursively. We have developed an object-oriented 

framework enabling time-stepped adaptive mesh application developers to convert their 

sequential applications to MPI applications in few easy steps. We present in this thesis our 

positive experience converting such application using our framework.  In addition to the MPI 

support, framework does the grid expansion/contraction and load balancing making the 

application developer’s life easier.  
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1. INTRODUCTION 

 

In the field of Computational Science and Engineering many applications exhibit irregular 

structure and dynamic behavior with dynamic load patterns. One such application domain can be 

recognized as using Adaptive Mesh Refinement techniques (AMR).  Basic algorithm of AMR 

technique is to begin with coarser grain mesh structure covering the entire computational area and 

later refine the particular grid points where interesting physical phenomena occur. It could be 

replacing the coarser grain with finer grain grid points or the other way round. This refinement 

proceed recursively when program progresses. Due to refinement at arbitrary points, mesh will 

eventually result in as an imbalance system. Sequential implementations of conventional adaptive 

mesh applications are very complex and difficult to validate. The parallel applications of those are 

far more complex than those.  Therefore providing an infrastructure to such applications is clearly 

a benefit to the application developers. In this thesis we propose an object-oriented framework 

which takes few parameters to convert C++ adaptive mesh application into MPI application. This 

work follows our previous work iC2MPI [18] which converts graph structured –time stepped 

sequential C programs into MPI applications. 

 

Many time-stepped applications such as fluid dynamics [6] or mesh structured applications such 

as difference equations [9], finite element methods [7], and cellular automata [21], incompressible 

flows [23], low Mach number models for atmospheric flow [24] and combustion [25] will 

definitely benefit from our framework as it handles the bulk of extra work required by 

programmers in parallelization of those applications. 
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1.1  Goal of the Framework 

 

1. Design an open architecture framework for class of mesh structured C++ applications, 

which may require adaptive mesh refinement and dynamic load balancing. 

2. Enable programmers to easily plug-in application code to the framework with minor 

changes to the original code to convert sequential C++ code into MPI based distribute 

applications and add the adaptive mesh refinement behavior to applications, which requires 

the same. 

3. Enable developers performance tuning of the computation, communication and load 

balancing of the framework itself to effect in overall porting applications benefit 

Our resultant framework is an improvement to our previous work iC2mpi [2]. Compared to any 

other AMR framework exist, we have provided quite easy conversion from sequential C++ AMR 

based application into MPI application and at the same time, if not already in-built, to support the 

AMR behavior to applications which require that, fulfilling our first and second goals. We have 

proved our concept porting sample applications with few code changes to the original application. 

Experiment results section exemplifies the speed up achieved (upto 12 speed up with 16 procs for 

256 x 256 mesh) and error rate drop for quality achievement. The open architecture of our design 

provides ample room for interested developers to improve our framework from many aspects 

concentrating single area. 

 

1.2 Section Breakdown 

This thesis is organized as follows. Section 2 contains background information required for 

implementation of the framework. There we try to present the basic idea of space-filling curve and 
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expandable hash structure. Section 3 describes the related work.  Section 4 presents the 

architecture of the framework and flow control. There we describe the application user input and 

points of inputs to the framework. In Section 4 we explain the design and implementation of our 

framework in detail. Section 5 describes our Experimental results while Section 6 summarizes our 

work and exposes the future improvements to the framework. 
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2. RELATED WORK 

 

In this section we will discuss existing literature on adaptive mesh refinement frameworks and 

similar research work. The work of [22] investigates the use of spatial keys to uniquely identify 

and order the objects defining a triangular mesh. They do the triangular refinement using newest-

node bisection. When refining they divide the mesh integral distance by four. They replace a line 

with a new node and two new lines. And bisect a triangle, replacing it with a new line and two 

new triangles.  However their load balancing and communication between processors are not 

clearly described. 

 

Rendleman et al., present [20] parallelization of block-structured adaptive refinement algorithms. 

Their work is supported by the software infrastructure provided by BoxLib library of [11]. 

BoxLib is a C++ library, which can be used for adaptive mesh refinement applications. BoxLib 

includes the basic parallelization facility hiding the detailed information from application 

developer. BoxLib creates the mesh structure required for the application and it handles the 

communication via MPI calls. Charles and team describe their implementation as having five 

components: error estimation and re-gridding routine to mark the refinement nodes, grid 

management routine manages the grid hierarchy, interpolation routines initializes a solution on 

newly created fine grids and interpolate the boundary conditions, synchronization routines correct 

mismatches at coarse/fine boundaries and integration routine distribute the grids among physical 

processors. The paper describes refinement algorithm and load balancing algorithm in detail. The 

differences in their work and ours are ease of porting, fairly large problem domain we address and 

control that a user has on his application on the framework.  
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Chien et al., focus on large scale shared memory systems for writing SMAR methods [14]. Their 

runtime supports the programs to utilize varying degree of shared memory support. Their 

implementation is done on top of Illinois Concert System and C++.  Several threads employ in 

single address space. Shared memory is used for all communication and sharing.  

 

Teng et al., propose to use balanced quadtrees and octrees to represent well shaped meshes[13]. 

Quadtrees and octrees can grow dynamically and adaptively to approximate the process of 

adaptive refinement of unstructured mesh. They focus on reducing dynamic load balancing to 

static partitioning and reducing parallel mesh refinement to a collection of traditional mesh 

refinements. Scheme first builds a balanced 2d tree to model the unstructured mesh. And they 

assume at refinement mesh will be refine at every region. Also they do not consider coarsening. 

The work has not presented their experimental results. 

 

PARAMESH [26] is a package of Fortran90 implementation of Adaptive Mesh Refinement 

framework developed in NASA. As with our framework, goals of the PARMESH are to enable 

application developers to convert their serial code into parallel code and enable the regular mesh 

structured framework, the adaptive mesh behavior. The package builds a hierarchy of sub grids 

covering the entire computational domain. The sub grid blocks are organized as quad tree (for 

2D) or oct-tree (for 3D). Each grid block has a logical Cartesian mesh. In this framework one of 

the restriction imposed on refinement is that a refinement level cannot jump by more than one 

refinement level at any location in the spatial domain. After every refinement stage, framework re-

organizes the grid distribution among processors. At refinement, each block maintains the initial 
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mesh structure. They use Morton Space filling curve. Communication between processors is 

supported by MPI standard 

 

PETSc [30] is a suite implemented in Mathematics and Computer Science Division of Argonne 

National Laboratory to produce numerical solution of partial differential equations and related 

problems on high-performance computers. PETSc use MPI standard for message passing 

communication as well. PETSc includes parallel linear, nonlinear equation solvers and time 

integrators for applications developed in C, C++ and Fortran. 

 

Bhandarkar et al., focus on load balancing in MPI programs in [17]. They use the charm++ in 

their work to bring the dynamic load balancing   capability to MPI programs. Charm++ [29] is an 

object-oriented parallel programming language. It gives the dynamic load balancing capabilities 

using runtime measurements of computational loads and communication patterns. Then it employs 

object migration to achieve load balance. Therefore any MPI program should be able to get the 

benefit of charm++ load balancing capability by simply transforming the MPI code into charm++ 

code. But conversion from MPI to charm++ requires the understanding of charm++ language. 

They propose a framework to do the conversion job. 

 

Libmesh [32] library and toolkit provide underling adaptive mesh refinement capability for 

numerical simulation of partial differential equations. Currently it supports 1D, 2D, and 3D steady 

and transient finite element simulations. It makes use of existing software for solvers.  

 



7 

Chombo [35] provides software infrastructure for finite difference methods for the solution of 

partial differential equations on block-structured adaptively refined rectangular grids. Framework 

makes use of the previous work of work BoxLib [11]. It addresses both elliptic and time-

dependent modules. The tools incorporated the visualization tool ChomboVis to visualize the data 

sets. MPI is used for communication in Chombo framework. 

 

AMR framework [34] is designed for predicting physically complex flows. Framework is limited 

to 1 D and 2 D flows. It provides the basis for development of computational analysis tools for 

complex flow prediction. Block based adaptive mesh refinement is done and parallel implicit time 

stepping approach is applied. 

 

Parashar et al., in their work [19] present data structures for adaptive mesh refinement. Two basic 

data structures are presented here: a Scalable Distributed Dynamic Grid, which is a single grid in 

an adaptive grid hierarchy and a Distributed Adaptive Grid Hierarchy, which is a dynamic 

collection of SDDGs. Computational data associated with the grids in the hierarchy is maintained 

as a scalable distributed dynamic array. Grid points are ordered according to the space-filling 

curve. The work shows experimental results with a representative application from numerical 

relativity and proves that the presented data structure has no significant overhead.  

 

FEM [31] is an automatic load balancing framework developed for the Converse [31] 

interoperable runtime system. Framework records the computation time taken for each virtual 

process or char defined in charm++ [29] and communication end points for each virtual 

processor. With this information it creates the communication graph in each physical processor. It 
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implements a mechanism for object migration and plug in for load balancing strategy.  The 

limitation of the framework is that it is designed for specific domain. 

