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Deep learning methods have recently made notable advances in the tasks of classification
and representation learning. These tasks are important for brain imaging and neuroscience
discovery, making the methods attractive for porting to a neuroimager’s toolbox. Success
of these methods is, in part, explained by the flexibility of deep learning models. However,
this flexibility makes the process of porting to new areas a difficult parameter optimization
problem. In this work we demonstrate our results (and feasible parameter ranges) in
application of deep learning methods to structural and functional brain imaging data.
These methods include deep belief networks and their building block the restricted
Boltzmann machine. We also describe a novel constraint-based approach to visualizing
high dimensional data. We use it to analyze the effect of parameter choices on
data transformations. Our results show that deep learning methods are able to learn
physiologically important representations and detect latent relations in neuroimaging data.

Keywords: MRI, fMRI, intrinsic networks, classification, unsupervised learning

1. INTRODUCTION
One of the main goals of brain imaging and neuroscience—and,
possibly, of most natural sciences—is to improve understand-
ing of the investigated system based on data. In our case, this
amounts to inference of descriptive features of brain structure
and function from non-invasive measurements. Brain imaging
field has come a long way from anatomical maps and atlases
toward data driven feature learning methods, such as seed-
based correlation (Biswal et al., 1995), canonical correlation
analysis (Sui et al., 2012), and independent component anal-
ysis (ICA) (Bell and Sejnowski, 1995; McKeown et al., 1998).
These methods are highly successful in revealing known brain
features with new details (Brookes et al., 2011) (supporting their
credibility), in recovering features that differentiate patients and
controls (Potluru and Calhoun, 2008) (assisting diagnosis and
disease understanding), and starting a “resting state” revolu-
tion after revealing consistent patterns in data from uncontrolled
resting experiments (Raichle et al., 2001; van den Heuvel and
Hulshoff, 2010). Classification of human brain data is typically
used merely as a way to evaluate the performance of a pro-
posed feature (e.g., percent signal change of an activation map
within a set of ROIs, identification of a subset of voxels, or
a specific network of interest such as default mode) relative

to previously proposed features. Features (and feature selection
approaches) are used since classification methods—including the
most accurate ones—do not often perform well on raw data and,
when they do, the reasons for their accuracy are rarely intuitive
or informative. Commonly, if that answer’s accuracy improves
when a new discriminative feature (biomarker) is proposed, this
biomarker is considered an improvement. While a perfect clas-
sification approach would be of use, the process of suggesting
biomarker candidates would still be a subjective and difficult
process.

Typical approaches to classification (including the current
multi-voxel classification approaches which are popular in brain
imaging) must be preceded by a feature selection step which
is not needed for deep learning methods. Deep learning meth-
ods are breaking records in the areas of speech, signal, image,
video and text mining and recognition and improving state of
the art classification accuracy by, sometimes, more than 30%
where the prior decade struggled to obtain a 1–2% improve-
ments (Krizhevsky et al., 2012; Le et al., 2012). What differentiates
them from other classifiers, however, is the automatic feature
learning from data which largely contributes to improvements in
accuracy. This represents an important advantage and removes
a level of subjectivity (e.g., the researcher typically has to decide
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which features should be tried) from existing approaches. With
deep learning this subjective step is avoided.

Another distinguishing feature of deep learning is the depth
of the models. Based on already acceptable feature learning
results obtained by shallow models—currently dominating neu-
roimaging field—it is not immediately clear what benefits would
depth have. Considering the state of multimodal learning, where
models are either assumed to be the same for analyzed modali-
ties (Moosmann et al., 2008) or cross-modal relations are sought
at the (shallow) level of mixture coefficients (Liu and Calhoun,
2007), deeper models better fit the intuitive notion of cross-
modality relations, as, for example, relations between genetics and
phenotypes should be indirect, happening at a deeper conceptual
level.

In this work we present our recent advances in application of
deep learning methods to functional and structural magnetic res-
onance imaging (fMRI and sMRI). Each consists of brain volumes
but for sMRI these are static volumes—one per subject/session,—
while for fMRI a single subject dataset is comprised of multiple
volumes capturing the changes during an experimental session.
Our goal is to validate feasibility of this application by (a) investi-
gating if a building block of deep generative models—a restricted
Boltzmann machine (RBM) (Hinton, 2000)—is competitive with
ICA (a representative model of its class) (Section 2); (b) examin-
ing the effect of the depth in deep learning analysis of structural
MRI data (Section 3.3); and (c) determining the value of the
methods for discovery of latent structure of a large-scale (by
neuroimaging standards) dataset (Section 3.4). The measure of
feature learning performance in a shallow model (a) is compara-
ble with existing methods and known brain physiology. However,
this measure cannot be used when deeper models are investi-
gated. As we further demonstrate, classification accuracy does
not provide the complete picture either. To be able to visualize
the effect of depth and gain an insight into the learning pro-
cess, we introduce a flexible constraint satisfaction embedding
method that allows us to control the complexity of the con-
straints (Section 3.2). Deliberately choosing local constraints we
are able to reflect the transformations that the deep belief network
(DBN) (Hinton and Salakhutdinov, 2006) learns and applies to
the data and gain additional insight.

2. A SHALLOW BELIEF NETWORK FOR FEATURE LEARNING
Prior to investigating the benefits of depth of a DBN in learning
representations from fMRI and sMRI data, we would like to find
out if a shallow (single hidden layer) model–which is the RBM—
from this family meets the field’s expectations. As mentioned in
the introduction, a number of methods are used for feature learn-
ing from neuroimaging data: most of them belong to the single
matrix factorization (SMF) class. We do a quick comparison to
a small subset of SMF methods on simulated data; and continue
with a more extensive comparison against ICA as an approach
trusted in the neuroimaging field. Similarly to RBM, ICA relies
on the bipartite graph structure, or even is an artificial neural
network with sigmoid hidden units as is in the case of Infomax
ICA (Bell and Sejnowski, 1995) that we compare against. Note
the difference with RBM: ICA applies its weight matrix to the
(shorter) temporal dimension of the data imposing independence
on the spatial dimension while RBM applies its weight matrix

(hidden units “receptive fields”) to the high dimensional spatial
dimension instead (Figure 1). Each row of the weight matrix of
an RBM [as expressed in (1)] is a receptive field of a hidden unit:
it has the dimensions of space (volume) and the magnitude of
the values indicates regions the unit is tuned to (when trained).
These weights are our features uniquely assigned to a hidden
unit. Reflecting this we interchangeably call the rows of W and
corresponding hidden units “features” always meaning “receptive
fields.”

