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ABSTRACT 

Despite decades of research examining the brain’s contributions to the propensity for 

antisocial behavior, this process is still poorly understood, owing in part to the highly 

multivariate relationship between the brain, behavioral phenotypes, and the dynamic 

environmental contexts in which they operate. An important criterion for evaluating the strength 

of a given explanation is the degree to which it makes accurate predictions. Prior research has 

demonstrated that hemodynamic activity related to error-monitoring in the dorsal anterior 

cingulate cortex (dACC) (Aharoni et al., 2013, 2014) improved predictions of rearrest in a 

sample of criminal offenders. Yet, it remains unclear how generalizable these results are and 

whether these effects are task specific.  

https://www.zotero.org/google-docs/?JNNqMX


This dissertation project uses hypothesis-driven approaches to probe the generalizability 

of the previously demonstrated predictive utility of limbic activity for rearrest, as well as 

establish and test novel task-based and resting state measures for the same purpose. The first 

analysis used a large sample (n = 442) of criminal offenders to establish new limbic regions of 

interest in order to increase the predictive accuracy of a model of reoffense risk developed in a 

previously published male (n = 95) inmate sample. The second analysis tested the predictive 

utility of the resting state functional connectivity between these limbic regions and demonstrated 

robust resting state & multimodal models for the prediction of rearrest in a subset of the same 

male (n = 91) inmate sample. The final analysis tested the out-of-sample generalizability of the 

original error-monitoring model tested in Aharoni et al., 2013/2014 in a large sample of male (n 

= 290) and female (n = 248) offenders. This analysis provides modest support for the predictive 

utility of error-monitoring activity in the dACC for predictions of rearrest for felonies in women 

and violent felonies in men, replicating aspects of the previous studies. Overall, these results 

reinforce and extend research on limbic predictors of recurrent, impulsive antisocial behavior. 

Implications for clinical and forensic risk assessment are discussed.  
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1 INTRODUCTION  

1.1 Crime & Risk Assessment 

As a country, the US spends over 250 billion dollars each year incarcerating around 1% 

of its population, only to have over half of the released criminal offenders return to prison within 

a three-year span (Durose, Cooper, & Snyder, 2014; Kaeble & Cowhig, 2016; Vera Institute of 

Justice, 2012). It is in both government and community interests to minimize two types of errors: 

premature release of dangerous offenders and lengthy terms of supervision for non-dangerous 

ones.  

One way to address these interests is better prediction. A criminal justice system that is 

better able to predict who will abscond, reoffend, relapse, or recover would improve behavioral 

outcomes and public safety. The ability to distinguish between high- and low-risk offenders is a 

prerequisite to tailoring interventions to offender’s unique needs—a practice found to decrease 

an offender’s likelihood of reoffense (Latessa, Lovins, & Smith, 2010). But not all forms of risk 

assessment are created equally. Traditionally, one approach to assess an individual’s risk of 

reoffense is through clinical interviews. However, the accuracy of this approach in predicting 

rearrest is little better than chance (Lidz, Mulvey, & Gardner, 1993).  

Alternatively, evidence-based risk assessment has shown promise by utilizing static 

factors such as age, gender, and criminal history, as well as dynamic factors such as substance 

abuse, impulsivity, and social support. Perhaps unsurprisingly, evidence-based risk assessment 

has improved such predictions of reoffense, yet individual assessments still vary drastically in 

their respective accuracies. Indeed, a recent survey of various evidence-based risk assessment 

techniques indicates that the highest accuracies of the most commonly used assessments for 

general recidivism vary from 63% to 74% (Desmarais et al., 2016; Haarsma et al., 2019; Singh et 



2 

al., 2011). Below I provide a brief overview of risk factors of recidivism that will subsequently 

be tested for their predictive utility in the studies that form this dissertation—the offender’s age 

at release, traits related to psychopathy, and impulsivity related neurobiological activity—with a 

primary focus on the neurobiological correlates to impulsive phenotypes.  

1.2 Age of the Offender 

One of the most robustly demonstrated risk factors of recidivism is the offender’s age at 

release (Gendreau et al., 1996). The younger an offender is at the time of their release, the more 

likely they are to be rearrested. More specifically, all else being equal, a 25-year-old offender is 

approximately 25% more likely to be reincarcerated than a 35-year-old offender within 5 years 

of release (Durose et al., 2014; Kiehl et al., 2018). The heightened risk associated with a lower 

age at release only becomes more evident as older age groups are considered. For instance, a 

2017 United State Sentencing Commission report finds that across an eight-year follow-up 

period, 67.6% of offenders aged 21 or lower at time of release were rearrested, compared to a 

mere 13.4% of offenders aged 65 or older (Hunt & Easley, 2017).  

1.3 Psychopathy 

1.3.1 Measuring Psychopathy 

Another common feature of evidence-based risk assessment is the measurement of 

psychopathy—a personality disorder typified by a lack of empathy, flat emotional response, 

impulsivity, and increased inclinations towards antisocial behaviors (Hare, 1996). A diagnosis of 

psychopathy is determined via a semi-structured interview—the most well-validated of which is 

Hare’s Psychopathy Checklist-Revised (henceforth PCL-R; Hare 1991, 2003).  

The PCL-R traditionally consists of 20 items—rated on a 3-point scale (0, 1, 2) by the 

assessor—which comprise four primary facets (i.e., interpersonal traits, affective traits, lifestyle 
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traits, and impulsivity traits) and two secondary factors which this chapter will primarily focus 

on (i.e., Factor 1: interpersonal/affective traits & Factor 2: lifestyle/impulsivity traits) (Hare & 

Neumann, 2009).1 Total scores on the PCL-R can range from 0-40, with a clinical cutoff score of 

30. Strikingly, individuals with scores breaching this threshold are fifteen to twenty-five times 

more prevalent in incarcerated populations compared to general populations, suggesting that 

those with clinical psychopathy are much more likely to commit crimes that land them in prison 

compared to those without psychopathy (Kiehl & Hoffman, 2011). Importantly though, the scale 

is intended to be dimensional rather than taxonic (Hare & Neumann, 2009), and accordingly, the 

most prevalent use of this scale for prediction of antisocial behaviors is dimensional rather than 

dichotomous.  

1.3.2 Psychopathy and Risk Assessment 

As a single dimensional construct, the ability of the PCL-R total score to predict 

recidivism has been well demonstrated in the literature (Anderson, Walsh, & Kosson, 2018; 

Hemphill, Hare, & Wong, 1998; Kennealy, Skeem, Walters, & Camp, 2010; Leistico, Salekin, 

DeCoster, & Rogers, 2008; Olver & Wong, 2014; Serin, 1996; Walsh, 2013; Walters, Wilson, & 

Glover, 2011). Research individually analyzing the factors that make up the PCL-R suggests that 

Factor 1 & Factor 2 have differential relationships with antisocial behaviors. For instance, some 

research suggests that Factor 2 scores and individual items have greater utility in predicting 

general and violent recidivism than Factor 1 scores (Hemphill et al., 1998; Leistico et al., 2008; 

Kennealy et al., 2010; Ojala, Tiihonen, Repo-Tiihonen, Tikkanen, & Virkkunen, 2015; Olver & 

Wong, 2014; Walters et al., 2008: though see Serin, 1996). On the other hand, Factor 1 scores 

 
1
 Additionally, diagnoses of psychopathy in youth are determined via the Psychopathy Checklist - Youth Version 

(henceforth PCL-YV; Forth, Kosson, & Hare, 2003), an assessment that mirrors and approximates all questions, 

facets, and factors of the PCL-R.  
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were found to predict negative correctional attitudes (Sohn et al., 2017). Factor 2, therefore, 

seems to be of greatest relevance when considering recidivism.  

Though psychopathy and its underlying traits have been helpful in aiding risk 

assessments in predicting recidivism, there are reasons to expect limits on the predictive utility of 

personality factors (and demographic or behavioral factors). The most pertinent limitation is that 

these measures are relatively distant proxies for underlying neurobiological mechanisms which 

are more direct proxies to the traits that these measurements attempt to capture, such as 

impulsivity traits.   

1.4 Neurobiology of Impulse Control 

1.4.1 Neural Substrates of Impulsivity, Impulse Control, & Anti-Sociality 

Trait impulsivity is a strong predictor of whether or not an offender will recidivate 

(Harris, Rice, & Quinsey, 1993). This construct, sometimes defined as a persistent lack of 

restraint or consideration of consequences, is measured in a variety of ways, spanning from 

clinical evaluations all the way to neuropsychological measures. Yet, the impulsive phenotype 

ultimately arises from the brain’s inhibitory and cognitive control systems. Below I will focus on 

two brain regions involved in these systems—the anterior cingulate cortex (ACC) and the 

insula—regions that are the primary focus of my subsequent studies.  

The regions of the brain that are implicated in impulsivity and impulse control are largely 

situated within the brain’s limbic system, thought to regulate behavioral and emotional responses 

(Siever, 2008). One of these regions that is commonly implicated as central to impulse control is 

the ACC. This region is known to be associated with response selection, conflict monitoring, 

error-monitoring, and avoidance learning (Holroyd & Coles, 2002; Kiehl, Liddle, & Hopfinger, 

2000; Kosson et al., 2006; Mathalon, Whitfield, & Ford, 2003; Van Veen & Carter, 2002). More 
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specifically, the ACC is thought to play the role of a relay, mediating the monitoring of error 

information about the execution of an action from the inferior frontal cortex and basal ganglia to 

motor areas, which effectively creates a feedback loop able to update action plans (Holroyd & 

Coles, 2002). Thus, this ACC relay then serves as a sort of error-monitoring system for the 

execution of actions. Accordingly, lesioning this region in animal models has been shown to lead 

to disruptions in the ability to regulate learning behavior (Gabriel, Sparenborg, & Kubota, 1989). 

Similarly, in healthy human adults, ACC activity during the commission of errors is predictive of 

a participant’s ability to adjust their behavior in subsequent trials (Kerns et al., 2004), though 

other research suggests the relation of this error-monitoring activity with impulsivity is gender 

specific—that is, error-monitoring activity has been found to negatively correlate with 

impulsivity in men yet is positively correlated with the same trait in women (Liu et al., 2013). 

Finally, damage to a person’s ACC results in traits that commonly undergird the diagnosis of 

“acquired psychopathy”: disinhibition, apathy, and aggression (Devinsky, Morrell, & Vogt, 

1995).      

Alongside the ACC, much impulse control research also implicates the insular cortex. 

Rather than serving as a relay, the insula is thought to play a role in a broad range of social, 

affective, and cognitive tasks, and it seemingly serves to integrate its various inputs into a 

coherent experience of the world (Kurth, Zilles, Fox, Laird, & Eickhoff, 2010). Though its 

functions are broad in the literature, a primary focus that has emerged is its role in what’s 

commonly known as the “salience network”—a network integral to the direction of attentional 

resources to salient events (Menon & Uddin, 2010). Both the insula and the ACC have been 

shown to be functionally coupled to each other, as well as with further downstream motor areas, 

suggesting the neural processes that allow salient events to adjust future behaviors (Holroyd & 
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Coles, 2002). Furthermore, in accordance with the purported roles that these regions play in 

error-monitoring and salience detection, both regions were found to be highly activated during a 

simple error-monitoring task in a large sample of healthy adults (N = 104) (Steele et al., 2014). 

Likewise, in patients with borderline personality disorder—a disorder associated with high 

impulsivity—impulsive decisions made under uncertain circumstances were associated with 

aberrant activation of both the insula and ACC (Mortensen, Evensmoen, Klensmeden, & Håberg, 

2016).  

In addition to task-based measures, emerging research suggests that structural differences 

in functional connectivity between these regions—and more generally, the salience network—

are also associated with corresponding differences in impulsivity. For instance, multiple research 

studies suggest that the volume of and functional connectivity to and from the ACC and insula 

are associated with trait and task impulsivity—including the Barratt Impulsiveness Scale (BIS-

11: Angelides, Gupta, & Vickery, 2017; Hobkirk, Bell, Utevsky, Huettel, & Meade, 2019; Kerr 

et al., 2015; Li et al., 2013; Matsuo et al., 2009; Philippi et al., 2015; Shannon et al., 2011). 

Likewise, increased connections to the ACC have been linked to improved response inhibition in 

an adaptation of the Go/NoGo task—a task designed to capture an individual’s ability to inhibit a 

prepotent response, one type of impulse control (Mennes et al., 2012). These resting state 

connections have also been associated with antisocial behavioral phenotypes intrinsically linked 

to impulsivity, such as reactive aggression (Romero-Martinez et al., 2019). Overall, this research 

suggests that specific (and measurable) differences in the brain’s structural and functional 

organization help to explain individual differences in impulsivity, which may be linked to further 

downstream behavioral—and antisocial—tendencies.  

https://www.ncbi.nlm.nih.gov/pubmed/28402539
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https://www.ncbi.nlm.nih.gov/pubmed/30391836
https://www.ncbi.nlm.nih.gov/pubmed/30391836
https://www.ncbi.nlm.nih.gov/pubmed/30391836
https://www.ncbi.nlm.nih.gov/pubmed/30391836
https://www.ncbi.nlm.nih.gov/pubmed/30391836
https://www.ncbi.nlm.nih.gov/pubmed/30391836
https://www.ncbi.nlm.nih.gov/pubmed/30391836
https://www.ncbi.nlm.nih.gov/pubmed/23486959
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397604/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359496/
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1.4.2 The Use of Neurobiological Markers for Predicting Impulsivity Related 

Outcomes 

Recent research suggests that measurements of brain function can be utilized in 

predictive models in order to more accurately classify particular behavioral outcomes, many of 

which have strong links to impulsivity, in humans. For instance, predictive models including 

functional data from neurobiological markers, have proven useful in classifying whether or not 

individuals will: complete substance abuse treatment (Steele et al., 2014, 2017), relapse back into 

substance abuse (Camchong, Stenger, & Fein, 2012; Janes et al., 2010; Paulus, Tapert, & 

Schuckit, 2005; Sinha & Li, 2007), commit acts of violence (Pardini, Raine, Erickson, & Loeber, 

2014), and even, commit suicide (Just et al., 2017). Likewise, recent research suggests that the 

brain’s resting state functional connectivity can also be used to predict outcomes. For example, 

research by Fede and colleagues (2019) on individuals with Alcohol Use Disorder (AUD) 

demonstrates that the resting state connectivity of an individual’s salience network (alongside 

other functional networks) is predictive of their severity of AUD. Strikingly, in this case, the 

predictive utility offered by resting state connectivity was above and beyond that of task-based 

fMRI measures and other structural measures (i.e., gray and white matter measurements). All of 

these results raise the possibility that measures of brain activity associated with—and potentially 

underlying—impulse control may lend incremental utility (i.e., more accurate classification 

rates) to the prediction of some antisocial behaviors.  

1.4.3 The Use of Neurobiological Markers for Predicting Recidivism 

The question of whether or not functional data from neurobiological markers (e.g., fMRI 

and EEG data) can improve predictive models of antisocial behavior formed a set of peer-

reviewed studies that ultimately provide support for the hypothesis. For instance, the first study 
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in this set, an fMRI study conducted by Aharoni and colleagues (2013), found that error-

monitoring related activity in the ACC (as assessed by false positive responses during a 

Go/NoGo task: a fast-paced inhibitory task which asks the participant to respond to certain “Go” 

stimuli and not respond to other “NoGo” stimuli) predicted later rearrest in a sample of 96 adult 

offenders. More specifically, the investigators found that offenders with relatively low ACC 

activity during error-monitoring were roughly two times as likely to be rearrested as those with 

high activity—while controlling for other known risk factors (see Figure 1.1b for fMRI error-

monitoring contrast and Figure 1.2 for reconstruction of results via median split for visualization 

purposes). These results provide support for the notion that the ACC is integral to error-

monitoring, and, perhaps, subsequent behavioral modulation. Upon further analysis and 

utilization of advanced statistical techniques (i.e., area under the curve, calibration, and 

discrimination), the investigators demonstrated that models including ACC error-monitoring 

activity can yield positive predictive accuracy2 rates exceeding 75% (Aharoni et al., 2014). 

Furthermore, convergent validity of these methods, and the importance of the ACC in predictive 

utility, have subsequently been demonstrated (though see Zijlmans et al., 2021).  

Steele and colleagues (2015) conducted a multimodal analysis of error-monitoring 

activity in the ACC via a combination of electroencephalography (EEG) and fMRI data in a 

subset of the same sample (n = 45). By combining both EEG data and fMRI data, the 

investigators were able to utilize the temporal acuity afforded by the EEG data, alongside the 

spatial acuity afforded by the fMRI data within the same predictive models. Using support vector 

modeling—a type of machine learning technique—the investigators identified and estimated 

 
2
 Positive predictive accuracy is the ability to correctly discriminate between an individual that will reoffend, and 

one that will not, when given one of each. Thus, in this case, the model including ACC activity was able to correctly 

differentiate offender outcomes in randomly drawn pairs over 75% of the time. Excluding ACC activity brought this 

model’s positive predictive accuracy down to 68%. 
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which aspects of the collected data are most predictive of later rearrest. The best performing 

model was a joint fMRI/EEG model that excluded covariates and only included brain measures. 

This analysis combined the P300, an EEG component of the event-related potential (ERP) 

following error-commission, and fMRI data from the ACC corresponding to error-monitoring, 

yielding 83% predictive accuracy in establishing who will be rearrested.  

Alongside the use of task-based neuroimaging data in predicting rearrest, I am aware of 

just one test of the role of resting state measures for the same predictions (Delfin et al., 2019). 

Delfin and colleagues (2019) used single-photon emission computed tomography (SPECT) to 

measure cerebral blood flow within predetermined regions of interest during rest in a sample of 

44 criminal offenders. Utilizing machine learning techniques to inform model selection, the 

researchers found that including parietal resting state cerebral blood flow measurements in their 

models led to increased accuracies of rearrest predictions. 

Predictive models utilizing neurocognitive data have also been successful in categorizing 

behavioral outcomes in other realms relevant to impulsivity and even reoffense. For instance, 

Pardini and colleagues (2014) have demonstrated the utility of neurocognitive models for the 

prediction of future violence. Steele and colleagues (2014, 2017) demonstrate that models 

including ERP data following error-commission and the functional connectivity to the ACC 

during error-monitoring have both yielded over 80% accuracy rates in predicting substance abuse 

treatment completion. Altogether, these various research projects lend support to the value of 

neurocognitive data’s inclusion in risk prediction models and also the hypothesis that areas of the 

brain related to error-monitoring and inhibitory control can serve as candidate neuromarkers for 

the prediction of antisocial behavior. 

https://www.zotero.org/google-docs/?PBYjsp
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Figure 1.1 Regions of Interest and Offender Sample Error-Monitoring Activity 

(A) A priori seed region (red) for BOLD response to commission errors vs. correct hits in 

anterior cingulate from a GNG task with an independent sample of 102 healthy adult non-

offenders; peak voxel x = −3, y = 24, z = 33; radius = 14 mm sphere; t(94) = 13.38, p < 0.0001, 

FWE (Steele et al., 2014). A priori control region (blue) embodying anterior portion of the 

medial prefrontal cortex (peak voxel: 0, 51, −6; radius = 14 mm sphere). (B) Mean 

hemodynamic response change in offender sample (n = 96) during commission errors vs. correct 

hits from sagittal (Upper Left), coronal (Right), and axial (Lower Left) orientations. Peak 

activation located at x = 3, y = 24, z = 33 within the ACC ROI (p < 0.00001, FWE) (Aharoni et 

al., 2013). 

 

 

Figure 1.2 Rearrest Survival Functions by High & Low Error-Monitoring Activity 

Cox survival function showing proportional rearrest survival rates of high (solid green) vs. low 

(dashed red) ACC response groups for any crime over a 4-year period. Results of this median 

split analysis were equivalent to that of the parametric model: bootstrapped B = 0.96; SE = 0.40; 

p < 0.01; 95% CI, 0.29–1.84. The mean survival times to rearrest for the low and high ACC 

activity groups were 25.27 (2.80) mo. and 32.42 (2.73) mo., respectively. The overall 

probabilities of rearrest were 60% for the low ACC group and 46% for the high ACC group 

(Aharoni et al., 2013). 
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1.5 Limitations in the Literature 

The current scientific research on neuroprediction of antisocial behavior leaves several 

opportunities for further exploration. There have only been two within-sample attempts at 

replication for the observed neuroprediction of recidivism (Delfin et al., 2019; Zijlmans et al., 

2021). The gold-standard for predictive modeling is a test of out-of-sample utility—indicative of 

both the sample used to dictate the parameters of interest (the Norm sample), as well as the 

sample used to validate those parameters (the Validation sample)—because models utilizing in-

sample prediction often understate model error when reporting goodness of fit (Poldrack et al., 

2018). More descriptively, models will almost certainly reflect the data set used in their 

development more than any other novel or external data set. Thus far, none of the previous 

research satisfies this gold-standard; therefore, it is not possible to discern the predictive utility 

that these models may have in practice were they to be used in a random sample population. 

Accordingly, both legal and scientific scholars have called for replication and out-of-sample 

validation of this research (e.g., Meixner, 2015; Poldrack et al., 2018).  

Another challenge in this line of research is in obtaining large forensic samples needed to 

study subtler predictors of behavior, such as resting state neurobiological data. Because of their 

low signal-to-noise ratio, rsFC measures may have real effects on antisocial behavior that are 

difficult to detect. Larger samples, though, could help clarify the distinct neurobiological 

mechanisms that give rise to differences in antisocial outcomes and further increase our 

understanding, interpretation, and potentially even the accuracy, of predictive models. 

Improved risk assessment could help clinical and legal practitioners develop intervention 

strategies that serve individual risk-needs (e.g., early parole for eligible candidates, treatment 

diversion, supervision level proportionate to risk). Given the complexity of human behavior, the 
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most effective approaches are likely to be those that consider a variety of factors, including 

sociological, psychological, and biological ones.   

1.6 Dissertation Aims 

Importantly, no previous research has surveyed how the brain’s functional organization at 

a resting state may be associated with error-monitoring nor rearrest within forensic samples, 

attempted to validate the neurobiological premises underlying the error-monitoring model using 

an independent sample of criminal offenders, nor tested the out-of-sample utility of this model. 

Thus, although the neural activity underlying error-monitoring has yielded predictive utility to 

recidivism risk-models as a proof of concept, it is unclear whether such models will demonstrate 

utility in out-of-sample predictions, as well as whether brain activity at resting state is 

associated with error-monitoring, or even adverse outcomes such as recidivism.  

Currently, a major obstacle in the field is access to an adequate number of criminal 

offender scans, information regarding rearrest, and the time-lag between scans and rearrest; yet 

this proposal overcomes this obstacle via unique analyses of previously collected data (n = 538) 

and newly collected behavioral outcomes (n = 461). 

This dissertation research addresses current gaps in the literature by probing the 

neurophysiological properties associated with the monitoring of errors in criminal offenders 

(Chapters 2 & 4), analyzing the, as of yet, unexplored relationships of these properties to the 

brain at rest and, consequently, recidivism (Chapters 2 & 3), and serving as the first research 

project in the literature to test the external validity of the error-monitoring model of recidivism 

(Chapter 4).  