 

Autopilot [27] presents ways of collecting information at runtime for parallel programs. Also it 

provides fuzzy logic based decision engine to aid resource management in parallel programs. But 

it is left to the programmer to implement the decision provided by the fuzzy logic. Since the 

runtime system of the parallel program does not actively carry out the decision, the load balancing 

is not transparent to the parallel program. In our framework we manage the load balancing on 

behalf of the application developer. 

 

Similarly system CARMI [28] informs the parallel program the load imbalance and leaves the load 

balancing process to be implemented by the application developer.  

 

Aluru, Fatih [33] describe load balancing technique based on space filling curve. They present 

algorithms to linearly order points in multi dimensional space using the Z-curve and Graycode 

curve. Since the proximity preserving nature of the space filling curve, from multi dimensional 

space to one dimensional space, they are used for partitioning. 

 

J¨orn Behrens and Jens Zimmermann [5] introduce new recursive space-filling curve algorithm for 

adaptively refined triangular meshes for their dynamic distribution. Their experiment results show 

good load balancing and edge cut characteristics. 
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3. FRAMEWORK ARCHITECTURE  

 

This framework is designed to have a layered architecture to decouple the user application and the 

framework. Application user does not require having knowledge on node partition, distribution, 

load balancing and MPI calls. Application sits on top of the framework. Figure 1 

shows the layered architecture of the platform. Application provides the underlying mesh 

structure, which is essentially the width of the mesh (number of grid points in each direction), 

node data structure, which can be a class implementation and node computation function, which 

may define the criteria for expansion and contraction of mesh, as user plug-ins to the framework. 

Platform uses a space-filling curve to convert n-dimensional mesh into 1-dimensional list, which 

will then partition among the processors. Also platform supports the adaptive behavior of the 

application carrying out mesh expansion and contraction when required. At the same time 

framework will take care dynamic load balancing. Load balancing algorithm can be replaced not 

harming to the existing framework functionality. The platform uses an MPI [12] approach for 

parallelization, one of the most widely used methods to achieve parallelism on today’s clusters 

and multiprocessor supercomputers.  

 

  
 

Figure 1: Layered architecture of the framework 
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The Figure 2 shows the detailed architecture of the framework and it explicitly shows the user 

plug-in points (underlying mesh size, node data structures and node computation function). White 

boxes in the figure show the user plug-ins to the framework and dark gray boxes represent the 

framework while light gray boxes shows the external applications and libraries used in the 

framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Detailed architecture of the framework 
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Application provides following inputs to the framework to interact with it. 

1. Application mesh size. And degree (two dimensional or three dimensional) of the mesh 

handling by setting a variable in the framework. 

2. Computational node structure definition, which can be a C++ structure or class and its 

implementation.  

3. Computational function defined on each node. This function accepts pointer to grid point 

object on which the computation function is called, and a pointer to hash table of 

computational data list. Function defines the error function for node refinement and 

coarsening. 

 

 The application use the third party ‘Hilbert’s Space-Filling Curve’ to get the one dimensional 

space filling curve generated from user application mesh. Framework will partition the generated 

one dimensional node list among the processors and create node-to-processor mapping, which 

will be used later to find out the shadow nodes for a processor as well as for load balancing. The 

second user input, the structure of computational data node of the application is recognized by the 

initialize phase of the framework to generate data nodes hash tables associated with the 

application graph. At the end of initialization phase all required data structures are created for 

next phase. 

 

Third user input, “application computation function” is supplied during the computation and 

communication phase of the framework.  Framework will call the computation function on each 

node and transport the communication data between relevant processors. New nodes may create 
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or destroy as a result of computation. Nodes requiring coarsening or refinement will be marked as 

a result of error function calculations and framework will do the actual node generation and 

coarsening according to the flag. Also location assignment (new mesh generation) neighbor nodes 

update and load balancing caused due to adaptive mesh refinement will be handled by the 

framework. So the framework essentially saves the programmer from doing all the background 

work and let him concentrate on the business logic. At the end of computation phase, framework 

supports communication between processors (packing, sending and receiving, updating 

information to prepare for next computation cycle.)  If it is the load balancing cycle, framework 

does the re-partitioning and distribution of nodes between the processors without harming the 

program state.  

 

3.1 Program Flow of Control 

 

We recognize three main phases in the program as described below. 

 

Initialization Phase 

‘Initialize Data Structures’ uses the node data structures provided by the user. And set up the data 

structures for maintaining node information and node data in local memories of the processors. 

Node information contains the information about its neighbors and shadow node information to 

the processor. This phase could be a considerable overhead to large mesh applications. Since this 

overhead occurs only once in lifetime of an application, it should be bearable. 
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Computation and Communication Phase 

‘Compute over Nodes’ function supplied from the framework initiate the computation of the 

framework. We pass a pointer to application specific, user given “computational function” as a 

parameter to the ComputeOverNodes function. Application Node function provided by the user 

incorporates the actual code for the node computation. Updated node data from the application 

node function is packed into communication buffers.  The framework data structure keeps the 

neighbor information of each node, so that application developer can easily track the neighboring 

nodes for inter-grid computation and communication. 

 

CommunicateShadows function calculates number of shadow nodes going to the neighboring 

processors. And pack the relevant data nodes and send them through MPI_Send. At the same 

time each processor prepare for receiving the updated shadow nodes from their neighbors. In 

every iteration framework needs to calculate the new buffer size for sending shadow nodes since 

there could be node splitting and contraction taken place during the computation phase. This 

buffer size calculation could be an extra overhead introduced by the framework. If we can keep 

some information on mesh configuration changes, we can control the buffer node creation. We are 

planning to consider this fact for further improvements on our framework. Computation and 

communication phases may be called several times as application flows. 

 

Load Balancing Phase 

The load balancing routine is periodically invoked. The load normalization is done in a centralized 

heuristic algorithm. Normalized load is calculated dividing the total number of nodes in the system 

by number of processors. We use the updated Space filling curve to re-partition the nodes among 
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processors. The information required to re-partition the nodes, will be gathered to processor 0. 

Then processor 0 will do the re-partition and inform everybody their new boundaries, so that each 

processor can eventually pack the outgoing nodes and send them to relevant processors or 

prepare to receive incoming new nodes from their neighboring processors. 

 

Since the space-filling curve preserves the spatial locality, it is fair enough to consider the 

resulting distribution to be comparable with its traditional grid distribution in terms of 

communication overhead.  

 

Figure 3 shows the flow control of the framework. 

To run the application type mpirun –np <numberOfProcessors> Framework <meshSize> , 

Where numberOfProcessors is the number of processors the application is running and 

meshSize is the length of an edge of square or cubic mesh. To compile the application use the 

command make all and make clean will delete the objects files if any. Before each run output.txt 

should be deleted. This file stores the space filling curve order.
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Figure 3: Control flow of the framework 
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4. DETAILED DATA STRUCTURES 

 

Selection of data structure is vital to efficient computation of distributed systems. When designing 

the data structures we considered several factors: fast access, flexibility and ability to 

accommodate mesh expansion and contraction. We recognize two types of data structures, 

 

1. Data structure for adaptive mesh grid points, and 

2. Data structure for associated computation data nodes 

 

4.1 Grid Point Data Structure 

 

Maintaining node information is important apart from maintaining node data. Node information 

might change during the course of execution. (Due to new node creation and re-partition during 

the computation and load balancing) We designed the data structure for mesh grid points as a 

linear representation of hierarchical and multi-grid points, generated from a space-filling curve 

[3,4], which preserves the locality of d-dimensional space mapping to 1-dimensional space,  

i.e. Nd - >N1, such that each point in Nd is mapped to a unique point in N1. Grid point creation, 

refinement, coarsening, partitioning and dynamic repartitioning operations can be efficiently 

carried out on the linear representation. The self similar nature of the space filling curve is used to 

maintain the locality across levels of the grid hierarchy. We used Hilbert space-fillling curve [3] in 

our experiments. Because of the open architecture the type of the pace-filling curve can be 

changed as one required, since it is being used as a plug-in to the framework. In addition to the 

locality preservation, choice of space filling curve is beneficial due to its inexpensive mapping 
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computational cost. Generated one dimensional representation can be partitioned between 

processors equally facilitating fast and efficient. The resulting partitions have very good load 

balancing and edge cut characteristics. 

 

Hilbert-Type Space-Filling Curves 

We used the Hilbert’s space filling curves [3] for our application. Figure 4 shows the first 3 

stages of Hilbert’s space filling curve. 