2.1. A RESTRICTED BOLTZMANN MACHINE
A restricted Boltzmann machine (RBM) is a Markov random field
that models data distribution parameterizing it with the Gibbs
distribution over a bipartite graph between visible v and hid-
den variables h (Fischer and Igel, 2012): p(v) = ∑

h p(v, h) =∑
h 1/Z exp ( − E(v, h)), where Z = ∑

v

∑
h e−E(v,h) is the nor-

malization term (the partition function) and E(v, h) is the energy
of the system. Each visible variable in the case of fMRI data
represents a voxel of an fMRI scan with a real-valued and approxi-
mately Gaussian distribution. In this case, the energy is defined as:

E(v, h) = − ∑
ij

vj

σj
Wjihi − ∑

j
(aj − vj)

2

σ 2
j

− ∑
i bihi, (1)

where aj and bi are biases and σj is the standard deviation of a
parabolic containment function for each visible variable vj cen-
tered on the bias aj. In general, the parameters σj need to be
learned along with the other parameters. However, in practice
normalizing the distribution of each voxel to have zero mean
and unit variance is faster and yet effective (Nair and Hinton,
2010). A number of choices affect the quality of interpretation of
the representations learned from fMRI by an RBM. Encouraging
sparse features via the L1-regularization: λ‖W‖1 (λ = 0.1 gave
best results) and using hyperbolic tangent for hidden units non-
linearity are essential settings that respectively facilitate spatial
and temporal interpretation of the result.

L1 regularization is a useful tool in automated feature learning
as it can reduce overfitting. It adds an additional gradient term
which forces most of the weights to be zero while allowing a few
of the weights to grow large (Hastie et al., 2009). The update rule
at a data point xn becomes:

Wij → Wij + ε
( ∂

∂Wij
log p(v = xn) − λ · sgn (Wij)

)
, (2)

where ε is the learning rate.
In the case of fMRI, spatial features have similar interpretation

whether their activity is below or above the baseline at a given
time. However, the more common logistic hidden units are
unable to adequately represent a feature with activity that crosses
the baseline boundary. To model these features with non-negative
hidden units, RBM divides the work among two units, one with
a positive and another with—often slightly different due to
differences in the exhibitory and excitatory behaviors—negative
receptive fields. This is not entirely desirable, as splitting intrin-
sic spatial networks along a distribution mean hinders the
interpretive power of the model. The hyperbolic tangent is an
alternative function in the exponential family, which has some
similar properties to the logistic function when used to model
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the conditional probabilities of hidden units. However, a key
difference is the output is sampled from {−1, 1}. Sign of the
receptive fields then is completely symmetric with respect to
hidden variable sign: positive receptive fields will generate with
positive hidden variables, while negative receptive fields will gen-
erate with negative receptive fields. An additional consequence
of this is that a single hidden unit can generate samples over the
normal distribution solving the problem of learning duplicate
features of opposite signs.

To estimate parameters W, a, and b we need to maximize their
log likelihood. In the case of RBM the gradient of the log likeli-
hood with respect to the parameters has a closed form. However,
it involves an intractable expectation over the joint distribution
of visible and hidden units that appear because of the partition
function Z. To deal with this an approximation to the gradi-
ent is usually employed. We use the truncated Gibbs sampling
method called contrastive divergence (CD) with a single sampling
step (CD-1). Further information on RBM model can be found
in Hinton (2000); Hinton et al. (2006).

Note, that all of the parameter choices and modifica-
tions to the original RBM algorithm (e.g., the regulariza-
tion) employed in this work are already conveniently imple-
mented in a freely available package deepnet: https://
github.com/nitishsrivastava/deepnet. All param-
eters can be set as part of the model specification. We believe,
for neuroimaging research it is more productive to use this
(or other available) package rather than engaging into an
implementation.

The way RBM is applied to the data is consistent across this
paper: visible units “see” voxels. Figure 1 illustrates the process of
RBM application to the data (in training and in the feed-forward
mode of Section 3) and clarifies what we treat as features both for
simulated and fMRI datasets. Although in Section 3 we use struc-
tural data and time dimension of the figure is the subjects, the
manner of RBM application (in pre-training) is identical. Note,
expression (1) addresses visible and hidden units with different
subscript (j and i respectively). For each hidden unit i and visible
unit j there is a weight parameter Wij. There are as many visible
units as there are voxels and each hidden unit has as many weight
values. These weights are our features. They are sometimes called
receptive fields or filters.

2.2. SYNTHETIC DATA
In this section we summarize our comparisons of RBM with SMF
models—including Infomax ICA (Bell and Sejnowski, 1995),
PCA (Hastie et al., 2009), sparse PCA (sPCA) (Zou et al., 2006),
and sparse NMF (sNMF) (Hoyer, 2002)—on synthetic data with
known spatial maps generated to simulate fMRI. The SimTB tool-
box (Erhardt et al., 2012) was used to generate synthetic 3D (x,
y, and t) fMRI-like data from linear combinations of 27 distinct
spatial sources with 2D Gaussian spatial profiles. Rician noise was
added to the combined data to achieve a contrast-to-noise ratio
between 0.65 and 1. Data for 20 artificial “subjects" consisting of
128 volumes were generated from the auditory oddball (AOD)
example experiment from the toolbox, in which a subset of
sources are modulated by “standard,” “target,” and “novel” events
with different weights. Additionally, two sources are modulated
by nearly identical noise (spike) events. Thus, source activations
are temporally correlated to some degree, though each has its own
unique behavior.

RBMs were constructed with 16936 Gaussian visible units (one
for each voxel in the 128 × 128 image), and a variable number
of hyperbolic tangent hidden units. The L1 decay rate λ was set
to 0.1 based on performance over multiple experiments, and the
learning rate ε was set to 0.08. The RBMs were then trained with
a batch size of 5 for approximately 75 epochs to allow for full
convergence of the parameters.

We found that for simulated data, RBM captures the features
better with the number of hidden units higher that the true
model order. We use terms “model rank” and “model order”
interchangeably to mean the number of hidden units in RBM
or number of independent components for ICA. For this dataset
RBM’s performance in spatial map estimation has stabilized near
model order 60. We set the model order to 64 as the GPU imple-
mentation of RBM favors model orders of powers of 2. After
investigating performance of ICA (as well as sNMF and PCA)
under various model orders we did not observe a performance
decrease for these approaches (with respect to their best perform-
ing model order) at the value of 64. Figure 2 presents result where
the model order for all models was set to this value.