The specific aims of this dissertation are to (1) develop novel error-monitoring regions of 

interest (ROIs) from a large sample of offenders (n = 442), (2) analyze the resting state 
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functional connectivity (rsFC) between these regions of interest, (3) test the utility of the newly 

established ROIs and rsFC metrics in predicting recidivism in a previously published 

independent sample (n = 95; Aharoni et al., 2013; Aharoni et al., 2014; Steele et al., 2015), and 

(4) provide an out-of-sample analysis of the original error-monitoring model (Aharoni et al., 

2013; Aharoni et al., 2014) in a large sample of female (n = 248) and male (n = 290) offenders. 

Broadly, the goal of these specific aims is to improve the basic understanding of the relationships 

between the various neurobiological components underlying error-monitoring and impulsivity. 

These empirical analyses will further hone future hypotheses within the neuroprediction of 

recidivism literature as well as the risk assessment literature more generally, and, if shown to 

demonstrate utility, will lead to refinements of current models, approaches, and potentially 

inform future research concerning therapeutic interventions. 
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2.1 Abstract 

Despite decades of research examining the brain’s contributions to the propensity for 

antisocial behavior, this process is still poorly understood, owing in part to the highly 

multivariate relationship between the brain, behavioral phenotypes, and the dynamic 

environmental contexts in which they operate. An important criterion for evaluating the strength 

of a given explanation is the degree to which it makes accurate predictions. Using a novel 

hemodynamic model developed from the largest functional imaging reference sample (n = 442) 

of an inmate population in this body of literature, we show that limbic activity during an error-

monitoring task increased the predictive accuracy of a model of reoffense risk developed in a 

previously published (n = 95) inmate sample. Our pattern of results replicates previous research 

on the dorsal anterior cingulate cortex and is reproduced in another limbic region, the insular 

cortex. These results validate and extend research on limbic predictors of recurrent, impulsive 

antisocial behavior. Implications for clinical and forensic risk assessment are discussed.  

2.2 Introduction 

Understanding the factors that contribute to recurrent antisocial behavior is consequential 

for clinical and criminal justice procedure as well as public safety and wellbeing. More than one 

in 50 Americans are under some form of correctional supervision (Kaeble & Cowhig, 2018), 

contributing to the estimated $3.2 trillion annual societal cost of crime (Anderson, 2012). Recent 

policy developments such as the First Step Act (2018) aim to reduce the U.S.’s reliance on 

incarceration using evidence-based risk assessment technology. Evidence-based risk assessments 

generate quantitative predictions about individual risk outcomes by comparing their risk factors 

to those of a large normative sample. Research has shown that the ability to match individuals to 

risk-appropriate programs leads to a significant decrease in reoffending (Latessa, Lovins, & 
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Smith, 2010). Thus, an increased understanding of the factors driving persistent antisocial 

behavior is an important step in the responsible application of risk assessment technology. 

There are many contributing factors to repeated antisocial behavior—including 

social/environmental factors such as socioeconomic status (Barkan & Rocque, 2018; Piotrowska, 

Stride, Croft, & Rowe, 2015), and psychological factors such as drug addiction (Douglas & 

Reeves, 2010; Pierce et al., 2017; Yang, Wong, & Coid, 2010) and impulsivity (Harris, Rice, & 

Quinsey, 1993; Reynolds, Basso, Miller, Whiteside, & Combs, 2019; Thomson et al., 2019). 

Impulsivity is commonly defined as a persistent lack of restraint or consideration of 

consequences, and its biological basis has been the subject of increasing investigation 

(Chamberlain & Sahakian, 2007; Miglin, Bounoua, Goodling, Sheehan, Spielberg, & Sadeh, 

2019; Zheng, Chen, Wang, & Zhou, 2019).  

Current research suggests the regions of the brain most implicated in impulsivity and 

impulse control are largely situated within the brain’s limbic system, thought to regulate 

behavioral and emotional response (Siever, 2008). One of these regions is the dorsal anterior 

cingulate cortex (dACC), which is known to be associated with response selection, error-

monitoring, and avoidance learning (Holroyd & Coles, 2002; Kiehl, Liddle, & Hopfinger, 2000; 

Kosson et al., 2006; Mathalon, Whitfield, & Ford, 2003; Van Veen & Carter, 2002). When an 

action plan is executed, such as the push of a finger or the pull of a trigger, the dACC helps to 

monitor goal fulfillment by relaying information between the inferior frontal cortex and basal 

ganglia—serving as an error-monitoring system (Holroyd & Coles, 2002). Accordingly, in 

healthy human adults, dACC activity during the commission of errors is predictive of a 

participant’s ability to adjust their behavior in subsequent trials (Kerns et al., 2004; Kiehl, 

Liddle, & Hopfinger, 2002). Impairment in the dACC has been associated with an increased risk 
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of violent behavior (Cecil et al., 2008; Liu et al., 2011) and traits that commonly undergird the 

diagnosis of “acquired psychopathy”: disinhibition, apathy, and aggression (Devinsky, Morrell, 

& Vogt, 1995). Similarly, disengagement of the dACC has been associated with lower response 

conflict during dishonest decision-making in incarcerated individuals with psychopathy—a 

disorder marked by a disruption of moral behavior, impulsivity, and emotional detachment (Abe, 

Greene, and Kiehl, 2018; Hare & Neumann, 2008).  

Despite extant research investigating neurobiological factors contributing to antisocial 

behavior, this process is still poorly understood, owing in part to the highly multivariate 

relationship between the brain, behavioral phenotypes, and the dynamic environmental contexts 

in which they operate. An important criterion for evaluating the strength of a given explanation is 

the extent to which it makes accurate predictions. In this vein, recent research suggests that 

measurements of brain function can improve statistical predictions of impulse-related outcomes 

in humans. For instance, predictive models including functional brain data have demonstrated 

utility in classifying whether or not individuals will: complete substance abuse treatment (Steele 

et al., 2014, Fink et al., 2016), relapse back into substance abuse (Camchong, Stenger, & Fein, 

2012; Janes et al., 2010; Paulus, Tapert, & Schuckit, 2005; Sinha & Li, 2007), and commit acts 

of violence (Pardini, Raine, Erickson, & Loeber, 2014). All of these results raise the question of 

whether measures of brain activity associated with impulse control may increase classification 

accuracy for statistical predictions of some antisocial behaviors.  

Emerging cognitive neuroscientific research informs questions like this one by examining 

whether models that include functional brain measures can outperform those that contain only 

conventional psychological and sociological information (Aharoni et al., 2013; Aharoni et al., 

2014; Delfin et al., 2019; Steele et al., 2015). For example, longitudinal research with criminal 
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offenders has shown greater classification accuracy in the prediction of recidivism when a neural 

signature of error-monitoring and impulse control is included in the risk model (Aharoni et al., 

2013; Aharoni et al., 2014; Steele et al., 2015; Zijlmans et al., 2021). Even so, further validation 

is needed both to demonstrate the robustness of the predictive effects and to understand the 

causal mechanisms that best explain them, in order to evaluate whether functional brain metrics 

capture any information that might be useful to researchers, policy makers, or treatment 

providers.  

First, owing in part to the longitudinal nature of the research question, no attempts have 

yet been made to replicate the original studies, nor have there been attempts to derive new 

models from new hemodynamic reference samples. Though the hemodynamic reference sample 

(N = 102) used in Aharoni et al. (2013), Aharoni et al. (2014), and Steele et al. (2015) is large by 

traditional neuroimaging standards, it is modest by risk assessment standards. Likewise, the 

hemodynamic reference sample for previous neuroprediction studies was selected from the 

general (non-offender) population, limiting generalizability to the population of interest. General 

and offender populations may differ in meaningful ways, as suggested by previous research 

(Ermer, Cope, Nyalakanti, Calhoun, & Kiehl, 2012). A critical test would be to attempt to 

replicate these predictive effects by using a larger hemodynamic reference sample consisting of 

criminal offenders—thereby improving the power and generalizability of the hemodynamic 

model.  

Second, the early work on this topic focused on the dACC because this region had been 

closely implicated in impulse control and error-monitoring, but antisocial behavior represents a 

heterogeneous category that is undoubtedly shaped by a variety of unique and interacting brain 

processes. One likely contributor is the insular cortex—a region thought to play a role in a broad 
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range of social, affective, and cognitive tasks, and integrating its various inputs into a coherent 

experience of the world (Kurth, Zilles, Fox, Laird, & Eickhoff, 2010). Though the insula’s 

functions are broad in the literature, a primary focus that has emerged is its role in the “salience 

network”—a network underlying how people allocate attentional resources to salient events, 

such as the commission of errors (Menon & Uddin, 2010). Indeed, the insulae were found to be 

highly activated during a simple “Go/No-Go” error-monitoring task in a large sample of healthy 

adults (N = 104) (Steele et al., 2014). Problems within the salience network reduce the likelihood 

of detecting errors and, in turn, increase the likelihood of making them (Harsay, Spaan, Wijnen, 

& Ridderinkhof, 2012). Furthermore, in patients with borderline personality disorder—a disorder 

associated with high impulsivity—impulsive decisions made under uncertain circumstances were 

associated with aberrant activation of the insula (Mortensen, Evensmoen, Klensmeden, & 

Håberg, 2016). Thus, existing evidence of the insula’s role in impulse control and error-

monitoring lends support to the hypothesis that, with relevant task-based activity, the insula may 

provide incremental predictive utility to risk models for antisocial behavior. 

This project provides a validation and extension of Aharoni and colleagues’ (2014) error-

monitoring model for the prediction of recidivism, which includes an error-monitoring related 

brain measure, and the following covariates: Hare’s revised Psychopathy Checklist (PCL-R) 

Factor 1, Factor 2, the interaction of Factor 1 and 2, and the offender’s release age (Hare & 

Neumann, 2008). To accomplish this, we constructed two new neurobiological models using the 

largest hemodynamic reference sample (n = 442) of an inmate population in this body of 

literature, and tested their predictive utility in a separate, previously studied Validation sample (n 

= 95) (see Aharoni et al., 2013; Aharoni et al., 2014; Steele et al., 2015). Our ROIs—coordinates 

determined from the hemodynamic reference sample—were the dACC and L. Insula. Our task 
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was a classic Go/NoGo task, meant to test a participant’s ability to inhibit prepotent motor 

responses, and our contrast was commission errors versus correct hits. Our predictions were that 

error-related activity for commission errors relative to correct hits in the dACC and Insula will 1) 

be associated with increased time to non-violent rearrest in the Validation sample, and 2) will 

lend incremental utility to statistical models predicting individual rearrest relative to models 

excluding these factors.  

2.3 Results 

2.3.1 Identifying Anatomical Regions of Interest  

Following a first level analysis contrasting commission errors versus correct hits in the 

hemodynamic reference sample (see Methods), a group level analysis utilizing a conservative 

correction (t > 16.0) identified 15 areas of activation (Figure 2.1a and Table 2.2).  

Within the frontal lobe, increased activation was found for commission errors in the right 

dACC (BA32), ventral ACC (BA 24), superior and frontal gyri (BA 8 & 10), and precentral 

gyrus (BA 6), all relative to a smaller positive response for correct hits. A similar pattern was 

observed for the bilateral insulae (BA13) and right superior temporal gyrus (BA 22) in the 

temporal lobe, and the right inferior parietal lobule (BA 40), left angular gyrus (BA 39), and the 

left postcentral gyrus (BA 1) in the parietal lobe. Likewise, engagement of the midbrain and 

occipital areas such as the cuneus (BA 7) were observed.  

Consistent with expectations, the two strongest activations for commission errors versus 

correct hits were in the right dACC (BA 32; x = 3, y = 29, z = 28) and bilateral insulae (BA 13; x 

= -36, y = 14, z = -11 and x = 39, y = 14, z = -8) (see Figure 2.1b). These dACC and (Left) 

Insula peaks formed the basis of separate spherical ROIs defined for analysis of the Validation 

sample (see Figure 2.1b). Though both insulae were active during error-monitoring, the left 
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insula was chosen over the right insula for subsequent analyses because it was found to be 

comparatively more active during the task within the hemodynamic reference sample. For each 

participant in the validation sample, we computed a mean β-coefficient for each ROI, for 

commission errors versus correct hit trials, and entered that parameter as an independent factor in 

our subsequent prediction models.  

 

Figure 2.1 Error-Monitoring Activity in Reference Sample and Regions of Interest.  

A) Mean hemodynamic response change in the hemodynamic reference sample (n = 442) during 

commission errors vs. correct hits from axial view. Peak activations located at x = 3, y = 29, z = 

28 and x = -36, y = 14, z = -11, within the dACC and Left Insula, respectively (threshold: t > 16). 

See Figure 2.3 for a similar second level analysis in the Validation sample. B) Axial view of 

ROIs in the Left Insula (blue) and dACC (red) for bold response during commission errors vs. 

correct hits to be extracted in the Validation sample.  
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2.3.2 Does Error-Monitoring Activity in the dACC or Insula Predict Time to 

Rearrest?  

To test our primary hypothesis (that error-monitoring activity will be associated with time 

to non-violent rearrest), we used cox proportional-hazards regression (in a bootstrapping 

sequence with 9,999 iterations to assess the reliability of the β-coefficients) to test two models 

including previously defined risk factors in the validation sample: 1) PCL-R Factor 1, PCL-R 

Factor 2, their interaction, the offender’s release age, and the dACC’s mean β-values for 

commission error versus correct hit trials, and 2) PCL-R Factor 1, PCL-R Factor 2, their 

interaction, the offender’s release age, and the Insula’s mean β-values for commission error 

versus correct hit trials.3 These models were regressed onto time to rearrest for a non-violent 

crime (see Table 2.1; see Table 2.3 for raw cox proportional-hazards regressions), and 

bootstrapped 9,999 times. A significant overall effect (p < .05) was obtained for each model. As 

expected, age at release and PCL-R Factor 2 were each significantly associated with days to non-

violent rearrest (p = .029 and p = .007, respectively) in the Non-Violent with dACC model. 

dACC activity exhibited a significant association with rearrest above and beyond these other risk 

factors. For every one unit increase in dACC activity, there was a 1.71 decrease in the 

probability of rearrest for a non-violent crime (p = .006). In the Non-Violent with Insula model, 

PCL-R Factor 2 emerged as a significant predictor for days to non-violent recidivism (p = .008). 

Insular activity exhibited a significant association with rearrest above and beyond these other 

risk factors. There was a significant association such that for every one unit increase in Insular 

 
3
 As expected, dACC and L. Insular error-monitoring activity were highly correlated—r(93) = .724, p > .001—and 

thus, not jointly included in the same models.  
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error-monitoring activity, there was a 1.52 decrease in the probability of rearrest for a non-

violent crime (p = .035), controlling for the other risk factors.  

There was an insufficient number of offenders rearrested for violent crimes (n = 9), thus 

no analysis was conducted for violent rearrests (See Table 2.3 and 2.4 for analyses of violent 

crimes and non-violent crimes combined—i.e., “Any Crimes” models).  

Table 2.1 Effect of Individual Predictors on Rearrest 

   Bootstrapped Data   

Model/Predictor B SE (B) B SE (B) P value exp[B] 95% CI for B 

Non-Violent with dACC        

- Age at release -0.061 0.026 -0.061 0.03 0.029* 0.941 -.127 - -.009 

- PCL-R factor 1 score 0.003 0.071 0.003 0.084 0.964 1.003 -.161 - .171 

- PCL-R factor 2 score -3.129 1.067 -3.129 1.308 0.007** 0.044 -6.064 - -.913 

- PCL-R factor interaction 0.316 0.301 0.316 0.373 0.317 1.372 -.216 - 1.244 

- dACC -0.539 0.205 -0.539 0.216 0.006** 0.584 -1.000 - -.153 

Non-Violent with Insula        

- Age at release -0.05 0.025 -0.05 0.029 0.061 0.952 -.117 - -.002 

- PCL-R factor 1 score -0.026 0.07 -0.026 0.084 0.728 0.974 -.200 - .134 

- PCL-R factor 2 score -3.164 1.071 -3.164 1.328  0.008** 0.042 -6.311 - -.989 

- PCL-R factor interaction 0.348 0.299 0.348 0.386 0.289 1.417 -.207 - 1.306 

- Insula -0.419 0.191 -0.419 0.221 0.035* 0.658 -.901 - -.0927 

 
Results of Cox regression analyses examining the predictive effect of the dACC and Insula on rearrest for a non-

violent crime controlling for covariates. In order to normalize the distribution for PCL-R Factor 2 scores, a lg10 

reflection transformation was used. Due to this transformation interpretation of Cox proportional-hazards β-

coefficients and exp[B] are reversed: higher PCL-R Factor 2 scores are associated with a decreased time to rearrest. 

Table reports unstandardized B, bootstrapped B, and relative risk ratio (exp[B]). *p < 0.05, ** p < 0.01, and *** p < 

0.001. 

2.3.3 Does the Inclusion of Neurobiological Error-Monitoring Information Increase 

the Accuracy of Statistical Models in Predicting Recidivism?  

The receiver operating characteristic (ROC) curve—an analysis that indicates a model’s 

true positive and false positive fractions (i.e., sensitivity and 1-specificity)—is a direct way to 

test a model’s accuracy. An area under the curve (AUC) analysis was conducted in the validation 
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sample to discriminate between those rearrested and not rearrested as functions of the Non-

Violent with dACC and Non-Violent with Insula models. Generally, AUC values exceeding .70 

are seen as “good” in terms of ability to discriminate between events (i.e., rearrested vs. not 

rearrested) (Harrell, 2001).  

In order to assess the unique contribution of the dACC and Insula’s error-monitoring 

activity to our model’s predictive accuracies, we fitted both models with and without ROI data at 

a twelve-month time point (see Figures 2.2a & 2.2b; See Figures 2.4a-d for time-dependent (6, 

12, 24, & 36 months) ROC curve and AUC analyses). In Figure 2.2a, the Non-Violent without 

dACC model reports an AUC of .676, and an improved AUC of .715 when including the dACC 

factor. In Figure 2.2b, the Non-Violent without Insula reports an AUC of .676, and an improved 

AUC of .702 when including the Insula factor. Overall, we find that both models incrementally 

benefit from the inclusion of brain-based error-monitoring activity.  

 

Figure 2.2 ROC curves and AUC statistics for predictive models.  
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A) ROC curve and AUC statistics for Non-violent model with and without the dACC. B) ROC 

curve and AUC statistics for Non-violent model with and without the Insula. 

 

2.4 Discussion 

The present project represents a validation and extension of the Aharoni et al. (2014) 

error-monitoring model using an independent hemodynamic reference sample of 442 

incarcerated offenders to establish anatomical ROIs. Our results demonstrate improvement in the 

prediction of later rearrest using an index of functional brain activation in the dACC—a region 

previously implicated in error-monitoring, inhibition, and impulsivity (Bastin et al., 2016; Orr & 

Hester, 2012; Spunt, Liberman, Cohen, & Eisenberger, 2012; Steele et al., 2014). A novel 

predictive association was also observed in the insular cortex. This finding provides convergent 

evidence that the predictive utility of error-monitoring activity is not constrained to a particular 

region of the brain, but rather, within a widespread network. The insula has been commonly 

implicated in salience and error detection, behavioral regulation, bodily self-awareness, and 

individual sense of agency (Bastin et al., 2016; Craig, 2009; Farrer & Frith, 2002; Harsay, Spaan, 

Wijnen, & Ridderinkhof, 2012; Kurth, Zilles, Fox, Laird, & Eickhoff, 2010; Mortensen, 

Evensmoen, Klensmeden, & Håberg, 2016).  

Previous efforts to test neuroprediction models in forensic populations have been limited 

by hemodynamic reference samples that are considered small or modest, and often 

unrepresentative of the forensic population being tested (Aharoni et al., 2013; Aharoni et al., 

2014; Camchong, Stenger, & Fein, 2012; Delfin et al., 2019; Janes et al., 2010; Pardini, Raine, 

Erickson, & Loeber, 2014; Poldrack et al., 2018; Steele et al., 2014; Steele et al., 2015). The 

present study addressed this problem by testing, to our knowledge, the largest functional imaging 

hemodynamic reference sample (n = 442) of an inmate population in this body of literature to 
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date. The use of a large offender hemodynamic reference sample to identify paralimbic 

anatomical regions of interest reduces the probability of false positives and the influence of 

confounds relative to smaller, non-offender samples.  

Our results provide support to the literature suggesting that theoretically-relevant patterns 

of functional brain activity may lend incremental utility to risk assessment models designed to 

predict antisocial outcomes such as rearrest (Aharoni et al., 2013; Aharoni et al., 2014; 

Camchong, Stenger, & Fein, 2012; Delfin et al., 2019; Janes et al., 2010; Pardini, Raine, 

Erickson, & Loeber, 2014; Paulus, Tapert, & Schuckit, 2005; Sinha & Li, 2007; Steele et al., 

2014; Steele et al., 2015; Fink et al., 2016). This pattern of results is also consistent with theories 

positing that paralimbic dysfunction acts as a mediator between cognitive control and antisocial 

behavior (Kiehl, 2006).  

Furthermore, our results validate existing evidence demonstrating the dACC and Insula’s 

role in error-monitoring and inhibition (Bastin et al., 2016; Orr & Hester, 2012; Spunt, 

Liberman, Cohen, & Eisenberger, 2012; Steele et al., 2014). For instance, Bastin and colleagues 

(2016) demonstrate via intracerebral EEG recordings a feed-forward relationship between the 

Insula and dACC during error processing, such that the Insula feeds saliency information during 

error commission to the dACC. Once received by the dACC, this information is then thought to 

modulate future behavior (see Orr & Hester, 2012; Spunt, Liberman, Cohen, & Eisenberger, 

2012). Yet, other research noting the importance of the Insula for conscious consolidation of 

various inputs complicate this view (Kurth, Zilles, Fox, Laird, & Eickhoff, 2010). Thus, more 

work is needed to understand the causal mechanisms leading to the predictive utility within these 

models. For example, it is not clear whether the predictive utility of Insular activity to rearrest is 

indicative solely of its role as an error-monitoring hub feeding forward priors to the dACC for 
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behavioral regulation, or rather reflective of the Insula’s role in downstream behavioral 

regulation and consolidation of signals to a coherent world experience (Bastin et al., 2016; 

Harsay, Spaan, Wijnen, & Ridderinkhof, 2012; Kurth, Zilles, Fox, Laird, & Eickhoff, 2010). 

Future research utilizing the functional connectivity and Granger causality measures between the 

dACC and Insula may help to answer this question.  

Overall, our results support the interpretation that basic hemodynamic measures 

associated with error-monitoring may contain unique information that precipitates and possibly 

contributes to a variety of criminal-type behaviors. Thus, as a statistical matter, the addition of 

neurobiological markers to traditional risk assessment methods might potentially improve overall 

performance.  

2.4.1 Limitations and Future Directions 

Though our results provide statistical support for the predictive utility of the error-

monitoring model for rearrest, we caution against overinterpretation. First, our validation sample 

could potentially have characteristics that do not readily generalize a broader forensic 

population. Second, larger and more diverse validation samples must be utilized in future studies 

in order to increase confidence in the external validity of the error-monitoring model. Third, the 

present project is not intended to suggest that a single brain region can explain the wide variety 

of criminal motivations. Additional research examining the functional interactions between brain 

regions, as well as their associations with distinct crime types, could help to address this gap.  