 

Figure 4: First three stages in the generation of Hilbert’s space filling curve [3] 
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Consider the 2D mesh of 16 nodes in Figure 5. When applied the Hilbert’s space filling curve, 

new order of the one dimensional list would be {0,1,5,4,8,12,13,9,10,14,15,11,7,6,2,3}. 
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Figure 5: Initial mesh structure of the program graph 
 
 

When 2D mesh is represented in 1D list, it is easy to partition the grid points among the 

processors. As seen in the Figure 5 different colors represent the partition received by each 

processor.  This proves that chopping the 1D list will result in consecutive chunks of nodes for 

each processor. Figure 6 show a refined grid, which has been refined to 3 levels. The space filling 

curve generated for that graph is  

 {0,1,{0,1,3,2},4,8,12,13,9,{0,{0,1,3,2},3,2},14,15,11,7,6,2,3}  

 

Each grid point in the mesh will store its coordinates. We name the grid points according to 

conventional X-Y-Z coordinates.  Figure 7 and Figure 8 show the labeling convention of grid 

point coordinates for 2 dimensional and 3 dimensional meshes respectively. As you can notice 

from the Figure 7, each set of new refined nodes will consider new X-Y origin, which is bottom-

left coordinate of their parent node, to label their coordinates. For a 3 dimensional mesh, the 
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origin for the new refined grid points will be bottom-left-rear coordinates. This coordinate system 

is a repetition of original system. 
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Figure 6: Grid refined to 3 levels 
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Figure 7: Convention of labeling grid point coordinates (2D) 
 
 

Each grid point in the mesh is identified by its grid point id. Grid point id represents the location 

of the grid point as well as its level. Node id for the gray grid point marked in Figure 7 is 

composed as follows. 
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Figure 8: Grid point coordinate naming convention for 3D mesh 
 
 
 

In addition to node id, grid data structure keeps the neighboring nodes id list to keep the 

information about neighbors of the node and shadow node processor information for 

communication purposes.  Two nodes are considered to be neighbors if they share a common 

edge, if it were 2D list or share a common face, if it were a 3D mesh. Also a node is a shadow 

node for another node if two nodes are neighbors but belong into two processors. Then first node 

becomes a shadow node to second and visa versa. If nodes depend on neighbor node information 

for computation, computation data of shadow nodes are duplicated in appropriate processors. At 

each communication phase those shadow nodes are updated with current data values for next 

computation phase. Figure 9 shows the class definition of NodeInfo class, grid point information 

definition. 
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Figure 9: NodeInfo properties 
 
 
4.2 Computation Node Data Structure 

 

A processor requires fast access to computation data. Thus the natural choice for the data 

structure holding computation data would be a hash table. Location of the node data is obtained 

from the node global ID sufficed on modulo hash function. Buckets carry pointers to the node 

data associate with the global ID.  Figure 10 displays how the grid points relate to the 

computation node data when refining takes place at different levels. Definition of the computation 

node data is provided by the application user  

 

Entire mesh associated computation data nodes are created and stored in each processor. When 

node data is required during the computation phase, it will be retrieved using the node id. At the 

end of communication phase shadow nodes will be sent and incoming shadow nodes are updated 

in the hash table. In this way, each processor is furnished with required and up-to-date data for its 

next computation phase. 

 
private: 
        int owingProc; 
        int level; 
        char refine_de_refine; //refine R derefine D none N 
 
public: 
 
        string id; 
        set<int> shadowForProcs; 
        char peripheral_internal; 
        CordinateSystem *system; 
        set<string> neighbors; 
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Figure 10: Mapping the adaptive grid to the extended hash table 
 
 
 

Each processor set up following lists in local memories. 

1. Grid point node list. Processors create and maintain only the grid points belong to own 

processor. Neighbor information and shadow node information are also maintained with 

them. 

2. Hash map of computation data list. Note that processors keep not only computation node 

data associated with grid point belong to own processor but computation node data 

belong to shadow nodes. 
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5. ALGORITHMS AND IMPLEMENTATION DETAILS 

 

We will elaborate in detail the three phases recognized in the program flow, in this section. 

 

5.1 Initialization Phase 

 

During this phase data structures are created in local memories of the processors to keep graph 

connectivity, node information and computational node data. Hilbert space-filling curve is called 

on given mesh structure and generate the one dimensional node list, which is then equally 

partitioned between the processors to form local node information lists and fill their associated 

information. Node to processor mapping data will be stored in appropriate data structures. Beside 

these hash map creation and buffer initialization also take place in this phase. 

 

5.2 Computation and Communication Phase 

 

Each processor performs computation for each of its nodes using its neighbors. After updating the 

node data, a processor sends the updated shadow nodes information to the appropriate 

processors. Neighboring processors who receive such information update their data structures to 

keep up to date for the next computation cycle. Mesh expansion and contraction may occur in this 

phase as a result of error function. Application developer may define an error function with 

required criteria for expansion and contraction. According to such criteria application should 

mark required mesh points to be refined or de-refined. When calculation is done on all grid points 

framework will call refinement and de-refinement methods on marked nodes. Refer Algorithm 1 
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for refinement – de-refinment routine. Algorithm 2 shows the node splitting while Algorithm 3 

shows the contraction on a grid point. We assume each node will be split into exactly four child 

nodes. Similarly when contraction occurs, four neighbor nodes in the same level will be reduced 

to single node. When not all four siblings are marked for de-reinement, coarsening will be ignored 

on that grid points. At splitting and contraction data node list and node information list will be 

adjusted accordingly. For an example when new nodes are created as in figure 4 nodes order of 

the mesh is found out as listed above. In addition to that, neighbors of the previous configuration 

will be updated with new node information.  

 

 

 

 

 

 

 

 

 

 
 
 

Figure 11: Node refining algorithm 
 
 

Computation function is supplied by the application developer. Framework defined ”computation” 

function accepts a parameter as a pointer to user supplied computation function. This function 

splitNode() 
{ 

- Retrieve the DataNode for the expanding nodeId 

- Retrive the location of NodeInfo object of the node 

- Create four new nodes with level = parent level +1. 

- Assign local id and compose the global id from both parent 
id and local id. 

- Fill the neighbor node list and shadow nodes list of new 
nodes. 

- Duplicate parent DataNode data in all four child data nodes. 

- Insert child DataNode to extended hash table 

- Find the space-filling curve order for new child nodes and 
replace parent NodeInfo node from the new child NodeInfo 
nodes list 

} 
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will be called on each grid node belongs to the processor. This allows for a clean and robust 

decoupling between the framework and the application program code. From the initialization 

phase, a processor already knows the neighboring processors it needs to communicate the shadow 

node information to, and the number of such shadow nodes. By the time the computation routine 

returns, the communication buffers are all set up, and communication can proceed 

 

 

 

 

 

 

 

 

 

Figure 10: Algorithm of splitNode function 

 
 
 
 
 

Figure 12: Grid coarsening algorithm 
 

 

For physical communication of these buffers, new class is defined and committed to an MPI data 

type (using MPI_Type_commit). All the processors send these buffers at the same time. 

reduceNodes() 

{ 

- Traverse all “marked for reduction” nodes 

- Check if they are in the same level and not level 0 

- Check if they are neighbors 

- Retrieve DataNode objects of the marked nodes 

- Retrive NodeInfo nodes related to each marked nodes 

- Create one NodeInfo object for every four neighbor 
group 

- Level of new node = level -1 of new nodes 

- Create neighbor list and shadow nodes list for new 
node. 

- Replce each four-group nodes with one DataNode 

- Replace four marked nodes in the NodeInfo list with 
one newly created NodeInfo object. 

} 
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MPI_Bsend(),  is used for sending these buffers to appropriate processors. MPI_Recv() receives 

these buffers which are then used to update the locally maintained shadow node information. 

 

 

 

 

 

 

 

 

 

 

 

  

 
 
 
 
 

Figure 13: Computation and communication functions 
 
 
5.3  Load Balancing Phase 

 

Computational workload changes when new nodes are created or old nodes destroyed at random 

locations of the mesh. Therefore it is equally important to address the load balancing phase of the 

framework. Repartitioning should not only balance the work load among the processors but also 

void computeOverNodes (pointer to application 
computation function) 
{ 
   For each node 
   { 
 invoke application node function( ); 
 add each marked nodeId to markedList 
   } 
   For each nodeId in markedList 
   { 
 call splitNode or reduceNodes functions  
    } 
} 
 
void communicateShadows() 
{ 
 Create shadow buffers 

for each shadow processor 
{ 

MPI_Bsend(shadow nodes); 
} 
for each shadow processor 
{ 

MPI_Recv(shadow nodes); 
} 

} 
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keep the edge-cut to a minimum, so as to minimize the inter-processor communication.  Figure 14 

shows a sample processor grid mapping so that edge cut is kept minimum and the work load is 

distributed comparably equally. Different shading of the mesh shows, how four different 

processors have divided the grid points between them. 

 

2 3 12 13 14 

0 1 

2 3 8 

0 1 

10 11 

2 3 2 
0 1 

4 5 

0 1 

7 

2 3 2 
0 1 

0 

0 1 

2 3 

 

Figure 14: Grid distribution among processors 
 
 
5.4  Class Description 

 

MPIFramework 

Class definition of the framework and implements the MPI calls for send and receive. An instance 

of the class will be created at each processor, representing the framework. Processor zero will call 

the Hilbert curve and create the 1 dimensional space filling curve out of n-dimensional mesh.  