Figure 2A shows the correlation of spatial maps (SM) and
time course (TC) estimates to the ground truth for RBM, ICA,
PCA, sPCA, and sNMF. Allowing model orders to differ from

A B

FIGURE 1 | (A) An illustration of how an RBM is applied to the data as well as
a graphical representation of RBM’s structure. (B) Demonstrates the way we
produce time courses from the data and learned features, which is simply a

projection of data into the feature space. Note, for time course computation in
Section 2 we do not apply the hidden units’ non-linearity after this projection,
while in Section 3 the complete feed-forward processing is realized.
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FIGURE 2 | Comparison of RBM estimation accuracy of features and

their time courses with SMFs. (A) Average spatial map (SM) and time
course (TC) correlations to ground truth for RBM and SMF models (gray box).
(B) Ground truth (GT) SMs and estimates obtained by RBM and ICA
(thresholded at 0.4 height). Colors are consistent across the methods. Gray

indicates background or areas without SMs above threshold. (C) Spatial,
temporal, and cross correlation (FNC) accuracy for ICA (red) and RBM (blue),
as a function of spatial overlap of the true sources from (B). Lines indicate
the average correlation to GT, and the color-fill indicates ±2 standard errors
around the mean.

the ground truth, features were matched to the ground truth
by solving the assignment problem using the Hungarian algo-
rithm (West, 2001) based on maximizing absolute positive cor-
relation of SMs to the ground truth. Correlations are averaged
across all sources and datasets. RBM and ICA showed the best
overall performance. While sNMF also estimated SMs well, it
showed inferior performance on TC estimation, likely due to the
non-negativity constraint. Based on these results and the broad
adoption of ICA in the field, we focus on comparing Infomax ICA
and RBM.

Figure 2B shows the full set of ground truth sources along with
RBM and ICA estimates for a single representative dataset. SMs
are thresholded and represented as contours for visualization.

For Figure 2C twelve sets of SimTB data were produced by
varying a SimTB source “spread” parameter, which changes the
relative spatial standard deviation of each source. Increase in
spread increases the percentage of overlap between features; we
define the total overlap of a set of sources as the percentage
of voxels in which more than one source contributes over 0.5
standard deviations. We constructed datasets with overlap rang-
ing from 0.3 (minimal spatial overlap between sources) and
0.88 (very high overlap). Results showed similar performance for
RBM and ICA (Figure 2C), with a slight advantage for ICA with
regard to SM estimation, and a slight advantage for RBM with
regards to TC estimation. RBM and ICA also showed comparable
performance estimating cross correlations also called functional
network connectivity (FNC). FNC is a measure of interaction
between intrinsic networks of the brain (Allen et al., 2012). In
our case this amounts to cross-correlations of subject specific
time courses of each of the hidden unit expressed in a correlation
matrix.

2.3. AN fMRI DATA APPLICATION
Data used in this work comprised of task-related scans from
28 (five females) healthy participants, all of whom gave written,
informed, IRB-approved consent at Hartford Hospital and were
compensated for participation1 . All participants were scanned
during an auditory oddball task (AOD) involving the detection of

1More detailed information regarding participant demographics is provided
in Swanson et al. (2011).

an infrequent target sound within a series of standard and novel
sounds2.

Scans were acquired at the Olin Neuropsychiatry Research
Center at the Institute of Living/Hartford Hospital on a Siemens
Allegra 3T dedicated head scanner equipped with 40 mT/m gradi-
ents and a standard quadrature head coil (Calhoun et al., 2008;
Swanson et al., 2011). The AOD consisted of two 8-min runs,
and 249 scans (volumes) at 2 s TR (0.5 Hz sampling rate) were
used for the final dataset. Data were post-processed using the
SPM5 software package (Friston et al., 1994), motion corrected
using INRIalign (Freire et al., 2002), and subsampled to 53 ×
63 × 46 voxels. The complete fMRI dataset was masked below
mean and the mean image across the dataset was removed, giv-
ing a complete dataset of size 70969 voxels by 6972 volumes. Each
voxel was then normalized to have zero mean and unit variance.

The RBM was constructed using 70969 Gaussian visible units
and 64 hyperbolic tangent hidden units. The hyper parameters ε

(0.08 from the searched [1 × 10−4, 1 × 10−1] range) for learning
rate and λ (0.1 from the searched range [1 × 10−4, 1 × 10−1]) for
L1 weight decay were selected as those that showed a reduction
of reconstruction error over training and a significant reduction
in span of the receptive fields respectively. Parameter value out-
side the ranges either resulted in unstable or slow learning (ε)
or uninterpretable features (λ). The RBM was then trained with
a batch size of 5 for approximately 100 epochs to allow for full
convergence of the parameters.

After flipping the sign of negative receptive fields, we then
identified and labeled spatially distinct features as correspond-
ing to brain regions with the aid of AFNI (Cox, 1996) excluding
features which had a high probability of corresponding to white
matter, ventricles, or artifacts (e.g., motion, edges). Note, the sign
flipping is strictly parallel to what is done to ICA results in order
to address the “sign ambiguity,” where both signs of the spatial
map and the time course are flipped. In the RBM case, only spatial
maps are flipped explicitly (i.e., multiplied by −1) but the time
courses get the correct sign automatically.

We normalized the fMRI volume time series to mean zero and
used the trained RBM in feed-forward mode to compute time

2The task is described in more detail in Calhoun et al. (2008) and Swanson et
al. (2011).
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FIGURE 3 | Intrinsic brain networks estimated by ICA and RBM.

series for each fMRI feature. This was done to better compare to
ICA, where the mean is removed in PCA preprocessing.