There are also legal and ethical reasons for caution. Legally, risk assessment is already an 

established part of criminal justice procedure, but the prospect of employing such tools for use 

against the defendant’s best interest is highly contentious (Starr, 2014). It is not clear that such 

uses meet legal standards on due process, self-incrimination, equal protection, or ethical 
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standards of privacy, autonomy, and beneficence. The addition of information on individuals’ 

brain function should be evaluated with equal skepticism. But the consequences of making such 

decisions without the aid of the best evidence-based tools should also be subject to the same 

level of scrutiny (Aharoni, Abdulla, Allen, & Nadelhoffer, in press). At the very least, if the 

classification accuracy of brain-based risk assessment performs as well or better than traditional 

methods, this will obviate the need for clear standards defining what level of accuracy should be 

required to justify different assessment strategies (Aharoni et al., in press). 

There are other forensic uses of risk assessment that don’t seem to violate defendants’ 

rights, such as decisions to grant early parole or to divert to a treatment court. Indeed, accurately 

assessing individual offenders’ risk-needs has been shown to reduce antisocial behavior and 

increase treatment program success (Aos, Miller, & Drake, 2006; Andrews, 2006; MacKenzie, 

2006; Taxman, 2002). For such uses, legal standards for accuracy are likely to be lower than for 

punitive uses. This does not necessarily mean that brain measures should be incorporated into 

such decision protocols. But it does mean that legal authorities need to anticipate how the 

strengths and weaknesses of the next generation of risk assessment tools compare to existing 

tools. 

Aside from using brain-based risk assessment in criminal procedure, it carries great 

potential as a research tool. This is because predictive modeling provides an important way of 

identifying and validating causal relationships between brain and behavior. Understanding these 

mechanisms at the population level can aid in the development of pharmacological treatments 

and behavioral interventions for certain types of clinical conditions—such as the use of brain 

stimulation technology to reduce aggressive criminal intentions and self-reported aggression 

(Molero-Chamizo et al., 2019; Choy, Raine, & Hamilton, 2018). Though the use of brain 
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stimulation meant to reduce antisocial behavior shows encouraging results, as with any 

treatment, these approaches must meet high standards of reliability and validity (Large & 

Neilssen, 2017).  

The present study provides a critical validation and extension of previous research on the 

neuroprediction of rearrest (Aharoni et al., 2013; Aharoni et al., 2014; Steele et al., 2014; Steele 

et al., 2015). Much work remains to be done to discern the most robust and appropriate uses of 

neurobiologically informed risk assessment technology. Follow up research should employ an 

independent validation sample to account for the possibility of data overfitting and other 

limitations raised in this literature (Poldrack et al., 2018). Until then, neuroprediction research 

remains a promising candidate for uncovering the causal mechanisms likely to underlie persistent 

antisocial behavior.    

2.5 Methods 

2.5.1 Participants 

2.5.1.1 Hemodynamic Reference Sample  

Participants were 442 adult offenders (64.9% female)4 ranging in age from 20 to 61 y 

(Mean, 34.6; SD, 8.43). Approximately 10% were left-hand–dominant. Based on National 

Institutes of Health racial and ethnic classification, 78.5% of the sample self-identified as white, 

9.3% as black/African American, 6.6% as American Indian, 1.7% as mixed/OTHER, 55.9% as 

Hispanic, and 2.5% chose not to respond. 

 
4
 As in Aharoni et al. (2013), the hemodynamic reference sample used to establish the anatomical ROIs consisted of 

both men and women, as the location of error-monitoring activity across genders is seen to largely overlap (Liu, 

Zubieta, Hietzeg, 2012).  
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2.5.1.2 Validation Sample 

Participants were 95 adult male offenders ranging in age from 18 to 49 y (Mean, 32.1; 

SD, 7.70). Six of them did not complete the PCL-R assessment and one participant was removed 

from the original sample (Aharoni et al., 2013) due to incomplete task data. Approximately 9% 

were left-hand–dominant. 37.9% of the sample self-identified as white, 9.5% as black/African 

American, 9.5% as American Indian, 29.5% as mixed/OTHER, 44.2% as Hispanic, and 13.7% 

chose not to respond.  

All 537 participants were selected based on their being determined to have minimal or no 

history of traumatic brain injury (as defined by a loss of consciousness for longer than 30 

minutes), no lifetime history of a psychotic disorder, and had an IQ greater than 65 (as estimated 

by the vocabulary and matrix reasoning subscales of the Wechsler Adult Intelligence Scale; see 

Ryan & Ward, 1999). Participants reported having normal hearing, and visual acuity was normal 

or corrected to normal with the use of contact lenses or MRI compatible glasses. Participants 

were paid an hourly rate commensurate with standard pay for work assignments at their facility. 

Participants completed a number of psychological and behavioral assessment measures and an 

fMRI-based inhibition task using the Mind Research Network’s Mobile MRI system before 

release from one of two New Mexico state correctional facilities. After being released, the 

participants in the Validation sample were tracked from 2007 to 2010, and the average follow-up 

period was 34.5 mo. Participants provided written informed consent in protocols approved by the 

institutional review board of the University of New Mexico and Ethical and by the Independent 

Review (E&I) Services for the Mind Research Network. 
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2.5.2 Behavioral Task  

Behavioral impulsivity was measured during fMRI using the Go/NoGo task. The task, 

modeled after the work of Kiehl et al. (2000), presents participants with a frequently occurring 

target (the letter “X”; occurrence probability, 0.84) interleaved with a less-frequent distracter (the 

letter “K”; occurrence probability, 0.16) on a computer screen. Participants were instructed to 

depress a button with their right index finger as quickly and accurately as possible whenever they 

saw the target (the “go” stimulus) and not when they saw the distractor (the “no-go” stimulus). 

Because targets are more frequent than distracters in this task, a prepotent response toward the 

targets is elicited. When a distractor is presented, participants are required to inhibit their button 

response, which increases the rate of commission errors. Successful performance on this task 

requires the ability to monitor error-related conflicts and to selectively inhibit the prepotent go 

response on cue. Before scanning, participants completed a brief practice session of ∼10 trials. 

2.5.3 Experimental Design  

The present fMRI study comprised a hemodynamic reference sample second level 

analysis to establish anatomical ROIs, and a Validation sample second level ROI constrained 

analysis. All extracted imaging data used for the ROI constrained analysis within the Validation 

sample are included in Dataset S1 in the form of an average β-value for each subject per ROI. 

Dataset S1 also includes PCL-R scores, factor 1 scores, factor 2 scores, the two factors’ 

interaction term, and the offender’s age at release. 

The experimental design used on all participants was adopted from Kiehl et al. (2000) 

and is identical to that of Aharoni et al.’s (2013). Two scanning runs, each composed of 246 

visual stimuli, were presented to participants using Presentation, a computer-controlled visual 

and auditory software (Neurobehavioral Systems). Stimuli were displayed on a rear-projection 
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screen mounted at the rear entrance to the magnet bore and subtended a visual angle of ∼3 × 

3.5°. Each stimulus appeared for 250 ms in white text within a continuously displayed 

rectangular fixation box. Participants viewed the screen by means of a mirror system attached to 

the head coil. 

The stimulus onset asynchrony (SOA) between go stimuli varied pseudorandomly among 

1,000, 2,000, and 3,000 ms, subject to the constraint that three go stimuli were presented within 

each consecutive 6-s period. The no-go stimuli were interspersed among the go stimuli in a 

pseudorandom manner subject to three constraints: the minimum SOA between a go and a no-go 

stimulus was 1,000 ms; the SOA between successive no-go stimuli was in the range of 10 ± 15 s; 

and no-go stimuli had an equal likelihood of occurring at 0, 500, or 1,000 ms after the beginning 

of a 1.5-s acquisition period. By jittering stimulus presentation relative to the acquisition time, 

the hemodynamic response to the stimuli of interest was sampled effectively at 500-ms intervals. 

Behavioral responses were recorded by using a MRI-compatible fiberoptic response 

device—created by Lightwave Medical—that is commercially available. Correct hits were 

defined as go (ie, X-stimuli) events that were followed by a button press within 1,000 ms of 

stimulus onset. Correct rejections were defined by an absence of a motor response within 1,000 

ms of the no-go stimulus. Commission errors were defined as the presence of a response within 

1,000 ms of the onset of a no-go stimulus. 

2.5.4 Image Acquisition  

MRI acquisition parameters were identical to those discussed in Aharoni et al. (2013), 

thus will only briefly be described here. Images were collected with a mobile Siemens 1.5-T 

Avanto system with advanced SQ gradients (max slew rate, 200T/m/s; 346 T/m/s vector 

summation, rise time 200 μs) equipped with a 12-element head coil. The echoplanar image 
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gradient-echo pulse sequence (repetition/echo times, 2,000/39 ms; flip angle, 75°; field of view, 

24 × 24 cm; 64 × 64 matrix; 3.4 × 3.4-mm in-plane resolution; 5-mm slice thickness; 30 slices) 

effectively covers the entire brain (150 mm) in 2,000 ms. Head motion was limited by using 

padding and restraint.  

2.5.5 Preprocessing  

Functional images were reconstructed offline at 16-bit resolution and manually reoriented 

to approximately the anterior commissure/posterior commissure plane. Functional images were 

spatially normalized to the Montreal Neurological Institute template via EPI norm (an affine 

transform followed by a nonlinear registration of the EPI image to an EPI template in standard 

space) and spatially smoothed (12mm full-width half maximum) in SPM12. High frequency 

noise was removed by using a low-pass filter (cutoff, 128s). The functional images were 

despiked using ArtRepair and motion corrected using InRialign—a motion correction procedure 

unbiased by local signal change (Freire, Roche, & Mangin, 2002).  

2.5.6 Individual and Group Level Analysis 

As in Aharoni et al. (2013), response types (correct hits and commission errors) were 

modeled as separate events. Event-related responses were modeled using a synthetic 

hemodynamic response function composed of two gamma functions. The first gamma function 

modeled the hemodynamic response using a peak latency of 6 s. A term proportional to the 

derivative of this gamma function was included to allow for small variations in peak latency. The 

second gamma function and associated derivative was used to model the small “overshoot” of 

the hemodynamic response on recovery. A latency variation amplitude-correction method was 

used to provide a more accurate estimate of hemodynamic response for each condition that 
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controlled for differences between slices in timing and variation across regions in the latency of 

the hemodynamic response (Calhoun et al., 2004). 

Individual runs were modeled together at first level of analysis, and functional images 

were computed for each participant that represented hemodynamic responses associated with 

commission errors and correct hits. General linear models included regressors to model motion 

(six parameters).  

Activation differences between commission errors and correct hits were extracted from 

14 mm radius spheres centered around the seed coordinates in the ACC and Insula (x = 3, y = 29, 

z = 28 and x = -36, y = 14, z = -11, respectively; Figure 2.1b) in the form of a mean β-value for 

each participant via the MarsBaRs plugin for SPM (Brett, Anton, Valabregue, & Poline, 2002). 

2.5.7 Covariate Risk Assessment  

Data from additional risk factors (Hare’s PCL-R and the offender’s age at release) were 

obtained to examine the incremental predictive validity provided by the established ROIs. These 

additional variables have been previously found to predict antisocial behavior in offender 

populations (Aharoni et al., 2014; Olver & Wong, 2015). Scores from the Hare PCL-R—a 

semistructured interview and archival analysis which assesses psychopathy in incarcerated, 

forensic, psychiatric, and normal populations—were included as primary risk factors. These 

assessments were conducted by trained raters with high interrater reliability (ICC: .93). Nineteen 

percent of the Validation sample with PCL-R scores (n = 89; Mean, 23.58; SD, 6.97) met the 

pre-established criteria for a diagnosis of psychopathy (score of ≥ 30). The PCL-R further splits 

into two separate clusters of traits: factor 1 includes interpersonal/affective traits (such as 

glibness and lack of empathy) and factor 2 includes antisocial behavioral traits (such as 

impulsivity and early behavioral problems). As in Aharoni et al. (2014), these factors are entered 



35 

individually into the overall predictive models sans a total PCL-R score (due to issues of 

collinearity).  

2.5.8 Follow-Up Procedure  

As per Aharoni et al. (2013), rearrest data, including arrest date and offense type, were 

obtained by a professional criminal background check service (SSC), which conducted national, 

state, and county criminal searches following each participant’s release date. Approximately 

53% of the sample was rearrested at least once between their release date (ranging from 2007 to 

2010) and their follow-up date during July to September 2011. In line with previous predictive 

modeling, minor parole and probation violations were excluded from analysis, and the remaining 

offenses were further classified as violent or nonviolent when warranted. A larger portion of the 

sample was rearrested for nonviolent offenses (42.1%) than for violent offenses (9.5%). 

2.5.9 Analytic Strategy  

The primary hypothesis was evaluated in the validation sample by using Cox 

proportional-hazards regression. A Cox regression is a semiparametric test that investigates the 

effect of variables of interest on the time it takes for an event to happen—in this case, rearrest—

while also estimating time courses of those that have yet to reach that event (censored cases). 

The dependent variable is the proportion of cases surviving the event (the cumulative survival 

function). In order to interpret the effect of individual variables on the cumulative survival 

function, hazard ratios (i.e., exp[B]) are computed. These hazard ratios characterize an 

individual’s relative odds of reaching the event for every one unit change in the risk factor (e.g., 

error-monitoring brain activity), while controlling for other covariates. 

The secondary hypothesis was evaluated in the validation sample by using receiver 

operating characteristic (ROC) curves which describe the differences between those who were 
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and were not rearrested as a function of the predictors in the model (i.e., discrimination). While 

most assessments of ROC curves are time independent, our analyses of AUC characteristics are 

evaluated per model at a variety of time points (6, 12, 24, & 36 months) by utilizing Heagerty 

and Zheng’s time-dependent ROC curve function as found in the risksetROC package in R, 

version 3.60 (Heaegerty & Zheng, 2005). This analysis yields an AUC per time point in order to 

evaluate each model’s ability to discriminate those who were and were not re-arrested across a 

series of time scales.  
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2.7 Chapter 2 Supplementary Material 

 

Figure 2.3 Validation Sample Error-Monitoring Activity 

Mean Hemodynamic Response Change in Validation Sample (n = 95) During Commission 

Errors vs. Correct Hits from Axial View. 
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Table 2.2 Regions Significantly Activated in Error-Monitoring 

Location  t-score X y z BA Effect Size 

Frontal Lobe        

R Dorsal Anterior 
Cingulate Cortex 

 34.93**** 3 29 28 32 3.33 

R Precentral Gyrus  29.65**** 6 17 61 6 2.82 

R Anterior Cingulate 

Cortex 
 22.61**** 0 -16 40 24 2.15 

L Superior Frontal Gyrus  21.41**** -27 50 25 10 2.04 

R Superior Frontal Gyrus  16.56**** 48 8 49 8 1.58 

Temporal Lobe        

L Insula  34.46**** -36 14 -11 13 3.28 

R Insula  33.05**** 39 14 -8 13 3.15 

R Superior Temporal 

Gyrus 
 18.88**** 51 -31 1 22 1.80 

Parietal Lobe        

R Inferior Parietal Lobule  25.60**** 57 -40 28 40 2.44 

L Angular Gyrus  
25.14**** 
 

-57 -43 28 39 2.39 

L Postcentral Gyrus  16.36**** -54 -13 40 1 1.56 

Occipital Lobe        

Cuneus  20.98**** 6 -73 40 7 2.00 

Subcortical        

R Midbrain (Brainstem)  25.97**** 6 -31 -5 NA 2.47 

L Midbrain (Brainstem)  25.40**** -3 -31 -5 NA 2.42 

Midbrain  17.97**** 0 -37 -38 NA 1.71 

 
Summary of the t-scores extracted from a traditional hemodynamic response analysis of false alarms vs. Hits for the 

total sample (n = 442) (threshold: t > 16). ****p .0001 corrected for multiple comparisons. Effect size is reported in 

the form of Cohen’s D.  
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Table 2.3 Cox Model Statistics 

  Overall  Change from Previous 

Model 

-2 Log 

Likelihood χ2 df P value  Δ χ2 df P value 

Non-Violent Zero Order dACC 335.151 2.636 1 0.104  2.675 1 0.102 

Any Crime Zero Order dACC 414.262 2.216 1 0.137  2.246 1 0.134 

Non-Violent with dACC 284.99 20.118 5 0.001***  22.266 5 <.001*** 

Any Crime with dACC 367.355 11.87 5 0.037*  12.567 5 0.028* 

Non-Violent Zero Order Insula 334.378 3.324 1 0.068  3.447 1 0.063 

Any Crime Zero Order Insula 414.845 1.621 1 0.203  1.664 1 0.197 

Non-Violent with Insula 286.965 18.339 5 .003**  20.291 5 .001*** 

Any Crime with Insula 369.733 9.558 5 0.089  10.189 5 0.07 

 

Omnibus test of Cox regression model with χ2 statistics showing the zero-order effect of dACC activity and Insula 

activity on days to rearrest for non-violent crimes and any crimes. Additionally shown, the shared and unique 

influence of the dACC/Insula and other potential risk factors on days to rearrest for non-violent crimes and any 

crimes. *p < 0.05, **p < 0.01, and ***p < 0.001 
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Table 2.4 Effect of Individual Predictors on Rearrest 

   Bootstrapped Data   

Model/Predictor B SE (B) B SE (B) P value exp[B] 95% CI for B 

Non-Violent Zero Order dACC        

- dACC -0.285 0.176 -0.285 0.165 0.073 0.752 -.618 - .033 

Any Crime Zero Order dACC        

- dACC -0.234 0.157 -0.234 0.142 0.089 0.791 -.518 - .042 

Any Crime with dACC        

- Age at release -0.042 0.021 -0.042 0.025 0.069 0.959 -.099 - .000 

- PCL-R factor 1 score -0.04 0.061 -0.04 0.071 0.545 0.961 -.183 - .099 

- PCL-R factor 2 score -1.872 0.909 -1.872 1.099 0.063 0.154 -4.066 - .1256 

- PCL-R factor interaction 0.039 0.226 0.039 0.269 0.864 1.04 -.355 - .711 

- dACC -0.425 0.179 -0.425 0.192 0.017* 0.653 -.836 - -.082 

Non-Violent Zero Order Insula        

- Insula -0.309 0.17 -0.309 0.161 0.045* 0.734 -.630 - .006 

Any Crime Zero Order Insula        

- Insula -0.186 0.146 -0.186 0.137 0.157 0.83 -.454 - .092 

Any Crimes with Insula        

- Age at release -0.034 0.02 -0.034 0.023 0.115 0.966 -.088 - .005 

- PCL-R factor 1 score -0.056 0.061 -0.056 0.072 0.4 0.946 -.203 - .084 

- PCL-R factor 2 score -1.845 0.923 -1.845 1.105 0.073 0.158 -4.166 - .197 

- PCL-R factor interaction 0.086 0.227 0.086 0.28 0.737 1.09 -.355 - .756 

- Insula -0.299 0.166 -0.299 0.177 0.067 0.741 -.663 - .036 

  
Results of Cox regression analyses examining the zero order predictive effect of the dACC and Insula on rearrest for 

Non-Violent crimes and Any Crimes, and Any Crimes controlling for covariates. Table reports unstandardized B, 

bootstrapped B, and relative risk ratio (exp[B]). *p < 0.05, **p < 0.01, and ***p < 0.001. 

2.7.1 Supplementary Cox Model Results 

Cox models Non-Violent Zero-Order dACC/Insula, and Any Crime Zero Order 

dACC/Insula examined the zero order effect of error related activity in the dACC and Insula, 

respectively, on days to a non-violent felony and days to any felony, before entering any other 
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risk factors into the model (see Tables 2.3 and 2.4). All non-bootstrapped zero order analyses of 

error-monitoring activity in the ACC and Insula for non-violent/any crimes were insignificant 

(all p-values > .05) (see Table 2.3). Once bootstrapped, there was a significant association such 

that for every one unit increase in Insular activity, there was a 1.36 (i.e., 1/exp[B]) decrease in 

the probability of rearrest for a non-violent crime (see Table 2.3; bootstrapped model Non-

Violent Zero Order Insula). All other bootstrapped zero order analyses were marginally 

significant (Non-Violent Zero-Order dACC: B = -0.285, p = .073, and Any Crime Zero Order 

dACC: B = -0.234, p = .089) or statistically insignificant (Any Crime Zero Order Insula: B = -

0.186, p = .157).  

In model Any Crimes with dACC, the dACC error-monitoring factor was the only risk 

factor to survive bootstrapping, such that there was a 1.53 decrease in the probability of rearrest 

for any crime for every one unit increase in error-monitoring activity (p = .017) (See Table 2.4). 

The overall model Any Crimes with Insula was marginally significant (p = .089), but none of the 

individual factors were significant. 

2.7.2 Supplementary Discrimination Analysis Results 

An area under the curve (AUC) analysis was conducted to discriminate between those 

rearrested and not rearrested as functions of models Non-Violent with dACC, Any Crimes with 

dACC, and Non-Violent with Insula at four different time periods (6, 12, 24, and 36 months)—

see Figures 2.4a, 2.4c, and 2.4d, respectively. Model Any Crime with Insula was excluded for 

further analysis, due to previous null results (see Tables 2.3 and 2.4).  

 In Figure 2.4a, model Non-Violent with dACC reports an AUC of .713 at six months, 

which remains relatively stable (ranging from .703 to .715) until t = 36 months, where the 

model’s discriminatory ability declines (AUC = 0.661). These results indicate that the model 
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provides a good accuracy in discriminating between those rearrested for a non-violent crime and 

not rearrested as a function of its covariates. In Figure 2.4b, model Any Crimes with dACC 

reports an AUC of .643 at six months, which remains relatively stable (ranging from .641 to 

.644) until t = 36 months, where the model’s discriminatory ability declines (AUC = .612). These 

results demonstrate a modest ability of the model to discriminate between those rearrested for 

any crime from those not rearrested. Still yet, in Figure 2.4c, we see that the dACC offers 

incremental utility to the Any Crimes with dACC, for the model excluding the dACC factor 

(AUC = .608) is less predictive than the model including the dACC factor (AUC = .643).  

In Figure 2.4d, model Non-Violent with Insula reports an AUC of .699 at six months, 

which remains stable (ranging from .680 to .702) through 36 months. These results indicate that 

the model Non-Violent with Insula provides a good accuracy in discriminating between those 

rearrested for a non-violent crime and not rearrested as a function of its covariates, and that its 

discriminative ability is relatively stable through time.  
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Figure 2.4 ROC Analyses 

a) ROC curve and AUC statistics for Non-Violent with dACC model across four time periods. b) 

ROC curve and AUC statistics for Any Crime with dACC model across four time periods. c) 

ROC curve and AUC statistics for model Any Crime model with and without the ACC. d) ROC 

curve and AUC statistics for Non-Violent with Insula model across four time periods. 
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3.1 Abstract 

Recent research has demonstrated that error-monitoring related hemodynamic activity in 

the dorsal anterior cingulate cortex (dACC) (Aharoni et al., 2013, 2014) and insula (Allen et al., 

in prep) improved predictions of rearrest in a sample of criminal offenders. Related research has 

shown that the resting state functional connectivity (rsFC) between dACC and insula is 

associated with various impulsivity related outcomes and traits, such as risky decision making 

and psychopathy (Philippi et al., 2015; Wei et al., 2016). The present project tested whether 

predictions of rearrest can be improved by modeling resting state functional connectivity 

between these regions within the Mind Adult Offender Cohort (MAO-C). As predicted, the rsFC 

between the dACC and insula improved predictions of rearrest relative to other clinically 

relevant predictors (age and psychopathy score). Our pattern of results aligns with previous task-

based research on the dACC and insula (Aharoni et al., 2013, 2014; Allen et al., in prep; Steele et 

al., 2015) as well as resting state functional connectivity analyses on the same nodes (Philippi et 

al., 2015; Wei et al., 2016). These results reinforce and extend research on limbic predictors of 

recurrent, impulsive antisocial behavior. Implications for clinical and forensic risk assessment 

are discussed.  