MPIFramework instance of each processor will then create the memory structures from the 

generated space-filling curve grid point list and find out the own partition in the list.  According to 
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the partitioned list, framework will create the memory structure for NodeInfo objects. And create 

the hash table for objects dataNode defined by user. According to the program graph information, 

neighbor lists and shadow node lists are created for each nodeInfo object. 

 

MPIFramework class is responsible for defining computation and communicate functions for the 

application. In addition to that, MPIFramework defines the send and receive node count, node 

mapping after receiving from remote processor and load balancing. Figure 15 shows the definition 

of the MPIFramework class. 

 

Figure 15: MPIFramework class definition 
 

NodeInfo 

This class defines a grid point. Each grid point is recognized with a unique id, each grid point lies 

on a certain grid level. When the grid get finer new grid points will be created and old grid point 

will be replaced. When further fine grids are required, grid points at those locations will be further 

splitted into smaller grids. On the other way hand grid points will be reduced to fewer grid points 

class MPIFramework 
{ 
private: 
 ExtendedHash dataHash; 
 vector<NodeInfo> nodeList; 
 int procID; 
 
public: 
 int numOfProcs; 
 MPIFramework(int size); 
 ~MPIFramework(); 
 void computeOverNodes(void (*simulator_ptr)(NodeInfo* node )); 
 void communicateShadows(int* sendCountArray); 
 void init(int size); 
 int* createShadowCountToSend(int* sendCountArray); 
 void MPIFramework::loadBalance(); 
}; 
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when it is required to be coarser. This process is continued in hierarchical order. Therefore each 

grid point is defined to be in a certain level and this property is stored in NodeInfo class. Other 

than those properties NodeInfo class keeps the neighbor list and shadow nodes list of each 

nodeInfo object. 

 

 

 

 

 
 
 
 

Figure 16: NodeInfo class definition 
 

 

 

NodeInfo class defines the splitting and reducing methods required for mesh refinement. 

According to the error function, application developer can set refine or derefine property of the 

class NodeInfo 
{ 
private: 
        int owingProc; 
        int level; 
        char refine_de_refine; //refine R derefine D none N 
 
public: 
 
        string id; 
        set<int> shadowForProcs; 
        char peripheral_internal; 
        CordinateSystem *system; 
        set<string> neighbors; 
        NodeInfo(string globalId,int procID); 
        ~NodeInfo(); 
        void setInitialNeighbors(int x, int y); 
        void setInitialNeighbors(int x, int y, int z); 
        void setShadowNodes(map<string,int> nodsProcMap); 
        int getLevel(); 
        void setRefine(); 
        void setDerefine(); 
        void resetRefineDerefine(); 
        char isRefinedDerefined(); 
        void setPeripheralOrInternal(char nodeType); 
        void setLevel(int parentLevel); 
        void splitNode(int meshLength, vector<NodeInfo>& nodeList,map<string,int> 
 nodesProcMap, ExtendedHash& hashMap); 
}; 
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nodeInfo object so that framework can later call split or reduce function on the object to obtain 

finer or coarser grids. Figure 16 shows the NodeInfo class definition.  

 

ExtendedHash 

This class is defined to create a hash table to keep data objects as hash entries. Key to the hash 

entry is the nodeId and value of a hash entry is a pointer to the NodeData object. ExtendedHash 

class facilitates the dynamic insert; delete which are beneficial in mesh refinements.  Essentially 

hash entry is important since its nature of fast access to the data through hash keys.   

 

Figure 17: ExtendedHash class definition 
 
NodeData 

NodeData class defines the application grid point class which keeps the data values involved in 

calculations.  

 
 
 
 
 
 
 

class ExtendedHash 
{ 
private: 
 int depth; 
 map<string, DataNode*> hashMap; 
 int getKey(char* key); 
 
public: 
 ExtendedHash(); 
 ~ExtendedHash(); 
 DataNode * getElement(string key); 
 void deleteElement(string key); 
 void insertElement(string key,DataNode* dataNode); 
}; 
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Figure 18: DataNode class definition 
 

BuffNode 

This class is defined for the communication purposes. Fields which should be transferred to the 

other processor will be defined in this class to make it light in weight. Application developer 

should change this class according to its application grid point class. 

 

Figure 19: BuffNode DataNode class definition 
 

Graph 

Graph class handles the mesh structure. It reads the output file generated from the Hilbert space-

filling curve to create data structure and load to the memory.  

class BuffNode 
{ 
public: 
 char nodeId[NAME_LENGTH]; 
 DataNode dataNode; 
 
 BuffNode(); 
 ~BuffNode(); 
}; 

class DataNode 
{ 
private: 
 int id; 
 int data; 
 
public: 
 DataNode(); 
 ~DataNode(); 
 DataNode* createClone(DataNode& dataNode,  DataNode & 
cloneNode); 
}; 
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Figure 20: Graph class definition 
 

In addition to that, Graph class is responsible for mapping the grid points and the processor id to 

which the grid points belong. Figure 20 shows the Graph class definition. 

FileIO 

FileIO class is responsible for reading the output file generated from Hilbert space-filling curve 

call. 

 

Figure 21: FileIO class definition 
 
 
Point 

Point is the base class for 2D and 3D point classes which define the 2 dimensional and three 

dimensional points respectively. 

 

class Graph 
{ 
public: 
 Graph(); 
 ~Graph(); 
 vector<string> getGraph(const char* fileName, int size); 
  
 void nodeProcMap(map<string,int> & procMapping,vector<string> nodeList, int 
noOfprocs); 
 
}; 

class FileIO 
{ 
public: 
        FileIO(); 
        ~FileIO(); 
        vector<string> getOutput(const char* fileName); 
}; 
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Figure 22: Point class definition 
 
 

Figure 23 and Figure 24 show the two dimensional and three dimensional points’ definitions 

respectively. One of these class definitions will be called to create point objects depending on the 

dimension of application porting. 

 
 
 
Point2D 

 
 

Figure 23: 2D point class definition 
 
 

class Point2D : public Point { 
 
public: 
        int y; 
        ~Point2D(){}; 
        Point2D(int ix, int iy) 
       { 
                x =ix; 
                y =iy; 
        }; 
}; 
 

class Point { 
 
public : 
        int x; 
        Point(){ }; 
        ~Point(){}; 
}; 
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Figure 24: 3D point class definition 
 

CordinateSystem 

This class is used to store the coordinates of each grid point. Two dimensional and three 

dimensional coordinate systems are derived from this class.  

 

 

 

 

 
 
 

Figure 25: Coordinate system class definition 
 
System2D 
 
Defines the coordinate system for two dimensional meshes. 
 
 
 
 

 
 
class Point3D : public Point { 
public: 
        int y; 
        int z; 
        ~Point3D() 
        { 
        }; 
        Point3D(int ix, int iy, int iz) 
        { 
                x =ix; 
                y = iy; 
                z = iz; 
        }; 
}; 

class CordinateSystem { 
 
public: 
 
        virtual void setCordinates(Point2D initPoint, int level, int x, int y)=0; 
        void setCordinates(Point3D initPoint, int level, int x, int y, int z){}; 
        bool isNeighbor(vector<Point2D> cordinates){return false;} 
        bool isNeighbor(vector<Point3D> cordinates){return false;} 
}; 
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Figure 26: Coordinate system for 2D meshes 

 
System3D 
 
Defines the coordinate system for three dimensional meshes. 
 
 
 
 
 
 
 
 
 
 

Figure 27: Coordinate system for 3D meshes 
 

 
Figure 27: Coordinate system for 3D meshes 

 

Please refer Appendix A for the complete class diagram of the system and Appendix B for the 

source code. 

 

5.5 Overheads 

 

When designing a generic platform, an overhead will be introduced definitely. One of the key 

issue is that how do we invoke the application specific functions on adaptive mesh and enable user 

to call error function on them. Application user is required to pass a pointer to the computation 

class System2D: public CordinateSystem 
{ 
public: 
        vector<Point2D> cordinates; 
        System2D(); 
        ~System2D(); 
        void setCordinates(Point2D initPoint, int level, int x, int y); 
 
        bool isNeighbor(vector<Point2D> cordinates); 
}; 
 

class System3D: public CordinateSystem 
{ 
public: 
        vector<Point3D> cordinates; 
        System3D(); 
        ~System3D(); 
        void setCordinates(Point3D initPoint, int level, int x, int y, int z); 
        void setCordinates(Point2D initPoint, int level, int x, int y){}; 
        bool isNeighbor(vector<Point3D> cordinates); 
}; 
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function which accepts following parameters: pointer to the grid point, on which we call the 

computation function, hash table containing computation data. Since grid point is passed to the 

function, application user can access the neighbors and shadow nodes list of the grid point. Also 

user can access the hash map using global node id of grid point, to get the associated 

computational data. Computation function should contain an error function to decide the refining 

and coarsening criteria. When the criteria is met user can mark the grid points to be refined or de-

refined. Buffer creation and send and receiving of grid point information and computation node 

information is again an overhead. Also, an overhead will be introduced at neighbor information 

and shadow information filling whenever a grid-restructuring occurs. During the calculation, load 

balancing checking is done. This could add few overhead processor cycles to the application flow. 