The work-flow is outlined in Figure 1, while Figure 3
shows comparison of resulting features with those obtained by
Infomax ICA. In general, RBM performs competitively with ICA,
while providing–perhaps, not surprisingly due to the used L1

regularization—sharper and more localized features. While we
recognize that this is a subjective measure we list more features in
Figure S2 of Section 5 and note that RBM features lack negative
parts for corresponding features. Note, that in the case of L1

regularized weights RBM algorithms starts to resemble some
of the ICA approaches (such as the recent RICA by Le et al.,
2011), which may explain the similar performance. However, the
differences and possible advantages are the generative nature of
the RBM and no enforcement of component orthogonality (not
explicit at the least). Moreover, the block structure of the cor-
relation matrix (see below the Supplementary material section)
of feature time courses provide a grouping that is more physio-
logically supported than that provided by ICA. For example, see
Figure S1 in the Supplementary Material section below. Perhaps,
because ICA working hard to enforce spatial independence subtly
affects the time courses and their cross-correlations in turn. We
have observed comparable running times of the (non GPU) ICA
(http://www.nitrc.org/projects/gift) and a GPU implementation
of the RBM (https://github.com/nitishsrivastava/deepnet). This,
however, is not an exhaustive comparison as there are other
important metrics such as stability of the learned features
(Zuo et al., 2010) that may better differentiate RBM from the
popular models. Some of alternative comparison metrics for
evaluating RBM against the state of the art were considered by
Hjelm et al. (2014).

3. VALIDATING THE DEPTH EFFECT
Since the RBM results demonstrate a feature-learning perfor-
mance competitive with the state of the art (or better), we proceed
to investigating the effects of the model depth. To do that we turn
from fMRI to sMRI data. As it is commonly assumed in the deep
learning literature (Le Roux and Bengio, 2010) the depth is often
improving classification accuracy. We investigate if that is indeed

true in the sMRI case. Structural data is convenient for the pur-
pose as each subject/session is represented only by a single volume
that has a label: control or patient in our case. Compare to 4D data
where hundreds of volumes belong to the same subject with the
same disease state.

3.1. A DEEP BELIEF NETWORK
A DBN is a sigmoidal belief network (although other activation
functions may be used) with an RBM as the top level prior. The
joint probability distribution of its visible and hidden units is
parametrized as follows:

P(v, h1, h2, . . . , hl) = P(v|h1)P(h1|h2) · · · P(hl − 2, hl − 1)

P(hl − 1, hl), (3)

where l is the number of hidden layers, P(hl − 1, hl) is an RBM,
and P(hi|hi + 1) factor into individual conditionals:

P(hi|hi + 1) =
ni∏

j = 1
P(hi

j|hi + 1) (4)

The important property of DBN for our goals of feature learning
to facilitate discovery is its ability to operate in generative mode
with fixed values on chosen hidden units thus allowing one to
investigate the features that the model have learned and/or weighs
as important in discriminative decisions. We, however, are not
going to use this property in this section, focusing instead on
validating the claim that a network’s depth provides benefits for
neuroimaging data analysis. And we will do this using discrimina-
tive mode of DBN’s operation as it provides an objective measure
of the depth effect.

DBN training splits into two stages: pre-training and discrim-
inative fine tuning. A DBN can be pre-trained by treating each
of its layers as an RBM—trained in an unsupervised way on
inputs from the previous layer—and later fine-tuned by treating
it as a feed-forward neural network. The latter allows super-
vised training via the error back propagation algorithm. We use
this schema in the following by augmenting each DBN with a
soft-max layer at the fine-tuning stage. The overall approach is
outlined in Figure 4. Although, we only show there how we con-
struct and train DBN’s of depth 1 and 2, the process can be
continued and DBNs of larger depth can be built. We do so when
we build the third layer of the DBN employed in the experiments
of this section.

While fMRI data of Section 2.3 was not too similar to the nat-
ural images—the traditional domain of DBN application—the
structural MRI resembles the images to a large extent. In par-
ticular, in this section we use gray matter concentration maps: a
point in this map (a voxel) contains intensity values much like in
a monochrome image. This similarity allows us to import some
of the parameters traditionally used in image processing DBNs:
logistic hidden unit non-linearity and the dropout trick (Hinton
et al., 2012).

3.2. NON-LINEAR EMBEDDING AS A CONSTRAINT SATISFACTION
PROBLEM

A DBN and an RBM operate on data samples, which are brain
volumes in the fMRI and sMRI case. A 5 min fMRI experiment
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FIGURE 4 | A pre-train/fine-tune sequence for training a DBN. The
pre-training stage uses the data from the previous layer, which for our
3-level DBN amounts to raw data (for layer 1), and outputs of the
feed-forward mode of the fine-tuned RBMs. The fine-tuning and
feed-forward stages always start from the raw data. The fine-tuning stage
initializes RBM weights with those learned at the pre-training.

with 2 s sampling rate yields 150 of these volumes per subject.
For sMRI studies number of participating subjects varies but in
this paper we operate with a 300 and a 3500 subject-volumes
datasets. Transformations learned by deep learning methods do
not look intuitive in the hidden node space and generative sam-
pling of the trained model does not provide a sense if a model
have learned anything useful in the case of MRI data: in con-
trast to natural images, fMRI and sMRI images do not look very
intuitive. Instead, we use a non-linear embedding method to con-
trol whether a model learned useful information and to assist in
investigation of what have it, in fact, learned.

One of the purposes of an embedding is to display a complex
high dimensional dataset in a way that is (i) intuitive, and (ii)
representative of the data sample. The first requirement usually
leads to displaying data samples as points in a 2-dimensional map,
while the second is more elusive and each approach addresses it
differently. Embedding approaches include relatively simple ran-
dom linear projections—provably preserving some neighbor rela-
tions (de Vries et al., 2010)—and a more complex class of non-
linear embedding approaches (Sammon, 1969; Roweis and Saul,

2000; Tenenbaum et al., 2000; Van der Maaten and Hinton, 2008).
In an attempt to organize the properties of this diverse family we
have aimed at representing non-linear embedding methods under
a single constraint satisfaction problem (CSP) framework (see
below). We hypothesize that each method places the samples in
a map to satisfy a specific set of constraints. Although this work is
not yet complete, it proven useful in our current study. We briefly
outline the ideas in this section to provide enough intuition of the
method that we further use in Section 3.

Since we can control the constraints in the CSP framework,
to study the effect of deep learning we choose them to do the
least amount of work—while still being useful—letting the DBN
do (or not) the hard part. A more complicated method such as
t-SNE (Van der Maaten and Hinton, 2008) already does complex
processing to preserve the structure of a dataset in a 2D map – it
is hard to infer if the quality of the map is determined by a deep
learning method or the embedding. While some of the existing
method may have provided the “least amount of work” solu-
tions as well we chose to go with the CSP framework. It explicitly
states the constraints that are being satisfied and thus lets us rea-
son about deep learning effects within the constraints, while with
other methods—where the constraints are implicit—this would
have been harder.