3.2 Introduction 

Previous research utilizing functional magnetic resonance imaging (fMRI) has 

demonstrated that individual differences in impulsivity task-related hemodynamic activity 

improved predictions of rearrest within a sample of 96 adult male criminal offenders (Aharoni et 

al., 2013, 2014). The dACC and insula were selected as regions of interest (ROIs) due to their 

known involvement in impulsivity, error-monitoring, inhibition, and response selection (Holroyd 

& Coles, 2002; Kiehl et al., 2000; Kosson et al., 2006; Mathalon et al., 2003; Menon, 2015; Van 

https://www.zotero.org/google-docs/?JNNqMX
https://www.zotero.org/google-docs/?J60Pld
https://www.zotero.org/google-docs/?nSssi9
https://www.zotero.org/google-docs/?nSssi9
https://www.zotero.org/google-docs/?KHDbzk
https://www.zotero.org/google-docs/?KHDbzk
https://www.zotero.org/google-docs/?YeLDi4
https://www.zotero.org/google-docs/?YeLDi4
https://www.zotero.org/google-docs/?SFyuJH
https://www.zotero.org/google-docs/?SFyuJH
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Veen & Carter, 2002). However, no work to date has examined the predictive value of measures 

of functional connectivity on re-arrest outcomes.   

Resting state functional connectivity analysis (rsFC) is a task-free imaging paradigm 

requiring only that the participant lie still during their scan session (with eyes open). rsFC data is 

indicative of the brain’s functional activity while at “rest” and can be used to gather information 

about regional functional connectivity—that is, how brain regions’ functional activities 

coordinate with each other. Task-free designs reduce the likelihood of confounding task-related 

activity (Soares et al., 2016). Finally, research suggests that the majority of variance in brain 

activity (at rest & during tasks) can be accounted for by connections between brain regions, 

whereas task related activity is relatively small in comparison (Fu et al., 2017). Accordingly, the 

resulting signal-to-noise ratio may be nearly three times higher for resting state scans (Fox & 

Greicius, 2010).  

rsFC has also proven to be a useful tool in investigating impulsive behavior. While rsFC 

studies focusing on impulsivity are broad in terms of behavioral outcome measures, the majority 

of them focus on the “salience network”—a network undergirding the ability to allocate 

attentional resources to salient events (Janes et al., 2015; Li et al., 2013; Menon & Uddin, 2010; 

Philippi et al., 2015; Stoeckel et al., 2016; Wei et al., 2016). Two nodes within the salience 

network are pertinent to impulsive antisocial outcomes: the dACC and insula. The functional 

connectivity, or coupling, between these regions has been shown to be associated with multiple 

impulsivity related outcomes such as: a preference for immediate rewards compared to long term 

goals (Li et al., 2013), enhanced smoking cue-reactivity in patients with nicotine dependence 

(Janes et al., 2015), risky decision making (Wei et al., 2016), and even psychopathy (Philippi et 

al., 2015). Many of these results implicate a positive relationship between dACC-insula 

https://www.zotero.org/google-docs/?SFyuJH
https://www.zotero.org/google-docs/?PBzuXP
https://www.zotero.org/google-docs/?LPq2rw
https://www.zotero.org/google-docs/?LPq2rw
https://www.zotero.org/google-docs/?C0aFvk
https://www.zotero.org/google-docs/?C0aFvk
https://www.zotero.org/google-docs/?7NFnod
https://www.zotero.org/google-docs/?7NFnod
https://www.zotero.org/google-docs/?7NFnod
https://www.zotero.org/google-docs/?7NFnod
https://www.zotero.org/google-docs/?7NFnod


47 

functional connectivity and impulsivity measures—that is, increased functional connectivity 

between these nodes of the salience network is associated with increased impulsive outcomes. 

Despite important work on the coupling of the insula and dACC in regard to impulsivity, there is 

a gap in the literature as to whether these functional, and in turn, impulsivity effects precipitate 

differences in antisocial behaviors outside of the lab—such as criminal reoffense.  

To date, we are aware of just one test of the role of resting state measures in predictions 

of arrest (Delfin et al., 2019). Delfin and colleagues (2019) used single-photon emission 

computed tomography (SPECT) to measure regional cerebral blood flow during rest in a sample 

of 44 criminal offenders. Utilizing machine learning techniques for model selection, the 

researchers found that including the resting state cerebral blood flow measurements in their 

models led to increased accuracies of rearrest predictions, consistent with task-based studies 

(Aharoni et al., 2013, 2014). 

One advantage of fMRI over SPECT is its superior spatial and temporal acuity (Lystad & 

Pollard, 2009). For instance, while SPECT analyses focus on broad activity differences within 

and across anatomical lobes in the brain, fMRI studies can focus on more refined points of 

analysis, such as the temporal coordination between spatially relevant nodes in a functionally 

defined network of interest—allowing direct testing of more temporally and spatially specific 

hypotheses.  

This project intends to fill this gap in the literature by testing whether predictions of 

rearrest in a subset of the Mind Adult Offender Cohort (MAO-C) can be independently improved 

by the resting state functional connectivity (rsFC) between nodes in the salience network (the 

dACC and Insula) alongside other clinically-relevant predictors (age and psychopathy score; 

(Hare & Neumann, 2008). To accomplish this, we utilized ROI coordinates generated from a 

https://www.zotero.org/google-docs/?PBYjsp
https://www.zotero.org/google-docs/?HvFxPc
https://www.zotero.org/google-docs/?RGhVBi
https://www.zotero.org/google-docs/?RGhVBi
https://www.zotero.org/google-docs/?UF6cXE


48 

large subset of the MAO-C (n = 442) (Allen et al., in prep), and tested the predictive utility of the 

rsFCs of those ROIs in a separate, previously studied subset (n = 91) from the same cohort who 

underwent a resting state fMRI procedure. By testing our rsFC model on a previously studied 

subset of the MAO-C, we could also test the convergent validity of our methods. Because the 

theorized mechanisms behind various crime types (e.g., violent vs. non-violent) may be different 

(Ling et al., 2019), we conducted separate analyses by crime type. Our predictions were that for 

non-violent crimes and any crimes, (1) the rsFC between the dACC and Insula will exert an 

incremental effect above and beyond other established risk factors, and (2) a model including 

rsFC will exhibit greater classification accuracy than a model excluding it.5 

3.3 Results 

3.3.1 Determination of Regions of Interest  

Regions of interest were defined a priori as the right dACC (BA 32; x = 3, y = 29, z = 28) 

and Left Insula (BA 13; x = -36, y = 14, z = -11) in a large subset of the MAO-C (n = 442; see 

Figure 3.1; see (Allen et al., in prep). These dACC and left insula coordinates formed the basis of 

separate spherical ROIs defined for resting state functional connectivity analysis in our sample (n 

= 91). 

 

Axial view of ROIs in the Left Insula (blue) and dACC (red). 

 
5
 Additionally, supplementary analyses were performed to analyze multimodal predictive models for rearrest, 

including previously established task-based error-monitoring neurobiological risk factors (See Table 3.3).  

Figure 3.1 Regions of Interest 

https://www.zotero.org/google-docs/?pIoWzJ
https://www.zotero.org/google-docs/?zfdCBC
https://www.zotero.org/google-docs/?4pZDkz
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3.3.2 Resting State Analysis 

In order to test whether there was significant functional connectivity between our ROIs, 

we conducted a seed-based functional connectivity analysis with the dACC coordinates (x = 3, y 

= 29, z = 28) (see Methods). The functional connectivity between the dACC seed and 133 other 

ROIs (including the left insula ROI) were then analyzed for significant connectivity.6 At an FDR 

threshold of p < .01, this analysis identified 58 regions of the brain whose activity were 

significantly associated with that of the dACC during resting state (see Table 3.2). Out of the 58 

regions, 15 were within the frontal lobe, 17 were within the temporal lobe, 7 were within the 

parietal lobe, 4 were within the occipital lobe, and 15 were within the cerebellum (see Figure 3.3 

for visualization).  

Consistent with expectation, the L. Insula coordinate (x = -36, y = 14, z = -11) was found 

to be one of the areas with significant functional connectivity to the dACC ROI, t(90) = -3.04, p 

= .007. For each participant, we computed a functional connectivity parameter (Fisher’s 

transformed correlation coefficients) between the dACC and (Left) Insula ROIs and entered that 

parameter as an independent factor in our subsequent prediction models. 

3.3.3 Does Resting State Functional Connectivity between the dACC and Insula 

Predict Time to Rearrest?  

Cox proportional-hazards regression was used to examine the shared and unique 

influence of the functional connectivity between the dACC and Insula among other risk factors 

(release age, PCL-R factor 1, PCL-R factor 2, PCL-R factor interaction, & dACC error-

 
6
 ROIs included were a combination of the Harvard-Oxford atlas cortical and subcortical areas, and the AAL atlas 

cerebellar areas.  
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monitoring activity) on days to rearrest for non-violent crimes and any crimes (see Table 3.1).7 

To assess the reliability of the β-coefficients, each Cox distribution was resampled in a 

bootstrapping sequence with 9,999 iterations (see Table 3.1). 

Table 3.1 Effect of Individual Predictors on Rearrest 

   Bootstrapped Data   

Model B SE (B) B SE (B) p value exp[B] 
95% CI for 

exp[B] 

Non-Violent Crimes        

- Age at release -0.044 0.026 -0.044 .029 0.089 0.957 0.910 - 1.007 

- PCL-R factor 1 score -0.05 0.071 -0.05 .082 0.482 0.952 0.829 - 1.093 

- PCL-R factor 2 score -4.26 1.196 -4.26 1.493 0.001*** 0.014 0.001 - 0.147 

- PCL-R factor interaction 0.296 0.314 0.296 .398 0.345 1.345 0.727 - 2.489 

- dACC-Insula Conn.  -2.574 1.054 -2.574 1.174 0.015* 0.076 0.010 - 0.602 

Any Crimes         

- Age at release -0.035 0.021 -0.035 0.023 0.100 0.966 0.926 - 1.007 

- PCL-R factor 1 score -0.067 0.063 -0.067 0.072 0.303 0.935 0.826 - 1.058 

- PCL-R factor 2 score -2.7 0.992 -2.7 1.174 0.012* 0.067 0.010 - 0.469 

- PCL-R factor interaction 0.114 0.246 0.114 0.315 0.688 1.121 0.693 - 1.814 

- dACC-Insula Conn.  -2.104 0.919 -2.104 1.066 0.028* 0.122 0.020 - 0.739 

 
Results of Cox regression multivariate analyses examining the predictive effect of the dACC-Insula functional 

connectivity and dACC error-monitoring activity (multimodal model: M.M.) on rearrest for non-violent crimes and 

any crimes controlling for covariates in a sample of 91 offenders. Table reports unstandardized B, bootstrapped B, 

and relative risk ratio (exp[B]). All variables are mean centered.  *p < 0.05, **p < 0.01, and ***p < 0.001. 
 

To test our primary hypothesis (that the rsFC between the dACC and Insula will exert an 

incremental effect above and beyond other established risk factors), we tested a model including 

previously defined risk factors: the offender’s release age, PCL-R Factor 1, PCL-R Factor 2, 

their interaction, and the functional connectivity value between the dACC and L. Insula (see 

Table 3.3 for multimodal models including previously established task-based neurobiological 

 
7
 There was an insufficient number of offenders rearrested for violent crimes (n = 9), thus no analysis was conducted 

for violent rearrests.  
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risk factors). This model was regressed onto time to rearrest for a non-violent crime. A 

significant overall effect (p < .05) was obtained for the model. The PCL-R Factor 2 was 

significantly associated with days to non-violent rearrest (p < .001),8 as expected. The functional 

connectivity between the dACC-Insula exhibited a significant association with rearrest above 

and beyond these other risk factors. For every one unit decrease in dACC-Insula functional 

connectivity, there was a 13.16 decrease in the probability of rearrest for a non-violent crime (p 

= .015). That is, the more anticorrelated the two regions were with each other, the more likely an 

offender was to be rearrested for a non-violent crime.  

 The same model was then regressed onto time to rearrest for any crime. A significant 

overall effect (p < .05) was obtained for the model. The PCL-R Factor 2 was significantly 

associated with days to rearrest (p = .012), as expected. The functional connectivity value 

between the dACC-Insula exhibited a significant association with rearrest above and beyond the 

other risk factors in the model. For every one unit decrease in dACC-Insula functional 

connectivity, there was a 8.20 decrease in the probability of rearrest for any crime (p = .028).  

3.3.4 Does the Inclusion of Functional Connectivity Information Increase the 

Accuracy of Statistical Models in Predicting Recidivism?  

The receiver operating characteristic (ROC) curve is an analysis that indicates a model’s 

true positive and false positive fractions (i.e., sensitivity and 1-specificity). Thus, it is a direct 

way to test a model’s accuracy. In order to discriminate between those rearrested and not 

rearrested as functions of the Non-Violent with rsFC and Any Crime with rsFC, an area under 

the curve (AUC) analysis was conducted for each within the validation sample. A model’s ability 

 
8
 In order to normalize the distribution for PCL-R Factor 2 scores, a lg10 reflection transformation was used. Due to 

this transformation interpretation of Cox proportional-hazards beta-values and exp[B] are reversed: higher PCL-R 

Factor 2 scores are associated with a decreased time to rearrest.  
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to discriminate between events (i.e., rearrested vs. not rearrested) is interpreted as “good” when 

its AUC values exceed .70.  

In order to assess our final hypothesis (that the model that includes the rsFC will exhibit 

greater classification accuracy than the reduced model), we fitted the two models at a twelve-

month time frame (see Figure 3.2a-b). In Figure 3.2a, the Non-Violent without functional 

connectivity model yields a baseline AUC of .683, and an improved AUC of .714 when 

including the dACC-Insula functional connectivity factor. In Figure 3.2b, the Any Crime without 

functional connectivity model yields a baseline AUC of .619, and an improved AUC of .645 

when including the dACC-Insula functional connectivity factor. Overall, we find that both 

models incrementally benefit from the inclusion of theoretically relevant functional connectivity 

data.  

In Figure 3.2c, the Non-Violent model including dACC-Insula functional connectivity 

factor yields a stable AUC for predictions within 6 to 24 months (ranging from .704 to .713), and 

an AUC of .684 for predictions within 36 months. In Figure 3.2d, the Any Crime model 

including dACC-Insula functional connectivity data also demonstrates a stable, though lower, 

AUC for predictions within 6 to 24 months (ranging from .634 - .646), and an AUC of .610 for 

predictions within 36 months. These results indicate that the Non-Violent model containing the 

dACC-Insula functional connectivity factor provides a good accuracy in discriminating between 

those rearrested for a non-violent crime and not rearrested as a function of its covariates, while 

the Any Crime model with the dACC-Insula functional connectivity factor yields more modest 

effects. Both models report discriminative abilities that are relatively stable through time.  
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Figure 3.2 ROC Analyses 

a) ROC curve and AUC statistics for Non-violent model with and without the dACC-Insula 

functional connectivity factor. b) ROC curve and AUC statistics for Any Crime model with and 

without the dACC-Insula functional connectivity factor. c) ROC curve and AUC statistics for 

Non-violent model with dACC-Insula functional connectivity factor across four time periods. d) 

ROC curve and AUC statistics for Any Crime model with dACC-Insula functional connectivity 

factor across four time periods. 
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3.4 Discussion 

The present project represents an extension of recent work (Aharoni et al., 2013, 2014; 

Delfin et al., 2019), by combining resting state functional connectivity measures with previously 

established covariates (Aharoni et al., 2014) to predict rearrest in a target sample of incarcerated 

offenders (n = 91). Our results demonstrate improvement in the prediction of later rearrest using 

an index of resting state functional connectivity between the dACC and insula—a metric 

previously linked with multiple impulsivity related outcomes such as: a preference for immediate 

rewards compared to long term goals, enhanced smoking cue-reactivity in nicotine dependents, 

risky decision making, and psychopathy (Janes et al., 2015; Li et al., 2013; Philippi et al., 2015; 

Stoeckel et al., 2016; Wei et al., 2016). Specifically, the inclusion of resting state functional 

connectivity between the dACC and insula increased the accuracy of predictions of non-violent 

rearrest from 68.3% to 71.4%.  

To our knowledge, there has only been one other attempt to test a neuropredictive model 

of rearrest based on neurobiological activity at rest (Delfin et al., 2019). Delfin and colleagues 

(2019) found that including resting state regional cerebral blood flow measurements in their 

predictive models led to increased accuracies of rearrest predictions. The present study validates 

and extends this research by producing similar effects using a larger sample size, a higher-

resolution imaging method (fMRI), and a hypothesis-driven approach, which reduces concerns 

about model overfitting (see (Poldrack et al., 2020). 

Overall, our results corroborate and extend previous literature demonstrating that 

theoretically-relevant measurements of resting state functional brain activity may improve 

accuracy of risk models designed to predict antisocial outcomes, providing convergent validity 

of the methods previously utilized (Aharoni et al., 2013, 2014; Allen et al., in prep; Camchong et 

https://www.zotero.org/google-docs/?eEFmLa
https://www.zotero.org/google-docs/?eEFmLa
https://www.zotero.org/google-docs/?SaqwOQ
https://www.zotero.org/google-docs/?SaqwOQ
https://www.zotero.org/google-docs/?ajfnI6
https://www.zotero.org/google-docs/?ObHv5T
https://www.zotero.org/google-docs/?ipjgJw
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al., 2012; Delfin et al., 2019; Janes et al., 2010; Pardini et al., 2014; Paulus et al., 2005; Sinha & 

Li, 2007; Steele et al., 2015; Zijlmans et al., 2021). Likewise, our results provide support to 

previous research suggesting the importance of paralimbic functional connectivity and 

dysfunction as a mediator between cognitive control and antisocial behavior (Janes et al., 2015; 

Kiehl, 2006; Li et al., 2013; Philippi et al., 2015; Stoeckel et al., 2016; Wei et al., 2016).  

3.4.1 Limitations and Future Directions 

While the ROIs used as hubs for our resting state connectivity measures have been 

previously implicated in impulsivity relevant outcomes such as error-monitoring, inhibition, 

impulsivity, salience, an individual sense of agency, and behavioral regulation (Bastin et al., 

2017; Craig, 2009; Farrer & Frith, 2002; Harsay et al., 2012; Kurth et al., 2010; Mortensen et al., 

2016; Orr & Hester, 2012; Spunt et al., 2012; Steele et al., 2014), the direction of the relationship 

between their functional connectivity and antisocial outcomes is not always consistent in the 

literature. For instance, though we show that an increased coupling between the dACC and 

Insula is shown to be positively associated with subsequent antisocial behavior, previous projects 

have reported a negative association (Hu et al., 2015). Thus, further research is necessary to tease 

apart the role of intra-limbic coupling in antisocial outcomes.   

Furthermore, testing the convergent validity of our methods necessitated the use of a 

previously studied subset of the MAO-C (Aharoni et al., 2013, 2014; Allen et al., in prep). A 

drawback of this decision is that there could be unique features of that sample that limit its 

generalizability to broader offender populations. And, though our sample is large compared to 

traditional neuroimaging standards, it is relatively modest from a predictive modeling 

perspective (Poldrack et al., 2020). Future analyses aimed at modeling the predictive utility of 

resting state functional connectivity measures for antisocial behavior should strive for even 

https://www.zotero.org/google-docs/?ipjgJw
https://www.zotero.org/google-docs/?ipjgJw
https://www.zotero.org/google-docs/?avvxky
https://www.zotero.org/google-docs/?avvxky
https://www.zotero.org/google-docs/?BDl0fp
https://www.zotero.org/google-docs/?BDl0fp
https://www.zotero.org/google-docs/?BDl0fp
https://www.zotero.org/google-docs/?jbNADQ
https://www.zotero.org/google-docs/?lAREe0
https://www.zotero.org/google-docs/?0zIo1p
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larger validation samples to test the generalizability, as well as the specificity of the observed 

effect (Poldrack et al., 2020).   

The legal and ethical concerns raised by neurobiologically informed risk assessments are 

also reasons for caution (Aharoni et al., in press; Baum & Savulescu, 2013; Campbell & 

Eastman, N, 2014; Meynen, 2018). Although evidence-based risk assessment has shown promise 

in treatment-program success and reducing antisocial behavior (Andrews, 2006; Aos et al., 2006; 

MacKenzie, 2006; Taxman, 2002), the use of these techniques in opposition to a defendant’s 

interests remains highly controversial (Starr, 2014). Though there is no clear consensus in the 

literature regarding the unique legal and ethical concerns posed by neurobiologically informed 

risk assessment, existing scholarship consistently cautions against the hasty utilization of these 

methods in legal decision making, and stresses the importance of a continued dialogue about the 

standards required for the various uses of said risk assessments (Aharoni et al., in press; 

Focquaert, 2018; Jurjako et al., 2018; Nadelhoffer & Sinnott-Armstrong, 2012).  

These limitations notwithstanding, discerning the functional networks underlying 

repeated antisocial behavior represents an important step in evaluating the convergent validity of 

existing risk models and helps to illuminate some of the potential causes of repeated antisocial 

behavior (Allen & Aharoni, 2021). The present study provides an important extension of 

previous research on the neuroprediction of rearrest, further validating the association of 

theoretically relevant limbic activity to antisocial outcomes for basic research purposes (Aharoni 

et al., 2013, 2014; Delfin et al., 2019; Steele et al., 2015).  

https://www.zotero.org/google-docs/?dzWzsm
https://www.zotero.org/google-docs/?tEqRE3
https://www.zotero.org/google-docs/?tEqRE3
https://www.zotero.org/google-docs/?z0ohM4
https://www.zotero.org/google-docs/?z0ohM4
https://www.zotero.org/google-docs/?6E6vSE
https://www.zotero.org/google-docs/?mjOs6R
https://www.zotero.org/google-docs/?mjOs6R
https://www.zotero.org/google-docs/?Q4YrNl
https://www.zotero.org/google-docs/?I0NLXv
https://www.zotero.org/google-docs/?I0NLXv
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3.5 Methods 

3.5.1 Participants 

Participants were 91 adult male offenders ranging in age from 20 to 52 y (M = 32.8, SD = 

7.71). Six of them did not complete the PCL-R assessment. Approximately 9% were left-hand–

dominant. 38.5% of the sample self-identified as white, 8.8% as black/African American, 8.8% 

as American Indian, 28.6% as mixed/other, 41.8% as Hispanic, and 15.4% chose not to respond.  