Finally, during the load balancing phase, we call few MPI_Send and MPI_Recv routines to collect 

required information and calculate the load distribution. We tested have tested the overhead 

introduced from the framework and have received the results to be at an acceptable level. Refer 

Section 6 for experimental results. 
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6. EXPERIMENTAL RESULTS 

 

The experiments were conducted on Silicon Graphics Origin- 2000 computer with 24 CPUs with 

hypercube cc-NUMA architecture. We used two applications, one for 2D mesh for solving the 

Partial Differential Equation with Euler and Heun, developed by Kurt Bingham [21] and one for 

3D mesh for acoustic waveforms developed with Clawpack [23] for our experiments. First we 

consider 2D mesh application. Original application is a VB.net program and later converted into 

C++ language. The original application does not support the adaptive mesh refinement. Our 

framework has successfully added the joy of experiencing adaptive mesh refinement on 

application. 

 

6.1 Case Study: Polytrope Differential Equation Solver 

 

A polytrope is a model for gaseous mass whose thermodynamics can be approximated by  

P = Kρ((n + 1) / n) 

Where P is pressure, ρ is density and K is a constant. The constant n is known as the polytropic 

index.  Gas following such an equation of state produces a polytropic solution to the Lane-Emden 

equation. 

 

The Lane-Emden Equation in familiar differential equation notations, 
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The equation we are trying to solve, when written as an Euler's Equation for hydrostatic 

equilibrium of a star is, 

 

 
Where ρ(r) density, M(r) mass and P(r) pressure as functions of r which is the distance from the 

center of the star. 

  

To get the initial values for y and y' Taylor expansions is used.   

 

 

 

 Seed value (e) is very small. 

The solutions calculated from the above Tailor expansions are then considered to be scalar known 

quantities.  

 

 

Equations are solved for the position where F becomes zero, i.e. the pressure/density crosses the 

x-axis. This point is a point on surface. The application consists of a second order partial 

differential equation solver which is incorporated into a polytrope class. The solver can use either 

Euler or Heun [26] methods.  
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Table 1 shows the time taken for 300 iterations of mesh sizes 8X8, 16X16, 64X64, 128X128 and 

256X256 on 2 processors without mesh re-gridding ( without adaptive performance). The 

average time is recorded from all four processors.  Table 2 shows the execution time taken for 

8X8, 16X16, 64X64, 128X128 and 256X256 on two processors with re-grinding. 

 

Table 1: Execution time (in seconds) on 2 processors without adaptive refinement 
 

Mesh Size 8X8 16X16 64X64 128X128 256X256 

Execution Time 
0.4064 

 
1.6433 

 
23.8125 

 
95.165 

 
381.587 

 
 

Table 2: Execution time (in seconds) on 2 processors with adaptive refinement 
 

Mesh Size 8X8 16X16 64X64 128X128 256X256 

Execution Time 1.787 
 

22.88 
 

97.09 
 

386.81 
 

1532.2 
 

 

 

Figure 28: Speedup vs. mesh size on 2 processors without adaptive refinement 
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Table 3 and 4 shows the timing recorded for 300 iteration of Euler computation on mesh sizes 

8X8, 16X16, 64X64, 128X128 and 256X256 on four processors with and without adaptive 

behavior respectively.  

 

Table 3: Execution time (in seconds) on 4 processors without adaptive refinement 
 

Mesh Size 8X8 16X16 64X64 128X128 256X256 

Execution Time 0.2243 
 

0.8663 
 

12.359 
 

49.4975 
 

192.729 
 

 

Table 4: Execution time (in seconds) on 4 processors with adaptive refinement 
 

Mesh Size 8X8 16X16 64X64 128X128 256X256 

Execution Time 0.932 
 

13.12 
 

50.92 
 

192.98 
 

756.32 
 

 

 

Figure 29: Speedup vs. mesh size on 4 processors without adaptive refinement 
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Figure 23 shows the speedup achieved at each mesh size. We observed a decrease of speed up 

increase as mesh size grows. Tables 5 and 6 give the execution time on 8 processors with similar 

conditions given as for the above cases. 

 

Table 5: Execution time (in seconds) on 8 processors without adaptive refinement 
 

Mesh Size 8X8 16X16 64X64 128X128 256X256 

Execution Time 0.1386 
 

0.4315 
 

6.6648 
 

26.6942 
 

105.631 
 

 

Table 6: Execution time (in seconds) on 8 processors with adaptive refinement 
 

Mesh Size 8X8 16X16 64X64 128X128 256X256 

Execution Time 0.4587 
 

6.8753 
 

27.344 
 

107.09 
 

437.87 
 

 

 

Figure 30: Speedup vs. mesh size in on 8 processors without adaptive refinement 
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Figure 24 shows the speedup plot obtained. We observed about 6 to 7 speedup when the size of 

the mesh size increases when run on 8 processors. Further we achieved up to 11 times speedup 

when tested on 16 processors. Figure 25 shows the plot drawn for speedup vs. mesh size. 

 

Table 7: Execution time (in seconds) on 16 processors with adaptive refinement 
 

Mesh Size 8X8 16X16 64X64 128X128 256X256 

Execution Time (s) 0.3987 
 

3.2671 
 

15.875 
 

57.34 
 

222.84 
 

 

Table 8: Execution time (in seconds) on 16 processors without adaptive refinement 
 

Mesh Size 8X8 16X16 64X64 128X128 256X256 

Execution Time (s) 0.0911 
 

0.2757 
 

3.7897 
 

15.3324 
 

56.3959 
 

 
 

 

Figure 31: Speedup vs. mesh size on 16 processors without adaptive refinement 
 

Figure 26 shows the timing speeds up of achieved with different number of processors. We used 

64X64 and 128X128 meshes with 300 iterations on Euler method. 
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Figure 32: Execution time vs. number of processors without adaptive refinement 
 

 

Figure 33: Execution time vs. mesh size on 2 processors with regular/adaptive refinement 
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Figure 34: Execution time vs. mesh size on 4 processors with regular/adaptive refinement 
 
 

 

Figure 35: Execution time vs. mesh size on 8 processors with regular/adaptive refinement 
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Figure 36: Execution time vs. mesh size on 16 processors with regular/adaptive refinement 
 

 

Figure 37: Relative speed up vs. mesh size when adaptive behavior is enabled  

 

We plot in Figure 37, speed up of application with adaptive mesh behavior on 8X8, 16X16, 

64X64, 128X128 and 256X256 meshes on 8 and 16 processors. This is a approximated behavior 

we can expect. Because the original application does not support the adaptive mesh behavior, we 

calculated the sped up with framework ported application run on single processor. 
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Figure 38: Error rate of the application on different mesh sizes 
 

Application calculates various properties such as pressure, density etc. of very large collection of 

points in space inside the polytrope. The application can be utilized to find properties and 

behavior of strange mass/radius combinations.   

 

We experiment the adaptive mesh of size 16 X16 on different processor, and at some instances 

recorded load on each processor.  Average of different instances resulted in Table 9 for 

normalized load metric. 

 

Table 9: Normalized load metric and number of processors 
 

Number of Processors 1 2 4 8 

Normalized Load Metric 1 0.85 1.3 1.6 
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Figure 39: Normalized load metric on different processors 
 

We explored the overhead introduced by the framework. We can recognize four main parts of the 

framework in terms of functionalities: initialization, computation, communication and load 

balancing. Figure 36 shows the percentage of time taken from each part when 128X128 mesh is 

employed on 4 processors. As Figure 40 dipicts considerable amount of time is consumed for 

computation. 

Table 10:Time taken for different execution units 

Execution Unit Name Execution Time (s) 

Initialization 7.66 

Computation 82.06 

Communication 5.44 

Load balancing 5.45 
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Figure 40: Percentage time taken for different execution unit on 128X128 mesh 
 

We compared the performance of framework when above application is ported, with PETSc [30] 

when the same application is ported. Figure 41 shows the execution time achieved. 

 

Figure 41: 64x64 mesh execution time comparison with PETSc and framework 

 
6.2 Case Study: Wave Propagation in Media 

 

This is a three dimensional mesh implementation by CLAW [37] to analyze the wave propagation 

behavior in media.  
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We conducted experiments porting their application on 32x32x32 mesh and 64x64x64 mesh. 

Experiment setup was as follows. Four equations were considered in hyperbolic system and two 

waves are assumed in each Reimann  solutions. To run the experiments we used a system with 

Silicon Graphics Origin- 2000 computer with 24 CPUs as described at the beginning of the 

section 6. 