A constraint satisfaction problem (CSP) is one requiring a
solution that satisfies a set of constraints. One of the well known
examples is the boolean satisfiability problem (SAT). There are
multiple other important CSPs such as the packing, molecular
conformations, and, recently, error correcting codes (Derbinsky
et al., 2013). Freedom to setup per-point constraints without con-
trolling for their global interactions makes a CSP formulation an
attractive representation of the non-linear embedding problem.
Pursuing this property we use the iterative “divide and concur”
(DC) algorithm (Gravel and Elser, 2008) as the solver for our rep-
resentation. In DC algorithm we treat each point on the solution
map as a variable and assign a set of constraints that this vari-
able needs to satisfy (more on these later). Then each points gets
a “replica” for each constraint it is involved into. In our case, this
means that for n points each point will have n replicas as we have a
constraint per point. Then DC algorithm alternates the divide and
concur projections. The divide projection moves each “replica”
points to the nearest locations in the 2D map that satisfy the con-
straint they participate in. More specifically, k-neighbors of the
point in the d-dimensional space are moved in the direction of
the point in the 2D map by a step proportional to their distance
to this point in the data space (in our case, this is DBN represen-
tation space). This is a soft constraint as opposed to just forcing
the k-neighbors to be the nearest neighbors in the 2D map. The
concur projection concurs locations of all “replicas” of a point by
placing them at the average location on the map. The key idea is to
avoid local traps by combining the divide and concur steps within
the difference map (Elser et al., 2007). A single location update is
represented by:

xc = Pc((1 + 1/β) ∗ Pd(x) − 1/β ∗ x)

xd = Pd((1 − 1/β) ∗ Pc(x) + 1/β ∗ x)

x = x + β ∗ (xc − xd), (5)
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where Pd( · ) and Pc( · ) denote the divide and concur projections
and β is a user-defined parameter.

The concur projection Pc( · ) that we use throughout the paper
simply averages locations of all replicas of the point in the 2D
map and assigns all of the replicas to this new location. While the
concur projection will only differ by subsets of “replicas” across
different methods representable in DC framework, the divide
projection Pd( · ) is unique and defines the algorithm behavior.
In this paper, we choose a divide projection that keeps k near-
est neighbors of each point in the higher dimensional space also
its neighbors in the 2D map. This is a simple local neighbor-
hood constraint that allows us to assess effects of deep learning
transformation leaving most of the mapping decisions to the deep
learning. Each point in the 2D map is pulling it’s k-neighbors into
its neighborhood until an equilibrium is reached and the points
stop regrouping (much). With this we strive for the best near-
est neighbor representation of the d-dimensional map in the 2D
space. The changes to the nearest neighborhood are performed by
the DBN, since our algorithm does not affect this information.

We found that hard constraints often do not lead to a solution
getting on a widely oscillating path from initial iterations. We have
observed this while investigating (a)placing all of the neighbors
of a replica in 2D at the same distance as they are in the source
space and (b)ensuring that k-neighbors of a replica are the same
as in the source space. The approach that converges to most inter-
pretable results (with respect to the non-neuroimaging data we
tuned it on) simply pulls the source space neighbors at each itera-
tion toward the replica in 2D. Choice of k, as we have found, does
not determine separation of data clusters as much as their shape.
Smaller values of k lead to more elongated groups which turn into
rays in the extreme case, while larger k leads to more spherical
maps. In Figure 6 and in Figure 8 we use k = 160, which for the
larger dataset of Section 3.4 leads to more elongated groups.

Note, that for a general dataset we may not be able to satisfy
this constraint: each point has exactly the same neighbors in 2D as
in the original space (and this is what we indeed observe). The DC
algorithm, however, is only guaranteed to find the solution if it
exists and oscillates otherwise. Oscillating behavior is interesting,
as it is detectable and could be used to stop the algorithm. Letting
the algorithm run while observing real time changes to the 2D
map may provide additional information about the structure of
the data. Another practically important feature of the algorithm:
it is deterministic. Given the same parameters [β and the param-
eters of Pd( · )] it converges to the same solution regardless of the
initial point. If each of the points participates in each constraint
then complexity of the algorithm is quadratic. With our simple k
neighborhood constraints it is O(kn), for n samples/points.

3.3. A SCHIZOPHRENIA STRUCTURAL MRI DATASET
We use a combined data from four separate schizophrenia stud-
ies conducted at Johns Hopkins University (JHU), the Maryland
Psychiatric Research Center (MPRC), the Institute of Psychiatry,
London, UK (IOP), and the Western Psychiatric Institute and
Clinic at the University of Pittsburgh (WPIC) (the data used
in Meda et al., 2008). The combined sample comprised 198
schizophrenia patients and 191 matched healthy controls and
contained both first episode and chronic patients (Meda et al.,

FIGURE 5 | A smoothed gray matter segmentation of a training

sample of (A) a patient and (B) a healthy control.

2008). At all sites, whole brain MRIs were obtained on a
1.5T Signa GE scanner using identical parameters and software.
Original structural MRI images were segmented in native space
and the resulting gray and white matter images then spatially nor-
malized to gray and white matter templates respectively to derive
the optimized normalization parameters. These parameters were
then applied to the whole brain structural images in native space
prior to a new segmentation. The obtained 60465 voxel gray
matter images were used in this study. Figure 5 shows example
orthogonal slice views of the gray matter data samples of a patient
and a healthy control.

The main question of this section is to evaluate the effect of the
depth of a DBN on sMRI. To answer this question, we investigate
if classification rates improve with the depth. For that we sequen-
tially investigate DBNs of 3 depth. From RBM experiments we
have learned that even with a larger number of hidden units (72,
128, and 512) RBM tends to only keep around 50 features driv-
ing the rest to zero. Classification rate and reconstruction error
still slightly improves, however, when the number of hidden units
increases. These observations affected our choice of 50 hidden
units of the first two layers and 100 for the third. Each hidden
unit is connected to all units in the previous layer which results in
an all to all connectivity structure between the layers, which is a
more common and conventional approach to constructing these
models. Note, larger networks (up to double the number of units)
lead to similar results. We pre-train each layer via an unsupervised
RBM and discriminatively fine-tune models of depth 1 (50 hidden
units in the top layer), 2 (50-50 hidden units in the first and the
top layer respectively), and 3 (50-50-100 hidden units in the first,
second and the top layer respectively) by adding a softmax layer
on top of each of these models and training via the back propaga-
tion (see Figure 4). Table 1 summarizes parameter values used in
the training.