All participants were part of the MAO-C and were determined to have minimal or no 

history of traumatic brain injury (as defined by a loss of consciousness for longer than 30 

minutes), no lifetime history of a psychotic disorder, and had an IQ greater than 65 (as estimated 

by the vocabulary and matrix reasoning subscales of the Wechsler Adult Intelligence Scale; see 

Ryan & Ward, 1999). Participants reported having normal hearing, and visual acuity was normal 

or corrected to normal with the use of contact lenses or MRI compatible glasses. Participants 

were paid an hourly rate commensurate with standard pay for work assignments at their facility. 

Participants completed a number of psychological and behavioral assessment measures and an 

fMRI-based inhibition task using the Mind Research Network’s Mobile MRI system before 

release from one of two New Mexico state correctional facilities. After being released, the 

participants in the Validation sample were tracked from 2007 to 2010, and the average follow-up 

period was 34.5 mo. Participants provided written informed consent in protocols approved by the 

institutional review board of the University of New Mexico and Ethical and by the Independent 

Review (E&I) Services for the Mind Research Network. 

3.5.2 Imaging Parameters 

Resting state fMRI images were collected on prison grounds using a mobile Siemens 

1.5 T Avanto with advanced SQ gradients (max slew rate 200 T/m/s, 346 T/m/s vector 
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summation, rise time 200 us) equipped with a 12-element head coil. The EPI gradient-echo pulse 

sequence (TR = 2000 ms, TE = 39 ms, flip angle 90°, FOV 24 × 24 cm, 64 × 64 matrix, 

3.4 × 3.4 mm in-plane resolution, 4 mm slice thickness, 1 mm gap, 30 slices) effectively covered 

the entire brain (150 mm) in 2.0 s. Head motion was minimized using padding and restraint. The 

participants were asked to lay still, look at the fixation cross and keep eyes open during the five-

minute resting state fMRI scanning. Compliance with instructions was monitored by eye 

tracking. 

3.5.3 Preprocessing 

Data were pre-processed using statistical parametric mapping (Friston et al., 1994) 

(http://www.fil.ion.ucl.ac.uk/spm) including slice-timing correction, realignment (INRIalign), 

co-registration, and spatial normalization, and then transformed to the Montreal Neurological 

Institute standard space at a resolution of a 3 × 3 × 3 mm3. Despiking consisted of the 

orthogonalization with respect to spike regressors. Each spike is represented by an independent 

regressor valued one at the spike time point and zero everywhere else. The DVARS method 

(Power et al., 2013) was used to find spike regressors where the root mean square exceeded three 

standard deviations. Time-courses were also orthogonalized with respect to the following: (1) 

linear, quadratic, and cubic trends; (2) the six realignment parameters; (3) realignment 

parameters derivatives; and (4) spike regressors. A full width half maximum Gaussian kernel of 

6 mm was then used for spatial smoothing. An anatomical component-based noise correction 

procedure (aCompCor: (Behzadi et al., 2007) regressed additional noise components including 

cerebral white matter and cerebrospinal noise (see Behzadi et al. 2007 & Chai et al. 2012), and 

session effects (see Whitfield-Gabrieli & Nieto-Castanon, 2012). 

https://www.zotero.org/google-docs/?HaF2uL
http://www.fil.ion.ucl.ac.uk/spm
https://www.zotero.org/google-docs/?rdoSmc
https://www.zotero.org/google-docs/?hVKLKE
https://www.zotero.org/google-docs/?zTlAHu
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Temporal filtering was conducted below 0.008 Hz or above 0.09 Hz for each 

participants’ BOLD signals in order to further minimize the influence of head motion and other 

noise sources. Implemented via a discrete cosine transform windowing operation, this temporal 

filtering was intended to minimize border effects and was performed after additional regressions 

to avoid any frequency mismatch in the nuisance regression procedure (Hallquist et al., 2013). 

3.5.4 Seed to ROI Functional Connectivity Analysis 

Resting state functional connectivity analyses were conducted using the CONN 

Functional Connectivity Toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012) 

(http://www.nitrc.org/projects/conn). To compute the rsFC value from the dACC to the L. Insula, 

a seed-to-ROI analysis was conducted following preprocessing of the data. This analysis 

computes the Fisher-transformed bivariate correlation coefficient between the predetermined 

seed’s BOLD time series and each individual ROI’s BOLD time series, which was then extracted 

to be analyzed alongside other variables of interest. 

3.5.5 Individual and Group Level Error-Monitoring Analysis 

For supplementary multimodal analyses, error-monitoring activity from the dACC was 

quantified as described in Aharoni et al. (2013) & Allen et al. (in prep), response types (correct 

hits and commission errors) were modeled as separate events (see Aharoni et al., 2013 & Allen et 

al., in prep, for more information on Go/NoGo task procedures). Event-related responses were 

modeled using a synthetic hemodynamic response function composed of two gamma functions. 

The first gamma function modeled the hemodynamic response using a peak latency of 6 s. A 

term proportional to the derivative of this gamma function was included to allow for small 

variations in peak latency. The second gamma function and associated derivative was used to 

model the small “overshoot” of the hemodynamic response on recovery. A latency variation 

https://www.zotero.org/google-docs/?5kiuOP
https://www.zotero.org/google-docs/?zTlAHu
http://www.nitrc.org/projects/conn


60 

amplitude-correction method was used to provide a more accurate estimate of hemodynamic 

response for each condition that controlled for differences between slices in timing and variation 

across regions in the latency of the hemodynamic response (Calhoun et al., 2004). 

Individual runs were modeled together at first level of analysis, and functional images 

were computed for each participant that represented hemodynamic responses associated with 

commission errors and correct hits. General linear models included regressors to model motion 

(six parameters).  

Activation differences between commission errors and correct hits were extracted from 

14 mm radius spheres centered around the seed coordinate in the ACC (x = 3, y = 29, z = 28) in 

the form of a mean β-value for each participant via the MarsBaRs plugin for SPM (Brett, Anton, 

Valabregue, & Poline, 2002). 

3.5.6 Covariate Risk Assessment  

Data from additional risk factors (Hare’s PCL-R and the offender’s age at release) were 

obtained to examine the incremental predictive validity provided by the established ROIs. These 

additional variables have been previously found to predict antisocial behavior in offender 

populations (Aharoni et al., 2014; Olver & Wong, 2015). Scores from the Hare PCL-R—a 

semistructured interview and archival analysis which assesses psychopathy in incarcerated, 

forensic, psychiatric, and normal populations—were included as primary risk factors. These 

assessments were conducted by trained raters with high interrater reliability (ICC: .93). Twenty-

one percent of the Validation sample with PCL-R scores (n = 80; Mean, 23.28; SD, 7.03) met the 

pre-established criteria for a diagnosis of psychopathy (score of ≥ 30). The PCL-R further splits 

into two separate clusters of traits: factor 1 includes interpersonal/affective traits (such as 

glibness and lack of empathy) and factor 2 includes antisocial behavioral traits (such as 

https://www.zotero.org/google-docs/?O3BLIC
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impulsivity and early behavioral problems). As in Aharoni et al. (2014), these factors were 

entered individually into the overall predictive models excluding total PCL-R score (due to 

issues of collinearity).  

Additional exploratory correlational analyses were also conducted with the following 

variables (see Table 3.4): the offender’s estimated IQ, their alcohol/drug dependency (as 

assessed from the Structured Clinical Interview for the DSM (SCID) via determinations of 

lifetime abuse or dependence (scoring: 0 = no lifetime abuse/dependence, 1 = lifetime abuse, and 

2 = lifetime dependence),9 their State-Trait Anxiety Inventory score (STAI: Spielberger et al., 

1983), and The Barratt Impulsiveness Scale (BIS-11; Patton et al., 1995). 

3.5.7 Follow-Up Procedure  

As per Aharoni et al. (2013), rearrest data, including arrest date and offense type, were 

obtained by a professional criminal background check service (SSC), which conducted national, 

state, and county criminal searches following each participant’s release date. Approximately 

55% of the sample was rearrested at least once between their release date (ranging from 2007 to 

2010) and their follow-up date during July to September 2011. In line with previous predictive 

modeling, minor parole and probation violations were excluded from analysis, and the remaining 

offenses were further classified as violent or nonviolent when warranted. A larger portion of the 

sample was rearrested for nonviolent offenses (42.9%) than for violent offenses (9.9%). 

3.5.8 Analytic Strategy  

The primary hypothesis was evaluated by using Cox proportional-hazards regression. A 

Cox regression is a semiparametric test that investigates the effect of variables of interest on the 

 
9
 Scoring for drug abuse/dependence is computed via an averaging across abuse/dependence in the following 

individual drug classes: sedatives, cannabis, stimulants, opioids, cocaine, and hallucinogens. 
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time it takes for an event to happen—in this case, rearrest—while also estimating time courses of 

those that have yet to reach that event (censored cases). The dependent variable is the proportion 

of cases surviving the event (the cumulative survival function). In order to interpret the effect of 

individual variables on the cumulative survival function, hazard ratios (i.e., exp[B]) are 

computed. These hazard ratios characterize an individual’s relative odds of reaching the event for 

every one unit change in the risk factor (e.g., resting state functional connectivity), while 

controlling for other covariates. 

The secondary hypothesis was evaluated by using receiver operating characteristic (ROC) 

curves which describe the differences between those who were and were not rearrested as a 

function of the predictors in the model (i.e., discrimination). While most assessments of ROC 

curves are time independent, our analyses of AUC characteristics are evaluated per model at a 

variety of time points (6, 12, 24, & 36 months) by utilizing Heagerty and Zheng’s time-

dependent ROC curve function as found in the risksetROC package in R, version 3.60 (Heagerty 

& Zheng, 2005). This analysis yields an AUC per time point in order to evaluate each model’s 

ability to discriminate those who were and were not re-arrested across a series of time scales.  
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3.7 Chapter 3 Supplementary Materials 

Table 3.2 Regions with Significant rsFCs from the dACC Seed 
 

Location X y z  t-score Effect Size 

Frontal Lobe       

R Paracingulate Gyrus 7 37 23  24.94**** 5.26 

L Paracingulate Gyrus -6 37 21  11.80**** 2.49 

Frontal Medial Cortex 0 43 -19  -7.69**** -1.62 

L Central Opercular Cortex -48 -9 12  -6.80**** -1.43 

Subcallosal Cortex 0 21 -15  -5.59**** -1.18 

R Central Opercular Cortex 49 -6 11  -5.25**** -1.11 

L Frontal Orbital Cortex -30 24 -17  -5.03**** -1.06 

L Supplementary Motor Cortex -5 -3 56  -4.88**** -1.03 

R Superior Frontal Gyrus 15 18 57  4.86**** 1.02 

L Precentral Gyrus -34 -12 49  -4.79**** -1.01 

R Frontal Operculum Cortex 41 19 5  4.61*** 0.97 

L Inferior Frontal Gyrus -50 28 9  -3.80** -0.8 

R Middle Frontal Gyrus 39 19 43  3.52** 0.74 

R Supplementary Motor Cortex 6 -3 58  -3.33** -0.7 

R Inferior Frontal Gyrus 52 28 8  2.94** 0.62 

Temporal Lobe       

L Anterior Middle Temporal Gyrus -57 -4 -22  -8.65**** -1.82 

L Posterior Middle Temporal Gyrus -61 -27 -11  -6.36**** -1.34 

L Anterior Superior Temporal Gyrus -56 -4 -8  -5.76**** -1.21 

L Temporal Pole -41 11 -30  -5.66**** -1.19 

L Posterior Superior Temporal Gyrus -62 -30 4  -5.31**** -1.12 

L Temporooccipital Middle Temporal Gyrus -58 -53 1  -4.81**** -1.01 

L Heschl’s Gyrus -45 -20 7  -4.80**** -1.01 

L Planum Polare -47 -6 -7  -4.54*** -0.96 

R Temporal Pole 41 13 -30  -4.37*** -0.92 

L Planum Temporale -53 -30 11  -4.34*** -0.91 

R Heschl’s Gyrus 46 -17 7  -4.32*** -0.91 

R Anterior Middle Temporal Gyrus 58 -2 -25  -4.05*** -0.85 

R Planum Temporale 55 -25 12  -3.92*** -0.83 



64 

R Anterior Superior Temporal Gyrus 58 -1 -10  -3.70** -0.78 

R Planum Polare 48 -4 -7  -3.40** -0.72 

L Insular Cortex -36 14 -11  -3.04** -0.64 

L Amygdala -23 -5 -18  -3.00** -0.63 

Parietal Lobe       

L Postcentral Gyrus -38 -28 52  -6.01**** -1.27 

L Angular Gyrus -50 -56 30  -4.62*** -0.97 

R Postcentral Gyrus 38 -26 53  -4.47*** -0.94 

L Parietal Operculum Cortex -48 -32 20  -4.52*** -0.95 

R Parietal Operculum Cortex 49 -28 22  -4.31*** -0.91 

Precuneus 1 -59 38  -3.85*** -0.81 

R Posterior Supramarginal Gyrus 55 -40 34  3.64** 0.77 

Occipital Lobe       

L Superior Lateral Occipital Cortex -32 -73 38  -4.78**** -1.01 

R Inferior Lateral Occipital Cortex 46 -74 -2  -4.14*** -0.87 

L Inferior Lateral Occipital Cortex -45 -76 -2  -3.39** -0.71 

R Superior Lateral Occipital Cortex 33 -71 39  -3.07** -0.65 

Cerebellar       

R Cerebellum 10 26 -34 -41  -4.30*** -0.91 

R Cerebellum Crus 2 32 -69 -40  -4.10*** -0.86 

R Cerebellum Crus 1 38 -67 -30  -3.74** -0.79 

L Cerebellum 9 -11 -49 -46  -3.71** -0.78 

R Cerebellum 8 25 -56 -50  -3.62** -0.76 

L Cerebellum 10 -23 -34 -42  -3.47** -0.73 

L Cerebellum Crus 2 -29 -73 -38  -3.45** -0.73 

Vermis 8 1 -64 -34  -3.36** -0.71 

L Cerebellum Crus 1 -36 -66 -30  -3.35** -0.71 

R Cerebellum 6 24 -58 -25  -3.31** -0.7 

Vermis 10 0 -46 -32  -3.05** -0.64 

Vermis 6 1 -67 -16  -3.04** -0.64 

Vermis 9 1 -55 -35  -3.04** -0.64 

R Cerebellum 9 9 -50 -46  -3.02** -0.64 

Vermis 4 5 1 -52 -7  -2.93** -0.62 
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Summary of the t-scores extracted from resting state functional connectivity analysis for the total sample (n = 91) 

(FDR threshold: p < .01) . ****p .00001, ***p .0001, **p .001, **p .01, FDR > .01. Effect size is reported in the 

form of Cohen’s D. t(90). Regions are extracted from the Harvard-Oxford Atlas and the AAL Atlas.  

 

 

Figure 3.3 Visualization of Significant rsFCs from the dACC Seed  
Significant rsFCs from the dACC seed region (x = 3, y = 29, z = 28) tested at FDR threshold of < .01. Spheres 

indicate significantly functionally connected regions to the dACC seed, and colors and line breadth indicate strength 

of that rsFC.  
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Table 3.3 Effect of Individual Predictors on Rearrest 

   Bootstrapped Data   

Model B SE (B) B SE (B) P value exp[B] 

95% CI for 

exp[B] 

Non-Violent Crimes M. 

M.         

- Age at release -0.063 0.028 -0.063 0.031 .020* 0.939 0.888 - 0.992 

- PCL-R factor 1 score -0.015 0.075 -0.015 0.091 .842 0.985 0.850 - 1.141 

- PCL-R factor 2 score -4.023 1.165 -4.023 1.504 .002** 0.018 0.002 - 0.175 

- PCL-R factor interaction 0.295 0.322 0.295 0.388 .370 1.343 0.714 - 2.526 

- dACC Error Monit. -0.559 0.206 -0.559 0.216 .003** 0.572 0.382 - 0.856 

- dACC-Insula Conn.  -2.194 1.085 -2.194 1.307 .054 0.112 0.013 - 0.935 

Any Crimes M. M.        

- Age at release -0.047 0.022 -0.047 0.025 .039* 0.954 0.913 - 0.997 

- PCL-R factor 1 score -0.052 0.066 -0.052 0.083 .489 0.949 0.834 - 1.081 

- PCL-R factor 2 score -2.650 0.970 -2.650 1.218 .017* 0.071 0.011 - 0.473 

- PCL-R factor interaction 0.074 0.245 0.074 0.308 .778 1.077 0.666 - 1.742 

- dACC Error Monit. -0.471 0.183 -0.471 0.192 .007** 0.624 0.436 - 0.893 

- dACC-Insula Conn. -1.828 0.971 -1.828 1.257 .103 0.161 0.024 - 1.078 

 
Results of Cox regression multivariate analyses examining the predictive effect of the dACC-Insula functional 

connectivity and dACC error-monitoring activity (multimodal model: M.M.) on rearrest for non-violent crimes and 

any crimes controlling for covariates. Table reports unstandardized B, bootstrapped B, and relative risk ratio 

(exp[B]). All variables are mean centered.  *p < 0.05, ** p < 0.01, and *** p < 0.001. 

3.7.1 Supplemental Multimodal Analyses 

Additional analyses were conducted to test whether the rsFC between the dACC and 

Insula will exert an incremental effect above and beyond other previously examined 

neurobiological risk factors (i.e., task-based dACC error-monitoring activity) while controlling 

for clinical risk factors (Aharoni et al., 2013; Aharoni et al., 2014; Steele et al., 2015). Thus, we 

tested a multimodal model including: the offender’s release age, PCL-R Factor 1, PCL-R Factor 

2, their interaction, dACC error-monitoring activity, and the functional connectivity value 

between the dACC and L. Insula (see Table 3.3). This model was regressed onto time to rearrest 
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for a non-violent crime. A significant overall effect (p < .05) was obtained for the model. A 

younger age at release and a higher PCL-R Factor 210 were each significantly associated with 

days to non-violent rearrest (p = .020 & p = .002), as expected. Likewise, low dACC error-

monitoring activity was also associated with days to non-violent rearrest (p = .003), as 

previously shown (Aharoni et al., 2013; Aharoni et al., 2014; Steele et al., 2015). The functional 

connectivity between the dACC-Insula exhibited a marginal association with rearrest while 

controlling for these other risk factors (p = .054). 

The same model was then regressed onto time to rearrest for any crime. A significant 

overall effect (p < .05) was obtained for the model. As expected, age at release and the PCL-R 

Factor 2 were significantly associated with days to rearrest (p < .05). Low dACC error-

monitoring activity was also associated with days to rearrest (p = .007). The effect of the 

functional connectivity value between the dACC-Insula did not survive bootstrapping.  

 
10

 In order to normalize the distribution for PCL-R Factor 2 scores, a lg10 reflection transformation was used. Due 

to this transformation interpretation of Cox proportional-hazards beta-values and exp[B] are reversed: higher PCL-R 

Factor 2 scores are associated with a decreased time to rearrest.  
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Figure 3.4 ROC Analyses 
a) ROC curve and AUC statistics for Non-violent model with and without the dACC-Insula functional connectivity 

factor. b) ROC curve and AUC statistics for Non-violent model with dACC-Insula functional connectivity factor 

across four time periods.  

 

In order to assess the incremental utility offered by both neurobiological factors (dACC-

Insula rsFC & dACC error-monitoring activity) we analyzed the model’s area under the curve 

with and without the neurobiological variables for non-violent rearrest within a six-month time 

frame (see Figure 3.4a).11 In Figure 3.4a, the Non-Violent without rsFC and error-monitoring 

model yields a baseline AUC of .682, and an improved AUC of .748 when including the dACC-

Insula functional connectivity factor and error-monitoring activity. In Figure 3.4b, the Non-

Violent model including dACC-Insula functional connectivity factor and error-monitoring 

activity yields a relatively stable AUC for predictions within 6 to 24 months (ranging from .716 

to .751), and an AUC of .671 for predictions within 36 months. Overall, we find that models 

 
11

 Rearrest for any crimes was unanalyzed, due to null cox-regression results for rsFC within the multimodal model.  
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predicting non-violent rearrest incrementally benefit from the inclusion of theoretically relevant 

multimodal neurobiological data.  

Table 3.4 Two-Tailed Correlations Analyses (n = 91) 

 
Note: STAI state and trait measures are presented separately for analysis. False alarm rate entails the offender’s rate 

of error commission during the Go/NoGo task presented in the M.M. analyses, and Insula & dACC measures 

represent the error monitoring activity within these ROIs. *p < 0.05, **p < 0.01, and ***p < 0.001. 
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4.1 Abstract 

Published studies (Aharoni et al., 2013; Aharoni et al., 2014; Steele et al., 2015) reported 

evidence that error-monitoring activity in the dorsal anterior cingulate cortex (dACC) 

significantly improved predictions of subsequent rearrest for a non-violent felony among male 

offenders (n = 96) from the Mind Adult Offender Cohort (MAO-C). This chapter reports an out-

of-sample replication and extension of the Aharoni et al. (2014) model in a large subset of male 

and female violent and non-violent offenders (n = 538) from the same longitudinal cohort. 

Modest support for the predictive utility of error-monitoring activity in the dACC was found for 

predictions of rearrest for felonies in women and violent felonies in men, replicating aspects of 

the previous studies. The dACC’s utility in predictions of non-violent rearrest in men were not 

successfully replicated. Implications for future research and clinical and forensic risk assessment 

are discussed.  

4.2 Introduction 

Understanding the factors driving repeated, impulsive antisocial behavior is essential for 

the effective treatment of such behavior. One criterion for evaluating the strength of a given 

explanation is the extent to which it predicts outcomes. Previously published functional magnetic 

resonance imaging (fMRI) studies found that individual differences in limbic function improved 

predictions of rearrest in a sample of 96 male criminal offenders (Aharoni et al., 2013; Aharoni 

et al., 2014; Steele et al., 2015). The gold standard for evaluating the external validity of any 

prediction model is to test the model in an independent sample, known as out-of-sample 

validation (Poldrack, Huckins, & Varoquaux, 2020). Here we extend previous research (Aharoni 

et al., 2013; Aharoni et al., 2014; Steele et al., 2015) by testing the incremental predictive effect 
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of the dACC’s error-monitoring activity in a large independent validation sample a large subset 

of male and female offenders (n = 538) from the Mind Adult Offender Cohort (MAO-C). 

A large sample affords the opportunity to conduct fine-grained analyses, including 

prediction of violent crime and gender differences. Previous studies focused on a region of the 

brain known as the dorsal anterior cingulate cortex (dACC)—an area associated with inhibition, 

error-monitoring, and response selection (Holroyd & Coles, 2002; Kiehl, Liddle, & Hopfinger, 

2000; Kosson et al., 2006; Mathalon, Whitfield, & Ford, 2003; Van Veen & Carter, 2002). 

Although this region of interest was originally developed from a mixed sample of males and 

females (Steele et al., 2014), existing tests of the predictive utility of that model have only been 

reported in men (Aharoni et al., 2013; Aharoni et al., 2014; Steele et al., 2015). Testing potential 

gender differences is important because functional differences in this brain region have been 

observed for the same behavioral outcome (see Weafer, 2020 for a comprehensive review on the 

matter). For example, Liu and colleagues (2012) found that scores on particular trait impulsivity 

measures were associated with different brain activation profiles for men and women, and they 

even found gender differences in brain activation for the same behavioral task accuracy, 

suggesting that different neural mechanisms may underlie impulse control behavior in men and 

women. 