 

Figure 42 and Figure 43 shows the speedup achieved on respective mesh sizes when AMR is not 

enabled. 

 

Figure 42: Speedup vs. processors on 32x32x32 mesh 
 

 

Figure 43: Speedup vs. processors on 64x64x64 mesh 
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Following experiments were carried out with AMR behavior enabled on both implementations: 

CLAWPACK and our framework. Figure 44 and Figure 45 shows the achieved speed up porting 

to the framework. 

 

 

Figure 44: Speedup vs. processors on 32x32x32 mesh with adaptive refinement 
 
 

 

Figure 45: Speedup vs. processors on 64x64x64 mesh with adaptive refinement 
 

We have run a toy application on framework for different mesh sizes and plot the behaviour of the 

framework in Figure 46 . We ran the framework on four processors. Toy application does no 



51 

computation but initialization of grid structure, initialization of computation data, filling shadow 

nodes list and setting up communication bufferes 

 

 

Figure 46: Overhead introduced from the framework 
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7. CONCLUSION AND FUTURE WORK 

 

The methodology presented in this thesis provides a strategy for parallelization of adaptive mesh 

structured applications. We have presented efficient way of keeping data related to the mesh 

application, dynamic algorithms for grid expansion, contraction and load balancing. It is relatively 

easy transition to an application developer from sequential application to MPI parallel application, 

being just few inputs required by the framework. We demonstrated the performance of our 

framework with 2 dimensional and 3 dimensional applications: an application solving Partial 

Differential Equation with Euler and an application for acoustic waveforms. Our load balancing 

algorithm also demonstrates good performance in balancing the load. We believe with very little 

changes, we can improve the performance of our framework further. Future work may include 

making the framework enable to plug-in third party load balancing algorithms, and mapping the 

processor architecture to mesh architecture. Also we require an overlap of computation and 

communication phase so that we can further reduce the overhead. At the same time we are 

exploring the possibility of integrating our previous work iC2mpi[18] so that the framework 

should be able to port graph structured application to the framework opening huge domain of 

programs to get the benefit of the platform. 
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APPENDIX A CLASS DIAGRAM OF THE FRAMEWORK 
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APPENDIX B DAPTIVE MESH FRAMEWORK CODE 

This file includes the definition used in the framework. 

Define.h  

#include <iostream> 

#define MAX_NEIGHBORS 4 

#define SHADOWS_FOR_PROCS 4 

#define CHILD_NODES_WIDTH 2 

#define MAX_SIZE_FOR_RECVBUFFER 6 

#define NAME_LENGTH 20 

#define LOAD_LIMIT 4 

This file includes the class definition of NodeInfo class. This class holds the node information of 

the application node. 

 

Nodeinfo.h 

#ifndef NODE_INFO_H 

#define NODE_INFO_H 

 

#include <iostream> 

#include "define.h" 

#include <vector> 

#include "extendedHash.h" 

#include "node.h" 

#include <map> 
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#include <set> 

 

using namespace std; 

 

/* Node information common for every application*/ 

class NodeInfo 

{ 

private: 

 int owingProc; 

 int localId; 

 int level; 

 vector<string> neighboringNodes; 

  

 

public: 

 string id; 

 set<int> shadowForProcs; 

 

 NodeInfo(string globalId,int localId,int procID); 

 ~NodeInfo(); 

 void setNeighbors(NodeInfo& node,int meshLength = 2);  

 void setShadowNodes(map<string,int> nodsProcMap); 

 void setLevel(int parentLevel); 
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 void splitNode(int meshLength, vector<NodeInfo>& nodeList,map<string,int> 

nodesProcMap, ExtendedHash& hashMap); 

}; 

 

#endif 

 

This file includes the implementation of NodeInfo class 

 

nodeInfo.cpp 

#include <iostream> 

#include <string> 

#include "nodeInfo.h" 

#include <map> 

#include <sstream> 

 

using namespace std; 

 

NodeInfo::NodeInfo(string globalId,int localId,int procID) 

{ 

 this->owingProc = procID; 

 this->id = globalId; 

 this->localId = localId; 

 this->level =0; 
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} 

 

NodeInfo::~NodeInfo() 

{ 

} 

 

void NodeInfo::setLevel(int parentLevel) 

{ 

 level = parentLevel++; 

} 

 

void NodeInfo::splitNode(int meshLength,vector<NodeInfo> & nodeList, map<string,int> 

nodesProcMap,ExtendedHash& hashTable) 

{ 

 vector <NodeInfo>::iterator Iter; 

 int position=0; 

 DataNode* dataNode = hashTable.getElement(this->id); 

  

 //iterate to find the location of the parent nodeInfo 

 for ( Iter = nodeList.begin( ) ; Iter != nodeList.end( ) ; Iter++ ) 

 { 

  if((*Iter).id == this->id) 

  { 
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   nodeList.erase(Iter); 

   break; 

  } 

  position++; 

 } 

 

 // Create new 4 nodes 

 for(int j=0; j<MAX_NEIGHBORS; j++) 

 { 

  char* str; 

  string globalId = id+","+itoa(j,str,10); 

  NodeInfo node = NodeInfo(globalId,j,this->owingProc); 

  node.setLevel(this->level); 

  node.setNeighbors(node,meshLength); 

  nodesProcMap[globalId] = this->owingProc; 

  DataNode childNode; 

  childNode.createClone(*dataNode , childNode); 

  hashTable.insertElement(node.id,&childNode); 

  // consider the order of adding the nodes to the vector 

  nodeList.insert(nodeList.begin()+position,node); 

  position++; 

 } 

 position - 3; 
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 for(Iter = nodeList.begin()+position; Iter< nodeList.begin()+4; Iter++) 

 { 

  (*Iter).setShadowNodes(nodesProcMap); 

   

 } 

 hashTable.deleteElement(this->id); 

 

  

} 

 

void NodeInfo::setNeighbors(NodeInfo& node, int meshLength) 

{ 

 int localid; 

  

 if(node.level == 0) 

 { 

  localid = atoi(this->id.c_str());  

  if((localId-meshLength) >0) 

  { 

   stringstream out; 

   localid =localid-meshLength; 

   out<<localid; 

   this->neighboringNodes.push_back(out.str()); 
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  } 

  else 

   this->neighboringNodes.push_back(""); 

 

  if(((localId+1)%meshLength )>0) 

  { stringstream out; 

   out<<localid+1; 

   this->neighboringNodes.push_back(out.str()); 

  } 

  else 

   this->neighboringNodes.push_back(""); 

 

  if(((localId-1)%meshLength )==0) 

  {  

   stringstream out; 

   localid =localid-1; 

   out<<localid;   

   this->neighboringNodes.push_back(out.str()); 

  } 

  else 

   this->neighboringNodes.push_back(""); 

 

  if((localId+meshLength)<meshLength*meshLength) 
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  { 

   stringstream out; 

   localid = localid+meshLength; 

   out<<localid; 

   this->neighboringNodes.push_back(out.str()); 

  } 

  else 

   this->neighboringNodes.push_back(""); 

 } 

 else 

 { 

  localid = node.localId; 

  switch (localId) 

  { 

  case 0: 

   { 

    stringstream out1, out2; 

    node.neighboringNodes.push_back(this-

>neighboringNodes[0]); 

    out1<<localid +1; 

    node.neighboringNodes.push_back(out1.str()); 

    out2<<localId+ CHILD_NODES_WIDTH; 

    node.neighboringNodes.push_back(out2.str()); 
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    node.neighboringNodes.push_back(this-

>neighboringNodes[3]); 

    break; 

   } 

  case 1: 

   { 

    stringstream out1, out2; 

    node.neighboringNodes.push_back(this-

>neighboringNodes[0]); 

    node.neighboringNodes.push_back(this-

>neighboringNodes[1]); 

    out1<<localId +CHILD_NODES_WIDTH; 

    node.neighboringNodes.push_back(out1.str()); 

    out2<<localId -1; 

    node.neighboringNodes.push_back(out2.str()); 

    break; 

   } 

  case 2: 

   { 

    stringstream out1, out2; 

    out1<<localId -CHILD_NODES_WIDTH; 

    node.neighboringNodes.push_back(out1.str()); 

    out2<<localId +1; 
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    node.neighboringNodes.push_back(out2.str()); 

    node.neighboringNodes.push_back(this-

>neighboringNodes[2]); 

    node.neighboringNodes.push_back(this-

>neighboringNodes[3]); 

    break; 

   } 

  case 3: 

   { 

    stringstream out1, out2; 

    out1<<localId -CHILD_NODES_WIDTH; 

    node.neighboringNodes.push_back(out1.str()); 

    node.neighboringNodes.push_back(this-

>neighboringNodes[1]); 

    node.neighboringNodes.push_back(this-

>neighboringNodes[2]); 

    out2<<localId -1; 

    node.neighboringNodes.push_back(out2.str()); 

    break; 

 

   } 

  } 

 } 
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} 

 

void NodeInfo::setShadowNodes(map<string, int> nodesProcMap) 

{ 

 

 for(int i=0; i<this->neighboringNodes.size(); i++) 

 {  

   

  if(nodesProcMap[this->neighboringNodes[i]]!=this->owingProc) 

  { 

   this->shadowForProcs.insert(nodesProcMap[this-

>neighboringNodes[i]]); 

  } 

 } 

} 

This class defines the application node data structure. User should supply this class and its 

implementation. 