We estimate the accuracy of classification via 10-fold cross val-
idation splitting the 389 subject dataset into 10 approximately
class-balanced folds. At each step using 9 of the ten folds for
pre-training and fine-tuning a DBN of a given depth, we use
the same data to optimize parameters of the classifiers and only
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Table 1 | Parameter settings for training RBMs at the pre-training and for the feed forward networks at the discriminative fine-tuning.

Depth Pre-training Fine tuning

Input 1 2 3 Input 1 2 3

Dimension 60465 50 50 100 60465 50 50 100

Unit type Gaussian Logistic Logistic Logistic – Logistic Logistic Logistic

Dropout probability 0.2 0.5 0.5 0.5 0.7 0.5 0.5 0.75

L1 Regularization – 0.1 0.01 0.001 – 0.001 – –

Learning rate – 0.01 0.01 0.001 – 0.01 0.1 1e–8

Table 2 | Classification on fine-tuned models (test data).

Depth Raw 1 2 3

SVM F-score 0.68 ± 0.01 0.66 ± 0.09 0.62 ± 0.12 0.90 ± 0.14

LR .F-score 0.63 ± 0.09 0.65 ± 0.11 0.61 ± 0.12 0.91 ± 0.14

KNN F-score 0.61 ± 0.11 0.55 ± 0.15 0.58 ± 0.16 0.90 ± 0.16

then perform evaluation on the left out fold. The process is
repeated 10 times. We train the rbf-kernel SVM, logistic regres-
sion and a k-nearest neighbors (knn) classifier using activations
of the top-most hidden layers in fine-tuned models to the train-
ing data of each fold as their input. The testing is performed
likewise but on the test data. We also perform the same 10-
fold cross validation on the raw data. Table 2 summarizes the
precision and recall values in the F-scores and their standard
deviations.

All models demonstrate a similar trend when the accuracy
only slightly increases from depth-1 to depth-2 DBN and then
improves significantly. Table 2 supports the general claim of deep
learning community about improvement of classification rate
with the depth even for sMRI data. Improvement in classifica-
tion even for the simple knn classifier indicates the character
of the transformation that the DBN learns and applies to the
data: it may be changing the data manifold to organize classes
by neighborhoods. Ideally, to make general conclusion about
this transformation we need to analyze several representative
datasets. However, even working with the same data we can have
a closer view of the depth effect using the method introduced
in Section 3.2. Although it may seem that the DBN does not
provide significant improvements in sMRI classification from
depth-1 to depth-2 in this model, it keeps on learning potentially
useful transformaions of the data. We can see that using our sim-
ple local neighborhood-based embedding. Figure 6 displays 2D
maps of the raw data, as well as the depth 1, 2, and 3 activa-
tions (of a network trained on 335 subjects): the deeper networks
place patients and control groups further apart. Additionally,
Figure 6 displays the 54 subjects that the DBN was not train
on. These hold out subjects are also getting increased sepa-
ration with depth. This DBN’s behavior is potentially useful
for generalization, when larger and more diverse data become
available.

Our new mapping method has two essential properties to
facilitate the conclusion and provide confidence in the result: its
already mentioned local properties and the deterministic nature

of the algorithm. The latter leads to independence of the result-
ing maps from the starting point. The map only depends on
the models parameter k—the size of the neighborhood—and
the data.

3.4. A LARGE-SCALE HUNTINGTON DISEASE DATA
In this section we focus on sMRI data collected from healthy
controls and Huntington disease (HD) patients as part of the
PREDICT-HD project (www.predict-hd.net). Huntington disease
is a genetic neurodegenerative disease that results in degeneration
of neurons in certain areas of the brain. The project is focused on
identifying the earliest detectable changes in thinking skills, emo-
tions and brain structure as a person begins the transition from
health to being diagnosed with Huntington disease. We would
like to know if deep learning methods can assist in answering that
question.

For this study T1-weighted scans were collected at multiple
sites (32 international sites), representing multiple field strengths
(1.5T and 3.0T) and multiple manufactures (Siemens, Phillips,
and GE). The 1.5T T1 weighted scans were an axial 3D volumet-
ric spoiled-gradient echo series (≈ 1 × 1 × 1.5 mm voxels), and
the 3.0T T1 weighted scans were a 3D Volumetric MPRAGE series
(≈ 1 × 1 × 1 mm voxels).

The images were segmented in the native space and the nor-
malized to a common template. After correlating the normalized
gray matter segmentation with the template and eliminating
poorly correlating scans we obtain a dataset of 3500 scans, where
2641 were from patients and 859 from healthy controls. We are
not studying the depth effect on performance in this section. Our
goal with this imbalanced dataset is to evaluate if DBNs could facil-
itate discovery. For that, we have used all of the 3500 scans in this
imbalanced sample to pre-train and fine tune the same model
architecture (50-50-100) as in Section 3.3. Here, however, we only
used the complete depth 3 model.

To further investigate utility of the deep learning approach
for scientific discovery we again augment it with the embed-
ding method of Section 3.2. Figure 8 shows the map of 3500
scans of HD patients and healthy controls build on using 100
dimensional representations learned by our depth 3 model. Each
point on the map is an sMRI volume, shown in Figures 7, 8.
Although we have used the complete data (all 3500 scans) to train
the DBN, discriminative fine-tuning had access only to binary
label: control or patient. In addition to that, we have informa-
tion about severity of the disease from low to high. We have
color coded this information in Figure 8 from bright yellow (low)
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FIGURE 6 | Effect of a DBN’s depth on neighborhood relations. Each map
is shown at the same iteration of the algorithm with the same k = 50. The
color differentiates the classes (patients and controls) and the training (335

subjects) from validation (54 subjects) data. Although the data becomes
separable at depth 1 and more so at depth 2, the DBN continues distilling
details that pull the classes further apart.

FIGURE 7 | A gray matter of MRI scans of an HD patient (A) and a

healthy control (B).

through orange (medium) to red (high). The network3 discrimi-
nates the patients by disease severity which results in a spectrum
on the map. Note, that neither t-SNE (not shown), nor our new
embedding see the spectrum or even the patient groups in the raw
data. This is a important property of the method that may help
support its future use in discovery of new information about the
disease.