This study marks the first attempt to test such effects in an out-of-sample replication and 

extension of the Aharoni et al. error-monitoring model (2014), based on a dataset from 102 

healthy adults (though see Zijlmans et al., 2021 for null univariate tests of dACC error-

monitoring on rearrest). As in previous studies, error-monitoring activity was captured via a 

classic Go/NoGo designed to test one’s ability to inhibit prepotent motor responses—and was 

defined as the contrast between commission errors versus correct hits. Our predictions were that 
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for non-violent and violent crimes in both men and women, (1) the dACC will exert an 

incremental predictive effect above and beyond other established risk factors12, and (2) a 

multivariate model that includes the dACC will predict better than models without the dACC. 

4.3 Results 

4.3.1 Group Level Neuroimaging Analysis 

Activation differences between commission errors and correct hits were extracted from 

an a priori defined 14 mm radius sphere (Steele et al., 2014) centered around the seed coordinate 

in the ACC (x = -3, y = 24, z = 33: See Figure 4.1a for seed coordinate and Figure 4.1b for group 

level activation map) in the form of a mean β-values for each participant via the MarsBaRs 

plugin for SPM (Brett, Anton, Valabregue, & Poline, 2002). Likewise, a group level analysis of 

32 ROIs was conducted in order to assess the reliability of error-monitoring activation compared 

to previous literature (Steele et al., 2014: see Tables 4.2, 4.3 for full replication of regional 

activations in men and women, separated).  

 

 

 
12

 Established risk factors include Hare’s revised Psychopathy Checklist (PCL-R) Factor 1, PCL-R Factor 2, the 

interaction of Factor 1 and 2, and release age (Aharoni et al., 2014; Hare & Neumann, 2008). See Covariate Risk 

Assessment section for more information.  
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Figure 4.1 dACC Region of Interest and Group Level Error-Monitoring Activity 

A) A priori region of interest (red) for hemodynamic response to commission errors vs. correct 

hits in the dACC from a Go/NoGo task with an independent sample of 102 healthy adult 

nonoffenders; peak voxel x = −3, y = 24, z = 33 (Steele et al., 2014). B) Mean hemodynamic 

response change in offender sample (n = 538) during commission errors vs. correct hits from 

axial view. Peak activation located at x = 3, y = 26, z = 31, within the ACC (threshold: t > 16).   

4.3.2 Survival Analysis  

A multivariate Cox proportional-hazards regression was used to examine the shared and 

unique influence of the dACC among other predefined risk factors (release age, PCL-R factor 1, 

PCL-R factor 2, and PCL-R factor interaction) on days to rearrest for general felony, non-violent 

felony, and violent felonies in men and women within a 4-year follow-up window (see Table 
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4.1). Predefined risk factors were entered into the regression in the first step, to assess whether 

the dACC exerted significant influence on the model after controlling for the other variables of 

interest.13 

Table 4.1 Effect of Individual Predictors on Rearrest 
 Unadjusted Hazards  Adjusted Hazards 

Model/Predictor B (SE) P value exp[B] (CI)  B (SE) P value exp[B] (CI) 

Felony Rearrest in Men (n = 213, 93 

rearrests)        

- Age at release -0.027 (0.010) .007** 0.973 (0.954 - 0.993)  -0.025 (0.011) .024* 0.975 (0.954 - 0.997) 

- PCL-R factor 1 score 0.077 (0.030) .010* 1.080 (1.019 - 1.145)  0.339 (0.151) .025* 1.404 (1.044 - 1.889) 

- PCL-R factor 2 score 0.097 (0.030) .001** 1.102 (1.038 - 1.170)  0.170 (0.070) .015* 1.186 (1.033 - 1.361) 

- PCL-R factor interaction 0.005 (0.002) .004** 1.005 (1.002 - 1.008)  -0.020 (0.010) .052 0.980 (0.960 - 1.000) 

- dACC -0.034 (0.118) .772 .966 (0.766 - 1.218)  -0.137 (0.122) .262 0.872 (0.687 - 1.108) 

Non-Violent Felony Rearrest in Men 

(n = 183, 63 rearrests)        

- Age at release -0.022 (0.012) .067 0.979 (0.956 - 1.002)  -0.024 (0.013) .072 0.977 (0.952 - 1.002) 

- PCL-R factor 1 score 0.075 (0.036) .037* 1.077 (1.004 - 1.156)  0.303 (0.177) .086 1.354 (0.958 - 1.914) 

- PCL-R factor 2 score 0.073 (0.035) .039* 1.076 (1.004 - 1.153)  0.118 (0.079) .136 1.125 (0.963 - 1.315) 

- PCL-R factor interaction 0.004 (0.002) .038* 1.004 (1.000 - 1.008)  -0.017 (0.012) .173 0.984 (0.960 - 1.007) 

- dACC -0.100 (0.149) .503 0.905 (0.676 - 1.212)  -0.215 (0.153) .161 0.807 (0.598 - 1.089) 

Violent Felony Rearrest in Men (n = 

201, 42 rearrests)        

- Age at release -0.048 (0.017) .007** 0.954 (0.921 - 0.987)  -0.045 (0.019) .021* 0.956 (0.921 - 0.983) 

- PCL-R factor 1 score 0.097 (0.042) .022* 1.101 (1.014 - 1.196)  0.607 (0.243) .012* 1.835 (1.140 - 2.954) 

- PCL-R factor 2 score 0.174 (0.049) <.001*** 1.191 (1.081 - 1.311)  0.390 (0.130) .003** 1.477 (1.145 - 1.905) 

- PCL-R factor interaction 0.006 (0.002) .005** 1.006 (1.002 - 1.011)  -0.039 (0.016) .018* 0.962 (0.932 - 0.993) 

- dACC 0.051 (0.169) .761 1.053 (0.756 - 1.465)  -.101 (0.173) .566 0.904 (0.641 - 1.276) 

Felony Rearrest in Women (n = 248, 

75 rearrests)        

- Age at release -0.049 (0.016) .003** 0.952 (0.922 - 0.983)  -0.041 (0.017) .016* 0.960 (0.928 - 0.992) 

- PCL-R factor 1 score -0.016 (0.046) .727 0.984 (0.900 - 1.077)  0.000 (0.218) .998 1.000 (0.653 - 1.533) 

- PCL-R factor 2 score 0.125 (0.034) <.001*** 1.113 (1.060 - 1.211)  0.190 (0.069) .006** 1.209 (1.055 - 1.385) 

- PCL-R factor interaction 0.002 (0.003) .413 1.002 (0.997 - 1.007)  -0.009 (0.015) .533 0.991 (0.962 - 1.020) 

- dACC 0.190 (0.140) .173 1.210 (0.920 - 1.590)  0.193 (0.146) .184 1.213 (0.912 - 1.614) 

Non-Violent Felony Rearrest in 

Women (n = 236, 63 rearrests)        

- Age at release -0.057 (0.018) .002** 0.944 (0.912 - 0.979)  -0.051 (0.019) .007** 0.950 (0.915 - 0.986) 

- PCL-R factor 1 score -0.027 (0.050) .588 0.973 (0.882 - 1.074)  0.033 (0.247) .894 1.033 (0.637 - 1.676) 

- PCL-R factor 2 score 0.132 (0.037) <.001*** 1.141 (1.061 - 1.228)  0.213 (0.078) .007** 1.237 (1.061 - 1.442) 

- PCL-R factor interaction 0.002 (0.003) .548 1.002 (0.996 - 1.007)  -0.013 (0.017) .454 0.987 (0.955 - 1.021) 

- dACC 0.293 (0.150) .051 1.340 (0.999 - 1.799)  0.213 (0.157) .046* 1.367 (1.005 - 1.858) 

Violent Felony Rearrest in Women (n 

= 185, 12 rearrests)        

  

Results of Cox regression analyses examining the predictive effect of the dACC on felony rearrest, non-violent 

felony rearrest, and violent felony rearrest within a four-year window (due to low power, analyses regarding violent 

 
13

 Due to our primary interest in the full multivariate model reported results focus on multivariate metrics. 
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rearrest in women are excluded). Unadjusted hazard values reflect univariate analyses, and adjusted hazard values 

reflect multivariate analyses including all variables of interest. All variables are mean centered, and reported effects 

are one-tailed. Table reports unstandardized B and relative risk ratio (exp[B]). *p < 0.05, **p < 0.01, and ***p < 

0.001. 

4.3.2.1 Neurobiologically Informed Risk Assessment of Felony Rearrest 

To test our primary hypothesis (that the dACC will exert an incremental effect above and 

beyond other established risk factors in the prediction of general felony rearrest), we tested the 

Aharoni et al. (2014) model—henceforth referred to as the error-monitoring model—including 

previously defined risk factors: 1) the offender’s release age, PCL-R factor 1, PCL-R factor 2, 

their interaction, and the dACC’s mean β-values for commission error versus correct hit trials in 

the male sample, n = 213. A significant overall effect (p < .05) was obtained for the model. 

Within the model, as expected, age at release, PCL-R Factor 1, and PCL-R factor 2 were each 

significantly associated with days to general felony rearrest (ps < .05), with lower age at release 

and higher PCL-R scores associated with felony rearrest. Additionally, the PCL-R Factor 1 & 2 

interaction was marginally significant in its association with rearrest (p = .052). However, dACC 

activity did not exhibit a significant association with felony rearrest above and beyond the other 

factors in the model, contrary to expectation (see Table 4.1). 

The same methods were applied to a female sample, n = 248. A significant overall effect 

(p < .05) was obtained, driven by age at release and PCL-R Factor 2 (ps < .05), as expected. As 

in the male sample, dACC activity did not exhibit a significant association with felony rearrest 

(see Table 4.1: though see Table 4.4 for marginal effects of the dACC on long-term risk of 

felony rearrest).  

4.3.2.2  Neurobiologically Informed Risk Assessment of Non-Violent Rearrest 

To test our primary hypothesis (that the dACC will exert an incremental effect above and 

beyond other established risk factors in the prediction of non-violent rearrest), we regressed the 
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error-monitoring model on non-violent rearrest in the male sample (n = 183). A significant 

overall effect (p < .05) was obtained, driven by marginal effects of age at release and PCL-R 

Factor 1 (ps < .1). dACC activity, again, did not exhibit a significant association with non-violent 

rearrest (see Table 4.1). 

For the same analysis within the female sample, n = 236, a significant overall effect (p < 

.05) was obtained for the model. Within the model, as expected, age at release and PCL-R factor 

2 were each significantly associated with days to non-violent rearrest (ps = .007). In women, 

dACC activity exhibited a significant association with non-violent felony rearrest above and 

beyond these other risk factors. For every one unit increase in dACC activity, there was a 0.72 

increase in the probability of rearrest for a non-violent crime (p = .046) (see Table 4.1; see Table 

4.4 for significant effects of the dACC on long-term risk of non-violent felony rearrest).  

4.3.2.3 Neurobiologically Informed Risk Assessment of Violent Rearrest 

To test our primary hypothesis (that the dACC will exert an incremental effect above and 

beyond other established risk factors in the prediction of violent rearrest), we regressed the error-

monitoring model onto time to rearrest for a violent crime in the male sample, n = 201.14 A 

significant overall effect (p < .05) was obtained for the model. Within the model, age at release, 

PCL-R Factor 1, Factor 2, and their interaction were each significantly associated with days to 

violent rearrest (ps < .05). Contrary to our prediction, dACC activity did not exhibit association 

with violent rearrest above and beyond the other factors in the model (see Table 4.1: though see 

Table 4.4 for marginal effects of the dACC on long-term risk of violent rearrest). 
 

 
14 Due to insufficient power, analyses on violent rearrest in women are not explored. 
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4.3.3 Does the Inclusion of Neurobiological Error-Monitoring Information Increase 

the Accuracy of Statistical Models in Predicting Rearrest in Women? 

The receiver operating characteristic (ROC) curve is a direct way to test a model’s 

accuracy—indicating the true positive (sensitivity) and false positive (1 - specificity) ratio of a 

model. An area under the curve (AUC) analysis was conducted to discriminate between those 

women and men rearrested and not rearrested as functions of the error-monitoring model with 

and without inclusion of neurobiological error-monitoring activity.  

In order to test our secondary hypothesis (that a multivariate model that includes the 

dACC will outperform one that doesn't), we fitted the error-monitoring model with and without 

dACC ROI data at a six-month time point for non-violent felony rearrest in women. The Non-

Violent (Women) without dACC model reports an AUC of .681, and an improved AUC of .695 

when including the dACC factor. The accuracy of the model was found to be relatively stable 

over a span of 6 months to three years (with values ranging from .695 - .699).  

Overall, we find that the Non-Violent (Women) model incrementally benefits from the 

inclusion of brain-based error-monitoring activity.15 

4.4 Discussion 

The present project represents an out-of-sample validation and extension of the Aharoni 

et al. (2014) error-monitoring model using a large subset of the MAO-C. Our results demonstrate 

modest improvement in the prediction of later rearrest for felony offenses in women, and long-

term risks of violent rearrests in men, using a predefined index of functional brain activation in 

the dACC—a region previously implicated in error-monitoring, inhibition, and impulsivity 

 
15 Modest long-term effects of error-monitoring activity for felony rearrest in women and violent felony rearrest in 

men are excluded from ROC analyses.  
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(Bastin et al., 2017; Kiehl, Liddle, & Hopfinger, 2000; Orr & Hester, 2012; Spunt, Liberman, 

Cohen, & Eisenberger, 2012; Steele et al., 2014). Likewise, our results uphold previous findings 

in the literature, underscoring the importance of an offender’s age at release and antisocial 

lifestyle score (PCL-R Factor 2) for predicting subsequent rearrest (Eisenbarth, Osterheider, 

Nedopil, & Stadtland, 2012; Huebner, DeJong, & Cobbina, 2010).  

Previous attempts to test neurobiologically informed risk models for rearrest have been 

limited by the use of relatively small samples (by actuarial standards) leaving them unable to test 

the out-of-sample utility of the models more generally (Aharoni et al., 2013; Aharoni et al., 

2014; Delfin et al., 2019; Steele et al., 2015; Zijlmans et al., 2021). Likewise, these same 

samples have been comprised of all (Aharoni et al., 2013 & Aharoni et al., 2014: n = 96; 

Zijlmans et al., 2021: n = 127) or mostly (Delfin et al., 2019: n = 44, 39 males) male subjects, 

leaving the generalizability of these models in women an open question.  The present study 

addressed these problems, by conducting the largest (n = 538), to our knowledge, out-of-sample 

test of the error-monitoring model in independent samples of both women and men, and for non-

violent and violent offenses. To our knowledge, the present study is the first in the literature to 

demonstrate the value of impulsivity related neurobiological activity for the prediction of non-

violent rearrest in women, and for long-term risk of violent rearrest in men.  

Overall, our positive results corroborate previous literature demonstrating that 

theoretically-relevant measurements of functional brain activity may improve accuracy of risk 

models designed to predict antisocial outcomes (Aharoni et al., 2013; Aharoni et al., 2014; 

Camchong, Stenger, & Fein, 2012; Delfin et al., 2019; Janes et al., 2010; Pardini, Raine, 

Erickson, & Loeber, 2014; Paulus, Tapert, & Schuckit, 2005; Sinha & Li, 2007; Steele et al., 

2014; Steele et al., 2015; Steele et al., 2016; Zijlmans et al., 2021).  
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Our results also reinforce previous research suggesting the importance of paralimbic 

dysfunction as a mediator between cognitive control and antisocial behavior (Kiehl, 2006), as 

well as gender differences in the relationship between these paralimbic substrates and behavioral 

outcomes (Liu et al., 2012).  

4.4.1 Limitations and Future Directions 

Though our results provide modest support for the predictive utility of limbic activity for 

antisocial behaviors, we caution against overinterpretation due to the presence of null effects and 

directional sex differences. Criminal behavior is the result of a complex interaction of factors, 

including innumerable environmental and psychological variables (Aharoni et al., 2019; Allen & 

Aharoni, 2021). For this reason, it is striking that this study observed incremental predictive 

utility of the dACC in an independent sample. Still, the observed effects were modest, raising a 

demand to examine more complex models that better capture the variety of factors expected to 

contribute to different types of persistent antisocial behavior 

Similarly, though prior research has suggested that increased engagement of error-

monitoring processes has a protective effect for non-violent rearrest in men (Aharoni et al., 2013; 

Aharoni et al., 2014), our results suggest the inverse for women: lower error-monitoring neural 

activity had a protective effect for non-violent rearrest. Notably, previous research utilizing the 

same Go/NoGo task has demonstrated not only sex differences in limbic activations during error-

monitoring, but also sex differences in the relationship between those activations and other 

impulsivity measures (Liu, Zubieta, & Heitzeg, 2012). Thus, more work is needed to understand 

sex-specific risk factors for antisocial behavior (Greiner, Law, & Brown, 2014; Olson, Stalans, & 

Escobar, 2015; Poels, 2007).  
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Caution is also warranted from a legal and ethical standpoint. Using evidence-based risk 

assessment techniques for “lower stake” decisions, such as treatment and early grant parole, has 

shown relative success in increasing treatment-program success and reducing antisocial behavior 

(Aos, Miller, & Drake, 2006; Andrews, 2006; MacKenzie, 2006; Taxman, 2002). However, 

using risk assessment techniques in ways that may conflict with a criminal offender’s own 

interests is controversial (Starr, 2014). Whether the use of neurobiological information presents 

any unique concerns above and beyond traditional behavioral risk factors is the subject of a small 

but important body of literature (see Aharoni, Abdulla, Allen, & Nadelhoffer, in press; 

Focquaert, 2019; Jurjako, Malatesti, & Brazil, 2019; Nadelhoffer et al., 2012). Ultimately, even 

if brain-based risk assessments demonstrably improve upon traditional risk assessment 

techniques, this does not necessarily mean that they ought to be utilized in legal decision making. 

Instead, the potential success of brain-based models for risk assessment should highlight the 

importance of continued discussion about the ethical and legal standards required for their 

various uses (Aharoni et al., in press).  

Outside of the legal domain, research regarding neurobiologically informed risk 

assessment serves a critical basic research function by providing a way of testing causal 

relationships between brain and behavior. These causal mechanisms could prove useful in 

identifying potential behavioral interventions that may be beneficial in curbing antisocial 

behavior. Indeed, previous research has suggested that technologies such as transcranial direct 

current stimulation (tDCS) can be utilized to reduce self-reported aggression and even aggressive 

criminal intentions (Molero-Chamizo et al., 2019; Choy, Raine, & Hamilton, 2018). While these 

tDCS studies report encouraging results, clinical interventions such as these must meet high 
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standards of reliability and validity, and often warrant caution from ethical and legal standpoints 

as well (Large & Neilssen, 2017).  

The present study provides an important out-of-sample validation and extension of 

previous research on the neuroprediction of rearrest (Aharoni et al., 2013; Aharoni et al., 2014; 

Steele et al., 2014; Steele et al., 2015). Still, much work remains to be done to determine whether 

the predictive utility of limbic activity for antisocial behavior will ever reach high enough 

standards to warrant the use of neurobiologically informed risk assessment technology. Follow 

up research should employ machine learning techniques in order to uncover other potential 

neurobiologically based metrics that may be helpful in the prediction of antisocial behavior, 

including, but not limited to sex-specific and crime-specific models. Until then, hypothesis-based 

neuropredictive modeling remains a helpful tool for testing potential causal mechanisms thought 

to mediate antisocial tendencies (Allen & Aharoni, in press).  

4.5 Methods 

4.5.1 Participants  

Participants were 538 offenders (46% female) ranging in age from 15 to 63 y (M = 32.95, 

SD = 9.68). Approximately 8% were left-hand–dominant. Based on National Institutes of Health 

racial and ethnic classification, 80.3% of the sample self-identified as white, 7.6% as 

black/African American, 7.6% as American Indian, 3.3% as mixed/other, 58.9% as Hispanic, 

and 3% chose not to respond. 

All 538 participants were part of the MAO-C and were determined to have minimal or no 

history of traumatic brain injury (as defined by a loss of consciousness for longer than 30 

minutes), no lifetime history of a psychotic disorder, and had an estimated general IQ of greater 

than 65 (as estimated by the vocabulary and matrix reasoning subscales of the Wechsler Adult 
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Intelligence Scale; see Ryan & Ward, 1999). Participants reported having normal hearing, and 

visual acuity was normal or corrected to normal with the use of contact lenses or MRI 

compatible glasses. Participants were paid an hourly rate commensurate with standard pay for 

work assignments at their facility. Participants completed a number of psychological and 

behavioral assessment measures and an fMRI-based inhibition task using the Mind Research 

Network’s Mobile MRI system before release from one of two New Mexico state correctional 

facilities. After being released, the participants in the validation sample were tracked from 2007 

to 2017, and the average follow-up period was 60.6 mo. Participants provided written informed 

consent in protocols approved by the institutional review board of the University of New Mexico 

and by the Independent Review (E&I) Services for the Mind Research Network. 

4.5.2 Behavioral Task 

Behavioral impulsivity was measured during fMRI using the Go/NoGo task. The task, 

modeled after the work of Kiehl et al. (2000), presents participants with a frequently occurring 

target (the letter “X”; occurrence probability, 0.84) interleaved with a less-frequent distracter (the 

letter “K”; occurrence probability, 0.16) on a computer screen. Participants were instructed to 

depress a button with their right index finger as quickly and accurately as possible whenever they 

saw the target (the “go” stimulus) and not when they saw the distractor (the “no-go” stimulus). 

Because targets are more frequent than distracters in this task, a prepotent response toward the 

targets is elicited. When a distractor is presented, participants are required to inhibit their button 

response, which increases the rate of commission errors. Successful performance on this task 

requires the ability to monitor error-related conflicts and to selectively inhibit the prepotent go 

response on cue. Before scanning, participants completed a brief practice session of ∼10 trials. 
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4.5.3 Experimental Design 

The present fMRI study relied on a previously established set of coordinates to constrain 

the second level analysis within the present sample (Steele et al., 2014). All extracted imaging 

data used for the ROI constrained analysis within the sample are included in Dataset S1 in the 

form of an average β-values for each subject. Dataset S1 also includes PCL-R scores, their 

interaction term, and the offender’s age at release. 

The experimental design used on all participants was adopted from Kiehl et al. (2000) 

and is identical to that of Aharoni et al.’s (2013). Two scanning runs, each composed of 246 

visual stimuli, were presented to participants using Presentation, a computer-controlled visual 

and auditory software (Neurobehavioral Systems). Stimuli were displayed on a rear-projection 

screen mounted at the rear entrance to the magnet bore and subtended a visual angle of ∼3 × 

3.5°. Each stimulus appeared for 250 ms in white text within a continuously displayed 

rectangular fixation box. Participants viewed the screen by means of a mirror system attached to 

the head coil. 