 

Node.h 

 

#ifndef NODE_H 

#define NODE_H 
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#include <iostream> 

#include "define.h" 

#include <vector> 

 

 

using namespace std; 

 

/* User application defined data node class */ 

class DataNode 

{ 

private: 

 int id; 

 int data; 

 

public: 

 DataNode(); 

 ~DataNode(); 

 DataNode* createClone(DataNode& dataNode,  DataNode & cloneNode); 

}; 

 

 

class BuffNode 

{ 
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public: 

 char nodeId[NAME_LENGTH]; 

 DataNode dataNode; 

 

 BuffNode(); 

 ~BuffNode(); 

}; 

 

#endif 

This file is the implementation of the DataNode class 

 

dataNode.cpp 

 

#include <iostream> 

#include "node.h" 

 

 

DataNode::DataNode() 

{ 

} 

 

DataNode::~DataNode() 

{ 
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} 

 

DataNode* DataNode::createClone(DataNode & dataNode, DataNode & cloneNode) 

{ 

 cloneNode.id = dataNode.id; 

 cloneNode.data = dataNode.data; 

 return &cloneNode; 

} 

 

BuffNode::BuffNode() 

{ 

 sprintf(nodeId,""); 

} 

 

BuffNode::~BuffNode() 

{ 

} 

Extended hash is defined in this file. 

extendedHash.h 

 

#ifndef EXTENDEDHASH_H 

#define EXTENDEDHASH_H 
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#include <iostream> 

#include <map> 

#include "node.h" 

#include <string> 

 

 

using namespace std; 

 

 

class ExtendedHash 

{ 

private: 

 int depth; 

 map<string, DataNode*> hashMap; 

 int getKey(char* key); 

 

public: 

 ExtendedHash(); 

 ~ExtendedHash(); 

 DataNode * getElement(string key); 

 void deleteElement(string key); 

 void insertElement(string key,DataNode* dataNode); 

}; 
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#endif 

 

 

 

Extended hash implementation is done in this file 

 

extendedHash.cpp 

#include <iostream> 
#include "extendedHash.h" 
 
 
using namespace std; 
 
ExtendedHash::ExtendedHash() 
{ 
} 
 
ExtendedHash::~ExtendedHash() 
{ 
 
} 
 
DataNode * ExtendedHash::getElement(string key) 
{ 
 return hashMap[key]; 
} 
void ExtendedHash::deleteElement(string key) 
{ 
 delete(hashMap[key]); 
 
} 
 
void ExtendedHash::insertElement(string key,DataNode* node) 
{ 
 hashMap[key]=node; 
} 
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int ExtendedHash::getKey(char* key) 
{ 
 ///*int first,second,third; 
 // 
 //first = atoi(strtok(key,",")); 
 //second = atoi(strtok(NULL,",")); 
 //t*/hird = atoi(strtok(NULL,",")); 
  
 return 0; 
} 
 

Initial file handling is done in FileIO class and it is defined in following file. 

fileIo.h 

#ifndef FILEIO_H 

#define FILEIO_H 

 

#include <iostream> 

#include <fstream> 

#include <string> 

#include <vector> 

 

using namespace std;  

 

class FileIO 

{ 

public: 

 FileIO(); 
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 ~FileIO(); 

 vector<string> getOutput(const char* fileName, int size); 

}; 

#endif 

 

Implementation of the FileIO is done here. 

 

fileIO.cpp 

 

#include <iostream> 

#include <string> 

#include "fileIO.h" 

 

using namespace std;  

 

FileIO::FileIO() 

{ 

} 

 

FileIO::~FileIO() 

{ 

} 

vector<string> FileIO::getOutput(const char* fileName, int size) 
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{ 

 string line; 

 int i = 0; 

 vector<string> strVect; 

 char** stringArray; 

 ifstream file(fileName); 

 if(!file) 

 { 

  cerr << "Unable to open file "<< fileName <<endl; 

  exit(1); 

 } 

  if(file.is_open()) 

 { 

  cout<<endl<<"printing the text file"<<endl; 

  while(!file.eof()) 

  { 

   getline(file,line); 

   strVect.push_back(line); 

   cout<<strVect[i]<<endl; 

   i++; 

  } 

  file.close(); 

 } 



77 

 return strVect; 

} 

 

Graph handling is done in following file. 

Graph.h 

 

#ifndef GRAPH_H 

#define GRAPH_H 

 

#include <iostream> 

#include <vector> 

#include <map> 

#include <string> 

 

 

using namespace std; 

 

class Graph 

{ 

 

public: 

 Graph(); 

 ~Graph(); 
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 vector<string> getGraph(const char* fileName, int size); 

 /*how the redistribution take place? */ 

 void nodeProcMap(map<string,int> & procMapping,vector<string> nodeList, int 

noOfprocs); 

 

 

}; 

 

#endif 

Implementation of the Graph is done in following file. 

 

Graph.cpp 

#include <iostream> 

#include <vector> 

#include "graph.h" 

#include "fileIO.h" 

#include <map> 

#include <cmath> 

 

using namespace std; 

 

Graph::Graph() 

{ 
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} 

 

Graph::~Graph() 

{ 

} 

 

vector<string> Graph::getGraph(const char* fileName,int size) 

{ 

 FileIO fileio; 

 int arraysize; 

 arraysize = size*size; 

 vector<string> output; 

 int i=0, j=0 , k=0; 

 vector<string> graphVector; 

 vector< vector<int>> graphArray(size,size); 

 

 for (i =0; i<size; i++) 

 { 

   for( j=0; j<size; j++) 

  { 

   graphArray[i][j] = k; 

   k++; 

  } 
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 } 

 char * str = new char(); 

 output = fileio.getOutput(fileName,arraysize); 

 cout<<"output to graph"<<endl; 

 for(i=0; i< arraysize;i++) 

 { 

  j=atoi(output[i].substr(0,int(output[i].find(","))).c_str()); 

  k=atoi(output[i].substr(int(output[i].find(",")+1)).c_str()); 

  graphVector.push_back(itoa(graphArray[j][k],str,10)); 

 } 

 return graphVector; 

} 

 

void Graph::nodeProcMap(std::map<string,int> &procMapping,vector<string> nodeList, int 

noOfprocs) 

{ 

 double nodeSize; 

 nodeSize = (double)nodeList.size(); 

 int noOfItems =ceil(nodeSize/noOfprocs); 

 int i,j,k; 

 j=0; 

 k=0; 

 for(i=0;i<nodeList.size();i++) 
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 { 

  if(j<noOfItems) 

  { 

   procMapping[nodeList[i]]= k; 

   j++; 

  } 

  else 

  { 

   k++; 

   procMapping[nodeList[i]]= k; 

   j=1; 

  } 

 } 

} 

 

Framework.h 

#ifndef FRAMEWORK_H 

#define FRAMEWORK_H 

 

#include <iostream> 

#include "graph.h" 

#include <vector> 

#include <string> 
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#include "nodeInfo.h" 

#include "extendedHash.h" 

#include "node.h" 

#include "define.h" 

 

using namespace std; 

 

class MPIFramework 

{ 

private: 

 ExtendedHash dataHash; 

 vector<NodeInfo> nodeList; 

 int procID; 

 

public: 

 int numOfProcs; 

 MPIFramework(int size); 

 ~MPIFramework(); 

 void computeOverNodes(void (*simulator_ptr)(NodeInfo* node )); 

 void communicateShadows(int* sendCountArray); 

 void init(int size); 

 int* createShadowCountToSend(int* sendCountArray); 

 void MPIFramework::loadBalance(); 
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}; 

 

#endif 

 

#include <iostream> 

#include "mpiframework.h" 

#include <cmath> 

 

 

using namespace std; 

 

MPIFramework::MPIFramework(int size) 

{ 

 init(size); 

} 

 

MPIFramework::~MPIFramework() 

{ 

} 

 

void MPIFramework::init(int size) 

{ 

 char cmmd[40]; 
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 //string comm; 

 int meshLength; 

   

 this->procID=0; 

 this->numOfProcs =4; 

 meshLength = size; 

 /*MPI_Init(&argc,&argv); 

 MPI_Comm_rank(MPI_COMM_WORLD,&procID); 

 MPI_Comm_size(MPI_COMM_WORLD,&num_procs); 

  

 MPI_Barrier(MPI_COMM_WORLD); 

 time_elapsed = -MPI_Wtime();*/ 

 

 /* Invoking hilbert curve for the initial node orientation of the mesh*/ 

 if (procID == 0 && numOfProcs > 1) 