4. CONCLUSIONS
Our investigations show that deep learning has a high potential
in neuroimaging applications. Even the shallow RBM is already
competitive with the model routinely used in the field: it produces
physiologically meaningful features which are (desirably) highly
focal and have time course cross correlations that connect them
into meaningful functional groups (Section 5). The depth of the
DBN does indeed help classification and increases group sepa-
ration. This is apparent on two sMRI datasets collected under

3Note, the embedding algorithm does not have access to any label
information.

FIGURE 8 | Patients and controls group separation map with

additional unsupervised spectral decomposition of sMRI scans by

disease severity. The map represents 3500 scans.

varying conditions, at multiple sites each, from different disease
groups, and pre-processed differently. This is a strong evidence of
DBNs robustness. Furthermore, our study shows a high potential
of DBNs for exploratory analysis. As Figure 8 demonstrates, DBN
in conjunction with our new mapping method can reveal hidden
relations in data. We did find it difficult initially to find workable
parameter regions, but we hope that other researchers won’t have
this difficulty starting from the baseline that we provide in this
paper.

www.frontiersin.org August 2014 | Volume 8 | Article 229 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Plis et al. Deep learning for neuroimaging

ACKNOWLEDGMENTS
This work was supported in part by grants 2R01EB005846,
COBRE: P20GM103472 and NS0040068. We thank Dr. van der
Maaten for insightful comments on the initial drafts of this paper.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fnins.
2014.00229/abstract

REFERENCES
Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., and Calhoun, V. D.

(2012). Tracking whole-brain connectivity dynamics in the resting state. Cereb.
Cortex 24, 663–676. doi: 10.1093/cercor/bhs352

Bell, A. J., and Sejnowski, T. J. (1995). An information-maximization approach to
blind separation and blind deconvolution. Neural Comput. 7, 1129–1159. doi:
10.1162/neco.1995.7.6.1129

Biswal, B., Zerrin Yetkin, F., Haughton, V. M., and Hyde, J. S. (1995). Functional
connectivity in the motor cortex of resting human brain using echo-planar mri.
Magn. Reson. Med. 34, 537–541. doi: 10.1002/mrm.1910340409

Brookes, M., Woolrich, M., Luckhoo, H., Price, D., Hale, J., Stephenson, M., et al.
(2011). Investigating the electrophysiological basis of resting state networks
using magnetoencephalography. Proc. Natl. Acad. Sci. U.S.A. 108, 16783–16788.
doi: 10.1073/pnas.1112685108

Calhoun, V. D., Kiehl, K. A., and Pearlson, G. D. (2008). Modulation of temporally
coherent brain networks estimated using ICA at rest and during cognitive tasks.
Hum. Brain Mapp. 29, 828–838. doi: 10.1002/hbm.20581

Cox, R. W. (1996). AFNI: software for analysis and visualization of functional
magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173. doi:
10.1006/cbmr.1996.0014

de Vries, T., Chawla, S., and Houle, M. E. (2010). “Finding local anomalies in
very high dimensional space,” in Proceedings of the 10th {IEEE} International
Conference On Data Mining (Sydney, NSW: IEEE Computer Society), 128–137.

Derbinsky, N., Bento, J., Elser, V., and Yedidia, J. S. (2013). An improved three-
weight message-passing algorithm. arXiv preprint arXiv:1305.1961.

Elser, V., Rankenburg, I., and Thibault, P. (2007). Searching with iterated maps.
Proc. Natl. Acad. Sci. U.S.A. 104, 418. doi: 10.1073/pnas.0606359104

Erhardt, E., Allen, E. A., Wei, Y., and Eichele, T. (2012). SimTB, a simulation toolbox
for fMRI data under a model of spatiotemporal separability. Neuroimage 59,
4160–4167. doi: 10.1016/j.neuroimage.2011.11.088

Fischer, A., and Igel, C. (2012). “An introduction to restricted Boltzmann
machines,” in Progress in Pattern Recognition, Image Analysis, Computer Vision,
and Applications, eds L. Alvarez, M. Mejail, L. Gomez, and J. Jacobo (Berlin;
Heidelberg: Springer-Verlag), 14–36. doi: 10.1007/978-3-642-33275-3_2

Freire, L., Roche, A., and Mangin, J. F. (2002). What is the best similarity mea-
sure for motion correction in fMRI. IEEE Trans. Med. Imaging 21, 470–484. doi:
10.1109/TMI.2002.1009383

Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J.-P., Frith, C. D., and
Frackowiak, R. S. (1994). Statistical parametric maps in functional imaging: a
general linear approach. Hum. Brain Mapp. 2, 189–210. doi: 10.1002/hbm.4600
20402

Gravel, S., and Elser, V. (2008). Divide and concur: a general approach to
constraint satisfaction. Phys. Rev. E 78, 36706. doi: 10.1103/PhysRevE.78.
036706

Hastie, T., Tibshirani, R., and Friedman, J. J. H. (2009). The Elements of Statistical
Learning. Springer.

Hinton, G. (2000). Training products of experts by minimizing contrastive diver-
gence. Neural Comput. 14, 2002.

Hinton, G., and Salakhutdinov, R. (2006). Reducing the dimensionality of data with
neural networks. Science 313, 504–507. doi: 10.1126/science.1127647

Hinton, G. E., Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for
deep belief nets. Neural Comput. 18, 1527–1554. doi: 10.1162/neco.2006.18.
7.1527

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R. R. (2012). Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580.

Hjelm, R. D., Calhoun, V. D., Salakhutdinov, R., Allen, E. A., Adali, T., and Plis,
S. M. (2014). Restricted Boltzmann machines for neuroimaging: an applica-
tion in identifying intrinsic networks. Neuroimage 96, 245–260. doi: 10.1016/
j.neuroimage.2014.03.048

Hoyer, P. O. (2002). “Non-negative sparse coding,” in Neural Networks for Signal
Processing, 2002. Proceedings of the 2002 12th IEEE Workshop on (Helsinki),
557–565.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification with
deep convolutional neural networks,” in Neural Information Processing Systems
(Lake Tahoe; Nevada).

Le, Q. V., Karpenko, A., Ngiam, J., and Ng, A. Y. (2011). “ICA with reconstruction
cost for efficient overcomplete feature learning,” in NIPS, eds J. Shawe-Taylor, R.
S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger (Granada), 1017–1025.