The stimulus onset asynchrony (SOA) between go stimuli varied pseudorandomly among 

1,000, 2,000, and 3,000 ms, subject to the constraint that three go stimuli were presented within 

each consecutive 6-s period. The no-go stimuli were interspersed among the go stimuli in a 

pseudorandom manner subject to three constraints: the minimum SOA between a go and a no-go 

stimulus was 1,000 ms; the SOA between successive no-go stimuli was in the range of 10 ± 15 s; 

and no-go stimuli had an equal likelihood of occurring at 0, 500, or 1,000 ms after the beginning 

of a 1.5-s acquisition period. By jittering stimulus presentation relative to the acquisition time, 

the hemodynamic response to the stimuli of interest was sampled effectively at 500-ms intervals. 
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Behavioral responses were recorded by using a MRI-compatible fiberoptic response 

device—created by Lightwave Medical—that is commercially available. Correct hits were 

defined as go (i.e., X-stimuli) events that were followed by a button press within 1,000 ms of 

stimulus onset. Correct rejections were defined by an absence of a motor response within 1,000 

ms of the no-go stimulus. Commission errors were defined as the presence of a response within 

1,000 ms of the onset of a no-go stimulus. 

4.5.4 Image Acquisition 

MRI acquisition parameters were identical to those discussed in Aharoni et al. (2013) and 

will only briefly be described here. Images were collected with a mobile Siemens 1.5-T Avanto 

system with advanced SQ gradients (max slew rate, 200T/m/s; 346 T/m/s vector summation, rise 

time 200 μs) equipped with a 12-element head coil. The echoplanar image gradient-echo pulse 

sequence (repetition/echo times, 2,000/39 ms; flip angle, 75°; field of view, 24 × 24 cm; 64 × 64 

matrix; 3.4 × 3.4-mm in-plane resolution; 5-mm slice thickness; 30 slices) effectively covers the 

entire brain (150 mm) in 2,000 ms. Head motion was limited by using padding and restraint.  

4.5.5 Preprocessing 

Functional images were reconstructed offline at 16-bit resolution and manually reoriented 

to approximately the anterior commissure/posterior commissure plane. Functional images were 

spatially normalized to the Montreal Neurological Institute template via EPInorm (an affine 

transform followed by a nonlinear registration of the EPI image to an EPI template in standard 

space) and spatially smoothed (12mm full-width half maximum) in SPM12. High frequency 

noise was removed by using a low-pass filter (cutoff, 128s). The functional images were 

despiked using ArtRepair and motion corrected using InRialign—a motion correction procedure 

unbiased by local signal change (Freire, Roche, & Mangin, 2002).  
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4.5.6 Individual and Group Level Analysis 

As in Aharoni et al. (2013), response types (correct hits and commission errors) were 

modeled as separate events. Event-related responses were modeled using a synthetic 

hemodynamic response function composed of two gamma functions. The first gamma function 

modeled the hemodynamic response using a peak latency of 6 s. A term proportional to the 

derivative of this gamma function was included to allow for small variations in peak latency. The 

second gamma function and associated derivative was used to model the small “overshoot” of 

the hemodynamic response on recovery. A latency variation amplitude-correction method was 

used to provide a more accurate estimate of hemodynamic response for each condition that 

controlled for differences between slices in timing and variation across regions in the latency of 

the hemodynamic response (Calhoun et al., 2004). 

Individual runs were modeled together at first level of analysis, and functional images 

were computed for each participant that represented hemodynamic responses associated with 

commission errors and correct hits. General linear models included regressors to model motion 

(six parameters).  

Activation differences between commission errors and correct hits were extracted from 

an a priori defined 14 mm radius sphere (Steele et al., 2014) centered around the seed coordinate 

in the ACC (x = -3, y = 24, z = 33: See Figure 4.1a for seed coordinate and Figure 4.1b for group 

level activation map) in the form of a mean β-values for each participant via the MarsBaRs 

plugin for SPM (Brett, Anton, Valabregue, & Poline, 2002). 

4.5.7 Covariate Risk Assessment 

Data from additional risk factors (Hare’s PCL-R and the offender’s age at release) were 

obtained to examine the incremental predictive validity provided by the established ROIs. These 
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additional variables have been previously found to predict antisocial behavior in offender 

populations (Aharoni et al., 2014; Olver & Wong, 2015). Scores from the Hare PCL-R—a 

semistructured interview and archival analysis which assesses psychopathy in incarcerated, 

forensic, psychiatric, and normal populations—were included as primary risk factors. These 

assessments were conducted by trained raters with high interrater reliability (ICC: .93). Eight 

percent (1% Female) of the sample (n = 538; Mean, 20.24; SD, 6.70) met the pre-established 

criteria for a diagnosis of psychopathy (score of ≥ 30). The PCL-R further splits into two 

separate clusters of traits: factor 1 includes interpersonal/affective traits (such as glibness and 

lack of empathy) and factor 2 includes antisocial behavioral traits (such as impulsivity and early 

behavioral problems). In cases where appropriate, PCL-R Factor scores were substituted with 

PCL-YV scores (the corresponding youth version of the PCL-R, with all individual items and 

their corresponding factors mirroring those of the PCL-R).16 As in Aharoni et al. (2014), these 

factors are entered individually into the overall predictive models sans a total PCL-R score (due 

to issues of collinearity).  

Additional exploratory correlational analyses were also conducted with the following 

variables (see Tables 4.5, 4.6): the offender’s estimated IQ, their alcohol/drug dependency (as 

assessed from the Structured Clinical Interview for the DSM (SCID) via determinations of 

lifetime abuse or dependence (scoring: 0 = no lifetime abuse/dependence, 1 = lifetime abuse, and 

2 = lifetime dependence),17 their State-Trait Anxiety Inventory score (STAI: Spielberger et al., 

1983), and The Barratt Impulsiveness Scale with three subscales measuring attentional 

impulsivity, motor impulsivity, and non-planning impulsivity (BIS-11; Patton et al., 1995). 

 
16

  PCL-YV scores were used for 70 of the men in our sample. Results excluding PCL-YV scores did not differ in 

results and trends.  
17

 Scoring for drug abuse/dependence is computed via an averaging across abuse/dependence in the following 

individual drug classes: sedatives, cannabis, stimulants, opioids, cocaine, and hallucinogens. 
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4.5.8 Follow-Up Procedure 

Rearrest data, including arrest date and offense type, were obtained by the Center for 

Science & Law, which conducted state and county criminal searches following each participant’s 

release date. Approximately 47.2% of the sample was rearrested at least once for a felony 

between their release date (ranging from 2007 to 2017) and their follow-up date (August, 2019). 

In line with previous predictive modeling, minor parole and probation violations were excluded 

from analysis, and the remaining offenses were further classified as violent or nonviolent when 

warranted. A larger portion of the sample was rearrested for nonviolent offenses (38.1%; 43.0% 

of males and 34.3% of females) than for violent offenses (20.1%; 27.1% of males and 11.7% of 

females). For primary cox-hazard analyses (Table 4.1) those first arrested for violent offenses 

were excluded from nonviolent rearrest analyses and those first rearrested for non-violent 

rearrest were excluded from violent rearrest analyses. Supplementary analyses (Table 4.4) for 

long term risk analyses without a four-year follow-up window did not utilize further group 

exclusions in order to maximize power. New violent rearrest data from the previously studied 

subset of the MAO-C (Aharoni et al., 2013; Aharoni et al., 2014; Steele et al., 2015) were also 

included in analyses.  

4.5.9 Analytic Strategy 

The primary hypothesis was evaluated by using Cox proportional-hazards regression. A 

Cox regression is a semiparametric test that investigates the effect of variables of interest on the 

time it takes for an event to happen—in this case, rearrest—while also estimating time courses of 

those that have yet to reach that event (censored cases). The dependent variable is the proportion 

of cases surviving the event (the cumulative survival function). In order to interpret the effect of 

individual variables on the cumulative survival function, hazard ratios (i.e., exp[B]) are 
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computed. These hazard ratios characterize an individual’s relative odds of reaching the event for 

every one unit change in the risk factor (e.g., error-monitoring brain activity), while controlling 

for other covariates. 

The secondary hypothesis was evaluated by using receiver operating characteristic (ROC) 

curves which describe the differences between those who were and were not rearrested as a 

function of the predictors in the model (i.e., discrimination). While most assessments of ROC 

curves are time independent, our analyses of AUC characteristics are evaluated per model at a 

variety of time points (6, 12, 24, & 36 months) by utilizing Heagerty and Zheng’s time-

dependent ROC curve function as found in the risksetROC package in R, version 3.60 

(Heaegerty & Zheng, 2005). This analysis yields an AUC per time point in order to evaluate each 

model’s ability to discriminate those who were and were not re-arrested across a series of time 

scales.  
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4.7 Chapter 4 Supplementary Materials 

Table 4.2 Areas of Error-Monitoring Activation in Men: Replication of Steele et al., 2014 

 Location t-score x y z BA 

 Frontal Lobe      

1 R Superior Frontal Gyrus 19.78**** 9 18 66 6 
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2 R Superior Frontal Gyrus 15.99**** 24 54 30 10 

3 L Superior Frontal Gyrus 17.17**** -27 54 30 10 

4 R Inferior Frontal Gyrus 26.19**** 36 18 -15 47 

5 L Inferior Frontal Gyrus 25.89**** -36 15 -12 47 

6 R Precentral Gyrus 11.28**** 48 -9 36 6 

7 L Precentral Gyrus 12.44**** -51 -12 33 4 

8 L Anterior Cingulate Cortex 26.33**** -3 24 33 24 

9 L Anterior Cingulate Cortex 16.16**** 0 -12 42 24 

10 R Anterior Cingulate Cortex 24.38**** 6 33 12 24 

11 Bi Anterior Frontal Cortex 26.19/25.89**** ±36 15 0 11 

 Temporal Lobe      

12 L Superior Temporal Gyrus 17.96**** -63 -51 18 22 

13 R Middle Temporal Gyrus 14.23**** 54 -33 -6 21 

14 L Middle Temporal Gyrus 11.05**** -54 -30 -9 21 

 Parietal Lobe      

15 L Inferior Parietal Lobule 19.10**** -63 -45 30 40 

16 R Inferior Parietal Lobule 18.73**** 63 -42 30 40 

 Occipital Lobe      

17 L Middle Occipital Gyrus 5.82*** -42 -87 -12 18 

18 L Middle Occipital Gyrus 6.95**** -45 -81 -12 18 

19 L Inferior Occipital Gyrus 5.04** -36 -93 -9 18 

20 L Inferior Occipital Gyrus 4.40* -33 -96 -6 18 

21 R Fusiform 8.13**** 45 -75 -18 18 

22 R Precuneus 15.76**** 6 -75 42 19 

23 L Cuneus 14.78**** -12 -72 6 7 

24 R Inferior Occipital Gyrus 5.26** 42 -87 -9 30 

25 R Cuneus/Lingual Gyrus 15.21**** 15 -66 3 18 

26 Intrahemishperic 14.08**** 0 -54 60 18 

 Subcortical      

27 Midbrain (Pons) 17.77*** 0 -21 -21 NA 

28 L Midbrain (Brainstem) 20.13**** -3 -30 -3 NA 

29 R Subthalamic Nucleus (Midbrain) 15.70**** 3 -9 -3 NA 

 Cerebellum      

30 L Cerebellum (Declive) 11.75**** -42 -63 -21 NA 
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31 R Cerebellum (Culmen) 11.18**** 36 -51 -27 NA 

32 R Cerebellum (Declive) 10.85**** 39 -57 -24 NA 

 

Note: ROI radii of 12mm. * p < .05, ** p < .01, *** p < .001, **** p < .0001 corrected for multiple comparisons.  

 

 

Table 4.3 Areas of Error-Monitoring Activation in Women: Replication of Steele et al., 2014 

 Location t-score x y z BA 

 Frontal Lobe      

1 R Superior Frontal Gyrus 22.27**** 9 18 66 6 

2 R Superior Frontal Gyrus 16.04**** 24 54 30 10 

3 L Superior Frontal Gyrus 15.28**** -27 54 30 10 

4 R Inferior Frontal Gyrus 24.92**** 36 18 -15 47 

5 L Inferior Frontal Gyrus 25.16**** -36 15 -12 47 

6 R Precentral Gyrus 13.48**** 48 -9 36 6 

7 L Precentral Gyrus 12.87**** -51 -12 33 4 

8 L Anterior Cingulate Cortex 27.49**** -3 24 33 24 

9 L Anterior Cingulate Cortex 18.09**** 0 -12 42 24 

10 R Anterior Cingulate Cortex 25.09**** 6 33 12 24 

11 Bi Anterior Frontal Cortex 24.92/25.16**** ±36 15 0 11 

 Temporal Lobe      

12 L Superior Temporal Gyrus 19.50**** -63 -51 18 22 

13 R Middle Temporal Gyrus 16.18**** 54 -33 -6 21 

14 L Middle Temporal Gyrus 10.62**** -54 -30 -9 21 

 Parietal Lobe      

15 L Inferior Parietal Lobule 20.38**** -63 -45 30 40 

16 R Inferior Parietal Lobule 19.96**** 63 -42 30 40 

 Occipital Lobe      

17 L Middle Occipital Gyrus 5.24** -42 -87 -12 18 

18 L Middle Occipital Gyrus 6.07*** -45 -81 -12 18 

19 L Inferior Occipital Gyrus 5.09** -36 -93 -9 18 

20 L Inferior Occipital Gyrus 4.80** -33 -96 -6 18 

21 R Fusiform 6.10*** 45 -75 -18 18 

22 R Precuneus 16.22**** 6 -75 42 19 
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23 L Cuneus 15.40**** -12 -72 6 7 

24 R Inferior Occipital Gyrus 4.95** 42 -87 -9 30 

25 R Cuneus/Lingual Gyrus 14.14**** 15 -66 3 18 

26 Intrahemishperic 14.25**** 0 -54 60 18 

 Subcortical      

27 Midbrain (Pons) 17.50**** 0 -21 -21 NA 

28 L Midbrain (Brainstem) 20.33**** -3 -30 -3 NA 

29 R Subthalamic Nucleus (Midbrain) 17.17**** 3 -9 -3 NA 

 Cerebellum      

30 L Cerebellum (Declive) 11.70**** -42 -63 -21 NA 

31 R Cerebellum (Culmen) 12.20**** 36 -51 -27 NA 

32 R Cerebellum (Declive) 13.83**** 39 -57 -24 NA 

 

Note: ROI radii of 12mm. * p < .05, ** p < .01, *** p < .001, **** p < .0001 corrected for multiple comparisons. 
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Table 4.4 Effect of Individual Predictors on Rearrest 
 Unadjusted Hazards  Adjusted Hazards 

Model/Predictor B (SE) P value exp[B] (CI)  B (SE) P value exp[B] (CI) 

Felony Rearrest in Men (n = 

213, 111 rearrests)        

- Age at release -0.028 (0.009) .003** 0.972 (0.955 - 0.991)  -0.025 (0.010) 0.016* 0.976 (0.956 - 0.995) 

- PCL-R factor 1 score 0.063 (0.027) .018* 1.066 (1.011 - 1.123)  0.228 (0.133) .086 1.256 (0.968 - 1.630) 

- PCL-R factor 2 score 0.094 (0.028) .001** 1.099 (1.041 - 1.160)  0.134 (0.059) 0.024* 1.143 (1.017 - 1.285) 

- PCL-R factor interaction 0.004 (0.001) .004** 1.004 (1.001 - 1.007)  -0.013 (0.009) .136 0.987 (0.969 - 1.004) 

- dACC -0.005 (0.107) .964 .995 (0.807 - 1.227)  -0.104 (0.111) .350 0.901 (0.725 - 1.121) 

Non-Violent Felony Rearrest in 

Men (n = 213, 77 rearrests)        

- Age at release -0.018 (0.011) .088 0.982 (0.961 - 1.003)  -0.019 (0.012) .113 0.981 (0.959 - 1.004) 

- PCL-R factor 1 score 0.058 (0.032) .075 1.059 (0.994 - 1.129)  0.191 (0.151) .207 1.210 (0.900 - 1.627) 

- PCL-R factor 2 score 0.062 (0.032) .050 1.064 (1.000 - 1.133)  0.086 (0.068) .203 1.090 (0.954 - 1.245) 

- PCL-R factor interaction 0.003 (0.002) .053 1.003 (1.000 - 1.007)  -0.010 (0.010) .332 0.990 (0.970 - 1.010) 

- dACC -0.120 (0.133) .369 0.887 (0.683 - 1.152)  -0.207 (0.139) .136 0.813 (0.620 - 1.067) 

Violent Felony Rearrest in Men 

(n = 290, 79 rearrests)        

- Age at release -0.040 (0.012) .001** 0.961 (0.938 - 0.984)  -0.031 (0.013) 0.016* 0.969 (0.941 - 0.994) 

- PCL-R factor 1 score 0.044 (0.033) .175 1.045 (0.981 - 1.114)  0.154 (0.176) .383 1.166 (0.826 - 1.646) 

- PCL-R factor 2 score 0.150 (0.035) <.001*** 1.162 (1.085 - 1.245)  0.214 (0.079) 0.007** 1.239 (1.061 - 1.447) 

- PCL-R factor interaction 0.004 (0.002) .017* 1.004 (1.001 - 1.007)  -0.011 (0.011) .304 0.989 (0.967 - 1.010) 

- dACC -0.132 (0.132) .312 0.876 (0.676 - 1.135)  -0.241 (0.138) .082 0.786 (0.559 - 1.030) 

Felony Rearrest in Women (n = 

248, 97 rearrests)        

- Age at release -0.050 (0.014) <.001*** 0.951 (0.925 - 0.978)  -0.044 (0.015) 0.003** 0.957 (0.930 - 0.986) 

- PCL-R factor 1 score -0.017 (0.040) .677 0.983 (0.909 - 1.064)  -0.012 (0.118) .949 0.988 (0.684 - 1.427) 

- PCL-R factor 2 score 0.126 (0.029) <.001*** 1.135 (1.071 - 1.202)  0.197 (0.060) 0.001** 1.218 (1.084 - 1.369) 

- PCL-R factor interaction 0.002 (0.002) .324 1.002 (0.998 - 1.007)  -0.009 (0.013) .464 0.991 (0.966 - 1.016) 

- dACC 0.216 (0.124) .082 1.241 (0.973 - 1.582)  0.220 (0.129) .088 1.246 (0.968 - 1.604) 

Non-Violent Felony Rearrest in 

Women (n = 248, 79 rearrests)        

- Age at release -0.057 (0.016) <.001*** 0.945 (0.915 - 0.975)  -0.052 (0.017) 0.002** 0.949 (0.918 - 0.981) 

- PCL-R factor 1 score 0.025 (0.045) .570 0.975 (0.893 - 1.064)  0.077 (0.217) .721 1.081 (0.707 - 1.652) 

- PCL-R factor 2 score 0.126 (0.033) <.001*** 1.135 (1.064 - 1.210)  0.244 (0.070) 0.001** 1.251 (1.091 - 1.434) 

- PCL-R factor interaction 0.002 (0.003) .517 1.002 (0.997 - 1.007)  -0.016 (0.015) .275 0.984 (0.955 - 1.013) 

- dACC 0.310 (0.136) .023* 1.364 (1.045 - 1.781)  0.334 (0.141) 0.018* 1.396 (1.058 - 1.842) 

Violent Felony Rearrest in 

Women (n = 248, 29 rearrests)        

- Age at release -0.069 (0.028) .034* 0.942 (0.892 - 0.995)  -0.050 (0.030) .096 0.951 (0.896 - 1.009) 

- PCL-R factor 1 score 0.052 (0.071) .469 1.053 (0.916 - 1.211)  -0.057 (0.382) .881 0.944 (0.447 - 1.998) 

- PCL-R factor 2 score 0.198 (0.062) .001** 1.219 (1.079 - 1.377)  0.228 (0.125) .068 1.256 (0.983 - 1.603) 

- PCL-R factor interaction 0.006 (0.004) .098 1.006 (0.999 - 1.014)  -0.002 (0.025) .939 0.998 (0.951 - 1.048) 

- dACC 0.078 (0.223) .727 1.081 (0.698 - 1.674)  0.036 (0.234) .878 1.037 (0.656 - 1.639) 

  

Results of Cox regression analyses examining the predictive effect of the dACC on felony rearrest, non-violent 

felony, and violent felony rearrest. Unadjusted hazard values reflect univariate analyses, and adjusted hazard values 

reflect multivariate analyses including all variables of interest. All variables are mean centered, and reported effects 

are one-tailed. Table reports unstandardized B and relative risk ratio (exp[B]). *p < 0.05, **p < 0.01, and ***p < 

0.001. 
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4.7.1 Neurobiologically Informed Risk Assessment of Felony Rearrest: Long-Term 

Risk 

To test the hypothesis (that the dACC will exert an incremental effect above and beyond 

other established risk factors in the assessment of long-term general felony rearrest risk), we 

regressed the error-monitoring model on general felony rearrest in the male sample (n = 213). A 

significant overall effect (p < .05) was obtained, driven by significant effects of age at release 

and PCL-R Factor 2 (ps < .05), as well as a marginal effect of PCL-R Factor 1 (p = 086). dACC 

activity did not exhibit a significant association with long term risk for felony rearrest (see Table 

4.4). 

For the same analysis within the female sample, n = 248, a significant overall effect (p < 

.05) was obtained for the model. Within the model, as expected, age at release and PCL-R factor 

2 were each significantly associated with days to felony rearrest (ps < .05). In women, dACC 

activity exhibited a marginal association with general felony rearrest (p = .088). 

4.7.2 Neurobiologically Informed Risk Assessment of Non-Violent Rearrest: Long-

Term Risk 

To test the hypothesis (that the dACC will exert an incremental effect above and beyond 

other established risk factors in the assessment of long-term non-violent felony rearrest risk), we 

regressed the error-monitoring model on general felony rearrest in the male sample (n = 213). A 

significant overall effect (p < .05) was obtained, but no individual predictors were significant. 

For the same analysis within the female sample, n = 248, a significant overall effect (p < 

.05) was obtained for the model. Within the model, as expected, age at release and PCL-R factor 

2 were each significantly associated with days to felony rearrest (ps < .05). In women, dACC 
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activity exhibited a significant association with long-term non-violent felony rearrest risk (p = 

.018). 

4.7.3 Neurobiologically Informed Risk Assessment of Violent Rearrest: Long-Term 

To test the hypothesis (that the dACC will exert an incremental effect above and beyond 

other established risk factors in the assessment of long-term violent rearrest risk), we regressed 

the error-monitoring model onto time to rearrest for a violent crime in the male sample (n = 290). 

A significant overall effect of the model (p < .05) was obtained. Age at release and PCL-R 

Factor 2 (ps < .05), were significantly associated with days to violent rearrest. As expected, 

dACC activity was marginally associated (p = .082) with long term risk for violent rearrest (see 

Table 4.4), such that those with low dACC activity were 1.27 times more likely to be rearrested 

for a violent felony than those with high dACC activity.  