 { 

  /*sprintf(hilbert_str,"./hilbert %d",size); 

  printf("hilbert str=%s",hilbert_str);*/ 

  sprintf(cmmd,"hilbert.exe %d ",size); 

  int i = system(cmmd); 

 } 

  

 /* Create the list of nodes generated from hilbert's curve*/ 
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 Graph graph; 

 vector<string> graphList; 

 graphList = graph.getGraph("output.txt",size); 

 std::map<string,int> nodeProcMap; 

 graph.nodeProcMap(nodeProcMap,graphList,numOfProcs);  

  

 for(int i =0; i<graphList.size();i++) 

 { 

  if(nodeProcMap[graphList[i]] == procID) 

  { 

   NodeInfo node = NodeInfo(graphList[i],atoi(graphList[i].c_str()),this-

>procID); 

   node.setLevel(0); 

   node.setNeighbors(node,meshLength); 

   node.setShadowNodes(nodeProcMap); 

   this->nodeList.push_back(node); 

  } 

 } 

 

  /* Create the Data node list */ 

 for(int i =0; i< graphList.size(); i++) 

 { 
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  DataNode* dataNode = new DataNode(); 

  dataHash.insertElement(graphList[i],dataNode); 

 } 

} 

 

void MPIFramework::computeOverNodes(void (*simulator_ptr)(NodeInfo* )) 

{ 

 

 vector<NodeInfo>::iterator Iter; 

 for(Iter = this->nodeList.begin(); Iter <nodeList.end(); Iter++) 

 { 

  (*simulator_ptr)(&(*Iter)); 

 } 

} 

 

void MPIFramework::communicateShadows(int* sendCountArray) 

{ 

 BuffNode **recvbuffer_arr,** sendbuffer_arr, buff; 

 int i,j,k =0; 

 int* objCount = new int[numOfProcs]; 

 

 //int blockcounts[2]; 

 //MPI::Datatype buffer_datatype, oldtypes[2]; 
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 //MPI::Aint offsets[2]; 

 //MPI::Status status; 

 //MPI::Request pending; 

 

 //bufcounts[0]=20; 

 //bufcounts[1]=1; 

 

 //offsets[0] = 0; 

 //offsets[1] = (int)&buff.nodeId - (int)&buff; 

 

 //oldtypes[0]=MPI::CHAR; 

 //oldtypes[1]=DataNode; 

 

 // /* Define structured type & commit it...*/ 

 //MPI_Type_struct(2,bufcounts,offsets,oldtypes,&buffer_datatype); 

 //MPI_Type_commit(&buffer_datatype); 

 // 

  

 recvbuffer_arr = new BuffNode*[numOfProcs]; 

 sendbuffer_arr = new BuffNode*[numOfProcs]; 

 /* Allocate memory for recvbuffers...*/ 

 for (i=0;i<this->numOfProcs;i++) 

 { 
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  if (sendCountArray[i]!=0) 

  { 

   recvbuffer_arr[i] = new BuffNode[MAX_SIZE_FOR_RECVBUFFER];  

   sendbuffer_arr[i] = new BuffNode[sendCountArray[i]]; 

  } 

  else 

  { 

   /* get exception*/ 

   recvbuffer_arr[i]=NULL; 

   sendbuffer_arr[i]=NULL; 

  } 

 } 

 

 for(i=0;i<numOfProcs;i++) 

  objCount[i] = 0; 

 

 

 

 set<int>::iterator itr; 

 /* send shadow nodes data*/ 

 for(i=0; i<this->nodeList.size(); i++) 

 { 
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  for(itr= nodeList[i].shadowForProcs.begin(); itr!= 

nodeList[i].shadowForProcs.end(); itr++) 

  { 

   strcpy(sendbuffer_arr[*itr][objCount[*itr]].nodeId,nodeList[i].id.c_str()); 

   sendbuffer_arr[*itr][k].dataNode = *(this-

>dataHash.getElement(nodeList[i].id)); 

   objCount[*itr]++; 

  } 

 } 

 

 // Recv buffers... 

 for (i=0;i<numOfProcs;i++) 

 { 

  /*if (sendCountArray[i]!=0) 

  { 

   MPI::send(); 

  

 MPI::Recv(recvbuffer_arr[i],MAX_SIZE_FOR_RECVBUFFER,buffer_datatype,i,1,com

m,&status); 

  }*/ 

 } 

 /* unpack the buffer array */ 
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 /* delete allocated space*/ 

 for(i=0; i<this->numOfProcs;i++) 

 { 

  delete []recvbuffer_arr[i]; 

 } 

 delete [] recvbuffer_arr; 

 

} 

 

/*x?"True":"False")*/ 

 

 

 

 

int* MPIFramework::createShadowCountToSend(int* sendCountArray) 

{ 

 vector<NodeInfo>::iterator Iter; 

 for(int i=0; i<this->numOfProcs; i++) 

 { 

  sendCountArray[i] = 0; 

  //cout<<sendCountArray[i]; 

 } 

 set<int>::iterator itr; 
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 for(Iter= nodeList.begin(); Iter<nodeList.end(); Iter++) 

 { 

  /* travers each shadow proc to find the no of elements to send*/ 

  for(itr =(*Iter).shadowForProcs.begin(); itr!=(*Iter).shadowForProcs.end(); itr++) 

  { 

   sendCountArray[*itr]++; 

  } 

 } 

 return sendCountArray; 

} 

 

void MPIFramework::loadBalance() 

{ 

/*proc 0 get nodes from each procs.  

put them together and divide equally.  

then bcast boundary to all procs 

each proc will prepare for send and recieve of nodes from neighbors*/ 

 

 int * nodesCount = new int[numOfProcs]; 

 int i,totSize,avgCount,rem,totBefore; 

 bool unbalance = false; 

 

 for(i=0; i<numOfProcs;i++) 
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  nodesCount[i] =0; 

 

 int size = this->nodeList.size(); 

 nodesCount[this->procID] =size; 

 

 //MPI_Bcast(size); 

 /* receive nodesize from each processor*/ 

 //MPI_Recv(); 

 

 for(i=0; i<numOfProcs; i++) 

  totSize +=nodesCount[i]; 

 

 

 avgCount = floor((double)totSize/numOfProcs); 

 rem = totSize - (avgCount * numOfProcs); 

  

 for(i=0; i<numOfProcs; i++) 

 { 

  if(nodesCount[i]-avgCount > LOAD_LIMIT) 

  { 

   unbalance =true; 

   break; 

  } 
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 } 

  

 if(unbalance) 

 { 

  totBefore =0; 

  for(i=0; i<this->procID; i++) 

  { 

   if(rem >0) 

   { 

    if(nodesCount[i] - avgCount > 0) 

    { 

     rem--; 

     totBefore += avgCount + 1; 

    } 

    else 

     totBefore += avgCount; 

   } 

   else 

    totBefore += avgCount; 

  } 

 

   

 } 
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} 

 

 

 

 

Main.cpp 

 

#include <iostream> 

#include "mpiframework.h" 

#include <math.h> 

 

using namespace std; 

 

void SimulatorFunction(NodeInfo *); 

 

int main(int argc, char *argv[]) 

{ 

 int* sendCountArray;  

 int width = -1; 

 double p =0.0; 
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 while (width < 2) {  

  cout<<"Enter the width of mesh in number of nodes."<<endl; 

  cin>>width; 

 

  if (width<0) 

  { 

   // exit(0); 

    return -1; 

  } 

 

  p = (log10((double)width)/log10((double)2));/* Check width is result of 2^m*/ 

  if (p != ((int)p)) {         

   cout<<"Mesh width must be >= 2, and the result of 2^m (m = 

1,2,3,4...)"<<endl; 

   width = -1; 

  } 

 }   

 /*MPI::Init(&argc,&argv); 

 

 MPI_Barrier(MPI_COMM_WORLD); 

 

 time_elapsed = -MPI_Wtime();*/ 
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  MPIFramework framework = MPIFramework(width); 

 sendCountArray = new int[framework.numOfProcs]; 

 for(int i =0 ; i<5; i++) 

 { 

  sendCountArray = framework.createShadowCountToSend(sendCountArray); 

  for(int i=0; i<4; i++){ 

   cout<<sendCountArray[i]; 

  } 

  /* create a class to send and receive shadow nodes and fill them here*/ 

  framework.computeOverNodes(SimulatorFunction); 

  /*framework class know where the shadow nodes coming from*/ 

  framework.communicateShadows(sendCountArray); 

 } 

  

 //MPI::Finalize(); 

 cin.get() ; 

 return 0; 

}; 

 

void SimulatorFunction(NodeInfo* node) 

{ 

 /*do some work here*/ 
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 cout<<" simulator function was called"<<endl; 

} 

 

 

  


	An Adaptive Mesh MPI Framework for Iterative C++ Programs
	Recommended Citation

	Microsoft Word - Silva_karunamuni_200905_master_final.doc