Le, Q. V., Monga, R., Devin, M., Chen, K., Corrado, G. S., Dean, J., et al.
(2012). “Building high-level features using large scale unsupervised learning,”
in International Conference on Machine Learning (Edinburgh), 103.

Le Roux, N., and Bengio, Y. (2010). Deep belief networks are compact univer-
sal approximators. Neural Comput. 22, 2192–2207. doi: 10.1162/neco.2010.08-
09-1081

Liu, J., and Calhoun, V. (2007). “Parallel independent component analysis for mul-
timodal analysis: Application to fmri and eeg data,” in Biomedical Imaging:
From Nano to Macro, 2007. ISBI 2007. 4th IEEE International Symposium on
(Washington, DC), 1028–1031.

McKeown, M. J., Makeig, S., Brown, G. G., Jung, T. P., Kindermann, S. S., Bell, A. J.,
et al. (1998). Analysis of fMRI data by blind separation into independent spatial
components. Hum. Brain Mapp. 6, 160–188.

Meda, S. A., Giuliani, N. R., Calhoun, V. D., Jagannathan, K., Schretlen, D. J., Pulver,
A., et al. (2008). A large scale (n= 400) investigation of gray matter differences in
schizophrenia using optimized voxel-based morphometry. Schizophr. Res. 101,
95–105. doi: 10.1016/j.schres.2008.02.007

Moosmann, M., Eichele, T., Nordby, H., Hugdahl, K., and Calhoun, V. D.
(2008). Joint independent component analysis for simultaneous EEG-
fMRI: principle and simulation. Int. J. Psychophysiol. 67, 212–221. doi:
10.1016/j.ijpsycho.2007.05.016

Nair, V., and Hinton, G. E. (2010). “Rectified linear units improve restricted
Boltzmann machines,” in Proceedings of the 27th International Conference on
Machine Learning (ICML-10) (Haifa), 807–814.

Potluru, V. K., and Calhoun, V. D. (2008). “Group learning using contrast NMF:
application to functional and structural MRI of schizophrenia,” in Circuits and
Systems, 2008. ISCAS 2008. IEEE International Symposium on (Seattle, WA),
1336–1339.

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., and
Shulman, G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci.
U.S.A. 98, 676–682. doi: 10.1073/pnas.98.2.676

Roweis, S. T., and Saul, L. K. (2000). Nonlinear dimensionality reduction by
locally linear embedding. Science 290, 2323–2326. doi: 10.1126/science.290.55
00.2323

Rubinov, M., and Sporns, O. (2011). Weight-conserving characterization
of complex functional brain networks. Neuroimage 56, 2068–2079. doi:
10.1016/j.neuroimage.2011.03.069

Sammon, J. W. Jr. (1969). A nonlinear mapping for data structure analysis. Comput.
IEEE Trans. 100, 401–409. doi: 10.1109/T-C.1969.222678

Sui, J., Adali, T., Yu, Q., Chen, J., and Calhoun, V. D. (2012). A review of multivari-
ate methods for multimodal fusion of brain imaging data. J. Neurosci. Methods
204, 68–81. doi: 10.1016/j.jneumeth.2011.10.031

Swanson, N., Eichele, T., Pearlson, G., Kiehl, K., Yu, Q., and Calhoun, V. D. (2011).
Lateral differences in the default mode network in healthy controls and patients
with schizophrenia. Hum. Brain Mapp. 32, 654–664. doi: 10.1002/hbm.21055

Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000). A global geometric
framework for nonlinear dimensionality reduction. Science 290, 2319–2323.
doi: 10.1126/science.290.5500.2319

van den Heuvel, M., and Hulshoff Pol, H. (2010). Exploring the brain
network: a review on resting-state fMRI functional connectivity. Eur.
Neuropsychopharmacol.

Van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-sne. J. Mach.
Learn. Res. 9, 85.

West, D. B. (2001). Introduction to Graph Theory. Prentice Hall.
Zou, H., Hastie, T., and Tibshirani, R. (2006). Sparse principal component analysis.

J. Comput. Graph. stat. 15, 265–286. doi: 10.1198/106186006X113430

Frontiers in Neuroscience | Brain Imaging Methods August 2014 | Volume 8 | Article 229 | 10

http://www.frontiersin.org/journal/10.3389/fnins.2014.00229/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2014.00229/abstract
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Plis et al. Deep learning for neuroimaging

Zuo, X.-N., Kelly, C., Adelstein, J. S., Klein, D. F., Castellanos, F. X., and Milham,
M. P. (2010). Reliable intrinsic connectivity networks: test–retest evaluation
using ICA and dual regression approach. Neuroimage 49, 2163–2177. doi:
10.1016/j.neuroimage.2009.10.080

Conflict of Interest Statement: The Associate Editor Dr. Poline declares that,
despite having collaborated with author Dr. Jessica A. Turner, the review process
was handled objectively. The authors declare that the research was conducted in
the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 07 April 2014; accepted: 11 July 2014; published online: 20 August 2014.

Citation: Plis SM, Hjelm DR, Salakhutdinov R, Allen EA, Bockholt HJ, Long JD,
Johnson HJ, Paulsen JS, Turner JA and Calhoun VD (2014) Deep learning for neu-
roimaging: a validation study. Front. Neurosci. 8:229. doi: 10.3389/fnins.2014.00229
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers
in Neuroscience.
Copyright © 2014 Plis, Hjelm, Salakhutdinov, Allen, Bockholt, Long, Johnson,
Paulsen, Turner and Calhoun. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

www.frontiersin.org August 2014 | Volume 8 | Article 229 | 11

http://dx.doi.org/10.3389/fnins.2014.00229
http://dx.doi.org/10.3389/fnins.2014.00229
http://dx.doi.org/10.3389/fnins.2014.00229
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive

	Deep Learning for Neuroimaging: a Validation Study
	Recommended Citation
	Authors

	Deep learning for neuroimaging: a validation study
	Introduction
	A Shallow Belief Network for Feature Learning
	A Restricted Boltzmann Machine
	Synthetic Data
	An fMRI Data Application

	Validating the Depth Effect
	A Deep Belief Network
	Non-linear Embedding as a Constraint Satisfaction Problem
	A Schizophrenia Structural MRI Dataset
	A Large-Scale Huntington Disease Data

	Conclusions
	Acknowledgments
	Supplementary Material
	References