For the same analysis within the female sample, n = 248, a significant overall effect (p < 

.05) was obtained, driven by marginal effects of age at release and PCL-R Factor 2 (ps < .10). 

dACC activity was not significantly associated with long-term risk of violent rearrest in women.  
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Table 4.5 Two-Tailed Correlation Analyses in Men (n = 290) 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 

1. Age at Release              

2. PCL-R Factor 1 -.04             

3. PCL-R Factor 2 -.32*** .48***            

4. PCL-R F1xF2 -.16** .93*** .72***           

5. PCL-R Total -.19** .83*** .86*** .94***          

6. dACC -.14* .11 .14* .14* .15*         

7. IQ .09 .05 -.03 .02 .01 .03        

8. Alcohol (Lifetime) -.06 -.11 .11 -.03 .01 .1 -.01       

9. Drug (Lifetime) -.19* .09 .25** .16 .19* .08 .03 .23**      

10. Anxiety .00 -.02 .26** .10 .12 .08 -.13 .14 .13     

11. BIS-11 Factor 1 -.24*** .04 .26*** .14* .18** .04 -.16* .17 .27** .41***    

12. BIS-11 Factor 2 -.07 .12 .21** .18** .20** -.02 -.06 .06 .31** .09 .44***   

13. BIS-11 Factor 3 -.14* .05 .28*** .14* .18** .00 -.17** .06 .20* .21* .53*** .43***  

14. BIS-11 Total -.18** .09 .32*** .19** .24*** .00 -.18** .12 .31** .30** .79*** .76*** .85*** 

 

*p < 0.05, **p < 0.01, and ***p < 0.001. 
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Table 4.6 Two-Tailed Correlation Analyses in Women (n = 248) 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 

1. Age at Release              

2. PCL-R Factor 1 -.08             

3. PCL-R Factor 2 -.23** .48**            

4. PCL-R F1xF2 -.13* .93** .69***           

5. PCL-R Total -.18** .76** .91*** .88***          

6. dACC .03 -.01 .08 .03 .06         

7. IQ -.03 -.01 .07 .02 .08 .05        

8. Alcohol (Lifetime) .13 .03 .12 .07 .12 -.12 .05       

9. Drug (Lifetime) -.02 .22** .37*** .30*** .41*** .01 .07 .23**      

10. Anxiety -.12 .02 .06 .02 .04 .01 -.02 .13 .06     

11. BIS-11 Factor 1 -.12 .05 .32*** .12 .23** .06 -.05 .11 .17* .39***    

12. BIS-11 Factor 2 -.13 .22** .44*** .31*** .41*** -.05 .07 .14 .15 .18* .35***   

13. BIS-11 Factor 3 -.16* .09 .33*** .15* .26*** .00 -.17* -.04 .06 .44*** .51*** .44***  

14. BIS-11 Total -.18* .16* .47*** .26*** .39*** .01 -.08 .08 .13 .43*** .75*** .76*** .85*** 

  

*p < 0.05, **p < 0.01, and ***p < 0.001. 
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5 GENERAL DISCUSSION 

5.1 Summary 

My dissertation research combined task-based and resting state fMRI approaches to 

probe potential candidate neurobiological substrates underlying antisocial outcomes (i.e., 

recidivism), with a primary focus on validating and extending the error-monitoring model of 

neurobiological risk assessment (Aharoni et al., 2013; Aharoni et al., 2014; Steele et al., 2015). 

My findings suggest that the inclusion of impulsivity related neurobiological metrics—error-

monitoring activity (Chapters 2, 3, & 4) and resting state functional connectivity (Chapter 3) 

within the salience network—in risk assessment models may increase the accuracy with which 

these models are able to predict antisocial outcomes such as recidivism. Likewise, my findings 

support previous literature suggesting gender-specific relationships between impulsivity related 

neurobiological activity and subsequent impulsivity related outcomes (Chapter 4) (Liu et al., 

2012). My results also provide validation to the utility of both the offender’s age at release and 

antisocial/impulsivity psychopathy traits for the prediction of subsequent recidivism (Chapters 2, 

3, & 4) (Gendreau et al., 1996; Hemphill et al., 1998; Leistico et al., 2008; Kennealy et al., 2010; 

Ojala, Tiihonen, Repo-Tiihonen, Tikkanen, & Virkkunen, 2015; Olver & Wong, 2014; Walters 

et al., 2008).  

Here I will synthesize my results in relation to my dissertation’s broader goal of 

improving the basic understanding of the neurobiological components underlying error-

monitoring and their association with impulsivity. First, I will review the replicability of the 

error-monitoring neuroimaging analyses across my various samples (Section 5.2.1) and assess 

the association of these measures (and related rsFC measures) with various types of impulsivity 

related metrics (Sections 5.2.2, 5.2.3). Then I will discuss the incremental utility of 
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neurobiological data in predictive models for rearrest (Section 5.3). Finally, I will end the 

chapter with a consideration of the importance of this type of research for risk assessment and 

therapeutic interventions (Sections 5.4.1, 5.4.2) as well as consider future directions necessary to 

the field (Section 5.5).  

5.2 Improving the Understanding of Task-Based and Resting State Neurobiological 

Correlates to Impulsivity 

5.2.1 The Replicability of Neurobiological Error-Monitoring Activity 

Here I will briefly synthesize the overall replicability of error-monitoring analyses across 

samples of male (n = 95 & n = 290) and female offenders (n = 248).  

 The analyses of error-monitoring activity presented in this dissertation demonstrate a 

high level of replicability of the brain regions recruited in error-monitoring. The error-

monitoring analyses presented in Chapters 2 & 4 (see Tables 2.2, 4.2, 4.3) highlight the dACC 

and insulae as the primary regions most robustly recruited for this type of contrast. With more 

rigorous testing protocols, the error-monitoring analyses presented in Chapter 4 (see Tables 4.2, 

4.3) represent the largest (to my knowledge) direct replication of the most thorough analysis of 

error-monitoring activity in the literature, utilizing samples of 290 male and 248 female 

offenders (Steele et al., 2014). More specifically, analyses in both samples replicated error-

monitoring activity across 32 regions of the brain (11 in the Frontal Lobe, 3 in the Temporal 

Lobe, 2 in the Parietal Lobe, 10 in the Occipital Lobe, 3 Subcortical, and 3 Cerebellar: see 

Tables 4.2, 4.3 for discrete regions). Overall, these results demonstrate the highly replicable 

nature of the brain areas recruited in error-monitoring via the Go/NoGo task across large samples 

of male and female criminal offenders, directly validating what has been demonstrated in non-

offender populations (Steele et al., 2014).  
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5.2.2 Task-Based Neurobiological Correlates to Impulsivity 

Analyses concerning error-monitoring activity in forensic samples often focus on 

impulsivity related outcomes due to the heightened significance of these outcomes to both the 

offenders and society at large (e.g., rearrest or relapse: Aharoni et al., 2013; Aharoni et al., 2014; 

Chapters 2, 4; Steele et al., 2015a; Steele et al., 2015b). Broadly speaking, these analyses have 

demonstrated an inverse relationship between error-monitoring and impulsivity related 

outcomes: that is, higher error-monitoring activity is associated with lower incidence of 

impulsivity related outcomes (Aharoni et al., 2013; Aharoni et al., 2014; Chapter 2; Steele et al., 

2015a; Steele et al., 2015b: but see Chapter 4). These associations with outcomes often detract 

from simpler, yet nonetheless important, analyses regarding the associations between error-

monitoring activity and other impulsivity related measures (e.g., Barratt’s Impulsivity Task, 

offender age, PCL-R Factor 2, and lifetime drug/alcohol abuse metrics). As such, I will briefly 

highlight significant associations (and lack thereof) between error-monitoring activity and other 

impulsivity related metrics, while first noting the directionality of error-monitoring activity’s 

relation to rearrest (in order to ground these results directionally within my separate samples).  

First, in a sample of male offenders, my Chapter 2 results suggest an association between 

low error-monitoring activity and likelihood of rearrest (n = 95: see Table 2.1), a relationship 

previously shown in Aharoni et al. (2013).18 Looking to my larger sample of male offenders (n = 

290), I find that error-monitoring activity is negatively associated with the offender’s age and 

positively associated with the offender’s PCL-R Factor 2 score (ps < .05: see Table 4.5), both 

relationships that are directionally counterintuitive to what one would expect given the previous 

literature (Aharoni et al., 2013; Aharoni et al., 2014). Notably, error-monitoring activity in men 

 
18

 This relationship was not found to extend to the larger sample of men (n = 290: see Table 4.1) 
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was not significantly associated with their subsequent scoring on Barratt’s Impulsivity Task (p > 

.05), nor lifetime alcohol or drug abuse and dependence (ps > .05).  

In the female sample (n = 248), high error-monitoring activity was associated with 

incidence of rearrest (Chapter 4: see Table 4.1). While previous literature has noted gender-

differences in the relation of error-monitoring activity and impulsive traits, there were no 

significant differences or associations (ps > .05) within the female sample between error-

monitoring activity and other impulsivity related outcomes (Chapter 4: n = 248, see Table 4.6).  

Overall, these results form a complicated picture of the relationships between error-

monitoring activity and other (non outcomes-based) impulsivity related measures. Indeed, results 

indicating that high error-monitoring activity in men is associated with high PCL-R Factor 2 

scores and lower ages (two positive predictors of impulsive outcomes) complicate the notion of 

an inverse relationship between error-monitoring activity and impulsivity related metrics/risk 

factors, as does the positive relationship between error-monitoring activity and rearrest incidence 

in women. Despite some consistency, much more work is needed to investigate whether there is 

a reliable relationship between error-monitoring activity and these other impulsivity related risk 

factors, or whether they all capture different aspects of the same underlying trait, potentially 

explaining the various directionalities present in the literature.    

5.2.3 Resting State Neurobiological Correlates to Impulsivity 

Previous work has suggested that the resting state functional connectivity between the 

dACC and insula is positively related to impulsivity related outcomes, such as risky decision 

making (Wei et al., 2016). When considering the most ecologically valid impulsivity 

measurement (rearrest), the results reported in Chapter 3 (see Table 3.1) support the 

directionality of this relationship—that is, the higher the dACC-Insular rsFC, the more likely an 



102 

offender was to be rearrested. However, a more granular analysis of the relationship between 

dACC-Insular rsFC and other impulsivity measures (e.g., Barratt’s Impulsivity Task, offender 

age, PCL-R Factor 2, and lifetime drug/alcohol abuse metrics) complicate this picture of a 

simplistic unidirectional relationship. For instance, my results indicate that the dACC-Insular 

rsFC is negatively associated with PCL-R Factor 2 (antisocial & impulsive psychopathic traits) 

as well as an offender’s total score on the Barratt’s Impulsivity Task (ps < .05: see Table 3.4). As 

noted previously in Section 5.2.2, the directionality of this relationship is contrary to what one 

would expect given the positive relationship between dACC-Insula rsFC and rearrest. Likewise, 

the dACC-Insular rsFC was not found to be significantly associated (p > .05) with an offender’s 

dACC error-monitoring activity, further complicating the relation between these two different 

measures that both prove useful in predicting rearrest in the same offender sample (Chapter 2 & 

3). 

5.3 Testing the Incremental Utility of Neurobiological Data for Predictions of Recidivism 

Measurements of impulsivity within lab environments advance our understanding of 

impulsivity under idealized conditions, but they often lack ecological validity. One method of 

addressing this shortcoming is linking lab-based impulsivity measures with outcomes outside of 

the lab—such as rearrest. Consistent with previous literature (Aharoni et al., 2013; Aharoni et al., 

2014; Delfin et al., 2019; Steele et al., 2015), my results suggest that task-based and resting state 

impulsivity related neurobiological data can add incremental utility to predictions of rearrest 

(Chapters 2, 3, & 4). First, in Chapter 2, I find that the parameters used to extract the error-

monitoring activity (to then be utilized in subsequent rearrest predictions) are fairly robust, as 

both newly established dACC and insular ROIs demonstrated success in increasing accuracies of 

non-violent rearrest predictions (n = 95; see Table 2.1) by 3.9% and 2.6%, respectively. In 
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Chapter 3, my results suggest that this incremental utility in risk models for rearrest isn’t solely 

afforded by task-related data, but instead extends to resting state data from the same newly 

established dACC and insular ROIs (n = 91; see Table 3.1) increasing the accuracy of non-

violent rearrest predictions by 3.1%. Additionally, a multi-modal model including both task-

based and resting state data performs better than either unimodal analyses alone (see Figure 3.4), 

increasing predictive accuracy by 6.6%.  

Chapter 4, on the other hand, demonstrates more modest and mixed effects of error-

monitoring data in predictive models for rearrest in a large sample of offenders (n = 538). More 

specifically, with a strict exclusion criteria and truncated follow-up window (meant to directly 

replicate criteria used in Aharoni et al., 2013),19 a predictive effect of error-monitoring activity 

on rearrest in the males of this sample was not found (n = 290; see Table 4.1). Supplementary 

analyses suggest, though, when maximizing power (i.e., using an offender’s full follow-up time 

rather than a 4-year window) and minimizing exclusion criteria (as is common in risk assessment 

literature analyzing less common outcomes like violent arrests), I observe marginal effects of 

error-monitoring activity in predictions of violent rearrest in men (n = 290; see Table 4.4).  

More consistent effects of neurobiological data were found in the women of this sample 

(n = 248), with error-monitoring activity being a significant predictor of non-violent felony 

rearrest, regardless of the exclusion criteria used (see Tables 4.1, 4.4), providing convergent 

validity to prior research (Aharoni et al., 2013; Aharoni et al., 2014; Steele et al., 2015). More 

 
19

 More specifically, all individuals that committed a non-violent felony prior to a violent felony were excluded in 

violent felony analyses. Likewise, individuals that committed a violent felony prior to a non-violent felony were 

excluded from non-violent felony analyses. These strict exclusion criteria were employed in order to control for 

potential time-spent in prison for an offense not of interest (i.e., a non-violent felony when analyzing violent 

felonies).  
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specifically, the inclusion of error-monitoring activity increased the accuracy of predictions of 

non-violent rearrest in women by 1.4%.  

5.4 The Broader Significance of Antisocial Risk Factor Research 

5.4.1 Implications for Risk Assessment: Considering Accuracy 

Risk assessment plays a pervasive role in the criminal justice pipeline, informing 

decisions from bail to release, and many steps in-between. The accuracy of risk assessments 

varies significantly depending on the mode of delivery and analysis (Desmarais et al., 2016; 

Haarsma et al., 2019; Monahan & Silver, 2003; Singh et al., 2011), yet risk assessments are now 

mandated in service of offender sentencing and placements decisions in over 20 states (Starr, 

2014). As such, the use of risk assessment in legal settings remains a highly contentious issue 

due to various ethical concerns associated with them. While a comprehensive consideration of 

the debates surrounding the use of risk assessment in legal decision making is out of the scope of 

this chapter (though see Aharoni, Abdulla, Allen & Nadelhoffer, in press for overview), here I 

will focus on the relative importance of increasing the accuracy of these types of assessments by 

reviewing what serves to be gained via the use of improved risk assessment in lower-stake legal 

decisions. 

Many criticisms of the use of risk assessment in the criminal justice pipeline focus on 

sentencing applications, but there has been a recent call for the use of risk assessment in lower-

stake decisions that often benefit the offender (Aharoni, Abdulla, Allen & Nadelhoffer, in press; 

Baum & Savulescu, 2013; Tonry, 2014). Consider an excerpt from a recent chapter titled Ethical 

Implications of Neurobiologically Informed Risk Assessment for Criminal Justice Decisions: A 

Case for Pragmatism outlining some examples of lower-stake applications of risk assessment, as 

well as the rationale behind the use in such cases:   
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These include decisions to reduce a charge; decisions to offer bail, 

probation, or parole in lieu of jail or prison time; decisions to place an inmate in a 

lower security level; decisions about early release from civil commitment; 

diversion from traditional court to drug court; or the provision of benign treatment 

services. In all of these cases, the default choice (e.g., neglecting to offer 

treatment) is generally less favorable to the offender, and the offender qualifies 

for the more favorable choice by demonstrating low risk. Certainly, concerns 

could still be raised in these cases, but these concerns would likely apply to an 

even greater extent when such choices are not offered. (Aharoni et al., in press).  

 

Aside from providing multiple examples of lower-conflict criminal justice decisions 

where risk assessment may be appropriate, Aharoni and colleagues (in press) also make an 

important observation worth reflecting on: it serves the offender to demonstrate low-risk in all of 

these decisions, as it will yield favorable outcomes compared to the default. As such, low-risk 

offenders would directly benefit from more accurate risk assessments, as they would be more 

likely to be correctly assigned to their true low-risk categorization.  

The identification of true low-risk individuals in these types of legal decisions doesn’t 

just benefit the low-risk offender, but also has the capacity to appease a variety of shared 

interests between the offender and the general public. One example of this is demonstrated in 

risk-needs-responsivity research, which argues that the most appropriate interventions within 

incarcerated populations occur when an offender’s environment or treatment (that is, the 

“response” by the institution) is determined by the offender’s relative risk. More specifically, 

work by Latessa, Lovins, and Smith (2010) suggest that low-risk offenders appropriately placed 

under low supervision are less likely to reoffend than those under high supervision. Inversely, 

low-risk offenders placed under high supervision (alongside high-risk offenders) are more likely 

to be rearrested than other low-risk offenders, suggesting a criminogenic effect of misplacement. 

In this case, the joint interest served by an increased accuracy in risk assessment is fairly 

straightforward: the appropriately placed low-risk offender benefits from a higher likelihood of 
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desistance from future rearrest, and the general public similarly benefits from a lower likelihood 

of being the victim of a crime at the hands of an appropriately placed offender.20 

This said, the extent to which neurobiological data specifically increased the accuracies 

of model predictions varied widely across my studies (from increases of 1.4% to 6.6% in 

traditionally significant models) and was insignificant in other models (see Table 4.1). Thus, it is 

necessary to caution against overinterpretation of the observed positive effects. Nonetheless, and 

as argued above, any incremental improvement of predictive accuracy in legal decision-making 

holds value, as it has the potential to provide better outcomes to both criminal offenders and the 

broader public alike. Thus, research on neurobiological predictors is important in generating 

further hypotheses to be tested in hopes of increasing the accuracies of these assessments. 

Likewise, hypothesis-based approaches in identifying candidate neural mechanisms associated 

with antisocial outcomes remain important for reasons other than risk assessment—such as in 

aiding progress in the domain of interventionary research.  

5.4.2 Implications for Therapeutic Applications 

The use of neurobiological data to make predictions of antisocial outcomes is not 

dependent on a comprehensive knowledge regarding the causes of such behaviors. But research 

advancing such neurobiologically informed predictive models—such as the studies within this 

dissertation—can often help discriminate potential causal mechanisms, or even elucidate regions 

of interest, that can guide the design and development of tailored interventions meant to manage 

those behaviors (see also Barabas et al., 2018; Douglas et al., 2017; Gilligan & Lee, 2005; 

Latessa et al., 2010; Meynen, 2018). As proof of concept, consider the following recent brain 

 
20

 Similar arguments can be made from the perspective of the general public regarding the tax-dollars necessary to 

apprehend, charge, and house the potential future offender for the entirety of their sentence.  
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stimulation studies, all of which use transcranial direct-current stimulation (tDCS) to alter the 

firing rates of large patches of neurons within particular regions of interest in the brain.  

First, a study carried out by To and colleagues (2018) suggests that tDCS of the ACC can 

improve performance on cognitive and affective attentional tasks. Another study from Choy and 

colleagues (2018) similarly suggests that a single tDCS session targeting the dorsolateral 

prefrontal cortex (dlPFC: a region implicated in the inhibition of aggression) is sufficient to 

reduce aggressive criminal intentions surrounding violent & sexual assault. Correspondingly, this 

stimulation of the dlPFC also induced an increase in the belief that those criminal acts were 

wrong. Finally, a similar study utilizing a sample of criminal offenders suggests that stimulation 

of the prefrontal cortex can reduce aggressive behaviors (i.e., anger, and verbal/physical 

aggression) (Molero-Chamizo et al., 2019). While a group level difference in aggressive 

behaviors was observed, the largest reductions in hostility-specific aggressions—that is, 

aggression driven by impulsivity and high affect in the presence of a perceived threat—was also 

observed in the most violent subset of their sample (i.e., murderers). Consistent with this sub-

population specific effect, a recent review of the literature suggests that these types of aggression 

pertinent interventions are more likely to see success in offender populations (Romero-Martínez, 

Bressanutti, & Moya-Albiol, 2020). Importantly, these interventionary tDCS studies all rely on 

prior research suggesting the relevance of specific brain regions in relation to certain behaviors 

and outcomes. As such, neuroprediction research, like mine, serves to establish candidate regions 

related to relevant outcomes. 

Overall, it is important to consider larger takeaways that we can glean from the results of 

this dissertation, as well as a point that is echoed above: one size does not fit all. For instance, 

while my results suggest that error-monitoring activity is negatively associated with recidivism 
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in men, we observe the opposite effect in women, partially consistent with other impulsivity 

related literature demonstrating gender specific differences in the relationship between 

impulsivity related neurobiological activity and impulsive traits (Liu et al., 2013). Alongside the 

sub-population specific effects observed in Molero-Chamizo and colleagues’ work (2019), and 

the differential success rates in general vs. offender populations uncovered by Romero-Martínez 

and colleagues (2020), my gender specific directional effects underscore the idea above; that is, 

future therapeutic approaches must utilize tailored interventions that are specific to the individual 

rather than to a population more generally.  

Despite the demand for more effective treatment interventions for impulsive, antisocial 

behavior, much more research is necessary prior to the implementation of any sorts of neuro-

interventions in offender populations. As is the case with any novel type of therapeutic 

intervention, the relative success of neuro-interventions must meet and demonstrate high 

standards of reliability and validity (Large & Nielssen, 2017).  

5.5 Future Directions 

 While the work presented in this dissertation represents modest extensions and 

validations of the current research in the field of neurobiologically informed risk assessment of 

recidivism, many questions still remain. Here I will briefly address directions that future work in 

the field should consider.  

First, further analyses regarding the utility of error-monitoring activity in predictions of 

rearrest remain necessary. Though the majority of literature within this young field focuses on 

this error-monitoring construct (see Aharoni et al., 2013; Aharoni et al., 2014; Steele et al., 2015; 

Zijlmans et al., 2021; Chapters 2, 3, & 4), work is still needed to further examine the 
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generalizability of this construct, and the relation of this construct to antisocial outcomes as 

modulated by individual differences (e.g., gender). 

Secondly, if proven to be robust, research regarding the therapeutic modulation of error-

monitoring activity and its subsequent implication for antisocial outcomes is necessary. As has 

been previously demonstrated, basic knowledge regarding which regions of the brain are primary 

substrates for particular phenotypes (i.e., aggression) can generate hypotheses about 

interventions intended to alter those phenotypes (Barabas et al., 2018; Douglas et al., 2017; 

Gilligan & Lee, 2005; Latessa et al., 2010; Meynen, 2018; Molero-Chamizo et al., 2019; 

Romero-Martínez, Bressanutti, & Moya-Albiol, 2020; To et al., 2018), but those hypotheses 

must be explicitly tested.  

Finally, more broad data-driven approaches (e.g., the implementation of independent 

component analysis and support vector machines) for extracting and categorizing relevant 

biological (including both task-based & resting state data), psychological, and sociological 

measures for the prediction of anti-social behaviors is necessary, as hypothesis-based approaches 

to such remain narrowly scoped. Ultimately, a combination of multiple methodologies may 

improve our ability to identify cluster-specific causes and risk factors as well as develop more 

effective tailored treatments for impulsive and antisocial behaviors. 
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